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I. INT DUCTIQJ AND SUPmAR 

The following sumarize the research pro3ects undertaken on NASA 

Grant NGR 05-017-031. Detailed research results are presented in Sec­

tions II through V. 

PROJECT? Application of Vector Magnetometer to Aircraft Control 

and Navigatioh. 

INVESTIGATORS: W. R. Dunn and R. Pietila 

Recent technological improvements and corresponding cost reductions 

in 3-axis (i.e., vector) magnetoretry led to investigation by Ames and 

University of Santa Clara researchers into use of this device in avionics 

flight control and navigation applications. Early analytical work showed 

that vector magnetometer outputs could be used to determine aircraft 

change provided that one attitude angle was known. These results were 

confirmed by successful correlarion of attitude compured from magnetometer 

data taken during a NASA Convair 880 test with act6al aircraft attitude. 

To demonstrate the viability and uncover the limitations of the theory, 

development of a solid state remote magnetic indicator was undertaken. 

The effort involved development of a microprocessor based system emrploying 

a 3-axis magnetometer and evaluation of the system using test apparatus 

constructed at the University. The background and results of this Vrk 

are described in detail in Section Ii of this report. Results of the re­

search were also published in [1] and [2]. 

PROJECT: 	 Application of Earth Electric Field Phenomena to Aircraft 
Control and Navigation. 

I7NVESTIGATORS: 	 W. R. Dunn, C. Keller, W. Keller, R. Wilson, R. Yarbrough 

Hill's [3] late 1972 paper on use of the earth's electric field in 

flight control prompted NASA and University researchers to undertake in­

vestigation of earth field applications to large aircraft control and navi­



2 

gation. 

The principle underlying 'Hill's work is the fact that in clear weather, 

the earth's surface terminates a large (approximately 300v/m at the surface)



electric field which is close to the local vertical. Hil then successfully



demonstrated that airborne (RPV)measurements of this field could be used to



provide pitch/rol! control.
 


University investigations were undertaken to-evaluate the use of this 

phenonena in bad (e.g. IFR) weather conditions. The principal finding of



this investigation was that this field (direction) can be significantly 

altered in and near cloud structures particularly the cumulonimbus cloud 

structure. Section III provides a review of the basic earth electric field 

phenonena and develops the basic field ndel for the cumnloninbus structure. 

The basic conclusion of thi work is that the variability of the effects of 

the cumulonimbus on the clear weather electric field made navigational use 

of this field in all flight conditions a highly unreliable proposition. It



is further proposed that electric field measurements might possibly better



serve in a low cost system for identifying the direction and change intensi-y
 


of cumulonimbus clouds during flight.
 


PROJECT: Electronic Aircraft Cabin Noise Suppression 

INVESTI-GATORS: W. R. Dunn and W. Keller 

Section IV describes an extension of Olson"s [4] pioneering work in the 

use of active conr ensation as a means of reducing acoustic noise. This ex­

tended vork provides a theoretical basis on which wide band acoustic noise 

can be significantly reduced in aircraft cabins. 

PROJECT: SIRU (Strapdown Inertial Reference Unit) Technical Support.
 


INVESTIGATORS: W. R. Dunn, W. Keller, C. Keller



University- researchers worked with government and (government) contractor 
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personnel in the installation and checkout of the Carco notion simulator 

facility developed for use in the SIRU program. This effort consisted of 

Carco table orthogonality measurements, adjustment and calibration of re­

cording electronics, and specification of Carco Table/Sigma 7 computer in­

terface. 



Section IT



Aircraft Attitude Measurement



Using a Vector Magnetometer
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CHAPTER I



A VECTOR AUTOPILOT SYSTEM



1-1 INTRODUCTION



An essential requirement of an aircraft attitude con­


trol system is that deviation of the body axes relative to



a reference axes frame must be sensed. In addition, to



overcome the ever-present possibility of errors or failure



of the sensors, various configurations of redundant sensors



are usually employed to assist in detection and correction



of errors. To this end, there has been a continuing effort



to improve existing sensors, to develop'new sensor config­


urations, and to develop new sensor devices.



This chapter discusses the role of a vector magneto­


meter1 as a new instrument for aircraft attitude determin­


ation. Although magnetometers have played a role in the



attitude measurement of missiles and satellites [Ref. 1-1],



there is an apparent lack of application in aircraft systems.



By providing independent measures of attitude, the solid



state vector magetometer sensor system can not only assist



in improving accuracy and reliability of existing systems



but can also reduce component count with obvious benefits



in weight and cost. Additionally, since a large number of



aircraft heading reference systems depend on measurement



of the Earth's magnetic field, it can be shown that by sub­


stituting a three-axis magnetometer for the remote sensing



unit; both heading and attitude measurement functions can



be derived using common elements, thereby further reducing



the component count.



1Aviation use to date has been essentially scalar magneto­

metry.



:i
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To investigate the feasibility of the above system, this



chapter will proceed by developing a technique to determine



attitude given magnetic field components. -Sample calcula­


tions are then made using the Earth's magnetic field data



acquired during actual flight conditions. Results of these



calculations are compared graphically with measured attitude



data acquired simultaneously with the magnetic data. The



role and possible implementation of various reference angles



are discussed along with other pertinent considerations.



Finally, it is concluded that the Earth's magnetic field as



measured by modern vector magnetometers can play a signifi­


cant role in attitude control systems.



1-2 ATTITUDE DETERMINATION



Coordinate systems are usually defined by orthogonal



right-handed sets of three unit vectors. An example of such



a set is illustrated in Fig. 1-1 where the orientation of



the body fixed frame used in this paper is delineated. An­


gular rotations are conventionally defined as rotations in



the plane normal to a unit vector with the positive sense of



rotation defined by the right-hand rule [Ref. 1-2].



To derive relationships of attitude variations as a



function of magnetic vector component variation, we can pro­


ceed by considering matrix representations of an orthogonal



transformation. If Hx, Hy, and Hz are the magnetic compon­


ents measured at a desired airframe attitude and Hx', Hy',



and Hz' are the components measured after any rotation of



the body, vector H' = [Hx' Hy' Hz' T can be related to



vector H = [Hx Hy Hz] T by an orthogonal linear transform­


ation H' = AH. Here A must satisfy the orthogonality con­


dition AAT = I, where AT is the transpose of A; addition­


ally, the determinant of A must be unity [Ref. 1-3, 1-4].
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xY



z 

Fig. 1-1 AXIS ORIENTATION



Rotations about the z axis in Fig. 1-1 result in yaw



deviations (p) and in new components (H'), as shown by



Ex> FCos sin *01 H


Hi sin~ P 0 0 LHy](1
o j 

Similarly, independent rotations about the y axis and



the x axis result in pitch (0) and roll ( ) dependent varia­


tions in the measured H components, as shown by





4
HxI cos60°sin
6HXo0 

Hz =[sin 0 cos e Hz (1-2)



Hy[ ] = [0 cos sin 1 Hy



HZ 0 -sin cos 4, Hz (1-3)



The effect of a combined rotation can be expressed by



using the product of the transformation matrices. In add­


ition, if the rotations are small, the total rotation exper­

ienced by applying sequential rotations is independent of


the order in which the rotations are performed [Ref. 1-3,1-4].



LH] cos sin [c:s : 0-sin e 

HzrJ 0 0 1 sin a 0 cos


[1
0 0 7Fxi 
o cos 0 sin 0 Hy



o -sin 4 cos 4] 1Hzj (1-4a)



Hx'] F cos ) cos 0 sin 4 cos 4 +sin e cos ' sin 6



HIy]= [-sin ' cos e cos 4 cos 4 -sin 4 sin 4 sin 6


LHz'J L sin e -cos 6 sin 4



sin 4 sin -sin a cos 4 cos 4] [Hz] 

cos 4 sin 4.+sin 4 sin e cos Hy 

cos 4 cos a L (1-4b)IHz] 
 



5 

Assume that the angular variations 8, p, and 4 are



small enough so that the small angle approximations



sin 0 = 8, sin 4 = ', sin 4 - 4, 

cos e = cos - cos 4, 1 

can be made. Then, if the products of small angles (in rad­


ians) can be assumed to be much smaller than the angles



alone, the expression reduces to



zJ [- _1 Hz (1-5) 

Further modifications in the form of the matrices result in



H'1 =[- H Oz] [] +[ 
HzY] L Hx 0 -Hyj i Hzi 

By subtracting, we arrive at an expression for the dif­

ference in H components as functions of angular deviation.



Hy / /j o- x H0Hy/-

HE]= [Th] 17LAHzJ Hx 0 -HyJHz' Hz F x]3 (1-7) 

It is significant to note at this point that the trans­


formation matrix is singular implying that solutions for


8, *, and- are not independently available.
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1-3 	 ATTITUDE DETERMINATION EMPLOYING MAGNETIC


FIELD COMPONENTS
 


A givenorthogonal set of three unit vectors can be dis­


placed in Euclidean space by rotating the system through any



angle 6 about a directed rotation axis. It is also customary



to represent this rotatton vectorially as a directed line



segment whose length is proportional to the rotation angle.



This rotation is analogous to the rotation experienced by the
 


body fixed frame of Fig. 1-1 as the aircraft experiences



combined pitch, yaw, and roll variation. During flight the



body fixed set rotates about this rotation axis assuming new



(possibly erroneous) attitudes in space. The task of the



attitude sensing system is to provide measures of compounded



patch, yaw, and roll that would result in the same attitude



assuming that the rotations occurred sequentially about the



x, y and z axes rather than the actual rotation axis.



It was shown in the previous section that a compounded



rotation of an orthogonal set can be described by a product



of respective transformation matrices. Additionally ir was



noted that for small angular rotations the order of multi­


plication is unimportant. Using the relationships of (1-7),



expressions for the angular deviations in terms of measured



magnetic vector components can be derived.



6Hx = -HzO + Hy* 	 (1-Sa)



yields



e = (Hy4 - AHx)/Hz 	 (l-8b)



= (aHx + HzO)/Hy 	 (1-8c)
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Similarly,



AHy = -Hx4 + Hz (1-9a)



yields



= (Hzq - AHy)/Hx (1-9b)



8 = (AHy + Hx)/Hz (1-9c)



and 

AHz = HxO - Ey4 (l-l0a) 

yields



8 = (AHz + Hy )/Hx (1-10b)



4 = (Hxo - AHz)/Hy (1-10c)



Assuming that Hx, Hy and Hz are nominal vector compon­

ents as measured in a reference attitude and that Hx', Hy' 

and Hz' are new field components at the new attitude, then 

AHx = Hx' - Hx, AHy = Hy' - Hy, AHz = Hz' - Hz are expres­

sions of the incremental changes in field components. Add­

itionally, before using (1-8), (1-9) or (1-10) to solve for



attitude variations (pitch, yaw, or roll), one additional



angle from an auxiliary sensor 2 must be supplied. Using one



additional angle of rotation (about any one axis) the remain­


ing two rotations can then be-calculated.



To illustrate this point, flight data acquired during



the flight of a NASA flown Convair 900 instrumented with a



three-axis magnetometer and a Litton inertial navigation



system were used to calculate roll, pitch, and yaw.



2it was noted following (1-7) that a unique solution for


attitude variation is not possible using magnetic field


data alone.
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Attitude variation about each of the three axes was calcul­


ated using measured magnetic field components supported by



one angle from the inertial system. The results of these



calculations are plotted in Figs. 1-2 through 1-4.



It is significant to note that the rotations shown
 


occurred simultaneously (i.e., time base is the same for all



three figures). The flight was at an altitude of approxi­


mately 5000 ft at an airspeed of approximately 250 nmi/h.



Although the data used to plot the attitudes shown in



Figs. 1-2 through 1-4 were not acquired specifically for this
 


purpose, the correlations in measured and calculated atti­


tude clearly show that, within the limits of instrumenz ac­


curacy, signals proportional to attitude variation can be



derived using flight data.



1-4 A POSSIBLE SYSTEM CONFIGURATION



Since the intent of this chapter is to introduce the



notion that magnetometer technology has advanced to the point



where three-axis magnetometers can be incorporated in air­


craft attitude sensing systems on a cost effective basis, the



system discussion will be limited in scope ro describing a



possible combined heading and attitude measurement method.



Heading references fall into three classes; 1) those



that depend on the Earth's magnetic field, 2) those that de­


pend on the use of low-drift gyroscope to retain a preset



azimuth, and 3) those (gyrocompasses) that depend on sensing



the Earth's rotation [Ref.l-5]. By far the greatest number of



aircraft heading systems depend on the Earth's magnetic



field, although many of these include gyroscopes to' improve



the performance characteristics.
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A popular system combination (with no gyro) is to



combine a pendulous remote magnetic sensor and a synchro



receiver in a null seeking circuit. The philosophy being to



attempt to measure only the horizontal component of the



Earth's magnetic field and to swing the receiver into align­


ment with it. Under acceleration, departures of the sensor



unit from the horizontal result in angular heading errors E



[Ref. 1-5].



e = (aH/g) tany sine



where aH is the horizontal acceleration, g is the accelera­


tion due to gravity, 8 is the angle between the acceleration



vector and magnetic north, and y is the magnetic field dip



angle; arctan (vertical field/horizontal field).



Accuracy of this system can be improved by incorporat­


ing a strapped-down solid state magnetic sensing unit (free



of acceleration errors) that measures and displays the angle



of the Earth's horizontal magnetic component relative to the



aircraft. This system can be implemented as follows:



1) Determine the direction of the magnetic vector F rela­


tive to the sensors (and the airframe), by measuring the x,



y and z components (Figs. 1-1 and 1-5). The direction co­


sines cosa, cosa, cosy are the cosines of the angles a, a, y
 


between the magnetic vector and the positive x, y and z



axes. Additionally,



+ y
2 + Z2)1
cosa = x/(x2 


2 + z2)2cosa = y/(x
2 + y
 

2
 
COSy = Z/(X


2 + y + z2)2
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3
2) Using either a vertical reference or knowledge of


aircraft attitude, wecan effectively rotate the body axes


such that the x-y plane is horizontal (see Chapter II).



3) Simple application of direction cosines will yield the


direction of magnetic north in the aircraft's x-y plane.



JX



r F



Fig. 1-5 FIELD VECTORS AND DIRECTION COSINES



Although the preceding discussion implies that heading



can be determined by using a strapped-down magnetometer,


there remains the problem of attitude determination. An­

other widely used system for obtaining a heading reference



3Not necessarily derived inertially [Ref. 1-11].
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is to combine the relatively excellent short term stability


of a directional gyroscope with the long term stability of


magnetic field measurements. By slaving the directional gyro­

scope to the magnetic field [Ref. 1-5, sec. 10.4.7], gyroscopes


with relatively large free drift error can be used to pro­


vide an excellent heading reference.



Replacement of the pendulous remote sensing unit of this


type of system with a strapped-down vector magnetometer would


result in both heading and attitude information on a contin­

uous basis. This combination would operate as follows:



1) The system is initialized by determining a reference
 

attitude (perhaps by using a primary inertial attitude sys­


tem).



2) The angular position of the horizontal magnetic field


component is computed as 
 above and used to slave the direct­


ional gyroscope.



3) The directional gyroscope, with relatively good short


term qtability (devices with free drift of less than 0.5


deg/h have been designed), is used to determine yaw (1)



errors.



4) For small angle deviations, (1-8), and (1-9), and


(1-10) can be employed to recalculate aircraft attitude.


The process loops back to step 2) closing the loop on a


combined attitude and heading reference system.



The sampling frequency required to maintain an accept­

able level of error is of course determined by the aircraft



performance expected (angular rates) and by the gyro error


(drift rate plus errors due to additional sources such as
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gyroscope tilt from vertical). The overall system is such


that heading can be determined as before with errors due to



sensor departures from horizontal substituted for long term


accumulation of attitude uncertainty (this can be corrected



by looping to step 1) at a frequency dependent on error



rates). Additionally one gains measurements of attitude



with minimal computation and replacement of a mechanical re­


mote sensing unit with a solid state strapped-down magneto­


meter sensor.



1-5 OTHER CONSIDERATIONS



The characteristics of the Earth's magnetic field and its


variations have long been established [Ref. 1-6-1-10]. Since


the field is to be used as a reference in the attitude



measurement scheme, there is a need here to discuss its ad­

verse characteristics. Although the field does experience



variation, most of the variation is either in amplitude



(ionospheric contributions) or has time constants that make


the variation negligible (secular variation).



In traversing local anomalies, there will, however, be


deflections in the ambient field due to the additive effect



of local dipoles or monopoles. The effect of local terrain



caused anomalies can be visualized by picturing the main



field vector oriented in space with a second modulating


vector rotating at its tip. Maximum angular error would



occur when this modulating vector has maximum magnitude and


is positioned at right angles to the main vector.



To illustrate the effect of local anomalies one can cal­

culate the level of anomaly required to cause an error.



Since the Earth's main field is typically in the order of


0.50 G it is readily apparent that a local anomaly of ap­


proximately 0.01 G at right angles to the local field is
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required to cause an error of 1 deg. Furthermore, the


local anomaly would have to be aligned with one of the air­

craft body axes to result in one degree of attitude error in


any one axis. Fortunately, anomalies with components of


this magnitude positioned at right angles to the main field


are extremely rare. In addition, the anomalies 
 are local­


ized over ore bodies or other geophysical irregularities,



have magnitudes that diminish as the cube of altitude, and


tend to average to zero over relatively short distances. In


summary, the probability of encountering an anomaly that


would cause as much as a 1 degree error is relatively small.


The error, if introduced, will be short lived and, unlike



drift error, will average to zero.



Fundamental to a magnetic field referenced system is



the ability to measure orthogonal components of the field


vector. Precision and accuracy of measurement of the com­

ponents is of course specified by the desired control spec­


ifications.



Since the Earth's magnetic field varies in magnitude on


a global basis between 0.3 G and 0.6 G (30,000 gamma to


60,000 gamma), it is apparent that full scale measurements



of 0.6 G can be expected. Sensors mounted at right angles


to the field will monitor no measureable field and thus de­

fine the lower limit of measurement to be zero. For the con­

tinental United States the declination varies between 60 and


80 deg, resulting in a range in horizontal component of 0.15


to 0.25 G with vertical component in the range of 0.4 to 0.55



G. Heading variations (yaw) result in changes of the hori­

zontally sensed field components and would specify the maxi­


mum precision required. In addition, flight at 45 deg ± (n


x 90 deg) (where n is any whole number) with respect to mag­

netic north results in minimum sensitivity of the x and y
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axes measurements. In this case sensor inputs would range


between 0.106 and 0.177 G with minimum field at the north.


Assuming the preceding ambient measurements, variations in


component magnitude of approximately 0.0180 to 0.0305 G/deg


for small angle variations can be expected.



A brief survey of commercial magnetometer manufacturers



reveals that triaxial magnetometers that measure from zero


to 0.6 G with linearities of 0.5 percent, noise less than ±l



mG and sensitivies of at least 2.5 V per 600 mG are current­

ly available. In addition, these devices have a bandwidth


of direct current to at least 500 Hz and are rated to have



less than 1 deg error in orthogonality.



From a precision standpoint, it is apparent that'vari­

ations in yaw for this worst case situation can be sensed to


better than 0.1 deg with currently available magnetometer


technology. The sensor technology required to implement 
 an


attitude sensing system of reasonable specifications is avail­

able (more detailed analysis is presented in Chapter III).



Although the preceding calculations indicate that for


small angular variations attitude can be calculated using


measured magnetic data, there is a need to consider the


effects of larger finite rotations. In this case the small


angle assumptions would not be valid and an Euler transform­

ation would have to be made. Measurement of three axes of


field components could be used to develop the direction co­

sines required to determine the orientation of the axis of



rotation, the angular rotation about it, and the three angu­

lar rotations of pitch, roll, and yaw.



For the special case where the axis of rotation aligns



with the magnetic vector, there would of course be no
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measured component changes.) By measuring the attitude of a



second vector (not in alignment with the magnetic vector),



we could resolve the ambiguous situation cited above and pro­


vide additional redundancy.



The optimum auxiliary vector would be one that could be



sensed without using inertial devices. The Earth's electric



field can be considered. The main reason for considering



this field as a means of providing an auxiliary angular ref­


erence is that the resultant system has the potential of be­


ing completely solid state. The electric field vector can



be used to determine attitude variation in a manner analogous



to the magnetic vector system. Inherent limitations of each



single vector system can be obviated if the vectors are not



coincident.



Although Hill [Ref. 1-11] reported success in controlling



pitch and roll using the electrostatic field alone, comments



by Markson [Ref. 1-12] indicate that the electrostatic field



is not always a reliable vertical reference. Employment of



the electrostatic field for this attitude measurement system



is limited to augmenting the magnetic field measurements by



eliminating ambiguiry of motion around the magnetic vector.



The requirement of vertical electrostatic field is thus remov­


ed and replaced by a requirement that the field direction is



relatively stable.



By using two independently derived vectors we have suf­


ficient data to obviate the ambiguity just cited and we have



the potential of providing redundancy as well.



4An example of this would be yaw rotation while flying


straight and level over the magnetic poles or roll rot­

ation while flying towards a pole at the magnetic equator.
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1-6 CONCLUSION



This chapter has identified a novel method of measuring


aircraft attitude using relatively inexpensive, well devel­


oped instrumentation. It has recognized that magnetic field


sensing systems have been used to some extent in attitude



sensing and control of space vehicles; it has also suggested,



however, that with appropriate support, magnetometers can



find increased application in aircraft attitude measurement



systems.



This claim is corroborated by actual flight test data.



Magnetometers have evolved to a point where three axis mea­

surements of the Earth's magnetic field can be made with


sufficient precision and accuracy to enable measurement of



small angle attitude variations.



This chapter has also discussed a possible system con­


figuration combining heading determination and attitude



measurement functions. By replacing the conventional re­


mote sensing unit with a three-axis magnetometer, it has


been suggested that both functions can be obtained with the


hardware required previously for heading measurement alone.



As with any system, there are limitations imposed. The



main limitation for a vector magnetometer system seems to be



the inability to sense rotations around the magnetic vector



itself. This problem is not unlike the ambiguity experienc­


ed by magnetic heading systems at high latitudes. By 3udic­


iously incorporating auxiliary instruments, not only can


the ambiguities be removed but a degree of redundancy can be


added while still maintaining a cost and weight advantage



over comparable systems.





CHAPTER II



AN ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR



2-1 INTRODUCTION



Preliminary investigation [Ref.2-1] revealed that air­


craft attitude can be calculated using measurements of earth's



magnetic field vector and a single auxiliary rotation angle.



An algorithm to compute the two remaining aircraft rotational



angles was developed. Using flight data, it was demonstrated



that an excellent correlation in computed versus actual air­


craft attitude could be achieved. In addition to providing



measurements of the magnetic field for redundant attitude,



computations (to improve accuracy and reliability of existing



autopilot systems), it was noted that the vector magnetometer



could substitute for the remote magnetic sensing unit. In.



this manner both heading and attitude measurements could be



derived using common elements with obvious benefits in weight



and cost.



This chapter discusses the mechanization of a micropro­


cessor based computer system that uses a three axis magneto­


meter plus gyro data to compute heading. The magnetometer is



a three axis solid state device that can be mounted in a



strapped down configuration resulting in an attitude independ­


ent remote magnetic indicator. Gyro measurements of pitch and



roll angle plus three axis magnetic measurements are used by


.the algorithm to compute aircraft heading. The system can



function independently to compute heading or by simply in­


creasing the stored program-could implement the attitude com­


puting algorithm of [Ref. 2-1] as well.



The chapter proceeds by developing an algorithm to com­


pute aircraft heading using the strapped down magnetometer
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and two gyro measured angles. Practical aspects of designing


the system including both hardware and software are then pre­

sented. In addition, the limitations in instrument accuracy


and operation as determined by sensor errors, signal process­


ing errors, arithmetic precision and computation speed are


discussed. Considerable computational capability inherentin


the system enables minimization of systematic errors. It is


demonstrated that inexpensive sensors can be employed with



offset and orthogonality errors compensated by microprocessor


programming. Finally, it is concluded that a microprocessor



based computer with a solid state magnetometer can play a sig­

nificant role in aircraft instrumentation.



2-2 AN ALGORITHM TO COMPUTE AIRCRAFT HEADING



Coordinate frames are usually defined by orthogonal


right-hand sets of three unit vectors. An example of such a



set is illustrated in Fig. 1-1 where the orientation of the


body fixed frame used in this chapter is delineated. The ref­

erence coordinate frame referred to in this chapter is orient­


ed with axes x and y in the horizontal plane and axis z verti­

cal (z down is positive). Pitch attitude angle (0) of an air­


craft is defined [Ref. 2-2] as the angle between some prefer­

red longitudinal axis and the horizontal reference. 
 In this


chapter, pitch angle is the angle between the x axis of the


aircraft and the x-y plane of the reference axis set. Since



angular rotations are conventionally defined as rotations in


the plane normal to a unit vector with the positive sense of


rotation defined by the right-hand rule [Ref. 1-2], we will


define positive pitch angle (0) as the "nose up" or positive


rotation about the y axis when the y axis is horizontal. The


roll and yaw angles (P and T) will then simply be rotations



about the x and y axes respectively.
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By aligning the three magnetometer axes with the respec­

tive x, y and z axes of the aircraft, ,we can measure magnetic



field components of the aircraft at any attitude. For the


trivial case where pitch (0) and roll ((D)are both zero de­


grees, Hx and Hy are the horizontal field components and we



can compute yaw from the horizontal vectors as follows:



= COS- 1 (Hx/(Hx2 + Hv2) (2-la) 

or



2
YI = sin- (Hy/(H x + Hy2) (2-1b)



We select either (2-1a) or (2-lb) based on the relative mag­


nitudes of Hx and Hy. By minimizing the numerator of the


argument we guarantee that the inverse trigonometric operation



results in an angle between zero and forty-five degrees with


maximum sensitivity ensured. Heading is then computed using


the signs of Hx and Hy to select the approptiate equation from



Table 2-1.



flyNEGATIVE POSITIVE



Negative Y = 180 - VT = T, 

Positive T = T, + 180 ' = 360 -

Table 2-1. Formulae to Compute Heading



For most cases, the pitch and roll angles are not zero



and inverse rotations are required to determine the actual


horizontal field components Hx and Hy. Since any aircraft



attitude can be represented as a sequence of rotations about



each axis beginning at some reference attitude, we can
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determine the reference Hx and Hy field components by perform­


ing an inverse roll followed by an inverse pitch computation i.



The inverse roll computation can be developed by consLd­


ering vector components of an arbitrary vector H in Fig. 2-1.



The first set (x2 , Y2, za) represents the vector components



measured in a reference orientation. The second set has com­


mon origin and aligns with common x axis component. It is



rotated (rolled) about the x axis resulting in new y and z



values. We can describe vector H in both coordinate frames as



H x?. i2 + Y2 jJ2 + z k2 (2-2) 

and 

= x3* i3 + Y3 J3 + z3 ok3 (2-3) 

Since the vector H is unique, we note that equations (2-2) and



(2-3) are equal. Furthermore if we form dot products we solve



for the horizontal components x2 , Yz, and z2 in terms of



the rotated values and the roll angle (.



From (2-2) we obtain



H- 12 = X 2 (1 2 i2 ) + Y2 (32 i2) + Z 2 (k 2 i 2 ) 

(2-4a)



i2 = x2 (2-4b)



and from (2-3) we obtain



R - i2 = x3 (a3 i2 ) + Y3 (j3 i2 ) + z-3 (k3 ' i2 ) 

(2-5a) 

(2-5b)i2 x3 
 

1Since pitch is defined as the angle between the x axis and


the horizontal plane we can assume that at any heading, air­

craft attitude results due to a pitch followed by a roll.
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then 
= (2-6)x 2 x 3 

Similarly, 

=
H - 2 Y2 = x3(i 3 * j2) + Y 3 (j 3 * j2 ) + z3 3 j 2 ) 
(2-7a) 

Y2 = COS $P- Z 3 sin 0 

(2-7b) 

and 
H" k z=2 x3(1 3 k2) + y 3 (33 * k2 ) + z3(k3 kk2)

(2-8a) 

Z2 = Y3 Siln + Z3 COS @ 

(2-8b) 

These expressions can be summarized as 

X2 1 00 (PI X3 -1 

Y2 = COS D -sin Y31 
Z2 0 sin P COSz 3 (2-9)



0 X2, X3 

Z3 z') 

21 H 

Fig. 2-1 AXES ROTATED IN ROLL 
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Simiiarly, considering an axis set rotated in pitch as shown


in Fig. 2-2, we can express the reference set x1 , Yl, z, in


terms of the rotated set x2 , Y2, z2 as follows
Yi00 Yx2X1cos 0 0 sine 
 F 

jZ sin 0 0 cos e 2 (2-10) 

X2



0" 
 YI' Y2 

Fig. 2-2 AXES ROTATED IN PITCH



Finally, if we assume that the axis set subscripted with 3


represents components of Earth's magnetic vector measured at


an arbitrary aircraft attitude, we can derive the magnetic


components 
 (Hxh, Hyh, Hzh) in the horizontal plane for a



given heading





26 LHxhcos 0 sin 0 1 0 0 1 Hx31 
Hyh 0 1 0 [ cos -sin, "y 3 

jzh] 0 cos 0i10 sin 0 cosL-sin e eljLHz3 

(2-11a) 

Fxhi [Cos 0 (sin o sin (D)sin 0 Cos (D1 HX3 
Hyh= cos D --sin .o J Hy 3



Hzhj -sin 0 (cos 0 sin o) cos 0
cos 91 
 Hz 3



(2-11b) 

The algorithm to be implemented with the microprocessor



would therefore require operations asoutlined in Fig. 2-3.



Details of programming method, modifications to the above



equations to facilitate programming and computation speed



versus accuracy tradeoffs are discussed in following sections.



DO FOREVER



Measure, Digitize and Store


Hx, Hy, Hz, 0 and $



Correct Sensor Errors



Compute the Horizontal Field


Components Using Equation 2-11



Compute Heading Using Equation 2-1



Display Heading



Fig. 2-3 LOGICAL OPERATIONS REQUIRED TO COMPUTE HEADING
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2-3 MECHANIZATION OF THE HEADING ALGORITHM



A. General Considerations



To evaluate the performance of an integrated system ex­


perimentally, an instrument was designed to implement the al­

gorithm developed above. Several approaches were considered


to implement the heading instrument for experimentation:



1) A minicomputer implementation incorporating an



HP-2100 minicomputer supported by peripheral interface and an­

alog circuitry. Programming of the HP-2100 would have enabled


the computer to control multiplexing and processing of sensor


data as suggested by Parish and Lee [Ref. 2-3].



2) A hybrid system composed of a remote data acquisition


system to collect data from sensors for subsequent processing



by a computer (possibly an HP-2100).



3) A digital/analog electronic implementation incorpor­

ating the design of a special purpose computer to perform the



required functions of a heading instrument.



The first two approaches were abandoned since it was de­

sirable to perform the experiments at various locations remote



from a computer facility and to have data available immediately


without having to rely on off-line computations at a later date.



The design task then evolved to the design of a special pur­

pose computer system to implement the algorithm, provide a



means for evaluating the performance of the proposed algorithm



and to allow modifications to the system if required.



B. Design Criteria



Having decided on the general approach to implementing
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the algorithm it became-necessary to consider the performance



criteria desired of the instrument.



1) 	 Accuracy



As a design goal, an absolute accuracy of +1.00 in


heading uncertainty was selected for the laboratory



implementation. This accuracy is compatible with



commercially available heading systems.



2) 	 Computation Speed



The bandwidth of the system is determined mainly by


the computation speed of the computer2 . As a design



goal, complete heading updates once per second was



established.



3) 	 Flexibility



A desirable feature of the laboratory evaluation



instrument was considered to be flexibility. Re­


visions or additions to the algorithm as predicted



by experimental data should be incorporated with



minimal redesign of the instrument.



2-4 	 CONCLUSIONS



An instrument designed to implement the heading algorithm


developed above uses a three axis magnetometer to measure mag­


netic field data in the vicinity of an aircraft. Since the


magnetometer proposed is a solid state three axis fluxgate de­


vice and is permanently mounted in a strapped down configura­

tion, the implementation results in an attitude independent



2The response times of the various sensors and analog circuitry


are orders of magnitude greater than the desired one second


sample interval.
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remote magnetic indicator 3.



Several factors will contribute to system inaccuracy. Al­


though the ma3or error sources can be evaluated mathematically



SChapter IV), there is a need to evaluate the implementation


experimentally. Systematic errors that arise can be reduced



by instrument computation. This capability (inherent with a


computer based system) enables incorporation of less expensive



sensors in the heading instrument with less concern with fact­


ors such as temperature regulation, sensor orthogonality and



sensor offset4 .



Since the algorithm can be implemented using a micropro­

cessor as 
the ma3or computer element, the resulting instrument


will have inherent computation capability, be small in size



and consume relatively little power. These factors make the



instrument an ideal device for aircraft application where the


need for redundant distributed processing capability is in­


valuable.



3Current remote magnetic indicators are pendulous and rely on


gravity to enable measurements of the horizontal magnetic


vector (not attitude independent).


4Assuming that the sensors have repeatable or measurable'char­

acteristics, algorithms can be developed to correct previous­

ly measured erroneous data.





CHAPTER III



DESIGN OF A MICROPROCESSOR BASED HEADING INSTRUMENT



3-1 INTRODUCTION



Progress in device and component technologies during the



1970's.has led to an assortment of sophisticated integrated



circuits (IC) devices [Ref. 3-1] which enable the design of in­


struments with a high degree of sophistication and accuracy.



Of these devices, the microprocessor has to date been the most



exploited component in industrial control and instrumentation



applications [Ref. 3-2 through 3-7]. There have been many



papers presented addressing the general application and feas­


ibility of applying microcomputers to particular design tasks



[Ref. 3-8 through 3-21].



Although much of the literature to date on microproces­


sors has addressed the design of commercial products (usually



the final result of a carefully orchestrated effort beginning



with a market survey), the design of a laboratory instrument



for algorithm evaluation differs in design philosophy. In



particular, the laboratory instrument is designed to evaluate



a proposed algorithm under laboratory conditions. The tradi­


tional benchmark evaluations and attempts to match the micro­


processor to the application is not only difficult but unnec­


essary. If the processor is much more powerful than necessary,



the "overkill" is little noticed; but if an insufficiently en­


dowed microprocessor is selected, the effects can be devastat­


ing. Not only will the program be difficult to write and vor­


acious of memory, it would be difficult to change to a more



powetful microprocessor part way through the project. With



these considerations in mind, a general purpose, flexible



microprocessor with powerful architecture and instruction set



the Signetics 2650 microprocessor [Ref. 3-22] was selected.
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3-2 HARDWARE DESIGN CONSIDERATIONS



'The design of a microprocessor based system begins by



considering the total system level block diagram to be imple­


mented (Fig. 3-1). Inputs from five sensors including x, y



and z axis magnetic data plus pi'tch and roll angles (Hx, Hy,



Hz, S and D) are to be multiplexed, sequentially sampled and



converted to a digital representation prLor to processing (ex­


ecuting the algorithm developed above). The main subsystem of



Fig. 3-1, the central processing unit (CPU), operates under



control of instructions stored in the system memory and inter­


faces with the input and output subsystems via data ports.



At this early stage in the design, it is significant to



note that the block diagram of Fig. 3-1 differs slightly from



that of a classical discrete hardware solution. The input



subsystem (composed of analog multiplexer, sample and hold,



and analog to digital converter) differs from a conventional



data acquisition in that it is devoid of a control section.



The microprocessor will control the data acquisition sampling



and conversion in addition to performing the arithmetic func­


tion associated with the algorithm.



Having established a tentative block diagram of the in­


strument, the design continues by addressing relevant charac­


teristics and limitations of each subsystem. These character­


istics will then in term be considered in configuring the



final system and program to be executed.



1) The Analog Subsystem



Composed of the analog multiplexer, sample/hold and an­


alog to digital converter, the analog subsystem of Fig. 3-1



affects both system accuracy and throughput rate. The





THE ANALOG SUBSYSTEM



I I 
Hy __ANALOG 1______ ANALOG T0O___ 

AHL! TO I END OF CONVERSION 

0 MULTIPLEXERSAPEOL 

RS-232 -- CENTRAL PROCESSOR UNIT SYSTEM MEMORY



TELETYPE (Microprocessor plus LR__A
INTERFACE ' Peripheral Logic) M and ROM



DAADRESS BUS 

*Control lines connecting central processor OTPUT SBSYSEM


to digital subsystems eliminated for clarity. 
 OTU SBYE



..Ports



..Logic


.Display



Fig. 3-1. SYSTEM BLOCK DIAGRAM 
 N) 
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well-known Shannon theorem [Ref. 3-23, 3-24] on sampling



theory defines one of the basic limits on throughput rate



stating that the minimum frequency for sampling must be double



the highest significant frequency of the signal, including the



noise on the signal. This minimum frequency is necessary, the



theorem states, if the sampled signal is to contain all of the



information needed for undistorted reconstruction. At a lower



sampling frequency ailiasing can occur1 .
 The minimum sampling
 

rate for data to be used in this heading instrument (based on



the design goal of Chapter II) then results in a system band­


width of 30 hertz. The analog signals from each sensor are



low pass filtered to reduce frequency content above 60 hertz.



A survey of commercially available multiplexers, sample and



hold modules and analog to digital convert modules (ADC) [Ref.



3-25 to 3-28] reveals that subsystems with throughput-charac­


teristics exceeding the requirements of a system sampled at



one second intervals are readily available (pertinent specif­


ications are discussed in more detail in Chapter IV). The



limiting parameter determining total system speed performance



will.then be the execution time of the algorithm (a programm­


ing consideration). A further system consideration is rhe



ability to ad]ust analog system offset and gain. These ad­


justments are made using variable resistors (trim pots) con­


nected to appropriate leads on the sample and hold and analog



to digital converter modules.



2) The Central Processing Unit (CPU)



The central processing unit (Fig. 3-2) is composed of the



microprocessor (Signetics 2650) supported by peripheral logic



elements (Fig. 3-2). Design of this subsystem involved medium



IThar is, the sampled data derived from a sine wave of freq­

uency f sampled at a frequency less than 2f can be fitted


with sine waves of a frequency other than f.





3(8T97) 

-AI4i 2650D 

2(8T26) 

DATA BUS 

tVVV 

INTREQ 

PAUSE --

RDN 

WRTEN 

--

OPACK 

DRN 

UBSN 

~WRP 
2LOCK0 

FLAG SENSE 

RUN/WAITC) 

INTACK 

M/yo 

OPREQ 

d 

MC 4024 

R/W -- RDEN IN 

> 

S 3 28T15 +58T97WTE 

BT16 Q WRP--mS 

OPRo --
OPREQ --

M/Y 

C/A---

C/ICD 
Gl 

G2A 

G2A8 > 

CLR 

rig. 3-2. THIE CPO SUBSYSTEM 




35 

and small scale integrated circuits using well-known [Ref.


