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ABSTRACT

Information theory can develop a technique which takes experimentally deter-

mined numbers and produces a uniquely s,_ cified "bes.' density model satisfying

those numbers. This technique does not depend on previous density models for

starting conditions; it is self-starting. A model was generated using five ntr-
{

merical parameters: the mass of the earth, its moment of inertia, three zero-

node torsional normal modes (L = 2, 8, 26). Ill to determine the stahility

of the solution, six additional density models were generated, in each of which

ille period of (,ne of the three normal modes was increased or decreased by one

'	 standard deviation. 'I1ic superposition of the seven models is shown in Figure 4.

It indicates that current knowledge of the torsional modes is sufficient to specify

the density in the upper mantle but that the 1.j« ,er mantle and core \%ill require

smaller standard deviations before they can he accurately specified.
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AN INFORMATION THEORY APPROACII TO THE

DENSITY OF THE EARTII

In information theory, :in important consideration in determining probability dis-

t ributions has been the maximization of missing information. "Phis concept is

important because, "If we wish to avoid introducing a bias, if we wish to avoid

unwarranted preference for some inferences and unwarranted neglect of others,

we must choose the compatible probability distribution with the largest value of

the missing information," (Baierlein 1971, p. 87). The basis for this assertion

is fully developed by Baierlein in Chapter 3 where it is shown that the missing

information, All, is

Nil = E p In I)

where p is a probability.

David P. Ilubincam (private communication 1976) has proposed the novel idea

that there is a relationship between the density of a body and a probability func-

tton. The justification is developed in this manner; consider that a solid body

is composed of infinitesimal, incompressible ping-pong balls, each having equal

mass. 'Then the density of an arbitrary unit volume of the solid is proportional

to the number of ping-pong balls in the unit volume at that point. If one of the

ping-pong balls is printed red (till others are white), the probability of finding

that red ping-pong ball in a given unit volume of the body is related to the number

•	 1
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of ping- ponR halls in that volume. Thus .r relationship is developed betmven a

r;	 probability function and a density function.

The probahility of finding the red ball is large if there are many balls in the

\oluniv, small if there are f( , \\-. and zero if there are none. Hills the most

,reneral relationship between the probability and density is

h(X,y,.) _	 ai Ip(x,y,•)I'

For the purposes of this paper, the series is truncated after one term and it is

i	 asserted that

ti a p

Phis yields the extremal principle for the density of a solid body
I

^	 l
t	 I	 kp In(I.p) (1v	 61 = U	 (1)

with k :u) unspecified constant, "Phis equation with suitable integral constraints

forms the basis for the remainder of this paper.

'Me constraints which will be applied to Equation (1) have the form of an integral

involving; the density
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This yields

where K, and K. are plivsical constants such as mass or moment of inertia.

These would he incorporated into the variational equation with Lagrange multi-

pliers, resulting in

J kp In(kp)dv + X I J pt' i (r)tiv + X, fpf_Wi

The functional form of the density can then be determined from the F.uler-

Lagrange equation

^^ t'	 d a f
— - — — = 0
ifp	 dr 3p'

i	
whe re

tip
p' _ —

^1 r

I' = 47rr = lkp1n(kp) + X l pf,(r) + X,pl',tr)

kln(kp) + k + a 1 I I ( r ) + X2t2(r)

I	 IN 	 X2
P =	 - rxh(-I ► 	 * CXII— I i (r ► - —	 1^,(r-	 ►

k	 k	 k

By redefining the Lagrange multipliers,

	

p(r) = n ex 1) - X t i (r ► - X,f,MI	 (3)

The number of constraints which maY be incorporated is limited only by compu-

tational considerations and is not necessarily two as in the above example.

3
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The values of the constants in Equation (.'.) are determined by substituting; tilt-

density equation into the ol • lg;inal constraint equmions. i'I+erc appears to he a

tiiffickilt y here in 11ml there art- two equations and theee uni.nowns, which leads

to an indeterminate sih ► ation. However, in practice this is overcome by alw:tvs

making; tilt , first constraint conservation of total mass

	

h i	 %I	 f, dv

11111s l I ( r) = 1 anti

poI = A c\111 - A I - X,f,(r)I

By rcdefinin^ A to inclu,l • t • xp(- \ I ) the equation becomes, for two ctmstr:iirts

p(r) = A rxtl-^.I,lrll

and we are bark to two equations and two unknowns.

