TO: NHB/Scientific & Technical Information Office
FROM: GP-4/Office of Assistant General Counsel for Patent Matters
SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP-4 and Code NHB, the enclosed NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 3,306,134

Government or Corporate Employee: TRW, Inc.

Supplementary Corporate Source (if applicable): Redondo Beach, CA

NASA Patent Case No.: WOO-00625

NOTE - Is this an invention made by a corporate employee of a NASA contractor? YES [X] NO []

If "YES" is checked, the following is applicable: Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of ..."

Elizabeth A. Carter

Enclosure

(NASA-Case-WOO-00625) WABELE GEAR DRIVE MECHANISM Patent (NASA) 5 E CSCL 131

N78-17385

00/37 05412
This invention relates to a drive mechanism, and more particularly to a wabble gear drive mechanism in which all moving components except the output driven gear are hermetically sealed.

This invention has particular usefulness in hazardous or other contaminating atmospheres where the driving means, for different external reasons, must be protected from the environment in which the driving means is located.

In the space field, a need arose for a drive mechanism to rotate a shaft protruding from a space vehicle. Due to the vacuum environment of outer space, it was soon realized that many solid materials sublime and that all liquids evaporate. The oil and grease lubrications necessary for bearings and gears exposed to the hazardous vacuum environment, could not be realized that many solid materials sublimate and that all liquids evaporate. The oil and grease lubrications necessary for bearings and gears exposed to the hazardous vacuum environment, could not operate for an extended period of time without loss of the lubricant and subsequent failure of the load-carrying component.

In the invention there is disclosed a unique application of the wabble gear principle specifically adapted to solve the bearing and gear problem. A conventional drive mechanism, composed of gears, bearings and lubrication exposed to the hazardous vacuum environment, could not operate for an extended period of time without loss of the lubricant and subsequent failure of the load-carrying component.

In the invention there is also disclosed a unique application of the wabble gear principle specifically adapted to solve the bearing and gear problem. A conventional drive mechanism, composed of gears, bearings and lubrication exposed to the hazardous vacuum environment, could not operate for an extended period of time without loss of the lubricant and subsequent failure of the load-carrying component.

In the preferred embodiment the output shaft is eventually connected to the external device being controlled and is located in the dangerous or foreign atmosphere. An output gear is mounted concentrically and aligned in a driving relationship with the output shaft. A first bearing is concentrically aligned about the output shaft and preferably on a housing which surrounds the output shaft. The first bearing supports a bearing carriage which has an external surface for supporting a second bearing. The external surface of the bearing carriage defines a cylinder having an axis that is offset a given angle equal to the circular pitch of the teeth on the gears, the output gear being advanced by an angular distance equal to the circular pitch of the teeth during each revolution of the contact point and the bearing carrier. Thus, with gears of 100 and 101 teeth respectively, a speed reduction of 100 to 1 is possible. Since the driving gear does not rotate, a first bellows arrangement connected at one end to an uppermost portion of the output gear and at the other end to an extension of the shaft housing may be used to hermetically seal the drive motor and one end of the first and second bearings. A second bellows connected at one end to a lowermost portion of the driving gear and at the other end to the shaft housing may be used to hermetically seal the opposing end of the first and second bearings, thereby hermetically sealing the driving motor, the first bearing, the bearing carriage and the second bearing. In the preferred embodiment, the defined bellows are also used to rotationally restrain the driving gear.

Further objects and advantages of the present invention are referred to in the accompanying drawings, wherein:

FIGURE 1 illustrates the application of the wabble gear for controlling solar panels for a spacecraft;

FIGURE 2 is a simplified cross section of the wabble gear assembly;

FIGURE 3 is a cross section taken along lines 3—3 of FIGURE 1.

Referring now to FIGURE 1, there is shown a spacecraft 10 comprising a substantially rectangular main section 11 arranged to house the necessary scientific experiments and telemetering equipment. Located within the main section 11 is a wabble gear drive mechanism 12 arranged to rotate an output shaft 13. A plurality of solar paddles 14 and 15, each arranged to support a plurality of individual solar cells, are continuously arranged to be positioned by means of the shaft 13 so to face the rays of the sun at substantially right angles. Power generation for the spacecraft 10 is achieved by the solar cell rays of solar paddles 14 and 15. In the spacecraft embodiment full face illumination of the solar cells on the paddles 14 and 15 is achieved by rotation of the output shaft 13, which position is controlled by a feedback control system actuated by sun sensors not illustrated. The present invention is concerned primarily with the drive mechanism 12, which is illustrated in connection with a spacecraft 10 for convenience only to more fully illustrate the benefits to be derived for operating the drive mechanism in a hostile environment.