3-29 	 through 3-31] design techniques. To facilitate system


development several features were included in the design of


the CPU subsystem (features that would not necessarily be re­

quired in a production instrument). These include:



a) 	 System reset, single step and normal run mode oper­


ation controlled by switches and logic elements.



b) 	 An RS-232 teletype interface is included to enable


manual intervention and development capability



during program development. The program was dev­

eloped by loading and executing instructions into



the random access memory (RAM) under control of the



PIPBUG2 program.



3) 	 The Memory Subsystem



The memory subsystem (Fig. 3-3) was organized onto cards


each with two thousand byte capability. In this manner system


memory could easily be expanded (or reduced) in increments of



2K bytes. The memory chips selected were organized as 256


four bit words and feature pin for pin compatibility with


commercially available random access (RAM) and programmable



read only memory (PROM) chips. Program segments could then be


developed in RAM and finally "burned" into PROM chips for a



permanent, nonvolatile operation. In this manner the system


development begins with 1K bytes of memory devoted to the res­


ident PIPBUG program (in ROM chips) with the remainder of mem­


ory allocated as RAM for both program and scratch pad usage.



2signetics Lradename for the 2650 resident. loader and monitor


program.
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As the program is developed, additional memory as added in



increments of 2K bytes per card or 256 bytes on the card.



Modifications to the program can be easily made using the



PIPBUG program and teletype.



4) The Output Subsystem



For laboratory development the output subsystem of Fig.



3-4 was designed to provide seven segment visual output of



the aircraft heading with three significant digits displayed.



To expediate the design cycle and to enhance system throughput
 


rate, the outputs were designed as ports with latches and de­


coder driver functions provided by hardware. In other applica­


tions a hardware/software tradeoff could be made with the data



decoding and driving implemented using table lookup and multi­


plexing controlled by the CPU.



3-3 SOFTWARE DESIGN CONSIDERATIONS



'The general purpose processor selected to implement the



CPU was designed to implement programmed logic and to perform



conventional computer operations. This heading instrument



takes advantage of both areas. Since the instrument is act­


ually a special purpose computer under control of a stored



program, the functional specialization resides in the program



rather than the hardware logic. Modifications can be made re­


latively easily, satisfying the flexibility design goal of



Chapter Il.



Having decided on the tentative hardware structure de­


scribed in Section 3-2 above, the program development leading



to the final listing in Appendix B proceeded as follows:



1) Structured-flow charts were developed depicting the total



system operation as an ordered sequence of operations. Each
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operation is identified as a separate subroutine which in



turn can have "nested" subroutines of its own (Fig. 3-5).



2) System accuracy requirements were next investigated (dis­


cussed in detail in Chapter IV) to ascertain the precision re­


quirements3 of the various subroutines.



3) The respective subroutines outlined in 1) above were



developed and implemented using a cross assembler program



[Ref. 3-32]. Each subroutine was then loaded into the devel­


opment hardware and "debugged" prior to total program inte­


gration. The above program development depicts a top down



strategy of program development [Ref. 3-33] and leads to an



expedient system development with subroutines being individ­


ually developed to yield a modular program construction.



3-4 DESIGN OF SUBROUTINES



The total program consists of an overall system program



composed of nested subroutines. The discussion in this sec­


tion is limited in scope to the design of the more-complex



subroutines required to implement the solid state remote mag­


netic heading algorithm.



1) Subroutine "SAMP" (Fig. 3-6a)



The first portion of this subroutine is dedicated to the



control function of selecting an analog channel via the multi­


plexer, sampling and holding the data, resetting and reading



data from the analog to digital converter (ADC). Prior to



or during the programming of this section, data fields in



3This step is vital to determine whether the operations out­

lined in 1) above are to be carried out in a single or multi­

precision manner.
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INITIALIZE 	 Power on reset of all registers


and subsystems



DO FOREVER 

MAIN 	 Compute the aircraft heading



Fig. 3-5a. SYSTEM PROGRAM



C SAP >Sample 	 all analog channels 

HCompute 	 the horizontal Hx field 


the horizontal Hy field


_ _Compute 
 

Compute the horizontal field 
CED vector 

Compute headingCEp 
 

Q Q .T> Output the data 

Fig. 3-5b. SUBROUTINE "MAIN" 
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DO 5 TIMES



SELECT AN ANALOG CHANNEL



SAMPLE AND HOLD DATA 

CONVERT ANALOG TO DIGITAL 

DO TWICE 

STORE 8 BITS 
OF DATA 

CONVERT UNIPOLAR BINARY DATA 
TO SIGN MAGNITUDE FORMAT 

CHANGE THE SIGN OF 
Hx AND Hy SENSOR DATA 

DO 3 TIMES 

CORRECT FOR SENSOR OFFSET



CORRECT FOR SENSOR



ORTHOGONALITY ERROR



RETURN 

Fig. 3-6a. SUBROUTINE "SAMP" 
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PRELOAD VARIABLES REQUIRED


TO CORRECT FOR OFFSET ERROR



PERFORM A DOUBLE PRECISION ADD OR SUBTRACT



RESTORE CORRECTED DATA TO TABLE



RETURN



Fig. 3-6b. SUBROUTINE "OFST"



~TEST FLAG



AD 7 SUBTRACT



DO DOUBLE PRECISION



ADD ON SIGN DOUBLE PRECISION



MAGNITUDE NUMBERS 
 SUBTRACT



RETURN



Fig. 3-6c. SUBROUTINE "SADD"
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input ports 1 and 2 and output port 1 of Fig. 3-1 are allocat­

ed. Control information is then passed to the peripheral mod­

ule by writing control words to output port 1. Analog to dig­

ital converter status and the 12 bit data field are sampled by


reading input ports 1 and 2.



Sensor outputs were biased at +2.5 Volts with transfer char­

acteristics as depicted in Fig. 3-7a [Ref. 3-34]. 
 The ADC


selected for this laboratory instrument had a binary output


data format related to analog input as shown in Fig. 3.7b


[Ref. 3-35]. The second function of the sampling,subroutine



"SAMP" was to convert data from a unipolar binary format to a


sign magnitude format. Since the total transfer function from


sensor input to ADC output (Fig. 3-7a and b) indicates an off­

set of 2.5 Volts or 1/2 the ADC output range, the sign magni­

tude format can be generated as shown in Fig. 3-8.



+5.0-­
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0 

o 0­
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INPUT FIELD (GAUSS) 

Fig. 3-7a. SENSOR TRANSFER CHARACTERISTIC
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Fig. 3-7b. VDC TRANSFER CHARACTERISTICS 

~SIGN BIT



x = x0 + x .2' x = x0 + 2's complement of



the 11 least significant


(x = x0 + x*) bits "
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x 0 = 1 (indicating negative 

x = 0 quantity) 

x* = The 11 least signifi­

cant bits of the binary


number



Fig. 3-8 CONVERSION OF DATA
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The third function of the "SAt4P" subroutine was to reverse the



sign of the Hx and Hy data (to correct a test fixture pro­


blem) and to correct for sensor offsets. Although analog sub­


system offsets are corrected by adjusting either the sample



and hold module or the ADC, the independent sensors themselves



have offsets4 . Offset errors for the laboratory instrument



were compensated by determining the offset correction term for



each sensor (method described in detail in Chapter V) and then



either adding or subtracting the term to the respective data



during the sample subroutine. By characterizing the sensor



errors5 , actual datum could be improved further during this



step.



The final function of the "SAMV±p" subroutine was to cor­


rect for sensor orthogonality error (subroutine "ORTH"). Al­


though the sensors were physically aligned and specified to



have orthogonality characteristic [Ref. 3-34] less than +1



degree relative to the base coordinates, this nonorthogonality



contributes appreciably to total system error (see error an­


alysis in Chapter IV). The physical misalignment of the sens­


ors was determined experimentally (Chapter V) and determined



to be mainly a misalignment of sensor x in the x-y plane as



illustrated in Fig. 3-9.



The actual data measured with the x axis sensor is then relat­


ed to the true Hx and Hy values as



Hx1 = Hx Cos e - Hy Sin e 

4With zero stimulus applied the sensors have a finite nonzero


output. This error in the fluxgate magnetometer is a function


of temperature, voltage and magnetic remanence in the sensor


magnetics [Ref. 3-36].


SSensor characteristics relating the temperature and power sup­

ply coefficients of offset error and nonlinearity can be de­

rived empirically.
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x 

y



Fig. 3-9 X AXIS NONORTHOGONALITY



Using small angle approximations, we can solve for the de­


sired true value of Hx



HxI 
 Hx - Hy Sin £ (3-1a) 

Hx1
Hx + Hy Sin e (3-1b)



By measuring E (Chapter V)- and storing the angle as a con­


stant, the x axis data was then restored using equation 3-lb



above in subroutine "ORTH".



2) Subroutines ROTX and ROTY



These subroutines compute arithmetic values for Hxh and



Hyh of equatiln 2-11b using sign magnitude quantities and



table lookup to determine solutions for the transcendental



functions. Subroutines "SADD" and "SMPY" are nested and used



to perform double precision add and multiply as required.
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3) Subroutine HVEC



Following computation of the horizontal X and Y axis mag­

netic vector, the subroutine "MAIN" calls subroutine "HVEC" to 

compute the square of the horizontal vector. Vectors Hx and 

Hy are squared by calling subroutine "SQU" then added, yield­

ing H(HORIZONTAL)2 

4) Subroutine WICH



To compute heading, equation 2-1 (or a similar form) must



be solved using the horizontal magnetic field vector and either



the x or y axis horizontal field component. Although the



square root operation implied in equation 2-1 could be imple­


mented using a numerical technique [Ref. 3-37, 3-38], the



computation time is decreased by using a table lookup method.



Subroutine "WICH" (Fig. 3-10) compares the absolute magnitude



of the two horizontal field vectors Hx and Hy to determine the



relative heading of the aircraft 6 with respect to the north­


south'and east-west axes (Fig. 3-11).



Ro = Hy



[ExI <lHyI <



YES NO



Fig. 3-10. SUBROUTINE "WICH"



61f IHxI<IHyf, then an equation similar in form to 2-la must
 


be used.
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I~~ 	 HX[I xHyHII>I 

W_ 	 E 

Fig. 3-11. 	 MAGNITUDES OF Hx AND Hy RELATED 
AIRCRAFT HEADING 

5) Subroutines COSY and SINY (Fig. 3-12, 3-13)



Depending on the relative absolute magnitudes of Hx and



Hy, either "COSY" or "SINY" is called to compute aircraft



heading. These subroutines invoke subroutine "DIVI" to form



the quotient of the axis vector squared and the horizontal



field vector squared (a double precision operation). Sub­


routine "ANGL" is then called to perform an associative table



lookup operation using successive approximation and inter­


polation to complete the inverse cos squared operation. The



double precision binary quantity is then converted to three



digit binary coded decimal format (BCD) prior to computation



of aircraft 	 heading (subroutine "HDG").



The subroutine "SINY" of Fig. 3-12 includes a subtraction



of 'the computed angle from 90 degrees following conversion to



BCD format. This operation ensures that the angle passed to
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Ro, R1 = Hx 

A= Ex2 /HhmE 
2 

mAL 
2 

B = arcos2 (A) 

B Convert B to BCD Format 

D Compute Heading 

RETURN 

Fig. 3-12. SUBROUTINE "COSY"



Hy 2
Ro, R1 = 


D A = Hy2/Hh2


mAL
B = arcos 2 (A)



mCD 
 Convert B to BCD Format


B = 90 - B
 


D Compute Heading



RETURN



Fig. 3-13. SUBROUTINE "SINY"



I 
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the calling subroutine upon exiting either "SINY" or "COSY" is


an aircraft heading angle relating sensor x to the north-south



axis.



6) Subroutine HDG (Fig. 3-14)



The function of this subroutine is to compute aircraft



heading having established the angle between the x axis sen­


sor and the north-south geodetic axis. Determination of the
 

actual heading is accomplished by comparing the signs of both



the x and y axis horizontal vectors prior to computing heading



(Fig. 3-15). It should be noted that all of the preceding



computations leading to horizontal vector data were on sign



magnitude quantities preserving the correct horizontal vector



polarities 7 .



3-5 CONCLUSIONS



This chapter has outlined the practical aspects of design­


ing an instrument to evaluate both the heading algorithms and


solid state magnetic indicator proposed in previous chapters.



The chapter outlined a design approach that can be used to



implement a microprocessor based instrument. In particular,



the need to consider the total system hardware requirements



while simultaneously considering the programming requirements


was identified. Design proceeded by outlining a system block



diagram (Fig. 3-1) with major subsystems considered. The in­

strument required a special purpose computer with an analog


subsystem to sample and digitize five sensor signals. Timing


and control of the analog subsystem plus digital processing



of data was controlled by a microprocessor based central pro­


cessing unit (CPU). Memory for permanent storage of



71t is possible at certain attitudes to require sign revers­

als when .computing horizontal vectors.
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SIGN 0SIGN 

EGATVE POSITIVE 

NEGATIVE 

OHy 

NEGATIVE 

HGHDG = ANGLEEG 
360 - ANGLE 

Fig. 3-14. 
 

Hx Pos 
 
Hy Pos 
 

Hx Neg 

Ny Pos 

180 + ANGLE 180 - ANGLE 

SUBROUTINE "HDG"



N 

Hx Pos


Hy Neg



ELx Neg


Hy Neg



S



Fig. 3-15. POLARITIES OF HORIZONTAL VECTORS RELATED


TO AIRCRAFT HEADING
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instructions and temporary storage of data was implemented



using memory chips organized on cards with 2048 byte capacity.

K 

The particular memory chips selected feature pin compatibil­


ity 8 with both read only and volatile random access versions.



System inputs consisted of sensor signals from a three axis



solid state fluxgate magnetometer plus two analog signals sim­


ulating gyroscope outputs. System outputs consist of visual



seven segment readout displaying computed heading. In addi­


tion, an RS-232 teletype interface was provided to facilitate



system development and experimentation.



By identifying the total system in block diagram form at



the very beginning, the role and requirements of each subsys­


tem as well as the supporting software were identified. The



design then evolved on a modular basis with each subsystem and



its supporting program developed in parallel. In this manner



pin assignments for input/output ports and critical timing re­


quirements that involved both hardware and software considera-.



tion were handled efficiently. By outlining the program re­


quirements in flow chart form (analagous to the block diagram



of the hardware subsystem), subroutines were identified facil­


itating a modular program development. Where possible, sub­


routines were shared in a nested manner avoiding replication of



programming and waste of memory.



Details of error analysis and calculation of overall sys­


tem throughput rate were deferred to Chapter IV. It was point­


ed out however, that errors induced by imprecision of data plus



truncation and roundoff during processing of the algorithm were



to be considered early in the design phase. These data were



required to select the sensors and the analog to digital



8Memory integrated circuit (IC) devices of both types can be


used in the same mechanical sockets with actual chip type


being used transparent to the remainder of the system.
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converter as well as to design the supportive software for



the analog subsystem. In addition, the data precision require­

ments were necessary prior to programming the algorithm9 .



By incorporating a microprocessor as the main CPU element,


considerable sophistication in both control and computing per­


formance was achieved. The overall system was designed rel­

atively quickly, provided a convenient laboratory instrument


for evaluation of the proposed algorithms and featured inher­


ent flexibility.



9Some of the subroutines required double precision manipulations


to maintain overall system accuracy.
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CHAPTER IV



HEADING INSTRUMENT ERROR ANALYSIS



4-1 INTRODUCTION



The heading instrument designed to evaluate the heading



and solid state remote magnetic indicator algorithms is prone



to error from many sources. These errors will accumulate and



degrade the accuracy of aircraft heading or yaw angle computa­


tions. This chapter addresses the various error sources to



determine-their relative magnitudes and effects on the overall



computation.



Prior to beginning the hardware design of the micropro­


cessor based instrument many of these potential error sources



were considered. Their effects were considered in establish­


ing parameters such as word lengths, A/D converter precision,



computation speeds, saxipling rates, magnetometer sensor accur­


acies, system noise tolerance, etc. As the design of the



microprocessor based system evolved, the error analysis re­


fined. Ultimately, important limitations in instrument design



and operation were identified by combined error analysis and



empirical data. By carefully analyzing the source and extent



of the limiting parameters (such as sensor offset and non­


orthogonality), the magnitude of errors unique to this lab­


oratory sensor array were identified. Specialized software



was then added (with empiracally derived constants) to correct



for the otherwise limiting sensor irregularities improving the



total system performance.



In this manner, it is apparent that error analysis is an



integral part of instrument design. Not only are important para­


meters identified early in the design cycle (prior to system



block diagram development), but shortcomings in conventional
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sensors can be improved by 3udicial application of error cor­


recting algorithms. In this case, data constants were deter­


mined after the final instrument became operational. The sen­


sor peculiarities were analyzed empirically using the instru­


ment itself.



The chapter begins by first identifying and carefully



analyzing potential error sources in the sensors. This analy­


sis is followed by a similar consideration of errors origin­


ating in the analog subsystem. Processing errors that origin­


ate due to the finite word length and precision of the micro­


processor along with the effects of simplifications made to



the algorithms are finally analyzed. The chapter then con­


cludes with a summary of measurement errors, a sample error
 


analysis, a comparison of predicted to measured error and a



summary.



4-2 SENSOR ERRORS



The heading computation algorithm employing the remote



magnetic indicator (Chapter II) is prone to error proportional



to both fluxgate magnetometer'sensor and gyroscope measurement



errors. Err6rs inherent in the fluxgate magnetometer are sum­


marized on the data sheet [Ref. 3-34]. Since the experiment­


ation employed simulated gyroscope sensors with voltage levels



accurately represented, the analysis of sensor errors will



assume ideal gyroscope sensors to predict experimental data.



A) Sensor Offset Error



Magnetometer sensors exhibit error caused by both elec­


tronic and magnetic phenomena. Errors in the Develco sensors



were outlined by Workentine [Ref. 4-1]. These offset errors



are induced in the Develco sensors by both electronic offset



voltages and currents in the respective sensor electronics and
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by residual magnetic fields-in the magnetic mass of the sensor


assemblies. Although the physical and electronic design at­

tempts to reduce offset error, a finite non-zero output can



exist when a-zero input is applied.



Offset error for each sensor in the Develco model 9200C


three axis magnetometer assembly is specified [Ref. 3-341 as


"Zero Field Bias +2.5 Volts +1.0%". This offset translates



into a worst case maximum error voltage of



EOFFSET = +(2.5V x 0.01) = +25mV 

Since the offset error is sensor dependent, correction cannot



be made at a single physical point (as for analog subsystem


offsets described in Section 4-3). Corrections can however be


made to the measured data by simply adding or subtracting a


constant equal to the offset magnitude following each data



measurement I .



'Offsetvalues for each sensor used in the experiment were


obtained by rotating the sensor into alignment with earth's


magnetic field vector to measure both positive and negative


maximum values. The difference in magnetic measurement (assum­

ing negligible analog subsystem error) is related to system



offset error composed of sensor electronic and sensor plus test


fixture induced magnetic offset error. The actual offset error


can be calculated using these two measurements



lOffset corrections were made in the sample subroutine "SAMP"


illustrated in Fig. 3-6a.
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IEmaxj = Ef + Eo 

lEmini = Ef - Eo 

lEmaxi - jEminj = (Ef + Eo) - (Ef - Eo) = 2 Eo 

Eo = (1/2) (lEmax - [Eminj) 

where



Emax = The maximum positive voltage recorded when the



sensor aligns with earth's field vector.



Emin = The maximum negative voltage recorded when the



sensor aligns 1800 with earth's field vector.



Ef = The magnitude of earth's magnetic vector repre­


sented in volts.



Eo = The sensor offset voltage due to both electronic



and magnetic phenomena



Data recorded during x, y and z axis offset measurements as



described above are recorded in Table 4-1. Since the offset



error is a function of sensor magnetic permeability, the actual



offset value will vary with time depending on induced magnetic



fields 2 .



Final offset correction values were determined by rotat­


ing two sensors in the horizontal plane around the third ver­

tical axis and measuring offsets in two sensors at a time.



Recorded data for each sensor was previously corrected for



orthogonality error by the sample subroutine "SAMP" (discussion



2For example, magnetized screwdrivers or other tools used near


the sensor will alter the residual magnetic field.
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SENSOR - DATA RECORDED (HEXADECIMAL) OFFSET 
AXIS (HEXADECIMAL 

IEmaxi jEminj PLUS SIGN) 

X 628 	 E78 +40



Y 640 	 E5D -15



Z 637 	 E68 -25 

Table 4-1 	 OFFSET DATA DERIVED BY MEASURING


EARTH'S FIELD
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of this correction follows in Section 4-2B). Data recorded in



this manner appears in Tables 4-2 and 4-3. Final correction



terms for correcting sensor offset error were calculated using



these data. Offset terms to be added or subtracted from res­


pective data channels are tabulated in Table 4-4.



By cLorrecting system offset errors in this manner, the



effective error contribution can be reduced appreciably (see



final data discussion Chapter V). For a flight instrument,



sensor offset characteristics as a function of temperature



variation and supply voltage can be derived empirically and



appropriate offset corrections made by computing the value of



the correction term variable. Magnetically induced offsets can



be reduced by degaussing the sensor assembly periodically.



B) Axis Alignment Errors



The error specification of [Ref. 3-34 ] indicates'that the



maximum axis alignment error is +1 degree relative to base ref­


erenced coordinates. This error results in sensor directional



uncertainty as illustrated in Fig. 4-1. Each sensor is located



within a right circular cone with axis along the true sensor



axis and vertex at the common sensor origin. Although this



alignment uncertainty contributes no error in determining the



total magnetic vector



2 2 2


+ + fz )-z= (Hx Hy 

there is considerable uncertainty in attempting to resolve the



true magnetic field component along any axis of the reference



coordinate system. This alignment uncertainty of magnetic



sensors limits system performance of conventional field dir-.



ection measuring apparatus [Ref. 4-1.
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Protractor Data Protractor Data Error Due To


Heading Measured Heading Measured Offset



Measurement Hx Hy Measurement Hx Hy X Y


(Degrees) (Units) (Degrees) (Units) (Units)



0 8 -759 180 83 720 75 -39



345 199 -743 165 -112 704 87 -39



330 383 -677 150 -292 633 91 -39



315 540 -569 135 -448 527 92 -42



300 666 -421 120 -573 381 93 -40



285 749 -249 105 -658 206 91 -43



270 783 - 62 90 -696 14 87 -48



255 770 132 75 -681 -179 89 -47



240 706 314 60 -616 -362 90 -48



225 597 473 45 -504 -521 93 -48



210 449 601 30 -359 -645 90 -44



195 273 687



180 (DATA UNAVAILABLE DUE TO TEXT FIXTURE 

165 	 LIMITATION) 

TOTAL OFFSETS 	 978 477



AVERAGE OFFSETS 	 88.9 43.4



Table 4-2 	 X AND Y AXIS ERROR MEASURED BY ROTATING


X, Y AROUND Z IN THE HORIZONTAL PLANE
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Protractor Protractor


Heading Hz Data Heading Hz Data Offset



Measurement Measured Measurement Measured Error


(Degrees) (Units) (Degrees) (Units) (Units)



0.5 	 0 180.5 -56 -56



315.5 	 -527 135.5 469 -58



270.5 	 -763 90.5 707 -56



225.5 	 -571 45.5 513 -58



TOTAL OFFSET 	 -228



AVERAGE OFFSET 	 -57



Table 4-3 	 Z AXIS OFFSET ERROR MEASURED BY ROTATING


THE Z AXIS AROUND THE VERTICAL X AXIS



Sensor Total Average Required Amount of Correction


Axis Offset (Units) Correction Decimal Binary Hex



X 88.9 Subtraction 45 00101101 02D0



Y 43.4 Addition 22 00010110 0160



Z 47.0 Addition 29 00011101 01DO



Table 4-4 OFFSET CORRECTION VALUES
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lix



100H 

Hz



Fig. 4-1 SENSOR ALIGNMENT UNCERTAINTY



Although this error source can be reduced by physically



aligning the sensors more accurately during assembly, cost of



the sensors increases. Ultimately, directionality of the mag­


netic sensors becomes a function of the physical sensor itself



and more accurate sensors are required as pointed out by Gise



[Ref. 4-2]. A heading system that tolerates sensor misalign­


ment is therefore a very desirable alternative to requiring



precise alignment or more elaborate sensors.



During assembly of the Develco fluxgate magnetometer sen­


sor array, sensor misalignment is determined by using earth's



magnetic field and a precision mechanical rotation assembly.



A sensor (assume the X axis) is aligned with earth's magnetic
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vector by positioning the sensor to maximize electrical output 3 .



One of the other sensors (assume the y axis-) is aligned with the



rotation axis of the precision calibration assembly (Fig. 4-2)



and perpendicular to the first by rotating the sensor array



around the second sensor axis (y axis in this case) and adjust-.



ing its relative position until a null output is achieved at all



rotation angles. Mechanical orthogonality of the sensors is then



limited only by the mechanical imprecision of the calibration



device (orthogonality within +0.01 degrees can be easily achieved



in the calibration tool) and by the directional characteristics



of the physical sensors.



X Axis



- Z axis 

-Y Axis



Earth's Field Vector



Fig. 4-2 	 MECHANICAL ORIENTATION OF THE MAGNETOMETER


SENSORS DURING CALIBRATION



In addition to functioning as an alignment apparatus, the



calibration device described above provides a convenient means



3By maximizing or nulling a measurement, the mechanical posi­

tioning is a function of only the field and the resolution of


the voltage measuring device obviating errors due to physical


position measurement.
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to characterize sensor assemblies after final assembly adjust­


ments are made. Any misalignment of the second sensor relat­


ive to the first results in a coning of the second sensor



around the rotation axis 4 with a sinusoidal output voltage



that is a function of total earth's magnetic field and axis



alignment error. The peak to peak voltage resulting from sen­


sor coning is recorded during the final alignment test and



made available to sensor purchasers. Coning voltages developed



for the sensor assembly used with this experiment were obtain­


ed from Develco [Ref. 4-31 and are recorded in Table 4-5. Sen­


sor misalignment for each axis can be derived using additional



data provided by Develco along with additional empirical data



derived by experimentation.



The total ambient magnetic field at the Develco laboratory



is measured using the three sensors (applying equation 4-1)



and is supplied as digital data. In our case, the total field



measured was 1523 units or



1573 units

x 60,000 gamma F.S. 
 = 46,084 gamma (y) 
2048 units 
Full Scale (F.S.) 

Sensitivity of the sensor = 2.5 Volts F.S. = 42 iivolts/y

60,000 yF.S.



Considering the X axis sensor, coning resulted in a signal of



38 mV peak to peak (or l9mV peak). Misalignment of the X axis



sensor from the Y-Z plane can then be calculated as



4Assume that the first axis is initially ad3usted for maximum


output to align it with earth's field and the rotation axis


is perpendicular to the field.
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SENSOR ASSEMBLY NO. S/N 1043-013 

Rotation Coning Voltage Orthogonality 

Axis (Peak-Peak mV) Error (Degrees) 

X 38 0.57 

Y 8 =0 

Z 51 0.76 

Table 4-5 MAGNETOMETER ORTHOGONALITY MEASUREMENTS 
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Peak Signal = 19 mV or 456 gamma angular misalignment


-1
= Sin 456



46,084



ex = 0.57 degrees



Similarly, the Y and Z axis have misalignment errors of


sy = 0 and sz = 0.76 degrees with respect to the X-Z and X-Y



planes respectively (sensor orthogonality errors are tabulated



in Table 4-5).



Having established that sensor orthogonality errors exist,


the remaining task is to identify the direction that the sensor


axis points relative to the other two sensor axes. Since the



Y axis has relatively little orthogonality error, it will be



assumed to be perpendicular to the X-Z plane. In addition,



since the Hz data enters into the algorithm in a second order



manner relative to the Hx and Hy measured data, correction and



characterization of the Hx sensor was considered to be of prim­


ary concern. Orientation of the X axis sensor relative to the



Y and Z axes was determined empirically.



Angular position of the X axis sensor can be described



using the error angles sxy and sxz as delineated in Fig. 4-3.



Characterization of sensor orthogonality error in terms of


these two angles would enable algorithmic corrections of mea­


sured data.


~cxz- X Axis ensor
 

X Axis 

Y MIS 

Axis 
Z 

Fig. 4-3 X AXIS SENSOR ORIENTATION
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1) 	 Empirical Determination of sxz



The ,angle cxz (angle between the x axis sensor and the z



axis of the geodetic coordinate system) was determined in sev­


eral steps using the test apparatus described in Chapter V.



i) 	 The x and y sensors were oriented in the horizontal



plane with the z axis sensor vertical downward.



ii) 	 The x and y sensors were rotated around the z axis



with magnetic data measurements (corrected for sensor



offset error as described in Section 4-2A) recorded


in Table 4-6 for incremental rotation angles.



iil) 	 The total horizontal field at each angular position



was calculated
 


Hht = (Hx2 + Hy2) 2 .



iv) 	 Average horizontal field Hay was computed by averag­


ing the results of iii) above.



v) 	 The horizontal field deviation Hd was computed for



each angular position; tabulated in Table 4-6 and



plotted on Fig. 4-4.



Hd = (Hay - Hht)



The horizontal field deviation or error (as shown on Fig.


4-4) was now examined. An angular error exz should cause the



horizontal field error curve to peak at 90 and 180 degrees.



Since this obviously was not the case, it was concluded that



major error in x axis orthogonality was due to the component



Exy.
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Total


Computed



Physical* Displayed** Measured Data Horizontal Hd


Heading Heading (Units) Field (Hht) (Hav-Hht)



(Degrees) (Degrees) Hx Hy (Units) (Units)



355 90 12 -727 727 -3



335 70 258 -682 729 -1



315 50 477 -555 732 2



295 30 637 -362 733 3



275 10 720 -127 731 1



255 350 718 127 729 -1



235 330 628 363 725 -5



215 310 464 569 734 4



195 290 242 687 728 -2



175 270 -10 731 731 1



155 250 -258 686 733 3



135 230 -476 557 733 3



115 210 -635 362 731 1



95 190 -721 123 731 1



75 170 -718 -133 730 0



55 150 -628 -371 729 -1



35 130 -460 -565 729 -1-


Total Hht = 12415



Average (Hay) = 730



*Measured using a protractor on the test apparatus.



**Computed and displayed digitally by the instrument.



Table 4-6 MEASUREMENT OF HORIZONTAL FIELD
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Error 
 (Units)



-3 

180 220 260 300 340 20 60 100 140 18 

-3 

4 

5 

Fig. 4-4 	 DEVIATIONS OF THE HORIZONTAL FIELD MEASUREMENT


FROM TIlE MEAN
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Fig. 4-5 	 DEVIATION OF Hix AND fly DATA FROM THE COMPUTED


FIELD COMPONENTS AS A FUNCTION OF YAW





71 

2) Empliical Determination of exy



The angle exy representing x axis sensor misalignment



relative to axis y was measured as follows:



Steps i) and ii) above were repeated with the exception


that the calculated values for Hx and Hy (Hxc and Hyc respect­

ively) were recorded with measured Hx and Hy data (Hxm and Hym



respectively) in Table 4-7. The calculated values were obtain­


ed by assuming that the angle exz as determined above was neg­

ligible and that the y axis sensor was perpendicular to the x-z


plane. With these assumptions, we note that at the heading of


zero degrees (extrapolated between display of 10 and 350 degrees


of Table 4-7 and Fig. 4-5), there is no error in yaw due to


either Hx or Hy. By physically rotating the sensors in fixed


intervals from yaw = 
 0 degrees and noting that the horizontal


field Hh = 730 units, we can then compute expected Hx and Hy



data at respective yaw orientations.



Physical orientation of the x axis sensor is easily deter­


mined by considering orientation at the maximum error excurs­

ions. These observations are illustrated in Fig. 4-6. We note



that the only possible orientation of the x axis sensor satis­

fying the data in Fig. 4-5 is that of Fig. 4-6.



N 

MH Hy 

Hy


(b)
(a) 
 

Fig. 4-6 (a) SENSORS ORIENTED AT YAW = +90 degrees


(b) SENSORS ORIENTED AT YAW = +270 degrees





Physical* Displayed** Measured Data Computed Data


Heading Heading (Units) (Units Deviation (Units)

(Degrees) (Degrees) Hxm Hym Hxc Hyc (Hxm-Hxc) (Hym-Hyc)



355 90 12 -727 0 -730 +12 + 3 
335 70 258 -692 250 -686 + 8 + 4 
315 50 477 -555 469 -559 + 8 + 4 
295 30 637 -362 632 -365 + 5 + 3 
275 10 720 -127 719 -127 + 1 0 
255 350 718 127 719 +127 1 0 
235 330 628 363 632 365 - 4 - 2 
215 310 464 569 469 559 5 10 
195 290 242 687 250 686 - 8 1 
175 270 -10 731 0 730 -10 1 
155 250 -258 686 -250 686 - 8 0 
135 230 -476 557 -469 559 - 7 - 2 
115 210 -635 362 -632 365 - 3 - 3 
95 190 -721 123 -719 +127 - 2 - 4 
75 170 -718 -133 -719 -127 1 - 6 
55 150 -628 -371 -632 -365 4 - 6 
35 130 -460 -565 -489 -559 9 - 6 

* Measured using a protractor on the test apparatus. 
** Computed and displayed digitally by the instrument. 

Table 4-7 MEASURED AND COMPUTED Hx AND Hy DATA


IN THE HORIZONTAL PLANE
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Magnitude of the angle Exy can be° computed as follows



using data from Fig. 4-5



Max. delta from Fig. 4-5 = 10 units



Average horizontal field = 730 units



-

sxy max = Sin 1 10


730 

= 0.79 degrees



We note that the angle of 0.79 degrees is approximately



the same as determined by Develco during manufacture of the



sensors (Table 4-5). The added error is due to test set in­


accuracy.



C) Fluxgate Sensor Noise Induced Error



The analog output from the fluxgate sensors can exhibit an



error due to signal uncertainty resulting from noise. Although



the data sheet [Ref. 3-34] indicates that 5mV peak to peak of


ripple can exist on the output, the frequency content centers



in the 550 kHz range (driver frequency of the fluxgate magneto­


meter) and no appreciable ripple5 exists below 60 Hz (especial­


ly when the sensor output is filtered prior to data sampling).



The noise specification of less than 1 gamma peak to peak in



the 1 Hz bandwidth region is also negligible. In summary, no



appreciable error due to noise on the magnetometer signal lines



is evident.



D) Magnetometer Gain Error



The magnetoieter is specified to have gain (sensitivity)



of 2.5 Volts/600 milligauss, +1% which translates into a maxi­


mum signal uncertainty of



5Verbally confirmed by Workentine of Develco [Ref. 4-1].
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+(2.5V x 0.01) = +25 inV. 

This represents a sensor transfer function of 4.16 Volts/gauss



or 0.24 gauss per volt. The uncertainty then can be expressed



as



+(0.24 gauss x 02J1) 	 = +2.4 milligauss 

= +(2.4 x 102) gamma 

Since this error is not corrected in the laboratory instrument



iz will be considered in total in the final error analysis. It



is worth noting however, that should the magnetometer gain un­


certainty be characterized, gain corrections for each sensor



could be made during computation by the computer. In addition



the error term is proportional to actual signal level applied.



E) Magnetometer Linearity Error



D.C. linearity of the magnetometer is specified to be



+0.5% of signal level. This uncertainty at full scale can be



expressed as +(2.5 Volts x 0.005) = +12.5mV. Alternately, lin­


earity error can cause a signal uncertainty of +1.2 milligauss



or +(1.2 x 102) gamma. Linearity error is also not corrected



during computation and is considered in the final error analysis.



By simply characterizing and correcting the linearity character­


istics of each sensor, considerable improvement in system accur­


acy could be achieved.



4-3 ANALOG SUBSYSTEM ERROR ANALYSIS



The analog subsystem of the instrument is outlined in



block diagram form in Fig. 4-7. This subsystem accepts analog



signals from magnetometer and gyroscope transducers,performs a



time division multiplexing between the signals and digitizes





+5 +15 -15 

-15 i5 +15 36/72 

Analog 
Outputs5 

1 1 
1 

14 361 F-P2 
15'7l) 30 

4o3 Ananalog to Digital Start 7 

22 
0 4 

Multiplexer Hold 15 6 Converter 
E.O.C. 33 

18 17 16 15 14 1 

T 
13 

Analog 

72 67 63 58 54 50 
14 

+1 Gnd 15 
, 16 

20K Gain Adjust _ 17 
27 
28 

-15 
15 

-15 

Offset Adjust 

__ _ __ _ __ _ __ 

Digital Outputs 

_ 

29 
3031 1 

32 
U2 

433 
34 

-F 

Fig. 4-7 TUIE ANALOG SUBSYSTEM 
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the respective signals prior to subsequent processing by the



computer. During this data acquisition and conversion process,



errors are introduced into each of the signals. This section
 


addresses the potential error sources and computes the respect­


ive error contributions to be expected during operation of the



instrument.



Although the multiplexer and sample and hold blocks of Fig.



.4-7 could be eliminated (eliminating possible error sources) by



digitizing each signal with a unique analog to digital converter,
 


it can be shown that such a system would be expensive and dif­


ficult to implement. The analog to digital converter (A/D)



quantizes an analog signal in a finite amount of time. Speed of



conversion is predicted in a finite amount of time by both the



resolution of the converter and-the frequency of the signal to



be converted. Time required to perform a conversion is general­


ly called the 'aperature time".



ta



Fig. 4-8 APERATURE TIME AND AMPLITUDE UNCERTAINTY
 


As illustrated in Fig. 4-8, aperature time and amplitude



uncertainty are related by the time rate of change of the ana­


log signal. For the particular case of a sinusoidal signal to
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be converted, the maximum rate of change occurs at the zero cross­


ing of the waveform and the amplitude change is:



d 
AV = - (VSin wt)ta0x ta (4-la) 

= V w ta (4-1b) 

giving AV = w ta = 2 iTf ta. (4-2)



From this result we can determine the aperature zime required to



digitize a 30 Hz signal to 12 bits resolution (a resolution of 1



part in 4096 or 0.0244%).



Va-x 1 _.000244 1.3 x 10- 6



V 2 f 6.28 x 30
 


This result indicates that to remain within 1 bit of resolution



(0.0244%) we require an aperature time of 1.3 microseconds to pro­


cess analog signals varying at a rate of 30 Hertz. It can be seen



that the system would require fast A/D converters plus extremely



fast computational capability to accommodate this configuration of



sensors and analog subsystem. By using multiplexing and sample



and hold circuitry we can however reduce the number of A/D con­


verters required to one and alleviate the aperature and processing



requirements imposed above.



The operation of sampling to be used by the instrument is



illustrated in Fig. 4-9 which shows an analog signal and a train



of sampling pulses. The pulses are provided by the central pro­


cessing unit. A switch connects the analog signal for a very



short period of time to the hold circuitry charging a capacitor



and storing the sampled voltage until the next sample is required.