Huhincanl's first cowput:ltion of a density distribution utilized two constraints:

mass and moment of inertia. I •he st-colld constraint is placed into : ► spherivallY

.	 symmt • tric mode	 noting;

	

I E ,I ^ '	 ► dv = Cam ►►;curial

' + x-

4



J
P : r 2 tiv = Cpolar + 2 t otpuloriA

f
N r' CIV = 0.5(C juilar + 2 < <<µwtun. ► I I

So that numerically

rp dv = 5.070 x 10-'-' viii

with f_(r) = r' this yields the two-parameter density model

p(r) = A expj-X,r 2 I

and A = 12.14 x 10 t 5 lrm 'km ; , X, =3.535 x 10 -8 km ,

'Phis paper is concerned with extending 10ibincam's two-parameter mode-1 (un-

published) by developing integral constraint ,, based on the eigenvalues w ( of

the torsional norm, modes of the earth. 'llwse constraints have the form

L012 :a f P ft (r) d%	 (.1)

I'he precise form of f i is expressed in Appendix 4, Filtration (A4-1).

The function f t (r) depends on the transverse velocity v  (r), the displ:icement

potential W(r) of the mode (see Appendix :3), and its first derivative. The re-

quirement for v I can be satisfied by experimental s(ismolo ,,\-. Several recent

t

i
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papers (Choudhury, Poupinet, Perrier 1975; Braile, Keller 1975; Iluestis,

Molnar, Oliver 197:3; N1a •r.i 197:3) were used to determine the mantle velocity

profile shown in Fig;ure 1. Oamar• (197:3) and Niaii (1973) usod core radil of

3 .177 km and 34S5I,m, resywctively, in t . it velocth• mmlc6. In Ilkalre 1, the

cut-off 3451 i:m was chosen. 'Phis discontinuit% • in v t generates the core-mantle

density discontinuities exhibited in the derived density models.

Since f, (r) depends on the displacement potential of the normal nimle, a boot-

strap method is r.quired. Iteginning with the two-parameter density model, the

8 r-
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RADIUS (1,000 km)
Figure 1. Transverse Velocity Prof le of the Mantle
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first normal mode is calculated using; the Ritz meth, i %see Appendix 3) and finite

elements (see Appendix 2). The solution for the displacement potential is sub-

stituted in,o f t (r) and a preliminary three-parameter density is generated. This

denF.ity model generates an improved displacement potential, which in turn is

used to generate another three-parameter density model. The procedure is con-

tinued until the density model converges to a stable solution. No attempt was

made to prove the uniqueness of the solution.

Then a second normal mode was addad, and the three-parameter solution was

boot-strapped into a four-parameter solution. And this was repeated for the

addition of a third normal mode.

One feature of flits calculation which has been temporarily ignored is the assump-

tion used in deriving; the form for the density function, Equation (3), that for)

is indemndent of the density. Obx iousIv, the displacement ix)tential depends on

the density model. 'i'hc normalization requirement (see Appendix 3) also intro-

duces a density dependence. However, within the range of density models con-

,	 sidered here, the displacement potentials varied quite slowly, indicating that the

approximation assuming complete independence has some value.

The torsional normal modes chosen for this caleo ll ition are the zero-node oscil•-

lations of degree 2, 8, 26. The observed periods for these torsional norm;il

modes are (liullen 1975, p. 305)

7

_i
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Deer v	 Period (see)

	

2	 2642,	 t:2-1.

	

8	 735.0 t: 1.3

	

2ti	 289. S t 0. 3

Kanamori and Anderson (1077) have shown that these obser y :ttions include a

contribution due to dispersion. Therefore, in :t non-dispersive 111cxiel such as

tht, prosew one, the values which should be used are

Deg I-cc 	 Periml (secl

	

2	 262.1	 t 2'

	

8	 727. tv t ?, 8

	

26	 2,45.7 t 1.1

where the probable error has been increased to incorporate Kanamori and

Anderson's statem:► nt that the amplitudes of the corrections are accurate to

207.

	The numerical improvement Ill 	 boot-strap procedure can be seen from the

calculatcd periods for the three torsional iuodes as shown in 'fable 1. '11'o

densit y' distriluttions 1'or tilt , four models repre:^ented ill 	 l are shmm in

Figilre 21.

In order to determine the stability of the five-parameter solution, individual

pericxis were increased or decreased 1w the probable error aild six addition:d

density' models were derived. 'These perturbed solutions with the nominal
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Table 1

{ -,.

