TO: NHB/Scientific & Technical Information Office
FROM: GP-4/Office of Assistant General Counsel for Patent Matters
SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP-4 and Code NHB, the enclosed NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 3,306,134
Government or Corporate Employee: TRW, Inc.
Supplementary Corporate Source (if applicable): Redondo Beach, CA
NASA Patent Case No.: WOO-00625

NOTE - Is this an invention made by a corporate employee of a NASA contractor?
YES [X] NO []

If "YES" is checked, the following is applicable: Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of ...".

Elizabeth A. Carter

Enclosure
(NASA-Case-WOO-00625) WABELE GEAR DRIVE MECHANISM Patent (NASA) 5 F
CSCL 131

Unclas 00/37 05412

FEB 1978

This invention relates to a drive mechanism, and more particularly to a wabble gear drive mechanism in which all moving components except the output driven gear are hermetically sealed.

This invention has particular usefulness in hazardous or other contaminating atmospheres where the driving means, for different external reasons, must be protected from the environment in which the driving means is located.

In the space field, a need arose for a drive mechanism to rotate a shaft protruding from a space vehicle. Due to the vacuum environment of outer space, it was soon realized that many solid materials sublimate and that all liquids evaporate. The oil and grease lubrications necessary for bearings and gears exposed to the hazardous vacuum environment soon evaporate, thereby causing failure of the moving surfaces. A conventional drive mechanism, composed of gears, bearings and lubricants, exposed to the hazardous vacuum environment, could not operate for an extended period of time without loss of the lubricant and subsequent failure of the load-carrying component.

In this invention there is disclosed a unique application of the wabble gear principle specifically adapted to solve the bearing, gear, and shaft seal elements, other than the output gear, within a hermetically sealed package which prevents escape of the lubricating materials.

Additionally, it is possible to select and use a preferred atmosphere in the hermetically sealed package that can now optimize the operation of the motor bearings, gearings, and shaft bearings. The hermetic seal is maintained by eliminating all sliding type shaft seals, which tend to cause undesired friction loading and are hence subject to wear.

In the preferred embodiment the output shaft is eventually connected to the external device being controlled and is located in the dangerous or foreign atmosphere. An output gear is point between the driving gear and the output gear to traverse around the circumference of the gears once every revolution of the bearing carrier. Because of the one tooth difference in the number of teeth on the gears, the output gear is advanced by an angular distance equal to the circular pitch of the teeth during each revolution of the contact point and the bearing carrier. Thus, with gears of 100 and 101 teeth respectively, a speed reduction of 100 to 1 is possible. Since the driving gear does not rotate, a first bellows arrangement connected at one end to an uppermost portion of the output gear and at the other end to an extension of the shaft housing may be used to hermetically seal the drive motor and one end of the first and second bearings. A second bellows connected at one end to a lowermost portion of the driving gear and at the other end to the shaft housing may be used to hermetically seal the opposite end of the first and second bearings, thereby hermetically sealing the driving motor, the first bearing, the bearing carriage and the second bearing. In the preferred embodiment, the defined bellows are also used to rotationally restrain the driving gear.

Further objects and advantages of the present invention are referred to in the accompanying drawings, wherein:

FIGURE 1 illustrates the application of the wabble gear for controlling solar panels for a spacecraft;

FIGURE 2 is a simplified cross section of the wabble gear assembly; and

FIGURE 3 is a cross section taken along lines 3-3 of FIGURE 1.

Referring now to FIGURE 1, there is shown a spacecraft 10 comprising a substantially rectangular main section 11 arranged to house the necessary scientific experiments and telemetering equipment. Located within the main section 11 is a wabble gear drive mechanism 12 arranged to rotate an output shaft 13. A plurality of solar paddles 14 and 15, each arranged to support a plurality of individual solar cells, are continuously arranged to be positioned by means of the shaft 13 so to face the rays of the sun at substantially right angles. Power generation for the spacecraft 10 is achieved by the solar cells rays of solar paddles 14 and 15. In the spacecraft embodiment full face illumination of the solar cells on the paddles 14 and 15 is achieved by rotation of the output shaft 13, which position is controlled by a feedback control system actuated by sun sensors not illustrated. The present invention is concerned primarily with the drive mechanism 12, which is illustrated in connection with a spacecraft 10 for convenience only to more fully illustrate the benefits to be derived for operating the drive mechanism in a hostile environment.

