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ABSTRACT

1 
A boundary value problem for the Tricomi equa-

tion is studied in connection with transonic gas dynamics.

The transformed equation

Du +Y u Y = 0

in canonical coordinates is considered in the complex domain

of two independent complex variables. A boundary value

problem is then set by prescribing the real part of the

solution on the boundary of the real unit circle.

The Dirichlet problem in the upper unit semicircle with

vanishing values of the solution at Y = 0 is solved explicitly

in terms of the hypergeometric function for the more general

Euler-Poisson-Darboux equation. An explicit representation

of the solution is also given for a mixed Dirichlet and

Neumann problem for the same equation and domain.

Reflection rules are given for these solutions which

permit one to extend them from the upper to the lower unit

semicircle. The transonic boundary value problem is solved

by expressing the solution as a linear combination of these

i	 two types of solutions.
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1.	 INTRODUCTION

The Tricomi equation

(1.1)	 yuxx + uyy = 0

is an example of a partial differential equation of mixed

type, that is, an equation which is partly elliptic and

partly hyperbolic. This equation has been widely studied

because of its relation to transonic gas dynamics [10).

The Tricomi problem is a model of a well posed problem

for equation (1.1). We recall [10] that it is formulated

in a domain which is intersected by the parabolic line

y = 0. In the elliptic half-plane zhe domain is bounded

by a simple curve ending at two points on the parabolic

line. In the hyperbolic half-plane the domain is bounded

by two intersecting characteristics that start at these

two points of the parabolic line. The Tricomi problem is

well posed because the boundary values of the solution are

prescribed on the whole elliptic boundary but only on

one of these characteristics.

An important problem in transonic gas dynamics is the

computation of the flow past a given airfoil with speed at

infinity close to but smaller than the speed of sound. In

this situation the flow over the upper side of the airfoil

may become supersonic. The partial differential equations

of motion are then of mixed elliptic and hyperbolic type.

4

r1



The problem of calculating continuous transonic flow past

such an airfoil was shown by C. Morawetz (20) to be not

well posed.

Motivated by the method of complex characteristics, a

transonic boundary value problem was developed in (9) for a

certain domain obtained by analytic extension to complex

values of the independent variables. Complex conjugate

characteristic coordinates C and n were introduced. In

these coordinates the strean, function ^(&,f,) is real in the

subsonic domain but complex otherwise. The new boundary

value problem is set by prescribing the real part of

on the boundary of the unit circle. This problem has, as

yet, not been shown to be well posed, although its numerical

solution was found successfully. Our contribution will be

to show that a corresponding problem for the Tricomi equation

is well posed.

Under the change of coordinates

4 Y 2 = y 3	 X = x

equation (1.1) can be written in the canonical form

(1. 2)
	

Au + 3Y uY = 0

we consider this equation in the four-dimensional space

where the variables X and Y are complex. Points in the

upper unit semicircle of the real (X,Y)-plane correspond

to points in the elliptic half-plane of the variables x and y,

2



which we shall call the Tricomi variables. Points in the

lower unit semicircle of the real (X,Y)-plane correspond

x
to a complex surface in the space of the x and y coordinates.

A solution u(X,Y) of (1.2), real in the upper unit

semicircle, is continued analytical l y to the lower unit

semicircle over a path which avoids the singular locus Y = 0.

The boundary value problem in which we are interested con-

sists in prescribing the real part of u(X,Y) on the boundary

of the real unit circle in the (X,Y)-plane. A solution of

this boundary value problem will be given that can be

described formally as follows:

Two types of solutions for equation (1.2) can be found.

One of them is of the form

(1.3)	 ul(X ► Y) = Y 2/3 f(X,Y2)

where f(X,Y 2 ) is an analytic function even in Y. The other

is of the form

(1.4)	 u2(X,Y) = y(X,Y2)

where g(X,Y 2 ) is again analytic and even in Y.

The Dirichlet problem in the upper unit semicircle with

vanishing boundary values at Y = 0 can be solved by a solution

of the type (1.3). The mixed Dirichlet-Neumann boundary

value problem in the same domain, with vanishing normal

derivative on Y = 0 and prescribed values of the solution on

the remaining boundary, caii be solved by a solution of the

3
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type (1.4). By analytic continuation, these solutions can

be extended to the lower unit semicircle. The solution u2

will still be real. It will be of the form

(1.5)	 u2(X,-Y) - g(X,Y 2 ) ,	 Y > 0 .

But the solution u 	 will be of the form

(1.6)	 u I (X,-Y) = jyj2/3 e 21Ti/3 f(X,Y 2 ) ,	 Y > 0

when a proper branch is chosen.

In Chapter 5 it will be shown that the solution u of

our boundary value problem can be expressed in a unique

way as

(1.7)	 u(X,Y)	 ul(X,Y) + u 2 (X,Y) ,

where u 1 and u 2 are of the form (1.3) and (1.4) respectively.

