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AN INFORMATION THEORY APPROACH TO THE

DENSITY OF THE EARTH

Michael A, Graber
Geodynamies Branch, Code 921
Goddard Space Flight Center
Greenbelt, Maryland U,S, A, 20771

ABSTRACT
Information theory can deveiop a technique which takes experimentally deter-
mined numbers and produces a uniquely snecified "bes.' density model satisfying
those numbers, This technique does not depend on previous density models for
starting conditions; it is self-starting, A model was generated using five nu-
merical parameters: the mass of the earth, its moment of inertia, three zero-
node torsional normal modes (I, = 2,8,26), In order to determine the stability
of the solution, six additional density models were generated, in each of which
the period of one of the three normal modes was increased or decreased by one
standard deviation, The superposition of the seven models is shown in Figure 4,
It indicates that current knowledge of the torsional modes is sufficient to specify
the density in the upper mantle but that the luower mantle and core will require

smaller standard deviations before they can be accurately specified,
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AN INFORMATION THEORY APPROACH TO THE

DENSITY OF THE EARTH

In information theory, an important consideration in determining probability dis-
tributions has been the maximization of missing information, This concept is
important because, "If we wish to avoid introducing a bias, if we wish to avoid
unwarranted preference for some inferences and unwarranted neglect of others,
we must choose the compatible probability distribution with the largest value of
the missing information, ' (Baierlein 1971, p, 87), The basis for this assertion
is fully developed by Baierlein in Chapter 3 where it is shown that the missing

information, MI, is

Ml = z:plnp

where p is a probability,

David P, Rubincam (private communication 1976) has proposed the novel idea
that there is a relationship between the density of a body and a probability func-
tion, The justification is developed in this manner; consider that a solid body
is composed of infinitesimal, incompressible ping-pong balls, each having equal
mass, Then the density of an arbitrary unit volume of the solid is proportional
to the number of ping-pong balls in the unit volume at that point, If one of the
ping-pong balls is painted red (all others are white), the probability of finding

that red ping--pong ball in a given unit volume of the body is related to the number




of ping-pong balls in that volume, Thus a relationship is developed between a

probability function and a density function,

The probability of finding the red ball is large if there are many balls in the
volume, small if there are few, and zero if there are none, Thus the most

general relationship between the probability and density is

p(x,y,z) = z aj [p(x,y,2)]!

For the purposes of this paper, the series is truncated after one term and it is

asserted that
P<p

This yields the extremal principle for the density of a solid body

|l = fkp In(kp) dv 51 = 0 (1)

with k an unspecified constant, This equation with suitable integral constraints

forms the basis for the remainder of this paper.

The constraints which will be appiied to Equation (1) have the form of an integral

= fpf,(r)d\
b, fpt._v‘r’d\"

involving the density

25
|

(2)
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where K, and K, are physical constants such as mass or moment of inertia,
These would be incorporated into the variational equation with Lagrange multi-

pliers, resulting in

[ = [kp In(kp)dv + )\,fpf,(r)dv + A fpl';.(r)dv

The functional form of the density can then be determined from the Euler-

Lagrange equation

of d ot
dp dr 9p'
where
' dp
p I —
dr

[ = dmrl[kpin(kp) + X pf (1) + X, pf, (1)

: , ORIGINAL TAGE I¥
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Kintkp) + k + X f,(r) + Ayfh(r) = 0

[ A, X

p=|=expl=1)| « exp| -— f(r) = — f,y(r)

k k s

By redefining the Lagrange multipliers,
pr) = Aexpl = A f(r) = A f5(r)] (3

The number of constraints which may be incorporated is limited only by compu-

tational considerations and is not necessarily two as in the above example,




The values of the constants in Equation (2) are determined by substituting the
density equation into the original constraint equations, There appears to be a
difficulty here in that there are two equations and three unknowns, which leads
to an indeterminate situation, However, in practice this is overcome by always

making the first constraint conservation of total mass

K, = M=fpdv

Thus f,(r) = 1 and
plr) = A expl = A = N\ (0]
By redefining A to includ> exp(-\,) the equation becomes, for two constraints
plr) = Aexpl=A,1,(n]

and we are back to two equations and two unknowns,

Rubincam's first computation of a density distribution utilized two constraints:
mass and moment of inertia, The second constraint is placed into a spherically

symmetric mode by noting

f,oh@ + yi)dv = Coyy

3 3 =
d/‘ plys + 221 dv = Coquatorial

3 1] = "
fpll‘ + x3)dy = (cqlulutiul

T R P




fp Zridv = Cpolar * 2(.cqu;nurml

3 - " s
f pridv = 0,5((C polar * 2 (cqualnnal’

