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APPROXIMATE ANALYTIC SOLUTTONS FOR THE OPTICAL
PUMPING OF FLUORESCENT DYES

Nabil M, Lawandy
Goddard Space Flight Center
Greenbelt, Maryland

Introduction

Dye lasers offer spectroscopists tunable and coherent radiation from 330
to 1176 nanometers (nm). Tunability is achieved by manipulating dye concen-
trations, solvents, and resonator losses. Laser-pumped pulsed dye lasers are
especially useful for time-resolved spectroscopy because the laser pulses have
the same shape as the pump pulses above threshold. However, pulses pro-
duced by these lasers are not always as energetic as might be required. In
general, the stringent requirements on spectral purity limit the pulse energies

to a few hundred microjoules.

A possible remedy to the low pulse energies of such systems is regenerative
or multipass amplification using flashlamp-exited amplifiers [1], [2], and [3].
The theoretical understanding of suc! an amplifier is based on a knowledge of
the time-dependence of the amplifier inversion. Because of the order of mag-
nitude variance in flashlamp rise times and triplet-state deactivation rates,

triplet-state accumulation must be treated as a variable. Sorokin et al. [4] have




produced computer solutions to the rate equations for short-pulse laser pumping.
Schafer and Schmidt [ 5] have given analog computer plots for the excited singlet=
state population in the limit of very long triplet lifetimes. Moreover, Keller

[6] has examined the effects of triplet states on the efficiency of a dye laser using
computer solutions and neglecting the depletion of the ground=-state population
due to pumping, He also provides steady-state solutions for the number of

photons in the laser cavity.

This paper develops a technique for solving coupled=rate equations to a high
degree of aceuracy, The method is applied to the inversion in a flashlamp-
pumped dye solution, A three=level approximation is used to describe the dye-

field interaction.,

Dye=Pumping Mechanisms

A large molecule, such as a typical dye, has many normal vibrations that
are coupled to electronic states,  Transitions between such states are broadenea
by collisional and electrostatic perturbations with the solvent molecules, More-
over, each vibronie sublevel of an electronic state has rotational fine-structure;

o
however, this is smeared out by the rapid rate of collisions (101“ collisions/s),

The pump radiation in this system corresponds to an electronice transition
from the ground vibronic level to an excited vibronie level, This leads to a

nonequilibrium Frank-=Condon state, Furthermore, the transition is between



singlet states and is strongly allowed (1 in figure 1). The state, S, quickly
thermalizes (10'12 s) because of solvent collisions, At this stage, a molecule
may either fluoresce to the lowest electronic state (2 in figure 1) by Frank-
Condon selection rules or make a nonradiative "intersystem crossing' to a lower
triplet state at a rate, kgp. This is detrimental to laser action in three ways:
(1) it competes with fluorescence; (2) it creates optical losses by placing mole-
cules in triplet level Ty, which can make triplet-triplet transitions (T,=T, in
figure 1); and (3) it depletes the ground-state population and therefore the
number cf molecules in the fluorescence cycle because of the long lifetime of
Ty. Phesphorescence from T, to the ground vibronic manifold is spin-forbidden
and may trap molecules for times ranging from milliseconds to seconds, How-
ever, the use of paramagnetic collision partners in the solution (0, for example)
that induce a strong spin-orbit coupling can decrease the triplet lifetime through
radiationless deactivation, In addition to the previously mentioned processes,
singlet-singlet absorption (8,8, in figure 1) may take place and cause additional
optical losses, These are not as significant as triplet-triplet losses because of

the relatively small population of Sye

Using this description for the interaction, the system can be modeled with
rate equations and phenomenological decay rates, If the thermalization rates
are approximated within each singlet manifold as being instantancous, the system

may be described by three levels: S,, 81, and Ty, In the absence of stimulated
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Figure 1,  Energy level representation of a dye molecule. Lines 1 and 2 denote
éxcitation and fluorescence, respectively, Dashed lines indicate non-
radiative transitions, and solid lines indicate radiative transitions,
Intersystem crossing is described by a rate, k:a"l" and the lifetime

of the triplet state by l‘,l,.




