A DATABASE SYSTEM TO SUPPORT IMAGE ALGORITHM EVALUATION

FINAL TECHNICAL REPORT

Y. Edmund Lien, Principal Investigagor

The University of Kansas
Department of Computer Science
Lawrence, Kansas 66045

{NASA-CR-155%28) A DATABASE SYSTEH TO N78~17725

SUPPORT INAGE ALGORITHHN EVALUATION Finpal '

Report, 15 Nov. 1976 - 31 Dec. 1877 {[Kansas

Univ.) 221 p HC A10/MF AO1 CSCL 09B Unclas
G3/61 Qu231

| NATIONAL TECHNICAL |
| INFORMATION SERVICE
S orELD, e el

This research was sponsored by the National Aeronautics and
Space Administration through Research Grant No. NSG-8046.

FINAL TECHNICAL REPORT

Research Grant Title: A Database System to Support Image
Algorithm Evaluation

Principal Investigator: Dr. Y. Edmund Lien
Associate Professor
Department of Computer Science

Grant Period: November 15, 1976 - December 31, 1977
Grantee Institution: University of Kansas

Lawrence, Kansas 66045

."Grant. Number: NASA Research Grant No. NSG-8046

This final report

(1) describes the design and implementation of an image database system
IMDB

(2) provided sufficient information for the maintenance and upgrade of
the IMDB system

{3) includes a user manual describing use of the IMDB system

{(4) oprovides a list of publications issued during the course of the
research,

Precedng page blak , i

TABLE OF CONTENTS

—ACKNOWLEDGEMENT: - -

REPORTS:

I.

IT.

b o o b

APPENDICIES:
I.
II.
I1I.
Iv.
V.

An Interactive Query Language for an Image Database

Implementation

Overview

Implementation
Implementation
Implementation

Implementation

of

of
of
of
of

IMDB User Manual

(by ¥. E. Lien and R.

the IMDB System

the Query Module
the Device Module
the File Module

the Manipulation Module

Independent Utility Routines

Permanent File Header Format

Bibliography of Publications

Documentation Package

Schroff)

(by Y. E. Lien)
(by Y. E. Lien)
(by S. K. Harris)
(by R. Law)

(by R. Law)

(by Y. E. Lien)

g = - e

SOt TAL PAGL v :

et Pung QDALY

1

NS

ACKNOWLEDGEMENT

We would like to thank Dr. Robert R. Jayrce, Jr. of Marshall
Space Flight Center for his many helps throughout the period of this
research. Without him, this research would have been impossible to
carry out to its completion. Mr. Malcowmb E. Gillis of Computer
Science Corporation, Huntsville has also provided tremendous assistance
in the programming phase. He taught us how to use RS¥-11D commands,
shared with us his experiences in graphics software, wrote the
package Z which later became part of the Device Module and many times
managed to save our files of thousands of source lines after several
severe disk crashes.

Many students at the Department of Computer Science, University
of Kansas participated in the early phase of the project. The efforts
of Al Poston, Sharon White and Claudia Dale are greatly appreciated.

We alsce would like to thank Susan Walker, Portia Kibble, and
“John Ying (of Bell Lab, Murray Hill) for their excellent typing of

this report.

REPORT T

AN INTERACTIVE QUERY LANGUAGE FOR AN IMAGE DATABASE

rmﬁ ,’LL-M‘
ow 260i €

ABSTRACT

Images, such as those created through satellite remote sensing or
photography, can be integrated into a central database to permit appli-
cation-oriented interactive data access and manipulation. Instead of
each user building the image processing tools for his own applications,
an image database offers to all its users a set of general purpose
image data operations. These operations can be used to analyze images,
to extract their informational content, to compare images, to overlay
images, ete. Unique and essential to image database systems is the
capability of conversational system-user interaction through both con-
ventional terminals and graphic display devices. Presented in this paper
is the design of an interactive image dat?base system IMDB, which allows
the user to create, retrieve, store, display, and manipulate images
through the facility of a high-level, interactive image query (IQ) language.
The query language IQ permits the usé; to'define false color functions,
pixel wvalue transformations, over}ay functi?ns, zoom functions, and
windows. The user manipulates the images through generie functions.

The user can direct images to display devices for visual and qualitative
analysis. TImage histograms and pixel value distributions can also be

computed to obtain a quantitative analysis of images.

REPORT I

AN INTERACTIVE QUERY LANGUAGE FOR AN IMAGE DATABASE

Viii

1. TNTRODUCTION

This paper addresses itself to an image database system IMDB. The
system supports the processing of discrete, geographically-associated
images, such as those produced by the LANDSAT satellites. Although
primarily intended for use with this type of image, the system design
is both general and flexible, permitting its use in other image processing
applications. Central to the system design is an interactive user-
oriented query language. Here the user is offered a convenient facility

by which images may be created, stored, retr&eved, manipulated and

displayed. .

1.1 Database Images

In 1972 and 1975 respectively, satellites LANDSAT 1 and LANDSAT 2
were launched by the National Aeronautics and Space Administration (NASA).
The LANDSAT program, formerly Earth Resources Technology Satellite (ERTS),
has provided a capability for repeated surveys and assessments of earth
conditions and resources.

Each satellite has a multispectral scammer which permits simultaneous
imaging in four channels. Thedigitléedinmges from these channels are
sent to the ground where computers are used to reconstruct the images.

A four-chamnel LANDSAT image contains 7,581,000 picture elements (pixels)
and for each channel the data value of each pixel is represented as an
integer between 0 and 255. This value indicates the intensity of light
reflection from an area of 79 x 79 meters.

There is an urgent need to provide a database system to support
LANDSAT image processing and application. After vears of research and
development, the processing of LANDSAT images has not yet provided pro-

duction facilities capable of extracting and organizing information

contained in the images. Only a small fraction of the images have been
fully processed and classified, leaving an enormous fund of data still
unavailable for public use. The situation is compounded by the LANDSAT-C
project (scheduled for a late 1977 or early 1978 launch) and the LANDSAT-D
follow-up project.

An obvious difficulty lies in the extremely large size of the image
data. The present LANDSAT will produce a new set of images covering
the entire earth every nine days. It is evident, from the sheer magni-
tude of the data alone, that the processing of LANDSAT images requires
a formidable amount of computer resources.

A second type of image is produced from hand-drawn ground-truth
maps. These maps represent the data gathered by secientists, for
instance, data regarding land use, soil type, slope, mineral resources
and energy resources. Qﬁite often satellite images are overlaid or
compared with ground-truth maps to obtain meaningful interpretations of
the images.

The IMDB desiéggéoes not address the data magnitude problem of
LANDSAT images, nor does it include a direct capability for classifying
images and organizing eclassification data for later retrieval. IMDB is
primarily intended for image manipulation and statistical analysis, It
can, for example, be used as a tool to assist in the image classification
process. It can alsc be used to evaluate the performance of different
image processing algorithms such as image registration and compression.
Other applications might include the production of map data, the studying
of geographic and geological features, the assessment of crop inventories,

etc.

1.2 IMDB System

Within the framework of an image gquery language (IQ language), the
IMDB system incorporates the facilities requisite for the processing
of satellite and ground-truth images. Although IMDB is a response to
the specific computational requirements associated with LANDSAT images,
the system can and should be viewed as a generalized image database

system. Let us informally summarize the facilities of such a system.

These include

. A database management system capable of maintaining image data.
. Image manipulation facilities which permit images to be edited,
colored, transformed, superimposed, compressed, and expanded.

. Display facilities permitting the visual interpretation of
image data on one or several output devices.
. Statistical facilities allowing an analysis of an image's

composition or spectral distribution.

Although the implementation of an image database poses difficulties
not normally encountered in traditional databases such as IMS [6] and
IDS [7], the structuring techniques employed by IMDB do not vary signi-
ficantly from conventional methods. Consequently, we shall not discuss
at length the physical characteristics of the IMDB datsbase. Rather we
shall focus our attention on the user's view of IMDB as seen through

the facilities offered by the IQ languageé.

The design of the IQ language reflects an adherence to certain

general principles:

. The language must combine the display, manipulative, statistical
and management facilities within a continuous framework, i.e.,
a2 single program.

. The language must view the database from a logical standpoint
which is conceptually removed from physical considerations.

. The language must be highly user oriented, employing where

feasible, English language prompting.

In presenting the IQ language we have chosen to emphasize conceptual
and operational aspects at the expense of syntactic considerations.
Certain query statements have been simplified while prompting has been .,
discarded in favor of a less spacious and more direct presentation. A

grammar of the IQ language is included in the Appendix.

1.3 Hardware Configuration

IMDB is implemented at the Data Technology Testbed (DTTB) of the

Data System Laboratory, NASA Marshall Space Flight Center. The central

processing unit is a PDP-11/45 with 128K bytes of memory and 600 million
bytes of disk storage. Conventional input-output peripherals such as
line printer amnd magnetic tape are available. The PDP system runs under
the standard RSX-11D operating system.

Image display functions of the IMDB system require input-output
peripherals which provide graphie and color capabilities. The color
graphic device is a Ramtek GX-100B digital TV system which is an on~line
device of the PDP-11/45. This particular system has two 19-inch color
monitors and one 17-inch black and white monitor, three keyboards and
one trackball. The trackball is used for graphic input. Currently there
is sufficient refresh memory for two 256 by 256 pixel color monitors and

each pixel can be assigned any of the eight colors. Contents of the

refresh memory can also be read, which provides a convenient way to
construct composite images interactively. With additional memory each
Ramtek display can be expanded to a maximum of 512 by 512 pixels with
a maximum of 4096 colors. Graphic capability is also available with
two Tektronix 4014-1 storage tube terminals. The screen contains 4096
by 3120 addressable points. Graphic input capability on each Tektronix
terminal is provided through a thumb—wheel controlled cursor.

Bardcopy graphic output can be obtained through the hardcopy
devices attached to the Ramtek or Tektronix terminals or directed to
a Varian 4115 electrostatic printer/plotter. Dicomed D47 image recorder
provides the capability for film recording. Each film is formatted as
a matrix of 4096 by 4096 points. Each point in the matrix can be
assigned an exposure value in the range of 0 through 255.

Although IMDR is implemented on the hardware described above, its
logical structure is designed to be flexible as to the particular computer

configuration.

1.4 Related Work

Database concepts such as data integration and data independence
[1] have not been actively pursued in the field of image and picture
processing until only recently. Image and picture processing encompasses
a wide range of distinct application areas; the need of database tech-
nology in these areas are equally diversified. For example, McKeown and
Reddy describeda multi—sensox image database system MIDAS designed to
perform knowledge acquisition, error analysis, and algorithm evaluation
[2}. Chang et al presented a relational database system for managing
pictorial and alphanumeric information [4]. Zabrist presented an image-

based information system designed especially to manage spatially-referenced

data [3]. Kunni, Weyl, and Tenenbaum proposed a relational database

schema for colored picture description [5].

2. BASIC ELEMENTS

The database facilitates the storage and retrieval of images and
windows, each of which is addressable by means of a unique name. In
addition to these items, the database is also used for the storage of

generic functions. These will be discussed in separate sections.

2.1 Images

An image consists of picture elements, or pixels. Each pixel is
a one-byte integer associated with a precise geographic area and having
a range of values from 0 to 255. The area represented by a pixel is
dependent upon the scale of the pixel. In terms of z pixels/km, the
pixel represents a square of area 1/z2 kmz. The value of a pizel is
the image representation of its area; if a pixel results from a photo-
graphic measure of grayness, then a pixel value corresponds to a gray-level.

An image is a two-dimensional pixel matrix, Each row and column
consists of contiguous non—overlapping pixels which respectively follow
the geographic lines of latitude and longitude. The dimensions of an
image are a measure of the geographic area represented by its component
pixels. ‘

Within the database the unit of storage is the row, This 1s referred
to as a scan line. All images, before being entered intce the database,
are assumed to have been geometrically corrected and geographically

registered.

2.2 Windows
A window is the polygon described by a circuitous ordered set of

points, each point located in terms of longitude/latitude. Each pair of

consecutive points determines a vector, and according to an IMDB convention,
the vectors are required to form a non-intersecting clockwise closure.
Each window is further assumed to be either an inclosure or an exclosure.
The restriction that the window be non—intersecting corresponds to
the normal view of a polygon. (It also avoids an unwieldy interpretive
problem.) The restriction does not, however, disallow colinear vectors
on '"richochets”. 1In this context an intersection is interpreted as an
actual crossing of two vector chains.
In the comstruction of the union or intersection of two windows, a
determination of the window's direction is essential. Since there
exists a relatively simple algorithm for determining direction, the
clockwise requirement is seen as a matter of conceptual and computational

convenience.

3. FUNCTIONS

Functions provide the user with methods by which images and windows
may be combined to form new images and windows. The IQ language supports
nine different functions. These can be conveniently classified in two
categories, built—in and generic. 1In this section we shall primarily
concentrate on the operational aspects of these functions, leaving to
succeeding sections the bulk of the discussion of syntax.

All functions require a specific set of image/window parameters
and return, either an image or a window. The masking function, for
example, requilres an image and a window as parameters. This function
returns a masked image.

The query language is constructed such that whenever an image is an
appropriate function parameter, an image expression is an equally appro-
priate parameter. This equivalence holds true for windows as well.

In the case of the masking function, since the function returns an image,

it is the expressional equivalent of that image. In the succeeding
sections we will use the following notation to desecribe the relationship

between 2 function, its parameters, and its equivalence:

MASK (<window expression>,<image expression>) -+ image

3.1 Built-in Functions

There are five built—in functions: JOIN, MASK, CLIP, UNION, and
INTERSECTION. These functions are tailored for immediate use much in
the same fashion as the built—in functions of PL/I. We shall discuss
each of these individually.

A. JOIN(<image expression>,<image expression>) - image.

This function "pastes" two images together to form a new image, according
to their geographic coordinates. The dimensions of the new image are
these which are minimally sufficient to contain the areas of the originals.
The first of the original images is defined to be the dominant image;

this image takes precedence when the two images overlap. The following

examples show the joining of images A and B (A is dominant). "0" denotes
an area that is not contained in either image; all pixels in these areas

have zero value.

JOIN is commonly used to create geographically large images by

placing component images side by side {(or top to bottom).

o)
A
A B
: B
0
0
A .
B A
0] B o

FIGURE 1. Examples of JOIN function.

B. MASK(<window expression>,<image expression>) - mage.

This function masks a window onto an 1mage to form a new image. If the
window is an inclosure, pixels interior to the window will retain the
values of the original 1mage while exterior pixels will be zeroed.
Exclosures function in the opposite manner: Exterior pixels are trans-
fered and interior pixels are zeroed. In either case, the resultant
image has the same dimension as the original image.

The masking algorithm makes use of the window's topological
properties. A pixel is contained within a window if the a ray eminating
from the pixel crosses the window boundaries an odd number of times. In
terms of a scan line this amounts to an identification of the poeints where
the window intersects the scan line (or its infinite extension), and a

determination of interior pixel intervals through a pairing of intersection

points.

0

C. CLIP(<window expression>,<image expresslon>) - image.

Although clipping 1s computationally a single operation, it can be con-
veniently viewed as a two step process. The window 1s first masked

onto the image; thereafter, the image 1s dimensionally reduced by dis-
carding those outermost rows and columns which do not intersect the
window. The resultant image has dimensions which are minimally sufficient
to contain the window. The solid lines in Figure 2 show an image and an

inclosure window; the dashed lines are the boundaries of the image resulting

from CLIP.

FIGURE 2. Example of CLIP function.

The CLIP function permits the user to reduce storage requirements
by discarding the frame that encompasses the relevant data. CLIP is

alsc commonly used to produce a sub-image by masking with a rectangular

window.

11

D. UNION(<window expression>,<window expression>) - window.

TNTERSECTION (<window expression>,<window expression>) - window.