Referring now to FIGURE 2, there is shown a simplified cross section of the wabble gear drive mechanism 12 taken along lines 2—2 of FIGURE 1. The mechanism 12 is constructed around the output shaft 13 and comprises a housing 16, having a flanged portion 17 adapted to be connected to a supporting member and a cylinder portion 18 constructed concentrically about the shaft 13. A first set of bearings 19 are mounted on the cylindrical portion 18 in such a manner as to be concentrically aligned with respect to the output shaft 13. Mouned on bearings 19 is a bearing carriage 20 having a first surface 21 supported by the bearings 19 so as to run true and be parallel with an axis of the output shaft 13. The external or outside surface 22 of the bearing carriage 20 defines a cylinder having an axis that is offset a given angle with respect to the axis of the output shaft 13. This outside surface 22 supports a set of bearings 23, which supports a driving gear 24 at the same offset angle. The driving gear meshes with an output gear 25 that is concentrically aligned and directly attached to the output shaft 13 by means of a pin 26. The output shaft 13 is externally supported by means of bearings 27 and an external mounting bracket 28. Due to the offset angle determined by the outside surface 22 of the bearing car-
The adaptability of this wobble gear principle stems from the somewhat unique property of the driving gear which does not rotate and yet causes its mate to rotate about the central axis. It can be seen that this non-rotating, driving gear can become, in fact, part of the container wall of a hermetically sealed package wherein a pair of linear, metallic, convoluted bellows flex to accommodate the irrotational, wabbling motion. Consequently, the driving motor, gearhead, and intermediate gearing and bearings are contained inside of a hermetically sealed container to prevent escape of conventional lubricants and ingestion of externally generated contaminant particles.

This completes the description of the embodiment of this invention; however, many modifications may be made, such as the shape and size of the housing which forms part of the hermetic seal. Accordingly, it is desired that this invention not be limited to the details of the embodiment disclosed herein, except as defined by the appended claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. In combination, an output shaft, an output gear concentrically mounted and aligned in a driving relationship with the output shaft, a bearing carriage, a first bearing concentrically aligned about said output shaft, a bearing carriage, said bearing carriage having an external surface for supporting the bearing carriage, a second bearing, a power source for driving said bearing carriage, and a rotational restraining device connecting said driving gear whereby rotation of said bearing carrier about said output shaft causes said driving gear to rotate about the circumference of said output gear and depending on the gear teeth relationship cause a rotary motion of said output gear, said rotational restraining device hermetically sealing said power source and said first and second bearings.

2. A combination according to claim 1 in which said driving gear has at least one tooth more than the number of teeth on said output gear to thereby obtain a speed reduction.

3. A combination according to claim 1 in which said power source comprises an electrically operated rotor having an output shaft mechanically coupled in a driving relationship with said bearing carriage.

4. In combination, an output shaft, a walled structure defining a passageway for the output shaft, an output gear concentrically mounted and aligned in a driving relationship with said output shaft, a bearing carriage, a first bearing mounted on said walled structure concentrically with said output shaft for supporting the second bearing, said external surface defining a cylinder having an axis that is offset a given angle with respect to the axis of said output shaft, a driving gear mounted on said second bearing and engaging said output gear at a single point due to said offset angle, a power source for driving said bearing carriage, and a rotational restraining device connecting said driving gear whereby rotation of said bearing carrier about said output shaft causes said driving gear to rotate about the circumference of said output gear and depending on the gear teeth relationship cause a rotary motion of said output gear, said rotational restraining device hermetically sealing said power source and said first and second bearings.

5. A combination according to claim 1 in which said driving gear is not permitted to rotate by virtue of the attachment to stationary structure through the bellows 32 and 33, which flexure in the pitch and roll direction but not in roll. Thus, it can be seen that as the bearing carrier 20 rotates, the inclined mounting of the bearing 23 causes the driving gear 24 to perform a wabbling, irrational motion. This wabbling motion causes the contact point between the output gear 25 and the driving gear 24 to traverse around the circumference of the bearing 23 the driving gear 24 to perform a wabb
3,306,134

5. A combination according to claim 4 in which said power source comprises an electric rotor located in said hermetically sealed environment.

6. A combination according to claim 4 which includes an inert gas under pressure in said hermetically sealed environment.

References Cited by the Examiner

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,587,298</td>
<td>6/1926</td>
<td>Gilman</td>
<td>74—800 X</td>
</tr>
<tr>
<td>2,545,335</td>
<td>3/1951</td>
<td>Becker</td>
<td>184—1</td>
</tr>
<tr>
<td>2,545,562</td>
<td>3/1951</td>
<td>Thiel</td>
<td>74—800</td>
</tr>
<tr>
<td>2,617,494</td>
<td>11/1952</td>
<td>Becker</td>
<td>184—1</td>
</tr>
<tr>
<td>2,699,690</td>
<td>1/1955</td>
<td>Kobler</td>
<td>74—800</td>
</tr>
<tr>
<td>2,830,454</td>
<td>4/1958</td>
<td>Karn</td>
<td>74—800 X</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,356,830</td>
<td>2/1964</td>
<td>France</td>
</tr>
</tbody>
</table>

DAVID J. WILLIAMOWSKY, Primary Examiner.

J. R. BENEFIEL, Assistant Examiner.