Displacement
Calculated

Mode of Calculated
Model Period

(degree) From Observed(sec)
Period

2 2535. -89.
Two-Parameter
Modes: None

8
26

724.3
286.5

-3.3
+0.8

2 2624. 0.Three-Parameter
Modes: 2

8 747.1 +19.5
26 289.8 +4.1

2 2623. -1.
Four-Parameter 8 727.3 -0.3
Modes:	 2, 8

26 281.8 -3.9

2 2624. 0.0
Five-Parameter 8 727.6 0.0
Modes:	 2, 8, 26

26 285.7 0.0

i

I,	 i

solution are shown in Figure 3 with the legend indicating which period has been

adjusted.

For each of the seven density models, the periods of all the zero-node torsional

modes from L = 2 to L = 44 were calculated. These calculated periods were

compared with the values listed by Bullen (1975) after applying a correction for

4	
dispersion. The calculated periods were within 1.5 standard deviations from

4	 '
r	 the expected periods.

I The general variation of all the models is indicated in Figure 4 where all seN•en

I	 of the five-parameter models are superimposed. This figure indicates thatI
r	 9

UEtIG
1, XL PAGE IS

tiF POUR QUIT"

1.7



n

m

W
0	 ^

d
N

a^	 {
i

(ao/B) AIISN3cl

i

^ N O

MAI AlISN30r

i

T-7 77777"

^	 ^	 n'	 ^	 t

I	 D N

• E

- m
N
W ^p

Y	 O NW N in

^Q	 ^

y
J

_.

N
O ^ J

O
y
^

N w
W

L.--.L L. _L--	 --)GO m	 f	 N	 O	 m t0	 N

1 0*/B) AlISN30 O
C O

Q ^

O,^

O zt•. wp o
^ o

'° o
W

N co 6n
N

MO If p

of J (y

ICY

Q

l	 1	 _1 ._—l_	 i	 I
CID	 W

I^^/BI AIISN30

ORIGINAL PAGE IS
OF POOR QUAIM

10

3

a



i

m	 W	 .	 eV^

I '^ ^LSN3O

m

w
W	 r,

Q
N m ^
	

ppi
• 66

1	 ,ry a

1	 I	 Io
O m m . N

M D I AlISNB0

^r

o

N O

yy^

I^

1 1	 --^0

M* AlISN)O

l,.

.o

c

i
h

h?^01 A114N30

WO
O
Oi

1 m gyp,
N

r
^I

^•

NN
^

ia7

6

M

1	 I	 _^
Nr^	 ^	 R	 m m	 .

I-A AIISN30

-a m

N ^

,
7	 it	 m	 '°	 ..

I b:a A^ISN NJ

^p	

Jo

NO

N 	

m

II	 I	

_

t!	 4	 r	 o	 ^	 .+

0*161 AIISN30

0.

W
N+

C

I

RS

4 b
Ci O

I--. G
Rr 

C

R. G
td f

U.

O
rr

O
U

C4

^

c.

ORIGINAL PAGE I.

> >	 OF. ppUit ^U ^'1,

 Ml—

c



C%4	 Ov
1

00

r-

CL`

	

^I	 1

	

co	 qt

a^aU
^'
L

W
,^

Y J:

Vv cC

w

V J j

M
x ^

cr c «^

CN .,	 a

a

a^

?r
O

PDA kiISN3G

2



ORIGINAL PAGE IS
t1F Ptwit QuAI.I' .

I
	

13

I

1

current knowledge of the periods of the torsional modes is ade(jume to specify

the density distribution of the upper mantle, Init not that of the lower mantle or

co re.

Currently accepted earth density m^..acls (Itullen, 1975) place a lox%er Found on

the density at the earth's center at approximately 12 g/cc, \\ ith a probable value

I)etween 12 and 13 g/cc. The density then decreases as radius Increases to

reach :approximately 9.5 to 10 t;/ce ;it the outer core boundary. A discontinuit\

Is present in the core at the inner core boundary. This is not present in any of

the models in Figmre 3 because none of the constraints contains information

:drat the existence of thc inner core. The midition to this calculation of spheroid:d

free oscill a tions Would include the compressional velocity, and the discontinuity

ill 	 velocity profile \\ould generate an inner core discontinuity. On the mantle

side of the core-mantle boundary, the density is believed to be between 5.5 and

6 i;/cc, and then it decreases to 3.3 g/e(' in the 1.11)j l' mantle. In Figure :3, '.,iree

of the perturlx^d solutions are very close to this currently accepted picture of the

earth's interior. In considering; the differences from current earth models, it is

important to recall the simplicity of the present calculation :ind the small amount.

of experimental data included.