A uniquely invertible relationship between the boundary values

of u and those of u  and a 2 is obtained from the evenness

of f and g as functions of Y. Using (1.5) and (1.6) we

can write this relationshit) as

u (X,Y) _ JY ( 2/3 f (X.. Y 2 ) + g ( X , Y2 )	 Y > 0

nd

Re{u(X,Y)} _ - 2 1 Y 1 2/3 f(X,Y 2 ) + g(X,Y 2 )	 Y	 0 .

This shows that the boundary values of u 1 and u 2 on the

upper unit semicircle can be chosen so that the real part

of u satisfies the prescribed boundary conditions on the

whole perimeter of the unit circle.

4
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f
2.	 AN APPLICATION

As we have mentioned in Chapter 1, our boundary value

problem has been motivated by the problem of calculating

shockless transonic airfoils by the method of complex char-

acteristics described in [9]. In this chapter we give a

description of the method, specifically of those aspects

which motivate our problem.

For an understanding of the problem it is important to

find a suitable set of coordinates in which it can be stated.

We start by expressing the equations of motion in the systems

of coordinates that are relevant. The boundary value problem

of reference (91 is then stated. Afterwards we give a des-

cription of transonic paths of integration that are required.

We consider the geometry primarily in the case of the Tricomi

equation and the Tricomi gas. This is a hypothetical gas

whose equation of state is such that, in pertinent coordi-

nates, the equation for the stream function becomes the

Tricomi equation (see (4J).

2.1. Equations of Motion and the Hodog raph Transformation

Let us consider the equations of plane flow for an

inviscid compressible fluid. We assume steady, isentropic

and irrotational flow. Consider an ideal polytropic gas

whose ec?tiation of state is given by p = p Y , so the process

is isentropic. The variables p and p are respectively the

pressure and density, and the constant y is the adiabatic

5
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(2.3) uy - v	 0x = 

exponent of the gas.

For steady, irrotational flow the Bernoulli law becomes

(2.1)	 q2 + Y
	

C2 = Y-1 C* .

In this equation q is the speed, c is the speed of sound,

and c « is the critical speed, which is constant. Let a and v

be the components of the velocity vector in the (x,y)-plane.

The continuity equation

(2.2)
	

(ou) x + ( ►?v) y = 0

and the irrotationality condition

B.

permit us to introduce a stream function 1U and a velocity

potential S. Equations (2.2) and (2.3) can then be trans-

formed, using the Bernoulli law (2.1), into second order

partial differential equations for S or a). We have, for

instance, the equation

(2.4)	 (c2-u2)^xx - 2uv^ xy + ( c2 -v 2 )'t yy = 0 .

The equation (2.4) is quasilinear. It can be reduced

to a linear equation by use of the hodograph transformation.

The hodograph transformation consists of introducing u and v

as the independent variables. In the hodograph plane we use

polar coordinates defined by

u + iv = q ei8

6
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The eq • iation (2.4) is transformed into the linear system

= M2-1
mq 	uq ^e '

(2.5)

m e,	 q W q

where M = q/c is the local Mach number.

Equations (2.5) are known in the literature as the

Chaplygin equations. They are of the hyperbolic type for

supersonic flow, M 2 > 1, and of the elliptic type for

subsonic flow, M 2 < 1. The ordinary differential equation

for the characteristics of (2.5) is

(1-M 2 ) (dq) 2 + q 2 (d©) 2 = 0 .

Introducing characteristic coordinates F,,n, we obtain the

canonical system

q0 F - M3 `-1 q F = 0

(2.6)

2q© n + 3M - 1 qn = 0

in the hyperbolic domain.

We can extend the conce pt of characteristics to subsonic

flow by considering analytic extension of th- function ip into

the four-dimensional domain of the comT-'-,x variables q and

9, or x and y (10]. The solutions of (2.6) are then the

complex characteristics and the characteristic coordinates

F, and n become independent complex variables. In terms of

the complex characteristic coordinates we obtain the canonical

7



equations

m^ s iT+`^^

(2. 7)

mn = iT_^ n

for 0 and ^p where

P

An analytic function of a characteristic coordinate is

a new characteristic coordinate. Thus, there is a conformal

mapping free that can be used to transform the characteristic

coordinates conveniently. Introducing the modified speed 11,

defined by

(2.8)	
dh	

31-M
2
 dq

we can write the equations of the characteristics as

log h + i© - n,

(2.9)

log h - i6 - ^.

[.

By use of a conformal transformation new characteristic

coordinates s = W) and t = t(n) can be defined as

(2.10)	 s = h(q)e- i9	 t = h(q)ei6 .

Then a further Rapping s = e f(&) , t = e f(n) can be intro-

duced to transform the flow onto the unit circle.

The system (2.7) can be transformed putting

(2.11)	 X= 0	 Y= log h=	 1-M2  qa

8
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into the linear equation in canonical form

(2.12)
^XX + ^YY + T CTY ^Y = 0

For ^, with T	 T+. After another change of coordinates

defined by

di - P q

the Chaplygin system transforms into the equation

(2.12)	 K (Li	 + lea = 0

with
2

K(Q) 
	

2 - 1-M	 .

P
2

This m- be viewed as a generalized Tricomi equation.