So that numerically

fpdv = 5976 x 10°7 gm

fp 2 dv = L5805 x 10 gm km?)

with fy(r) = r? this yields the two-parameter density model

plr) = Aexp[=A,r?|

and A = 12,14 x 10" gm/km?, \, = 3,535 x 10" km™?,

This paper is concerned with extending Rubincam's two-parameter model (un-
published) by developing integral constraints based on the eigenvalues w; of

the torsional normal modes of the earth, These constraints have the form

wl: - [ﬂll(r)d\ ‘1‘

The precise form of f; is expressed in Appendix 4, Equation (A4-1),

The function f, (r) depends on the transverse velocity v (1), the displacement
potential W(r) of the mode (see Appendix 3), and its first derivative, The re-

quirement for v, can be satisfied by experimental seismology. Several recent

41 ]




papers (Choudhury, Poupinet, Perrier 1975; Braile, Keller 1975; Huestis,
Molnar, Oliver 1973; Niazi 1973) were used to determine the mantle velocity
profile shown in Figure 1, Qamar (1973) and Niazi (1973) used core radii of
3477 km and 34585 km, respectively, in '} Jir velocity models, In Figure 1, the
cut-off 3481 km was chosen, This discontinuity in v, generates the core-mantle

density discontinuities exhibited in the derived density models,

Since f, (r) depends on the displacement potential of the normal mode, a boot-

strap method is required, Beginning with the two-parameter density model, the

8
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RADIUS (1,000 km)

Figure 1, Transverse Velocity Profile of the Mantle
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first normal mode is calculated using the Ritz methad (see Appendix 3) and finite
elements (see Appendix 2), The solution for the displacement potential is sub-
stituted ino f, (r) and a preliminary three-parameter density is generated, This
density model generates an improved displacement potential, which in turn is
used to generate another three-parameter density model, The procedure is con-
tinued until the density model converges to a stable solution, No attempt was

made to prove the uniqueness of the solution,

Then a second normal mode was addad, and the three-parameter solution was
boot-strapped into a four-parameter solution, And this was repeated for the

addition of a third normal mode, F

One feature of this calculation which has been temporarily ignored is the assump-
tion used in deriving the form for the density function, Equation (3), that f, (r)

is independent of the density, Obviously, the displacement potential depends on
the density model, The nor.nalization requirement (see Appendix 3) also intro-
duces a density dependence, However, within the range of density models con-
sidered here, the displacement potentials varied quite slowly, indicating that the

approximation assuming complete independence has some value,

The torsional norma! modes chosen for this calenlition are the zero-node oscil-
lations of degree 2, 8, 26, The observed periods for these torsional normal

modes are (Bullen 1975, p. 305)

. OF POOR QUALITY




Degr.oe Period (sec)

2 2642, =24,
8 735.0 ¢ 1,3
26 280,88 ¢+ 0,3

Kanamori and Anderson (1977) have shown that these observations include a
contribution due to dispersion, Therefore, in a non-dispersive model such as

the present one, the values which should be used are

Degree Period (sec)
2 2624, + 2o,

8 727.6 £ 2.8

26 285,7+ 1,1

where the probable error has been increased to incorporate Kanamori and
Anderson's statemont that the amplitudes of the corrections are accurate to

209,

The numerical improvement in the boot-strap procedure can be seen from the
caleulated periods for the three torsional modes as shown in Table 1, The
density distributions for the four models represented in Table 1 are shown in