This type of sampler is called sample and hold.
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Fig. 4-9 SIGNAL SAMPLING PROCESS
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A) Sampling Rate Errors



The process of uniformly sampling a function of contin­


uous time can yield a significant source of error if the sampl­


ing period T is sel-ected too large [Ref. 4-4, 4-5]. This error
 


can be illustrated by considering an analog signal xa(t) that



has the Fourier representation [Ref. 4-6]



xa(t) = Xa (]h) eJstda (4-3a) 

Xa(s) j xa(t)e-Jtdt (4-3b) 

The sequence x(n) with values x(n) = xa(nT) is said to be de­


rived from xa(t) by periodic sampling and T is the sampling



period. The reciprocal of T is called the sampling frequency



or.-sampling rate. In order to determine the sense in which



x(n) represents the original signal xa(t), it is convenient to



relate Xa(js), the continuous-time Fourier transform of xa(t),



to X(e %1 , the discrete-time Fourier transform of the sequence



x(n). From (4-3a) we note that



x(n) = xa(nt) = 2fXa()eJQntd (4-4) 

From the discrete-time Fourier transform we also obtain the



representation [Ref. 4-4]



x(n) = -iJfx X(eW)e wnddw (4-5) 

To relate the equations (4-4) and (4-5) we can express (4-4) as



a sum of integrals over intervals of length 2ir/T, as in



f(2r+l) r/T .nd
x(n) = -r=-_J (2r-l)w/T (4-6) 
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-Each term in the sum can be reduced to an integral over the



Iange -w/T to +w/T, by a change of variables to obtain


1 a j (0+27 ) e3 (Q+2,r) nTd 

x(n) r=- f12/T [ 	 eJ±) a (4-7a) 

f /T 2r ,rd 

x(n) - 2 .2r(j+j_2r)enTe 2 -,rnd 
r=-. -i/T (4-7b)



If we now change the order of integration and summation and



note that eJ2irn i for all integer values of r and n, we ob-
 

Eain		
­

­x(n) -	 2 /T Xa(jii+j ) e j2nTd Q (4-8)J 	 
My substituting Q = w/T we get 

x~) 21 	 2wr, 21TrJ 
 

x(n) = 	 2 f Ft j .2-) e3 ndw (4-9')
'f- -7v L r=--(~J# j 

Which is identical in form to equation (4-5). We can therefore



take the identification (equating like terms of (4-5) and (4-9)



X~JW 
Co 

XaJ 2ir-1 

X (e) 	 = j403-)-	 (4-10) 

Be can also express (4-10) in terms of the analog frequency var­

iable 2 (where R = w/T) as 

X(eJLUT) Xa(j+j r) 	 (4-11) 
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The last two equations clearly reveal the relationship



between the continuous-time Fourier transform and the Fourier



transform of a sequence derived by sampling. For example, if



Xa (j)_ is as depicted in Fig. 4-10a then X(ejW) will be as



shown in Fig. 4-10b when the sampling period T is too long and



as shown in Fig. 4-10C if T is short enough.



From Fig. 4-10c it is obvious that ifT <7, i.e., we



sample at a rate at least twice the highest frequency of Xa(j),
 


then X(ej ) is identical to Xa(/T) in the interval -u<< and



can be recovered from the samples xa(nT) by an appropriate



interpolation formula.



For the remote magnetic indicator instrument designed in.



previous chapters, the analog signals are filtered with a low



pass section reducing frequency content above 30 Hz. The sampl­


ing rate must therefore exceed 60 Hz (T<16.67 m.s.) to enable



accurate dynamic operation of the system.



Laboratory measurements of sampling rates on the function­


al microprocessor based instrument revealed that the analog



subsystem operated at a sampling rate of 62.5 Hz (16 m.s.) in­


dicating that the algorithm execution rate supported a system



bandwidth of 31.25 Hz. If frequency content of the analog



signals is less than 31.25 Hz there is no error due to sampl­


ing.



B) Analog Multiplexer Induced Error



The analog multiplexer of Fig. 4-7 selectively connects



one analog transducer output at a time to the input of the



sample and hold subsystem. The Datel Systems, Inc., multiplexer



[Ref. 4-7] selected for the remote magnetic indicator experiment



features eight MOS-FET switches with associated driver circuits,
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(a) Fourier transform as a continuous-time signal



X(e j ) 

-27T -TT 7 27 37 

(b) 	 Fourier transform of the discrete-time signal obtained by


periodic sampling (T is too large)



X(e 3 
) 

Tr 	 27T 3ff 

-2oT QoT


- 2 

(c) Same as (b) except T is short enough



Fig. 4-10 	 FOURIER TRANSFORMS OF CONTINUOUS AND


DISCRETE-TIME SIGNALS
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FET pull-up to reduce propogation delays and all of the nec­


essary decoding logic to enable random channel addressing with



a four bit parallel binary input.
 


Several important parameters are used to characterize ana­


log multiplexers and can contribute error.



1) Transfer Accuracy



Transfer accuracy is a function of the source impedance,



switch resistance, load impedance (if the multiplexer is not



buffered) and the signal frequency. It expresses the input to



output error as a percentage of the input. In our case the



system configuration predicates a maximum error due to transfer



accuracy of (+0.01%) yielding an error term of



+0.0001 x 2.5 Volts = +25 mV



2) Settling Time



This parameter defines the time elapsed from the applica­


tion of a full scale step input to the time when the output has



entered and remained within a specified error band around its



final value. In our case the selected multiplexer has a maxi­


mum settling time of 1 microsecond to +0.01% full scale (F.S.)



Since the control system selecting channels is implemented



using a microprocessor, the minimum time between analog sub­


system commands will always be greater than 3.0 microsecond 6 .



The multiplexer will therefore always have settled to the final



value before the sample and hold circuit (following this sub­


system) can be activated with no error due to the settling time



parameter.



6One machine cycletime for the 2650 microprocessor with 1 mHz


clock frequency.
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3) Throughput Rate



The highest rate at which the multiplexer can switch from



channel to channel at its specified accuracy is in this case



500 kHz. Since this rate is more than four orders of magnitude



greater than the operational rate of the subsystem there is no



error due to throughput rate limitations.



4) Input Leakage Current



The amount of signal coupled to the output as a percentage



of input signal applied to all OFF channels together can be cal­


culated by considering the maximum leakage current specified



from OFF channels to the ON channel. In our case the maximum



error signal can be calculated



[4(8 na x 2000 ohms source imped.) 2
Error = 

Error = 32 microvolts



Note that in this case the voltage levels are statistically



independent allowing an R.S.S. of error sources to calculate



total error [Ref. 4-8, 4-9].



C) Sample and Hold Circuit Induced Errors



The sample and,hold subsystem consists of a switch and



capacitor arrangement as shown in Fig. 4-11. The Datel Systems,



Inc., model SHM-IC-l integrated circuit sample and hold device



[Ref. 4-10] features a self-contained high gain differential



input amplifier, a digitally controlled electronic switch and



a high input impedance buffer amplifier. The external compon­


ents used with the sample and hold-circuit in-the solid state



remotemagnetic indicator instrument consisted of the 0.001 f



holding capacitor and a 100K offset trimpot. By connecting
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the output back to the negative input of the input amplifier



(Fig. 4-11), the sample and hold subsystem operated in a unity 

gain, noninverting mode. When the switch is closed, the unit 

is in the sampling or tracking mode (Digital Control = 0 Volts), 

and will follow a changing input signal. 

-15 +15



Input @I?@uad 

Digital



+15



Figure 4-11 SAMPLE AND HOLD SUBSYSTEM
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When the switch opens the unit is in the hold mode and



retains a voltage on the capacitor for some period of time



depending on capacitor and switch leakage. Sample and hold



devices are characterized by a number of important parameters



that must be considered in the design of a data acquisition



subsystem.



1) Acquisition Time



The time lapse between the time that the sample command



is given to the point where the output enters and remains with­

in a specified error band around the input value is specified



to be less than 4 microseconds time to transit from 0 to 0.1%



of 10 Volts with C = 0.001 pf [Ref. 4-10]. This implies that



the control signals emanating from the central processor should



allow at least 4 ps acquisition time prior to entering the hold



mode. We note that the sample and hold subroutine (Appendix



B) executes the instruction



IORI, R3 H'80' READY TO HOLD,



a two machine cycle instruction prior to sending the hold con­


trol signal. This instruction delays control signal transmis­


sion by (2 x 3 ps) = 6 is allowing the sample and hold circuit



ample time to settle with no appreciable error due to the



acquisition time parameter.



2) Hold Mode Voltage Droop



The maximum change in output voltage as a function of time



is specified to be 50 mv/sec maximum using a 0.001 pf poly­


styrene capacitor. Since the maximum total accumulated time to



completion of the analog to digital donversion can be calculated



as
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5 Instructions (l1 machine cycles) = 33 jis



I Analog to Digital Conversion = 20 Vs



3 Instructions if Conversion not


synchronized with instructions


(7 machine cycles) = 21 jis



74 ps



we can then compute droop error to be 50 mv/sec x (74 x 10-6)



sec = 3.73 mv.



3) Aperature Delay



The maximum time lapse between the time of hold signal



receipt to opening of the switch is specified to be 50 nsec,



an insignificant length of time in the instrument. There is



therefore no error due to aperature delay.



4) Offset Error



Although the maximum offset error is specified to be 20 mv



maximum (Ref. 4-10], the error was eliminated using the-100K



trimpot offset adjustment. There was no appreciable offset



error contribution due to the sample and hold circuit.



5) Gain Error
 


The gain error of a sample and hold circuit is apparent



during the sample mode when the transfer function of the total



amplifier deviates from the ideal unity slope condition (Fig.



4-12). In the noninverting unity gain mode, the specified gain



error is +0.05% maximum,yielding a signal error of



(+0.0005) x 5.0 V = 250 mV



This error can, however, be eliminated with the gain
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0 

F.S. -

CanError Ie



Nonlinearity


Error



OfstError



Analog Input F.S.



Fig. 4-12 GAIN, OFFSET AND LINEARITY ERRORS



adjustment available at the analog to digital converter. There



will'therefore be no appreciable net gain error due to the an­


alog subsystem.



6) Nonlinearity Error



Nonlinearity error is apparent in the sample and hold


circuit if the transfer function departs from a linear curve



(Fig. 4-12). In the noninverring unity gain mode with a



0.001 pf holding capacitor the maximum nonlinearity is 0.01%



resulting in a worst case signal uncertainty of (.0001) x



2.5 Volts = 25 mV.



7) Hold Mode Feedthrough



This error appears due to input signal appearing at the



output when the unit is in the hold mode. Although the
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feedthrough varies with signal frequency and the expected signal


frequencies are substantially lower than the upper frequency



limits of the sample and hold device (30 Hz max. versus several



kiloHertz), we consider the worst case feedthrough of 0.01%


[Ref. 4-10] or 25 mV.



D) Analog to Digital Converter Induced Errors



The A/D Converter selected for the solid state magnetic



indicator instrument (Datel ADC-MAI2BlB) [Ref. 4-11] uses the


successive approximation technique to achieve excellent lin­


earity and speed. Important parameters that potentially con­


tribute errors are addressed below.



1) Resolution Error



The smallest analog change that can be distinguished by



the A/D converter is


Full Scale



Least Significant Bit (LSB) = F 

LSB - 1.22 mV 
212 

this uncertainty manifests itself as an error in computing by


limitxng the precision of any calculation.



2) Linearity Error



The maximum deviation from a straight line drawn between 
the end points of the converter transfer function are specified 
in [Ref. 4-11] to be + 1/2 LSB (in our case +1.22 mV of analog 

signal).



I 
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3) Accuracy Error



The input to output error of the A/D converter is specif­


ied in [Ref. 4-11] to be +0.012% F.S. +1/2 LSB or



+(0.00012) x 5.OOV +1.22 mV = +1.82 mV Worst Case



In reality, the two error terms are unrelated and the



Rss Error = + [(.,00012 x 5V)2 + (1.22mV)2]2



RSS Error = +1.36 mV



4) Offset Error and Gain Error



Both the offset error and gain error were adjusted to zero



using the trimming potentiometers (Fig. 4-7) and the calibra­


tion procedure outlined in Ref. 4-11. A reference signal of



plus 1/2 LSB (1.22 mV) was applied to the converter and the



offset trimming potentiometer ad3usted until the output flick­


ered equally between logic "0" and logic "I". The gain was



then ad3usted by setting the converter input to full scale



minus 1-1/2 LSB (4.99817 Volts) and the gain trimming potentio­


meter was adjusted until the output flickered between logic


"tll...110" and logic "ll.. .111". The above steps were re­


peated until no appreciable error in gain or offset was evi­


dent.



4-4 PROCESSING ERRORS



Errors in processing data accrue due to several sources



including imprecision and truncation. Since the microprocessor



selected for the instrument is inherently an eight bit device,



single precision calculations are conducted with eight bits



and double precision calculations are conducted with a total
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of sixteen bits. This section addresses' the effects of com­


putational precision and truncation in the various subroutines



and relates these to overall computational accuracy. The var­


lious subroutines are analyzed in chronological order as they



appear in the main program.
 


A) Subroutine "SAMP"



The sample subroutine (delineated in Fig. 3-6a) selects



and digitizes analog signals by controlling respective analog



subsystem modules. During the first portion of this subrout­


ine, A/D converter data bits are stored in two consecutive



bytes 7 in the computer memory. The A/D conversion precision



of 12 bits is thereby preserved.



The second, third and fourth operations of the sample sub­

routine convert the unipolar binary format of the data to sign



magnitude format, adds offset quantities and merely changes the



isigns of the Hx and Hy data. The operations are conducted in a



double precision manner and precision of the data remains un­


altered.



iCorre'ction of x axis orthogonality error is the final operation



'of the sample subroutine. Equation (3-1) is implemented at



'this point using a table lookup (for the sin function), multi­


plication and addition. The final result can be expressed as



Hx = Hx' + Hy Sin c



7A byte is accepted terminology for an-eight bit data quantity.
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where the respective quantities have the following forms



11 

HxI = xI + P-a 2



Hy = x2 a 2j+ 3

8 3=1 

Sinez P ak2-k 
k=l



and



x1 , x2 are sign bits



ai,3, k equal 0 or 1 depending on whether the respective



term is to exist or not



We can analyze the effects, of imprecision and truncation



by noting that the sin function has eight significant binary



bits resulting in a resolution of 1/256 or 90°/256 = 0.352'.



The relative error in sin s is computed by Dahlquist



[Ref. 4-12] as follows



let a = the approximate value of sin s



a = the exact value of sin s



then the relative error in a is



(a - a)/a if a A 0 

Since data in the sin table has been truncated, maximum



relative error can be as large as +(1/212) or +0.02%.



From the definition of relative error we obtain the



following relationships between exact, estimate and estimated
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relative error



a = a + ar = a~l + r)
 


If a,, and a2 have relative errors of +0.39% and +0.02%, res­


pectively, then



aja 2 = al(l +0.0039) a (1 +0.00024-)



aja 2 (l +0.0039) (1 +0.00024)
-

Thus, the relative error in aja 2 is



(1 +0.0039) (1 +0.00024) - 1 = 

+(0.0039) +(0.0039)(0.00024) +(0.00024) 

- +(0.0041) 

Since the maximum value of Sin e to be encountered occurs



when the orthogonality error (s) is l'degree, sin s = 0.017



maximum. The maximum value for Hy can be 0.6 gauss or 2048



units. Maximum error due to imprecision in the product HyS-ins



is then



Er-Max = (2048 x 0.017) (1 + .0041) - (2048 x 0.017) 

= 0.1427 units 

Since only the integer portion is retained in the final
 


product, insignificant error can be attributed to imprecision



of the sin e term in this case. Orthogonality error will be



adequately corrected.



B) Subroutines ROTX and ROTY



These subroutines were developed in Chapter III and



implement the equation of 2-11 required to compute horizontal
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x and y magnetic field components. Equations to be implemented


by the respective subroutines are



Hx = Hxm Cos (pitch) + Hym Sin (pitch) Sin (roll)



+ Hzm Sin (pitch) Cos (roll) (4-12)



and



Hy = Hym Cos (roll) - Hzm Sin (roll) (4-13) 

where Hxm, Hym and Hzm are measured field components made avail­

able.from the magnetometer via the analog subsystem.



Since the transcendental functions are implemented using



table lookup and are limited in precision to 8 bits, imprecision



in these variables will dominate in generating error. In part­


icular, the sin/c.os terms will have relative error in the order


of +1/256 or +0.39% while the measured field.data has relative



uncertainty of only ±1/4096 or ±0.02%. Multiplicacions will


result in addition of the bounds for the relative error as



illustrated in section 4-4A above.



The transcendental terms above are limited in magnitude


to 1.0 maximum while the field measurements can be 0.60 gauss



max. In this case the individual product terms of (4-12) and



(4-13) can have maximum errors of



Er = (2048) (1 + 0.0041) - (2048) = 8.4 units



Errors in Hy and Hx (4-12 and 4-13) will be maximum when


roll and pitch are at 45 degrees and the fields are equal. In



this case the error in Hy will be



http:sin/c.os
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EHy = [(0.707) (2048) (1 + 0.0041) - (0.707) (2048)] ­

[(0.707)(2048)(1 - 0.0041) - (0.707) (2048)]



Ely = 4.94 - 5.94 = 11.87 units 

Similarly, maximum error in Hx can be calculated as



EHx [(0.707) (2048) (1.0041) - (0.707) (2048)] x 3 

EHx = 17.8 units maximum 

It should be noted that these error terms are worst case



and peak at multiples of 45 degrees in yaw.



C) Subroutines COSY and SINY
 


These two subroutines compute the angle between the x axis



sensor (when projected onto the horizontal plane) and the



north-south horizontal vector of earth's magnetic field. The



first two opeations of these subroutines perform double pre­


cision multiplication and division. Since the data variables



involved are 12 bits in length and the computations performed



preserving 16 bits, no error is introduced.



The "PaGL" subroutine called by the above two subroutines



computes the desired (x axis to horizontal vector) angle by



completing an associative table look up procedure. The task



required is to match a given data quantity either (Hx2/Hh2 or


Hy2 /Hh2 ) with the contents of a memory cell. The address of



this cell is then the required angle.



-Since the tableis limited in precision to 16 bits there
 


are obviously cases where an interpolation is required to
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ascertain the true address 9 . The function stored in tabular


2
form is cos o where 0 varies from 45 to 90 degrees. Maximum



error will therefore be induced while attempting to locate


solutions (angles near 90 degrees if inadequate precision is


provided. Error in this region due to resolution of tabular


data can be examined by noting the entries in Table 4-8



0 Cos2G 
Most Significant 
Binary Bit (2 

- x ) 

90 0 -

89 0.000305 12 

88 0,.001218 9' 

87 0.00274 8 

Table 4-8 Cos 20 AND MOST SIGNIFICANT BINARY DIGITS



provided to indicate the relative magnitudes of Cos 20 in the


region of 0 = 90 degrees. We observe that the most signifi­

cant binary digit affected at 89 degrees is binary decimal


digit 12 implying that the resolution of Hx2/Hh2 or Hy2/Hh2



(the argument of Cos 2e) must be accurate to at least 1/212 
 or



0.024%.



Considering the horizontal field of earth's magnetic


vector as observed in laboratory experimentation at this lat­

itude, we note that Hh is 730 units. At a heading of 89 deg­

rees, Hx = 730 Cos 89 = 12.7 units. The argument would there­


fore be



ARG = Hx2/Hh2 = (12.7)2= 0.000305


(730)0



9The procedure determines the relative address by linear


interpolation, then selects the closest address as 
 the


required angle for the solution.
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Since, the squaring and division operations are conducted



in double precision, precision is preserved and the algorithm


should be able to resolve heading to at least one degree over



all portions of-the compass.



D) Errors Due to the Remaining Subroutines



Since all of the remaining subroutines work with data that


has been rounded to a precision representihg 1 degree or better



and the computations involve addition or subtraction in double



precision binary or binary coded decimal (BCD) format, we note


that there will-be no further appreciable error due to trunca­


tion or rounding.



4-5 MEASUREMENT ERROR SUMMARY



Errors due to sensors and measurement of their respective



outputs were discussed in sections 4-2 and 4-3 above. Before


proceeding with the analysis of errors, the total signal in­


accuracy due to contribution from the many sources above will


be summarized in Table 4-10. Total instrument error can then



be computed by considering the propagation and enhancement of



these errors during the computation process.



Since the errors in Table 4-9 are stochastically independ­


ent, we can compute error for any given signal level by find­

ing the RSS of respective error sources. In this manner, the



instrument error can be evaluated by considering all input



signals with errors superimposed'to produce an erroneous com­


putation of heading.
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PARAMETER ERROR 	 COMMENT



1. 	 Magnetometer


Offset =0 Corrected by software


Orthogonality =0 Corrected by software


Noise Negligible


Gain +0.01% Proport.to signal level


Linearity +0.01%



2. 	 Analog Subsystem


Sampling Negligible Sampling rate & filter­


ing adequate

Multiplexer



Transfer Accuracy +0.01% Proport.to signal level


Settling Time =0


Rate =0


Input Leakage



Sample and Hold


Acquisition =0


Hold 4mV


Aperature Delay =0


Offset =0 Corrected by software


Gain =0 Corrected by software


Nonlinearity +0.01% Proport.to signal level


Feedthrough +0.01% Proport.to signal level



and frequency


A/D Converter


Resolution +l.2mV


Accuracy +1.4mV


Offset =0


Gain =0



Table 4-9 SENSOR AND ANALOG SUBSYSTEM ERROR SUMMARY



http:Proport.to
http:Proport.to
http:Proport.to
http:Proport.to
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4-6 SAMPLE ERROR ANALYSIS



Orthogonality correction using the algorithmic method can


be verified by computing expected error prior to correction and


comparing measured system output with the error predicition.


Assuming that the angle between the x and y sensors exceeds 90


degrees-as an Fig. 4-13, 
 we can proceed to compute error by



noting the following relationships



Hx = Hh Cos (+')



ly = Hh Sin (i)



Hx1 = Hx Cos s - Hy Sin


-1( Hx ) 

True Yaw = T = Cos (Hx+Hyz){) 

Computed yaw



-
'm = Cos HxCose - HSin s]



(HxCoss - HySins)2 + Hy2) ]


= Cos 1hCoswCoss - HhSinSins



[(HhCosPCoss 
 - HhSiniSins) 2+ H2hSin2rjy] 

Using small angle approximations with e = 0.79' 

Coss = 1 and Sins = 0.014 

then J
'pm = H - 0.014 
cs(Cos ip CosOi 
[Hh 2 (Cos - 0.014 Sinp)2 + Hh2Sin2 ]


Computed error



Error = ipm­




100 

N



Hh
o; x



Fig. 4-13 ANGLE (X - Y)>900



We can now evaluate computed yaw angle (4m) given a part­


icular yaw (p) and the horizontal field vector (Hh). Heading



error.for horizontal field vector of 730 units at various yaw



angles with pitch and roll angles of zero degrees is tabulated



in Table 4-10 and plotted along with actual measured yaw error



(data taken during experimentation of Chapter V) in Fig. 4-14.



Computed Computed


Heading Error Heading Error


(Degrees) (Degrees) (Degrees) (Degrees)



90 0.8 	 290 0.7



70 0.7 	 270 0.8



50 0.5 	 250 0.7



30 0.2 	 230 0.5



10 0.0 210 0.2



350 0.0 190 0.0



330 0.2 170 0.0



310 	 0.5 150 0.2



130 0.5



Table 4-10 COMPUTED HEADING ERROR WITH Hh = 730 UNITS 
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Fig. 4-14 COMPARISON OF COMPUTED AND MEASURED ORTHOGONALITY INDUCED ERROR H 
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4-7 CONCLUSIONS



The preceeding error analysis has identified potential



error sources along with relative magnitudes of error to be



expected. Magnetometer sensor and analog subsystem errors



were identified and analyzed individually. During this analy­


sis it became apparent that errors due to sensor offset and



nonorthogonality dominated and would severely limit total in­


strument performance. The relative magnitudes of these errors
 


and their mode of contribution would have degraded system cap­


acity.



By carefully characterizing the offset and orthogonality



error it was determined that these systemmanic errors could be



reduced by appropriate programming. A need to identify the



extent of each error unique to the laboratory instrument im­


posed a need to evaluate the instrument empirically, using



earth's magnetic field and the laboratory test fixture (de­


scribed in Chapter V) to provide control inputs each of the



parameters was identified and measured. An algorithm with the



empirically determined correction coefficients was included in



the final system to reduce the error and to improve final system



performance. The remaining potential error sources were tab­


ulated and relative magnitudes noted.



Processing errors due to register precision and truncation



were analyzed by considering pertinent subroutines individually.



It was noted that the relative error bounds add when multiply­


ing variables with relative error. In addition, it was noted



that error accrued during processing is proportional to sensor



signal levels involved. The final uncertainty is then propor­


tional to actual aircraft attitude with error increasing as



displacement from level flight occurs. Computational error is



also noted to increase at particular headings causing the error



function to peak at specific yaw angles.
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The sample error analysis clearly shows thaz a correlation



between sensor nonorthogonality induced error and measured (un­


corrected) data exists. By predicting and computing an error



function prior to experimentally verifying the result we gain



confidence that the sensor characteristics derived empirically



in previous sections are correct.
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CHAPTER V



LABORATORY EVALUATION OF THE ATTITUDE INDEPENDENT


REMOTE MAGNETIC INDICATOR AND HEADING INSTRUMENT



5-1 INTRODUCTION



.This chapter addresses laboratory evaluation of the micro­


processor based computer designed to implement the heading



measurement instrument. An integral part of this instrument


was the three axis fluxgate magnetometer used to implement the



attitude independent remote magnetic indicator of Chapter II.


The laboratory evaluation was designed to investigate empiric­


ally the effects of physical parameters that would otherwise



be impossible to assess.



Although phenomena such as noise, magnetic field gradient,


sensor orthogonality errors and offset errors can be predicated,



combined effects on the proposed instrument and remote magnetic


indicator are best evaluated in the laboratory. In addition,



it was noted that errors due to sensor offset and nonorthogon­


ality could be corrected by software included with the sample



subroutine. Determination of the effectiveness of this cor­

rection technique necessitated laboratory measurements of the


errors (to determine correction constants) and comparison of



data prior to and following corrections.



The chapter begins by discussing laboratory test apparatus


designed to evaluate the instrument. Actual data measured and



recorded during experimentation is then presented in both tab­

ular and graphic form to facilitate comparison and evaluation.


Finally, the laboratory data is discussed and it is concluded



that the remote magnetic indicator used with the heading mea­


surement instrument results in a viable alternative to conven­

tional heading measurement systems. The microprocessor based
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computer implentation of the instrument has added unique sensor



measurement correction ability that enhances performance of



otherwise marginal sensors. In this manner limitations in



systems performance that now exist due to sensor inadequacy



can be minimized without incurring the burden of using more



expensive sensors.



5-2 TEST APPARATUS



A) Electronic Subsystem



The microprocessor based computer (illustrated in photos



5-i and 5-2) was constructed on printed circuit boards consist­


ing of a central processing card, two memory cards (2K bytes



capacity each) and an output board. A separate analog subsystem
 


card contained the multiplexer, sample and hold, analog to



digital converter and trimming potentiometers. The circuit



cards were all organized with edge connectors and mounted ver­


tically into a hand wired backplane assembly as shown in photos



5-1 and 5-2.



The card in the left foreground of photo 5-1 served as the



output display with three seven-segment displays displaying



significant figures of system heading. A small printed circuit
 


in the right foreground of photo 5-1 contained potentiometers



used to generate analog signals proportional to roll and pitch



signals (simulating gyroscope outputs). Cards shown vertically



mounted in photo 5-2 can be identified from right to left as



the analog subsystem, two memory cards and the central pro­


cessing card. The large integrated circuit shown on the CPU



card is the Signetics 2640 microprocessor.



B) Sensor Assembly



To evaluate the effects of combined aircraft pitch, roll
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ANALOG SUBSYSTEM





107



and yaw a three axis gimbal apparatus was required. In add­

ition, since angular measurements were required, a means of


measuring angular rotation in each of the three exes was pro­

vided. The gimbal apparatus as illustrated in photos 5-3


and 5-4 was fitted with large protractors centered on the


rotation axes. Pointers were provided to enable angular rot­


ation measurements on the respective protractor scales. 
 Since


the angular precision on each protractor scale resolved angular


position to 0.5 degrees, angular measurements to a resolution


of at least 0.5 degrees were possible. Angular position was


measured by estimating the decimal place of each measurement


with accuracy to +0.5 degrees ensured.



Since the three axis magnetometer (housed in the rectang­

ular block of photos 5-3 and 5-4) measured ambient magnetic


fields the test apparatus was constructed of nonferrous mat­

erial. 
 This ensured that local fields due to residual mag­


netic fields in the test apparatus would be minimized. In


addition, since the material had low permeability, there would


be little deformation of the local field causing error due to


changing field gradient.



The sensor package shown in photos 5-3 and 5-4 was 
 physic­

ally mounted such that the sensors were centered as close to


the center of the gimbal as possible. This precaution ensur­

ed that measurement error due to sensor translation was minim­

ized1 . During instrument evaluation, the entire gimbal assembly


and sensor were leveled and mounted in a Helmholtz coil assembly


as illustrated in photo 5-5. Although the coils were not acti­

vated during experimentation, the rotations in heading were



ISince the local magnetic field has a nonzero gradient, field


measurements include a component due to translation of the


sensor axes. 
 This component of measurement produces unaccept­

able error in a system designed to measure field components

that change due to rotation.
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Photo 5-3 	 MAGNETOMETER SENSOR MOUNTED ON


GIMBALLED TEST FIXTURE



Iq



Photo 5-4 
 SENSOR AND GIMBAL ASSEMBLY WITH PROTRACTORS
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carefully controlled since the gimbal assembly was an integral



part of the Helmholtz coil fixture with the vertical rotation



axis serving as the system yaw axis.



Photo 5-5 TEST FIXTURE MOUNTED IN HELMHOLTZ COIL ASSEMBLY



5-3 HEADING MEASUREMENTS WITH 90 OFFSET CORRECTION



By maintaining heading of the text fixture constant (no



rotation about the vertical axis) and varying both pitch and



roll angle, the instrument display was observed to vary. This



variation gave a direct measure of instrument error since a



constant heading was maintained and a constant display was to



be expected.



Data variations were recorded in Tables 5-1 and 5-2 and



plotted on Figures 5-1 and 5-2. With only ±10 degree variation



in pitch combined with +30 degree variation in roll we note



that the heading display varies 14 degrees. Obviously,
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instrument operation indicated excessive error requiring more



elaborate sensors or correction of a sensor inadequacy.



5-4 HEADING MEASUREMENTS TO INVESTIGATE ORTHOGONALITY ERROR



System performance was evaluated by initially aligning the



sensors with zero pitch and roll angle. Sensor Z was position­


ed vertically with positive direction downwards. By observing



the Z axis output2 as the test fixture was rotated about the



vertical axis, adjustments were made in pitch and roll angle



to minimize coning of the Z axis. Angular measurements on



the respective roll and pitch axis protractors were then made



to establish the initial reference attitude angles.



Heading measurement accuracy was evaluated by rotating



the test fixture in the horizontal plane until the display



flickered between (XX9) and (XX9+l). The rotation was then



continued a very small amount until a steady display (multiple


3.
of 10 degrees) was-observed Measurements ranging from 0 to
 


350 degrees were made by recording angular position required
 


to produce specific heading data displays. Sets of data were



recorded at various combinations of pitch and roll then tab­


ulated in Tables 5-3 through 5-8. Relative error was computed



by determining angular position expected at each display value



and then computing the difference in angular positions. Errors



at the roll extremes of +44 degrees are plotted for pitch



angles of plus and minus 20 degrees on Fig. 5-3 through 5-6



inclusive.



2A special subroutine was used to display Z axis data directly


in BCD format on the seven bar output display.



3This measurement technique ensured that all heading measure­

ments were made identically. In addition, error due tQ system


imprecision was reduced.
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Data in Tables 5-5, 5-6 and Fig. 5-3, 5-4 were recorded



with no sensor orthogonality error correction implemented. Data



in Tables 5-7, 5-8 and Fig. 5-5, 5-6 was recorded with the



sensor orthogonality correction implemented. Comparison of



these data indicate that considerable improvement in accuracy



is achieved by correcting sensor orthogonality err-or.



5-5 CONCLUSIONS



Laboratory evaluation of the heading measurement instru­


ment has shown that the algorithms developed in previous



chapters are viable. Operation of the device in a laboratory



environment has enabled empirical evaluation of the system



under adverse combinations of noise, field gradient and sensor



plus instrument error sources.



Test apparatus described in section 5-2 served to enable



controlled simulation 6f roll, pitch and yaw rotations. The



apparatus was nonmagnetic in nature and contributed insignifi­


cant error due to field pertebation. Mounting of protractors



and pointers on the test apparatus made angular measurements



possible to a precision of at least +0.5 degrees.



Effects of sensor offsets were evaluated in section 5-3 by



recording system heading computations when only roll and pitch



varied. 'Since the variations in Figures 5-1 and 5-2 prior to



offset correction exceed the maximum excursions of Figures 5-3



and 5-4 by at least a factor of two (angular excursions in 

first set also less than in the record) and we note that offset 

errors were corrected prior to recording data in the second set 

of data, we conclude that offset in magnetometers can be a 
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PITCH ANGLE 0 DEGREES



ROLL ANGLE 0 DEGREES 

Heading Angular Relative


Displayed Position Error


(Degrees) (Degrees) (Degrees)



10 275.3 0.3



30 295.2 0.2 

50 315.4 0.4 

70 335.5 0.5



90 355.5 0.5 

130 34.8 -0.2 

150 54.3 -0.7 

170 74.0 -1.0 

190 94.0 -1.0


210 114.4 -0.6



230 135.0 0.0 

250 155.5 0.5 

270 174.7 -0.3 

290 195.5 0.5 
310 215.2 0.2 

330 235.2 0.2



350 254.7 -0.3



Table 5-3 REFERENCE DATA MEASUREMENTS OF HEADING 
TAKEN WITH NO ORTHOGONALZITY CORRECTION
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PITCH ANGLE 0 DEGREES



ROLL ANGLE 0 DEGREES



Heading Angular Relative


Displayed Position Error


.(Degrees) (Degrees) (Degrees)



10 276. 6 -0.4 

30 296.6 -0.4 

40 306.7 -0.3 

50 316.7 -0.3 

60 327.2 +0.2 

70 337.0 0.0 

90 355.9 -1.1 

130 37.0 0.0 

160 67.2 0.2 

190 96.8 -0.2 

220 126.9 -0.1 

250 157.0 0.0 

280 186.9 -0.1 

310 216.6 -0.4 

340 246.9 -0.1 

350 256.4 -0.6 

Table 5-4 HEADING MEASUREMENTS WITH OFFSET AND


ORTHOGONALITY CORRECTIONS MADE





Heading 
Displayed
(Degrees) 

Roll = 
Angular 
Position 

44' 

Error 

Roll 
Angular 
Position 

200 

Error 

Roll = 

Angular 
Position 

-20' 

Error 

Roll = 

Angular 
Position 

-440 

Error 

10 276.3 1.3 276.5 1.5 275.0 0.0 274.0 -1.0 

30 296.3 1.3 293.6 -1.4 

40 306.1 1.1 304.0 -1.0 

50 313.8 -1.2 

60 325.8 0.8 

70 335.6 1.6 334.3 -0.7 333.8 -1.2 

90 355.0 0.0 354.0 -1.0 353.1 -1.9 353.0 -2.0 

130 34.3 0.7 34.3 -0.7 34.6 -0.4 34.4 -0.6 

160 64.5 -0.5 64.0 -1.0 65.0 0.0 65.0 0.0 

190 94.3 -0.7 94.6 -0.4 95.0 0.0 95.5 0.5 
220 125.2 0.2 125.3 0.3 126.0 1.0 126.5 1.5 

250 156.6 1.6 156.2 1.2 156.7 1.7 157.0 2.0 

280 186.6 1.6 186.8 1.8 186.5 1.5 

310 216.8 1.8 216.8 1.8 215.9 0.9 215.9 0.9 
340 246.0 1.0 246.8 1.8 245.0 0.0 

350 224.9 -0.1 

TABLE 5-5 HEADING MEASUREMENTS AT PITCH = 200 WITH NO


ORTHOGONALITY CORRECTION
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Fig. 5-3 HEADING MEASUREMENT ERROR AT PITCH = 200 
-(NO ORTHOGONALITY CORRECTION) 
 



Heading
Displayed 
(Degrees) 

Roll = 
Angular 
Position 

440 

Error 

Roll = 
Afigular 
Position 

200 

Error 

Roll = 

Angular 
Position 

-20 

Error 

Roll = 

Angular 
Position 

-440 

Error 

10 276.1 1.1 275.1 0.1 274.2 -0.8 273.7 -1.3 
30 296.2 1.2 295.9 0.9 293.6 -1.4 
50 316.4 1.4 316.1 1.1 314.1 -0.9 
70 336.5 1.5 336.4 1.4 335.5 0.5 334.6 -0.4 
90 355.5 - 0.5 355.3 0.3 355.0 0.0 354.2 -0.8 

130 36.0 1.0 36.4 1.4 135.7 0.7 135.7 0.7 
150 55.3 0.3 55.9 0.9 55.8 0.8 
170 74.5 -0.5 75.6 0.6 75.5 0.5 
190 94.9 -0.1 95.3 0.3 95.5 0.5 95.5 0.5 
210 115.0 0.0 115.4 0.4 115.6 0.6 
220 125.5 0.5 
230 135.0 0.0 135.6 0.6 136.0 1.0 

250 155.6 0.6 155.4 0.4 155.5 0.5 155.7 0.7 
270 174.8 -0.2 174.8 -0.2 175.0 0.0 
290 195.6 0.6 195.4 0.4 195.3 0.3 
310 215.5 0.5 215.3 0.3 214.6 -0.4 214.5 -0.5 w 
330 235.7 0.7 235.1 0.1 234.2 -0.8 
350 255.6 0.6 255.2 0.2 253.8 -1'2 

Table 5-6 HEADING MEASUREMENTS AT PITCH -20H 
WITH NO ORTHOGONALITY CORRECTION 
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Fig. 5-4 HEADING MEASUREMEN~T ERROR AT PITCH -20*


(NO ORTHOGONALITY CORRECTI ON) 
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eading Roll = 
Displayed Angular 
(Degrees) Position 

20 287.3 


40 307.2 


60 327.0 


80 346.3 


90 355.9 


140 46.9 


160 67.0 


180 86.6 


200 107.0 


220 127.6 


240 147.2 


260 167.0 


280 187.3 


300 207.2 


320 227.3 


340 247.4 


0 266.4 


Table 5-7 	
 

0R Roll = 440 	 Roll = 
 -44'
 

Angular Angular 

Error Position Error Position Error 


0.3 287.5 0.3 286.3 -0.7



0.2 307.5 0.3 306.0 -1.0



0.0 327.9 0.7 325.9 -1.1



-0.7 347.5 0.3 345.6 -1.4



-1.1 357.0 0.2 356.2 -1.8



-0.1 47.0 -0.2 46.5 -0.5



0.0 67.3 0.1 67.1 0.1



-0.4 86.5 -0.7 87.0 0.0



0.0 107.3 0.1 108.1 1.1



0.6 127.3 0.1 128.3 1.2



0.2 147.4 0,2 148.5 1.5



0.0 167.1 -0.1 168.5 1.5



0.3 187.1 -0.1 188.5 1.5



0.2 207.1 -0.1 208.0 1.0



0.3 227.0 -0.2 227.5 0.5



0.4 247.3 +0.1 247.4 0.4



-0.6 267.0 -0.2 266.0 -1.0



HEADING MEASUREMENTS AT PITCH = 200


WITH OFFSET AND ORTHOGONALITY CORRECTION


MADE





2.0



44


.1.0



Heading Displayed (Degrees)



-2.0



Fig. 5-5 HEADING MEASUREMENT ERROR AT PITCH - 200 
(OFFSET AND ORTHOGONALITY ERROR CORRECTED) 
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Heading Roll = 440 Roll = -440 
Displayed Angular Angular
(Degrees) Position Error Position Error 

20 287.0 -0.4 286.5 -0.3



40 307.0 -0.4 306.7 -0.1



60 327.0 -0.4 326.8 0.0


80 347.0 -0.4 346.8 0.0


90 356.7 -0.7 355.6 -0.2



140 47.8 0.4 48.0 1.2


160 67.7 0.3 68.0 1.2



180 87.0 -0.4 87.8 1.0


200 107.6 0.2 108.0 1.2


220 127.7 0.3 128.0 1.2



240 147.8 0.4 147.4 0.6


260 167.6 0.2 167.2 0.4


280 187.6 0.2 187.0 0.2



300 207.1 -0.3 206.5 -0.3


320 227.1 -0.3 226.6 -0.2



340 247.1 -0.3 246.9 0.1


0 266.3 -0.9 266.0 -0.8



TABLE 5-8 	 HEADING MEASUREMENTS AT PITCH = -20' WITH 
OFFSET AND ORTHOGONALITY ERROR CORRECTED 



= -44 - .40



\ =440 0.6



+,0.4 

0.2" (Heading Displayed (Degrees) 

2020340 - 20 - 100 140 

-1.0 

Fig. 5-6 HEADING MEASUREMENT ERROR AT PITCH = -20'


(OFFSET AND ORTHOGONALITY CORRECTED)
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ma3or error source 4 . Additionally, we note that the correction



'of offset error in sensors has been successful. Experimental



results have verified that not only can offset errors be deter­


minded (Chapter IV), but a suitable algorithm can be implement­


-ed in the computer to improve system operation. It is postu­


lated that offset error correction can be extended to include



correction of varying offset values (functions of temperature



and supply voltage) by monitoring error causing,variables



(example temperature) and computing correction constants prior



to offset correction as above.