.ne characteristic coordinates s and t introduced in

(2.10) have the property that, for M < 1, s = t if and

only if q and 0 are real. Two complex coordinates with this

property ate called conjugate coordinates [1]. More

generally let x and y be any two complex variables, and let

z = x + iy	 z = x - iy

We see that z * = z if and only if x and y are real. There-

fore w,.s call z and z * conjugate coordinates.

Starting with the complex coordinates x and y there '.s

a simple way of generating new conjugate coordinates. Let

f(z) be an analytic function which is real on the real axis.

Define	 = f(z) and n = f(z * ). Then ^ and n are conjugate

coordinates. For if x and y are real, then z = z , so by

9
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the Schwarz reflection principle f(z * ) = f(z) = f(z)

and	 = q. The converse is also true, provided that f is

one to one in the domaii in question.

2.2. The Inverse Problem for Supercritical Airfoil Design

The use of the hodograph transformation is apprcpriate

for solving inverse problems in transonic gas dynamics. By

the inverse method a continuous flow can be computed in terms

of hodograph coordinates. Consider the Litreamlines in the

physical plane. If the streamline ^ = 0 is closed and not

self intersecting,it can be taken as a profile which

generates the flow.

A new idea is given in [9] to solve the problem of air-

foil design. 'Phis idea is to map the unknown domain of the

flow in the hodograph plane conformally onto the unit circle

of the plane of one characteristic coordinate. The speed q

on the airf:.;1 is prescribed as a function q(s) of the arc

length s. What is intended is to have the equations of motion

solved for the stream function in such a way that the boundary

of the unit circle, for subsonic points, is a streamline and

furthermore its image in the hodograph plane acquires the

prescribed values of q over the profile.

More general conjugate characteristic coordinates F and

rl can be introduced by means of the formulas

(2.13)	 s = of 
(F)	

t = of (^)

where the map function f(F) is an analytic function defined

10
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in the unit circle (F.1 < 1, and s and t have been defined in

(2.10). The characteristic coordinates F and n are conjugate

in the subsonic domain so points in the real subsonic domain

corro-pond to points F. = ti. Beyond tho sonic line points

Ti do not, however, correspond to real supersonic flow,

The stream function	 (F.,F) is thus 1-0.11 in the subsonic

domain but complex otherwise.

A new boundary value problem was formulated in 1 9 ► for

the stream function 	 Let W be a solution of the

canonical system (2.7) that is allowed to have a pole together

with a logarithmic singularity in the hcxlograph plane. The

boundary condition

is imposed. For this purpose a suitable branch of the

analytic function ,( ,n) has to be specified.

Paths which are complex conjugates of each other are used

to compute the solution in the real subsonic region 11,9,141.

Given the two initial characteristic planes ^ = i3O and

11 = rt o , a path I. =	 is defined in the plane 1-1 = ' t 0 '

The conjugate path ti(i) is defined in the . c haracteristic plane

et of points r^	 (r). Consider the rectangle0 as the s 

formed by taking the Cartesian product of these paths. The

diagonal of the rectangle is given by the set of points

and they	 correspond to real subsonic points

until thL' sonic line is re.whed.

11
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To compute points below the sonic line special paths

have to be defined that avoid the complex sonic surface M2=1,

where the canonical equations become singular. To achieve

this the paths have to :x^ separated so that they are no

longer conjugate. An analytic continuation of the solution

around the sonic line that is appropriate for the boundary

value problem is defined by such integration paths.

The geometry in the space of the canonical coordinates

X and Y,in which our boundary value problem for the Tric;omi

equation is formulated,is much simpler. In this space the

complex characteristic coordinates are given by

f = X + iY,

and

n = X - iY

The sonic surface corresponds to the complex plane Y = 0.

For analytic continuation around Y = O,a path that connects

the points (X,Y) _ (0,1) and (X,Y) _ (0,-1) can simply be

defined by

X= 0	 Y= e 01	 0< 6< n

The initial characteristic planes through the point

(0,1) are given by f, = i and n = -i. The corresponding

^-path and n-path are respectively

= iY = e'i/2ei f)	 0 < 0 < Tr,

and

n = - iY = e
37ri; lei©	

0 < 0 < n

nrIM',vAL PAGI; IS
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In Figure 1 we present these paths. They make it possible

to extend solutions of (1.2) from the upper unit semicircle

in the X,Y plane through the complex domain into the lower

unit semicircle.
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3.	 GREEN'S ANO NEUMANN' S FIiNCTIONS AND THE POISSON FORMULAS

In this chapter we give closed formulas for the solutions

of the Dirichlet and mixed Dirichlet and Neumann problems

in the upper unit semicircle for the more general equation

(3.1)	 uXX + uYY + Y uY = q

with values of k to be specified. This is the Euler-Poisson-

Darboux equation and is also known in the literature as the

generalized axially symmetric potential equation [27].

For k a positive integer (3.1) is the equation of a

potential with axial symmetry in space of dimension n = k+2.

Weinstein has considered equation (3.1) as the equation

for the axially symmetric potential in a fictitious space

of dimension k+2, with k positive and real [25-281. The

parameter k will be referred to as the index of the

equation.