Referring now to FIGURE 2, there is shown a simplified cross section of the wabble gear drive mechanism 12 taken along lines 2-2 of FIGURE 1. The mechanism 12 is constructed around the output shaft 13 and comprises a housing 16, having a flanged portion 17 adapted to be connected to a supporting member and a cylindrical portion 18 constructed concentrically about the shaft 13. A first set of bearings 19 are mounted on the cylindrical portion 18 in such a manner as to be concentrically aligned with respect to the output shaft 13. Mounted on bearings 19 is a bearing carriage 20 having a first surface 21 supported by the bearings 19 so as to run true and be parallel with an axis of the output shaft 13. The external or outside surface 22 of the bearing carriage 20 defines a cylinder having an axis that is offset a given angle with respect to the axis of the output shaft 13. This outside surface 22 supports a set of bearings 23, which supports a driving gear 24 at the same offset angle. The driving gear meshes with an output gear 25 that is concentrically aligned and directly attached to the output shaft 13 by means of a pin 26. The output shaft 13 is externally supported by means of bearings 27 and an external mounting bracket 28. Due to the offset angle determined by the outside surface 22 of the bearing car-
In operation, the necessary wires for controlling the electric motor 30 pass through a first sealed portion and, when energized, will cause the bearing carriage 20 to rotate concentrically about the output shaft 13. The bearings 19 and 23, which support the driving gear 24 at the offset angle, are free to rotate and will not impart a rotating motion to the driving gear 24. Any tendency for the driving gear 24 to rotate is effectively prevented by means of the bellows arrangement 33 that is connected at one end to an internal portion of the driving gear 24 and at the other end to the cylinder portion 18 of the housing 16, thereby completely hermetically sealing the defined arrangements.

In operation, the necessary wires for controlling the electric motor 30 pass through a first sealed portion and, when energized, will cause the bearing carriage 20 to rotate concentrically about the output shaft 13. The bearings 19 and 23, which support the driving gear 24 at the offset angle, are free to rotate and will not impart a rotating motion to the driving gear 24. Any tendency for the driving gear 24 to rotate is effectively prevented by means of the bellows arrangement 33 that is connected at one end to an internal portion of the driving gear 24 and at the other end to the cylinder portion 18 of the housing 16, thereby completely hermetically sealing the defined arrangements.

In operation, the necessary wires for controlling the electric motor 30 pass through a first sealed portion and, when energized, will cause the bearing carriage 20 to rotate concentrically about the output shaft 13. The bearings 19 and 23, which support the driving gear 24 at the offset angle, are free to rotate and will not impart a rotating motion to the driving gear 24. Any tendency for the driving gear 24 to rotate is effectively prevented by means of the bellows arrangement 33 that is connected at one end to an internal portion of the driving gear 24 and at the other end to the cylinder portion 18 of the housing 16, thereby completely hermetically sealing the defined arrangements.

In operation, the necessary wires for controlling the electric motor 30 pass through a first sealed portion and, when energized, will cause the bearing carriage 20 to rotate concentrically about the output shaft 13. The bearings 19 and 23, which support the driving gear 24 at the offset angle, are free to rotate and will not impart a rotating motion to the driving gear 24. Any tendency for the driving gear 24 to rotate is effectively prevented by means of the bellows arrangement 33 that is connected at one end to an internal portion of the driving gear 24 and at the other end to the cylinder portion 18 of the housing 16, thereby completely hermetically sealing the defined arrangements.
5. A combination according to claim 4 in which said power source comprises an electric rotor located in said hermetically sealed environment.

6. A combination according to claim 4 which includes an inert gas under pressure in said hermetically sealed environment.

References Cited by the Examiner

UNITED STATES PATENTS

1,587,298 6/1926 Gilman 74—800 X
2,545,335 3/1951 Becker 184—1
2,545,562 3/1951 Thiel 74—800
2,617,494 11/1952 Becker 184—1
2,699,690 1/1955 Kobler 74—800
2,830,454 4/1958 Karn 74—800 X

FOREIGN PATENTS

1,356,830 2/1964 France.

DAVID J. WILLIAMOWSKY, Primary Examiner.

J. R. BENEFIEL, Assistant Examiner.