These functions permit the user to regard windows as Boolean operands.
Included within this framework is the notion of an inclosure and an
exclosure: if W1l is an inclosure then "Wl is an exclosure; likewise, if
Wl is an exclosure than AWl is an inclosure.

The result of a Boolean ope;ation is always a single window. 1In
some situations this can be accomplished only through the use of arti-
ficial colinear vectors. (See Figures 3b and 3c.) Since these vectors
do mot alter the area defined by a window, they have no effect on the
functional usage of the window.

Figure 3a below shows the relative positions of windows A and B,
both of which are inclosures. The resultant windows shown in Figures
3b and 3¢ are inclosures, while the window of Figure 3d is an exclosure.
The window in Figure 3b can be described as a sequence of vectors

(a,b), (b,e), (c,d), (d,e), (e,£), and (£,a). The arrows in the figure

B

show the clockwise direction of the window. The windows in Figures 3c

and 3d can be similarly described.

[

A

/ﬂ_
2N

WASTAY

Figure 3a. Windows A and B. Figure 3b. INTERSECTION (A,B).

=

_
V) 7
) —)

Figure 3c. UNION (A,B). Figure 3d. UNION(A,“B).

ORIGINAL PAGE IS
OF POOR QUALITY

13

3.2 Generic PFunctions

One of the four generic functions is TRANSFORM. We shall use this
function to illustrate the general properties of generic functions. As
will be seen in the next subsection, the transformation process creates
a new image by a mapping of the pixel walues of a given image. TFor an
image I and a mapping M, the new image might be represented as TRANSFORM(I,M).
But suppose that M is fixed through the assignment M = a. This defines
a new function, say TR, where TR(I) = TRANSFORM(I,H)| M= a.
It is evident that an assignment of different values to M determines
a family of transformation functions, each function operating under its
assigned mapping. These we call the generic functions of TRANSFORM.
There are four generic functions: TRANSFORM, COLOR, OVERLAY, and
ZOOM, WNone of these is useable in the operational sense: instead, these
are generalized functions providing a framework within which the user
may construct specific operational functions. In defining a function the
user must give the function a name. This allows the function to be
stored in the datab;;;:-ready to be invoked by a query statement. In
this manner the user is able to build a library of generic functioms,

each function tailored to a special use.

A. <TRANSFORM-name>(<image expression>) - image.

TRANSFORM allows the user to define a method by which pixel values of a
given image can be linearly transformed to create a new image. The
transformation consists of a set of subtransformations and a default
transformation.

A subtransformation is written (a,b) + (c,d). This specifies that
all pixel values in the interval (a,b) are to be linearly mapped to the

interval (¢,d)., TFor X € (a,b) and Xy € (c,d) this mapping is defined by

14

d-rc
c + S, (xl - a) a<hb
x2= c a="5t
ERROR a>b

Since the general equation] + k, m > 0, is equivalent to
the mapping (a,b) + (ma + k, mb + k), it can be seen that this mapping
permits all non—inverted linear transformations. An inversion (a
negative in the photographic sense) may be achieved by (a,b) » (mb + k,
ma + k) for m > 0.

The default transformation is a sort of catch-all. It is used to
define the pixel value which results from intervals that are not explicitly
defined,

Let us take an example. Suppose that an image has pixel wvalues in
the range 0 — 127, The transformation

(0,63) - (0,3)
(96,100) > (4,4)

DEFAULT: 5

will produce the following mapping:

s

— "]) r~ 1
7 60 83 |, 0 3 5
38 97 18 > 2 4 1
120 127 12 5 5 0

B. <COLOR-name>(<image—expression>) —+ image.

Color display devices accept streams of integers which are translated into
colors. Prior to displaying an image, the user must transform the image

to the integer values appropriate to the display device and the desired

15

color picture. This poses two difficulties: First, the integer/color
equivalence varies among devices of different types. Second, the use
of a color equivalence is by no means accomodating to the user.

The coleor function is a response to these difficulties. Here the
user is permitted to specify a set of interval-to-color transformationms.

He might, for example, specify the following:

(0,20) = RED
(50,70) - BLUE
{100,200) + YELLOW

DEFAULT: BLACK

This can be regarded as the first phase of a transformation. The
second phase takes place when the user specifies a display device. At
this point the user-specified colors can be translated to their device~
dependent color equivalents.

C. <OVERLAY-name>(<image expression>,<image expression>) -- image.

The overlaying of two images produces an image which has the dimensions

of the overlapping area. The overlapping area is determined by the
geographic coordinates. The relation between the original images and

the resultant image is illustrated in Figure 4., Here we see the overlaying

of two images, A and B. The shaded area shows the result.

1o

FIGURE 4. Example of OVERLAY function.

Based upon pixel wvalues, the OVERLAY function maps the cartesian
product of the two original images onto the resultant image. The
mapplng is supported by tem binary operators: ADD, SUB, DIV, MULT,
MAX, MIN, AVG, AND, OR, and EXOR - and is defined by a transformation
set wherein these ten can be freely mixed., The first seven operations
refer to the common arithmetic operations between two pixel values:
addition, subtraction, integer division, multiplication, maximum,
minimum, and averaging. The last three operators refer to the bit-wise
legical operations between pixel values: AND, OR, and EXCLUSIVE OR.

An OVERLAY function consists of a set of tramsflormation rules,
Each rule is associated with a range of pixel values and an operator.

In addition to, or 1m lieu of transformation rules of this type, the

user may specify a default pixel value or a default operator. This

17

default option defines the transformation that is to take place for other-
wise undefined interval products. By using the default pixel value the
user specifies that all undefined interval products are to be mapped to
that value; the default operator specifies the coperation that is to be
performed for undefined intervals.

The following example shows a mapping (0,255) x (0,255) + (0,255):

MAX: (0,127} x (0,127)

.

AvG: (0,127) x (128,255)

DEFAULT: O

Maximum or averaging will be used for a pixel value pair (x,y) if
0 <x <127 and 0 < y < 255. Otherwise, the new pixel value will be
zeroed.

D. <Z00M-name>(<image expression>).

This is a relatively simple function which allows the expansion or

compression of an image. A one-to~three zoom expands a 15 x 25 image to

45 x 75, while a five~-to-one zoom compresses this same image to 3 x 5.
The expansion of an image entails a repetition of pixels as shown in

the following one-to-two zoom:

™ B
3 0 3 3 0 0
4 2 1/2 ; 3 3 0 0
4 4 2 2
4 4 2 2

A compression, on the other hand, causes pixels to be selected

according to the Zoom factor. A 25 x 25 image, for instance, is zoomed

five-to-one by selecting pixels 3, 8, 13, 18, and 23 from scan lines

3, 8, 13, 18, and 23. Here is an example:

18

~ -
8 9 7 8 6 5
8 8 6 8 8 5
6 7 6 7 6 2 8 8
6 s 5 6 4 1 '3_/1'55 af
4 6 5 3 2 3
5 5 4 3 1 3
Lo §

It should be noted that zooming is not a commutative. That is, for
two zoom functions Z1 and Z2, Z1(22(4)) is not necessarily equal to
Z2(Z1(A)).

The compression scheme adopted is to simplify the implementation of
the system and the presentation in this paper, it is understood that
other compression schemes such as averaging pixel values can be used as

well.

4, THE QUERY LANGUAGE

The IQ language is a command oriented interaective language. The

user specifies a command through a terminal keyboard. The execution of
the command (normally) begins with quiestion-answer sequence between the
terminal and the user. Once the user has supplied the appropriate infor-

mation, the operation specified by the command is executed.

4.1 Definition Facilities

A. Define Function

The DEFINE verb permits the user to define a functign and to attach
to this function a unique name. Once a function has been defined, it
achievés a status not unlike that of a catalogued object subroutine, and
can be 1mmediately invoked by the use of the function name. The following

example shows the definition of a transformation function.

19

DEFINE TRANSFORM TRSO

ENTER TRANSFORMATIONS:

(0,63) ~ 0,3)

(96,100) + (4&,4)

DEFAULT: 5

Underlining denotes that the character string is entered by the user.
The first line gives the name of the transform function. The last three
lines give the desired mapping.

ZOOM, COLOR, and OVERLAY are defined in a similar manner. ZOOM
requires the specification of a zoow-ratio; COLOR requires a set of
interval—-to~color transformations; OVERLAY requires a set of interval
product transformations with overlay operators.

B. Define Window

Windows may be defined by one of two methods. The user may specify
points in the window by specifying their absolute coordinate (such as
longitude/latitude); or he may select points on an interactive display
device, relative to the image on the device. The window is entered into
the database with a user-specified name.,

C. LET Statement

This statement allows an expression to be replaced by a simple label.
In the following examples, I1 and 17 are images; Wl, W2, W3, and W6 are

windows; Tl and Z1 are TRANSFORM and Z0OM functions respectively.

LET W6

INTERSECTION (W1, UNION(W2 ,~W3))

LET TI7 = TL(ZL(CLIP{W6,I1)})

Note that if these statements were entered consecutively, the second

statement would be dependent upon the first (because of Wé6).

20

4,2 Maintenance Facilities

WRITE TAPE allows an image, window, or function to be copied from
the database to magnetic tape. The data items contained on this tape
can at a later time be reentered in the database by READ TAPE. The
READ TAPE command is also used to copy into the database images which
originate from external sources.

Obsolete or unwanted items can be removed from the database by
PURGE. When a data item is originally defined through definition
facilities, it is treated as a temporary object, i.e., it will be
deleted at the conclusion of the interactive session. The SAVE command
permits functions, images, or windows to be stored permanently in the
database,

A listing of all items contained in the database can be obtained
by LIST DIRECTORY. Condensed information concerning each image, window,
and function such as dimerisions of an image, definition of a function,

etc., can be obtained by the SPOTLIGHT command.

15
ORIGINAL PAGE
4.3 Display Facilities OF POOR QUALITY‘

A, DISPLAY<image expression>

This command requests that an image be directed teo a display unit,
The operation is straight-forward if the image is small enough to be
displayed on the device. If it is not, the user has several optioms at
his disposal.

1. He can request that the image be displayed starting from the
northwest cormer and centinuing until the display area of the device is
full. Here he displays as much of the image as can be fitted on the
device,

2., He can request image compression, This option calculates a

compression ratio and automatically zooms the image to fit the device.

2]

3. He can enter scrolling mode, permitting him to select and
display certain portions of the image. This is most conveniently done
by displaying a compressed image on one device (as in 2), and then using
crosshairs or a cursor to identify the desired areas to be displayed on

another device. Only interactive display devices can be used to perform

scrolling,

B., DISPLAY<wyindow expression>

In displaying an image one is wvery much dependent upon the size and
discreteness of the display unit. This is not érue of windows since a
window can be readily scaled to fit any device. The algorithm used to
display windows chooses a scale such that extremities of the window

very nearly touch the edges of the display.area, The scale and the

location of extreme points also appear on the display.

)

4.4 Statistical Facilities

The purpose of the statistical facilities is to provide an analytical
means to study and compare images. For example, pixel values of an image
can be examined to obtain a histogram. Pixel values of a pair of images
can be correlated to construct a joint histogram, There is no limit to
the type of operations that can be included in this category. We present
several statistical operations here to aillustrate the nature of the '
statistical operations.

A, EXHIBIT HISTOGRAM<image expression>

Pixel values of the image are tabulated to determine their distribution.
A histogram is then displayed to the selected device to show, for each
pixel value oxr each range of pixel values, the number of occurrences in
the image. T¥Tor certain display devices, resolution may not be high enough

to indicate a precise pixel wvalue count.

22

B, EXHIBIT DISTRIBUTION<image expression>

This command produces a list which shows thé numerical count of the
pixel wvalue occurrences for eg;h_pixel_vq}ug: Fox example, a. distribution
can be exhibited on a line printer for studying the composition of an image.

C. EZHIBIT JOINT HISTOGRAM<image expression>,<image expression>

Two images of the same size are retrieved and a frequency count is
maintained for each unique pair of values of the corresponding pixels.
A diagram is then displayed to show the pizel values of the two images,
as the X and Y axes, and the frequency count of each pair of values. TFor
example, on a color display device, different colors will be used to
indicate different frequency counts.

D. EXHIBIT JOINT DISTRIBUTION<image expression>,<image expression>

This operation is similar to the joint histogram display except that

numerical values of the frequency counts will be exhibited.

5. AN EXAMPLE

In this section we present an example which demonstrates a relatively
sophisticated application of the IQ language. So as to emphasize concep-
tual content rather than syntax, the IQ statements have been pruned to
their bare essentials. We begin by presenting the problem and the data

which are available for its solution.

5.1 The Problem

We wish to determine the pixel value distribution of a certain agri-
cultural area. The region is identified by its elevation which is between
100 and 149 meters above sea level. So as to make this region readily
comparable to other similar regions, the distribution should not coantain

values from the two major lakes located in the region.

23

5.2 Awvailable Data

1. Three pairs of images: (Al,Bl), (A2,B2), and (A3,B3). Each
pair, considered as a unit, contains the region in question. An
atmospheric haziness has caused portions of each pair to be somewhat
lighter than the expected grayness. Fortunately, this lightness has not
affected the same portions of all three pairs. The images have a range

H
0-255, where 0 is white.

2. A contour image C. Each pixel in the image is linearly related
to the elevation of the area represented by the pixel. Elevation is incre-
mented in steps of 25 such that pixel value 0 represents 0-24 meters, 1
represents 25-49 meters, etc. Therefore, elevations between 100 and 149

meters are represented by pixel walues 4 and 5. The region to be studied

is wholly contained in this image.

5.3 The Solution

-~ We begin by joining the component images of each pair:

LET C1 =-JOIN(AL,B1)

LET C2

JOIN(A2,B2)

LET C3

JOIN(A3,B3)

Here we have assumed that the A~images are dominant. This assumption is
valid since pixel values in overlapping areas are nearly identical.

The next step is to combine these three images in a way such that
effects of atmospheric haziness are eliminated. This is accomplished by
comparing the three images and choosing, for each pixel area, the greatest

pixel value (i.e., the darkest). This requires an overlay function:

DEFINE OVERLAY MAXPTXEL

MAX: (0,255) x (0,255)

24

We can now define the desired image:

LET D = MAXPIXEL(Cl,MAXPIXEL(C2,C3))

The areas which contain the lakes must now be identified, This might
be accomplished in terms of absolute coordinates by referring to a hand-
drawn map. But for the sake of example, let us try another approach,
Assume that past experience has shown bodies of water to have pixel values
in the interval 75-90. A color function can be used to accentuate this

intexrval:

DEFINE COLOR BLUELAKES
(0,74) + YELLOW
(75,90) -+ BLUE

{91,255) + RED

1

Using the color function we display the image D:

DISPLAY BLUELAKES (D)

We assume that the two lakes are now identifiable as blue areas on

the screen. The cursor can now be used to define two windows:

DEFINE WINDOW W1
(The first lake is identified in cursor mode.)
DEFINE WINDOW W2

(The second lake is identified in cursor mode,)

Note that the window containing both lakes is defined by UNION(WL,W2).
Let us now turn our attention to the contour image C, Pixel values

4 and 5 identify the agricultural region of the specified elevation. The

following transformation allows the contour image to be converted to a

Boolean image.

25

DEFINE TRANSFORM TR1
(4,5) =~ (1,1)

DEFAULT: O

The Boolean image can now be expressed as TR1(C). By multiplying
this image pixel by pixel with the image D, all pixels not at elevation

100-149 will be zerced, This involves the overlay function which we now

define:

DEFINE OVERLAY MULTIPLY

MuLT: (0,1) x (0,255)

The image defined by MULTIPLY(TRL(C),D) contains zeroces for all areas

not lying at the appropriate elevations. Let us simplify by

LET F = MULTIPLY(TR1(C),D)

The last step is to remove the pixel values contained in the lake

areas. This 1s accomplished by masking the exclosure of UNION(WL,W2)
onto the image F. The required pixel value distribution may then be

obtained by

EXHIBIT DISTRIBUTION(MASK{(~UNION(W1,W2),F)

6. VIABILITY OF THE IQ LANGUAGE

By its very mnature as a language of predefimed procedures, the IQ
language is not complete, that is, it is not capable of solving every
problem, While one user, for example, may find the built-in and generic
functions to be more thanladequate, another user may find these same

functions insufficient and restrictive. This directs our attention to

an important feature of any language, to wit, the readiness with which the

26

language can be adopted to meet new requirements., Within the area of
programming languages one needs to search no further than RPG and FORTRAN
to find examples of languages which do not have this adaptiveness.