emission, the populations of the levels obey the following differontial equations:

dN

a 17N

L NW (1a)

dN
N o . " 11
dt ' kS'I'Nl N'l'/ I"l' L

dN . - - "
= 0 -Nl/l'ﬂ + N’I'/l'l‘ No\\,(t) (1e)

where
Nl. N‘l" Nn the populations of Sl, ’I‘l. and S o respectively
'l‘ﬂ the fluorescence lifetime of Sl
'l',r the total lifetime of T

1

K QT the intersystem crossing rate between 8 1 and 'l‘1

W(t) = the time=dependent pumping rate given by:

3
= A B0
W = Feer, ') ()

where I(t, ) is the flashlamp intensity as a function of time, and g(y) is some

line=shape function of the pump wavelength, A,

Y= (kq,r v 1/‘1‘8) (3)
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For a typical dye, such as Rhodamine 6G, the fluorescence lifetime of 81 is
-l -
about 5 « 10 "s. and the intersystem crossing rate is on the order of 5 « 1073 1.

Solving the Rate Equations

The rate equations given in equation 1 may be rewritten as ¢ single matrix

equation:
o - - -1
N, -y 0 W(t) N,
N, kg “1/T,, 0 N, )
L No- b1/'r 1/|l -\\'(t',- _No -

which may be abbreviated by:

N(t) = M) x N(b) ()
Equation 5 is a matrix equation with the matrizant solution given by: f )
|4
N(t) = EXP [ M (t)dt ] N(O) (6) } |

(=]

————

where N(0) 0 is the initial population vector,
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Because M(t) is not in diagonal form, we can expand the exponenti;.! matrix

operator as a power series, This vields:

)
Exl'[ﬁumu] - l*( M(tlidtl ' lfzj/ M(tzll\l(ta)dtgdta Foss
FFor the particular matrix of concern,
-yt 0 Z(t)
-,Mmdt =1k gt -t/ Ty 0 ®)
A0 t/l,l. =Z(1)
where
Z(t) f W (t)dt (%

This formulation can be used to approximate the ground=-state population,
No(t}, to an arbitrary degree of accuracy, The ground state is chosen for two
reasons: (1) it is the least sensitive to the magnitude of its own first derivative,
and (2) it is a function of both Nl(t) and N,l,(t). The approach to solving for .\:l(tl
is based on solving the first-order differential equation (la) using an approxi-

matica for .\IO(H derived from the expansion given by equation 7, Designating

v -.,1'



the order of the No(t) approximation by a superscript,

0
Ny® = Ny (10)
1 -

N,® - NO[. - Z(v) (11)
2 » " Ly

No® = Ny [1-zma -t/ T - A0)! (12)

Similarly, for N'l' (t)

ONT(t) . IN,I.(t) 0 (13)

2 ) " :
Np = Noke [tZ@®) (14)

The first=order expression for Nu(t) can be used to solve equation la for

Nl(t). Examining equation 1a, we see that it has the standard solution:

Nl{t) = EXP(=4t) [ﬁlXP(vt)iNo(t)V{(t)dt + C] (15)

where C is chosen so that NI(O) = 0, Substituting equation 11 into equation 15

gives:

Nyt = N EXP(-yt) [frezxpm) [1 -zm] Wit)dt + c] (16)

This expression accounts for the depletion of the S 0 population but assumes that

all molecules entering 'l’l remain there.