Errors induced by sensor nonorthogonality were predicted



in Chapter IVsection 4-2 and verified by plotting expected



error along with measured error in Fig. 4-14. The curves of


Fig. 4-14 were plotted for heading rotations with no pitch or



roll angle. To evaluate system performance and the effect of



orthogonality error with combined-angular rotations, measure­


ments of heading error were plotted in Fig. 5-3 thorugh 5-6



inclusive.



Comparison of these data indicate that maximum excursions



of error as a function of heading are significantly less when



orthogonality corrections are made. It is also postulated that



data could be improved further by similarly correcting ortho­


gonality error in te Z axis sensor5 .



In summary, the experimental evaluation has provided in­


sight into the operation of an attitude independent remote mag­


netic indicator and heading computer in the "real world"



4This corroborates the observations predicted during error


analysis in Chapter IV.



5We note that the error excursions are functions of pitch


and roll and that Z axis data is used in the rotation algorithm.
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environment complete with all contributing error sources. The



error analysis evolved during development of the system has



proven adequate in that an operational system was developed.



Major error sources were measurable as predicted and the means



of reducing their effects were successfully implemented. Cor­


rection of sensor offset and orthogonality error required an



empirical evaluation of the respective sensor. These evalua­


tions were performed, the errors characterized, correction co­


efficients determined, and correction algoritms implemenred.



Successful implementation of these corrections was evi­


denced by significant reductions in system error. The correct­


ion methods presented can be extended in future with the net



result that less demand is required of physical sensors if the



sensor parameters can be established empirically prior to



completion of instrument design. UtilizaLion of a microproces­


sor in the instrument has added the computational flexibility



required to facilitate accommodation of sensors with varying



error magnitudes.





APPENDIX A



This appendix lists the instruction set of the Signetics



26S0 microprocessor chip used to implement the heading instru­


me1t2
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ABUUISTACIl 

Al.



BLOCK DIAGRAM U,, 

IUn 



APPENDIX B



This appendix contains alisting of the assembly language



program used to implement the remote magnetic indicator head­


ing algorithm. The program was assembled on the A2650 cross


assembler program operational on the HP 2100 computer at the



University of Santa Clara.
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PIP ASfSFlt-L, R Vf,.%4s'N bCu Lt VL I H-AUING 1iSIRIJa,*NT ASSEsLY PROGRAM 197., PAG" 2 

LI NE AOD I %-6L "I L? '63 (14 *IR(04 SOUMCE 

4 
5 
6
I 

0U000 

(161111
Ot) 2 
61.163 

a0 

Rl 
W2 
63 

EmU 

Lou 
£1I 
L.ou 

) 

2 
J 

0)00 ON LOU 0 
9 
I0 

0(00 
(001 

z 
P 

EU 
LOU 

0 
I 

II (*1n2 E4U 2 
12 (0000 Fa EU G 
33 
14 
Is 
I6 
17 

n00 1 
Cool0 
noo2 
0003 
002 

UT 
r 
LT 
UN 
Cu 

Lot] 
Lou 
£043 
£OU 
EwU 

I 
Io 
1! 
3 
dmOe' 

J 

i 
19 

2021 

03O10 
00n 

OOoF0OF0O 

"S 
WC 

LURUPPR 

$LoU 
LOll 
LQUEOlU 

'rl, 0s 
IaO,1 
HOH-F0u, 

d2 0040 FLAG EoU H1640. 
23 
e4 
25 
e6 

0,0 
00FF 
0t01 
n3*2 

11 
14SAN 
"50 
LSII 

£143 

E'U 
tOu 
LOU 

H,20, 
H-FF' 
I 
2 

OUTPU ( 
OUTPUT 

47 
2$ 
49 

0120(4 
0008 
0010 

TIIIA 
PHI 
SIT 

LOU) 
tOU 
Eou 

4 
8 
16 

*i$... UATA STONALIE IN RAWl .... 
32 
33 
34 
35 

al4O 
045A 

,46'+ 

JATA 
OATH 
LOPS 

0OG 
RES 
FES 
RES 

H4501 
In 
it 
1 

RAW DfAT 
CORRECVLO DATA 

J6 
37 
3it 
J9 

041,5 
04)? 
0A./9 
,544* 

TEMP 
51ND 
1INR 

iN? 

tFS 
RES 
lIES 
NIPS 

d 
e 
2 
2 Ht SUUAH*EU JATA 

'0 0*.-U SIGN O-S I 
41 
'2 
'.3 

n1.E 
04 10 
1n,74 

nt? 
tY2 
61 

WES 
RES 
NES 

2 
e 
2: 

MAt SOIIAPE,] LIATA 

44 A4 4 043A1) RES 1 
45 
5 

A475 
11417 

COSN 
?bLT 

RES 
ILS 

2 
e 

4 
49 

w.(379 

31 u0 

3I1-80 
(.NPR 
SIEO 

IFF5 
RLS 
Rks 

e 
2 
I 

bo 0'.'L SWES kFS I 
5S 63479 OATX RVS 

3 
034111 

,4 
OAry
'ATZ 

ILS 
3L0 

2 
e 

S4 .b COST HFS I 6-
Lj 



PLP A4SVr4.ILFR Vf wSlflf SCU LFVLI I HEAUING I.%STP.4F4NT ASSEMLY IJQUGRAV 197h PlAri I 

L 4t, AVU I A' $1I 12 43 14 PNIkUH ONIRCE 

bS n..,,6 SIGX PcS I 

b6 0'.47 sibY NRES 1 

57 .1. SIG/ REnS I 
n30.49 A.UF NF5 I 

b9 0,.A4 13UF RE~S I C 
60 0'.'.0 CLIUR JRS I 
61 
2 

A4MC 
1416 

)WIJF 
TIIUF 

RPS 
RFS 

I
I 

i 14 ,L ObET RES b 
4 0, 14 50ST H-S 6 

66 ... CUNSTANIS IN WOm .... 

07 
61 ),00() OS0 0U i1 42 114 SIN 

OR6 
4ATA4 

1151)o ' 
HIOA,0I, Ot,0O6I)7,OIA)ADC(IE,0Or 

.1h 07 -19 0A 
FL 0' Of 

69 0bur I 1 14 Is IIATA .1rIII2 -,ibI,14.I.IfoflF,21' 
It 19 IA It 

?O 05(6 2? 2, ?5 17 VAjAr 12?.c42,21,24,AA.13,A),2F, 30,3W 

71 U5,!I 
A
13 

iq
5 

JI9It, 13 0440.­ 3 .3 ,j .N I 

it, i IcIF 412 42J IF3 

72 OS?C 	 .4 41 41 4i4 411T. H144o.4l4t4H4A.O01.4)I,4F-.t~,A 

5SN I 53} 


12 0537 	 1. 5, S7 SO DATA rI.bs.56,59SASC.S.J' bI ll '.. 
;A rC So1 

14 ObF Sh 6E 1 .1i DAT" hSFmoO.lI3.h64.66.bslQmbA,6C,buI 

6A Sr I) 
15 ub,9 AF 7., /1 1 1AT n.6F.*/0,71.7/.74. 15,7, tlt.7 ,7LI 

14 IS 11 711 
IA I. IC 

16 0S)I. 	 7E If 40 4 ,1 DAA ,tfi,02,$3,d4.86,117.bBAfl1,UCI 

oil I', 6 H7 
t ObolA 	 MEIt Itt ?)T,, 

4., 94 '5 4f 

'Pt ') *h, 
76 	 'IhlL It ,t.Wi DAT:' b,.VC,P9.* .9k *AI,.d4.AI,44,A7.A.' 

III A, A) A4 
At - ',ll 

Vt U/S Al AA A;: A0I II,44 	 H611jksib, f,A,A.'.AI).AL.IF ,391dI5l 
,,L if'. ~ 

d0 obll 1,t "0 1I d OA41 ,ti, tl.I1 I'9.IIAflI$, ILI)tiFCflChC2(' 

"A/ '1 'IC HI) 
.F (ml CI L 

dl II5A1) I I (I. CS C6 DA4 A H I ( . 4ICSICb or .Cc .',.A .C(.CC,C . 

Cl ( " (1 CA 

CC CI' 

NJ 

http:sib,f,A,A.'.AI).AL.IF
http:n.6F.*/0,71.7/.74


IP' ASbFHSLER VLRSICIN SCU LEVEL 1 HEADING INSTRUMENT ASSEMLY PROGRAM 1976 PAGE 4 

LINL ADODRLAUL 81 82 b3 84 ERROR SOURCE 

82 0598 CE CF 00 01 DATA HCECF.DODlD2,O3,03,04,D0,06.D 
1 
I 

02 03 D3 D4 

83 OSAJ 
A5 06 D7 
D8 09 09 DA DATA HIDu,09,09,DAOaDC.DD0DDEDF.EU­
08 DC GO Do 
DE OF EU 

U4 OSAE Ft El E2 E3 DATA H-EI.EI.E2,E3,E3,E4,ES,E6,E6E7.E8S 
E3 E4 ES E6 
Eb E7 E8 

U5 0539 n5fV9 FF FF FF FF COS DATA H.FF.FF.FF,FFFFFFFFFFfFFFI 
FF FF FF FF 

86 05C3 
FF FF 
FF FF FF Ff DATA HFFFFFFFFFFFEFE.FE.FE.FE

I 

FF FF PE FF 
FE FE 

87 05CO FE D FO D DATA HFEFD.FiFD.FD),1C.FCFC.FC FB 
FO FC FC FC 
FC Fr. 

u8 0607 F8 FR FB FA DATA H.FA.FB ,FFAFA.FAF9,F9.F9.FB8 
FA FA F9 F9 
F9 FA 

d9 USEC Fb F7 F7 F7 DATA HF$.F7,F,F7,F6.F6,FSFS.F4,F4' 
FI.F6 FS F5 
F4 FA 

90 USER F4 F3 F3 F? DATA H-,F4F3,F3,F2,F2,FIF1,FO.EFEFP 
F2 F1 FL Fn 
EF EF 

91 OSFS EE EF -0 ED DATA -IEEFEEDEOECE8,EREAEAE9,EUEBt 
EC EU EU EA 
EA E9 El EF 

92 0601 E? E6 E6 ES DATA HE7,E6.6,EE*E4,E3JE3,E?,EIEl 
E4 E3 E3 E? 
El El 

93 06011 EO DF lIE Or DATA m.EOFD)F,0D,D0,UC,08MA,0,D9. 
DO OC US DA 
09 09 

94 0615 08 07 06 U5 DATA H,08,07,Ob,0b,DA,03,03,D2.0I,0' 
D4 03 03 D? 
ll On 

9S 06fF CF CF (0 Cr DATA H.Cf.LEC.CC.Cti.CA.C9.CRC7C& 
CU CA C9 CA 
C7 CA 

96 06 9 CS C4 C3 C? DATA HC.C4,L3,C2.LI,COSF,EBD,CI 
Cl Co rF BE 

97 0633 
110 FIC 
R'd B H9 AM DATA HI8.,IA,119,08.6i7,66.tUS,$3,8?,0Il 
07 U& jS 83 
-2 8I 

9$ 063D DOAF AE Ap DATA MIBOiAFAEADoAUAAA9.AB.AIA6.A4I 
AB AA A AR 

V9 U64 
Al A' A4 
A3 A? Al 9F 
9E 9D qC 9A 

DATA nAJ.A2,AI,9F.9E,90D9C.96L.9qO,,91,95 H 
Li 

99 9. 7 95 



PIP ASSFMLER VERSI,)N SCU LEVLI I HEAPING ONSTIMENT ASSE41y PRUGRAM 1976 PAGE b 

LINE ADDR tAiL tiI S? 13 B4 I-RUH SOuRCE 

100 0654 94 93 92 go DATA H,94,93.9?,90,OFBE,8CBR.8A,88t 
0F BE 8C BA 
6A A,, 

101 Ob5E 87 HA $4 11 DATA HO8,t 6,0483,82,40,7F,IE.IC78. 

82 00 7F 7C 
7C 7B 

102 0668 7A 78 77 7S DATA HITA,78,17,75.74,73,71.70,6E,6D,6LI 

74 73 71 7o 
6L 60 6C 

103 0673 A6g 666 I)AT" H.6A.o9.b6f66,6b463,61.b0.bFSO.5LI 
64 63 61 60 
5r So bC 

104 067L 5A 59 57 5& DATA H,5AS9.57,56,54,53,.SI.S4F,40I 

54 53 51 So 

105 U6118 
4E 411 
46 4A '48 47 DATA H.4 

1 ,4A, IT,47,45,44,4?,'l.JF,3E.3L­
45 44 42 41 
IF 3F 3C 

106 0693 3B 39 38 3A OATs n.31A.9,Js,36,35,33,31,3n,2E,20* 
35 33 31 3n 
PE 20 

107 0690) 2B 2A 2 27 DATA $.d$Ai,2A7,25,44,22, I0*lO) 
25 2.4 22 2n 
IF lo C 

lOB 06A7 IC IA 19 17 DATA HICIA,19t1r,L5,14,12,I.0rF.OEd 
IS 14 12 II C 4 
OF OF 0 

109 O6,1 nC OA )9 07 UATA hOCOA09,O07.06,04,0),01.OlI 
26 O. 03 Of 
00 

110 068A 1)61A 7F 71 77 72 COS DATA $,7F,7u,,?,72,66Eh9,65.61.SC,8,B4I 
6E. 69 65 61 

Ill 06C9 504', 47 41 DArA Hl0,48*7,43,3F,3C,3$.J4,31,2D,2A) 
3F 
31 

JC 38 
21) 2A 

34 
0 

112 0600 27 21 20 ID DATA hi21,?3.,Ia,Dl8,I5,13,1l,0E,0t* 
111 I 15 13 
1I OF IiC 

113 0b)0 0 09 07 OA UAI1 HI0H,)9,01,06,04,03,0?,0.01.,00,00.00,00 

04 03 02 0l 
01 80 00 00 
00 

114 06E8 O 61 FF AS l 9F COSL DATA hFF,88.12,9L2FCS,63,08.b772.38.OC 
2F C5 h3 OA 
147 72 38 OC 

jib ObF4 O E3 F8 IF t)A( rhFO,L3.LU.FF,2U,OCCJ,32,89.9,15,LC 

28 6C C3 32 
H9 So 15 EC 

116 0700 FO F? 2 l? DATA HIEt$.2, ?,72,E2,t3,26,FD.F4.Io.52,d* 
12 71 26 IQ 
F4 I Se 11A F­



PIP ASSFm*ALFR 
 

I IIE AUO LAIHL 

117 070C 
 

11$ 0716 0716 
 

119 TIE AIE 
120 

121 
 
i22 
 
123 
124 
 
125 
 
126 
 

Ia 
 

129 0750 
 
IJO 0/s2 
 
131 0754 
 
112 0156 
 
1.3 0750 
 
134 07b9 
 

136 
 
137 0752 075B 
 
138 075 
 
139 0761 
 
140 0764 
 
141 U67 
 
1.2 076A 
 
143 U760 
 
144 
 
45



J47 070 Q7TO 
148 U712 
149 0775 
I5O 0776 
 
IbI 0770 
 
152 u77E 
 
1t,3 0741 
 
134 O184 
 
15S 0787 
 

VaSjoN 5rU LFVLt 
 

CS B2 I3 134 EROR 

43 FS CC Cr
FI 3E H3 4F 

13 CO 
01 0P 04 0 

lb 3, b4 00 
03 

76 21 
7$ fE 
77 0? 
 
04 FF 
 
F0 
74 FF 
 

IF 07 6O 
 
IF OR L6 
 
IF 0A 71 
 
IF 0A n9 
IF 0f /0 
3F Ott o7 
IF 07 $ 
 

IT o7 
O 04 /0 
 
EL 0, t,1 
 
I) Oil 14 
 
IE Cd ?11 
n 04 71 
 
EC M. 6F 
I ()I 14 
IF oR aft 
 

I HEADING INSTRJENT ASSEMLY PROGRAM 1976 PAGF 6



SOURCE 

I


DATA h,43,FS.CO,)CC.FI,3E,83,4F,13,nO



ICD OATA H,01.02.04,O8,6,32,64,000 

SINE DATA .03 

.......... *.fs...........I...tfffOp0tff~#ff....... c



006 11.7SO'


0..........................



INIALIZATIOHi OF THE INSTRIENT 
* PARAMETERS aFFecTED INCLUCEI 

(1) PHR.STATUS LOWER/UPPER



* (2) CONTENTS OF REGS. C&D ON CPU 80OAR 

tf INIIIALIZF 
 ....
.8...
 

PpSu IT INHIBIT INTEROUPTS
 

CPSL hIFF' CLEAR ALL


PPSL COm LOGICAL COMPARISONS


LODI.HO NSAH


WRTUI0 NO SAMPLE/HLO OR MIJX 
CPSL iFF- CLEAR ALL 

0 START MIN PROGRAM ....
ftb 


MAIN OSTAtlN SAMP SAMPLE ALL DATA CHANNELS


USTAUN ROIT CORRECT HX DATA


BSTAUN RoTy CORRECT HY DATA


USIA.UN VVEL CUMPUFE HORI?. VECTOR


BSTAUN W[CI4 CALC. HEADING 0WP 
BSTA.Um OuTA 0/P ROLL &PITCH
 

UCTA,UN MAIN LOOP FOREVER



....................................... fuIttilOout......



'Ic4 PpSi. LoN


LOA,10 hy2


CO'".40 mx2


UCTA.,hT CASY


UCTA,LT STIVY


LOOANO Hy2-1 LS ilTS


COHAR0 Ha'!


DIT.1 COSY


ICT,1ImN SINTY



IbHn 



VIRCIOM SCU LEVEI I HEAOUIN( INST1tiENT ASSEMLY PRUbRAM 197b PAGEPIP ASSFHLLFR 

LINE AOR LA-L Hl d2 13 64 rR170R SOURCE 

0,16 H.7.10,158 
 

160 - A UDNUUI IE TO SAIPLL IJDATAfROM ALL SENSOPS



l1 T P H
 
RLtGISlE. " CUNTaULS SAMPLL /iULO & MIJX 

8ilS O,1,& SELECT HX ltY.il, rHFT 

. ,
1b4 
. DATA IS STORCI) IN UOHLE PRELISION FORi'
1b 
 

164 0 BE6b1NI.U AT 'OATA" ITH IIX(IIS) FOLLOEi) RY


XnXILB).HY.H7.PITCH.4OLL.
165 

(1) CONVfRIS A/D DATA TO SIGN 4AGNITIIFI1b 
 
(2) CHAN(Eq SIGN Ur HY 4 L(ORIENTATIOI)10 
 

lo (3) OfJ"RLCTS EOR OFISET ERR0R


1o9 
 f0 AIT wITH ,ORRFCIEU DATA IN TAdL. '0AT4" 

.........

...............................
170 
 
... lLbIli SUBROUIINt
 ....



III 
 
0/d0 07.10 IAMP 
 L0OI .R1 -1 DATA INDEA
172 ,35 FE 


173 071? 06 04 LOU 1,N12 S LOOP COUNTEq



114 07U4 01 01 
 LOOI.R3 I IST SAMPLE



175 0706 Is nq CPSL CwL


13 SELECT I,. $AMPI E DATA



117 0789 61 80 10IR1.143 11m80l READY TO HOLD


07H8 07106 1 NLXT w.Tt1(6 ? 

178 07/ 1 wRrU.R3 HOLD DATA
F3

LODI,kO HIM8



IdO 07BE "o WNTL.H0 RESET A/



181 071,F ?0 EoNZ Ro



182 OTtO Ho Wlc.fO SIANT A/fl



183 O7CI OTcl 
 70 TEST REDOIIRO READ LS



184 O7C? F4 II T41,R0 ',oI I'



119 OIIC ('4 1tO 

J 

*CTi, TSt BRANCH PACK IF FRO=ll65 07C4 IA 7D 

7C6 24 FF 
 EORI,R0 H-'F'



87 07,28 44 F1 ANIRO UPPN STRIP OFF 4 LS RITS



188 OCA LO) 24 SI STRi',RO IAiTIIPI,+ SIORE LS 1/3



Iu6 


189 UI7( 30 kEoCIO READ HS 2/3



190 U/CF IS FF EOUI,'ii ..Ff.



191 071O CO p4 4F STRNO UA 
T 
A-I.PI. STORE MSO



192 
 U703 &I 0 ADOI.r3 I POINT TO NEXT DATA


193 BI)S 47 (F ANOIR3 Low.4 POINT TO CHAN, ONLY


194 071)7 FA SF HRHN.112 NEXT TEST LOOP COU"ITEN



CUNVERT 1O SIGN tiAGNITIiOE 
191 071) 77 i's PPSL r E14AHLF CARY


193 o/I) 06 FF LDDIR2 -1 INOEX


199 ONOD 07 0? 
 

196 

LOD)I, 3 7 LOOP COUNTER!


200 0OF nfoF iE 2, 50 CONT LOOAI4O O4TAtN2, GET MSU OF DATA



UCTRiN H$IU ON. IF bl(,N1
201 07E2.A 
 l1 

202 U71-4 CI SIl NI



203 0/E5 2 E014L Ho CLEAR No



4U4 UI7L6 17 11 PPSL C SILT UP IOd SIlT.


eus OE8 
 AE ?4 so SUtAf(O UjTA,2. SUB. LS BITS



2u6 DTED CE 6' 5A STRA,RO U.THP2 STORE NJW DATA


2U0 OTEE 20 
 EOZ Nn 

20 UTLf Al SUtB W, SUB. fis HITS



?0o 071F0 140 IAs iORI .1.138 SET SI6N=l INFG)



cm 



PIP ASFM4,LfP VERPjON &CU iEVel I HEADING INSTAJMFNT ASSEMLY PROGRAM 1976 PACF b 

L ENE ADOR LAOL HI B? 83 84 ERiR SOURCE 

210 07F2 CE 64 59 STRA.RO OATO-IR2 STORE MS BITS


211 OF5 I Oil BCTkUN FINE


212 077 07r7 44 71 PSTO ANUIsRO He7F* SIGN all - 0


2M3 11F7 CE 64 hA STRAHO OATM,H2 STORE NEW DATA
 

214 7FC OfE4 50 LODA,10 DATA,12,. GET LS DATA


21S 07FF CC 64 SA STRA,&O OATNR2 STORE AS NEW OATA


216 U802 O8n2 ED 5N FINE BDRR,R3 CONY


217 CHANGEBSIGN OF HY &HZ (SENSOR ORIENTATION)


218 U804 (C 04 5C LQDAN0 OATN'2 ChANGE SIGN OF Hy & HZ


219 0807 00 04 SE LOUAIR OAT*4


220 U80A 24 Bo LORIIO H,8 

I



241 caOC 2$ an E0R,R H,80


222 COE CC 04 5C STRFAO UAT4-?


223 0811 CD 04 SE STRANi D4T-44 
224 LONkRCI FO OFFSET LRROR IN HA,H, & HZ CHANNELS 
225 0814 l DO LDOI,N3 0 DO HX EST 
226 U816 3E AH 2A BSTA,UN OFSr 
2-7 (819 01 0? LUOIR3 2 HY 
2211 0810 3F Ud ?A 8STA,UN OFST 
229 OUIE Of 04 LODI.N3 4 HZ 
2.10 (12o IF lis A SSTA.UN OF$T


2,1 (2523 CO NOP


232 W4?' 01 07 LUOI,P3 7


232 CORRECT FOP ORTHOGONALITY ERROR IN HA AXIS


234 0a6 3F OF 08 OSTAUN ORTH


235 0829 17 RErL,UN


2J6 ............................





PIP A4SFMALFR VtgIIllIN SCU LEVLI I IIFAUING IlNSfR lPINT ASSLMLY PRUG1AM 1976 lACE 

tINL AIL)I I AtL II d? H3 H4 I-[kmol SOUPCE 

240 184A 081A OF 64 %A DIST LUI.r 0AMFJ MS BYTE OF i6TA 
?41 QB?)f) (,I STRZ .1 
?42 
243 

6d?E, 
6)30 

44 
4S 

IF 
11) 

AOUI,1t 
ANU{.l 

"ip I* 
hallBO 

STRIP SIC,'
SA­ 4IGN 

144 U81? CC 114 77 SrNANo aSLT 
24,5 
?4h6 
241 
'4L1 

0835 
838 
0 11 
lUbF 

(70 3z. IF 
IIF 6. ,HU 
CC IJ4 III 
OF 64 It 

5144,1 
LUUAI. 
STR4.0 
L0,1R0 

SALS 
0AT11-1 Q3 
RSLT )}
OSET .'3 

Lb 

M 

IJYIE 

HYTL 

0-

OF 

dATA 

-IEFSET 
249 U84 CL IIh, Ab STRA0. TEMP 
2SO 0644 IF 64 If L)UA.iO USEFtI.J3 
2h U47 LL 1J4 66 SIRAR,0 DMp.1 
dtI2 
253 

0844 
0,'40 

IF 
CL 

i,'.J4 
111 10 

LOOA..40 
SI146.0 

SnST 
STE4 

.,33 

264S 
255 

UH60 
052 

/3?I 
I/ 1PPSL 

CPSL tfloS 
kS BANK=I 

?,b6 

257 
0854 
08% 

IF 
75 

M,9 
I 

6674,TU 
CPSL 

SAD) 
k9 BANK=O 

45d 08,Iq 11C 04l 17 LO163,0 RSLT C 
? '9 
2b0 
P61 

0b.C 
0bIF 
0836? 

IF II. 
01. 04 
(F b4 

,A 
111 
ID 

5)044,QO 
LOUA.Ido 
STRApR 

0418.1') 
RLTSI 
UATM.I,P3 

2b2 03665 37 I4LTC3IJN 

264 
26b 
/6 

IlIFIRy 6JLT. F0tt A TWO-briE INTEGEP,
MULl. 8y A I6I E BYTE INTLULN 
HULJIPLIL4 IS IN OP61 

07 
d20t3 

269 

MMOJLI IPLTCAN) IS IN 31P2.OP1t2.I 
RF.SLLT ,ILL [IF IN dqLVkSLT.I 
1 6YIFS 4AF OISCARDED ) "d 

271 .... d fGfN SIJt-101II NI .... 

2/2 0U66 (0666 17 A 5,-py PPSL wr SET MOOk 
2f3 
d/4 
215 
476 
,271 
218 

O8.h8 
0869 
o8C 

086F 
08(t2 
0814 (1674 

du 
CC tl it 
CC 04 Id 
(C 04 19 
I1 0" 
[LL 04, IA LUCO 

L-IR/Ln 
SrlA.,O 
STRA10 

STA.NO 
LUUIR3 
LoOA.N2 

RSLT 
kqLI-I 

OPR I 
8 
UPRI-

CLEAR RESULT 
CLEAN NRSuLr.j 

LUAU COUNT 
ULT MULTIPLIFL 

219 
?60 
2,11 
do? 
Po3 
d64 

O77 

O78 
06/9 
06/A 
687C 

of,7 

Il4 I 

? 

?o 
00 
Fb 
0 

,Io 
I? 

LOO Nwh,42 
T114 MOTATE, t-IULTIPLIPIH 

FOHt Bit 
M tITL 
t"iM1i34.l. LIL', 

LUCI LOUt1 1. 

RUT. .16HT tITH CARRY 
BY I dIt TO OFT L5B INTO 

CLEAR 40 
GL.Y C-ARHY INJTO I SN 
OIANLI IF C=O 
INDEX 

CAORY 

26S 

,d. 
Z.7 

68 

0111P 

0ttil 
06:14 
0b17 

IIIL 1366. 
It) 4 

(0 1-
F9 7, 

111 
/hA 
71 

LUC2 LOIUA.,0 
AIR)DA,30 
9TRA.O 
036140"41 

HCLII )1 
UpR?-I .4 
kqLf-1,Rl 
LItL? 

AUD MULTILICANO TO PP0OUCT 

FINIS-, [H) ,f... 

Lo 
CO 



VrLP AqbI't4-L-R Vt-HSI IN SCU Li V1.1 I rEatI11G INSTRI'4eN1 oSqLMLY PPOGAM 1476 ('AGE lo 

L I BL Aj)IN I A IL I0 1 9e 03 d1tM-U sOIJUCE 

02009 
291 L88H 
242 nasE 
293 ObdF 
294 U892 
25 U894 
296 
291 1b386 

1319 
08,U 

AS re 

n0 63 
so 
CO 61 
h9 77 
F. bi 

17 

79 

79 

LOC4 LOOl,,N -? OUT. THE PRODUCT 

LOCS LOOARO RSLT-2S5 
6 
2IRi 

PPR,130 
STRlA.HO RLT-2Sh+2,,P 
UIRR.R. LACS 
013H3R3 LOGO FINISH THE LOOP 

,............................... 

HETC.UN 

?99 
300 
301 

I 
A SU13NOUTIqE To .JUTPUI PITCH . 0-ULL OM4A 
CALLE 

-
BY MAIN PROG. , FETCHES CONVERTED I)ATA 

0 

FOOM TABLE 10ATM1 THEN O/PUS OCO ANGLE SIGN­

303 01,97 CI)7 

101I 0694 
30$ (6J 
JOB 0339U 
a0? OO9F 
30d1 {dA2 
311Y 0044 
310) 4bAh 

311 00A8 
312 01344 f3944 
313 01AB 
M14 0BAC 
315 OBAF OASF116 ABU? 
.311 UJO 4 

OC O'. ho 

C3 
44 "A 
IA I. 
?C d34 62 
IA n(, 
04 (3? 
04 In 

16 1,­
20 
04 11 
Id If 
?C 04 4214 ll 
(.4 C(1 

OUTA 

41,11l 

4TH 

LOOARO 

sit" 
AND1,10 
KCIRIN 
EONAOO 
BCrRN 
LODIIO 
WNkft,10 
aCINUN 
EOHL 
WRTL,RO 
OCIH OIN 
EORANObO rl*P 
LOUI ,PG 

DAT4 6 

MI 
1,.3t{ 
NTH 
03.41h3 
NHI 

7I 
SRIT 
AGIL 
nr 

SAIT 
AOL 
DAFh+dNft 
3 

FLTCH THETA IS8) 

SAVE SIGN 
R. ON NEG THFTA 

CUMPARE SIGNS 

BOl'H POSITIVE 

PHI NEG. C 

318 0106 
319 OBtOR 
320 BUDA 
3d! 0811C 
J2 06uFsJd3 08el 

(R A1 

nA,, 

u4 In 
I dl 0. 
04 06 
04 to 
IF OH CCN5 A14 

4NPH 

AUL 

WAlrL.O 
UCI, UN 
LOt I ,,00 
WP1TE6NO 
$STAtNWQTEol 

Srilr 
AGL 
a 
SPIT 
LOOI.TA 

PITCH NEG.& POLL 

01R N4CUATIV 
FURO ANGLL tFB/U)OUTPUT PITCI 

PO. 

324 
345 
346 
3e7 

0hCI 
011C6 
{HC9 
BOCA 

(iF 
IF 
US 
It 

tj" 62 
ilk CC 

14 

LOU,13 
BST' ,IJf 

WRTLkI 
HETL,tIN 

U4TM-0 
LOD 

P.1 

FLTCH NULL 
ANGLE(WLO) 

OUIPUT PHI 0 

C, 

Ve),3jJ0 383CCUOCE CrL1.1 F(rF OJ4 IC 
LOD ANUI iR3SIRA#,kj 

HUTF'OPR, ,) MULTIPLILAtNU 

3lt 
3je 
331 
J.J4 
3J4 
336 
37 
3JH 
.3g 

uut)l 
08112 
ObuE 
0131)/ 
(PUA 
06tl' 
ddFO 
O8LE 
0ats 

2a 
CC 034 7N} 
A, S % 
CC I, /A 
IF .. 1.6 
A'C 011, ?a 
IF 0C h4 

2b F1 
17 

LIHL 
STRA,RO 
LOW3 lG10 
ShTi4,i0 
(351A*tJN 
LODA.mI! 
B3SAUN 
LORN1HI 
IFTCLN 

pi, 
cPp 
H.,5 
oi'NI I 
SkIPY 
ARLl I 
8/04A 
rm F' 

CLEAN Lb dYrF 
FACIOaC.3516)1 
MUIILIE,4 
BIN 

A R Y 
ANSLF 

ANGLE 
ANGL.E (b LD 

L. 




HIP ASSFMtILfU VfPSiCIN ScU LiVLI I HfAUINO ItSTPI'IFNT ASSFMLY PQUCRA* 1976 PAGE IL 

LIil ADOS LA-IL I11ti? 13 H4 FRHOI4 qOIRCE 

34d .................................. 

34 1 
3q44 

S.M. ROTA it) CORRECT KX'DATA USItJ 
HArXI.*CI)SS,ICNi .SIN(PITCH) 

ALGCOITNN 
I'YHISJN( 

44 

345 

34~b . LINTEN iIrh 

4U1 LI fIZM*COS(HULL) I 
4 

AW 3A41" IN mTL UATM 
341 .LAII WITH O)IFILD HX IN ''lAIX" 
34A CALLS S.P. rirHI 
349 CALLS S.-o l'SAOD" & "SPY" TO DO 
354u SIbNbU AG IIIUE A0l0/5IIIT ANOL 4ULTIPLy * 

3S? tbL6 0l.16 1? go1, 1TX PpOS wr(C. AlITH wi r CAIwkY. C=I 
151 UObE OC 04 1, LOUAPO 4At,4.4 THECTA (PITCH) 

354 BOSEb rl STNZ Il 
355 
3s, 

0EC 
WIL-.D 

" 
4 /-

STRL 
ANQIpjI 

X1) 
H7fl STRIP OFF Slo 

G n 

3t7 OdLF " 1 4' A'OI.3 HsdO' SAVE SIGN 
3!11 bFul if 14 .7 5rRA .. 3 SINo StGti TEHETA 
359 OBFA It 6' 00 LOUA.,O SINRI SIN(rHErA) 

160 OUhF? (C 04 hil STRAN u SINI 7 
Ib1 OBFA ou 6S H19 LOU.GRD COS,R CUS(TrtTA) 
3b2 dbF) rL t)4 tS SIfR,*4O Cost 
363 0900 (C (44 ?A STkl, WO OpIk -I MULTIPLI.ER 
36'. (1903 11C Ill. 54 Liii" .'o 0 A'PA M14.1 
i65 09IJ6 (I SIR/ kI 
366 0907 44 it ANI4)IjHO H,7F1 STRIP OFF SI ,, 
3b/ 0909 .5 al ANlIJI,4 h, 01 SnvF SIGN 
Cod 
I"9 
J/ 

09dR 
09 0E 
0011 

(c 4 Id 
CJ 1.,A 6 
iC 0,. '43 

SIRA 
SIRARI 
LIIlA.IJO 

Opp,
s7G^(,
0Al4l1 

WULTIPLICAN 

VI1 
J 

1 

113 

03914 
U Vt? 
091A 

CC 014 IC 
if II1 66 
bL 04 17 

S1144.00 
BS'A.UN 
LIOUA .R0 

GRpI) 
SuPy 
IHSLI 

FORM HX- COS 
MUVL PRODUCC 

ITHETA) 

314 U',10 CC 0 4 III STRA,00 CAL 

3/b (0920 AC 04 IM Lit)-h.10 RSLTIl 
i. 09423 LC 114 IC ST1ll1 ,)0 O*UF 
i7 0926 jF 0f 40 BSTY-,u f/Rk 

371 09dq IC 0. ,a3 LOOu..0 SIOd.I SIN (THT4) 
39 094C (C o4 (4 SIRAR0 OPRII MULTIPLIER 
1j0 092F If O. 66 STA ,I'J S PY HZI11(1THETA, 

3d1 
302 

U93? 
09J5 

I 
CC 

1)4 
04 

67 
/. 

LOI­ ,PO 
S114 ."o 

SIN-' 
S4.5. 