A fundamental solution valid for values of k > 0 is

given in Section 3.1. This fundamental solution is the

Neumann function fo •- the upper half-plane. In Section 3.2

we obtain the Green's function for the upper unit semicircle

when 0 < k	 1. In Section 3.3we use this Green's function
r

to obtain a Poisson formula for the unit semicircl-,;

that is, we give a representation of the solution with

vanishinq boundary values on Y = 0 in terms of its values

14



on the boundary of the semicircle. In Section. 3.4 wt , obtain

for k N 0 the representation of thk • solution when its

values are prescribed on tho boundary of tht , unit semicircle

'111d the normal derivative vanishes on the X axis. We obtain

these two representations Independently. Howover, a

"correspondence principle" [.'t,1 	 that wl 11 be used in

S`^tion 3.2 relates solutions of (3.1) with different

indices and makes it possihlr to deduce the solution of

the Dirichlet problem from that of the Neum;Inn problem.

3.1 The Fundamental Solution

A fundamental solution for (3.1) with index k , 0 is

kliven by

TT

(3.2)	 S(X,Y;: ,11) = ii 
	

i —

	
Sill 

k- 	
,Y da

0	
[ (X- ") + (Y-tl) + 4Yti sing a )

where the singularity is at the point C.,rn). This is a general-

, ..tt ion of t ho Gauss formula for the gravitational

potential of a circular wire in a three-dimensional space,

to which it reduces if we make k = 1 ([ 101 , p. 148) .

Similar formulas hive been given by Weinstoin 125-28),

although there is soma confusion in the literature.

15
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Fundamental solutions have been known for the Tricomi equa-

tion since the time of his original paper [23).

It can be checked by direct calculation that (3.2) is

a solution of equation (3.1). Moreover, as a function of

the parameters r and n , (3.2) is a solution of the adjoint

equation

(3.3)	 v^^ + v ► ^ ►1 - k v n + -kY v =0
11

We introduce the notation

	

1 = (X-F) 2 + ( Y -rj) 2 .	 Q1 = (X-c)2	 + ( Y +rj) 2F' 

(3.4)	
2

2	 P1q = --^

Q1

With this notation (3.2) can be written in the form 1251

r^ k/2 1( k-1	 2 
(k-2)/2/	 2 -k/2

(3.5)	 S(X,Y;^,ri) = ( Y )	 I t	 (1-t )	 I-^
2 
2 + t 

1	
dt.

0	 1-q

This is a hypergeometric integral. It can be expressed as

2 k-1 
1j

k	 T, k))2

(3. G)	 S (X, Y; E., r0	 _ — k	 ( 
r W	 F f 2,2;k; 1-c^21

	

Q	 l	 1
1

by use of the relationship [18)

1

I
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1
I(c)	 b-1	 c-b-1	 -a(3.7)	 F(a,b;c;z) = f	 c ^-	 t	 (1- t) 	 (1 - zt)	 dt,

0

valid for Re c > Re b > 0 , Iarg(1-z)I < n.

The h;,Nergec metric differential equation has three singular

points, and at each of those points one of the two linearly

independent solutions has a logarithmic singularity. Using

known relations for the hypergeometric function (171, we

can rewrite formula (3.6) as

(3.8) S(X,Y;^rn) = 2kk jFf2,2 ;1;q 2 ) log q + G(X,Y;E.r1)}

Q 

k

1

where G is a regular function. The coefficient of the

logarithmic term, namely,

k k
(3.9)	 A(X,Y;C,n) = 2Q
	

F1201;1;821
1	 1

is the Rieman.. function of equation (3.1), which shows

that (3.,8) has the correct singularity for a fundamental

solution.

ORIGINAL. PAGE: 1S
OF POUR QUALITY
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3.2 The Green's Function for the Unit Semicircle

Let z(k) be a solution of equation (3.1), where

temporarily wo let the index k be either positive or

negative. The following "correspondence principle"

has been introduced by Darboux and extensively used by

Weinstein and Diaz 17, 261:

(3.10)
	

z 	 = Y 1-k z(2-k) .

The proof is done by direct verification. For 0 - k < 2

it relates solutions with positive index. Using this

principle we have from (3.2) a new fundamental solution (281

H

(3.11)	 [_1(X,Y;F,, ►n) = Tlyl-k f	 sinl-k a d 	 1	 ^-

0 I (X-F,) +(Y-0 +4Yn sin 2 1^` k

The results of Section 3.1 applied to the solution of index

(2-k) show that (3.11) has the proper singularity. For

0 : k < 1 the expression (3.11) is a Green's function

relative to the upper half-plane, since 	 it vanishes on

the X axis.

we use the method of inversion to obtain the Green's

function for the unit semicircle. Our idea is to extend

Kelvin's transformation to equation (3.1). More precisely,

it can be proved by direct calculation that if a (X,Y)

is a solution of (3.1), then so also is

18



u'(X,Y) = r -k u(X',Y')

where

7	 Y' 	 -^ ,	 r2 - x 2 + Y2
r	 r

•

	

	 Applying Kelvin's transformation to (3.11), we obtain a

new solution of (3.1) with respect to the variables X and

Y, namely,

(3.12)	 U'(X,Y;^,n)

IT
ny l-k rk-2 (	 sinl- k a dot

f ((X'-^)2+(Y'-n)2+4Y'n sin ot 
j 

2 k)/2

We recall that (3.11) is a solution of the adjoint

equation (3.3) as a function of the variables E and n.