Figure 2,

In order to determine the stability of the five-parameter solution, individual
periods were increased or decreased by the probable error and six additional

density models were derived, These perturbed solutions with the nominal

T Al ! i o ; i i




Table 1

Displacement
Mode Calculated ok Calialated
Model Period
(degree) (nec} From Observed
Period
_1
Two-Parameter 2 2535, -89,
Modes: None 8 724, 3 -3,3
ek 26 286.5 +0.8
Three-Parameter : 2624, 0.
Modes: 2 8 747.1 +19,5
. 26 7 289.8 +4'1
Four-Parameter 2 2623, =0
Modes: 2,8 8 727.3 -0.3
i 26 281.8 -3.9
Five-Parameter 2 2624, 0.0
Modes: 2,8,26 8 727.6 0.0
8. » ’ 26 285.7 0.0

solution are shown in Figure 3 with the legend indicating which period has been

adjusted,

For each of the seven density models, the periods of all the zero-node torsional
modes from L = 2 to L = 44 were calculated, These calculated periods were
compared with the values listed by Bullen (1975) after applying a correction for
dispersion, The calculated periods were within 1,5 standard deviations from

the expected periods.

The general variation of all the models is indicated in Figure 4 where all seen

of the five-parameter models are superimposed. This figure indicates that
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current knowledge of the periods of the torsional modes is adequate to specify

the density distribution of the upper mantle, but not that of the lower mantle or

core,

Currently accepted earth density m=.uels (Bullen, 1975) place a lower bound on
the density at the earth's center at approximately 12 g/ce, with a probable value
between 12 and 13 g/ce. The density then decreases as radius increases to
reach approximately 9.5 to 10 g/ce at the outer core boundary, A discontinuity
is present in the core at the inner core boundary, This is not present in any of
the models in Figure 3 because none of the constraints contains information

about the existence of the inner core, The addition to this calculation of spheroidal
free oscillations would include the compressional velocity, and the discontinuity

in this velocity prbf ile would generate an inner core discontinuity, On the mantle
side of the core-mantie boundary, the density is believed to be between 5.5 and

6 g/ce, and then it decreases to 3.3 g/ce in the upper mantle, In Figure 3, Laree
of the perturbed solutions are very close to this currently accepted picture of the

earth's interior. In considering the differences from current earth models, it is
important to recall the simplicity of the present calculation and the small amount

of experimental data included.

This information theory technique has taken experimentally derived numbers
and constructed from them a nominal densiiy model with additional perturbed
models to indicate the general uncertainty in tiie solution, An improvement in
the value of this technique would occur if the relative probable errors of the

periods could be brought below 10°*, In order to accomplish this reduction,

ORIGINAL PAGE IS
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th: error associated with the correction for dispersion would have to be reduced
along with the observational error, With the probable errors sufficiently small,
this technique would specify very precise earth density models, and comparison
of these with existing models would provide a test of the assumptions upon which

this technique is based,
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APPENDIX 1
SCALAR POTENTIALS FOR SECOND-RANK

TANGENT TENSOR FIELDS

A major computational simplification can be achieved by replacing tensor dif-
ferential equations with equivalent scalar differential equations, Backus (1966;
1967) suggested a technique for accomplishing this simplification in spherical
systems, Backus' method has been followed here, More recently, Phinney and
Burridge (Burridge 1969; Phinney and Burridge 1973) and James (1976) have

developed similar techniques with more general applicability,

Backus' technique is similar to replacing a vector field by three scalar potentiais,

Defining the outward normal vector N and the tangential gradient one: gior

R

e i)
V. =0 L
a0 sinfl ¢

§

then a general vector field can be written

A= NUog) + Vi Viro.g) - ﬁx’\i Wir,0.,9)

in terms of three scalar potentials U, V, W,

Backus derives a scalar representation for a general second-rank tensor in a
three-dimensional space, However, for brevity, the result for a symmetric

tensor ie given here, since these are of primary interest, Using a tensor




SN

notation more in agreement with current practice, Backus' equation 4,13 (made

symmetric) is

—_
-
1l
—_
e
)

"y fugjL Ry

(A1-1)

—
-3
1]
e
=
[}

[L + U+ 1)M| nij + :M.ij

¥ €in gk Nkj * €jn P N ki

where i, j, k, orn= 0 or ¢
P, Q, R, L, M, N are six scalar functions of position; ¢ ij is the two-dimensional
Levi-Civita tensor; gj; the metric tensor restricted to i, j = ¢, ¢ on a unit sphere,