Phis information theory technique has taken experimentally derived slumbers

and constructed from them a nominal dcnsi'v model ^^ith additional perturbed

models to indicate the general uncertainty in ti;e solution. An improvement in

the valu e_	 this technique would occur if the relative probable errors of the

periods could be brought below 10 -4 . In order to accomplish this reduction,

- _ 
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APPF.NI)IX 1

SCALAR mrENTIALS FOR SECOND-RANK

'TANGE'N'T TENSOR FIELDS

3

A major computational simplification can be achieved by replacing tensor dif

ferential equations with equivalent scalar differential equations. Backus (19GG;

1967) suggested a technique for accomplishing this simplification in spherical

systems. Backus' method has been followed here. More reeently, Phinney and

Burridge (I;urridge 1969; Phinney and Burridge 1973) and lames (1976) have

developed similar techniques with more general applicability.

Backus' technique is similar to replacing a vector field by three scalar potentiais.

.defining the outward normal vector n and the tangential gradient or--^:aLor

V,=O—+^	 —
30	 lino o6h

then a general vector field can be written

A = n 11(r,0,¢) + V, V(r,0,0) - n x V, WI r,0,0)

in terms of three scalar potentials U, V, W.

Backus derives a scalar representation for a general second-rank tensor in a

three-dimensional space. However, for brevity, the result for a svrrimetric

tensor i- given here, since these are of primary interest. Using a tensor

1 -1

i	 ^^
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notation more in agreement %^ ith current practice, Backus' equation 1. 13 (made

symmetric) is

l i r = 1'

Ti p - I ri	 Qj + c r ilk 
R.k

(A1-1)

Tj i = "T i j = I I. + kltt + I i Ni I ta il + ? M.ij

+ e in 
t,nk N .kj + e jn gnk N. ki

where i, j, k, or n = 0 or p

P, 0, R, L, Al, N are six scalar functions of position; a ij Is the two-dimensional

Levi-CiOW tensor; g ib the metric tensor restricted to i, j = 0, 4 on a unit sphere.

R r represents tangential covariant differentiation and r 
ij 

represents two ap-

plications of tangential covariant differentiation.

The tangential covariant derivative is calculated in the manner of an ordinary co-

variant derivative, except all terms ini roduced by the connection cocffictents

which are supersertpted by "r" are eliminated and the derivatives are evaluated

on a unit sphere so r = 1. This can he illustrated in an example by calculating

gi j A .ij for the basis described below, at the end of this appendix, Equation

(A1-2)

I	 r)	 i3
A = — A (r = I)

r ^0	 (I

It UALm,
A 'o - r lino ^d A _ s inU a^ ,` 	^) ^

1-2

I
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where i = o, or 0 (not r)

1-3

32
A,UO = a02 A - t'ien A . i

where i = 0 or o (not r)

0

I'^,B = 0

	

1	 ^'

	

A - I' 	 A . isin 2 o 302

r► 	 Coto

	

1 C+m = -	 = - Coto

r

I'¢ 
0 

= 0

1	 a-	 a
— A + cot0 — A

	

sin g o 302	 30

A.ij = A .()o + A'0

	

3 2 3,1	 1	 32

	

_ — A + Coto — +	 — A

	

ao 2 	 30	 sin 2 o a02

If A(r, o,^) _ A(r) 1' E  (0,0), where Ytm is a spherical harmonic, then

10JAjj = - M+1)A



&Ixt = dr

LI O = r CIO tAl-2)

,

;Yl^,^n,.Y# 5.^o1:.yr.irs-.^^.^..,i. ,....w+.._ ^..... -- 	-- - --•-.»-.	 ..,,.-.. _-, 	_	 .awe	 ^ . _......:i...r..^.,.ar.^^^.

P
	

This Identit y has been used In the expression for T . to Equation (A1-l) \Ohere

a- t

	

	 k(Q + 1):11 has repinced -g i 1 M .j) . For a more general equation. the reversing;

substitution may be m ade.