In the last paragraphs of this paper we shall examine several natural
and obvious extén§1ons to the IQ language, showing, in each case, that
these can be incorporated within the language without a disruption of
the language's general structure. In this way we present a persuasive
(as opposed to conclusive) argumentation for the language's adaptiveness
and viability.

The most obvious extension of the language is the addition of new
functions. Since the language is readily compatible with functions
which return windows or images, this type of language extension poses no

difficulty. Plausible new functions might be the following:

. A zoom function which uses an averaging technique rather
than a pixel selection.

. A generic transformation function which is based upon pixel
distributi;;_;ﬁantiles.

. Join, union, and intersection functions which permit more

than two parameters.

\ Also within the area of functions one might consider a macro
L
+

function facility which permits the redefinition of compesite functioms.

In this manner Z1(CLIP(W1,0VERLAYA(T1,I2))) might be defined as MACROL(W1,I1,I2).

- T v

Another variation of the macro function might permit function names to be
used as parametérs. In any case, since the macro function returns the same
H

data item as the original composite function, this extensiom of the

language can be readily admitted.

27

As a final example let us consider the implementation of a new data
item, the image plane, By supporting this type of item, the user may
request that a collection of images be fitted together to form a plane,
The construction of a plane can be viewed as an on-going process where
the user may at any time reference the plane as the basis for the definition
of an image., This may be done by specifying the area of the plane which
corresponds to the desired image. To implement the image plane three
commands are required, a command which defines a plane, a command which
includes an image within a plane, and a command which defines an image as
a portion of a plane.

Although relying on brief explanations, these examples indicate
several general approaches to the further development of IMDB. We
have shown how these developments might be handled within the IQ language,
and on the basis of these. examples we submit that the IQ language offers
a sound foundation for the continued development of an interactive image

query language.

28

REFERENCES

[1]

[2]

£3]

[4]

£51]

(6]

(7]

C.J. Date An Introduction to Database Systems, Addison-Wesley,
Reading, Massachusetts 1975.

D.M. McKeown, Jr. and D.R. Reddy A Hierarchical Symbolic Represen-
tation for an Image Database, Proceedings of the Woxrkshop on
Picture Data Description and Management, April 21-22, 1977,
IEEE, pp. 40-44,

A.L. Zobrist Elements of an Image-based Information System,
Proceedings of the Workshop on Picture Data Description and
Management, April 21-22, 1977, IEEE, pp. 55-60,

S.K. Chang, N. Donato, B.H. McCormick, J. Reuss, and R, Rocchettl
A Relational Database System for Pictures, Proceedings of the
Workshop on Picture Data Description and Management, April
21-22, 1977, 1EEE, pp. 142-149,

T. Kunii, S. Weyl, and J,M, Tenenbaum A Relational Database
Schema for Describing Complex Pictures with Color and
Texture., Proceedings of the Second International Joint
Conference on Pattexrn Recognition, Lyngby-Copenhagen, Demmark,
August 1974,

IBM Manual., Information Management System/360, Version 2,
System/Application Design Guide (Program Product).
Form SHO-0910, 1975.

Honeywell Information System. Integrated Data Store Reference
Manual, Order No. BR69, 1972,

29

IQ - IMAGE QUERY LANGUAGE

Syntax

The rules below describe the major constructs of the IQ language.
Prompting sequences for each query statement are not included here,
For example, when a DISPLAY is specified, the user will be asked the
question "DEVICE?" as well as other parameters directly related to the
device. Also excluded from the description is the semantic rules
defining the meaning of a query statement. A statement may be syntac-
tically correct but not executable. TFor example, T(C(I1)) for an image
I1, color function C and transform function T is not meaningful, since
the color function maps to symbolic color names. In this case, an error
message will be directed to the user.

In the following description, £ is used to denote an empty sentence.

Capital letters are system keywords.

<query program> <program body> STOP

<program body> -+ <statement><program body> | >
<statement> + <definition statement>] <let statement>
[<display statement> | <statistics statement>
I <file maintenance statement> | <control statement>
<definition statements -+ DEFINE WINDOW<window name>
| DEFINE TRANSFORM<transform name>
| DEFINE COLOR<color name>
| DEFINE ZOOM<zoom name>
| DEFINE OVERLAY<overlay name>
<let statement> + LET<image name> = <image expression>
| LET<window name> = <window expression>

<display statement> -+ DISPLAY<image expression>

| DISPLAY<window expression>

30

<statistics statement> - EXHIBIT HISTOGRAM<image expression>

| EXHIBIT JOINT HISTOGRAM<image expression>,

. <image expression>
| EXHIBIT DISTRIBUTION<image expression>
l EXHIBIT JOINT DISTRIBUTION<image expression>,
<image expression>

<file maintenance statement> -+ <save command> | <purge command>

| <spotlight command> | <list command>

| <activate command> | <tape command>
<control stafément> = <restart command> I <journal command>
<save command> - SAVE<name list>
<purge command> - PURGE<name list>
<spotlight command> -+ SPOTLIGHT<name list>
<list command> -+ LIST DIRECTORY
<activate command> <+ ACTIVATE<name list>

<tape command> -+ READ TAPE | WRITE TAPE

<restart command> - RESTART
<journal command> -+ JOURNAL | NO JOURNAL
<image expression> > JOILN (<image expression>,<image expression>)
| MASK (<window expression>,<image expression>)
| cLIP (<window expression>,<image expression>)
I <color name> (<image expression>)
| <zoom name> (<image expression>)
] <overlay name> (<image expression>,<image expression
l <image name>
<window expression> - UNION (<window expression>,<window expression>)

| INTERSECT (<window expression>,<window expression>)

31

| ~ (<window expression>)
] <window name>

<pame list> + <data item name> I <data item name>,<name list>

<data item name> -+ <image name> l <window name> I <transform name>
| <color name> | <zoom name> | <overidy name>

<image name> -+ <ident>

<window name> <+ <ident>

<color name> - <ident>

<transform name> -+ <ident>

<zoom name> -+ <ident>

<overlay name> -+ <ident>

<ident> - a character string within a fixed length

The IMBD system distinguishes between permanent and temporary data
files (images, windows, and functions). When a user initiates a session,
no data file is available to him unless he activates the files with the
ACTIVATE command. -Although not presently implemented, access control
and password verification can be incorporated in the ACTIVATE to avoid
unauthorized use of files. At any time, the user can access all temporary
files he has created and all permanent files he has activated. The system
maintains a directory of active permanent files and temporary files.
RESTART command can be used to clear the directory and restart the session.
All conversation between the user and the system can be recorded if the

JOURNAL command is issued. NO JOQURNAL clears the journal system.

- 32'.

1

REPORT II

IMPLEMENTATION OF THE IMDE SYSTEM

33

This documentation details the IMDB software implemented on a
PDP-11/45 computer system running under RSX-11D operating system. Design
principles and major concepts of the IMDB system have been presented in a
separate paper [1,2]. The details of the query language was also described
in [2]. This documentation will provide sufficient information for main-
taining and expanding the IMDB system.

The presentation is divided into five parts. We first summarize the
main concepts of the system in Part 1. Each of the other four parts explains
a module of the IMDB system. The four modules are Query Module, Device
Module, File Module and Manipulation Module.

The version of the query language described here varies slightly from
the design presented in [2]. This version is described in Part 2, Query
Module. This version has been implemented at the Data Systems Laboratory
of the NASA Marshall Space Flight Center and has become operational since
August 1977,

References:

[1] Y.E. Lien and D.F. Utter, Jr., Design of an Image Database
Proceedings of the Workshop on Picture Data Description and

Management, IEEE, Aprdil 21-22, 1977.

[2] Y.E. Lien and R. Schroff, An Interactive Query Language for
an Image Database to appear in the Internatiomal Journal on
Policy Analysis and Information Systems, January, 1978.

(see also Report I)

1. OVERVIEW

IMDB is an image database system. The user of the system can access,
manipulate and manage imagery data in the database through the facilities
provided Qz_the image query language IQ. One objective of the IMDB design
iém;o keep minimal the information the user needs to know in order to manage
his data. As a result, the query language has been designed to encourage
system - user interactive dialogue. The user needs only enter the 2-character
command codeg of the 24 commands. All other information can be obtained
from/the user through prompting. However, a user well versed in the language
also has the option to provide parameters directly and thus bypass the
prompting sequence.

From the user's view, the TMDB system is what is described to him

through the query language. The database consists of five basic elements:

(1) Image: It is assumed that an image is.rectangular in shape. If an
image is obtained through windowing operatiomn, a background
rectangle may have to be created artifiecially. Each pixel in
each scanline of an image is associated with a coordinate.

The coordinate of a pixel is always in the set {0,1,2,...,
4095, * } x { 0,1,2,...,?095,* }. The components of each
coordinate are referred to as LOQ and LAQ. A component marked
as * is a don't care. Tﬁe coordinate of the left upper corner
of an image is either specified directly by the user as the
image is entered into the database, or is derived from the
parent images when this image is formed as a result of a user

specified query.

(2) Window: A window is a polygon describeh by a circuitous ordered set
‘ of points. Each point has a coordinate in the grid structure
{o0,1,..., 4095} x {0,1,...,4095}, As a comnvention, no two
edges of the polygon can cross each other. Each window also
has a closure code to indicate whether an inclosure or an

exclosure is of interest.

35 -~
(3) transform function: Each pixel of an image has an integer value
between 0 and 255, A transform function defines a mapping

from one set of wvalues to another set of wvalues.

(4) color function: A color function defines a mapping from a set of
pixel values to a set of color names. This is the primary
tool for the user to perform false coloring onto an image

for later display.

(5) zoom function: This type of function adjusts the size of an image.

Either expansion or reduction can be specified.

The data base is simply a collection of the five types of basic
elements. The user can generate new basic elements through query commands.
Windows, transform functions, color functions or zoom functions have a rather
straight-forward and direct way to generate. TFor generating images, a
fairly powerful concept called image expressions is introduced. A new image
can be defined as an expression of existing images. A uniform representa-—
tion for concatenating or overlapping two images, for masking a window on
an image, for coloring an image, for transforming or zooming an image, or

for any repetition or sequence of the above operations is included in the

mechanism of an image expression. Thus a user can build new images by

entering relatively simple expressions.

From the system point of view, the IMDB software is divided into four

modules: Query Module, Device Module, TFile Module and Manipulation Module.

The Query module interacts directly with the IMDB users. Query
commands and other device-independant parameters are received and analyzed
by the Query module. Error messages are returned to the user through the
Query module. The Query module is designed to be independent of device

types and therefore is transportable to other hardware configuration.

The Bevice module handles all graphic I/0 activities. It supports
color graphic devices such as Ramtek GX-100B color screen and a DICOMED

D47 f£ilm recorder, and continuous tone devices such as a Varian 4115

% 4 j

electrostatic printer/plotter. The module may request device dependent
parameter directly from the user or send error messages related to the
devices to the user. The Device module makes characteristics of graphic
devices -transparent to ‘the-Query module: —

The File module provides an interface between other TMDB modules
and the RSX-11D Files-11 file system. File retrieval and file storage are
performed by the File module upon requests from the Query module, the
Device module or the Manipulation module. The File module makes database
management essentially transparent to the residue of the IMDB system.

The manipulation module provides an interface between other IMDB modules
the data manipulation commands entered by the user. (Other query commands
are either performed directly by the Query module or dispatched to the
Device module by the Query module.)

The four modules communicate through several commeon areas. COMMON
contains in-core file directories, buffer areas to store file header and
two scanlines of images and global flags. LUNIT stores logical unit
numbers of the peripheral devices. CURRENT records information about the
most recently displayed image, such as image name, size, L.0Q and LAQ of
the north—west corner, etec.

Because of the restrictions imposed by the RSX-11D operating system,
the IMDB program was_divided into several oyerlay segments. The overlay
structure is described in the Task Build Files of the Documentation

package. (Appendix V).

B e

b
ST Ty A
T GO ¢ (0
.s_ 4, 7(4; Wy

2. Implementation of the Query Heodule.

The presentatior cf the cuery module 1s divided into
two chapters. The first chapter describes the details of
the revised I1¢ lenouege end is written as a self contained
reference menual. The second chapter outlines the implemen-

tation of the mweodule.

The reader should refer to Report I: An Interactive
Guery Lenguage for an Imegce Datebese, for insight into and
rationale of the IC design. The present vercion, as 1imple-
rented in MZER Marchall Space Flight Center, differs only
glightly from the version prcsented in the sai1d report. The

differences will be summarized in Chepter I.

CEAPTER I

IC Language

This chapter is written as an IC reference manual. The
presentation wirics that ¢f the original report on IQ design
[Report I]. We shell skip justifications and explanations
of certain design decisions, as they have already been

covered in [Report I].
1.1 Basic Elements.

There are five types of baesic elements in the 1¢
language: 1mages, windewe, transform functions, color func-
tions and zoomwm functions. Ezch bacsic element is & file 1in

the IMDB system.
l1.1.1 Image

An image 18 a matrix of pixel wvalues along with a
header block. Since it ic assumed to be a matrix, the image
is always rectangular in shape. Pixel values range from 0
to 255. The upper left corner of the image is associated
with a coordinaste in { *, 0, 1, ..., 4095 } X { *, ¢, 1,
ee.s, 4085 }.° The first component of the coordinate is
referred to a2s the LCG, and the second component LAQ. The
intention 1s that when the image is first entered 1into the

database, the user can assign its LCG and LAC relative to a

39

4096X40%6 gri1d structurc. The asterisk * is used to denote
"don't care". The LOC and LAC peir is essential to binary

image operations to be pregented later.

The header block of an imege contains:

(2) type: This field is always filled with '’ I' to
denote the type 1mage.

{b) LGC

(c) LAG

(d) pixels/line: 1t 1s the number of pixels in a scan line.

(e) scan lines: It 1g the ruwmber of lines in the image.

(f) descraiption: It 1s & string of characters entered by the
vser for annotation. The size is limited
to 228 characters. T

STHUH R o

L O RS “

1.1.2 Window

A window 1g a secuence cf points together with & header
block. Each point falleg within { 0, 1, ..., 4085 } X { 0O,
1, .+., 4055 } grid coordinates. The seguence of points
form one not necessarily convex polygon. The heacder block

conrtains the following informations:

(a) type: The field contains ' W'.

{b) meximum LCC/LAC: The maximum of LCGs of all points and
the reximur of LAGs of all pointe are
encoded 1nto this field.

(¢} minimum LCG(/LAC: This field stores the minimumr LOQ and

"LAQ in e way similar to (b).

{d) closure code: The field denctes whether the window
is an enclosvre or an exclosure.

() number of points: It is the numrber of points in the window.

(f) description.

1.1.3 Transform

A transform function 1s & rapping fror { 0, 1, ..., 255

} to { G, 1, ..., 255 }. 1t usually consists of a

ccllection of subtrenseformstions. Teach subtransformation is

in the form of

a-b=c where a <b
I+ means that the pixel valuce from & to b inclusive are

to be transformed ainto - c-.
The header block of & transform contains:

(a) type: It is always ' T
(b} decscription.