Using the fact that if u(X,Y) is a solution of (3.1),

we find that

E

(3.13)
	

v (X,Y) = Y 	 u (X,Y)

is a solution of (3.3). Applying Kelvin's transformation,

we obtain the new solution

(3.14)	 V(X,Y;&,n)

IT
1-k k-2 T	 sinl-k a da

nY	 f f (X - E	 n,') 2 +(Y-') 2 +4Yr,' sin	 2 j (2-k)/2

19



of (3.1), where

2 i	 no	 7 61	 P2 • & 2 ♦ ►12
I	 A	 P

Formula (3.14) defines a fundamental solution of (3.

with singularity at the point (F',n'), which is the

inverse image of (Fn) with respect to the unit circ

It can be verified that (3.11) and (3.14) take

the same values on the boundary of the unit semicirc

For that we have just to notice that for (X,Y) on th

circumference of radius 1, the relation

R R
P

holds, where

'.

R 2 = (X-F) 2 + (Y-n) 2 ,	
R2 = ( X -^' ) 2 + (Y-ri ' ) 2 .

Subtracting (3.13) from (3.11), we obtain the Green's

function for the unit semicircle. Let us introduce the

abridged notation

n

(3.15)	 I 

	
sin 

1-k 
a du

p	 [ (X-') 2 + (Y-ri) 2 +4Yq sing a )p/2

Then the Green's function for (3.1) in the unit semicircle,

with index 0 < k < 1, is

ORIGINAL PAGE, 15
OF YUUIt QUAi1'Y,
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(3.16)	 G(X,Y;"..n) = mYl-kit2-k(X,Y;E,n)-,k-2i2-k(X,) i. ,	 )!,

In the next section we shall insert this result into

Green's formula to obtain a Poisson formula for the unit

semicircle.

3.3 The Poisson Formula for the Unit Semicircle

The Green's function obtained in Section 3.2 can be used

to solve the Dirichlet problem in the unit semicircle.

We want to obtain the solution to (3.1) which takes given

continuous values on the upper boundary 3D of the unit

•	 semicircle D and which vanishes at Y = 0. We start from

the representation formula (10)

(3.17)	 u(X,Y) = 2n	 J u(r • n) av GM(F,n;X,Y) ds
^D

where G. is the Green's function of the adjoint equation,

a/3v stands for the inner normal derivative,and s is the

arc lenr7th.

For GM we have the interchange rule

GM(^,n;X,Y) = GL(X,Y;`,n)
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where GL is the Green's function (3.16) of (3.1). Formula

(3.17) can be applied to any domain such that the coeffi-

cients of equation (3.1) are regular up to the boundary.

In particular, we can apply it to a domain D e obtained by

deleting the strip y < c from the unit semicircle. By

continuity we can then extend the formula to the case in

which D is the unit semicircle itself. we can then write

(3.17) as

f
(3.18)	 u(X,Y) _ - 2n

	
f(C) 	 !yl-k, sin QlI2-k0(X,Y;f.n)

t

	

_	 k-.:
P	 I2-k (h,Y, F' ,Tt') 1	 dS ,

where f(;) represents the values of the solution a on the

boundary of the semicircle, and where use has been made of

the fact that the solution vanisheb at Y = 0. In this

context we have introduced the notation

^ - p cos m ,	 n = p sin Q .

The kernel in (3.18) can be computed by a straightforward

calculation. we obtain, using the notation (3.15),

(3.19)	 2p = (2-k)Y
1-k 

sin k^(I2- k(X,Y ;^,n) + 2BIq-k(X,Y;',TM

it p = 1, where

X cos m + Y sin m - 1 - 2Y sin ^ sin  2 .

22
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Manipulating formula (3.19), we obtain

	

(3.20)	 3(2-k) 
yl-k 

sin 0(r 2 -1) T
4-k (X,Y;4,n) .

Therefore,the solution (3.18) can be written as

n

	

(3.21)	 u(X,Y)= 
22k 

I f(m)(1-r2)y1-k
0

n

• sin 1,	
_-- sin 

1-k 
a d 

d^'
0 ((X-C) +(Y-TO +4Yn sin 2 1

when

& - cos m ,	 n - sin Q .

The hypergeometric integral under the bracket can be

transformed into a hypergeometric function using results

similar to those presented in Section 3.1. we obtain for

this integral the formula

I

1 '.
('(1- 

k )) 2

I4-k(X'y;^.n) = 21-k
	

t'(2-k	 41 -4F(2- 2 , I- 2; 2-k; 1-q2).