In i—vadin:; Backus (1967) it is "orthwhil- to note that	 he indicates in hip

Equations 2.22 and 2.21; that the connection coefficients I' i ik nre equal tli the

it
Christoffel symhols of the second kind Ik } this equallty in fact only occurs

in holonomic bases. 'Mis hey omen important because the most commonly used

spherical coordinate system is anholonomic, namely

LIx = 	+ LIX 32
4

whe re

dx 3 = r sinO do

and

t'i^ = 

bii	 ,

i

a
In an anholrn,omic system (Milner, not yie. Wheeler, 1973, p. 210)

3

l`	 l

fl 	 ♦ E t-	
tk 	 r ^ ^-	 (l'ijti + l' i{CJ	 ljkl)

I	 _

4
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where c k are the rornmutntion c oeffici(.nts ..f 
the basis. In the 1)asis Kf%'en in

ij

Equation (A1-2)

U for all i.j,k

NN bile in general

^,k	 u

1-5
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FINITE ELEMEN'T'S IN THEE CALCULUS OF VARIATIONS
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APPFNUIX

VINi'TE: ELFNIFNTS IN THE CALV. t'Ll'S OF VARIATIONS

'The goner;+1 form: ► t of -i problem in variational calculus requires the minimization

of 1, where

I f f(x.y,y')dx
^

and y is a function of x over the range of integration ha y ing a first derivative y'.

The minimisation of I is carried out with respect to ;111 func • tionei y(x) which

satisfy the boundary conditions specified in the problem.

One numerical technique which can be used to put some order into the search

for this minimum is to express y(x) as a sum of functions which satisfy the

boundary conditions of the problem. 'rhese basis functions could he sines and

cosires, or if intuition gives a general picture of the solution, one could use n

set of functions having the general srtucture of the intuitive solution (r; mps,

steps, etc.). "Then a well-documented technique known as the Ritz method can

be used to solve for the coefficients in this series of functions. If the basis

functions are chosen well, the Ritz solution will be ver y accurate.

1lie Ritz technique was followed in this paper. Tlic basis functions used were

finite cicnumt functions. \ finite element hosts function is zero over most of

the range of the variational inte-ral, and non-zero over a small, specific seg-

merit (flic finite clement). The form of the funklion over this segment is arbitrary,

°-1
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but Is usually lir ► iitcd for numerlr: ► 1 reasons to simple polynomials. Ii ► this work,

linear finite elements were used. This nivans that the n-th basis function is de-

fined over la n , h„ I which is a part of (x l , x, I and where

1x 2 - x t l > 1" n - ;1n1

'I'lien if en Is in the sekrnient Ia n . h„ I (not necessarily the midpoint), the n-th

basis function is

	

In(x) = 0	 xt < x < an

- an
'I	 x < C

h ►, - x

	

=	 rn < x < bn

	

hn	 Cn

	0 	 hil < x < x,

At the ends of I x t , x, I. the finite clement is modified to

h t - x

	

f t (x) =	 xt < x < bt
h t - xi

	

=0	 bt<x <x2

These linear finite elements have the advantaw-es thcit they are continuous, they

:ire easy to handle numerlealiv, and when summed they approximate an arbitrary

function with a continuous function made of linear segments whose slopes change

at each a n ,cn , bill

t

4
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A VARIATIONAL VORMULATION FOR THE 'MRSIONAL ELASTIC
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APPENDIX 3

A VARIATIONAI. IORA1ULA'1'1ON FOR 'rHE TORSIONAL ELASTIC

AIODES OV 'ME EARTH

Backus (1967) has shown that for the elastic stress tensor, the six tensor poten-

tials given in :Appendix 1 divide into two groups: 11 and N; and 1 3 , Q, L and M.

If 1'. Q, L, AI are non-zero, Mi le R. N are zero, one generates spheroidal

normal modes. If 11, N are non-zero, while P, Q, L, Al are zero, one gener-

ates torsional modes. Since this paper deals with torsional modes, the general

stress tensor will he specialized to P, p, L. Al equal to zero.

If one postuleites that the general form of the displacements of a torsional normal

mode is

Ur = 0

I	 J

U3 _	 — W
lino o¢

U0 = --W
30

where N' is a scalar function of position, then the equations of elasticity

I
vQm	 (Ut,rn + (1111,C)

7kni = ^Ot'tim +

:1-1

where 0 = g.1k eik

"TSIJ	 130111(,
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i	 1	 '
s

(%%ith 11w dift'erenti: ► tion indivated by A.m now general vovariattt differentiatiow

Vivid : ► rel: ► tionship (It'vele ped ht. Kickus hehwell the tettxor potential. I1 :n d N

and the elisplaretlu v ttt potential W. nanuol.v

N- N„	 It^^r t	 ^; N h: ► S no C_ 1 compoilcm 1
r

It =	 (^ — N	 11	 1 ► 	 I 1
r \ t)r

The hasic equation of motion for the torsional modes of a spherit,Aiv symmetric

, • :irth is haseel tipon the minimisation of I, where

J t I - V) d%

I' is the kinetic energ%,

and V is lilt , t,lastit, ene. ►; .