R . represents tangential covariant differentiation and ¥ jj represents two ap-

sl

plications of tangential covariant differentiation,

The tangential covariant derivative is calculated in the manner of an ordinary co-
variant derivative, except all terms introduced by the connection coefficients
which are superscripted by "r'" are climinated and the derivatives are evaluated
on a unit sphere so r = 1, This can be illustrated in an example by calculating
gl A_” for the basis described below, at the end of this appendix, Equation

(A1-2)

1 1 9 I 0 ORIGINAL 2AGE =
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@ i
Ago = ;.:- A =T A,

where i = 0 or ¢ (not r)

where i = 0, or ¢ (not r)
cotd

|-0¢¢= - - 2 - coth
r

l‘%, -y

R | a° i}
= — A + cotd —
o9 sin20 a¢? e a0 .

e A i = Agg + Agy

2 a 1 @
e A+ cotf ~—— + —
a0 sin’0 9¢?

IfA(r, 0,¢) = A(r) Y, (0,¢), where Y¢y is a spherical harmonic, then

gijA‘U = - L+DDA

1-3




This identity has been used in the expression for v in Equation (A1-1) where
¢ + DM has replaced -g') M. For a more general equation, the reversing

substitution may be made,

In reading Backus (1967) it is worthwhile to note that while he indicates in his
Equations 2,22 and 2, 26 that the connection coefficients l‘i,k are equal to the
Christoffel symbols of the second kind {1:.} , this equality in fact only occurs
in holonomic bases, This becomes important because the most commonly used

spherical coordinate system is anholonomic, namely

ds? = dx!? + dx2? + ax??

where
dx! = dr
dx? = rdo 1A1-2)
dx? = rsind do
and
Bij = 8ij :

In an anholonomic system (Misner, Thorne, Wheeler, 1973, p. 210)

< i e TP
g {jk} r 3 . "Lijk * oy - 'jlu‘




where ¢ are the commutation coeffic

Equation (A1-2)

i
= 0 Il 4.
{jk} for all ).k

while in general

ol
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fents of the basis, In the basis given in
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APPENDIX 2

FINITE ELEMENTS IN THE CALCULUS OF VARIATIONS

The general format of a problem in variational calculus requires the minimization

3
| = f f(x,y.v') dx
X

of I, where

and y is a function of x over the range of integration having a first derivative yv',
The minimization of I is carried out with respect to all functions y(x) which

satisfy the boundary conditions specified in the problem,

One numerical technique which can be used to put some order into the search
for this minimum is to express y(x) as a sum of functions which satisfy the
boundary conditions of the problem, These basis functions could be sines ard
cosires, or if intuition gives a general picture of the solution, one could use »
set of functions having the general srtucture of the intuitive solution (r: mps,
steps, ete,). Then a well-documented technique known as the Ritz method can
be used to solve for the coefficients in this series of functions, If the basis

functions are chosen well, the Ritz solution will be very accurate,

The Ritz technique was followed in this paper., The basis functions used were
finite element tunctions, A finite element basis function is zero over most of
the range of the variational integral, and non-zero over a small, specific seg-

ment (the finite element), The form of the function over this segment is arbitracy,

2-1
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but is usually limited for numerical reasons to simple polynomials, In this work,
linear finite elements were used, This means that the n-th basis function is de-

fined over [a,, b,] which is a part of [x;, x,] and where
Ix; = x;1 > 1Ib, = a,l

Then if ¢,, is in the segment [a,, b, | (not necessarily the midpoint), the n-th

basis function is

f(x) = 0 XS X <a,
X -2

= - h S X <,
n = dp
b, - x

- ¢S X < by,
b, - ¢,

-0 by S x € X,

At the ends of [x,, x,], the finite element is modified to

hl‘x

fi(x) = X, € X < b,
b - x

= () h|<K<X2

These linear finite elements have the advantages that they are continuous, they
are easy to handle numerically, and when summed they approximate an arbitrary
function with a continuous function made of linear segments whose slopes change

b,.

ateacha,, c,, b,
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APPENDIX 3
A VARIATIONAL FORMULATION FOR THE TORSIONAL ELASTIC