Making use of the quadratic transformation

	

k 1- k	 -(1-k/4)	 (	 k _ k , 3 _ k_ , z 2 l
F(2- 2,	

;
2	

2-k;z) _ (1-z)	 F 1- 2'	 4'2	 2'4z-4 '

for the hypergeometric function ([181, p. 51), we obtain
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I

from (3.21) after further transformations, the representa-

tion

TT	

2(3.22) u(X,Y) - cY l-k r _f(^Hl-(X+Y2)] sin

J	 (1+X 2 +y2_ 2^) (4-k)/2_
0

r	 k_ 3	 k_ 3	 k_	 4Y2 sin 21.	 1

	

• F 1 - 4' 'l	 v 2	 2' 
( 1 +X 2 fY 2 - 2X cos m)2

where

2-k (r(1 - 2)1
2

- 2 
k 
I	 r(2-k)

This formula generalizes a result of Germain and Bader (81

that was given for the case k = 3 , and is the representa-

tion we have been seeking. It solves the Dirichlet problem

for the Euler-Poisson-Darboux equation with index 0 < k < 1

in the unit semicircle and with vanishing values of the

solution at Y = 0.

I
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3.4 The Mixed Dirichlet-Neumann Problem

The second problem we are interested in is the mixed

boundary value problem in which the values of the solution

are given on the upper boundary of the semicircle and the

normal derivative vanishes at Y = 0. We ask teat the solu-

tion be continuous up to the boundary. We have already

found in (3.2) a Neumann's function for the upper half-plane,

valid for k > 0. It can easily be checked that the normal

derivative of this function vanishes at Y = 0.

In order to obtain a representation formula for the

solution we have to devise a formula different from (3.17),

since we are dealing with a Neumann condition at Y = 0.

The difficulty is that we have an equation which is not

self_-adjoint, so we have to find a function that has simul-

taneously the properties of a Neumann's function for our

equation and of a Green's function for the adjoint equation.

We start with the identity 1101

(3.23)
ff 

(vL[u]-uM(vJ) dX dY + J (v av -u av +(a aV +b aV)uv]ds
D	 aD	 = 0

whe re

Liu] = uXX + uYY + a(X,Y)u X + b(X,Y)uY + c(X,Y)	 = 0

and where M1v1 = 0 is the adjoint equation.

25
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This fornn ► la is valid if the coefficients a, b, and c are

re,pi l ar LIE) to t ht , boundary of the domain D. In our case

we have

	

a= 0	 b	 Y,	 c= 0.

Formula (3.2) can be written as

N 
	 = 

11k 3  (X,Y;F.,rt)

where , we use the notation

T1

	

r	 silly-1 a d 

p 0 I (X-r) + (Y-11) 2 +4Y ►1 sin 2 1 p/2

Thole,

NM = Y 
	
J k (X,Y;F. ►► 1)

is a fundamental solution for the adioint equation

%J I v) ~ 
xf \ + v

YY - Y vY + k 2 v = 0
.,

	

By use of the Kelvin	 transformation we obtain, as

in Section 3.3, the Green's function

(3.24)	
GM(X'Y;F., ► 1) = Y k (J k (X,Y;'.,rl)—k,iK- (X,Y;F.'

i
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where

F,

P	 n

The function GM vanishes on the whole boundary of the semi-

circle, and the expression in square brackets in (3.24),

is a solution of Liu] = 0 which has vanishing derivative

with respect to Y at Y = 0.

We apply the identity (3.23) to a solution u(X,Y) of

(3.1) and to v = G CS . We take as domain of inteqration DE

the unit semicircle with a strip 0 < Y < c deleted. Since

GM behaves like a Green's function on the upper boundary

F of the semicircle, we obtain

	

r	 aGau
2^ru ( ,n) _ 	u (X,Y) av GM ds - 	I-GM aY	 u aYM + y uGMJ 

d X

r	 Y

where we note by y the segment Y = E of D 	 The second

f:

	

	
integral gives, after a cancellation and putting

Jk = Jk (X,Y; ^ "n' )

j G 
au _ 3G  k 1

M aY	 u aY + y uGM J`	 =dX

Y 

CYk 
(Jk

-p-kJ
k ) ay	

uyk aY (Jk-p-k Jk) 
J 

dX
y

ORICYrNAL PAGE; IS

OF POOI^ QUA"

27



If WO	 110W	 let	 e 0, the	 wtiolt ,	into,i r.1 I	 over	 y	 vanishes

once wo	 .18 IM 111e 31.10Y boundod. Thus wo obtain tho formula

n
uU,, Tl)	 _ - 2n I	 f^3) `̂ ^r	 Yk^,iklX,l';;,^1t) _	 `^-k,ik(X.1^;;.',tl')^	 ds ►

0

or,	 c'.lu iv.1 1 ('nt. ly,

11
u(X,1')	 _	 -	 2 -1 J	 f(S) ^^^	 11kI.1k(X,1';',,rl) -	 r	 k,l,(X',1'';

0

Where

X'	 _	 - X2 	 ► 1'' =	 -	 , .1nd	 r2	 =	 X `'	 +	 Y
r r

Fu 1 1 ow i ng t ht , 	 t ops as	 i n	 Sect i on	 3. 3	 wt , 	are	 It'd

to the formula

it

u (X,Y)	 _	 -,k sink+

n

f (ti) (1-r2)	 sink-1	
a	 dot

}

+
k	 V dJ ,^n	 0 0 (X-F)	 + (Y- 0 	+4Yn	 sin	 1

^: h c' I' e

COs 11	 =	 Sin	 S

This formula can be written, by using similar relations for

the hyhergeometric function, as

28



with

T.

f M (1-(X2+Y2)) sinks

( 1+X +Y -2X cos S) (k+2)
/

+ 1 k_ 
+1; 

k + 1 ;4 Y 2 sin 2S	
)d^,2 4	 2	

2 (1+X 
2
+Y -2X cos S)

2k-2 (I, (k) ) 2
c = k	 TT 	 (k)

The result is valid for k > 0. It is the desired represen-

tation of the solution of the mixed Dirichlet-Neumann problem

in the unit semicircle, with vanishing normal derivative on

the X axis, in terms of the values of the solution on the

boundary of the semicircle.