SIUN OF THETA 
Fok U,E BY S6}D 

343 093d3 1."i0 , A LILUA.,lI SIGA 
Jd4 u911 CL) 04 70 s5r1,ql STE', 
3b5 09 I1 C lo, 'Al LIO)Ak0 CiiiF 
3136 0941 oU (1, PC LOiA ,II 01U," 
3"1 11944 (L (,. 'St S7N0.,0 1FHP 
3131 U947 Cl) 0,4 b, SIR' .Q1 Er.P'l 
339 09'.A /5 r,2 CPS( CON FLAG A0,) 
39U 094C OF 11i9 4d HST %,-,n, 5AO) FUR 4 -'(OX 
391 
Jil? 
391 

094f 
0952 
U95 

,IC 0 18 
(C n4 t0 
IC 04. 77 

LOUA,0 
SI1

4
1.pIJ 

LOUA,10 

RSLII 
NIA-I 
65Lr 

MUVE NEW rIX 

0 



01P A454'Il LFR VFkISI'N SeU LVLI I 1hEA0I)ING I,STR,$I;NT ASlMLY PROGRAM 1976 PAIr 12 

LINL. AUR [I A4L I llQ) (I III F I'JRU9 %ORCE 

3V4 0958 CC n4 IF STkA,O DA1X 
395 0v l 17 RETC.UN 
396 
.39 in 
j9d 
3V9 

......................... 

SUIsflOUTIN , TO SOUARF TWO 2 BYTE VALUES . ENTLR WITH VALUF I;,PiIHS8) & R2(LSBI 
. EXIT qIrH 2 MS IN WSLT & RSLT.I 

401 
4U? U9SC o9,C 77 on 

... *. 
bOU 

EGIN 
PPSL W" 

.. 

'.UI
404 
4b 

09SE 
09SF 
0
9 
1R 

?o
LC 04 
CC 0A 

77 
7. 

LoORZ
STHM,,dO 
STRARO 

R
ISLT 
RSLT*I 

CLEAR TEIIP STORAGE 

406 
Ad? 
40$ 
409 
410 

0965 
09? 
0969 

U96C 
096F 09bF 

0? 
45 
CU 

CE 
S 

10 
7F 
04 
04 

111 

IC 
BUTA 

LtOI .k3 
ANDI,kI 
STRA.RI 

STRA R2 
0RR11 

16 
H'7F' 
UPR? 

UPR2*'l 

COUNTER 

ROTATE MULTIPLIER 

o 

411 U970 b2 P011.02 
412 0971 
413 0972 

414 0973 
415 0975 

20 
Do 

F8 
O-

I? 
04, 111 

LORZ 
ORL.f0 
80A,O 
LODA.RO 

Rn 

MOAD 
RSLT1 

GLT LS dlI 
NO AOL) IF 

INTO P0 
C*o 

416 
41t 

0918 
0971 

13C (14 IC 
CC o4 7 

AOOA ,0 
SIRA,kO 

OpRA2I 
RSLrII 

418 091E 
4P) 0931 
440 0984 

OC 04 
RC (14 
IF 09 

1? 
78 

LUUAMO 
ADDAAO 
8A.lT.,UN 

HsLE 
UPR.? 
qoA[). I. 

421 
422 

0961 
090A 

0907 OL 
50 

04 II NO 
A , 

LOOA,,, 
HNRIJ 

RSLI 

423424 
45 

'.d6 
42' 

0J911. o' F 
09,1 

0)992 
U9A' 

CC 14OC ) 
s50 

CL I, 
40 SM 

11It 

it, 

SrIRA.IOLOUA*.0 
RINtiM 

SlHA.tO 
BOR0,3 

HSLTUSLT*I 

dsL1I. 
.n)A 

RUTAl- LS 1/2 HEStJI t 

CONT. MuLr. IF OQF. 

C 

4,/ gV941 17 RFTL.UN END 0 SUROUTI.JE 



PIP ASFS tKiLFR 0N ,rCU LI'VhI h Ill, 1SfR1.01JEI 1476 IJVFkNI hEAU slS",EILY PROGRAM $AGE 

LIIL AUOF, LII%4L HI I i3 1,4 FURI4OR ,0,UCE 

442 1S.. SsDr TO PFR'ORM DOUOLL PRECISION4.3 SIum L6 i l'6r1iRl A[1)/Sko!I


4,4 AU)LF.0L ($U .T.AHF.ltDi IN TEMP. fIMP.I



43'1 AUUEND (Ilwi'Ninl) IN RSLT, MSLT.I


436 * STM = SIG" i TI-R IN TEMP SRFS = SIC


437 CO('I I 1S FLAG (0-4-lrl I= SU1)


"38B SIGN U TOT L LIFT IN IPSLr. RSLI I 

44LI OJY')8 i)'' 7/ On SADl) PPSL 4C'C AfITH WIT,, CARRY; SFT CARPY 
4-.l O,9A (,7o/ LOU1 .,3 e I NDEX


442 099C 4t, 0? TPSL Cnm TEST FLAG


443 099E. ILC0)6 Ili HILTA ,if SSWr, HR. IF SUOT.


444 S1A141 ACT) ''E'E


445 (0AI if I'l lI) L T0A.t3 S rFm SIGN IF Tt-P


44h 0944 'I LOWt I EX. Oil llfli SI0GN PESULY


441 09A5 ?C 114IL F.EOROI .4

44A) 09A8 I. fill CA UCTAiN UI FR 8. It SlUNt T)IFR


4,.9 09A8 75 I1 CPSL C


450 09AO C (4 h6 LOOT. .to TFPI. i FORM SUi 

45l 09d0 -L 1'4 18 A)OA.'O NSLT-I


4b2 0913 CC 1I4 711 SIA.10 ISLT*I


453 49.46 AL R4q 65 LLUIUh0 Imo


4t,4 09R9 HC n14 77 Afl)UlidO kqLF


AS 0914C 9C 0q F9 ULF',Z HTR,


456 0991F 114 . III LODA,RI NqLT.I GET LS 'ITS


457? 090? fJC A4O P9 IJLiA.4 51144 

45H U9C5 /?0 1ONZ n


459 09C6 CL (it, 77 SIRA.MO WSLT /LRO 'SLY = PITS


460 09C9 it kTLtIJN


4O1 U9CA 'iyCA 4)h (ll )IFR LOU I,2 d C1R/1N4 X


462 09CC o3 LOOZ k


4.3 09CC0 IE"A 12 HLIdIC L-. IWOr II- ,iX 
 . 

464 0t)0 -I"I0 fli,6. 114 SUPI 06)4,00 TFMP-I ,P/ FORM ELMP - kRLr


465 0013 AL lo4 /6 SbdAJ,.Qo .SLT-I,"2


.b6 09106 c 64 /b S(IA.s0 kcLr-I,142


40( 09)9 F A /4 I3Ob1),R2 ShPI


463 001i 'Sb 01 TPSL L


4o9 091)0 IL 0IA 1- ImON 171"11 HR. I" C = I


410 91 0 ii4 0 1/ 01 TNEG PPSL C


1.1I U91 no 0, LUUI .P2 e IIDLA/IlIR


'.72 09L4 091-4 -ID SUP? Euk/ 1") FORM 21S LOMPI EMENT


4/J Il9fs AE W. Ib SOiUA,1.0 SLT-I.12 ( *



4?4 0"ER LE tv, 76 STRAt.0 MSLFT-1.02


4?5 &It IA 77 BU0R. ,02 S1P4


41b 09F(1 ri sIkt HI


4f? U9LL 'C 09 IL bLF'.,/ i"ktsh


4/8 o0/ I o 0'. /8 LOQAtnI 45;6 r I 
479 09F4 9C Olt FE ICF, N141


4141 .- 7 Id 0IOCT 
 , UIN N'IW
 
.iol 091 9 1i1F 9oJ TItN 1014L MY



'.2 091- A '"FA CC i ful iiy khLFSriR.iU 

'I



N-,
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PIP AbFMLhiR QFVISIN SrU LIVEI I HEADI1G INSTRI'MI-NT 4S',EHLv PROUGUA$ 1q76 PAGF 

LINL AUD)I I AIL ' 61 62 43 "4 -RU 'OURCE 

4U3 09FO It RETLUN



41U4 09FE ,t)FE 64 to NUES IORI,RO H.30,



4d5s 0400 
 It IS GCV,n.UN NOW 


4b6 STAIRT MENE IF TE *M IN ITElP" IS NEATIuE 

A042 OE b4 It XNEG LODARO LrSL-I.R2 FORM DIFFERENCE 
488 OAOS A. 64 64 SUOARO IEMP-LR2 
4819 A08 CE s,, 76 

481 3A02 
 

STRARO RSLT-I,R2


490 0A0 FA 74 IORIR.2 XNEG LOOP ONCE



491 0A0( iS (11 TPSL C


1V?9 OA)F 9C 09 FU JCFAUN ENEG


493 t IAI? 44 
 7P TZER ANUIN,O Hmli'. RSULT IS PO5


494 OA14 CC I4 77 STRA,140O RSL


495 OA17 it REICuw



tAUM* *A*II~gs...................
496 
4V? A SfAOT HEE IF quOrRACTION IS REQUIRED 


498 I I.E. (ASLT.HRSLI - (r'MP. TEPI)



499 UPI8 1A41 OC 04 It SSUB LOA,1O SPES SIGN OF RESULT



SO0 UAL C3 ST 
0 

RI

501 UAIC 06 op? LOUI P2 P

SeA GAE 2C )4 11) 0)A.I(D STEm 
5UJ UA21 4E (A It RCFA,N SuOW B. IF SIGNS SAME 

5u4 UA4 IS II CIbL C 

bU5 UA26 0A b PE 64 t64 SLUP LOUAI<O 1[M9-LR2


,Ub OA29 AE 61. /6 A~l),,O HqLT-I.2



'0? OA2C CE bI, 70 STI)APO RLI-I,R2



S08 0A4F FA 7 bDvh.R StLj. 

509 UA13 61 11MM w



,10 UAJ2 CC O 17 STRA ,IO 'SLf


511 U35 17 RETC,UN



http:LrSL-I.R2
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PIP AqFMILtP Vc ,IION SCU LLVLI I HEAUIIG IKSIRIM"FNT ASSL"Ly PROGRAM 1916 IAGE lb 

LINE. AIJOR LA'SL 11 62 33 6L4 ERROR SOIJCE 

5i3 STA-T ,ERF IF OIH TFRIS SAME SUM 
514 
SIb 

OA34 
'ATH I 

JIA16 
idI 

1i 
1
1, 

l 
PL 76 

',IINR 
ILUP 

PPSL 

LOURO 

C 

tLI-l.k2 
C=I 

RSLT = TEMP - RSLT 
bib 0A31 11. 61 4, SIJAIA 0 Ipm.-I.42 
b1 UAJE CE " /b SIrHAi,0 RLT-1i02 
Si8 OA41, PA 1, U ,4, ,. 2 AI Up 

b19 
540 
541 
522 

A41 
OA45 
UA41i 
4A 

IS II 
IL 04 9F 
ob (I, 
7 .l 

TPSL 
CTA.(JN 

L.OIk2 
PPSL 

C 
FINS 

? 
C 

TEST CARRY 

STAId 2-S COMPL 

d 
0 

S23 OA4C IAC eli CLUP EOkA NO LOOP TU Ol 
544 
525 

04,0 
0A50 

AL. 64 
CE o, 

7h 
76 

Sojulgo 
SII1APd 

IA'l-I,4? 
RgLf-I.d2 

21S CoIAPL. 

507 (145 -lb I, IL L)Ohn, 5-, TEST Sltm I-d 
128 OASl It, REIC.N PIN [F JEG. 
529 uA59 64 41 lOI ,dO h, Ii)= 
b3n 0A4R CL 4" 17 SIRAIR0 RsLT 
SJ 
5-12
5J2 

OthE 
OAbF
0A60 

nA-,F 
It 
( I 
'C "A 6A 

P INS 
RPTL,tIN
SIMI 
*CIA,/ 

PIt 
PAN 

524 0A61 0d O, /6 IOVA,MI tSL'PI 
bib 
bi6 

OA66 
OA169 

'. 
it 

('A A bCF.Z 
ULTCtUN 

PAN 

,J7 
53G9
5 j ) 

OA6A 
A6EI 

UAht 

IAAA P, 
LL 
17 

1,4
'. 

1 
FAN 104Z 

STRL 
PI'SL 

O 
HI 
14SLC 
C'I 

SIGN STEM 

,'lL I O0it kE TL . LN 

5 1 . . . 



PIP A$M ILER VI sIN SCU I rVEI I MEADING INS IRuMFNT AS SEMLY PROGRAM t)76 OAGF 16 

LI0 A O IL b1 h?Ii1 L14 b4'uR) SOURCE 

b44 S.H. RITY To Ao(JUS1 MY DATA USING ALGOOITNM 
b45 HY-HYC(OS (NOLL) - IN -SIN(ROLLI


L46 USES SIGN ANtl MAGNITUOE DATA FROM TAHLF lAT


5,7 STORES MEw 0ATA INTO QDAY, OAfl.Y


5648 CALLS S.R.S. "SA)0" & "ISHPY" TO PERFOR- SIGNED'



549 MAGNITUOE ARITMhETIC


55q .............................. gi*.........



551 OA7I 11./ I 71 011 kOIY PPSL WC*C


55 O43 0IC 04 42 LODA, O UATMH* GET ROLL ANGLF Pill


553 0A76 Cl ST,! At



b54 0A77 45 if ANUI.RI M.71F STRIP OFF SIGN


555 0A79 2C 04 SE EORAPRO OATM.4 0tTERMIlE SIGN oF pROD.


550, OAlC 44 i"A001I.11 H.801


557 GA/E IAIE CL 0. /0 ArIEG STRAP4O STEM


S%o IAm, 00 4 COS tPHi)no- LOUAJARO t5.sl1 
559 UAtI4 CC f,. /b SIRAKO COSH 
5gtO UAt87 oD 6" 10 LOOALt0 SJN,RI SIN PI)Pl 

561 0A0A (C 04 IA STRa,W OPRII MTLIIPLIER a 
9,Z UAdD 0C 04 5E LOUAgNO 0411+4 G6T IZ

Sti UA90 44 71r A(co ,40t h.7F' STRIP SIGN


504 UA92 CC a'. I1, STRAgHO 0pRn MLIPLICANLO

bo5 3A95 t(i 0,4 sF LOOX,AO 04A0114


566 OA9 CL 04 IC STRA,RO COa-RI


So? 0A49 IF 6,A 66 USYA.UN SmPt FORM Z21SIN(PHI)



6tH DA9E 0C 0, 17 LOIJAsRO I
1
SLT HOVE PRODiCr



,69 OAAI CC 0'. 6b SINAsHo YFMP


,/0 OAA4 AC 04 /0 LODA,NO PSIhI


571 0A4I CC 04 &4t 51A,k IFIIP.I


hl? OLGIN FORMING PNI) TERM


S}73 0AAA AfC At, qC LOUA,+ D UbI ',P G.T MY 'IS Hllr



514 OAA) CI SORZ At 
'S/S OAAE 4. Zr ADIpI H.0r. STRIP SIGN6­


516 UrHO Co 0' It STIOirl UPR? MULIIPLICANU


5/7 OA*J 44' NI ANDI.,O Hl8I SAVE SIGN


bij OAS cC 014 If SrNAHO 501s SIGN (F RPSUL0


519 GARR IC u11 it LOcUAH0 DAT.3 " LS Uli7 

UO dAtR cC ON 1C STRA40 0PN2I le 

Stl OAtiE tiC G'. (5. LULA,H0 CnSq 
$62 uACI rC 014 IA Sr l .. 1 Ol'lpI MULTIPLIes 
5c3 0AL4 3F n,, .6 dS..,UN SIp4


5164 U 1(IW FORM NFW hy


5bS 0AC'? It ? '1JSL CON


1b6 OACO) IF A) I IST'lUkN SAOtti


Sc7 UACC tiC is If LOUN0 IIqLI UVE NOIATEi 14


Sri" bAcl CC it. I S rI/s 4O DATY


59 040A? 1C 1)'.1t LUDA,N0 RtqLf-I


390 UAt CC I S r. 1,"I iAOATYI


5/I 04A0B f/EL,IJNl



Ln 

http:i"A001I.11


|
PIP 	 A4SVMALL P V, <41,, ,SCU IL.VLI I VILEAUINb iV.sr I'4FN(rASE 4Lt IPRUbIA m 1,7b PAGE 

* M.IVEC 10 Cfliol'UIF HNORI2. FLVL) VECjoR 

tdATII)AIX*II o. fO.*1Y ,ATY *lI)* Lr sS H.I, y~i~/Ef .G' *flA2 $011AIX Af1).TY,1Witb 	 0 

L UL . i TI i , rl d |
9 70 
 

5960.



A 'iVEC P1,5.SL599 06(39 Ogn9 it (I 
6LTEh tuoIAT&0 Mx 

6Ao OU Of. IFV 
	 LU" , A
 

L()UAH2 U T1A-I 

600 


01 	 oArE (It 0'. 'll 
'S(I.UN 'ltl SO1jA ­

6U2 *SLI MOVE ELSULTQALI IF (') SL 
LOUO 1g0h1j IJAE4 0L 1.4 17 
ST4A,d0 HK2 

604 OAE? CC .' 61 
hUb OALA oC (* tOa 	 LI)UA ,.0 NOLl I 

CC 4..F 	 SyRAI4O Hx2.16116 CALLD 
6141Y GLT It IBCIT6Trl)LO1A .I3h)7 0AF 110 o -.l 

,oh UAF3 tl. 1)4 A2 L(I3)).142 ID V- I

1 SA0 SUUAH MYSTA.UN
'J9 JA'6 IF -,ISC 
 

fib 	 LOIfJI(,2 ? 
6la OAF9 6l6
 

LUPF LOLA ,ItO R4LI-l,Pd MUVL HY2
OAF6 OA OE4 76bil I 

SIAI0 ,Y2-1.w?
612 UAFE CE 63 bf 

V1(1AIle L,Pr
613 0001 FL (14 I0 

CPSL C
614 OdDO 7. I11 

Lut I.we2b1S U.06 4r U? 	 -
LUPH LOUAA,0 HX2-!.1? sum tnl."'?

616 060$ 0608 OL t .l) 
A)636,140 RSLT'-dAil obua 111, 16 	 ' 
bqA KitO 614*IR?

61h 0E ('E 6F , 
HLL ,uN0b3(620 I PAI 

SR. 70 CO4PUL YWI = ANGLE FROM HE IIR(7. A 
b2 
 

',ECItH COMP. HH 
h23 
 

F ~) t X d H ( /
 
)
624 	 WIIEN 1.4414)VW IAO(,1(Y) I0 rtklYA~l -" bd 
 

*VIIENF) 0 
0~4 	 "iA VlIvtS .4 (F'o l 

)SL T Iu07 iS:,be/I 

LSY LOU (,41 a INDl)EX
JO 0(414 0014 lIn u? 0 


,' ) 
 IUPE LOI.)A.I Hx$2-l.141 LOA(J )Pl.j"n0RI
h3l ub6 f')I 1.) 	 T M
 

fl4,J LIA4I-II I

tjd 0019 CL' n/' /': 

iON LWPV' LOOP NCER-,dlbJJ UbIC L) /6 
U.V1 Fi'f 1i42V/tIH?

',34 urA.41 ,,d.,IprJ
F 1,1'A 
(351 A,,iN AribL FINI) ARCOS 

641' libel IV (iI 'IH 
(IS A.UlI LrIA C(J.bVL To 'IC)

k36 U*64 IA(0". 
I[*i')N 1(3 COMPU IL VItAL1I'lb 

hit Olie? IF a IL(3 
psfL ,IIN6jhi UoA I I 

.............


b49 
 

....
........ 
 



PIP 44SF +L U V.-AS[0N 5U LFVLI I rEAUIN( lNSTRIMFNT ASSEMLY PROGRAM I976 PAGE lb 

LlNf AUJPk LAliL OI 9? 13 H04 INRUM sOuRCa 

641 ........................
*o*......................


642 a A SUOROUTINE TO COMPUTE HEADING WHEN 
643 1 /-)135 1 YAW ((*/-)4 DEGREES 

645
646 

Ub2R
Gb D 

(b'UU
WJdD 

05 J2
Ol 6,,4F 

SINY
LUP 

LOOIRI
LODAH0 

2 
hY2-IRl 

INDEX
LOAD OPNI.O,DnRI 

647 0430 CD b, YU STRAH0 OPRI-IiRI 
648 Ut%33 F9 7A BDRR.R LilP 
649 U35 20 EOR) Ro 
850 UIJ36 IF 0A1 41, bSIt4JN ulVi FORM HYd/mlHH 
Al1 
652 

0819 
Uh3C 

3F 
3F 

op 
(IC 

-l 
64 

bsTAUN 
HSTM.UN 

ANGL 
BCDA 

FORM ARCOSl(HYl/HH ) 
CONVERT TO HCoI 

653 Ob3F 04 90 LODIpIG M,90t CALC. 9U-ANGL 
o51 OL1 77 op PPSL C.WC 
655 Ut"3 Al SUBI kI 

56 08U44 94 DAR.RO 
657 U041, LI STaIZ RI 
658 OH46 IF IC 7C BSTA,UN HOG 
659 OU49 1l RETC.,UN 
6.0 .. 0..............................................oo 



pill A'qbld4,LtR '4E411iN S, LVVJEt I ,,EAIAM, IthSTRoMVfh IISEM~LV PRiQ$HAr 147b PA(,E 19 

LIIi MUON LM'IL rUl 4? 3 R4 .h<U-( SOuRCE 

(I'3 
.4 

bb, 

". S 
SENTER 

FXI 

4ij 
WIlT 

.IH 

4 To QiVIUC IAX2/*A62 ON "y2/"*1A2 
HX) Ai HY? [Pr OPI & OPRI'I 

0k(UT1INF IN RSLTNSLY-1 
U 

667 
60A 
hb9 
./a 
6/I 
61, 
611 

0154A 
U0 . 
OEM 
UI 
U0,S1 
0Ub6 
Ubb9 

0,144 

),119 

N, 
CC 0s. 11 
CC 1, 78 
(0 II 
-IL vii. hC 
(I0 Cr4 61% 
77 PH 

311 

LUPI 

tOIZ 
STRAsR0 
STNAgO 
LOUI.k3 
LUll,2 
Lr0'1H,R 
PPSL 

V 
SLI 

RsLIfl 
I, 
HH2.I 
rI6H 

Cnm4LIvC 

CLR QUOvTI r 

CIP. 

LOGICAL CUP..Lt , vIl-H C 

674 d$'5A 
6/b U"rS 
6/6 U60 
4/1 UShl 
AM, Q6',S 
b19 0067 
bull066A 
6.I 
612 I)LJ6C 
6O3 UUfnF 
6d4 QO/O 
6db i0(73 

bd 0.76 
6$? 0877 
Dbol U0IA 

b139 bb7C 

l 

15 All 
IL s,I3 ', 
I'll04 74 
I',1-
IA 0$ 
tE (14 /A 
19 1? 

. L 111, A 
A/ 
CC 11 /A 
IlL 01 4 

A] 
CC 14 79 
Ii bI I 

1 I?OP 

I i 

cuorI.ki u 
CTA.? LFP 

COHA.14 UIrRI 
IJCThrI (iTb 
Ib0HLT LTU 
C()mA ,R2 OP I*I 
b(iGT GIlU 
,'hLIF 11r<h 'IR hI"H=H 

LODIs*FUN OPNIK. 
$tjiz li? 
SIktM.0io OCbI I 
LOOA.10 UPRI 
S1d6 kI 
SIRANRo UpRI 
PPbL I 

HLP,IIN Jimp 

hH,. IF NHI >H'? 
RH, IF Ht2<r-'ll 

R, If HH>H. MCS IITS) 
('LL 'iS) 

FlRMt­ iIVlUFtNO-UIJVISnP 

c 

4913UDUlE 0,1EI 
1,91 1bd 0irl 
69? Ub3 
h9J I101,4 

b9'i o(ll-7 
n9, UttirA 

6,06 .UmN 
69/ 0t,1F 

76 (11
IC 61. IS 
rI) 

CC 04 1" 
111 04 r1 
II, 

CC ." It 
, 

il U 
JMP 

CISL 
LlUg.NO 
PhILO 

STRtARO 
LiIIJA,mOI 
kRL,R' 

SrJoNo 
HR.PI 

C 
PHLl ! 

HkLII 
PSLfI' 

RLT 

LSI11I ON .s 
SIR, QUOTIENT 

Lb8=I ON , 

SIR. QUUTIENT 
ROT. DIVISOR 

(C;0} 

(C;Ifl 
ITH C 

t 

C 

61)9
100 

01,0,I473 
... HFFl 

IrPI 
PSI Tzcn (yA.]) 

CURT. UNTIL I6IHM 

lou 
/4 
(U3 

v1 
UU,3 
U810 

I)l *J 1 
')9L 

00 
I, 

4ER 
R/ (IL, IIN 
COHNIt-le 
8CPA ,1 

0 
LIP.I I 

7U4 U98 If It RCtAIuN TO 

106 

7101 

fUl. 
/09 
IlI) 
711 

............ ,.........O . ~IU........ O ........ 

A SORWOUT INF i0 CAL( UI A rE (tIE AlICUS FIJN'T lo. 
THE ALLIdIT11 USE) SUCCE SSIVE APPNOAIMArIOS . 

& TAII.E L(Ull-(lP Tx)ITERA IC ro 'IE 5OLHtION" 
BEGIN WITH .,6. 1n.SLT.PSL(.I 

. EXITIivi A.ClSb(AN) IN NO 

J 

713 '1o,1 Qlu.5I, I I 1ntiL PPSL C.wC'C04 



PIP ASS)t*LtR VFRSI)N SCU LEVEI HEAL)INb NISI'RtJFNT ASSEMLY PRUGRAM 1976 PAGE 2O 

LI"Jt Aij LAIL 61 8? 13 U4 FRIAO qOURCE 

714 D19D 11104 '17 LOI)M0,2 RsLT HS BYTE OF ARI. 
715 0bAO 0S 17 LOI11 23 IST ESTIMATE 
Fib 0HA2 0? 17 LODI,R3 23 TWICE IST INCREMENT 
717 UDA4 ,$A4 110oA HA LUPA LODA,R0 CoSiHI COS(EST.) 
718 OA7 15 01 CPSL C MODIFY & TEST CTP. 
719 9BA9 53 NRR.R3 
720 08AA 18 IF UCTW.? LAST 
721 OBAC E2 COmz RA 
"d2 UUAIA 19 On UCrId,1 LLI EJ.,t IF EST. < ANGL" 
74J ObAF IA I? CTH,LT EGTA 8,. IF ESr. I ANGLE 
/44 13U41i A1mk\E4 III ECUl COMI.$t0 1 
726 0B03 
726 01:106 

ID oC 43 
IC OC 49 

ACTA,GT 
dCTAEQ 

OulT 
ONE 

727 
748 

0819 
OUdC isIHC 

IF C 27 
75 01 tLTA 

fiTCA,UN 
CaSL 

ITLS 
L 

Mh BITS ARE EAU. & < A 
INCR. EST. 

729 UIbE At LO0t II 
1.10 01F $3 AODZ R3 
731 08CO Cl STRZ I 

732 
733 

OUCI 
ObCJ ndC3 

lb ) 
77 AT EIJTA 

UCTI'UN 
PPSL 

LIJPA 
C 

CONTINUE LOOPING 
DECR. EST. 

734 OBCS 01 LOUE R1 
7J1 COCA A3 StilIZ In 
736 
7417 

08C7 
bCR 

CI 
1b 54 

srw 
OCTnPuN 

kI 
Li PA LOOP HACK C 

1-8 [0ICA OtICA 07 0A LAST LODLR3 In LAST ITERATIONS 
7J9 011CC 0HCC 00 64 HA LUP6 LODMN0 CoSm.ul 
740 U0CF I'd C,)MI / 

141 OULO 19 IS tcIk,GT E T 
742 0802 IA 09 IICIMILT EGT 
743 O3104 IF 014bI BCFAUN EoLI TEST VS OUTY I 
744 [}1[)7 AI17 75 01 ELT CPSL C 
745 
74b 

081)9 
01lil 

MS Ul 
11 04 

A)01 .fl 
bcrRUN 

I 
rsTN 

/47 
l("8 
74) 

V1D)
o~oF 

OBEI 

ohii) 

n00 I 

77 11 
AS AI 
FB b 

rGT 

TSTR 

PPSL 
SodlI I 
OBRR3 

C 
I 
LIIP LOOP IF Rjigi 

IS0 UlIN INTEmPOLATIN, USING MS1ITS 
I, I OBEJ 
752 UbL6 

GO 
L? 

6A lA LODANO 
COMI 

CnSHIl 
k? 

7S3 0Uu 7 19 I * BC(.,T IrnI, 
7b4 START IF CR EST.) < ARG. 
7bs OE9 rl STIN R1j TEMP ST. COSFST.) 
756 OBA A0 66 1-9 LOOAP0 CnS'4-IRl 
IS7 UOE) 77 Ai PPSL C 
ma U&LF .3 SUh2 it 
759 ObFO 7. 0I CPSL C 
It9 (Jb 2 So RR R{ 
7.1 OVr) IS II CPSL L 
702 OIFI, [13 AUDZ I3 
/o Dt A 
/o4 IlF f 
165 uuiA 

1'e 
1'E 
It I% 

I 
ClIA/ 
t.,bL 
YI'SI-

WP 
oill 

I.JTES. V4Lih VS 4/G 

X, 

"D0 



PIP 4S54-LItR VJIaI)l SCU LkVLI I HLAUJW ItSIRIIMWNT AS thML PP49A4I 1)IA ,AliF 21 

LNL AUtR IA IL hI j? 'J 64 kP1U1 SOURCE 

166 0OPC 5 ol SUd I ,w I 
7b? UUFF IF tIr 43 8CrA$UN Wll T 

/ . 
?I9 ULIII A( l F4 UP [11'r 

ATA.tr rEE 
CUdI I 

IF 
2 

o, r Sr.i M,. 

I/0 
Ill 

ULCI3 
ULO' 

9I I31 
I. hi 

t.tJ.iO 
CPSI 

AIFO? 
L 

h.. IF C(US(IrSi 

71? UL?I .5 oiI AUII,, I 
713 OLo9 IfF r I. - $c I ,trI Iti I 
/141 LICOC IL C tI. 11 .L Lk10-2tJ)Uk.,0 Lb -,. I 
7', UCuF l TI/ ,1 

716 VC-10 I 61, 4A LI JUM.A 0 Cos lglI 
711 OLI3 77 it PdSL C 

?/8 
I1I) 

uCIS 
Clb 

A3 
1$ 011 

S101Z 
Cp1. 

k3 
L 

NtOC 0CI8 U1 N .rt 
?bI 0Lt1 7 i Cp's L 
72 UCItI U3 AUUZ 143 

783 UCIC I? C,)#l/ k? 

7b4 
715 

OCI 
t)L. 

IE I 
75 Ul 

43 8CIApLT 
.PSL 

QUIT 
C 

7J6 
I,?I 

(Jt?? 
Ut4 

PD3(,I 
If tiC 43 

AIJD I ,PI 
HCIA,UN 

I 
I I C 

l/bd 
?u9, U,?7 *,CJ7 7S 01 

LXAIIN 
ITLS CPSL 

LS dltq 
C 8GIN IIEIATIAN ON LS"IfS 

790O UC29 IS ?A LOOI.Ifl 4? ESTIMATE OF AItpERS. 
71 0CIO21i lL u. 4lU L&UAI12 "%sLr I 0 
Ne UCF FbIl COI)IR2 H41I' IST ESTImitMIfi-
N/ 
7V4 

OL l4 
ULJ'J 

UCLL 10 
.,, 01 

ticIC If bT 
AulO1 .,I 

Ilk)QI T 
1 

19b UCJ'; t6 31 COMIsi 1,31' 2NO S. 
7 6 J? ID ir 43 UCTA,GT (il 
7VI OCJA 85 II ADOUI.Rl I 
71A UL 11 Fh Ji9 LOMI.? M.0'1 30 EST. 

/99 OL IF ID ir, I UCTAG '3ll I 
ouo otaII IS5 'I A0l0I1 1 1 
Fill OC43 ICAJ iI JUIT LOU/ RI 

So? UC44' 75 (1) CPSL C 
AO3 OC46 ri i. AI)O1 .40 1"', 

lU ULt4R A. r­. ,NL LOUI l ,,t 
but 0C44 (tU AA I9 LOORt CnSL. hit 

Butt UC4F C3 STRI R3 
hOi9 OLCF UU 66 II 1ODA .0 COSLIrtI 

41I) 
till 

0(2 
UL4 

71 
Al 

I 
bUtl/ 

CI'SL 
.1 

s 

1%12 Jrbs / nx CPSL C 
till OCb7 so RPR.RO 
14 1.58 15b CPSL C 
bib 
A16 
$17 

O(LSA 
Ul ) 
ULbF 

Al 
CI.. /if 

IA iI 

A)DZ 
COHA,I,0 
OCTHLT 

13 
NLr.I 
OIJ r 

C 



PIP ASSI-I-.tltP VfRqSIN SCU LeVEI I HEAUIIIG ISTP IFNT ASSLMLy PROGRAM 1976 PAGE 22 

LINE ADOU LAIL 11 8? 13 84 -RRO SOuRCE 

SIB OC60 C5 ?9 LCDIR1 41


814 0C62 16 51 BCTH,UN Q11T



822 . A SUBOUTINP TO CONVERT BINARY ANGLE TO BCD


823 . ENTR WITH ROO4NGLE(dINI & EXIT Rlh $CU FOUIV. * 
844 
 ... ***..............................................



825 0C64 OCt& 07 07 8CDA LOQIuN3 7 CfR 0 
626 OC66 (1500 LODIRI 0 CLR TOTAL 
h4 7 OC68 H(AU 75 Ol ARCH CPSL C CLRo C


628 UCOA Do RRLR"


849 0C6B C2 
 STRZ R2 MUVE RESULT

$30 OLcC ')A OR LCFH.N NINC BK IF MS BITIO


2A31 OC6E 01 LODZ N


hJ2 0L6F 75 (1 CPSL C


HJ3 OC71 84 h6 AUDIRO .1,66- OLO ADG 2 BYTFS


$34 0C73 8E 67 lb AODA.RO UC-IR3 INCR. BCD TOTAL


di5 uL16 II DARtR0


6.36 0C77 Cl STR2 4"


tJ7 OCEIE n2 
 LODZ R9 R-UL1 TO Ro
8d18 0(79 OC79 Eu b( NINC UDRN,.R3 8RCH GU BACK TIL WINE 
6.9 ..* LEAVE WITtRCIU)LOUIV. OF YAWl IN III

840 OL7fi 11 NLTL, (j


843 fifttff aft........ ...... ~'*ftto........a....a..
*. .........
 

H 

http:UDRN,.R3


PIP A"bRN 'LEI Vt'tSi')n SC) t VLI I hLAUI".4 fl.STOI.MiMr n&%LM-LY PRUbItq 1976 IA ,F 21 

LilLt AulLI LA IL IA2 .4 '13 tA UFP4H '..,JRLE 

A SUBROIJUN TO ChLCULAIE REAOLr4G & OUtoUr 
ti-b Q T,,4tE ING OjGIIS PLIuS SIGNe 

84)A 0LIC 
348 UCIE 
149 ULIl 

(A IL 77 0", 
1C (4 IF
A 

III 

"b& PPSL 
LO)AR0 
BCTn.N 

neC 
OAt)( 
Ywa 

SIGN OF "A 
ON. IF NCI, 

i 

650 SLVl. FUR FAOING (ICO) rOH") 

bbl 
(52 
H53 

OL$3 
UL64 

CLc (It. 
In In 

N LOl)' ,.NO 
CIH. 

1 0611 
(VV 

OLT 11fY 
RN. ON,Y=lNLR, 

q54 
855 dWAS 00 

514f ,LI-C0 
COHI,kI 

POS. 
4 

III &. ,-x 

t56 OC/IA Id Or hIcT.4.2 'yN 
N57 OcCdc B4 Ntn LO)UIIO r.60 

b,5. 
hb9 

4oU 

OL6tE 
UL6F 
UL.40 

III 
)4 

C3 

sU$2 
DaN .,0 
ST144 ki 

6ol 0191 ob DI LODIl,2 i,0Ji 

Bb2 UC93 b ONI 50.tNlk2 0 
86'3 
Bb4 

0.9q 
O1.96 

116 
I1 el 

OAR 
ACII*,N Frin 

sobENItH .,e [P rK=POS. & vYNLG. 

(lbi 
kibb 
6.9 

3cq0 
(0CqA 
ULIP 

4C'36, Ph 00) 
I 

(3 

"iii LooIl 
LOUZ 

z 

ei oj 
R, 
RI 

/ L9C I' ?I UcTRUn 446 

.41/ +'tlL.( tItUS-L*X=NF 4%4Y * U 

81J 
t/ 

4 OLL 
ULAI 

0A(.4 iC 114 
LA I? 

111 I'AQ0 eOOa1itO 
OD, IN 

UA71 
N.Y 

T1ST ',bN OF HY 

Ul 
['r0 



PIP AqS$,tLFR V4PS IN SCL tgVE I HEAUIN6 IhSTR,'IENT ASSEMLY pRIOGRAM 1976 PAGF 2' 

Lijt AL)DR IjN'L hi H? 113 r44 R /I4U SOURCE 

11166 ENPIR Ht E IF HI%=NEG 4 Y=PUS


877 04.A 04 80 LOOINO HisUl


8?U OCAS 75 (,1 LPSL C


879 LCA? 84 66 ADOI.k10 H-6.1


880 ULA9 t1 ADOZ RI



881 OCAA 94 0AM00


A62 OCAR C3 STz R3


683 OCAC 06 01 LOUIJ.,R2 HiO1


804 OCAE 146 66 P001,92 H,6&'


885 OCHI 86 00 6[01 ,82 0


4b6 OC,2 96 UA 2


887 OCH3 IB AA BCTKut FINE


bua * ENTIR t.nE IF HX L Hy = NEG


H9 UC' 0C,.S 04 80 NHY LODIRO H-80,


RgO OCt17 oC47 Al DO SUB W1 SUB. YAWL LSH


891 0(.ti 94 UARR'


8V2 OCt19 (3 STRI NJ


m93 ut1A 06 01 LODI,R2 t1l


894 OCdC Ab 00 508 1 .012 0


895 0LII 96 DARIR2



H1960 
u97



.... READ)OUT OF LIATA ...........0
8s8 
899 6CdF ,LOF ?6 FF FINE LoRId,2 HtFF'



900 0CCI (6 01 wRTE,R2 M85 H58 OUT



901 UCC3 27 FF EORI.143 FHFF'


902 OCCS I)70? WQTE.N3 LqB LSR OUT


903 ULL7 it RLTLUN



915 ORG M-_140­
...........
906.......... 
 

907 S.8. TO CAI C. "F Hl COMPONENT IN X-Z PLANF


908 HzL=$yOSItI(PHI) * HZ.COS(PHI)


0t19 "ITS( WT toT 1*4UP 0 24 

* 0.
 ..... 00...... ......................
 ........
910 
911 0140 11L.0 00 04 . HRI LOUA,I UAT8*t GLT P.i



912 OE43 OE 04 S2 LOU.0A.2 0
06T-8


913 OE46t 4S 8-1 ANUI,81 H.80' SAVI SIUN


q14 Ot4 'b ?F ANI)I,2 -. /' SIR[ SIGN


915 14A r0 L14AU Srul.I TRUF HOLO 510N


916 OF.o QE 65 0O LOA. 0 SIN,R4 SINtP.,)


V17 OFbfo CC W*. 69 SIN,RO SINN



IB 0E3 OE 6 49 LOUA.,I0 LCS.N4 COS(P,,I


g19 UES6 CC 04 /A 5TH4110 Ukl.