1.1:4 ég%br”

2 color functicen is z mapping from { 0, 1y eee, 255 }
to a set of color syrbols. There are two systems of color
symbols used in the IC language. The first one uses a 4-bit
- format and consists of eight different colors: dark (D),
blue (B), g;;gh (G}, red (K), cyanine (C), msgenta (M), yel-
low (Y¥) and white (W). The user uses the one-character sym-
bole to denote colors. The other system allows sixty-four
ceolors and uses @& b-kit formest. The basic components of
each color are still blue (B), green (C)}) and red (R). How-
ever each basic color has four shades. For example, 1 part
cf B, 2 parts of G and 3 parts of R give & yellﬁwish color.
The wuser «c¢&n use PIC3R3 to denote this formation of color.
in general, it is hard for thé user to visualize the result-
ing color from +he three coniponents., Hence, the user 1is
provided with & color takle which maps each of the sixty-

four ¢olors to & number. The uvger ézn zlto uSe this number

el

to select 2 color.

A color function 1s sgirilar to a transfornr function; it
conesists of & colliection of subtransformations. Each sub-

transformation is i1n the form of

a-b=c where a <b
where ¢ is a color specification. All subtransformations in
a color function are either all in 4~bit format or zll in

6-bit format.
The header block of a color function consists of:

"(a) type: The content 1s always " C"
{b) 'cGescription.

1.1.5 Zoor

2 zoom-function contains a wapping from cld size to new
size and a header block. The zoom ratio 18 & / b where a
1s the new size, b 1g the 0ld size and both a and b are

positive integers.
The header block consists of:

(a) type: The content is ! zt.
(b) ncw size

(c) ©ld sgize

{d) description

1.2 System Functions.

There are several built-in functions in the IQ language

which can be used to create new images. These functions can

N 4 ikl

H2

be invoked by nawe. They consist c¢f JOIN, MASK, CLIP and

ten different overlay functions.
1.2.1 Join

This function pastes two images together to form a new
image, “according to their LOC/LAEQ coordinates. The dimen-
sions of the new image sre those which are minimelly suffi-
cient to contain the areas of the originals. The first of
the original images 1s defined to be the dominant image:
this 1image takes precedence when the two images overlap.
When the result is padded to becomre rectangulzr, the pixel

Y >y

Y v Ty :“‘ AR i .
value zero 1s fi1llcg. ,1hdﬂ|ﬂﬁj"'J“L{§
TN NS LHEAIWATRE R
H L N o __as

The rules used to dcterrine the relative positions of

the two 1mages are:

{}. If LdE?iAQ of the first and second i1mages do not con-
tain * , then the two pesire of LC{/LAC all refer to
well—-defined points in the 4096X4096 grid structure.
Nei1ghboring pixels along the same scan line differ in

L6C by one and ncighboring lines differ in LAC by one.

{(t}). If LGC of the one 1mage is * while the other is
not, then the ¥ one 1s assumed to have the same value
28 the other one. The * for LAQs are treated in a

sipilar way.

{c)., If LOGs in both imege are * , then both are treated

as zerc. The * in LAGe are treated similarly.

}F Ty
ATCINAT, PAGI |3 e
rd ey - - S 3
;%@}ﬂ?ﬁﬁ@ﬂihf Lll
43 ot 1 ~

Join function results 1n 2 new image and the header
block o©of this new image will be derived from the originals.

Description field will be empty.

1.2.2 DMask

This function maesks 2 window onto an image to form a
new image. If the window 1s a2n inclosure, pixels interior
to the window will retain the values while exterior pixels
will be zeroed. Exclosure functions in the opposite manner.
In either case, the result 1s zn i1mage with the same LCG/LAQ
and the same dimensicns as the original. Again, the

- description field will be empty.
1.2.3 Clip

This function is cirilar to MASK except that the result
image hes dimensione which are minimelly sufficient to con-
tain the window. This function dJdiscards those outermost

rows and columns which do not intersect the window.
1.2.4 Overley Functions

&n overlsy function takes two images end produces a new
image by pecrforming a binsary pixel-to-pixel operation over
corresponding pixels. There are ten different overlay func~
tions: ADDL, ©&SUE, IFULT, DIV, MAX, MIK, AVG, XOR, AND, CR.
These functions perform respectively addition, subtraction,
multiplicetion, 1integer division, Kexirum, minimum, aver-

age, exclusive CR, logical #MD, and logical OR. Whenever

-
]

[

)

4y

overflow occurs (e.g., in multiplication}, the result is

always truncated by taking the rightmost eight significant

bits.

The relative positions of the two images are determined

according to the rules specified in Join (Section 1.2.1).
1.2 Image Expression

A salient feoture of the IC language i1s its capability
for specifying construction of & new imege as a functional
expression of existing basic elements and system functions.
Such an expression is called an imege expression. The rules
for constructing image expressions are given below. These
rules can be applied recursively.

<image expression>:
<imege>
<transform> { <imege expression>)
<zoom> (<irage expression>)
JGIN (<imege expression> , <image expression>)
KEASK (<imege expression> , <window>)
MERSK (<window> , <1mage expression>)
CLIP (<imrage expression> , <window>)
CLIP (<window> , <1mage expression>)}
<overlay function> (<image expression>,

Kimage expression>)

In the above rules, <imsge> and <window> refer to an
image file and a wvindow £file respectively. The symbol
<overlzy function> refers to one of the ten system overlay
functions. €ince thc rules can be applied recursively, a

sophisticeted image can often be specified as one single

image exprescsion. For example, JOIN(BAND{ X1(T1(MASK(W1,

R T Y B LR PR »

U T S N O T
11))), X2¢ 12)), I3) 1is o legitimate 1image expression if
X1 anéd X2 ore zoow fileg, 11 1s a transform file, I1, IZ,

and 13 are image files, and W1l 1s a window file.

~

I

Note that color functions are not i1ncluded in the imege
expression rules. Strictly spesking, & colored imzge only
contains syrbolic color names as its pixel values and hence
1t 1s not logical to perforwr any other operation on it.
Kevertheless, thc internal representation of a colored iwage
is no dGifferent from & reguler 1mege and, 1f the user
chooses to do so, & colored image may be used to replace
<image> in an 1mage expression without any system error.

The interpretation of the result is up to the user.
1.4 Devices

The graphice devices can be and can only be referred to
by symbolic names 1n a guery sescion., The user does not
have to know any perticular Jlogical or physicel device

nurbhers used internally 1in the IILDE system.

The devices supported by the present version of the I¢

language and their corresponding device names are:

(8} Two color Ramtek screens: Rl (left) and R2(right), with

a trackball sttached to R1l.

(b)) ©Cne Tektronix 4014-] terminal: 7K

Al

{(c) Cne user comrend termwminal: UT

{d) One line printer: LP

(e) Cne Picomed film recorder: FR

(f) Cne Varaizn printer/plotter: PL

{(g) Twe magnetic tepes: T0 and T1

A future expansicn will include keyboards and an addi-
tional trackbell etteched to the Ramtek system. The Tek-
tronix terminzl 1s only wused as an alphanumeric CRT,
although future expension can tecke advantage of its graphic

cepability.

1.3 Commands

The IC langucge 1s 3 command oriented guery language.
Each detsbase commend activates one specific operstion. A
commrand consists of two parts: corrend code and parameters.
2 command code is eglways a two-chesracter name followed by a
separator (blenk, corre or cerrliage return). Parameters may
be suppliedéd elorng with the commend code, or deferred until
answering systemr prompted guecstions. Wote that all parame-
ters way be entecreé through prompting,. Therefore, the
minimel infermation needed to be entered by the user to ini-

tiate a conmand will be the Z2-character command code.

The commende are grouped 1into five categories: defini-

47 " 1|7|
tion, display, statistics, file manipulation and control.

1.5.1 Definition Commands (5)

These commands are used to create new basic elements or

equivalently new files.
1.5.1.1 Build Image {(BI)

The form of =z build image command is
EI <new 1mmage name> = <image expression>

oK Bl <ncw 1mege name> , <image expression>
1.5.1.2 Eui1ld Window (BW)

The form of this command is

BW <window name>, <closure>, <mode>, <device>

. The <closurc> code can be EX or EN for exclo-
sure or enclocsure respectively. The default value

is ENM.

There are two modes in window construction: C for
cursor and A for absolute. The default mode is A. 1In
A mode, the user types in LCC/LAG pairs of the waindow
vertices from the user command terminal. After the user

enters

BW WI1,EN,A
The system will repeat the guestion until &ll points

are entered:

43

ENTER CGCRDINATES (ONE PGINT PER LINE WITE X AND
Y SEFARATED RY ,}:

The guestion can be esceped by a carriage return.

In C mode, the user 1indicatesg that a window is to
be constructed relative to an image presently displayed
on <device>. Since there 1is only one track ball
attached to Rl, 1t is only meaningful to specify R1
as the <device>. The user can move the cursor on R1
and select 2 point by hitting ENTER key of the track
bell. To end the construction of the window, the user
hits VISIBLE (to make cursor invisible) and ENTER. 1In
C mode, the LCG/LAG of the selected points are calcu-
lated from the LOC/LAC of the displayed image. Whether
the image is displeyed 1in its true form or in a
compresced form, the calculation will produce actual

positaions of the points relative to the image.
1.5.1.3 EBuild Transform (ET)

The form of the BT command is
BT <transform nerne> , <subtransformstions>

Each subtransformstion 1s in one of the two forms:

lower bound - upper bound = new value

cld value = new value
The right side of &2 subtransformation is res-
tricted to be one single value. 2All unspecified

intervals c¢zn be assigned to one default value

g . 17 k
upon answering

NUNBER FCR UNLDEFINED INTERVALS?

1.5.1.4 Fuild Color (BC)

The form of this cowmmand i1s

BC <cclor name>,<formzt>,<color trancsformations>

The coler format can be 4 or & for 4-bit or 6-bat for-
mate respectively. Eech color transformation is in one

of Lthe two forrs:

lower bounc - vppcr bound = color symbol
value = color gyrkol

Herc the color symbols referred to the symkbolic forms of
color representstion &as described in Section 1,.1.4,
Again, 11 ungpecified intervzls can be assigned to one

default color upon answering:

CCLOF FCR ULDEFINED INIERVRALE?

—

i R

P 5
T o8 ’
1.5.1.5 Build Zcom (LE) T Oy {ﬁll?ﬁiﬁééﬁ A
op FOUI QUATSLE -
This comnend hes the form

EZ <new zoolr neme> , <scals ratio>

The <scale ratio> 1s zlways NEW/CLD.

5S¢

1.5.2 Display Cormrands (3)
1.5.2.1 Erase {(ER)

The form of this commwand is

ER <list of devices>
L

where <list of devices> are device names separated by com-
ras. The ecffect of erasurc depends on the devaice specified,
For Rl or RZ, the =creen is eresed. For LP, 2 new page of
pa2per 1g moved under the print head. For PL, the command
also slews the peaper. 2ll other devices are nor permitted

in ER comrand.

The future cxpension will include a capability to

advance the roll film in the device FR.

1.5.2.2 Exhibit Pixel Rrea (EF)

The feorm of this command is

EP <input device> , <output device>

This cormand is used to examine the irege pixel values of a
rectengular &arez o¢f no mwore than 20X20., The image is
presently displayed on <input device>. The pixel value

arrey is to be displayed cn <output device>.

The user 1s 2lso reguired to specify

5i I

() The dirensions of the rectasngular eree -

nurbcr o©f lares znd numwber of pixelis.

(b) The uppcr-left corner of the aree through the

track bhall.

Thie cormand 1s only wmeeringful when <input device> 1g Rl.

The <cutput device> 135 rectrictcG to ke VI, LP, R1 or RZ.

1.5.2.3 Display (LI}

The form c¢f DI cormend 1s
Bl <imrege nere>,<Cevice>,<color function name>

or BT <window narpc> , <ddevice>
ko <celor function ncere> 1s opticnal.

For window displzy, tte device cen only be Rl or R2.
The. displayed ovtput d¢epende cn the existing contents of the
sclected screen. If the sgcreen 1s klank, the windovw will be
sceled properly so thet 1%t czn be displayed entirely on the
screen. After the window polyoon ic Jdrawn, the system will

ack

LC ¥YCU wWISH THE PCLLTE LARLLEC VITH PIXEL/LIKE CCCRLDINATES?:

2 'Y' enswer will ceuse the ccordinates displayed along with

the polygon.

J£ the celected screcen Fes &r 1mege dicplaved, the win-

5 "

dow will be sczled according to the displayed image and the
windovw polvgon will ke positioned correctly on the image so
that the coordinates of the image and the window are con-
sistent. A window mey be too large to fit on the image. If

so, the cormwand will be akorted znd error signaled.

In both czses of window display, the color in which the

window is to be dicsplayed wi1ill be solicited from the user.

Imege displey 1s wmuch more anvolved than window
displey. If the user specifies a color transformation, it
will be =zpplied tc the imzge to produce a colered image.
The colored 1image can later ke saved 25 a2 reqular image
file. The secuence of evente can ke described as the fol-

lowing procedure:
Step R1. S

If the device is FR, gotc Fl.

If the device is PL, goto Fl.

If the device 1g not R1 or R2, then error return.
Step R2.

(The device is R1 or RZ.)

Ask the user to select 2 point on the specified screen.
Let the specified ecreen he X ané the other cne Y.

(the sycstem will zttempt to display the image on the

rectengular aresz VILW dJefined by the selected point

and the beottom right corner of screen X.)
Step R3.
Can the colored i1mage fit i1n the ares VIEW?
If yes, displey the irvage aéd goto RE.
Step R4.
(The irage doces not fit i1n the zrea VIEW.)
Ask the user 1f 1magc compression 1s desired?

If yes, cowmpress the irage sufficiently to fit in VIEW,
display 1t @and then goto R5. therwise, display the
upper left portion of the colored image 1n VIEW and

goto RY,
Step K5,
{The compresscé 1wage is on X.)
2sk if the user wante to display legend.

If yes, ask the user to sclect legend position and to
enter legend; then display legend at the position

selccted.

ttep RO,

Step

Etep

Step

54

ask 1f the user wants to scroll the compressed image.
If no, exit.

R7.

{Scrolling)

Erase screen Y.

Ask the user to select & point on screen Y.

2csk the user to select the scrolling point, which is a
point in the compressed image ac presently displaved on

screen A.

The selected point on ¥ and 1ts bottom right «corner
define @2 rectengular area called SVIEW. The scrolling!
point—together with SVIEV specifies 2 rectangular por-
tion o©of the colored imege whosc LOG/LAQ are thosc of
the scrolling point and whose dimensions are those of

SVIEW. Z[Laieplay this rectengulor portion in SVIEW.
R&.

Pgk if the vser wants to scroll again?

If yes, goto Step R7.

RS,

Ask 1f the user wants to displey legend on the most

recently wused screen (¥ if come from R3 or R4 and Y if

ctep

Step

Step

Step

from RE).

If yves, ask the vser to selecct legend position and to
enter legend; aispley cheracters entered 2t the posi-

tion selected.

R1G. Exit.

Fil.

Ask the user to sclect @ point on the film. The film

has 4096 X 4056 positions.

Fz.

Ask the user to enter Bicomed related parameters such
as wagnificotion factor, resolution, intensity, poler-

ity, etc.

F3.

Can the colored 1image £it 1n the rectangular ares
defined by the sclectcd point and the bottom right

corner of the £1lm?
If yes, displey tinc 1mage and goto FO.
F&.

(The image is tco large.)

Ask the uvscr 1f 1rmagce compression is desired?

56 24
If yes, compress the image sufficiently to fit, display
the image znd goto Fé.
Step F5.
(Display the upper left corner.)

Display the upper lefi portion of the colored irage in

the selected rectangular area.
Step I'6.
Ask if the user wonts to display legend.

If yes, esk the user to select legend position on the
film and to enter legend; then display legend at the
position selected.

Step F7. Exit.

Step PIL,

The uvser cen specify either 4x4 dot matrix for one

pixel cor 5x5 dot wmatrix.
Step P2,

Cezlculate the numrber of strips reguired to display the

entire image. Inform the user.

Step P3.

57 o5)

L2

Lsk the vser "How meny sirips do you want printed?:
Step P4,

Displey the strips.
Step P6.