The correspondence principle (3.10) can be applied to

the solution (3.25) with index k' = 2-k and boundary values

sin k-l^ f(S) , 0 < k < 1. We obtain from it the solution

(3.22) of the Dirichlet problem with boundary values f(f),

as was mentioned earlier.
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4.	 THE REFLECTION PRINCIPLE

We establish in this chapter reflection 	 laws for

solutions of the general Euler-Poisson-Darboux equation

(4.1)	 uXX + uYY + Y u Y = 0
	

0	 k < 1 ,

which make it possible to extend them from the upper to the

lower unit semicircle. They will be used in Chapter 5 to

prove our main theorem about the transonic boundary value

problem. However, they have an interest of their own.

General theorems about reflection laws for solutions of

elliptic partial differential equations with analytic condi-

tions on the boundary are well known (Garabedian [11], Lewy

(161). The special feature of our case is that the boundary

over which the reflection is going to be made is a singular

line for the equation.

It is known (Henan 1 121 ) that a solution of (4.1)

which is analytic in some neighborhood of a segment of the

X axis is necessarily even in Y and is uniquely determined

by its values on this segment. This is a local theorem

based on power series expansion of the analytic solution,

valid for k different from 	 0 or a negative integer. The

result for k = 1 is classic (131. However, this theorem does

riot apply to solutions with a branch singularity of the type

01UGIN kj, P,v',1? IS
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(4. 2)	 a (X,Y)	 =	 Y l-k	 f (X,Y2)

Our	 representation	 formula	 (3.22)	 is an example of this type	 ^.

of solution.	 We shall derive reflection laws that are valid

in the large anti hermit one to reflect solutions of the type

(4.2)	 for which	 the X axis	 is a br.inch li ne .	 We use analy-

tic continuation of the solutions into the complex domain

of the variables X and Y to do this.

Let tho variables x and Y be extended to complex values

P !

X = X 1	 +	 i x 2	 Y = Y 1	 +	 iY 2 	=	 Y eit^

1
f

We define the pat h }	 by

Y =	 i (X,Y:	 X=	 0,	 Y=	 re' 0 ,	 0	 0<	 n	 ^,
l^

where 0	 r ,	 1.	 Consider the analytic continuation of the

solutions	 (3.22)	 and	 (3.25)	 along	 this path y.	 The explicit

• form of the solutions guarantees that the continuation can

be performed.	 Two points A and R, with A in the upper unit

semicircle and B in the lower, can be connected by a path of

the form

a

(4.3)	 r=	 r	 u	 y	 u)
1	 2

where y
1 

is a path contained in the upper semicircle which
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connects the points A and (0,r), and 
12 

is the corresponding

path which connects B and (0,-r) in the lower semicircle.

By the monodromy theorem, any other path which does not wind

around the X axis will give the same result.

We obtain in this fashion the following theorem! If

u(X,Y) is a solution to the Dirichlet problem for equation

(4.1) in the upper unit semicircle with zero boundary values

u = 0 at Y = 0, then it can be extended to the lower semicircle

by the reflection law,

(4. 4)	 Li (X,-Y) = e (1-k) ni u (X,Y) ,	 Y > 0 ,

where analytic continuation has been made along the path

(4.3). Similarly, the solution of the mixed Dirichlet and

Neumann problem in the same domain, with vanishing normal

derivative uy = 0 at Y = 0, can be extended to the lower

semicircle according to the law

(4. 5)	 u(X,-Y) = u(X,Y) ,	 Y ` 0 .

C.learly,the reflection rules depend only on the form of the

boundary condition at Y = 0 and are valid in more general

domains.
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5.	 SOLUTION OF THE BOUNDARY VALUE PROBLEM

We can now state and prove our main theorem. Consider

the Tricomi equation

(5. 1)
	

yuxx + uyy	 0 ,

and the transformed equation

(5.2)	 uXX + uYY + 3Y uy
	 0

in canonical coordinates X and Y. We introduce the class of

analytic solutions of equation (5.1) which are single-valued

in a neighborhood of the line y = 0. Let u(X,Y) be a

real solution of (5.2) in the upper unit semicircle

D + = S (X, Y) : X 2 + Y 2 < 1 , Y > 01

belonging to this class. Then in the complex domain of the

extended variables X and Y the solution u(X,Y) can be continued

analytically along a path, as described in (4.3), into the

lower unit semicircle,

D_ _ { ( X,Y) : X 2 + Y 2 < 1 , Y < 0 }

We shall prove that the boundary value problem

ORIGINAL PA(;F, IS
OF Pwlt Qu uxfx
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Re iu(X,Y) } = F(9) , 	 X = cos 0 , Y = sin 0 , 	 0 < 0 < 2n,

where F(0) is periodic and continuous, is well posed within

the specified class of solutions u(X,Y).