921 0E1C 110 04 -. LOUA 1< uIhT. ti



912 UsF LL. 4 76 STkA.1,1O U0'. 
9e3 0E62 CO n4 (C S114,pl U'H2.I


9e4 uFhS 3- lA 66 SIAUN S.Pt IILZCUS(PHI)


95 ULb6 (C 0, 77 LOU11*O NSLI 
9e6 Off1i1 I0 04 18 LOO., 1<1 IL I I


gel OLF CC (l4 .) S T1, 110 A,4Uf 
 LI 

L)





PIP AqSFMF'LIH Vt %ISIN SCU LI-VEL I HEAUI.'J , INSTRI.LNT ASSE4LY pRUGRAM 1476 PA/E 2 

L II& AUIjg I A IL 01 J, "3 d4 r1 H sOUHCE 

9t8 
929 
10 
qJI 
932 
9J 
q44 
Y3s 
.46b 

OL71 
UE74 
uL17 
UL (A 
U-ID 
LLO 

31.d1 
0183 
UL8S 

CD 01, "A 
aC 0, 69 
CC I1. /A 
OL a.. ,c 
fID 04 -,0 
r? 
44 7F 
4b ItO 
?l ll. so 

STRAfl 
LOUAa?0 
sl4 .I4O 
LI)UA ,sO 
LCUA ."I 
STHL 
ANQ I,P0 
ANDI,2R 
1LJM P2 

BRU-
SjNI4 
OPRI .I 
LIA1$'p 
0ATo. 3 
H? 
h slf-
H, DO 
Thuk 

Hy 

()LTEkNflNE S16,, 

9417 
9i) 
4.31 
440 

A68O 
O1L8 
OkL8F 
UE9 

I.L 14, 70 
CID 04 tC 
Ch 04. /E 
IF (11 1, 

STRAh11/0 
STubH.81 
STRA ,R2 
BSl iLJN 

UpPoA 
01)p4 
SrE8 
SmPY 8Y-SIN(PHI 

94e OE97 III 01. "A LUA o" hRUP 
4)4 0EW 
Y44 uLqfl) 
(/4b dEAdGt 
946 ULA2 
"4/ JLA 3 
q418 Of Ah 

94OtA9 
-451 UlLAC 
951 OLAF
9b UJLUd 

linjJ Lk 15 
954 8,7 

CC Ah0 *5 
CD Ih,U 6.HA 6. 

?I) 
CL J) /D 

F w') /I 
VC 1'-, 17 
IJL) U . /d 
cc 04 IH
CL) Wr, 7C 

77 n? 
I I 

IHR.NO 

C1)SL 
O311 

SIR.AOu 
HfSI AION 
LCUA .Ib0 
LUUd . I 
Sl4IR.1t0
51HAtd| 

PPSL 
REIt., IN 

IfMP 
IFI1inI 
CAn 
HA 

TL14 
SA) 
.SC ( 
'49L II 
OpR?
UPR2 I 

LaM 

Alit 

810C04(P811=,,b. 

S 



PIP 4qbb;IH R VER.I)ti SCU LFVLI I HEADING ItS.RiMENT ASSEMLY PROGRAM 1976 PAGE 26 

LINE A00P LAJL ul 8' 13 84 LPRf COL0CE 

9Db ............................. ........ 

957 S.A. TO CORPEC NONORTHOGONALITY ERRORS IN HX -
9nd . ENIER ONCE EACH SAMPLE CORRECTING HX SAMPLE * 

9b9 HAmHX(FAq) - IIYIMEAS)ISIN(EROR) * 

9b0 LOCATE SIN(ERROR) IN SINE 
961 . USES '-SMPY' TO FORM PRODUCT & "SADO" TA SUM 
9b2 EXIT WITH ±tOOIFIED HX IM AATH.OAtMl 0 

9b3 ....... 40 .... *t* ......................... 0...*0* 

9b4
96b 

OEsR
OEOA 

Oldb 7
OC 

01
04 bC 

OTATH CPSL
LODARO 

C
OAIpI*d HY HSS 

966 
967 

OEO 
OECO 

O 
DE 

04 5I 
07 IL 

LOUA,RI 
LODAR2 

DATM3 
SINE 

Hy LSb 
SIN(ERROR) 

966 OEC3 C! STRZ Q3 
969 GEC4 A4 7 ANDI,10 11,7FI STRIP SIGN 
970 
q9l 

UEC6 
ULCEI 

4 
CC 

HA0 
04 18 

ANUIR3 
STRA.140 

H,8U 
OPR2 

SAVE SIGN O 
912 OECH CLO04 IC STRA.kI OpRdI4. 
913 OLCE CE 04 7A STRAN2 OPRII 
174 OEOI CF 04 7E STRA,k3 SuES SIGN OF HYSIM(F4t) 
915 0E04 
916 Ol)7 

3F ola6h 
IC 04 5A 

BSTA,UN 
LOUUAIiO 

SoPy 
OATH 

FORM PROD. 
HA MS. 

0 
tj 

971 
9/8 

OLUA 
IOL 

iC004 
C2 

9H LOIJAtRI 
STRZ 

UAT'4.I 
R2 

HA LSb c 
(7 

979 OLUE 44 7P ANDIHO H7F' 
980 OL.ER 46 00' ANI.R2 H4.011. 
98 
9U2 

0EL_2 
OLES 

(C (1465 
D 04 66 

STARO 
STHA.$I 

TFMP 
TFMP*l 

9
.3 
9d4
985 

OtIEE 
JEEB
OLEO 

04 
It OP
'F 09 

70 
98 

STRA.142 
CPSL
USTAUN 

511*1 
Com
SAD0 FORM SUM < 

9H6 OEFO .,C 04 77 LOUA.R.0 qLT C 
9U7 OEF3 10 0'4 7* LtUARI RSLI 
9u8 
989 

U116 
lillY 

CC (14 ',A 
CC 014 StI 

STRAO 
STR",'d 

OATIN 
0*.1 

MJOIFIED dX 
C 

990 EFC 71 I,? PPSL Com 
991 UEFE 17 Pt ILION 

993 ENO 

TOTAL ASS '-'FLF' L.4I4*'­ 0 

Lnf





APPENDIX C



The transcendental functions used throughout the heading



computation algorithm were implemented using a table look up



procedure. To generate the respective look up tables in com­


puter memory data was first generated using algol programs.



This technique expedited modifications to tabular data and



provided output data in a convenient (hexadecimal) format.



2
Programs that calculated Cos () and Cos (®)to eight


bit and sixteen bit resolution respectively are included.
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REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 

PAGE UU1



0L 0000 HPAI.L,"RP"


002 OOOO HFOT,



003 0000i1 .. o.000........o. 0.. ...

004 00001 A PQ(,R8'4 TI ENEArL & CO$'CUS TALE F . A
005 00001 & MICR)9ROCFSSO- NASE Sm THE


006 00001 k APUR4 SS. A.N(JL , CIS(A~rLE) t A,1 04T IN


007 00001 & BITH 'INAR AU HFX F(IPrnAT 15 TAdBLAT- j


008 00001 A.0.......b ..........................


009 00001 DITEGtrR A.E,C,0,,Ft



010 00010 RFA I rH-TA,%.,t4,AoI.STH


Oil 00020 RF-AI AFOQA? A(0: 56,010o11


012 	210(1 lNrF(R ARRAY VAtL(0 IJ'=-,,l,.2-,J,,.,.b.,



21102 " ,
013 	 .... .......,,..,-....

014 	 21107 "R"."fI,"I,"E",IIF":

015 21114 I ,rFbR ARNAy MIJLI0oL31I-8,.2,l;


016 21121 NI1FGFR APPly HFXI(0*2S,0:11;


01 231J6 WPTL Ih,.(1Il)l



018 23175 WPITE ( , Il . "A,,SX,"T T,\'1,4A


01g 23226 It'.l ,HF.,lII


020 2344 %JLITL .- "~~.*.x~0o-l ' UAIA ",I/))

021 23476 FW A:= 45 to 9 0O


02 23JU4 FiE.,I


023 23J04 &,:.l


024 23.300 THS-T41t A4.H/l180I


025 23316 STIIeTAI( (CO8(7HFTAn)Ae) I


026 ?J3J0 H =G:


027 ?33 XSTH:=STHETA


024 2JJb H ILL- B1<I1 011


029 23J41 Er


030 23342 ISIHI = t-H',Ti


031 23.150 IF BST>,i THEN


0 W 23J5 IE(,IN


033 23J35 AN(A., ,II


0J4 23J.7 45TH =STH-II


034 223'S EM' FLSE ANCAlA1.=nr


036 2J.15 4-641;


037 234-0 rN1i1



03H 2J441I 1ot=0


039 234 3 rOp C =0 TO .3 IT


0()0 221.41EI


041 23=51 E1 

04d ej.b5 F 1=0l


043 23457 FON f=0 T ,0 ;0


044 234oS IfEGI


045 2346b;F.IIIP.N(..1


04f4 3t,2 HE(,C]n VALIfF I

047 	23 .3 N]I)I
048 23bJ7 :NUI



049 235.3 1-ITAt= IHETA*1qO/PjI
T

050 235,3 40t E 54.ASZ.*A*xP.s),3x.IoIl 
,3A.442)rAt

05b 43603 THLTA,STHETA, FOR P1= 0 TO 15 D0


0 4 tb AN aCA. FUR )2= 0 TO 3 00 HEX(lftI) I 
053 43bb3 9W1)1

054 	 Z36b7 ',0U% 

PH~bpAMA 021483 ARPPbaCO 
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A rHETA Cus-COS EINARY HEx 

(AUDR.) (IMEG) DATA 

45 
46 
47 

41.00000 
46.00000 
47.00000 

.300000 

.482550 

.465122 

l1111lllll11 
0111101110001000 
uliloilooolooIo 

7 F F F 
7 8 8 8 
7 7 1 2 

48 
49 
50 
I 
$2 
51 
54 
55 
Sb 

8 o.00000 
4A.9999 
50.00000 
bi.00000 
S.oonol 
5i.00000 
54.O000 
5q.0tOO10 
9A.40000 

.447736 

.430413 

.413176 

.396044 

.379039 

.6218A 

.345491 

.12990 

.1126q7 

01]1001010011110 
011011100010111t 
Ollol011iOu0lOl 
0110010101100011 
0110000100001O00 
0101110010110111 
OInllo00001110lO 
OlOl000olllO00 
0l0!00000000ll00 

7 2 9 E 
6 E 2 F 
6 9 C 5 
6 5 b 3 
6 1 0 8 
5 C 8 7 
5 8 7 2 
5 4 3 8 
5 0 0 C 

57 
S 
5b 
60 
b1 

51.00000 
5A.00000 
58.99999 
bo.00001 
i.00000 

.?96612 

.80814 

.2652f4 

.250000 

.235040 

Olrolulllloooo 
01n001111110 00 11 
onno0 11101O00 
0011111111111111 
001110000101011 

B F 0 
7 E I 

4 3 L 8 
3 F F F 
3 C 2 t 

6e 
61 
6 
65 
6b 
67 
68 

.on00O0 
bl.OOn00 
b4.o0000 
6 .00000 
b6.00000 
6A.q999M 
68.0000 

.22040J 

.206107 

.19M169 

.17b60 

.165435 

.152671 

.140310 

U00o1100011OlJ10 
O01lOlO011000011 
OOl1o0010011001u 
0010110110111001 
00nO10OO11001 
0010011100010101 
ul,0011111ulzoo 

3 8 6 C 
3 4 C 3 
3 1 3 2 
2 0 8 9 
2 A 5 9 
2 7 1 5 
2 3 E C 

09 
70 

o'.OOOO0 
10.0000n 

.12HL27 

.116978 
00100000111o0000 
oOnllUllIl0ooo 

2 0 E 0 
1 0 F 2 

11 
12 
1.I 
14 

/S 
16 
ff 

11.00000 
7.00000 
/-i.nOoo 
7q.949H 
,.0000 
/.00000 
17.0000? 

.l059qs 

.0954ql 

.08,481 

.075976 

.(1.0987 

.nbsbpb 

.u50603 

oonlOllOOIOolO 
U OIIUOOO110010 
O00lOlllllOoOlU 
OOnlO010illo011 

00nl0001000llu 
ouonll0l0lll ll 
oonllOOllllolu 

I B 2 2 
1 8 7 2 
1 5 E 2 
1 3 7 3 
1 1 2 6 
0 E F 8 
0 C F 4 

Ib 
/9 
$0 

01 
M2 

10.00000 
7.00n0 
b.1.00I00 
dI.000c0 
8A.00000 

.043227 

.0J6408 

.0301;" 

.02'7d 

.019349 

0U000lL100010000 
000010010010010 
OOnnOll1IOlo0oo 
0tunl0010o001l 
OOnnolOOlIllOOol 

0 8 1 0 
0 9 5 2 
0 7 8 8 
U b 4 3 
u 4 F 5 

di 
84 
d5 

dl.n0ooo 
84.00002 
64.q9498 

.01489e 

.010926 

.00o5qb 

ounpo01101000l1o 
uoooolollIlou 
0001000111i0001 

0 3 C 0 
0 2 C C 
V I F 1 

86 
67 
88 
d9 

UA4.0oOO 
d1.oOOO 
dA.00000 
q8n0000 

.OU866 

.002719 

.OOl21d 

.000305 

oj0O0001001111 0 
oonoflOOOlOliOOht 
00oooooou01 1 
0000000000010011 

0 1 3 E 
0 0 8 3 
0 0 4 F 
0 0 1 3 

90 90000000 .000000 0001100000000oo 0 0 0 
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PAUO UL 

001 00000 HPA.L R". 
002 000O HF(OIN 
00.3 00001 &...... o4 .4..................a*4tao,*...A 1 
004 00001 & A PgOGRAM T) bENLTE A COS TABLE FOR A 
OUb 00001 & MICROOROCESSOP HA',L0 SYSTEM 

006 00001 & ADDRESS. AtGLE , COSIANGIE) t AND DATA IN 1


007 00001 & BOTH HINARY ANO HEX FORMAT IS TAUtLATFD I


008 00001 & ............. .............


009 00001 INIFUER A,B,CO,E,F:


010 00010 RFAI THETA,ST'ETAAQoidSTHI 
011 00020 RFA( ARPAY AN(0'256,0[1bJ;


012 21070 INTFGER APRAY VAL(0,151"0,1","2","3","4"1"5mi

013 21102 " 'I"7*,"8AIItI-,"-A--.


01. 21107 .,. "0" "E, "F1 I 
OS 21114 tNTiFER APRAY MLT(nrI3II8.4,t1I1 
016 21124 IITF(,FR ARRAY HEXIOt256,011I1 
017 2J136 IPl. (P.h(IH!))I 
018 23115 WPITE (6,h(/6,ft rF'AI.SX.,'THPTA",4X,"COS( TH8tA) ".2,1 81ARY",6XJ N', 
019 23240 /)W


020 2343 W1P1TL (D,*(9x,"(AOORl".JX'mOt)G",SX," UATA ",//)1 
021 23277 FO A = 44 ro go o 
On 23305 ,*,l 
023 23J05 A AI-­
024 23311 TH.TA4= AROPI/IBOI


025 23317 'I-,ETAI= COS(ITHTA);



026 23323 ,-=0i


047 23325 ASTH.mSTHETAS



028 23331 tJ{LF H<Q 00 
029 2333" qtuIN 
030 23335 ASTH- 29SqTAI 
031 23343 IF 8STH> THEN, 

032 23350 -,EhIv 
033 2j30 AAIAddhIh 
0J4 dJ3b2 4STH'=$STH-It



03b 23310 FNI) FLSE ANCAdI.=t 
OJ6 23403 '=6+lT 
0J7 2J406 FiNOi 
038 23407 1I:=cI


039 23I 1 fOQ C==(I TO 3 DO 
0-0 23-17 'E(, I 
0.1 2341? 11=4CI


Ole di +sO F:=Ol



043 23"52 FOW I ,=Q TO 1 10 
044 43460 1Ef 
045 23460 F ~I*TF)OIA,.I
0l6 23513 HE.IA.l.= VALEF]I 
0" 1 23526 FMI) 
Ole 23b53 -NI.i


049 2353b THETA = THEIA[0,/Pt;



_
050 23546 qWIT (b.,ltSX,5,213,FA.6),3X,F.0,SX,A2)A.THETA.STHTA 
051 23605 IQ 8:=O. 10 7 0 ANA9bjOd i)=O T I no HE(A.DI)i 
052 23646 *NO; 
053 23652 E'US 

PROORAM- 021b56 FPPRDS=000
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A THETA COS(THETAI dTnAHY HEA 

(AUDR.) (nEr) DATA 

45 45.O00n00 .707107 1.11.1.1 8 5 
46 4A.0000 .644699 1.1I...I1 1 
47 47.00000 .681998 1.1,111 A E 
48 4A.00000 .669131 1.1.1.11 A 8 
49 4..99999 .t560 9 1.1.41 A 7 
b0 5.10000n .6427R8 1.1..1 A 4 
5! 51.0006A .629320 I.I....I A 1 
52 52.00001 .615662 1..l 1.1 9 0 
53 b3.00000 .60181b 1..11.1 9 A 
'4 54.n0000 .587785 InulII 9 6 
55 
Sb 

5s.o00oo 
5b.0ooo 

.57J576 

.559193 
1... 
1...1111 

9 2 
8 F 

57 57.00000 .544619 i...l.1l 8 a 
58 SR.00000 .529919 1.... ill 6 7 
59 
60 
61 

5$.q9999 
6.00001 
61.40000 

.*,51J 3 

.500000 

.48461U 

j.....
.1111111 
.11111 

8 3 
7 F 
7 C 

0d bPl0000 .469471 .111 . 7 8 
63 bi.n0000 .451991 .11l. 7 4 
64 64.00000 .43d371 .111.... 7 o 
65 
66 

6q.00")00 
6A.00000 

.422618 

.a06737 
,.ll,, 
.11.1,,, 

6 C 
6 8 

b7 
68 

b6.99498 
6-.00900 

* 190731
.3746n7 

.I..1. 

.1.l111 
6 4
5 F 

b9 h0.a00I .358355 .1.31.11 5 a 
7u 7n.00000 .142020 5.1.1l1$ 7 
71 11.0000n .325568 .1.t..1I 5 3 
12 77.00000 .109017 .1..1111 4 F 
73 11.1)0000 .292372 .L.1.1. 4 A 
74 ll.q999 .275637 .1...1. 4 6 
75 ?S.0oA. .258319 .1....1. 4 2 
76 76.00000 .24192? ..1I114 3 0 
t7 77.00002 .224951 ..I;1.1 3 9 
/a
19 

7a.00000 
7.0OOo 

.207912 

.19069 
.. lIll 
..If.... 

3 5 
3 0 

h0 8i1.1o00o0 *173b48 ..1.11. 2 C 
dl 
d2 
83 

01.00000 
B.lo000 
8f.o0n0 

.15 lb 

.039173 

.1218A9 

.1.1... 

..1...11 

...11111 

2 8 
2 3 
1 F 

84 84.n0002 .104528 . 1,.11 A 
d5 84.9999H .0876 ...1.11. 1 6 
d6 
87 

86.00no0 
U7.00000 

.069757 

.)52336 
...I...I 
....11.1 

1 1 
0 0 

B8 88.00000 .1134900 ...... 0 8 
U9 80.0o0on P1749Z ...... I.. 0 4 
90 9.0000 -.000000 ....... 0 0 
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I. INTRODUCTION



The fact that the Earth has a surrounding electric field has been



known for centuries, but the study of the effect of clouds on this



electric field is a fairly 'new area of study. Ideally the earth's



electric field is a perfect vertical, however since clouds are not



electrically neutral, their presence distorts the earth's field;



nearly neutral clouds causing slight perturbations while heavily



charged clouds actually reverse the direction of the resultant field.



The most highly charged clouds belong to the cumulonimbus family.



The report evaluates various electrical models of cumulonimbus clouds.



The resultant field of each model is compared with actual readings of



the earth's electric field in the presence of a cumulonimbus cloud



at various heights and distances from the cloud. Using the actual



field readings, this report will develop a new electrical model of a



cumulonimbus cloud.



This paper also reviews the electrical properties of the atmosphere,



particularly of clouds and suggests some possible uses of the



knowledge of the field around a cumulonimbus cloud.
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II. ATMOSPHERIC ELECTRICITY



Atmospheric electricity is defined by Dolezalek [1] as "the science of



everything electric in the atmosphere between the solid and. liquid



surface of the earth to the lower regions of the ionosphere, including



the boundary layers of both."



Like every science, atmospheric electricity has its own sign conventions.



Distance is measured positively upward. Current flow to the earth is



,considered positive. Electric potential is measured relative to earth.



The terms "field" and "potential gradient" are in general used to



denote the same quantity, i.e. the partial derivative of voltage with



respect to height. The units used are the MKSA system.



All lines of force commence on a positive charge and end on a negative



charge. The density of lines of force across any area gives a 
 measure



of the field. If the line of force terminates on the earth's surface,



itmust enter vertically. Any change in space charge will immediately



effect the lines of force and thus, the electric field.



As space charge appears, a potential gradient is produced immediately



at the ground. The air-earth current will change as will the lines



of force. To determine the.potential gradient change produced due to



the appearance of the space charge, one must know the relaxation time,



e/X, of the air where c is the permittivityofthe air and A is the
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conductivity. Near the earth's surface the relaxation time generally



ranges between 5 to 40 minutes depending to a great extent on the



pollution level. The higher the pollution level, the lower the



conauctivity and, therefore, the higher the relaxation time. At an



altitude of 18km the relaxation time is about 4 seconds while at 70km



it is on the order of 10-8 seconds. At the earth's surface it is



10-6 seconds or less. The potential gradient at some time after a



change in space charge can be given by the equation [Z]



E = E1 e-t/t + E2 ( - e-t/) (1) 

where E is the potential gradient immediately after the change, E2 

is the potential gradient when the conditions are apin quasistatic, 

T is the relaxation time and E is the potential gra&ent in the 

intervening time. 

Ions are relatively rare when compared to the total -,mber of molecules



in the atmosphere. A cubic meter of clean land air ui1l conrain



approximately 800 million ions out of 1025 molecules. The cor.ductivity



of the atmosphere may be written as [l



= Eni ei ki+



+ + 

where ni is the number of positive ions with a charl, of ei+a--d 


mobility of k+, nj is the number of negative ions Y:h a cha--s-. 


e and a mobility of kj, and X is the conductivitx The moc< '­
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is computed from the potential gradient E and the velocity of the



particle v by



=
k v / E (3)



or the velocity acquired in a potential gradient of 1 volt/meter.



The mobility is highly dependent on physical properties of the ion



such as size and shape.



Since the air-earth current iscontinually bringing positive charges to



the earth there must be some restoring component which will complete



the circuit carrying the positive charges upward again. The most



popular theory on the generation and continuation of the electrical



characteristics of the atmosphere is the condenser theory. [1,3]



In this theory the ionosphere is positively charged with respect to



the earth. The ai-r-earth current tends to continually discharge



this global condenser. However, this process is compensated by



thunderstorms which act as the generator restoring positive charge



to the ionosphere. Figure 1 shows the schematic of this global circuit.



The lower portion of a thunderstorm is negatively charged while the



upper portion is positive. The world wide occurrence of thunderstorms



also corresponds to the diurnal variation of the earth's electric field.



The study of atmospheric electricity is divided into two quite different



divisions, fair weather and disturbed weather. Disturbed weather is



defined by Dolezak as "when we have hydrometers in the atmosphere ­


fog, rain, snow - or when we have high winds, in particular in
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Figure 1



(from IEEE Spectrum [3])
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connection with blown-up dust or snow, or when we have much of the sky



covered by substantial clouds." [I] The absence of these phenomena is



considered-fair weather. Fair weather conditions are predictable and



one can assume a quasistatic state to determine its properties, while



disturbed weather conditons can alter.rapidly and a quasistatic state



cannot be applied.



Fair weather conditions have several characteristic quantities. Voltage



increases with height. The potential gradient is positive and essentially



vertical. It is constant for the first few meters and shows a progressive



decrease with height at approximately 100 meters. The conductivities



are also constant for the first few meters, then show a marked increase



with height at approximately 100 merors due to an increase with altitude



of ionization by cosmic rays and a decrease in pollution. The current
 


density is the same at all levels and is equal to the voltage of the



ionosphere with respect to earth divided by the resistance of a 1m
2



column of air from the earth to the ionosphere. Tables 1 and 2 list



fair weather parameters as compiled by Dolezelek. [I]



The disturbed weather phenomena is much harder to typify. The potential



gradient can have horizontal variations of large magnitude. There are



added currents carried by precipitation and lightning. Constant



changes in conductivity occur due to fresh charges. It is in this



still unsolved phenomena that much of the current work is being



performed.





Part of Atmos- Currents, I, in 
Potential 
Differences, U, 

Resistances, R, 
in Q; Columnar 

phere for which A; and current in V; field res., Rc, in Qm2 

the Values are densitjes, i, strength E in Resistivities, 
Calculated in A/m' V/m p. in Qm 

Volume element 
at about sea i=3xl0-12  Eo=l.2xlO 2 Po=4xlO 13 

level, one 
cubic meter 

Lower column of 
1 m cross 
section - sea­

same as 
above 

at upper end: 
U1=l.8xlO 5 

Rcl:6xlOl6 
cl 

level to 2 km 

Volume element 
at about 2 km same as E2=6.6xlo 
height, 1 m3 above 

Center column 
of 1 m2 cross 
section - 2 
to 12 km 

same as 
above 

at upper end:16 
Um=315x105 Rcm 

Volume element 
at about same as E12:4.2xlO0 1.3xl O12 
12 km height,
1 m3 

above 121 

Upper column 
of 1 m2 cross same as at upper end: R=.5xi016 
section - 12 above Uu=3.5x1O cu 
to 65 km 

Whole olumn 
of 1 m 
section 

cross 
- 0 

same as 
above 

at upper end: 
U =3.5xl0 5 

R =l.2xl 
c 

17 

to 65 km 

Total spher­
ical capacitor I=l.5xlO 3 U = 3.5xi0 5 R =2.4xi0 2 

area: 
5x10 14 m2 

Table 1





Part of Atmos-

phere for which 
 
the Values are 
 
Calculated 
 

Volume element 
 
at about sea 
 
level, one


cubic meter



Low r column of



section - sea 
level to 2 km 

Volume element


at about 2 km 
 
height, 1 m3 
 

Center column


2
of 1 m cross 
 

section - 2 
 
to 12 km



Volume element


at about 12 km 
 
height, 
 
1 m



Upper olumn


of 1 mC cross 
section - 12 
to 65 km 

Whole column


of 1 m2 cross 
 
section - 0 
 
to 65 km



Total spher­

ical capacitor 
 
area:



2
5xl014 m
 

Conductances, G, 
inQ-l; Col. 
conductances 
G , in £-Im-2 ; 
t tal cond. 

A, in -Im-I 


Ao=2.5xl0-14  

a 
 

Gcl 1 7x10 17  


14 

A2=4.5x10-


G =5xlc-17 

cm 


A 4OxlO_13  

12 


-17
Gc =2.5xlO 

cu 


18 
 

Gc=8 3x10­

G=4.2x10- 3 


Capacitances, C,


in F; Col. 

capacitances 

Cc, in Fm- 2;

Capacitivities

E, in Fm-I 
 

e=8.9x10 12  
 

Cc1 =4T4x10 15  
 

12 
 -
s2=8. gxlO



C 8.8x1016  
 
cm 
 

89lo 12


=
12
 

-16
C =l.67x10
 
CIA 
 

C6 
 
=1 36x10-
Cc
 

C=6.8x1- 2 
 

8



Relaxation Times


T, in seconds



2


To=36x1



2.6x10 2



2


t2=2x10



' =l.8x1&


cm



=
12
 

T =6.7xl0 0


CU



1
=1 64x10
-cC



- =1.64x101



Table 2





II. METEOROLOGY



The nomenclature for the various sections of the atmosphere are not



agreed upon by all who study the atmosphere, however the divisions



and their names as used by Dobson [4] are shown in Figure 2.



The lowest cloud in the troposphere is known as fog. This occurs



when the ground is within a few degrees of the dew point. Fog can



be produced three ways. Radiation fog is created on clear nights



if the earth cools greatly since without a cloud cover the heat



radiates into the upper atmosphere. A slight breeze will then bring



the earth to the dew point. Advection fog is caused by warm moist



air blowing over a colder surface and becoming chilled to its dew



point. Frontal fog may be produced when cold air mixes with warm



moist air. Other cloud types are summarized in Table 3.



The cloud names come from four basic words: cirrus, cumulus, stratus



and nimbus. Cirrus clouds are composed of ice crystals and are



delicate and curly in appearance. Sun shines through them without a



shadow. Cumulus clouds are lumpy or billowing forms. The sheetlike



cloud layers are stratus clouds. Nimbus clouds are stratus or



cumulus that develop a "head" or thickness. "Alto" is also used



as a prefix to indicate clouds at intermediate heights.



When two air masses of differing temperatures, pressures and relative



humidities mix, a front is formed. The colder air mass sits
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CLOUD NAME 	 AVERAGE HEIGHT AND RANGE IN HEIGHT



High Clouds



Cirrus 30,000 ft. (10,000 to 50,000 ft.)



Cirro-cumulus 20,000 ft. ( 8,000 to 36,000 ft.)



Cirro-stratus 35,000 ft. (15,000 to 45,000 ft.)



Middle Clouds



Alto-cumulus 12,000 ft. 3,000 to 27,000 ft.)



Alto-stratus 15,000 ft. 5,000 to 35,000 ft.)



Low Clouds



Strato-cumulus 5,000 ft. 1,000 to 15,000 ft.)



Stratus 2,000 ft. 50 to 6,000 ft.)



Nimbo-stratus 2,500 ft. 200 to 18,000 ft.)



Clouds with Vertical Development



Cumulus 	 2,500 ft. ( 1,000 to 10,000 ft.)


Tops may extend to 20,000 ft.



Cumulo-nimbus 	 2,500 ft. ( 500 to 10,000 ft.)


Tops may extend to over 35,000 ft.



Table 3



(from Aerology for Pilots [5])
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wedgelike under the warmer air mass. The air that is displacing



another air mass gives its name to the front; thus, if cold air is



displ'acing warm air it is known as a cold front. Likewise, ina



warm front warm air displaces the colder air. An occluded front



exists when two colder air masses trap a third air mass between them



forcing the third air mass aloft until it dissipates. Figure 3 shows



cross sections of the warm and cold types of fronts and the clouds



associated with them.
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IV. EXISTING MODELS



The cumulonimbus cloud differs from other types of clouds in its rate



of accumulation of charge. A collection of charges, such as & cloud,



in a conductive medium will attract an equal but oppositely charged



screening layer and, therefore, cause no appreciable change in the



electric field. However, since the rate of increase of charge in a
 


cumulonimbus cloud within the time constant of the surrounding­


atmosphere approximately doubles the amount of charge [7], an



effective screening layer can not be generated and, therefore, the



cloud effects the neighboring electric field. Models of cumulonimbus



clouds can eliminate the screening layer and simply use the net



increase in charge as the only charge present.



Experimentors have been attempting for years to gather data on the



electric field in the vicinity of a thundercloud, i.e. a umulonimbus



cloud, in order to generate a valid electrical model for the cloud.



The measurements were originally made at ground level but more recently



include airborne measurements in,around and above thunderclouds.



In 1948 O.H. Gish and G.R. Wait [8], in an effort to show that thunder­


clouds could supply the negative current flow necessary to maintain



the general electrification of the earth, gathered measurements of



the electric field strength-above thunderstorms. Their findings were



as follows: Of 87 traverses across thunderstorms, in 22 data was
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incomplete or unsatisfactory, 31 profiles corresponded well to a



bipolar model while the remaining 34 were of a more complicated



nature where a bipolar model was only a good first approximation,



additional dipoles would be required for an accurate model.



A model was proposed using the data gathered on a flight an an altitude



of 43,000 feet on October 28, 1948. This data was typical of a storm



when little lightning activity was present. The data and associated



model are shown in Figure 4. A complete mapping of the electric



field inan area 21km in horizontal distance from the cloud's charge



concentrations and to a height of 16km is shown in Figure 5.



Israel [9] lists two other proposed electrical models for a thundercloud,



one from Simpson and Robinson and the other from D.J. Malan. The model



proposed by Simpson and Robinson is often referred to as the "Classical



Model." It consists of a positive charge of 24 coulombs at a height of



6km, a charge of -20 coulombs at 3km and a charge of 4 coulombs at



1.5 km. The Malan model has a charge of 40 coulombs at approximately



lOkm, -40 coulombs at about 5km and 10 coulombs at about 2km. The



electric field map for the Simpson and Robinson model is shown in



Figure 6 and for the Malan model in Figure 7.



The program used to generate the data used in Figures 6, 6 and 7 and



the data listings from the program are contained in Appendix A. The



charge system for each of the three models used as inputs to the



program are shown in Figure 10, utilizing the method of electrical



images as described in the next section.
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V. GENERAL NEAR-FIELD MODEL



The field at any point in space due to a single point charge Q can



be computed from Guass's law,



§6 • dt= fydV (4)



where t is the electric flux density, V is the volume enclosed by 

the surface S and C is the charge density within V. If one considers 

S to be a spherical surface with its center at Q (Qbeing the only 

charge wi+hin S), the equation becomes



(5)
= (Q/ 4ir 2) 

Since t sg where s is the permittivity of the substance then 

E (Q / 4wr2E) S (6) 

The direction of E is radially outward ifQ is positive and radially



inward if Q is negative. See Figure 8 where Q is a positive charge.



The magnitude of E is inversely proportional to the square of the



distance to Q. If the permittivity is constant over all space



concerned, the field created at a point P due to more than a single



point charge may be computed by the vector addition



47=E I (lP2P 2 r2p2rNP+ +r r + .. 2 rNP) (7) 


where Q0 is the charge located at a point J and rip is the distance



between Qj and P. Th6 permittivity used for this problem is that of



free space, i.e. 8.854 x 10-12 farads per meter.
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The earth, here considered flat over the area under consideration is



an equipotential. To produce an equipotential surface one can use the



method of electrical images, where an imaginary distribution of



charges inside a conducting body of an electrostatic system is



determined which would produce exactly the same field outside the



body as that produced by the induced-free charges over its surface.



For the system of a conducting plane, one can look at a simplified



problem of a single positive charge located above the plane. See



Figure 9. As shown in the figure, an equal but oppositely charged



point is placed an equal distance below the plane as the positive



charge is above the plane. Now if the plane is removed, the field



above the plane would remain unchanged. Therefore, the field produced



by all the charges induced on the conducting plane may be reduced to



the field produced by the single point, -Q. This method can be



expanded to include an oppositely charged point below the plane for



each charged point above the plane in a more complex system. The



systems suggested as thundercloud electrical models by Simpson and



Robinson, Gish and Wait, and Malan are shown in Figure 10 using the



method of electrical images.



Each of these models was derived using the data collected by the



particular experimentor under a particular set of conditions. The



models fit the individual data, yet they vary considerably in the



overall field maps as shown in Figures 5, 6 and 7. For example,





23 

Equipotential


Surface



Figure 9





24 

24c 

-20c 
6km 

km 4c 
4I 1 . 5 km SIMPSON AND ROBINSON 

-4c MODEL 

V 20c 

-24c 

39c 

-39c 
6096m -

3048m 

IGISH AND WATT 
MODEL 

' 39c 

V -39c 

j -40c 

-40c 

0kml 
-_ 

5kmlo c
2km MALAN MODEL 

40c 

V[ -40c 

Figure 10 



25 

at 500 meters horizontally from the charge centers and at gound level, 

the Simpson and Robinson model yields a field with a magnitude of 938 

volt/meter, the Gish and Wait model yields a magnitude of 26122 

volts/meter, while Malan's model has a magnitude of 19991 volts/meter 

at that location. Lf a model could be generated to best fit a 

combination of various field readings taken at different heights 

and different times under a variety of conditions, the result would 

be a more universal model of a thundercloud. 

The model developed in this paper is found by starting with the



charge center Qalues and locations determined by Simpson and Robinson,



Gish and Wait, and Malan. The field strength is calculated for



selected locations using one model at a time and compared to actual



values measured by various experimentors. The measured values used



for the comparison and the source of each value are shown in



Table 4. The readings from Wormell [10] are average potential
 


gradients taken over all directions from the charge centers at



ground level immediately before a lightning discharge.



The calculated value of the field using Equation 7 at location I,



EFLD(I), is subtracted from the measured value, EF(I), and the



percentage of variation computed as



EF(I) - EFLD(I) 100 (8)



EF(I) 
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DISTANCE FROM MEASURED


CHARGE CENTERS FIELD STRENGTH*­


(METERS) (VOLTS/M) SOURCE



1 2500 - 1310 Wormell [10] 

2 5000 - 1160 " 

3 7500 - 760 " 

4 10000 - 460 

5 12500 - 260 

6 15000 - 135 

7 17500 - 60 

8 20000 0 

9 13100 33000 Gish & Wait [ 8J 

Note: 	 1 through 8 are horizontal distance with measurements made at



ground level. 9 is a vertical height directly above the charge



centers.



*due to cloud only.



Table 4
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The resulting value is then squared. The square of the percentage of



variation is-computed for each location inTable 4 and added together



to produce-a quantity ESQRT. The amount of charge at one of the charge



centers is now varied in increments of .01 coulombs until a mini-ium is



found for ESQRT. The process of calculating the fields and computing



ESQRT is begun again with this new charge quantity replacing the old



value for the selected charge center and a different charge center



quantity is varied until a new minimum isfound for ESQRT. The



program continues to vary one charge center quantity at a time, each



time findi'ng the minimum ESQRT, until ESQRT is less than or equal to



100 or until ESQRT reaches a local minimum. The program listing and



resulting output from the program are contained in Appendix B.