Agk 1f the veser wants to display legend. If vyes, ask

the vuser tc onter thc legend, then displey it.

Step P7. Exit.

1.5.3 Eftatistics Cornmands (5)

, —“TTTY‘[
SRS Si&L , PAGL o
i &r\(‘i .LL:\,T i

1.5.3.1 Exhibit Distogram (LH) h“aﬁw U P

The formw icg

EE <image neme> , <device>

The device can only be Rl or RZ2. The user can also specify

the color of the histogram upon answering

WHAT CCLCR BC YCU WICH THE LHISTOGRAM
TC EE LISFLAYED 1M?

The cutput is & two-dimencional colered greph with horizon-

tal coordinate corresponding to pixel values and vertical

58 26)

coordinate freguercies.

1.5.3.2 Exhibit Distribution (ED)

The form is similar t¢ EH . The device <c¢an only be
LP. The histogram of the imsge will be calculated and

displayed as "pixel. velue: frecuency" pair.

1.5.3.3 Exhibit Join Histogrem (JH)

The form is

JlI <image nare>,<imege neme>,<device>

The two 1images rust be of the same dimensione. The freguen-
cies of pixel value peirs will be calculated. The freguency
vslues will be pertiticned into at most seven ranges as
di%ected by the usger. Each range can be assigned a color by
the user. 1If the user cheooses not to define the range or
the <coloring of the rences, the freguency values will be
eoually partiiioned into seven ranges and default colors

assigned.

When the joint histogrem is displayed, the two coordi-
nates correspond to pixel szdues of the two images. The
colors cf the displayeé points indicate the freguency range

of the pixel value poirs.

The user 18& 2lsc given ar option to view the magnified

joint histogram. The reaagnificetion 1s by Z or by 3.

1.5.32.4 Exhibait Joint Cistrikution (JD)

The form 1s the same a¢ Jh. The device has to be LP.
The output 1ig 1n the form of "pixel value : pixel value -
frequency” for esch pair of pixel vslues. The output formet

can either be sorted by frecuency or by pixel value pair.

1.5.3.5 Exhibit Contigency HMetrix (CK)

The formw of this comrend i1s the sasmwe as JH. The dev-
ice can only be LF snd the images ere restricted to have
pixel values between 0 and 7. All higher values are trun-

cated on the left. fThe purpose of the comrand is to compare

two clessified 1weges to find their di1fferences.

1.5.4 Faile Menipvlation Cormands (7)

211 bacic elenents 1n the IMDB gysten oare treated as
files. A file cer enter into the database in two ways.
First, imege files cen be broucht irte the database from
tepe through the use of Read Tape (RT) comrand, which will
tLe discussed 1r this section. tecordly, & file may be
created through the vuse of definition dommands (Section
1.5.1), We distinguish permanent éend temporary files.
Files created through definition commends are all temporary
in the sense thet they will be remwoved evtoratically a2t the
end of the aucry session unless they ere explicitly saved.

Fermanent filcs are those which lest through guery sessions.

1/

specifically, files brought in by RI are considered per-

ranent.

When 2 usger first logs onto & command terminal, a file
directory 1is assigned for his exclusive use. The file
directory is separated into two sections: one for temporary
files and one for permenent files. Existing database files
can not ke used in any command until they are ‘'activated'.
Activation of & file is 2 process of making the file name

known to the user's file directory.

1.5.4.1 Activate (2C)

A

The form of this command is

AC <list of fi1le namres>

where <list of file nares> is ¢ list ¢f names of existing

files separetcé bty commes. File names specified in the com-
rand will be entercd inte the permanent file section of the

file directory.

1.5.4.2 ECave (8A4)

The forr is

€2 <list of file names>

This command ceauces cxisting terporary files to become per-
manent. File newrcs specified in the command will be moved
fror the temporary file section of the file directory to the

permanent file section.

61

The form is

FU <list of file names>

This commAnd causes files in the directory, whether per-
manent or temporary, to be reroved. Removal of a3 permanent

file alsc purgces the file from the database.

This commend 1s not 1mplemented at the present time,
The wuser hes to use FIP command of the REX-11D to remove 2

fi1le from the fi1le svstem.
1.5.4.4 FocGify (MC)

The form of this comrand 1s

—_MC <fi1le named

The purpcsc ¢f this command is to allow the user to change

certain information ir the bhecder block of the file.

The alterakle fields cf the healer block 2re listed

below according to file types:

ﬂfﬂ(“:L\f,Iilf;;i;T
1u‘¢<xu:(nhixi:f

GA

i

() imege: LCQ,LAC ,description
() window: closure code, descripticn
(c) transform: description

(&) color: description

(e) zoom: new size, ola size, Gescription

The above rules apply to only permanent files. Tem-
porary files cen also be wodified in exactly the sare way

except thst they do not contain the description field.

1.5.4.5 List Directory (LD)

This comrand has the form

LD <device>

where <device> can be UT or LF. Contents of the file
directory will be printed st the cpecified device. The file
Girectory containe 211 information stored in the header
block about the files activeted or created by the user. (In
the actuel implementation, en ectivated permanent file has
ite header 1inforrmation stcred both i1n the physical file as
well as in the directcry; and 2 temporary file does not have
a hecader 1n the physicel file, its header information is

stored only, in the directory.)

1.5.4.6 Spotlight (SP)

&3

The forrm ics

SP <file name>, <device>

The <device> can be LF or UTI for imege, window, transform or

zoom filee. Tt can be LP, UT, RI, RZ or FE for color files.

This commrand performs » similar function as LD for &
single file: it <dJdispleys header inforration of the file.
However, 1f the file is a trensform or & «color file, 5P
also displays the definition of the mapping in the file.

That is, 1t lists all the subtransformations in the file.

The most interesting vse of £F 1s to spotlight colo:r
function onto & graphics device (Rl1, RZ or FR). It will
displsy, for each subtrancformation, the range of pixel

values and ¢ smell colored square to indicate the actual

color of the subtrensformretion. If SF 15 used on LP or UT
for & <c¢olor functicn, syrwbolic namegs of the colorg will be

displayed.

l.5.4.,7 Read Tape (RT)

3

The form of this commard is

RT <device>

The device 15 either TU or T1, indicating one of the two

tape drives. The optiors aveileble to the users are:

{a)

(k)

{c)

o4 o

to read any file on the tape;
to read zny number of files on the tape;

to edit a tape file by specifying the starting and the
ending line nurkers end the starting and the ending

pixel numbers;

to read multi-channel composite files up te 16 chan-
nels: for each channel, the user can indicate vhether
the irage for this chennel is wanted or not, and 1if
wanted, &a separate file will be created. 1In general,
an n-~channel image can be moved into the database and
becomes n+l seperate files - one for each channel and

one for the original] n-chsnnel file.

1.5.5 Control Commands (5)

These commancés are special facilities built intoe the

IMDB syster to ease the user-system interaction.

1.5.5.1 Stop (ST)

Oieiti ALy it

T AU LR

The forw 1s sinply

which ends the cuery session, ceauses all temporary files to

be

reroved and is the only command for the user to log off

the system gracefully.

1.5.5.2 PRestart {RE)

The form ic

EL

which performe the rimilar function a2s &7 except that the
user 1s not logged off and 1c essigneé a new file directory

with no entry in it. {(The old cdirectory is erased.)

1.5.5.3 Help (BE)

The form of this comrang is

BE <device>

where the <device> car be LP or UT, It lists all ic

commands with explanations at the specified device.

Cne of the gezals of the 1 decign 1g te minimize the
informetion the wuser becs to rememker i1n order to use the
INDE system. In fact the user does not have to remember the
forms of the cornands. The user can cbtain assistance in

two ways:

(2z) To consult the system for the commend formet and its

functien by typing HE, or

(b} To use prompting to enter command parameters. {The
absolute minirur needed to initilate system activity is

g 2-character comrand code.)

bl

1.5.5%.4 Journzl (JdC) znd No Journal (NJ)

The forms of these commendés are
JC <file nawe>

NJ

The conversation between the user and the system - in gen-
eral, 1t {ig whetever shown on the UT terminal - can be
recorded verbetim in & journel file. The <file name> is the
name of the journal file. If the file does not exist prior
to the JO command, & new cne will bke created bearing the
name given by the uscr. If the file is an old one, new
journal information wil].be appended a2t the end. The com—
mand KJ 15 used to turn off the journal activity. With

these two commands, the usger can specify journsl mode or no

journal mode &t &ry time during the guery session, switch
between two modes arny number of times, create severel Jour-
nal files and disperse journzal information in any way the
ucer desires. The only restriction 1s that no two journal
files <c¢an be active a2t the same time, one has to be closed

by NJ before the other can be nareé 1in JC.

The contents of the jcurnal files can be printed at the

line printer through FIP facility of the REX-11D.
1.6 Log ¢n

The Jog—-on secucence to start the IMDE gystem 1s very

&7
sirple. If the uvser 18 a legitimcte user of the RSX-11D
gystem, that is, the user hee & legitireste UID, the follow-

1ng seqguence car ke fcllowedé to start the IMLE system:

Step lJ. Turn on 3 terminel.

W3]
»

Step Type in Contrecl C to get
MCE>
prainted on the terminal.
Etep 2. Type 1in
BEL [UIL]
so thet the operating systerm
cen velidate whether UID is legel.
Step 4. If UIC 1s legel, the syster will
come back with
MCE>

then cnter "ICL"™ zfter MCR>.

At this time the loo-on process 1s completed, the IMDB

18 ectivated and o wessege will be printed:

* WLLCCML TIC THE IMDP SYSIEN

*

Any permisgible IC cemrmends can be entered after the second
asterisk. In sumrary, the entire log-on sequence will look

like the following 1f the user hes the access right:

user.

1.7

68

(Control C)

MCR> HELL[UIDB]

MCR> IQL

* WELCCME TC THE IMDE SYSTLM

* (ready to eccept IC command here)

» blank file directory ‘has #lso been c¢reated for the

Specisl Notes

Some conventione and special casos not covered 1in the

previous sections egre covered here:

{) A window is zssumed to be & simple pelygon. No two

(k)

{c)

¥

v, i .
“edges of the polygon can cross each other, of course,

other then meetirng end to end for neighboring edges.
The system does not check the crossing of edges and the
user is responsible for the correctness of polygon for-

metion.

Whenever & cuesticon 1s acked the wuser, =& carriage

return is taken zs KFCG, 0(zero), or the default answer,

o

depending on the nature of the guestion.

The opereting gystem PIP facility can be used to copy
files from tape to tepe or from disk to tape, to purge
files from the date bsse, and to rensme files in the

date base. The IMLE system is kuilt on top of the

(G)

{¢)

1.8

FILE-11 file syster cnd eny f1le cperation aveilable in

the operating system con be cpplied to IMEE files.

2 'Carriage Return' zs &n answer to the guestion 'DEV-
ICE?' will «cause the list of 21l permisssikle device

names to be printed &t UT.

The rescrved words in the IC language sre JOIN, NASK,
CLIi®, KLLTI, ADD, SUR, DIV, KAX, AVC, AND, XOR, MIN and

CGR. These can not be used 25 ¢z file name of any file.

Varigstions freor CGrigingl 7C Design

The differences between the version o¢f IC a5 1mple-

rented anc¢ desgcrikbed 1rn thic manuazl and the one in [Report

T] can be sumrarizeda 2z follows:

()

ic)

(c)

{e)

This version uces Z-charactecr commend code znd the cori-

ginal version does not.

Thie version does not brve wirdow union or intersect:ion

New corrands ecre edded 1n this versier: ER, EP, CH, MO,

end HBE.

Write Tape comrand ig not included i1n this version.

Overlay functions arc rot treated as cgeneric functions
in this version. Thet is, only ten system built-in

overlay functions are zllowed &nd the wuser c¢an not

(£)

(g)

70

define his own.

Image cxpressiong have to be cveluated and assigned a
new name {(in BI) before it can be used in DI. 1In the
original version LET and DLFINE are distinguished. 1In

this version they are combined into build commands.

The originesl version assumes & longitude/latitude coor-
dinate system. This version assumes o 4096 X 4096 grid
coordinate systewm. The imagcs are no longer assoclated

with geographic position.

T

CHAPIER IZ

Irplementation

The cuery module is a collection of 31 subroutines.
The design of these routines feollows strictly twe princi-
ples: the cuvery rodule wmust be independert of the graphics
devices and the <¢uery molule rwust be independent of the
operating system. Ag such, the only functions performed by
the <c¢uery mwodule cre to extract parameters from the user
command line, to solicit mrissing parameters from the user
through prompting end to dispeatch tasks to device module,
wmenipulzticn module or file moduvle. The main activity in

the gquery module 1s to pecrform lexical analysis.

2.1 Subroutine Structure

The subroutines ere crgenized i1n such a way that there
is one subrouvtine fcr each commend. These routines perform

the following functicne:

{(2) Check if the parometers nceded for the command are
missing - 1f they are nissing, esk the user to enter
them, othcrwise, extrect the patremeters from the com-

mand line.

(t) Check the validity of the parameters - 1f any error is

detected, 1inform the wuvscr and ask for the parameter

2

tgain.
(c) Call lower level modules te execute the command.

Sometimee, a parameter c¢an be relzted to characteric-
ties of & graphics device. For example, resolution of the
Dicomed film recorder or dot matrix pattern of +the Varian
printer. The gquery rwmodile 1s restricted to handle only

device-independent parameter.

The following routines correspond to the basic commands

in IG:

& i

(a) BCTVAT : AC
(b) PUILDC : EC

(c) BUILDI : ETI

(d) BUILLT : BT

(e) EUILDW : BV

(£) EUILDZ : EZ

(g) DISPLAE : LI

(h) ERASE : ER

(i) EXHIEC : ED, EH

(1) EXHTEP : EF

(k) FIMISE : €f

(1) BELP : §C

(m) JCIRLDI : JDh, JH, CM
(n) JOURNA : JC

(6) LISTCI : L

(p) HOLIFY HE {8 . - e o
. ORVGUINL LAUL 15
(CI) NCJGU H hJ ()1?. EO{}R (:EU.L\-IZTHT :

{r) READT2A : RT o

{

[

)} SAVEST : SB&

(t) SPOLIT : &SP

Cn top of these routines therc is a main prograr seg-—
rent which performs the brenching upon detection of the com-

mand codes listed above, or restarts if the command code 1is

RE.

Commonly used by these rovtines to perform lexical

74

analysis are 2a set of subroutines which parse the input

peramcters cheracter by character. We shell discuss them in

the next gection.
2.2 Anelysis Subroutines

The routines used to wanipulate and analyze the 1nput
character streem to obtzin parameters are presented in this

section.
2.2.1 CCHPRE

This routine comrpresses a character string to get rid

of blanks.
Z2.2.2 COMFUT

This routine converts & string of digits in ASCII code

tc an integer nurmeric velue. If the input string does not
represenf 2n integer, en crror flag will be signezled. The
routines in Ffection 2.1 always read the pararmeters entered
by the user as character stringe, thet is, in FCRTRAN A for-
mat. If a perereter is expected to be a number, it will be

converted by celling CCMPUT.
2.2.3 DEVICG

This routine 2cks the cGuestion 'DEVICE?' ané compares
the wusger's s&nswer agsinst the list of permissible device
names. A Carriage Return te the gquestion will ceause the

list of device names to be printed at UT.

75

2.2.4 ERRGUI

This 1s the routine used to relay e&n error message to
the user. The messages cre vsuelly generated as z result of

inappropriste parametcre detected during lexical analysis.

2.2.5 EXPRES

The lexical tokens are grouped into eleven classes.