We give first an explanation of the choice of the class

of functions that we have made. If u(x,y) is single valued

and analytic,it admits a double power series expansion in a

neighborhood of the origin of the form

u(X,Y) _	 anm x n ym

Therefore,we can write

u(x,y) = v l (x,Y 3 ) + yv 2 (x,y 3 ) + y2v3(x,y3)

or

u(X,Y) = v 1 (X,Y 2 ) + Y 2/3 v ? (X,Y 2 ) + Y 4/3 v3(X,Y2)

1
	 where v i , v 2 and v 3 are regular.
F

If we let the variable Y wind around the X-axis, through

an angle of 2Tr or 47, we obtain new solutions

u'(X,Y) = v1(X,Y2) + e 4ni /3 y 2/3 v2(X,Y 2 ) + e8Tri/3y4/3v3(X,Y2)

and

U" (X,Y) = V  (X,Y 2 ) + e
8ni/3 Y 2/3v2 (X,Y 2 ) + e16Tri/3Y4/3v3 (X, 

Y2)

of equation (5.2), as the equation itself remains unchanged.
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We apply now the differential operator L defined by equation

(5.2) to u, u' and to".	 This gives

L(v	
2

l) + L(Y /3	 4v2) + L(Y /3v 3 ) = 0

L(vl) + e4Tri/3 L(Y2/3v,) + e8ni/3 L(Y
4/3v 3 ) = 0

,E

L(vl) + 
e 8ni/3 L(Y 2/3 v21 + e16ni/3 L(Y

4/3v 3 ) = 0 .

Because the determinant of this linear system of equations

is different from zero, it follows that each of the terms

v l (x,y 3 ), yv 2 (x,y 3 ), and y 2v 3 (x,y 3 )	 is a solution of the

Tricomi equation separately. By the uniqueness theorem for

the Cauchy problem for (5.1), we can conclude that

y 2v 3 (x,y 3 ) = 0 .

[ '.
Therefore,u(X,Y) admits a unique decomposition of the form

(5.3)	 it (X,Y) = v 1 (X, Y 2 ) + Y 2/3 v., (X,Y 2 ) .

We proceed now to prove the main theorem. Let the

boundary function F(8) be defined by

u(X,Y) = h(X) ;	 Y > 0 ,	 X2 + Y 2 = 1 ,

ORIGIN,',	
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and

Re lu(X,Y) } = k (X)	 Y < 0	 X2 + Y 2	1

Let u 1 (X,Y) be a solution of the Dirichlet problem in the

upper unit semicircle such that

u 1 (X,Y) = f(X)
	

X2 + Y 2 = 1 ,	 Y	 0 ,

u l (X,0) = 0 ,

with f(X) continuous and vanishing at X = + 1. Let u2(X,Y)

be a solution of the mixed Dirichlet-Neumann problem, in

the same domain, with

u 2 (X,Y) = g (x)
	

X2 + Y 2 = 1 ,	 Y > 0 ,

au 

3Y	
(X,0) = 0

Both u 1 (X,Y) and u 2 (X,Y) can be computed explicitly by means

of the representation formulas (3.22) and (3.25) of Chapter 3.

By the reflection laws obtained in Chapter 4,we have

u  (X,-Y) = e2zri/3 f(X)
	

Y > 0 ,	 X2 + Y 2 = 1 ,

ind

u 2 (X,-Y) = g(X)
	

Y > 0 ,	 X2 + Y 2 = 1 .
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If we choose f and g so that

f (X) ; g (X) = h 

f (X) cos 3 
n+ g (X) - k (X)

Y

that is, if we set

f (X) _	 (h (X) - k (X)

and

g(X) = h(3) + 3 k(X)
then

(5.4)	 u(X,Y) = u l (X,Y) + u2(X,Y)

is a solution of (5.71 which satisfies the prescribed

boundary conditions.

The uniqueness of the solution of the boundary value

F:	 problem follows immediately. The representation formulas

(3.22) and (3.25) show that u I (X,Y) and u 2 (X,Y) have the

form

ulMY) = Y2/3v1(X,Y2)

and

u2 (X,Y) = v 2 (X,Y2)

respectively. The dec3mposition (5.4) is therefore of the

37
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form (5.3) and is unique. The boundary condition on u is

seen to impose Dirichlet and Dirichlet-Neumann data on ul

I
and u 2 respectively, which determine them uniquely, complet-

ing the proof. The continuous dependence on the boundary

values is also a consequence of the explicit representation

we have given of the solution.

We remark that the theorem could be extended to arbi-

trary domains symmctric with respect to the X axis by

performing reflection in the manner des,,ribed in this work,

but re p orting to a more general treatment of the Dirichlet

and Dirichlet-Neumann problem for u  and u2.
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that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.
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