The resulting field maps of the Simpson and Robinson; Gish and Wait,



and Malan models, after being modified by the program shown in



Appendix B, are shown in Figures 11, 12 and 13 respectively. The



progressive evaluation of the charge center values are shown in the



output listings inAppendix B. The charge center values used for



the modified Simpson and Robinson model are 4.6 coulombs at 6km,



-11.3 coulombs at 3km and 5.97 coulombs at 1.5km. ESQRT had a value



of 5.22 x 102 at these values. The charge centers for the modified



Gish and Wait model are 1.52 coulombs at 6096 meters and -2.64 coulombs



at 3048 meters; ESQRT equals 6.24 x 102. The charge centers for the



modified Malan model are 20.1 coulombs, -36.8 coulombs and 12.7 coulombs



at lOkm, 5km and 2km respectively; ESQRT equals 7.99 x 102 at-this point.
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VI, CONCLUSION



In order to select the model which mostclosely approximates a typical



thundercloud, one must use more than the values of ESQRT which ';ere



generated. The modified models come closer to fitting the electric



field values measured at ground level by Wormell and the values Gish



and Wait measured to 40,000 feet than the original models as shown in-


Figures 14 and 15, yet the final model should most nearly conform to



all electric field measurements made in the vicinity of a thundercloud



without lightning present.



R. Markson [11] states that thunderclouds, not considering lightning



flashes, can effect the electric field within 50km or more. In order



to evaluate the ability of the modified models to meet this



requirement, one can note the effect the various models have on the



electric field at the farthest distance evaluated, i.e. 21km. Using.



an expression for the approximate electric field given by Dolezalek [13,



h being the height in km,



E = 81.8 exp(-4.52h) + 38.6 exp(-.375h) + 10.27 exp(-.121h) (9)



the field values at 4km, lOkm and 16km are 4.59 v/m, .640 v/m and



.119 v/m respectively. The values at 21km horizontal distance from



the charge centers at these heights are 16.53 v/m at 730 from the vertical,



6.77 v/m at -120 from vertical and 4.24 v/mat-47' from vertical for the 

modified Simpson and Robinson model. The modified Gish and Wait model



yi'elds 15.8 v/m at -0.1', 5.18 v/mat -l0' and 2.53 v/m at -36' and
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34.42-v/m at 200, 45.2 v/m at -120 and 51.15 v/m at -56' for the



modified Malan model. Since these values are for 21km and the field,



isto be effected within 50km or more, the largest resultant field



values at the greatest angles must be chosen as being the closest



fit. Here the modified Malan model is the best fit, followed by the



modified Simpson and Robinson model, then the modified Gish and Wait



model.



D:R. Lane-Smith [12] states that "tropical thunderstorms have been



observed to produce negative electric fields of 3000 v/m or higher."



All three modified models qualify under this criterion, Simpson and



Robinson having a negative field as high as 47,000 v/m at a distance



and height of 1km and 4 km, Gish and Wait producing 13,000 v/m at 1km



and 4km height, and Malan producing 179,000 v/m at 1km and lOkm height.



C.G. Stergis, G.C. Kein and T. Kangas [13] in balloon flights over



thunderclouds made the measurements shown in Figures 16 and 17 The



electric field measurements at a horizontal distance of 1km and a



height of 16km for the three modified models are 85.17 v/ri for Simpson



and Robinson, 33.05 v/m for Gish and Wait and 2886.61 v/m for Malan.



Because the value of the field strength will decrease as the height



increases to that of the readings in Fi'gures 16 and 17, i.e. above



21 km, the modified Malan model is the only one which could possibly



satisfy these readings.
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Height above the thundercloud 0-100 100-300 300-500 500-1000 1,000 
where E was measured, 

Emax' v/m 13,300 3,700 3,400 2,000 2,500 

Number of measurements 34 29 40 24 13



DEPENDENCE OF EAX ON HEIGHT ABOVE THUNDERCLOUD



Table 5


(From Shvarts [141)



Similarly, Ya. M. Shvarts [14] gives the mean values of the maximum



vertical component of the electric field at various distances above



thunderclouds as shown in Table 5. In the modified Simpson and



Robinson model the highest charge center is at 6km, the top of the



cloud Lould therefore be considered to be somewhat below 8km. The



vertical component of the electric field reading at 1km horizontal



distance and the 8km height is 4821 v/m and, therefore, within the



range of values in Table 5. The modified Gish and Wait model has its



highest charge center also near 6km. In this case the vertical ._



component of the electric field reading at 1km and 8km height is



1822 v/m. This is somewhat lower than the values in Table 5. The



uppermost charge center of the modified Malan model is at lOkm. The



top of the cloud could be considered tobe near 13km. Therefore, using



the reading at 1km and 14km height, the vertical component is 7239 v/m.



This is slightly high yet still within the range shown by Shvarts.
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When considering the electrical specifications for a typical thunderstorm



as described in the last two sections, the modified Malan model appears



to be the best fit. The new electrical model of a cumulonimbus cloud



has a charge of 20.1 coulombs at lukm, -36.8 coulombs at 5km and



12.7 coulombs at 2km.



The knowledge of the electric field surrounding a typical thundercloud



has some practical uses and some limitations. Low cost avionics such



as the field measuring device as described by M.L. Hill [14 and later



by R. Markson [11] would be able to detect a field mapping of a



thundercloud and therefore warn the pilot to avoid such an area. Yet,



this model is only of a typical thundercloud; any specific thundercloud



could exhibit quite different electric field characteristics, particularly



during lightning, which has not been accounted for in this model. A



model which would include lightning would demand an exceedingly



complex system of which this model is only a beginning.
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APPENDIX A



The following program, written for the HP2100 computer, is used to



produce a field map for a s3stem of three charge centers of values



Q(1),,Q(2) and Q(3) at the corresponding heights of Y(l), Y(2) and



Y(3). The output lists the X and Y locations, X field value,
 


Y field value, total field and the angle in radians of the total
 


field at the location (X,Y). X is incremented by 2000m from 1000m



to 21000m;Y is incremented by 2000m from ground level to 16000m.
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PROGRAM EMAP


REAL NX,NY,KNY


DIMENSION Y(6), Q(6)



20 READ (5,1) Y(1),Y(2),Y(3),Q(]),Q(2),Q(3)


1 FORMAT (6F10.2)



IF (Y(1)) 22,22,21


21 Y(4)=-Y(3)



Y(5)=-Y(2)


Y(6)=-Y(1)

Q(4)=-Q(3) 
Q(5)=-Q(2)


Q(6)=-Q(1)


READ (5,4) Al,A2,A3,A4,A5,A6,A7



4 FORMAT (7A4)


WRITE (6,5) A1,A2,A3,A4,AS,A6,A7



5 FORMAT (1H1,a5X,7A4,//,3X,"CHARGE CENTER 1",5X,"CHARGE CENTER 2",5


IX,"CHARGE CENTER 3",/,2X,"HEIGHT",3X,"COULOMBS",3X,"HEIGHT",3X,"CO


2ULOMBS",3X,"HEIGHT",3X,"COULOMBS")


WRITE (6,2) Y(i),Q(1),Y(2),Q(2),Y(3),Q(3)



2 FORMAT (IN,6FFO.2)


WRITE (6,6)



6 FORMAT (//,3X,"X",5X,"Y",4X,"X FIELD",3X,"Y FIELD",4X,"TOTAL",5X,"


ITHETA")


CONST =4.*3.1416*8.854-(I0.**(-12))


DO 10 NNY=O,16,2


NY=NNY*I000.


DO 10 NNX=1O,210,20


NX=NNX*I 0.


EXSUM=O.


EYSUM=O.


DO 11 N=1,6,1


EXSUM=EXSUM +Q(N)*NX/(CONST*(NX*x2+(WY--Y(N))iNY-Y(N)))**1.5)



11 EYSUM=EYSUM+Q(N)-(NY-Y(IN))/(CONST*(NX**2+(NY-Y(N))-(NY-Y(N)))x*1.5


1)


KNY=NY/1000.


EYSUM=EYSUM-81.8*EXP(-4.52*KNY)-38.*EXP(-.375*KNY)-IO.27*EXP(- 121



1*KNY)


IF (EXSUM) 15,13,12



12 THETA=ATAN(EYSUM/EXSUM)


16 ETOTL=SQRT(EXSUM*EXSUM+EYSUM*EYSUM)


14 WRITE (6,3) NX,NY,EXSUM,EYSUM,ETOTL,THETA


3 FORMAT(216,3F1O.2,FIO.4) 

10 CONTINUE 
GO TO 20 

15 	 PI=3.1416


ANGLE=SIGN(Pi,EYSUM)


THETA=ANGLE+ATAN(EYSUM/EXSUM)


GO TO 16



13 	 ANGLE=3.1416/2.


THETA=SIGN(ANGLE,EYSUM)


ETOTL=EYSUM


GO 	 TO 14



22 	 END 
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SIMPSON AND ROBINSON MODEL



CHARGE CENTER 1 CHARGE CENTER 2 CHARGE CENTER 3 
HEIGHT COULOMBS HEIGHT COULOMlBS HEIGHT COULO1MBS 

6000.00 24.00 3000.00 -20.00 1500.00 4.00 

X Y X FIELD Y FIELD TOTAL THETA



1000 0 .00 4066.83 4066.83 1.5708­

3000 0 .00 2559.72 2559.72 1.5708


5000 0 .00 -881.20 -881.20 -1.5708


7000 0 .00 -1285.40 -1285.40 -1 5708


9000 0 .00 -1054.19 -105a.19 -1.5708


11000 0 .00 -797.06 -797.06 -1.5-08


13000 0 .00 -605.92 -605.9Z -1.5708


15000 0 .00 -474.12 -47d.12 -1.5708


17000 0 .00 -383.90 -383.90 -1.5708


19000 0 .00 -321.34 -321.34 -1.5708


21000 0 .00 -277.11 -277.11 -1.5708


1000 2000, -34552.17 64956.74 73574.67 2.0597



"3000 2000 -7460.80- -123.11 7451.82 -3.1251


5000 2000 -787.46 -1881.66 2039.79 -1.9671


7000 2000 245.10 -1399.23 1420.54 -1.3974


9000 2000 306.39 -957.06 1014.43 -1.2640



11000 2000 229.31 -675.36 713.22 -1.2d35


13000 2000 157.24 -483.80 508.71 -1.2566


15000 2000 106.70 -356.71 372.33 -1.2801


17000 2000 73.30 -270.68 280.43 -1.3063


19000 2000 51.36 -211.07 217.23 -1.3321


21000 2000 36.75 -168.81 172.76 -1 3564


1000 4000 -d2327.79 -97247.95 106060.39 -1.9813


3000 4000 -1222.37 -13244.89 13301.17 -1.6628


5000 4000 1358.17 -3666.89 3910.34 -1.2161


7000 4000 1077.23 -1591.73 1921.99 -.9758


9000 4000 714.07 -902.53 1150.84 -.9015



11000 4000 463.20 -589.46 749.68 -.9048


13000 4000 303.79 -415.05 514.35 -.9390


15000 4000 203.43 -305.87 367.34 -.9839


17000 4000 139.51 -232.83 271.43 -1.0310


19000 4000 97.98 -181.91 206.62 -1.0767



"21000 4000 70.38 
 -145.35 161.49 -1.1199


1000 6000 210423 44 -15336.63 210981.59 -.0728


3000 6000 17672.71 -6032.24 18673.86 -.3289


5000 6000 4772.50 -2261.52 5281.21 - 4425


7000 6000 2042.89 -1072.73 2307.41 -.4835



http:18673.86
http:17672.71
http:210981.59
http:15336.63
http:13301.17
http:13244.89
http:106060.39
http:97247.95
http:d2327.79
http:73574.67
http:64956.74
http:34552.17
http:7460.80--123.11
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X Y X FIELD Y FIELD TOTAL THETA 

9000 6000 1093.99 -631.81 1263.32 -.5237 
11000 6000 655.36 -427.21 782.31 -.5777 
13000 6000 418.42 -311.83 521.84 -.6405 
15000 6000 278.75 -237.61 366.28 -.7059 
17000 6000 191.85 -186.06 267.25 -.7701 
19000 6000 135.65 -148.64 201.24 -.8310 
21000 6000 98.18 -120.74 155-.62 -.8881 
1000 8000 18077.88 32606.24 37282.39 1.0646 
3000 8000 11414.12 5261.37 12568.38 .4319 
5000 8000 d725.81 563.86 4759.33 .1188 
7000 8000 2246.16 -134.77 2250.20 -.0599 
9000 8000 1229.38 -226.77 1250.12 -.1824 

11000 8000 .742.58 -215.60 773.25 -.2826 
13000 8000 478.86 -187.20 514.15 -.3727 
15000 8000 323.02 -158.48 359.85 -.d564 
17000 8000 225.34 -133.35 261.84 -.5343 
19000 8000 161.45 -112.08 196.54 -.6068 
21000 8000 118.28 -94.50 151.40 -.6741 
1000 10000 2631.71 9182.00 9551.70 1.2917 
3000 10000 4116.18 4a04.92 6028.78 .8193 
5000 10000 2896.25 1547.05 3283.54 .1906 
7000 10000 1777.12 483.03 1841.60 .2654 
9000 10000 1102.76 111.90 1108.42 .1011 

II0.o 10000 712.94 -20.71 713.24 -.0290 
13000 10000 479.75 -67.37 484.45 -.1395 
15000 10000 333.74 -80.73 343.37 -.2373 
17000 10000 238.55 -80.62" 251.80 -.3259 
19000 10000 174.38 -75.18 189.90 -.4071 
21000 10000 129.96 -67.94 146.64 -.4817 
1000 12000 748.58 3825.96 3898.50 1.3776 
3000 12000 1598.30 2610.45 3060.89 1.0214 
5000 12000 1556.23 1395.26 2090.12 .7309 
7000 12000 1199.36 662.58 1370.21 .5047 
9000 12000 860.01 291.66 908.12 .3270 
11000 12000 609.a6 112.35 619.73 .1823 
13000 12000 435.98 26.07 436.76 .0597 
15000 12000 316.79 -15.06 317.14 -.0475 
17000 12000 234.00 -33.81 236.43 -.1435 
19000 12000 175.57 -41.23 180 35 -.2307 
21000 12000 133.65 -42.89 140.36 -.3106 
1000 14000 296.39 1984.18 2006.20 1.4225 
3000 14000 723.55 1573.04 1731.51 1.1396 
5000 14000 845.55 1044.32 1343.71 .8902 
7000 14000 767.55 620.30 986.'87 .6797 
9000 14000 623.99 344.12 712.58 .5040 
11000 14000 484.45 179.98 516.81 .3557 
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X Y X FIELD Y FIELD TOTAL THETA 

13000 14000 370.29 85.95 380.14 .2281 
15000 14000 282.64 32.89 284.55 .1159 
17000 14000 216.82 3.36 216.84 .0155 
19000 14000 167.62 -12.68 168.10 -.0755 
21000 14000 130.74 -20.94 132.41 -.1588 
1000 16000 142.35 1173.79 1182.39 1.4501 
3000 16000 372.18 1004.45 1071.18 1.2160 
5000 16000 483.71 754.30 896.07 1.0006 
7000 16000 490.83 515.07 711.48 .8095 
9000 16000 440.14 329.57 549.85 .6427­
11000 16000 370.05 200.88 421.06 .4973 
13000 16000 301.17 116.66 322.98 .3696 
15000 16000 241.51 63.21 2d9.64 .2560 
17000 16000 192.67 29.86 194.97 .1537 
19000 1,6000 153.74 9.36 154.03 .0608 
21000 16000 123.08 -3.00 123.12 -.0244 
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GISH AND WAIT MODEL 

CHARGE CENTER 1 CHARGE CENTER 2 CHARGE CENTER 3 
HEIGHT COULOMBS HEIGHT COULOMBS HEIGHT COULOMBS 

6096.00 39.00 3048.00 -39.00 .00 .00 

X Y X FIELD Y FIELD TOTAL THETA-­

1000 0 -.00 46473.19 46473.19 1.5708 
3000 0 .00 13560.42 13560.42 1.5708 
5000 0 -.00 1791.56 1791.56 1.5708 
7000 0 .00 -672.18 -672.18 -1.5708 
9000 0 .00 -966.69 -966.69 -1.5708 

11000 0 .00 -841.81 -841.81 -1.5708 
13000 0 .00 -676.21 -676.21 -1.5708 
15000 0 .00 -541.02 -541.02 -1.5078 
17000 0 .00 -440.81 -440.81 -1.5708 
19000 0 -.00 -368.09 368.09 -1.5708 
21000 0 .00 -315.17 -315.17 -1.5708 
1000 2000 -108718.89 109a32.34 15d257.06 2.3529 
3000 2000 -21174.68 4780.39 21707.59 2.9196 
5000 2000 -3802.59 -948.36 3919.07 -2.8972 
7000 2000 -504.58 -1243.51 1341.98 -1.9563 
9000 2000 114.77 -1006.48 1013.00 -1 4573 

11000 2000 187.85 -757.27 780.22 -1.3276 
13000 2000 157.06 -565.07 586.50 -1.2997 
15000 2000 116.66 -426.54 442.21 -1.3038 
17000 2000 84.33 -328.00 338.67 -1.3191 
19000 2000 61.00 -257.49 26d.62 -1.3382 
21000 2000 44.61 -206.39 211.15 -1.3579 
1000 4000 -104554.09 -181997.62 209892.09 -2.0922 
3000 4000 -10832.73 -23238.61 25639.44 -2.0070 
5000 4000 -803.15 -5802.10 5857.43 -1.7084 
7000 4000 509.48 -2232.55 2289.94 -1.346d 
9000 4000 578.85 -1172.51 1307.61 -1.1122 
11000 4000 452.19 -741.18 868 24 -1.0230 
13000 4000 325.58 -516 84 610.84 -1.0087 
15000 4000 230.37 -380.52 444.82 -1.0264 
17000 4000 163.69 -290.07 333.07 -1.0570 
19000 4000 117.79 -226.91 255.66 -1.0920 
21000 4000 86.10 -181.33 200.73 -1.1275 
1000 6000 334420.31 -655d1.23 340782.31 -.1935 
3000 6000 25453.36 -13660.82 28887.57 -.4926 
5000 6000 5864.96 -4583.87 7443.76 -.6634 
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X Y X FIELD Y FIELD TOTAL THETA 

7000 6000 2295.37 -1901.85 2980.90 -.6919 
9000 6000 1211.50 -984.07 1560.81 -.6822 

11000 6000 738.83 -607.15 956.30 -.6879 
13000 6000 483.46 -420.12 640.50 -.7154 
15000 6000 329.47 -311.14 453.16 -.7568 
17000 6000 231.05 -240.02 333.16 -.8044 
19000 6000 165.83 -190.20 252.34 -.8537 
21000 6000 121.47 -153.73 195.93 -.9021 
1000 8000 32652.30 54711.66 63714.52 1.0327 
3000 8000 18372.59 6858.57 19611.02 .3573 
5000 8000 6873.42 65.88 6873.7A .0096 
7000 8000 3002.36 -547.50 3051.88 -.1804 
9000 8000 1557 87 -467.76 1626.58 -.2917 

11000 8000 917.97 -357.29 985.05 -.3712 
13000 8000 587.85 -277.19 649.92 -.4406 
15000 8000 397.35 -220.69 454.52 -.5070 
17000 8000 278.74 -179.23 331.39 -.5714 
19000 8000 201.04 -147.64 2d9.43 -.6334 
21000 8000 418.25 -122.96 192.61 -.6924 
1000 10000 4416.47 14565:66 15220.50 1.2764 
3000 10000 6586.64 6468.16 9231.52 .7763 
5000 10000 4350.91 1974.11 4777 82 .4259 
7000 10000 2512.04 481.38 2557.75 .1893 
9000 10000 1485.50 37.40 1485.97 .0252 

11000 10000 930.13 -90.61 934.53 -.0971 
13000 10000 614.63 -122.40 626.70 -.1966 
15000 10000 423.93 -123.41 441.53 -.2833 
17000 10000 302.16 -114.40 323.09 -.3619 
19000 10000 220.97 -102.57 243 62 -.a346 
21000 10000 165.01 -90.60 188.25 -.5021 
1000 12000 1196.20 5814.28 5936 05 1.3679 
3000 12000 2491.73 3826.18 4566.00 .9936 
5000 12000 2333.49 1919.59 3021.59 .688a 
7000 12000 1724.09 839.38 1917 56 .4531 
9000 12000 1190.52 332.74 1236.15 .2725 

11000 12000 819.34 107.33 826.34 .1303 
13000 12000 574.33 7.58 574.38 .0132 
15000 12000 412.00 -36.05 413.58 -.0873 
17000 12000 302.12 -53.86 306.89 -.1764 
19000 12000 225.87 -59.41 233.56 -.2572 
21000 12000 171.73 -59.08 181.61 -.3313 
1000 I1000 456.98 2925.56 2961.03 1.4158 
3000 14000 1099.50 2273.60 2525.50 1.1204 
5000 14000 1253.13 1456.99 1921.76 .8605 
7000 14000 1104.81 827.48 1380 34 .6429 
9000 14000 873.05 436.67 976.17 .4638 
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X Y X FIELD Y FIELD TOTAL THETA 

11000 14000 661.57 215.99 695.94 .3156 
13000 14000 496.24 95.67 505.37 .1905 
15000 14000 373.66 30.78 374.92 .0822 
17000 14000 284:04 -3.87 284.06 -.0136 
19000 14000 218.33 -21.90 219.43 -.1000 
21000 14000 169.73 -30.69 172.48 -.1789 
1000 16000 213.59 1693.36 1706.78 1.4453 
3000 16000 553.23 1431.78 1534.94 1.2021 
5000 16000 707.20 1052.13 1267.72 .9790 
7000 16000 703.10 698.73 991.25 .7823 
9000 16000 617.32 433.55 75A.35 .6123 
11000 16000 509 07 256.01 569.82 .4660 
13000 16000­ 407.65 143.80 432.27 .3391 
15000 16000 322.76 74.81 331.31 .2278 
17000 16000 255.06 32.95 257.18 .1285 
19000 16000 202.18 7.85 202.34 .0388 
21000 16000 161.14 -6.94 161.28 -.0431 
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MALAN MODEL



CHARGE CENTER 1 CHARGE CENTER 2 CHARGE CENTER 3 
HEIGHT COULOMBS HEIGHT COULOMBS HEIGHT COULOMBS 
10000.00 40.00 5000.00 -40.00 2000.00 10.00 

X Y X FIELD Y FIELD TOTAL THETA 

1000 0 .00 -12251.73 12251.73 -1.5708 
3000 0 -.00 4015.52 4015.52 1.5708 
5000 0 .00 2591.42 2591.52 1.5708 
7000 0 -.00 632.d8 632.48 1.5708 
9000 0 .00 -247.33 -247.33 -1.5708 

11000 0 .00 -537.95 -537.95 -1.5708 
13000 0 .00 -587.30 -587.30 -1.5708 
15000 0 .00 -551.52 -551.52 -1.5708 
17000 0 .00 -492.79 -492.79 -1.5708 
19000 0 .00 -433.99 -433.99 -1.5708 
21000 0 .00 -382.39 -382.39 -1.5708 
1000 2000 78723.22 28109.79 83591.31 .3430 
3000 2000 -2692.49 10027.17 10382.37 1.8331 
5000 2000 -3037.11 2608.98 4003.85 2.4319 
7000 2000 -1313.15 320.30 1351.65 2.9024 
9000 2000 -449.35 -366.78 580.04 -2.4570 

11000 2000 -102.73 -530.26 540.12 -1.7622 
13000 2000 21.59 -520.62 521.07 -1.5294 
15000 2000 58.41 -459.97 463.67 -1.44d5 
17000 2000 62.82 -391.33 396.34 -1.4116 
19000 2000 55.43 -328.87 333.68 -1.4009 
21000 2000 47.45 -276.16 280.20 -1.4006 
1000 4000 -117514.45 133725.22 178022.72 2.2918 
3000 4000 -24778.07 8331.59 26141.32 2.8172 
5000 4000 -6751.43 -378.73 6762.04 -3.0856 
7000 4000 -2037.31 -1102.32 2316.41 -2.6d56 
9000 4000 -540.37 -954.34 1096.70 -2.0860 

11000 4000 -42.81 -754.78 756.00 -1.6275 
13000 4000 111,.29 -595.46 605.77 -1.3860 
15000 4000 144.15 -474.77 496.17 -1.2760 
17000 4000 135.96 -382.97 406.39 -1.2297 
19000 4000 116.25 -312.38 333.31 -1.2145 
21000 4000 95.57 -257.55 274.71 -1.2155 
1000 6000 -120686.14 -142335.00 186612.97 -2.2741 
3000 6000 -23275.31. -19824.02 30573.39 -2.4361 
5000 6000 -4897.77 -6664.76 8270.87 -2.2046 
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X Y X FIELD Y FIELD TOTAL THETA 

7000 6000 
 -976.07 -2978.22 
 3134.08 -1.8875

9000 6000 16.83 -1586.22 1586.31 -1.5602
11000 
 6000 265.29 
 -969.45 1005.09 -1.3037



13000 
 6000 297.59 -657.70 721.90 -1.1459
15000 6000 
 266.77 -480.23 549.35 -1.0637

17000 6000 
 222.12 -368.41 
 430.91 -1.0282

19000 
 6000 179.59 -292.18 342.97 -1.0197
21000 6000 143.60 
 -237.19 277.27 -1.0264

1000 8000 
 21198.36 -95907.80 98222.58 -1.3533

3000 8000 9820.07 -27568.87 29265.62 -1.2286

5000 8000 
 3454.41 -8824.13 
 9475.19 -1.1977
7000 8000 1714.37 -3563.27 3954.23 -1.1224

9000 8000 1067.79 -1741.09 2042.45 -1.0207


11000 8000 
 742.80 -990.34 1237.95 
 -.9273
13000 8000 
 544.33 
 -634.98 836.36 
 -.8621
15000 
 8000 409.54 -445.56 604.19 -.8275

17000 8000 
 313.02 -333.47 457.35 -.8170

19000 8000 
 241.97 -260.99 355.90 -.8232
21000 8000 
 188.84 -210.66 282.91 -.8399

1000 10000 356977.94 
 -12116.47 357183.50 -.0339

3000 10000 34966.09 -7850.73 35836.60 -.2209
5000 10000 9876.40 -4179.14 10724.20 -.4003
7000 10000 3963.03 -2198.17 4531.83 -.5064
9000 10000 1994.93 -1232.97 

.-

2345.20 -.5536
11000 10000 1175.08 
 -753.90 1396.13 
 -.5704

13000 10000 
 768.44 -502.01 917.89 -.5787

15000 
 10000 537.57 -359.77 646.85 -.5898
17000 10000 ­392.89 
 -273.12 478.49 
 -.4076

19000 10000 
 295.74 -216.30 366.O -.6315
21000 
 10000 227.34 -176.57 287.85 -.6604
1000 12000 31233.70 
 58117 42 65978.62 1.0777

3000 12000 20824.47 10466.50 23306.79 .4657

5000 12000 9037.53 
 1317.70 9133.19 .14d8
7000 12000 4310.54 
 -266.50 4316.48 
 -.0525
9000 12000 
 2316.31 -417.18 2353.58- -.1782


11000 12000 1381.88 
 -368.39 1430.15 -.2605
13000 12000 
 895.93 -295.87 943.52 -.3190

15000 12000 
 618.29 
 -236.96 662.14 
 -.3660
17000 12000 
 446.61 -193.30 486.64 -.4085
19000 12000 
 333.48 -160.96 370.29 -.4497
21000 12000 
 255.22 -136.36 289.36 -.4907

1000 14000 4700.79 
 16794.50 17439.98 1.2979

3000 14000 7520.32 8299.14 11199.60 .8346



http:11199.60
http:17439.98
http:16794.50
http:23306.79
http:10466.50
http:20824.47
http:65978.62
http:31233.70
http:10724.20
http:35836.60
http:34966.09
http:357183.50
http:12116.47
http:356977.94
http:29265.62
http:27568.87
http:98222.58
http:95907.80
http:21198.36
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X Y X FIELD Y FIELD TOTAL THETA 

5000 14000 5424.10 3011.47 6204.01 .5068 
7000 14000 3362.94 961.95 3497.82 .2786 
9000 14000 2082.60 243.79 2096.82 .1165 

11000 14000 1341.62 -2.14 1341.62 -.0016 
13000 14000 905.85 -83.00 909.65 -.0914 
15000 14000 638.60 -105.42 647.24 -.1636 
17000 14000 466.70 -107.03 478.82 -.2254 
19000 14000 351.07 -101.35 365.41 -.2810 
21000 14000 270.20 -93.40 285.89 -.3328 
1000 16000 1366.02 7108.68 7238.7d 1.3809 
3000 16000 2945.49 4908.01 5724.03 1.0303 
5000 16000 2903.74 2666.07 3942.04 .7428 
7000 16000 2255.76 1287.59 2597.37 .5187 
9000 16000 1621.80 584 09 1723.78 .3457 
11000 16000 1150.72 246.31 1176.79 .2109 
13000 16000 826.67 85.77 831.11 .1034 
15000 16000 606.64 9.07 606.71 .0150 
17000 16000 455.31 -27.59 456.15 -.0605 
19000 16000 348.89 -44.61 351.73 -.1272 
21000 16000 272.20 -51.70 277.07 -.1877 
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MODIFIED SIMPSON AND ROBINSON MODEL



CHARGE CENTER 1 CHARGE CENTER 2 CHARGE CENTER 3 
HEIGHT COULOMBS HEIGHT COULOMBS HEIGHT COULOMBS 

6000.00 4.60 3000.00 -11.30 1500.00 5.97 

X Y X FIIELD Y FIELD TOTAL THETA 

1000 0 .00 -10538.48 -10538.48 -1.5708 
3000 0 .00 1939.86 1939.85 1.5708 
5000 0 -.00 770.68 770,68 1.5708 
7000 0 -.00 177.66 177.66 1.5708 
9000 0 .00 -20.31 -20.31 -1.5708 

11000 0 -.00 -88.79 88.79 -1.5708 
13000 0 -.00 -114.33 114.33 -1.5708 
15000 0 -.00 -124.48 124.48 -1.5708 
17000 0 .00 -218.68 -128.68 -1.5708 
19000 0 .00 -130'.42 -130.42 -1.5708 
21000 0 -.00 -131.11 131.11 -1.5708 
1000 2000 2650.72 52024.13 52091.62 1.5199 
3000 2000 -3226.18 2930.23 4358.27 2.4042 
5000 2000 -918.40 537.89 106d.33 2.6118 
7000 2000 -279.52 153.89 319.08 2.6383 
9000 2000 -93.95 41.60 102.75 2.7247 
11000 2000 -34.56 .63 34.56 3.1235 
13000 2000 -13.63 -15.77 20.84 -2.2837 
15000 2000 -5.63 -22-64 23.33 -1.8145 
17000 2000 -2.35 -25.57 25.68 -1.6630 
19000 2000 -.96 -26.79 26.81 -1.6066 
21000 2000 -.34 -27.25 27.25 -1.5832 
1000 4000 -29521.43 -36532.12 46969.25 -2.2505 
3000 4000 -4359.65 -2692.04 5123.83 -2.5884 
5000 4000 974.39 -440.09 1069.16 -2.7174 
7000 4000 -304.88 -102.55 321.66 -2.8171 
9000 4000 -111.29 -3d.15 116.41 -2.8439 
11000 4000 -44.17 -19.65 48.34 -2.7231 
13000 4000 -18.43 -16.91 25.02 -2.3993 
15000 4000 -7.89 -16.60 18.38 -2.01a3 
17000 4000 -3.35 -16.64 16.97 -1.7693 
19000 4000 -1.32 -16.62 16.67 -1.6502 
21000 4000 -.41 -16.52 16.53 -1.5956 
1000 6000 38668.84 -7161.18 39326.34 -.1831 
3000 6000 1607.50 -2427.65 2911.46 -.9859 
5000 6000 -21.39 -690.32 690.65 -1.6018 
7000 6000 -90.12 -220.81 238.49 -1.9583 
9000 6000 -53.42 -82.80 98.54 -2.1438 
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X Y X FIELD Y FIELD TOTAL THETA 

11000 6000 -26.85 -37.86 46.42 -2.1877 
- 13000 6000 -12.78 -21.92 25.37 -2.0985 
15000 6000 -5.82 -15.78 16.81 -1.92dO0 
17000 6000 -2.44 -13.17 13.39 -1.7544 
19000 6000 -.83 -11.92 11.95 -1.6404 
21000 6000 -.08 -11.23 11.23 -1.5778 
1000 8000 3119.30 4820.74 5741.91 .9965 
3000 8000 1548.54 188.47 1559.96 .1211 
5000 8000 381.93 -235.11 448.49 -.5518 
7000 8000 80.84 -145.22 167.08 -1.0658­
9000 8000 12.37 -74.57 75.59 -1.4065 

11000 8000 -.95 -39.09 39.10 -1.5951 
13000 8000 -2.06 -22.69 22.79 -I.6615 
15000 8000 -1.10 -15.06 15.10 -1.6439 
17000 8000 -.20 -11.36 11.36 -1.5885 
19000 8000 .34 -9.46 9.47 -1.5350 
21000 8000 .60 -8.41 8.d3 -1.5000 
1000 10000 389.07 1106.02 1172.46 1.2325 
3000 10000 525.92 367.35 641.52 .6097 
5000 10000 277.42 19.99 278.14 .0719 
7000 10000 113.39 -46.45 122 53 -.3888 
9000 10000 43.38 -41.14 59.79 -.7589 

11000 10000 16 93 -27.92 32.65 -1.0257 
13000 10000 7.27 -18.44 19.82 -1.1950 
15000 10000 3.73 -12.78 13.31 -1.2868 
17000 10000 2.36 -9.55 9.84 -1.3285 
19000 I0000 1.76 -7.71 7.90 -1.3468 
21000 10000 1.43 -6.62 6.77 -1.3583 
1000 12000 93.86 377.89 389.37 1.3274 
3000 12000 181.48 210.26 277.75 .8587 
5000 12009 145.99 66.95 160.61 .4300 
7000 12000 86.33 3.99 86.42 .0462 
9000 12000 45.34 -13.40 47.28 -.2873 

11000 12000 23.26 -14.64 27.48 -.5617 
13000 12000 12.34 -12.05 17.24 -.7734 
15000 12000 7.04 -9.38 11.72 -.9270 
17000 12000 4.40 -7.41 8.61 -1.0351 
19000 12000 3,00 -6.08 6.78 -1.1119 
21000 12000 2.21 -5.22 5.66 -1.1707 
1000 14000 31.83 164.82 167.86 1.3800 
3000 14000 72.40 114.53 135.50 1.0071 
5000 14000 73.86 56.83 93.20 .6558 
7000 14000 55.56 19.21 58.78 .3328 
900011000 1400014000 36.1622.20 1.52-4.80 36.2022.71 .0419-.2130 
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X Y X FIELD Y FIELD TOTAL THETA 

13000 14000 13.54 -6.19 14.89 -.4291 
15000 14000 8.48 -5.88 10.32 -.6067 
17000 14000 5.56 -5.18 7.60 -.7499 
19000 14000 3.84 -4.51 5.92 -.8656 
21000 14000 2.79 -3.98 4.86 -.9603 
1000 16000 13.30 84.13 85.17 1.4140 
3000 16000 33.00 65.71 73.53 1.1054 
5000 16000 38.80 40.76 56.27 .8100 
7000 16000 34.25 20.22 39.77 .5332 
9000 16000 26.01 7.43 27.05 .2784 

11000 16000 18.29 .87 18.31 .0476 
13000 16000 12.47 -1.98 12.63 -.1578 
15000 16000 8.50 -2.99 9.01 -.3378 
17000 16000 5.90 -3.18 6.71 -.4942 
19000 16000 4.22 -3.07 5.22 -.6293 
21000 16000 3.11 -2.88 4.24 -.7463 
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MODIFIED GTSH AND WAIT MODEL



CHARGE CENTER 1 CHARGE CFNTER 2 CHARGE CENTER 3 
HEIGHT COULOMBS HEIGHT COULOMBS HEIGHT COULOMBS 

6096.00 1.52 3048.00 -2.64 .00 .00 

X Y X FIELD Y FIELD TOTAL THETA­

1000 0 .00 3545.22 3545.22 1.57C8 
3000 0 -.00 1187.98 1187.98 1.5708 
5000 0 .00 250.43 250.43 1.5708 
7000 0 .00 -13.31 -13.31 -1.5708 
9000 0 -.00 -91.15 91-15 -1.5708 
11000 0 .00 -116.55 -116.55 -1.5708 
13000 0 .00 -125.58 - -125.58 -1.5708 

15000 0 .00 -128.98 -128.98 -1.5708 
17000 0 .00 -130.27 -130.27 -1.5708 
19000 0 .00 -130.73 -130 73 -1.5708 
21000 0 .00 -130.86 -130.86 -1.5708 
1000 2000 -7475.19 8083.68 11010 19 2.3171 
3000 2000 -1617.1'9 741.00 1778.87 2.7119 
5000 2000 -385.38 158.82 416.83 2.7507 
7000 2000 -108.76 35.33 114.35 2.8275 
9000 2000 -34.87 -3.81 35.07 -3.0328 

11000 2000 -12.29 -18.04 21.83 -2.1690 
13000 2000 -4.62 -23.54 23.99 -1.7645 
15000 2000 -1.78 -25.71 25.77 -1.6399 
17000 2000 -.66 -26.54 26.55 -1.5958 
19000 2000 -.21 -26.82 26.83 -1.5785 
21000 2000 -.02 -26.87 26.87 -1.5716 
1000 4000 -7871.57 -10551.76 13164.40 -2.2117 
3000 4000 -1323.56 -1069.4d 1701.62 -2.d620 
5000 4000 -335.01 -203.10 391.77 -2.5966 
7000 4000 -108.12 -56.04 121.78 -2.6634 
9000 4000 -39.01 -25.36 46.53 -2.5651 

11000 4000 -14.98 -18.42 23.74 -2.2536 
13000 4000 -5.93 -16.76 17.78 -1.9109 
15000 4000 -2.32 -16.30 16.46 -1.7123 
17000 4000 -.83 -16.09 16.12 -1.6224 
19000 4000 -.21 -15.94 15.94 -1.5838 
21000 4000 .05 -15.80 15.80 -1.5677 
1000 6000 12714.70 -3423.76 13167.60 -.2530 
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X Y X FIELD Y FIELD TOTAL THETA 

3000 6000 621.85 -834.46 1040.68 -.9304 
5000 6000 17.03 -256.63 257.19 -1.5045 
7000 6000 -24.18 -89.68 92.89 -1.8342 
9000 6000 -15.81 -38.13 41.28 -1.9639 