The classes are:

Clese 1l: CSystemr functions other than
MASK or CLIF

Clzce 2: MASK or CLIE

Cless 3: Trensforr function or zocm function

Class 4: Image

Class 5: Image exprecssion

Clase 6: Window

Class 7: Right perenthes:s

Class t£: Comme

Claes 9: File name error (file not
zctiveted or nonexistent)

Clzss 1U0: File type crror

Cless 11: End mark of input string

This subroutine procduces 2 list of class numbers from 3
string of tckens in an image expression. The class number

list 1s stored 1n & stack. The tokens representing £file

76

nemes are stored in ¢ separate stack. Eoth stacks are then
pessed to enother routine SYNIAX for parsing the egyntax of

an l1pkade CXPression.

2.2.6 GEITCK

This subroutine actually performs lexical anelysis. It
takes a2 string of characters, presumsbly representing a com-
mand line, a2nd precduces one token for each activation.
Repeated c¢a2ll to this routine can generate a complete list

of tokens.

2.2.7 GETYPE

This routine obtains the file type fror the file direc-
tory for a given file name. The file nawme is usually passed

as a token to GETYEE.

2.2.8 NAMEC

The routine aske the veer to enter ¢ file name. The
actual cuestion depends on the type of the file, It may ask
file nemes for 1imege, window, transform, <color =zoom or

unspecified files.

2.2, PACK

this routine eliminates the blanks in an input string
and returns the number of nonblank characters in the input

string.

77

2.2.10 SYNTAX

This routine takes token clzss numbers end file names
passed from EXPRESS anc produces a pestfix representation of
an 1mage expression. The postfix forr can be written into
the datakbase g & file (of type ! E') znd later be con-
verted to 2 real 1mage. T1hese two operaticns are performed
by routines WIEXPR ond XINTRP of the file rodule and manipu-
letion module respectively. The activation of WIEXFR and

XINTRP tekes plece in EUILDI.
2.2.11 SYSFURN

This routine checke if the uvser uses 2 reserved csystem
function nawe 25 £ £1le name. The reserved names are JCGIN,
MASK, CLIP, INGLT, ARG, &£UP, DIV, MAX, AVC, AND, XCR, MIN,

and CR, ——

b 78 A (Y

IMPLEMENTATION OF THE DEVICE MODULE

3.1 Chapter I, Introduction

During the past few years there has been an increasing interest in
computer graphics. Computer graphics systems design, data structures,
languages, user interaction and uses have been discussed and researched
to a great extent. Most of this research has been restricted to a few
specialized applications involving either vector graphics or image
graphics. In vector graphics dots, lines, surfaces or solids are
combined to form pictures. Various transformations on pictures such
as rotation, translation, clipping and scaling may be performed. [11
Image graphics, on the other hand, deals with images digitized from
actual physical data such as aerial or satellite photographs or maps.
Complex algorithms for processing such images have been developed, but
emphasis of most of the prior work has been in image enhancement, image
preprocessing or classification. [2] TFor instance, images are processed
to cut down on blurring, jaggedness, and other undesirable features.

Most hardware used in image graphics operates according to the
principle of raster scanning. An image is treated as an array of
spots. Each spot is called a picture element (pixel). A horizontal

line of pixels is called a scan line. Each pixel has a value which

reflects the brightness or color of the spot in the original image.
The pixel values may have specific meanings in the user's application.
For example, a2 pixel value in a classification map may indicate the class
number of the pixel. The raster scanning concept presents a difficulty
when a line or text is to be displayed. Line segments must be converted
by computer to raster information, which will then be transmitted to the
display hardware. It often requires extensive central processor time
to perform the conversion and large memory space to store the scan lines.
This report -describes the design principle and implementation of a
software package which invelves both vector and image graphics. The
package is an integral part of a larger software system called the Image
Database (IMDB) system.[3] The IMDB system is designed to support image
editing, transformation, storage and display. Essential to the operation
of the IMDB system is the ability to display images, vectors and

text information. The software -subsystem

W —7(.7

presented in this report, called the device module (DM) of the IMDB
system, performs these display functions on several different raster
graphic devices. In addition, the device module performs several
statistical computations, with the results appearing as listings or

in graphical form.

1.1 Overview of IMDB Design

Project Delta, a research project to design and implement an
image database system, was begun in January of 1977 at the University
of Kansas. The project was motivated by a need to manage imagery data
produced by NASA's Landsat program. Landsat images can be utilized in
many different areas including geography, geology, cartography,
meteorology, oceancgraphy, agriculture, forestry, urban planning,
pollution control, energy resources discovery and allocation, and
military reconnaissance., But before experts in any of these disciplines
can economically and efficiently access the Landsat information, a
system must be developed so that a specialist in the area can analyze
the data without having extensive knowledge of computer programming or
image processing. It is also desirable to have a single system that
can be used by specialists in all of these areas.

The goal of project Delta was to design a graphics system which
allows the user to view a desired digitized image and perform wvarious
operations on the image in order to obtain information helpful in
research or problem solving in the user's field. Operations supported
by the system include image display, false coloring, clipping and
windowing of images and transformation of images, as well as several
statistical operations.

The final product of the project is the image datsbase system
called IMDB. The user can access the database through an interactive
query language called IQ. When a user enters a query statement he
specifies one or more files and a database operation to be performed
on the files. The database consists of five types of files; image,
window, color, transform and zoom. A window file contains coordinates
of points defining a window polygon. A window igs used for specifying

the area of interest in an image. A color file, which 1s used for

v A0
20 .

highlighting various properties of an image, specifies for each pixel
value the color value to which it should be transformed. Transform
files are similar to color files in that a mew pixel wvalue is specified
for every previous--pixel value: A zoom file contains two numbers which
form the ratio of new image to old image size for a compressed or
enlarged image.

The tasks of the image database system are grouped into four
modules; query module, manipulation module, file module and device
module, Figure 1.1 shows the relationships between the four modules.

Each directed line signifies that routines in one module call routines

in the module to which the arrow points.

Query
Module
Manipu-
lation Device
Module Module
—_— .
File
Module
FIGURE 1.1

The query module has four main tasks. First, the query module must
identify the database operation to be performed. It must also identify
the file or files on which the operation is to be performed and check
that the file type and requested operation are compatible. A third
task of the query module is to interact with the user and thereby obtain

information necessary for carrying out the requested operation. The

-

1}

fourth task of the query module is to coordinate the other modules.

When using the system, the user inputs a command stating what
action or operation he wishes to have performed. The query module
then parses this input, asks the user questions as necessary,
occasionally performs calculations, and then calls the correct
subroutine in one of the other modules. The query module must be
responsive to errors occuring at any level, and must instruct the
user as to what to de when an error appears.

The manipulation module executes operations such as mask, clip,
join, overlay, transform and zoom. When a new image is created by the
user, it is expressed in terms of a seguence of these operations on
existing files. The manipulation module interprets the operation
sequence and constructs the image.

The file module manages storage and retrieval of image scan lines,
window vertices, and color or other transform tables. All of the
physical input/output operations necessary to perform the file manage-
ment are handled through the operating system.

Display and listing functions are performed by the device module.
These functions include displaying color images, windows, histograms
or color tables on raster graphic devices and listing statistical
information on character oriented devices such as the line printer and
CRT terminals.

Responsibility for the design and implementation of each of these
modules was assigned to one person. Managing the project in this way
allowed each person to concentrate on a particular aspect of the problem,
yet frequent discussions permitted a sharing of ideas and thecories and
also gave each person an understanding of the overall project. In the
initial stages of the project this separation was also importaant as it
permitted project members with varying amounts of experience and time

to work at a pace suited to them.

oy 50

1.2 The Deviece Module

Design of the device module involves consideration of two major
tasks. On one hand, various database operations require graphic display
or alphanumeric listing. On the other hand, devices of various types

-and-with-varying capabilities—must be supported.—— e —

1.2.1 Database Operations Supported by the Device Module
Among the database operations supported by the query lamnguage
IQ [4], ten depend on the device module for imput or output. Each of
the operations supported by the device module falls into one of four
categories.
a. Definition Operations
Build window (BW) is the only definition operation which
relies on the device module. The user may specify window
vertices through a graphical input device and each vertex
point will then be displayed through graphical output.
b. Control and Utility Operations
Spotlight (SP}, which describes the contents of a given
file, requires alphanqmeric output and, in the case of
color files, may also use graphic output.
c. Display Operations
The device module is responsible for all of the display
operations which include window display, image display,
text display (in DI), erasure (ER) and exhibiting pixel
area (EP).
d. Statistical Operations
A variety of statistical operations, all of which require
either graphical or alphanumeric output, may be specified
hy the user. These operations are exhibit histogram (EH),
exhibit distribution (ED), exhibit joint histogram (JH),

exhibit joint distribution (JD) and exhibit contingency .
’4 yrualial rAGH l “«gj
aF TouR QUALY

[- - -

matrices (CM).

1.2.2 Devices supported by the Device Meodule
The IMDB system has been implemented for the hardware configuration

located in the Data System Laboratory of the NASA Marshall Space Flight

Lo
m ¢

Center in Huntsville, Alabama. The major components of the system are

shown in Figure 1.2.

INCRTN, LG 0
O COD anTAL ey

/ PRINTER |
: E

/
-]
/ ' FTLM r Fme
_1 RECORDER
L ! COLOR T.V. !
] A .
USER et) PDP 11/45 L(_D}_:_CQEI—E_-D-_:DE? |)]
TERMINAL (128 K bytes) ,x
\ ™1 (RAMTEK - l B&W T.V.
: GX-100B) - | ;
E e . —— .
\‘. i ______'_‘__!
~ [— v ———— AN}
i \ PLOTTER COLOR T.V. |
T 1 (VARIAN STATOS]
DISK . e
MAGNETIC STORAGE | V4LLS)
TAPE | .(600M bytes}
FIGURE 1.2

The Ramtek GX-100B system 1s a raster graphics device with two
19 inch color monitors, one 17 inch black and white monitor and a
trackball. Each screen surface comsists of 256 by 256 individually
addressable points, each of which may be assigned any of the eight
colors red, green, yellow, blue, magenta, cyan, white or dark.

The Dicomed D47 film recorder produces either black and white
or color photographs. The film, either standard vroll film or polaroid
film, is considered to be a matrix of 4096 by 4096 points. Each point
in the matrix can be assigned an exposure value in the range O

through 255 for any one of three color filters or a neutral filter.

84 L

The Varian 4115 electrostatic printer/plotter is capable of
plotting 1408 points across each line on a strip of paper 14 7/8
inches wide. Each point is either black (printed) or white (blank).
Any number of lines may be drawn.

The line printer has the standard format of 132 characters per
line. Device module output may also appear on the user terminal,
which may be one of several available hard or softcopy terminals.

All of the devices mentioned above are attached to the
Tnput/Output bus of the PDP 11/45 system. 1I/0 commands can be issued
to the devices through the operating system RSX-11D. The commands

relevant to the device module will be explained in chapter four.

1.2.3 Database Operations and Associlated Devices

The two major concerns of the device module, operations and
devices, must be integrated to form a system capable of producing
whatever output the user desires and on whichever device he wishes.
Figure 1.3 shows the relationships between the database operations

and the devices on which they may be displayed.

LINE

RAMTEKR DICOMED VARTAN PRINTER USER TERMINAL

output input— output input
BW X X X
ED,JD X X
EH,JH X X
CM X X
DI (I)| X X X X X
DI (W) X X
DI (1) X X X X X
ER X X X
5P X X X X X
EP X X X X

FIGURE 1.3

Relationships between database operations supported
by DM and devices used by the operations. DI command

o -

may be 'used to display an image (I), a window (W)
or legend information (L). The trackball on the
Ramtek system is an input device to be used to
select points of a window or to position the image
or legend being displayed. All operations require
the user to enter parameters through the user
terminal.

20 345 -

3.2 Chapter II, Device Module Design Strategy

As Dijkstra pointed out [6], a program must be carefully structured
in order for its correctness to be demonstrated in a convincing manner.
This job is particularly difficult when the size of the program
approaches, say, several thousand lines. It is the programmers
obligation teo modularize a program, to simplify its control logie
and to organize the program into comprehensible form.

For a program of moderate size, it has been shown that the three
basic control structures - sequencing, IFTHENELSE and DOWHILE - are
adequate for expressing any control logic [7]. This concept can be
extended to systematic development of very large programs, as described
by Dijkstra [6] and Mills [8,9]. This methodology for large programs
is called top down structured programming.

The IMDB system is implemented using top down structured
programming. In this chapter we first present an overview of top
down structured programuming and then describe how the method is
used to develop IMDB and in particular, the device module.

2.1 Top Down Structured Programming

Structured programming has long been advocated by Dijkstral6]
as a programming methodology to facilitate correctness proofs and
o enhance program readability as well as manageability. Clarity
of program structure and simplification of program control logic
are achieved through the use of fundamental program constructs
such as TFTHENELSE, DOWHILE and blocking, and through the elimination
of arbitrary GOTO's. Mills further extended the methodology to
top down structured programming, a systematic way to specify,
document and code a large program [8].

Top down structured programming is an evolving process, beginning
with a reasonably sized functiomal specification of the entire system,

for example, a page or two in size. The functional specification,

o0 g7

called the root segment here, defines the top level control logic and
necessarily leaves out many details. Within the root segment, several
subspecifications may be defined. FEach subspecification may later
evolve into a program segment of manageable size. At each step of
the process a subspecification is expanded to simpler and simpler
functions until all functional specifications or subspecifications
are translated into statements of the programming language itself.
At the conclusion of the process, the total system is implemented
as a tree of program segments.

The main features of the top down programming process can be
stated as follow:

1. The entaire program is broken into its constituent parts through
a series of successive refinements. Each refinement takes one
functional specification or subspecification and expands it into
a segment of finer functional subspecifications.

2. Program segments are natural units of documentation, specifi=-
cation and coding. Therefore, top down programming allows
documentation, specification and coding to proceed concurrently.

3. Each program segment has a single entry and a single exit.

Thus, when reading a segment name, one can be assured that

control flow will pass through the segment with no side effect

on the control logic.

4, Higher level segments may contain program stubs representing
sections of code not yet fully developed. 1In practice, this
can be done by inserting dummy routines to hold the place for
the code for the next level of expansion.

5. Each segment is written as a structured program. The final
system is a hierarchy of segments.

6. Program debugging also becomes a top down process. The process
begins with verification of the root segment and proceeds

through debugging of each level of refinement.

Top down structured programming requires two software tools.
Since each segment is a structured program by itself, a programming

language which offers control structures such as IFTHENELSE and

&8 H6H

DOWHILE is needed. We decided to use RATFOR (RATional FORTRAN [10])
for two main reasons: RATFOR offers a convenient set of control
structures adequate for writing GOTO-free code, and a RATFOR trans—
lator produces ANSI Standard FORTRAN code which is accepted by most
machines.

Another tool needed for top down programming is an operating
system which provides program library facilities. Each segment
can be compiled and its cobject code saved under a symbolic name
in an object program library. The linking loader (task builder)
can later build an executable task by combining all relevant
object segments. RSX-11D provides this capability. In fact, if a
segment named by higher level segments is not yet written (not in
the library), the task builder will issue a warning flag and proceed
to build the rest of the task. During the execution time, if
control logic actually reaches the undefined segment, the program
will be aborted. Otherwise the program is'not aware of the incom-
plete part. This capability allows the programmer to develop the
entire program hierarchy in a depth-first manner when necessary,

without having to insert dummy segments in the program library.

2.2 Top Down Structured Implementation of IMDB

The root segment of the IMDB system is a simple branching
statement conditioned on IQ query commands. Upon detection of a
legal command code, branching takes place and control passes to the
next level segments. There is one segment for each command code
(each database operation). Depending on the complexity of its
corresponding command code, a segment may develop into a large
subtree of segments or it may be a leaf segment of the total
hierarchy. ‘

As the process evolves, many common functions at the lower
levels are identified. For example, a segment to retrieve one
scan line of an image may be needed in several places. Many
functional primitives for graphics devices are also gradually
developed. Examples are: drawing a line between two points,

printing a string of characters, erasing a screen, etc. Commonality

()

a‘/’

/
, -89 [s7

of functions gradually leads to partitioning of the entire hierarchy
inte several independent parts so that each part can be programmed
by one person. Once some initial segments are written and the
interfaces between segments are defined, several programmers can
work concurrently and independently on the coding. Of course, each
programmer will have to incorporate his new segments into the main
body of the hierarchy.