I rkm"
l ill

• 2

a

(Nutt, that the torsionA modes in : ► spherieally symmetric earth have no gravi-

tational cimil-ihution to the pownti:il energy; this t,i lilt rihution i5 present for the

spheroidal modes.)

.3_o
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Assuming that the displacement has a harmonic time dependence exp(i w t) then

the integral equation of motion becomes (with W' = dW/dr)

	

lu =	 cir {µr 2 ^W - = WW'i,
(A3-1)

W

	

+	
`/

	

^C(t1+II - II -2	 - w'- pr-' W2
r

where V is the degree of the normal mode. "Phis integral formulation of the

equation of motion con be checked by evaluating the corresponding Euler-

Lagrange equation

at,	 d	 3 t'
= 0

DW dr aW'

subject to the restriction that at the boundary surfaces

aI
= 0

aw,

The Euler-Lagrange equation yields

pw' iW + r ``I r ;- 3R + 12 - M + I t l 
N 

W = a

which is in agreement with the sixth equation in Backus' equations 5.37 (1967).

The boundary conditions derived with the Euler-Iagrange equation become

r 2 K =0
U ^1

U

3-3	 ^•
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Since :I 	 at 1- - 0 for :t sphere is tlle: ► Ili nL^less. this equatiolt simplifies

to

K = ll

1{eferring to Eciumion OI-11 in Appendix 1. and recalling that 1' and Q are Zero

for tol'tiiollal modes. till~ ho111U1ar y condition is seen to he equivalcm to the

regqllar houn(hi-' condilions for elastic nornl:ll nudes in a sphere

rtt = I'	 1,^, = u

Thin, solutions to the torstonal tim-111al mode pro111em found by minimiiing It,

will :mtotilatieallY satisf.N • the relevant boundary condition•.

The advalital;e of this v.11 i:ltional formulalioll is that olit , ran use finite element~

i
(see Appendix 2) :Ind the Ritz nu o thod (Weinstock 1952, Section 7-6) to restatei
the inte:;ral l-:11iatiolml e( ilmdon as :1 nl:ltrix	 problem Ml ik-h e:ul 110

1

1	 Soled extren)elV rapidl y with modern compliter.q . Althou;;-h the differential

equation \\ ill oire the :111le :I -m-er, c=onsidermions of hinitod computer tinic

dictated th:lt the ca1e11I11S of vnrimlons is the preferl:d mode of operation.

3-4
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APPENDIX 4

IN'rE( ,sRAI, CONSTRAIN'T'S BASED ON 'TORSIONAL

NORMAL 'MODES

Additional intcgral constraints can he obtained for the torsional normal modes.

In Equation (A3-1) of Appendix :1, I t contains an arbitrary constant which can

he chosen so that the minimization procedure leaves I t, = 0. 'Thus once the

normal mode solution Ims been achieved one has an integral equation for t1w

square of the eigenvalue

'	 W'
ca'-	 si r pr' ^14 	 - — WW' + Uti + 1) - I I —	 (A4-1)
f	 r	 r'

with the normalization equation

pr' W' dr = I

subject to the proper boundary conditions. Note that p = pv 2 Mitch gives the

required functional form for the constraint equation (see Equation 2). Although

this is a short-cut derivation of this equation, the end results are supported by

Weinstock's (1952) discussion of eigenvalues of membranes in Chapter 9 and by

his short discussion of the similar problem in a solid in Problem 9-25. The

I
eigenvalu(-' equation is put on a more general basis by the 'Theorem of 'Mininnim

Strain Energv I discussed by Soko^lnilkoff (1956), p. 389)1 since it is app,irent that

Equation (A4-1) is only

I	 4-1

-V

14--



W2 = k fVdv

where V is the elastic strain energy l see rquation (A3-1)j and the normalization

equation is iwhere '1' is the kinetic energy)

k
-1, kIv = 1W _

where k is an arbitrary constant chosen to make the no^rnuiliration equal to one.

k '.

0^- Y
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