IIOGJ 6000 -7.83 -20.88 22.30 -1.9297 
13000 6000 -3.46 -14.62 15.02 -'.8032 
15000 6000 -1.33 -12.12 12.20 -1.6801 
17000 6000 -.35 -11.01 11.02 -1.6024 
19000 6000 .08 -10.44 10.45 -1.5631 -
21000 6000 .25 -10.11 10.12 -1.5d62­
1000 8000 1201.91 1821.65 2182.42 .9876 
3000 8000 580.59 79.03 585.95 .1353 
5000 8000 151.69 -83.67 173.24 -.5041 
7000 8000 36.74 -56.27 67.20 -.9924 
9000 8000 8.45 -31.35 32.47 -1.3076 

11000 8000 1.92 -18.54 18.64 -1.4675 
13000 8000 .66 -12.49 12.51 -1.5183 
15000 8000 .53 -9.61 9.63 -1.5156 
17000 8000 .57 -8.19 8.21 -1.5011 
19000 8000 .58 -7.43 7.45 -1.4925 
21000 8000 .55 -7.00 7.02 -1.4919 
1000 10000 147.57 420.51 445.66 1.2333 
3000 10000 199.73 141.81 244.95 .6174 
5000 10000 107.87 9.84 108.32 .0909 
7000 10000 46.23 -17.46 49.42 -.3612 
9000 10000 19.05 -16.94 25.49 -.7270 
11000 10000 8.28 -12.67 15,13 -.9921 
13000 10000 4.05 -9.39 10.23 -1.1635 
15000 10000 2.32 -7.38 7.74 -1.2658 
17000 10000 1.54 -6.21 6.40 -1.3272 
19000 10000 1.14 -5.52 5.64 -1.3677 
21000 10000 .89 -5.11 5.18 -1.3982 
1000 12000 35.78 144.76 la9.11 1.3285 
3000 12000 69.59 81.26 106.99 .8626 
5000 12000 56.88 26.50 62.75 .4360 
7000 12000 34.59 1.73 34.64 .0499 
9000 12000 18.92 -5.70 19.76 -.2928 
11000 12000 10.21 -6.73 12.23 -.5828 
13000 12000 5.75 -6.07 8.36 -.8129 
15000 12000 3.47 -5.24 6.28 -.9853 
17000 12000 2.27 -4.58 5.11 -1.1104 
19000 12000 1.59 -4.12 4.42 -1.2015 
21000 12000 1.18 -3.81 3.99 -1.2695 
1000 14000 12.26 63.59 64.76 1.3803 
3000 14000 28.05 44.40 52.52 1.0074 
5000 14000 28.97 22.21 36.51 .6540 
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X Y X FIELD Y FIELD TOTAL THETA 

7000 14000 22.23 7.46 23.45 .3237 
9000 14000 14.87 .26 14.87 .0178 

11000 14000 9.44 -2.52 9.77 -.2606 
13000 14000 5.98 -3.31 6.83 -.5054 
15000 1-4000 3.89 3.36 5.14 -.7120 
17000 14000 2.64 -3.19 4.14 -.879­
19000 14000 1.87 -2.99 3'.53 -1.0117 
21000 14000 ,1.39 -2.83 3.15 -1.1152 
1000 16000 5.18 32.64 33.05 1.4133 
3000 16000 12.92 25.55 28.63 1.1025 
5000 16000 15.35 15.88 22.08 .802d 
7000 16000 13.75 7.81 15.81 .5162 
9000 16000 10.65 2.66 10.98 .2445 

11000 16000 7.68 -.09 7.68 -.0118 
13000 16000 5.38 -1.37 5.55 -.2500 
15000 16000 3.78 -1.90 4.22 -.4653 
17000 16000 2.69 -2.06 3.39 -.5541 
19000 16000 1.97 -2.09 2.87 -.8137 
21000 16000 1.48 Z2,05 2.53 -.9455 
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MODIFIED MALAN MODEL



.CHARGE CENTER 1 CHARGE CFNTER 2 CHARGE CENTER 3 
HEIGHT COULOMBS HEIGHT COULOMBS HEIGHT COULOMBS 

10000.00 20.10 5000.00 -36.80 2000.00 12.70 

X Y X FIELD Y FIELD TOTAL THETA -

1000 0 .00 -19578.95 19578.95 -1.5708 
3000 0 -.00 3637.27 3637.27 1.5708 
5000 0 -.00 3716.05 3716.05 1.5708 
7000 0 -.00 1895.86 1895.86 1.5708 
9000 0 .00 834.24 834.2a 1.5708 

11000 0 -.00 318.36 318.36 1.5708 
13000 0 -.00 74.38 74.38 1.5708 
15000 0 -.00 -41.76 41.76 -1.5708 
17000 0 .00 -97.60 -97.60 -1 5708 
19000 0 .00 -124.A4 -124.44 -1.5708 
21000 0 -.00 -137.05 137.05 -1.5708 
1000 2000 103233.12 27386.64 106804.06 .2593 
3000 2000 -220.84 11093.19 11095.39 1.5a07 
5000 2000 -2687.20 4168.82 4959.85 2.1434 
7000 2000 -1469.13 1723.87 2264.96 2.2766 
9000 2000 -694.81 750.14 1022.49 2.3179 

11000 2000 -323.74 326-33 459.67 2.3522 
13000 2000 -152.78 131.82 201.79 2.4297 
15000 2000 -73.20 39.62 83.24 2.6456 
17000 2000 -35.29 -4.78 35.62 -3.0069 
19000 2000 -16.79 -26.07 31.01 -2.1430 
21000 2000 -7.61 -35.92 36.72 -1.7795 
1000 4000 -106052.11 132575 97 169774.69 2.2455 
3000 4000 -22433 32 12080.09 25479.06 2.6476 
5000 4000 -6881.11 2186.94 7220.28 2.8339 
7000 4000 -2651.36 604.03 2719.30 2.9176 
9000 4000 -1133.96 219.37 1154.98 2.9505 

11000 4000 -514.44 83.59 521.19 2.9805 
13000 4000 -242.18 22.49 213.22 3.0490 
15000 4000 -116.43 -7.75 116.69 -3.0752 
17000 4000 -56.17 -22.75 60.60 -2.7568 
19000 4000 -26.49 -29.72 39.81 -2.2988 
21000 4000 -11.62 -32.40 34.42 -1.9151 
1000 6000 -112747.42 -120485.62 165011.41 -2.3230 
3000 6000 -24307.53 -12275.94 27231.50 -2.6739 
5000 6000 -6793.48 -3155.99 7490.77 -2.7067 
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X Y X FIELD Y FIELD TOTAL THETA 

7000 6000 -2468.76 -1113.56 2708.28 -2.7179 
9000 6000 -1045.96 -455.83 1140.97 -2.7306 

11000 6000 -481.72 -211.68 526.18 -2.7276 
13000 6000 -231.42 -113.86 257.91 -2.6844 
15000 6000 -112.84 -72.00 133.85 -2.5737 
17000 6000 -54.37 -52.51 75.59 -2.3736 
19000 6000 -Z4.85 -42.35 49.10 -2.1015 
21000 6000 -9.82 -36.26 37.57 -1.8354 ­

1000 8000 6212.02 -60396.07 60714.70 -1.4683 
3000 8000 -268.39 -18165.98 18167.96 -1.5856 
5000 8000 -1294.72 -5611.02 5758.46 -1.7976 
7000 8000 -840.03 -2057.74 2222.60 -1.9584 
9000 8000 -468.22 -867.77 986.04 -2.0656 

11000 8000 -251.55 -408.78 479.98 -2.1225 
13000 8000 -131.84 -212.91 250.42 -2.1252 
15000 8000 -66.51 -122.65 319.53 -2.0677 
17000 8000 -31.09 -78.18 84.14 -1.9493 
19000 8000 -12.11 -54.75 56.07 -1.7885 
21000 8000 -2.16 -41.49 41.54 -1.6227' 
1000 10000 178385.59 -10509.62 178694.91 -.0588 
3000 10000 15647.43 -6656.05 17004.27 -.4022 
5000 10000 3283.88, -3374.60 4708.69 -.7990 
7000 10000 794.46 -1638.40 1802.85 -1.1193 
9000 10000 188.63 -817 80 839.28 -1 3441 

11000 10000 36.77 -428.97 430.54 -1.4853 
13000 10000 3.73 -238.40 238.43 -1.5552 
15000 10000 1.04 -141.21 141.22 -1.5634 
17000 10000 4.47 -89.55 89.66 -1.5209 
19000 10000 7.70 -60.86 61.35 -1.4449 
21000 10000 9.56 -44.18 45.20 -1.3577 
1000 12000 15343.80 27077 87 31123.04 1.0553 
3000 12000 9643.77 3652.56 10312.30 .3621 
5000 12000 3639.16 -331 55 3654.24 -.0909 
7000 12000 1391.71 -660.15 1540.34 -.4429 
9000 12000 562.67 -487.56 744 52 -.7140 

11000 12000 244.91 -314.33 398.48 -.9089 
13000 12000 117.72 -198.32 230.62 -1.0351 
15000 12000 64.31 -127.23 142.56 -1.1028 
17000 12000 40.48 -84.50 93.70 -1.1241 
19000 12000 28.86 -58.65 65.36 -1.1135 
21000 12000 22.48 -42.67 48.23 -1.0860 
1000 14000 2204.57 7239.22 7567.46 1.2752 
3000 14000 3376.22 3169.39 4630.75 .7538 
5000 14000 2220.67 792.93 2357.99 .3430 
7000 14000 1197.03 16.01 1197.14 .0134 
9000 14000 620.33 -159.92 640.61 -.2523 

11000 14000 327.34 -162.03 365.25 -.4596 
13000 14000 181.07 -127.25 221.31 -.6126 
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X Y X FIELD Y FIELD TOTAL THETA



15000 14000 106.90 -93.18 141.81 -.7170


17000 
 14000 67.96 -67.41 95.72
 -.7814


19000 14000 46.49 -49.41 67.85 -.8158


21000 14000 33.92 -37.15 50.31 -.8308


1000 
 16000 604.37 2822.63 2886.61 1.3599


3000 16000, 1259.94 1806.48 2202.46 .9618


5000 16000 116'.4l 819.86 1420.81 .6151


7000 
 16000 815.26 271.42 859.25 .3214


9000 16000 516.19 39.06 517.67 .0755



11000 16000 317.21 -40.16 319.74 -.1259


13000 16000 196.48 -57.73 204.79 -.2858


15000 16000 125.36 -54.10 136.53 -.4074


17000 16000 83.34 -45.11 94.76 -.4961


19000 16000 57.98 -36.24 68.37 -.5586


21000 16000 42.17 -28.97 51.16 -.6010



0 , (. OrT -,00 , -Po 
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APPENDIX B



The following program, written for the HP2100 computer, is used to



minimize the percentage of variation as shown in Equation 8 by



varying the values of three charge centers A, B and C which are



located at YA, YB and YC. One charge center ismodified at a time



beginning with A, then B, then C, back to A and so on until an



oscillation is noticed in the percentage of variation. At that point,



the value of INC can be decreased and the program rdstarted using the



A, B and C values which were computed as the oscillation began. The



output gives the values of A, B and C in coulombs and the corresponding



sum of the squares of the percentage of variations.



The initial value of INC was 0.1. Oscillation using this value of 

INC occurred at A = 6.8, B = 13.8 and C = 3.4 for the Simpson and 

Robinson model. ESQRT equalled .187 x 104. Oscillation in the Gish 

and Wait model occurred at A = 2.7 and B = 5 with ESQRT equalling 

.813 x 103 while in the Malan model it occurred at A = 22.9,


B = -40, C = 10 and ESQRT = .269 x 104.



Changing INC to equal .01 and using the A, B and C values found in



the previous step resulted in the following values for the modified



models:
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MODIFIED MODEL A - B C ESQRT


Simpson & Robinson 4.6 -11.3 5.97 522


Gish & Wait 1.52 - 2.64 0.0 624


Malan 20.1 -36.8 12.7 799
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PROGRAM FIELD


REAL INC,MULT


DIMENSION EFLD(9),X(9),EF(9),Y(9)



11 READ (5,3) A,D,C,YA,YB,YC


3 FORMAT (GFIO.1) 

IF (A)13,12,13


13 READ (5,4) A1,A2,A3,A4,A5,A6,A7


4 FORMAT (7A4)



WRITE (6,5) A],A2,A3,A4,A5,A6,A7


5 FORMAT (1HI,45X,7A4,//',3X,"CHARGE CENTER A",5X,"CHARGE CENTER B", 5


1X,"CHARGE CENTER C",/,2X,"HEIGHT",3X,"COULOMBS",3X,"HEIGHT",3X,"CO


2ULOMBS" ,3X,"HEIGHT" ,3X,"COULOMBS") 
WRITE (6,3) YA,A,YB,B,YC,C


VALUE=A


INC=.1


J=l


EF(1)=-1310.


EF(2)=-1160.


EF(3)=-760.


EF(4)=-460.


EF(5)=-260.


EF(6)=-135.


EF(7)=-60.


EF(8)=1.


EF(9)=33000.


X(1)=2500.


X(2)=5000.


X(3)=7500.


X(4)=10000.


X(5)=12500.


X(6)=15000.


X,(7)=17500.


X(8)=20000.


X(9)=13100.


MULT=I./(4.*3.1415*8.85*(1O.*q(-12)))



131 	 II=q 
K=1 

130 	 EXQRT=O.


DO 10 I=1,8,1


EFLD(I)=MULT*((2.*YA*A/(X(I)**2.+YA**2.)**1.5)+(2.YB*B/(X(I)*z2.+


IYB**2.)**I.5)+(2.-YC*C/(X(1)**2.+YCk*2.)**].5))


ESQRT=ESQRT+(EF(I)'-EFLD(I))*(EF(I)-EFLO(I))/(EF(I)*EF(I))



10 CONTINUE


EFLD(9)=MULT*(A/(Y(9)-YA)*-2.-A/(Y(9)+YA)**2.+B/(Y(9)-YB)**2.-B/(Y


1(9)+YB)**2.+C/(Y(9)-YC)**2.-C/(Y(9)+YC)**2.)
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ESQRT=ESQRT+(EF(9)-EFLD(9))*(EF(9)-EFLD(9))/(EF(9)*EF(9))


ESQRT=ESQRT*100.


IF (1I-I) 20,20,30



20 	 ESMIN=ESQRT


GO TO 40



30 I-F (ESQRT-ESMIN) 20,20,50


50 IF (11-2) 60,60,70


60 K=-K



VALUE=VALUE+K*INC


40 	 11=11+I



VALUE=VALUE+K*INC


IF (ESMIN-lO0.) 180,180,80



80 IF (J-1) 90,90,100


90 A=VALUE



GO TO 130


100 IF (J-2) 110,110,120


110 B=VALUE



GO TO 130


120 C=VALUE



GO TO 130


70 IF (J-1) 140,140,150



140 A=VALUE


VALUE=B


J=2


GO TO 190



150 IF (J-2) 160,160,170


160 B=VALUE



VALUE=C


J=3


GO TO 190



170 C=VALUE


VALUE=A


J=l



190 WRITE (6,2) A,B,C,ESMIN


2 FORMAT (4El0.3)



GO TO 131


180 WRITE (6,6)


6 FORMAT(//,1X,"CHARGE A",2X,"CHARGE B",2X,"CHARGE C",3X,"EFLD(1)"',3



IX,"EFLD(2)",3X,"EFLD(3)",3x,"EFLD(4-)",3X,"EFLD(5)",3X,"EFLD(6)",3X


2,'EFLD(7)" ,3X,"EFLD(8)" ,3X,"EFLD(9)")


WRITE (6,1) A,B,C,EFLD(1),EFLD(2),EFLD(3),EFLD(4),EFLD(5),EFLD(6),


IEFLD(7),EFLD(8),EFLD(9)



1 FORMAT (12E10.3)


GO TO 11



12 END
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4?)oDIJGA~s 130INTRODUCTION



An alternative to passive sound insuiation is active electronic control.



In the approach, described earlier by Olson [1,2] and others [3,4], one



connects a microphone, an inverting amplifier, and a loudspeaker in a



negative feedback fashion to reduce noise. In this system (figure 1),



the electric signal produced by the microphone from an incident sound



pressure P1, is amplified by an inverting amplifier with a gain of -Ka*



The amplifier drives the loudspeaker, producing an output pressure Po.



This pressure is summed acoustically with the incident sound pressure Pi.



The resulting pressure at the microphone is the sound pressure error



signal, P ;



Pp = P±i 
 + P
 

The resulting sound pressure level PC at the microphone has been shown to



be less than the incident sound pressure level P,' [1,2,5]. If the



microphone is placed near one's ear, a considerable reduction in the



noise level is observed. However, airborne noise reduction through active



electronic control is confined to a fairly narrow range of frequencies.



This treatise will show that signal time delays from wave propagation



through the acoustic medium and inherent transducer delay are responsible



for this narrow bandwidth limitation. A classical method of lag-lead



compensation will be used to improve the bandwidth of airborne-noise­
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reduction systems developed in the references [1,2,5]. Finally, lag-lead



compensation using maximally-flat (Butterworth) and equal-ripple (Chebyshev)



polynomials will be developed to further extend the bandwidth.



MATH MODEL



The active compensation system of figure 1 isdepicted schematically by



the block diagram in figure 2. Here, -Ka represents the gain of an ideal



amplifier. Gm(S), Gf(s), and Gs(s) are tlie transfer functions of the



microphone, filter, and loudspeaker respectively, in the s domain.



(The transfer function Gf(s) is the principle topic of this paper and



isdiscussed below in detail.) System time delay t is represented by 

eS T' is transformation from the time domain to the frequency domain 

has been accomplished according to the Laplace shift theorem: 

L{y(t-T) UT(t)} = e sT Y(s), where U(t) = {0 t<r (2) 

1t>T



-r Tp + T, where T = wave propagation delay,
P (3) 

and it = total transducer delay.



Time delay T is the sum of transducer delay and acoustic wave propagation



delay. When time delay is present ina feedback control system, numerical



analysis of that system is difficult because of the introduction of the



-
transcendental function e t, in the transfer function. However, a



graphical approach is often adequate for stability analysis of feedback



systems with time delay. This is the method used here.
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Pi + pE 
------­ -+ E Gm(S) - -K, Gf(s) Gs) 

Po 

e- ST 

Block diagram representation 

Figure 2 

microphone 

- PI -Kelectronic 

PO 

L loudspeaker 

Active compensation scheme 

Figure 1 
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The open-loop response (where Gf(s) _1) of an active electronic


airborne-noise controller are shown in figures 3a and 3b. At the higher


frequencies, the phase-frequency relationship becomes linear, indicating


the presence of time delay. This is graphically illustrated in figure 4.


Note that the system phase is the sum of the phase associated with two


poles and the phase that represents pure time delay. At high frequencies,


for which all phase associated with poles and zeros can be considered a


constant, the delay u of equation (4)is simply the slope of the system 

phase function. 

Le = -T (4) 

For the system represented in figures 3a, 3b, and 4 a time delay of



49 psecs is determined. Meeker [51 achieved this result with a



microphone-speaker separation of 3.1 mm (.125 inch), which accounts



only for 9 psecs of signal delay due to acoustic wave propagation (with



an acoustic wave velocity of 3d7 meters/sec.) Approximately 40 lisecs



of delay must be attributed to the transducers, This conclusion is



substantiated by the work of C.A. Ewaskio and O.K. Mawardi [6]. Their



measurements of phase shift in loudspeakers indicated time delays of the



magnitude found above. Transducer delay Tt in equation (3)is equal to



40 lisecs for the system of figures 3a and 3b.
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Figure 3a
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Figure 3b
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The magnitude function in figure 3a indicates a bandwidth of 4 KMz , at 

which point it rolls-off at -12 dB/octave. For this sytem to achieve 

stability without compensation, the open-loop gain must be made le-s than 

unity. 

Lowering the gain of the system, however, decreases its effectiveness.



The acoustic noise intensity Ir is calculated by comparing the sound



pressure error signal P. with the original incident sound pressure P
1



I in decibels is:



(5)
20 logl0 pj
Ir(jw) 
 

The sound pressure is measured at the ,acrophone's diaphragm, P. is



measured with the active electronic control functioning, P1 is measured



with the system off.



From the block diagram (figure 2), P for real frequencies is, 

PI (3w) 

Pa(jw) = l+KaGt(Jw)e-~Jwt (6)3 

where Gt(OW) = Gm(Jw)Gf(jw)G (W). 

Substituting into equation (5), Ir becomes 

Ir(J) 20 lOgl o l l+KaGt(Jw) e-JW i. (7) 



8 

For those real frequencies m, where the open-loop gain is much greater



than unity,IKaGt(Jw) e-jot Il>>, the reduction in the acoustic noise -4



intensity at the microphonets diaphragm is approximately equal to the



system's open-loop gain.



Ir(Jh) xm20 lOglO IK a Gthe I, since Ie-jmtl I. (8)



Thus, for maximum noise reduction, the open-loop gain should be kept as



high as possible.



SYSTEM DESIGN



To obtain both stability and high gain, bandwidth of the system must be



sacrificed. This conclusion will be made clear through graphical stability



analysis in the form of a Nyquist diagram. A polor plot of the open-loop



frequency response of KaGt(j )e for --<w<- is constructed. This plot



is referred to as a Nyquist diagram of KaGt(Jw)e-JT, see figure 3b. A



minimal-phase (no right half-plane zeros) closed-loop system is stable if



and only if the Nyquist diagram of K a Gt(J)e-JwT does not encircle the



(-l,jO) critical' point on the complex plane.



Olson [1,2] and Meeker [5] used lag compensation to obtain stability,



simultaneously obtaining high open-loop gain over a narrow range of



frequencies, see figures 5a and 5b. To obtain a gain of 20dB, the



bandwidth had' to be lowered to 200Hz. The compensated noise-reducing



system of figure 4a has a filter Gf(j), where



Gf(J =_) 1 (9)

jw/1250 +1





00 

20dB-­

phase function 0 

- 90 

OdB­ magnitude functi on - • -180 

300Hz 1OHz 3000Hz 

frequency 

System developed by Olson [1,2] 

Figure 5a 

Im 

(O,j) 

(-1,jO) Re 

Nyguist diagram of Figure 5a



Figure 5b
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The filter Gf(jw) has one pole at 200 Hz. Thus, the Nyquist diagram
 


avoids encirclement of the (-l,jO)critical point, producing a stable system.



From equation (8) and figure 5a, reduction in the noise intensity is found



to be approximately 20d3 up to a frequency of 200 Hz. To increase the



bandwidth of the system in figures 4a and 4b one would like to raise the



-
crossover frequency w_180 of ,e jW . (G-180is defined to'be the



-
frequency where LeJWL isequal to -180 degrees). One would like to move



-180 to infinity, that is eliminate the time delay; however, this is not



physically realizable. In the airborne-noise-reduction system investigated,



a large percentage of the time delay is associated with transducers. With



present state-of-the-art transducers, little can be done to reduce the



inherent time delay. Therefore, to avoid encirclement of the (-ljO



point on the Nyquist diagram, the magnitude function must be less than



unity before the frequency w_180 " Consequently, this frequency, -180
 


must be considered the upper limit on an airborne-noise-reduction system's



bandwidth.



If the bandwidth is to be increased, it must be done through manipulation



of the magnitude function. An increase in the bandwidth may be realized



if the magnitude function is made to roll-off at a greater rate than that



of the one-pole filter in figure 5a, This allows the -3dB bandwidth to



move closer to the upper limit, wl80 . In a minimal-phase system



increased roll-off is always accompanied by additional phase. Hence,



trade-offs must be made.





11



Lag-lead compensation is commonly used to reduce gain while minimizing



excess phase. The transfer function of a lag-lead compensator consists



of a simple pole-zero pair:



Gf(j3) = (10)
l+j / p



The pole is always nearer the origin of the s plane than the zero. Note



that the magnitude function, G (O), has an initial gain of unity. As



w approaches infinity, the gain becomes wp/Wz. Moreover, the phase



function returns to zero as m goes to infinity. Lag-lead compensation



allows the magnitude function to decrease while introducing smaller amounts



of excess phase than lag compensation.



The use of a first-order (both denominator and numerator are first order



polynomials) lag-lead compensator in the airborne-noise-reduction systems



of the references [1,2,5] would extend the bandwidth to 300Hz, see



figures 6a and 6b. The pole-zero location of the compensator have been



determined graphically and found to be



4


l+jw/2.51xlO
G4(aw) = (I1) 
l+jw/1880 

A graphical approach for finding the pole and zero locations of a lag-lead



compensator is quite adequate for a single-input, single-output closed-loop



system. The location of the pole and zero is left to the designer. The
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poper phase and gain margins may then be selected for desired overshoot



and damping. Insofar as the noise-reduction system can be approximated



by a second-order system, the phase-gain margin concept will be a



graphical convenience which can provide approximate closed-loop analysis



by inspection. Criteria for phase and gain margins will not be



discussed, except for the statement that phase margin greater than



55 degrees and a gain margin greater than 6dB are desirable. This gives



an approximate closed-loop damping >.55.



The ideal normalized (the -3dB bandwidth frequency, defined as W_3dB'



isequal to one) lag-lead compensator is characterized by a magnitude



that is unity for frequencies, col and can be represented by 1/Kf for



frequencies w>l. These ideal properties are not attainable with



constant, lumped, and linear networks, therefore the requirements



imposed by the ideal characteristics can be only approximated. This is



done by allowing the magnitude and phase to stay within prescribed limits



of the ideal, see figures 7a and 7b.



it is evident from the magnitude function graphed infigures 8a and 8b



that cascading more than one first-order lag-lead compensator results



in a magnitude function IG(j) tthat tends away from the ideal. Also



from figure 8b, it isevident that excess phase is increased with



increased number of cascaded filters.
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BUTTERWORTH-CHEBYSHEV LAG-LEAD COMPENSATION



Functiuns of the form



Gf(s) = D(7sN(s) (12)
 

which obey the specified constraints of figures 7a and 7b, represent



approximations to the ideal lag-lead filter. Combinations of the



maximally-flat (Butterworth) and the equal-ripple (Chebyshev) polynomials



provide candidate approximations to the ideal.



The excess phase associated with the maximally-flat function increases



with frequency at a much smaller rate than that of the equal-ripple



polynomial, see figure 9aand9b. Of the four ratio combinations,



representing the equal-ripple polynomial by N(s) (which contributes



positive phase) and the maximally-flat polynomial by D(s) (which



contributes relative little negative phase) yields the most desirable



phase function.



A suitable representation of this lag-lead compensator can be obtained



by starting with the general expression of the magnitude-squared function.



Let



I 2 N(2) (13)



2
for J). I 

for real frequencies w.


i f u 
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For frequencies w<l the magnitude-squared function of the normalized



filter Gf(jw) should be approximately unity. For frequencies w>l the
2
K
 
function should not depart appreciably from /f The filter design to



be discussed in detail is


22C2 1



W K2+P2 	 22(n-i) (14) 

(w)2n


where the Cn(x) are called the Chebyshev polynomials.



C ( )= cos 2 (n cos-1 1 	 (15a)
n aw 	 (nos ­

-1 	 (15b)
= cosh 2 (n cosh ) 

Although either form of C (1/aw) can be employed, it is convenient to



use equation (15a) for frequencies 1/aoi<l and equation (15b) for l/czo>l.



2


It will presently be shown that IGf(Jw) I is a ratio of an equal-ripple



polynomial (N(2)) to a maximally-flat polynomial (D(w
2))



For real frequencies w, when w-0,



,,1 2 62C2 _ ) 

n (16a) 


o2 22(n-l)


IGfw) I = 	 (16
 

)2n( 

because
	
I12n
22(n-1)
cos
2 
 

cash 2(n cosh-1 	 C), )) for > 1 (16b)

awu 	 au X 
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For real frequencies w, when 0+*, 

, 2 / 

IGf(jw) I I/K2 fir n odd (17a) 

- (l+s2)/ for n even, 

when n is the order of- the polynomial.



This is true because



cos2 (ncos-1 1 for 1-­cos2(nE). <<l.
 (17b)



For frequencies w>l/a, C(I/caw) is a cosine-squared function. Therefore



< _<l. (IS)/)l 
 

The magnitude characteristic of N(w2) is equal-ripple in nature, the


11 2 

numerator of IGf(awo) I will swing between 1 and l+e2 exactly n times, 

for u>l/a.



Note that 

IN(w) i 1 when C2(1/au) = . 

irk-

This occurs when w = 1 sec T- (where k 1,3,5,-...). 

Also, 

IN(w2 = I+ 2 when C2( I I 

This occurs when w =- sec -- (where k=0,1,2,. 
a n



Because the parameter 6 controls the amount of ripple for 0>1/a , it is 

called the ripple factor. 
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All filter designs discussed will be normalized about the filter's



-3dB frequency, wM3dB; thus =3dB1. The normalizing parameter a is



the value for which



2 

IGf(J_ 3dB) I (19) 

The value of a must be solved by a successive-approximation. The value



of a as a function of Kf/E for different n is shown in figure 10. If the



approximation (16b) is valid for w=l, then



C2 0I1 22(n-1) 1 for 1 > 1.



na(" (a)2n a



Substituting for Cn(1/a) in equation (14),



2 G2 22(n-1) 1


2
.2n



f( ) Il KZ2 2 22(n-l) 2



2
f a n



Solving for the normalizing parameter a,



-l)/n (20)

(n
 

Kf



This result is displayed in figure 10, where it is compared with the



calculated value of the normalizing parameter a. Note that equation (20)



is valid for a less than unity, because cosh(x) in the Chebyshev



polynomial may be approximated by eX/2. Therefore, equation (20) can be



considered valid when



Ef> 2n-l (21)
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Also of interest is the frequency w= 1/a JGf(iw) I2 becomes


2



2" i.j (22)


IGf(J I_+ :222(n-i)



a



However, if inequality (21) is valid, then from (22)



2 l(j2 (23)
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The denominator D(s) becomes a better approximation to K2 for )>l/ .


2



Since the numerator N(s) for these frequencies swings between 1 and l+6
 

It 2 
(see equation (18)). the magnitude-squared function IGf(jw) will swing 
I/K22 and ( +-)Kfl n times. which may22 This ripple effect begins at w=l/ 


be consi ered the corner frequency of the numerator. The above characteristics



are diagrammatically illustrated in figure 11.



Heretofore, just the magnitude function has been studied, because phase



information cannot be obtained from magnitude-squared functions. To



acquire the phase functions, the roots of the equal-ripple and maximally­


flat polynomials must be found. Expressing the magnitude-squared function



as 
2 

IGf(jiW) = Gf(j)Gf(-jW) (24a) 

or



2


SGf(jw) I = Gf(s)Gf(-s) (24b)



2

_s2=W
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G.(s) may be found. It should be remembered that although the notation



is in terms of the imaginary variable jm, the variable which appears in



the function is the real variable w2 (for example see (14)). The desired



generalization ismade by substituting s/j for w. The remaining problem



is to separate equation (2db) into its two constituents, Gf(s) and Gf(-s).



This is done by realizing that Gf(s)Gf(-s) contains the poles and zeros



of Gf(jw) and their mirror images with respect to the jw axis. Therefore,



to assure a stable minimal-phase system one assigns all the left half-plane



roots to Gf(iW).



Solving the denominator of equation (14) by substituting s/j for w,



D(s)D(-s) becomes 

D(s)D(-s) = 2 + 2 22(n-1) 0 . (25a) 

Kf (_ln2n2l 

To simplify the compuzation, a new variable p is defined: p=l/s.



Substituting into (25a),



2
(_l)n 2nK

f 
p2n 	 22-pT (25b)


222(n-1)



Solving for the 2n roots,



2 K 2mn1


n f -(5l2
- I / j m 1,2,3,...,2n.m Pin2 nl-v eJ ,where, w2(25c)
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The n left half-plane roots, pk' may be found from (25c) to be



pvn
Pk [-si(2k-l) + i cos (2k-l) (25d) 

where k=l,2,---,n.



The roots Pk lie on a circle of radius - n nf . Note that if the 
- I
• Vy2n
 

normalizing parameter a is approximated by (20) the circle becomes-a unit



circle.



The function D(s) is found by replacing p with 1/s;



D(s) C0f[D(p) I1= ]. (25e)


S=T



Since D(s) is constructed from the roozs, and the roots solve all pilynomials



that are multiples of D(p), the constant C0 is needed, The constant C0 is



found by equating D(s) with the square root of equation (25a) for any w.



Solving for the roots of the numerator of equation (14) is more difficult.



Substicuting s/j for 

N(s)N(-s) +E2Cn (j/2s) = 0. (26a) 

n



Again utilizing p=1/s for simplification, equation (26a) can be written



2I22 n (Q-) = O.(6b (26b) 
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With equation (15a),



-
I
C2 (!) cosin cos = +2.) (26c)n C- E 

In solving for p, the complex variable w is introduced,



w = u+jv = cos-1 JP (26d)
a



Substituzing and equating real and imaginary parts,



cos n w = cos(nu+jnv)



= cos(nu)cosh(nv) - jsin(nu)sinh(nv) = 3 (26e)



Hence, 

cos(nu)cosh(nv) = 0 

and 

sn(nu)slnn(nv) E+ (26f) 

Cosh(nv) cannot be equal to zero for real v; therefore, cos(nu) 0. The



solutions for u are



um -- (2m-l) , where ai 1,2....,2n. (26g) 

For urm, sin(num) is equal to one. Solving the remaining-equation of (26f),



sinh(nv) = + ', it follows that v = 1inh'I 1(26h) 
E: n- E 

Rearranging equation (26d) 

2ff - cosw = cos(u +jv), (26i)


a m where m=l,2,...,2n.
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The n left half-plane roots are,



(26j)
Pk = a(-sin(uk)sinh(v)+ijcos(uk)cosh(v)), 
 

where k= 1,2,...,n.



The function N(s) is found by



N(s) z CliN(p) i _l ]



p



The constant C1 is needed for the same reasons that Co was used in



equation (25e).



To realize the benefit of the filter design, one must apply the above



results to the noise-reduction systems in the references [1,2,5]. For



comparison with [1,2,5] the amplifier gain in figure 2 will be 20dB



The Gf (jw) used for this example will be a third-order filter, having



a filter gain, Kf, of -17dB and a ripple of L.SdB. To obtain the value



2
of I, l/I+smust be made l.5dB greater than 1, that is



20 log lo  TV" = 1.5dB. (27)


1



Here cis found to be .6423.



For a filter gain of -17dB, Kf from equation (17a) is



-17dB : 20 loglo 1 (28)



where Kf is found to be 7.079.
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In this example, inequality (21) will be considered adequate; then from
 


(LO) a is found to be .7133.



These four parameters (na,s,Kf) provide a good idea of what the normalized



magnitude function IGf (Jw)l will look like; the -3dB bandwidth frequency



is at u=l; the corner frequency, where the ripple effect begins is at
 


=l/a; magnitude function will swing between I/Kft.1413 and Vl+S 2/Kf = .1679 

exactly n=3 times. These characteristics are illustrated in figure 11. 

Starting with equation (25d) the roots of the D(s) are found to be



P1 = -.500 + j.866, P2 = -1.00, P3 = -.500 - j.866. 

Multipling the roots together to form D(p),



D(p) = (p+l.00)[(P+.500)2+.8662



= p3 2.OOp 2+2.00p+l.



Using (25e),


D(p) sI3 2.00 + 2.00 + 1. (29) 
=
S - 3 2 s



Before.finding D(s), C of equation (25e) must be determined. As wr

0



for real frequencies D(p)l- - l(see (29)) but, ID(s)I Kf (from the square 
s=l/p 

foot of (25a)). Therefore, CO must be equal to Kf (see (25e)). It 

follows that 

D(s) = 7.079[ 1 + 2.00 + 2-00 + (30)2
3 s s
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Using equation (26j) the roots are found to be 

P1 = -.1495+j,6696, P2 = -.2990, P3 =-.1495-j.6696. 

Multipling the roots together to form N(p),


2+.6696 2]
N(p) 	 = (p+.2990)[(p+.lA95)
 

= p3+.5980p2+.560!p+.1 407 .



Using (26k) 
1 .5980 .5601 

N(p) I 
s­ l 

= s3 + s2 + s + .1407 (31) 

p 

As Co 	 was evaluated C1 is found to be Kf. Thus



N(s) = 7.079 + 4.250 .98 (32)


3 (91)
s s2 3 
 

Finally,



GII (s)= s3+3 981s2+4.250s+7.079 (33)


7.079s3+14.16s2+14.16s+7.079



lit



The magnitude and phase functions of Gf (jw) for real frequencies w are



shown 	 -infigure 12.



G (s)is now used in the noise-reducing system in figures 3a and 3b


(with 	 amplifer gain Ka=20dB) to reduce the open-loop gain from Ka to



It'



Ka/K f. Because the phase of Gf (s)(for large n) can shift beyond -180



degrees for some frequencies, the open-loop gain IKaGtI must be kept



greater than unity until the open-loop phase returns to above -180



degrees. This is necessary to avoid encirclment of the (-l,10) critical
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pnint on the Nyquist diagram. Subsequently, the magnitude must become
 


less than unity before the open-loop phase function, which reflects the



increasing negative phase of the time delay, returns below -180 degrees,



see 13a and 13b.



This magnitude characteristic is not always guaranteed by Gm(s)Gs(S).



In this case, an additional lag pole will be necessary.



Through graphical manipulation (using figures 3a,3b,12a,12b), the



open-loop transfer function characteristics in figure 13a and 13b were



constructed. Here, the -3dB frequency m-3dB of Gf(j) is found to be



I.OKHz. The normalized filter function (33) is translated to the



actual frequencies by replacing s in (33) by s/21(l000):



Gf(s) l = 4.030xlO 12 s3+l.OlxlO 8s+ 76x 4s+7079 (34)



2.85xlO-12s3+3.59xlO 7 s2+2 25xlO-s+7.079



w-3dB = 20007r 

Also, from figures l3a and 13b, it can be seen that a pole is needed near



2.2KHz to bring the magnitude function below unity. Now the open-loop



transfer function in s for figures 13a and 13b is



IKaGt(s) I : lO[Gf(s)i I 1 1 (35) 
tf w 7.23xl0-5 s+l (3.98xlO-5s+l) 2



-.3db=20007



In the above example the banawidth was extended to 1000Hz with a third­


order, maximally-flat, equal-ripple, lag-lead filter.
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CONCLUSION



The work reported upon here showed that, by using additional electronic
 


filtering, the bandwidth of an active electronic noise reduction system



could be increased by two octaves. This improvement was achieved



through the use of the algebraically tractable Butterworth and Chebyshev



functions. Also, filter parameters (n,oc,Kf) were chosen such that



significant filter characteristics could be determined by inspection.



Hence, by employing such an easily designed electronic filter, a significant



improvement in active electronic noise reduction systems was realized.



For further improvements in system bandwidth, higher-order filter functions 

could be tried, in addition to types other than Butterworth and Chebyshev. 

Moreover, improvements which would reduce time delay in other system 

components should be investigated.
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