Finite Triplet !ifetime

The aceumulation of molecules in T, combined with a relatively small value

1

for T,, can result in a sizable return rate to the ground level, Usging the expan-

T
sion (equation 7), we arrived at a value for NT(t) given in equation 13, The
triplet contribution to No(t) appears in equation lc as NT(t)/TT. Substituting

equation 14, the contribution to No(t) by this rate can be estimated by the term:

No¥st [ 1z (tydt (17)

b

Equation 17 can be used to modify either equation 11 or equation 12 before using

them to solve equation la, The modified term is given by:

1 .
N, - No[l - Z(t) + kg /T, ﬁ&(t)dt] (18)

Lincarly Rising Flashlamp

This section examines the approximations derived for the case of a pump

source with a constant slope, which has the form:
I(t,A) = mt (19)
Equation 19 results in:

Z(t) - B(omt’/2 (20)




Substituting equation 20 into equation 16 and integrating yields for the population

of Sl:

N, NOB(\)m/T[t = 1/y = BQUmV()/2 + EXP(=y1) [1/v - sstum/va]]
(21
where

Vi (t3 - :ngh ' m/v2 - G/wa) (22)

Expression 22 can be modified to account for molecules that make the transition

from 'l‘1 to Su by adding the term:

2 2 Ll
NOB(A) m 1\8,1‘1{(1)/1“,1,1 (23)

where

: 3 3 :
R(t) - [t’ - 5:4/1 L 200 /2 - e'.mz/w- ‘ 120t/vl - 120/75 + EXP(-yt)/?s] (24)

Expression 21 modified by equation 23 is plotted for various parameters in
figures 2 through 4, Figure 2 shows the effect of varying the pump slope, Be-

cause a relatively long T, was chosen, flashlamps that rise quickly produce

|
higher peak populations but are short=lived since most of the molecules become

trapped in T, . However, for smaller pump slopes, the triplet return rate is in

1.
better competition with pumping, This permits the population to be maintained

for longer periods at lower levels,

Figures 3 and 4 show that k_,, and 'l',l, play complementary roles, The

ST

duration of inversion is strongly dependent on both rates. As figure 4 indicates,

10




N, (t)/Ng

Figure

08

0.6

04

0.2

0

a
-
g
i Y
&
=
i i 1 1
10 20 30 40 50 60
TIME (ns)
Relative population densities of h‘l as a function of time for various
-.) -
flashlamp slopes, The slopes (m) are given in watts=cm =5
)
at H x ltlll, Bt x I()“. Y T «x ]l}“. 6: O «x ll)w. The relevant

7 -1 , =9 ‘
2 x10 s I' £ x 10 s, and I'l_ 1 »

constants are: k. ;
S

11




kgr =1x 107!
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Figure 3 Population density of :-il as a function of time for two values of the
intersystem crossing rate ks. The relevant constants are,

m=3x1011, T =5 x 109, and T, =1x 1075,
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-1
for 'l',l, vilues that are short (~ks,l, )y we can achieve a nondamped inversion,
Depending on the resonator losses, such a situation could result in continuous-

wave laser operation, In actual practice, the shortening of T, . is accomplished

r
by using some quenching agent, However, most quenching agents are not

specific for triplet states and therefore also increase kS‘l" On the basis of how

this affects each rate, a net enhancement may or may not be achieved,

The analytic approximations given exhibit all e coarse features of the
population of S L a8 function of time, The plots given agree well with respect
to both peak population density and time=dependence when compared to computer
solutions, For comparison of the two solutions, the reader should consult
References 4 through 6, The results given can be readily used to estimate the
single=pass gain as a function of time for a particular dye. Moreover, the same
technique can be used in conjunction with a fourth rate equation for the cavity-

photons to examine transient laser action,
Conclusions

This paper describes how the use of a matrix expansion cen lead to analytic
approximate solutions for a component of a set of rate equations, The application
of this approach to the optical pumping of dyes illustrates the validity of the re-
sulting expressions, All the important features concerning the dye problem can

be found in the first-order solutions given, More subtle effects leading to

14




detailed structure can be found by including higher order terms in the matrix

expimnsion,
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