The IQ language contains 24 commands, hence the total hierarchy
can be viewed as a tree with 24 branches at the root level. All
database commands requiring graphical or statistical output are
allocated to the device module. These commands were listed in
Chapter 1. The command BI requives parsing and evaluation of an
image expression and 1s by itself in the manipulation module.

Many low level file manipulation operations, mainly those invelving
direct interface with the operating system, and AC, SA, PU, RT, JO
and NJ commands are grouped into the file module, The query module
is engaged in device independent, operating system independent
interaction with the user, such as collecting command parameters,
and also performs the rest of the commands with the help of the

file module segments. The query module and the device module are
sepdrately implemented, each by one programmer. The file module and
the manipulation module are implemented by the third programmer.

Within the device module, each database command corresponds to
at least one segment. In case of the DI command, three segments
are involved; each of the image, window and character display
operations takes one segment. Therefore, the device module is
actually a collection of subtrees, with each subtree responsible
for one basic database operation. This division of tasks, according
to database operations as opposed to devices, allows us to defer
the device dependent decisions to the lower levels and hence
localize device dependencies to a smaller collection of segments.
Some segments found in the lower levels of the hierarchy may be
referenced by more than one segment at a higher level. This can
be conveniently done through the use of the program library.

At the level of finest refinement of segmentation, each segment

0 yp

must develop a structure. RATFOR is the programming language used in
the implementation of IMDB. RATFOR includes versions of the three
basic control structures sufficient for program coding, as well as
several other useful structures. DBesides basic sequencing, RATFOR
has an IFELSE statement and a WHILE statement. Block structuring

is available, as one need only enclose several statements in brackets
in order to form a block. These blocks may be nested to any desired
level.

‘ RATFOR programs can be written so as to be easily read. State-
ments may start anywhere on a line, so indentation is commonly used to
highlight blocks and loops. Flow of control is straightforward, as
the available control structures eliminate the need for GOTO's.
RATFOR code may be readily documented, as comments are delimited by
a '"#' occuring anywhere on a line. Anything after the '#' and on the

same line is considered to be a comment.

2.3 Advantages of Top Down Structured Programming

Using top down structured programming techniques is advantageous
for several reasons. After the process of refinement of subfunctions
is completed, each resulting segment has a single function of mapping

initial data to final data. By limiting the tasks of each segment,

the segments may be more easily coded and more easily read. Structured
programs are usually GOTO free, so code can be read sequentially
without jumping around mentally to follow the flow of control. This
property adds to readability by allowing better mental association
of program static text with dynamic execution. Due to the one entrance,
one exit property of structured code, each segment flows from top to
bottom without any side effects in control logic other than in that
particular page or segment. This ease of reading is especially
important in a system such as the IMDB system where the original
designers and implementors will not be the perxsons maintaining or
using the software.

As well as being designed in a top down fashion, a system may
be coded in a top down manner. Segments of code can be successively
generated and tested., In order teo test each segment, dummy routines

can be inserted in place of lower level functions. Progressive

r

ai

testing of segments isolates problems of syntax and control logie,
thus simplifying the task of debugging. Data provided for newly
designated segments at the next level can be tested by introducing
dummy versions of these new segments.

A major advantage in top down structured programming is the
decrease in complexity of a proposed system. Through successive
refinement of segments and structuring within these segments a
system can be produced that is no more complex than the actual
problem [11]. This reduction in complexity subsequently results
in significant cost reduction during implementaion because the
goals of each segment and its inputs and outputs are clearly stated.
The resulting system is also more reliable, easier to maintain and
easier to modify than it would be if such a programming scheme were
not used.

A segmented, hierarchical system also permits relative ease
of expansion. This is important in a graphics system, because new
devices or devices with extended capabilities are continually

being developed, so it is probable that the user of a graphics soft-
ware system will wish to extend his system to be used on such
devices. The hierarchical structure of a system makes the prcoblem of
deciding where new code or new segments need to be inserted less
tedious. Changes can be made at the proper levels of the hierarchy
without the necessity of redesigning the entire system. More
segments can be added as required to extend the device interface
capabilities of the system.

In the IMDB system, it is possible that in the future more
database operations will be included. This type of expansion of
the system is also simplified due to top down structured programming.
An entire new branch to the hierarchy can be developed, working
top down from the database operation and using the segmentation in
the previous branches as a guideline.

Due to the hierarchical structure of the IMDB device module,
unit debugging is possible. By including dummy routines at the
lower }evels, routines near the top of the hierarchy can be checked

for correctness in the early stages of c¢coeding. Each database

qa\ .

operation can be compiled and taskbuilt without the need for completing
the entire IMDB system or even the device module. This step by step
testing makes it possible to discover and correct errors in logic or
syntax before they cause more errors and become more difficult to

find by being embedded in a lengthy piece of code.

Top down structured programming is also a good strategy for
designing graphics systems because it aids the localization and
minimization of device dependence. All device dependent code can
be allocated to segments at a given level or levels. Since the
device module is structured according to database operations rather
than devices, all of the device dependent routines are placed as
low as possible in the hierarchy, thus localizing the device

dependent activities.

93

3.3 Chapter III, Hierarchical Structure of the Device Module

Tmplementation of the device module employs a top dowm, hierarchical
programming strategy. Routines are grouped according to the database
operations for which they are required. Each major database function
invokes one gingle device module routine at the top level of the
hierarchy; within this routime, computational or input/cutput functioms
are further divided according to the devices. The program control flows
from the device-independent routines at the top levels down to the
device~dependent routines at the lower levels. At the bottom level of
the hierarchy, operating system 1/0 routines are called to issue commands
to specific devices.

In order to facilitate communication between the query module,
device module and file module, several common areas have been set
aside. The common areas relevant to the device module are Permanent
File Core Table (PFCT), Temporary File Core Table (TFCT) and Core Table
Entry Buffer (CTEBUF). File name and header information about each
permanent or temporary file are stored in the PFCT or TFCT. Information
in the file header may include file type, size of an image, number of
points in a window or color format. CTERUF is used to store the

header information for the most recently accessed file.

3.1 The Hierarchy
The hierarchial structure of the device module consists of five
basic levels. Figure 3.1 illustrates the hierarchical structure and

the relationships of the query and file modules to the device module.

Tt also shows the information passed between the levels.

qu .

!
| QUERY MODULE

T

}status

Bt e

file name

|
text j

device name |
) ' —
DEVICE MODULE file name
Device Independent FILE
Level 1. Database Operation MODULE
Routines header info
! T 7 file content . -
, ! status
file name s de
header info. P
J p?rameters
Device Dependent{
Level 2. User Interaction)
Routines 4
file name status
text '
device params.
statistical data |
Device Dependent ,f%&fifff&i
Level 3. Database Operation
Routi e
i outlnes file contents
- P,
data (text,
colors, points, status
scan lines, ete.)
k.
- I
Level 4. Functional Primitive
Routines
1 ——
1
1
data J/ status
Level 5.

Device Commands

] }\
I1/0 commands {

data $L
ruﬁ . A

Operating System
I/0 Routines

L

FIGURE 3.1
Device Module Hierarchical Structure

status

a5

The subroutines in the device module correspond to the five
categories of the hierarchy. The top level in the structure provides
the interface between the query module and the device module. Before
calling device module routines, the query module determines which
database operation the user has requested, which files the operation
should be performed with, and on which device the output is to appear.
Type checking is done by the query module to see if the file and the
operation are compatible. The query module then passes information
concerning device, file name, color function and text to the top level
routines of the device module.

In the top level of the device module as many device independent
operations as possible are completed. This usually requires
accessing the core table entry for the given file to obtain the header
information. When a statistical operation has been requested, the
necessary statistical computations can usually be performed at this
level.

The top lewvel routines also check compatibility of the database
operation and the specified device. If the operation canmot be
performed using the designated device, the device module indicates
this to the query module by passing back an error status. The
query module is then responsible for informing the user of his mistake
and advising him of what action to take. A bad status may also be
returned to the gquery module at this time in a few other instances, such
as statistical information overflowing the buffer area set aside for it.
In such cases, the operation is usually aborted and the user may

re-enter a database operation command.
If the specified device is compatible and no other errors have

occurred, control passes to a subroutine at the next lower level, level
two. Parameters passed from level one to level two generally include
file name and core table information. Level two is the point at which
device dependent user interaction takes place. Since display devices
vary widely in their capabilities and design, €ach requires different
parameters in order to be utilized to its capacity. In order for the
query module to remain device independent, these device dependent

parameters must be solicited by the device module. These device

64
9t)

dependent parameters are used by the display devices to position the
output on the display surface, to select the desired colors, to select
the magnification factor and to perform other device specific operatioms.

Various device dependent calculations. may.also be-performed at—
level two. These calculations include size of display, scaling factors,
number of characters to be displayed, and pesitioning. All of these
parameters are then either returned to the top level routine or passed
directly to level three. Level two routines occasionally return
status codes indicating actions such as compression of images or
truncation of character displays. The status codes received from level
two usually do not cause the operation to be aborted, but may be
interpreted by the query module at a later point in order to indicate
possibly unexpected occurrences to the user.

At the third level of the hierarchy are found the device dependent,
database operation specific routines. At this level any further
calculations involving information acquired in the second level are
performed. Data must be read from the database, possibly transformed
through calls to the file module, and put in the proper form to be
passed to routines at the lower levels in‘the hierarchy.

The fourth level of the hierarcﬁy contains the routines imple~

menting the functional primitives of the graphics system. It is these

basic graphic primitives which are combined in order to execute the
database display operations. Functional primitives include beam
movement, point drawing, line drawing, rectangle drawing, character
display, scan line display and erasure. The functional primitive
routines are device dependent, yet each device may theoretically have
a corresponding functional primitive at this level.

At the fifth and lowest level are foun& the routines which send
the device commands to the device. These routines take the parameters
passed to them by the functional primitives and put them in a form for
sending to the I/0 subsystem of the operating system. Through this
interface with the operating system the desired output device is
addressed and command codes provided by the.device manufacturer are
relayed to the device.

In order for any database display operation to be executed,

a7z

control must flow from the query module to level one of the device
module and then on through each level to level five, the operating
system interface. Within the device module, a separate subroutine
could be provided for each of the five levelsof the hierarchy. In
some cases, however, efficiency is increased and redundancy of code
or excessive parameter passing decreased by combining two or more
levels in one subroutine. Such is the case for instance when no
device dependent questions need to be asked of the user. Occasionally
a level may be skipped due to the hardware capabilities of a certain
device. TFor some operations which are very simple or which may only
be performed on one device or device type, it is unnecessarily

confusing to branch out to numerous subroutines.

3.2 Example of Hierarchical Structure

As an example of the five level device module hierarchy, let's
look at what takes place when the user requests that an image be
displayed. At the query level, the user is asked for the name of
the image file, the name of the device on which he wishes the image
to appear, and the color function, if any, that he wishes to be
associated with that image. These three parameters are then passed
to the top level display subroutine of the device module, DISPL.

The display routine DISPL calls the file module core table
entry routine to determine how many pixels and lines there are in
the image. DISPL then passes the device, file name, starting scan
line and scan element, number of lines, and number of elements to the
second level routine. For our example, let's suppose that the user
has requested one of the Ramtek screens as the display device., This
second level routine, RAMQ, first asks the user to input a point at
which he wishes the northwest image corner to appear oun the screen.
The routine then determimnes whether or not the entire image will fit
on this ﬁortion of the screen. If so, the compression ratio is set
at one to one,’indicating no compression. 1f not, the user may request
compression or may ask that only the northwest corner of the image be
displayed. If the first choice is made, a compression ratic will be

calculated and the status parameter set to indicate compression to the

a9 6h
;;.-‘

query module. If no compression is desired, the ratic is again set at
one to one. In all three cases the number of lines and pixels to be
displayed on the screen is determined. All of these parameters are
_ then passed. back. to DISPL.-- -

DISPL now calls the level three routine, RAMD. RAMD attaches
the correct Ramtek screen and calls the file module routine to trans-
form the image as required by the color function or the compression
factor. Repeated calls to RDSCLN, the file module routine for reading
data from a file, are made to obtain the transformed pixel values.
RAMD extracts the desired pixel wvalues and sends them to the BLOKZ
subroutine. This routine performs the functional primitive operation
of image scan line display and is also the fifth level routine.

At the lowest level, BLOKZ is responsible for sending the commands
and data to the operating system in order to initiate output on the
Ramtek. Through the use of the BLOKZ routine the correct mode, format,

color and positioning are selected.

omuTEAL PAGT]
e TOUR OAMAE:

v

http:passedback.to

QUERY MODULE

a9

DISPLA

S

 file name

&
tes

(¥}

‘{“éETC&E

%
i
¢

i ——==---.t(file mod.)
image size

PR

| TS

status

CCFTN
(mﬁg&??latlon

file name
color fen }
compression § .

factorsé

status

file name ! A
device name i
. statu
color function
starting i
DEVICE MODULE coordinates
Level 1. DISPL K-
| A A
s s e e e e
device name display size
file name screen coordinates
starting compression factors
coordinates status
image size
device name
Level 2. I RAMQ file name
starting image
screen coordina
display size
color function
compression
factors
Level 3.

Levels 4 & 5.

I/0 commands
pixel value data

}
i
AR

screen coordinat
pixel value data

es

BLOKZ

RAMZ

—— b i r—

l Al

status

GETADR, WTQIO
Operating System 1/0
Routines

FIGURE 3.2

Device Module Hierarchy for
Image Display Operation

100

3.4 Chapter 1V, Device Commands

The--lowest-level-of the-device module—-hierarchy contains the"
device dependent routines which are responsible for sending the
commands to the device., The commands available depend on the
hardware characteristics of the particular device. The routines at
this level are used independenély of the function being performed.
They provide the interface between the programmer and the device
through the operating system. Many of these routines fill command
buffers and parameter blocks with information about logical unit
number of the device, how many commands or bytes of data are to be
read, and which instructions are to be performed by the device
hardware.

Two system input/output routines which can be called
from FORTRAN programs are provided by the operating system: GETADR
and WTQIO,GETADR loads the initial address of a specified user
buffer into an array for use by the I/0 routines. WIQIO issues an

input /output command and waits for I/0 completion before continuing.

4.1 Ramtek Hardware and Commands

The Ramtek GX-100B display system has the hardware configuration
shown in Figure 4.1. This system uses the raster scan technique to
produce an image on the cathode-ray screen., [4]

The bi-directional interface intercomnects the local CPU and
the display generator and device multiplexor. The instruction buffer
stores received commands and data into a 256-work FIFO buffer in order
to provide asynchronous operation of the CPU and display generator.
These commands and data are input, decoded and processed by the
instruction processor. Dot-matrix character patterns are generated
from ASCII character codes by the character generator, while the
vector generator performs the essential parameter manipulation and
linear interpolation for automatically drawing lines between arbitrary
end points. The scan converter controls the writing of all data into

the refresh memory which stores the display image. The video generator

“%'1’5:;}‘&111’35 }J‘l"}?‘]j "
of penR G -

[

[

' S C Screen 1
s character 4 , 7 Color
: Generator e, !
, ! AN - e R
i .InstruZ;;;;ﬂ' E;;;;;;;ion: NV ”Refre;;\ Video = YScr;en-QM4
Ly A OO .
! Buffer lh);Processor IE{ (Memory | ‘| Generator | _ B/W ;
. , B [~ 7R T
A S Vector E i , Screen 3
Z N Generator j_ R | Color
T SN | | -
E]
R |
¥ E
e A] |
i Local B -

‘ N
Memory

Tmot o T T TTTTTTT 772 Readback
¢ N ,
¥
? N
i
v)
3 > De.vic‘:e m— Cursor
‘ Multiplexor ° Generator
z tiplexor |G
! 1
] i)
I
L

Trackball

FIGURE 4.1

Ramtek Display Hardware

Keyboard
L

.