MODES OF THE EARTH

Backus (1967) has shown that for the elastic stress tensor, the six tensor poten-
tials given in Appendix 1 divide into two groups: R and N; and P, Q, L and M,
If P, Q, L, M are non-zero, while R, N are zero, one generates spheroidal
normal modes, If R, N are non-zero, while P, , L, M are zero, one gencr-
ates torsional modes, Since this paper deals with torsional modes, the general

stress tensor will be specialized to P, ©, L, M equal to zero,

If one postulates that the general form of the displacements of a torsional normal

mode is
U =0
| J
4] P —
sinfl o¢
Uo = - —5(}- W

where W is a scalar function of position, then the equations of elasticity

|
“m E‘ ‘Uﬂ.m ¥ Uln,k"

= Tue
Tem )\Ung + “HCom

GE 18
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(with the differentiation indicated by A | now general covariant differentiation)
vield a relationship developed by Backus between the tensor potentials R and N

and the displacement potential W, namely
N=-W (for ¢ > 2N has no = | component)
potl, Pw.w ¢
r ™ - ( )

The basic equation of motion for the torsional modes of a spherically symmetric

ecarth is based upon the minimization of I, where

l=f(1‘- V) dv

T is the kinetic energy

rd

—
i
ti|=—
©
=

and V is the elastic encigy

<
i
tw | —

tm .
™ Cm

(Note that the torsional modes in a spherically symmetric earth have no gravi-

tational contribution to the potential energy; this contribution is present for the

spheroidal modes, )



Assuming that the displacement has a harmonic time dependence exp(iwt) then

the integral equation of motion becomes (with W' = dW /dr)

ww’

Iy =jdr{yr3 (W'"'E -
(A3-1)

w'.'
+ JeL+1) - 1) —2') - ufprlwl}
r

- | 2

where ( is the degree of the normal mode, This integral formulation of the
equation of motion can be checked by evaluating the corresponding Euler-

Lagrange equation

Thz Euler-Lagrange equation yields

2 dR
pw-rW+r-E*3R +|2-QW+I)I£W=O
r

which is in agreement with the sixth equation in Backus' equations 5, 37 (1967),

The boundary conditions derived with the Euler-Lagrange equation become

2

2 R=0 §35
<3
7
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Since a boundary at r = 0 for a sphere is meaningless, this equation simplifies

to

=
L]

0

Referring to Equation (Al1=1) in Appendix 1, and recalling that P and Q are zero
for torsional modes, this boundary condition is seen to be equivalent to the

regular boundary conditions for elastic normal modes in a sphere
lyr ®*Top " Ty = 0

Thus, solutions to the torsional normal mode problem found by minimizing I

will automatically satisfy the relevant boundary conditions,

The advantage of this variational formulation is that one can use finite elements
(see Appendix 2) and the Ritz method (Weinstock 1952, Section 7-6) to restate
the integral variational equation as a matrix eigenvalue problem which can be
solved extremely rapidly with modern computers, Although the differential
equation will give the same answer, considerations of limited computer time

dictated that the ealeulus of variations is the preferred mode of operation,
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APPENDIX 4
INTEGRAL CONSTRAINTS BASED ON TORSIONAL

NORMAL MODES

Additional integral constraints can be obtained for the torsional normal modes,
In Equation (A3=1) of Appendix 3, ¢ contains an arbitrary constant which can
be chosen so that the minimization procedure leaves I = 0, Thus once the
normal mode solution has been achieved one has an integral equation for the
square of the eigenvalue

2 w?
w? =fdrpr3 (W'l -—WW + [L+1) - 1] '—2—-) (A4-1)

r r

with the normalization equation

fprlwzdr = |

subject to the proper boundary conditions, Note that y = pvi , which gives the
required functional form for the constraint equation (see Equation 2), Although
this is a short-cut derivation of this equation, the end results are supported by
Weinstock's (1952) discussion of eigenvalues of membranes in Chapter 9 and by
his short discussion of the similar problem in a solid in Problem 9-25, The

eigenvalue equation is put on a more general basis by the Theorem of Minimum
Strain Energy | discussed by Sokolnikoff (1956, p. 389)| since it is apparent that

Equation (A4-1) is only

4-1




w? =k/Vdv

where V is the elastic strain energy [see Equation (A3-1)] and the normalization

equation is (where T is the kinetic energy)

k
-—— Tdv = |
w.‘

where k is an arbitrary constant chosen to make the normalization equal to one,
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