191

09 |

. 70
104

scans the refresh memory and generates video and synchronization
gignals which are decoded by the selected television monitor. This
television monitor then drives the electron guns which excite the
~phosphors -painted on—the -picture tube -in-order—to display the "image.”
The cursor generator intercomnects the cursor/trackball

registers of the device multiplexor with the video generator for

the purpose of displaying a maneuverable cursor which bypasses the
refresh memory. The trackball option converts the rotational
movements of a mounted sphere into X and Y step codes for serial
transmission to the device multiplexoxr. The keyboard option
converts input into ASCII character codes for serial rransmission
to the device multiplexor. The memory readback option interconnects
the CPU and circulating refresh memory in order to read the contents
of the refresh memory.

The Ramtek routines at this lowest level in the hierarchy

are BLOKZ, ARAMZ, and RAMZ, The%e routines use the KRAMZ assembly
language function to stack the Ramtek opcodes into a buffer for
I/0 to the Ramtek. These opcodes are the instructions and flags

on instructions which are used by the display generator in writing
cutput on the screen. These instructions to the display generator

fall into three categories; channel/subchannel partitioning, positional

addressing, and control modes and flags. Some special functions are
also provided, A summary of the Ramtek instructions is given in
Figure 4.2,

Channel and subchannel partitioning allows a particular screen
to be addressed and also allows for color selection. The select dis-
play channel (SDC) instruction establishes access to the refresh memory
of a gpecific television monitor amd thus performs the function of
attaching the device. The selecﬁ-suﬁchannels (S8C) instruction
establishes access to the subchannels for the various colors. Seven
colors, plus dark, capability is achieved using three subchannels,
with a fourth subchannel used for white overlay.

There are three modes, absolute, indexed and relative, and

eight instructions associated with the positional addressing of the

—_—— e

OPRGIN AL PAGE ¢
S GOR QUL

'
¢
i

A

/
A o3

Instruction
Mnemonic Meaning Function
Shc select display channel attach device
S8C select subchannels designates colors
LEX load element index register define starting element address
LLX load line index register define starting line address
LE?2 load element register 2 define terminating element addre
LL2 load line register 2 define terminating line address
LER load element relative displace element address
LLR load line relative displace line address
LCM load control mode specifiy type of graphic output
AN - alphanumeric
TD -~ transverse data
RD - raster data
CD -~ complex data
GV ~ graphic vector
GC — graphic cartesian
GP - graphic plot
GE - graphic element
IDX load and execute data transmit data to display
generator one byte at a
time,
BLK block transfer transfer up to 256 words of
data to display generator
ERS erase full screen erasure

FIGURE 4.2

Ramtek Tnstructions

~
P

XL = -

refresh memory.- These instructions carry a line or element address
to the display generator in order to update the current operating
point (COP). 1In a 256 line by 256 element system, the least
significant bit of the effective dddress is truncated, as this
effective address is in the range 0 to 511. The load element index
register (LEX) and load line index register (LLX) instructions define
the starting element and line address, while the load element
register 2 (LE2) and load line register 2 (LL2) instructions define
the terminating element and line address. If the indexed addressing
mode is selected, these element and line addresses are summed with
the element or line index register; otherwise, the origin is assumed
to be at element zero, line zero., Relative displacement of the
element or line address is accomplished through the load element
relative (LER) and load line relative (LLR) instructions.

The control mode, as established by the load control mode (LCHM)
instruction, stipulates the type of graphic form to be written into
refresh memory. Eight control modes are available - four data modes
and four graphic modes. In the data modes, alphanumeric, tramsverse,
raster and complex, each programmed instruction sequence accesses
and addresses the refresh memory, issuing one or more data sequences
to be decoded. After decoding this data, the dispiay generator
writes the data into the accessed subchannels beginning at the current
operating point, then recalculates the COP. In the graphics modes,
vector, plot, cartesian and element, element addresses are issued
instead of data sequences. -

In alphanumeric mode (AN), each data byte is interpreted as an
ASCII character code. In the Ramitek character set, each character
consists of a 5 by 7 dot matrix within a 7 by 12 matrix. Double width
or double height flags may be set to get larger characters. Characters
are written in the same bit pattern as received, rather than being
decoded and transformed. Transverse mode results in an eight bit
wide vertical column being written, from top to bottom. Raster mode (RD)
is didentical to the transverse mode, except that the data is
written from left to right across a specific raster line instead of

in a vertical column. The complex data mode (CD) is most often used

195

for generating multi-colored displays. Each bit of each pixel
description is written into one or more subchannels and the data is
written from left to right across a raster line. Either the word
format or the byte format flag may be set in complex data mode.
Word format specifies that a 16 bit word be decoded for the Z-axis
data and byte format selects an 8 bit byte format for decoding.

Two forms for transmitting data to the display generator are
available. The first form, using the load and execute data (LXD)
instruction, transfers one 8-bit data byte at a time. Although this
method is very simple, it is often inefficient. The second form of
data transmission is wvia the block transfer (BILK) instruction. This
instruction conditions the display generator to receive a specified
number of data words (up to 255) for processing. A reverse packing
flag is available with the BLK instruction. This flag may be set
for implementations where the right byte is to be processed first,
e.g., in the PDP 11.

While operating in any of the four graphics modes, the display
generator draws specified graphic forms by decoding and processing
positional addressing ingtruction rather than transferred data.

Graphic vector mode {GV) is used for drawing lines between two

specified points.—These points are defined through the LE2 or LER
and 1L2 or LLR instruction. For drawing solid rectangles between
arbitrary endpoints the graphic cartesian mode {GC) may be used. The
graphic plot mode (GP) draws contiguous wvertical line segments in
order to produce a histogram style plot of consecutive data points.
In the graphic element mode (GE), each individual pixel is activated
as addressed by line and element. All of these graphic modes permit
a third dimension of color or intensity, which is determined by the
SDC and SSC imstructions.)

One useful special function provided in the Ramtek instruction
set is erasure. The ERS command performs a full screen erasure,
Selective erasure of colors may be performed by using the SSC instruc-
tion to select specific subchannels to be erased.

The BLOKZ subroutine can be used for output to the Ramtek while

in any mode using block transfers. Parameters required by BLOKZ are

Hob 74 .

the control mode, starting element and line coordinates, colors to be
used and a buffer containing physical device, logical unit number,
number of bytes of data and the actual data. BLOKZ places more
-information-concerning ‘the number of commands ~to be execdted™in the ™~
buffer and then calls ARAMZ. ARAMZ puts all the information for an
I/0 to the Ramtek in a single array and then calls RAMZ. Inputs to
RAMZ, the routine which calls the operating system routines GETADR
and WIQIO in order to output the data on the sereen, are a buffer
containing the Ramtek operations, the logical unit number, the

number of bytes of data involved and the desired functions.

4.2 Dicomed Hardware and Commands

The Dicomed model D47 image recorder is based on high-performance
cathode~ray tube (CRT) technology [5]. A simplified diagram of the
f£ilm recorder is shown in Figure 4.3. The image area of a CRT is
projected through a lens and a colored filter and focused on the film.
The CRT beam intensity level is related to an exposure index which is
manually entered for the type of film in use. 'Each data element
received during the recording process consists of a digital value
proportional to the desired exposure. This number is entered in the
exposure register via the I/0 interface. When the beam is positioned
to the desired location it is turned on for a length of time
proportional to the exposure value stored in the exposure register.

The recording along a given line (horizontal) is achieved by
incrementing the horizontal counter after each point is exposed until
an end-of-the line command is received. This command causes the beam
to be positionmed at the beginning of the next line. The recording
of an image is complete when the desired number of lines have been
exposed through each filter.

Commands are sent to the Dicomed film recorder through the
DICOMD and CINE subroutines. DICOMD accepts a list of commands and
sends these commands one at a time to CINE, the routine which builds
the calling sequence for the operating system I/0 routines GETADR and
WIQIO. There are five functions available when using CINE: write

commands, read status, attach Dicomed, detach Dicomed and write data.

A
(RIGTIAD

COn
4l PORAs

Ikt

'R
-t

pan

3

]

¥

7Ev(ﬁléj%}£ij

't}

1oy

T
]

L}

13
TR A

Cpp o ot
v

Exposure Code
(Data Words)

End of Line Coumand

Vertical
Counter
. . Vertical
Direct Coordinate Entry | Deflection
Register
Exposure .
1 Register ‘ /A
J :
Electronic
Timing
| o
CRT Beam . Focus
Intensity 4 and
Control beflection
!——-L._’
: D/A :
-
Direct Coordinate Entry X gz;;zzz;:i
Register
T
Horizontal
Counter

FIGURE 4.3

Dicomed Hardware Diagram

Lens

Filter

Positioning
Motox

Film

Position
Commands

L@l{b

“a

o8

A set of operatdons along with their functional type is sent to the
film recorder through CINE. The Dicomed opcodes and functions are
summarized in Figure &4.4.

Before data is output on the Dicomed, the image recorder must be
initialized through the initialize command (op code 000). The Dicomed
is then ready to receive further commands. Resolution may be set to
low (014 - a 4 x 4 point matrix is output for each pixel received),
medium (015 =~ 2 x 2) or high (016 - one point per pixel). This allows
an image to be magnified without further software programming. The
desired polarity, i.e. whether the image exposure data is to be
recorded in uncomplemented or complemented form (201, 202), may also
be chosen. Input format of six or eight bits must also be selected
(085, 006). 1In 6 bit input format, the six least significant bits
of each exposure data word are interpreted as a walue in the range
0 to 63, whereas in 8 bit format, exposure data is interpreted as
being of intensity between 0 and 255, A linear or logarithmic trans-
fer function may also be chosen (211, 212). Selection of a logarithmic
function means that film transmittance will be linearly proportioconal
to the log of the exposure values while a linear funetion means that
film transmittance will be linearly proportiomal to the exposure
values. A filter of the desired color is positioned in the optical
path through command 230 (neutral filter), 231 (red filter), 232 (green)
or 233 (blue). The FILTER subroutine is used for filter selectionm.
Starting position on the film may be set through the random horizontal
(010) and random vertical (011) commands.

At- this point the start-of-input command (001} must be sent to
prepare the image recorder for the input of data. After each line of
data is sent to the Dicomed, an end-of-line (003) command is sent to
reposition the cathode-ray tube beam for the next line of plotting.
After all lines have been transmitted, an end-of-input (004) code

causes the recorder to recognize an end-transmission operation.

4.3 Varian Commands

The Varian Statos 4115 electrostatic printer/plotter is a black

and white hardcopy output device. Only three functions are used with

S OF

Command Code Function

External Initialize 000 prepare for operations

Start of Input 001 prepare for data input

End of Line 003 position cathode ray tube beam to left
margin

End of Input 004 recognize end of transmission operation

6-Bit Select 005 least significant six bits of word interpreted
as exposure energy value

8-Bit Select 006 eight bits of data word interpreted as
exposure energy value

Random H Position 010 prepare to receive horizontal positioning

Random V Position 011 prepare to receive vertical positioning

Low Resolution Select 014 record at low resolution (sixteen points
per pixel)

Medium Resclution Select (L5 record at medium resoclution (four points
per pixel)

High Resolution Select 0l6 record at high resolution (one point per
pixel)

Polarity Normal Select 201 record input exposure data in uncompleted
form

Polarity Complement Select202 Record input exposure data in complemented
form

Linear Select 211 select linear steps in transmissivity

Ldg Select 212 gselect linear steps in density

Filter Select 1 230 positions neutral filter in optical path

Filter Select 2 231 position red filter im optical path

Filter Select 3 232 position green filter in optical path

Filter Select 4 233 position blue filter in optical path

FIGURE 4.4

Dicomed Instructions

e -

the Varian. These three functions are paper slew, form feed and data
write. The subroutine PLOTV forms the interface between the functicnal
primitive level and the operating system. PLOTV prepares a parameter
block containing the actual memory address of the data buffer and the
number of bytes to be output. The mode (slew, form feed or data write)
is set and all this information is passed to the operating system
through the WTQIO subroutine.

Slew and form feed are similar operatioms causing the paper in
the plotter to advance. TForm feed causes an advance of about four
inches and is useful when doing several plotting operations in a
sequence. Slew causes the paper to advance about ten inches, allowing
the last line which was printed to be seen. Paper advancement can
also be done manually. Data write causes a buffer of the specified
length to be read as data and printed on the Varian. Each bit is
interpreted as a print (1) or skip (0) signal to the printer. 1408

points are plotted across each line.

4.4 Line Printer and User Terminal
Qutput is directed to the line printer through the FORTRAN
WRITE statement and is formatted through the use of a FORMAT statement.

Qutput can also be directed to the user terminal by specifying the

user terminal as the output device in a WRITE statement.

4.5 Summary

The routines included at this level are shown in Figure 4.5.
These routines make it possible forroutines at a higher level to
perform display functions without knowing the specific commands

associated with the display devices.

L3

; 70 I

Device Routines Function -

Ramtek BLOKZ Set control mode, starting
element and line coordinates,
colors to be used, physical
device, logical unit, number of
bytes of data, actual data,
commands for Ramtek display

ARAMZ generator.
RAMZ
Dicomed DICOMD Send Dicomed operations and
their funectional type to the
CINE film recorder through operating
system I/0 routines.
FILTER

Varian PLOTV Send address of data buffer and
number of bytes to be output to
printer/plotter,

Line Printer WRITE statement Direct output to line printer

and (FORTRAN I/0) or user terminal,

User Terminal

FIGURE 4.5

Low Level Routines of the Device Module

HZ o

5. Chapter V, Functional Primitives

At the next level in the device module hierarchy appear the routines
which support the functional primitives. These routines represent the
capabilities of a graphic output system. Seven functicnal primitives
are considered in thas chapter: beam movement, point drawing, line
drawing, solid drawing, character display, erasure, and image scan
line display. Most devices are capable of performing these functional
primitives, but the method of implementing them on the various devices

may differ.

5.1 Beam Movement

Beam movement involves initializing or reinitializing the location
for display. On the Ramtek, beam movement is accomplished through the
DRWABRZ routine. By calling DRWABZ with the desired beam coordinates and
dark (0) as the color, the beam position is changed from the current
operating point (COP) to a new COP. DRWABZ uses RAMZ to set the graphic
vector mode and send the LEX, LLX, LEZ, and LLZ commands for repositioning.
On the Dicomed, the beam is positioned by using the RANDHV routine.
Arguments of RANDHV are the desired x and y film coordinates. RANDHV
calls CINE to send the positioning commands to the device. The Varian
printer/plotter starting x and y coordinates may be changed by instructing
the printer to offset each line of points to be plotted. However, this
was not implemented, so the appearance of coffset may be given by zero
fillang the desired number of bits at the beginning of each print line

buffer area.

5.2 Point Drawing

Point drawing 1s the basic display operation through which most other
graphic entities are derived. Point drawing can alsc be useful by itself,
for example in marking points designated by the user through the Ramtek
trackball. Points may be displayed on the Ramtek screen by a sequence of
two calls to DRWABZ - one to relocate the COP at the point and ome to

draw a line segment of length zero from that point to the same point in

/3

the desired coler. Point display might also be obtained by using the
graphic element mode, but this was not implemented as individual points
are seldom drawn. Single point plotting oﬁ the Dicomed is not used, but
each image recorded on the film is actually just a series of small dots.
This is also true of the Varian. Points are plotted on the Varian by
setting bits to 1 in a buffer sent to PLOTV along with a write data

function specification.

5.3 Line Drawing

Line drawing may be performed om any graphical device, but we did
not implement non-vertical, nom-horizontal lines on the Dicomed and
Varian, as each point on the line must be software defined. Line
drawing on the Ramtek is accomplished through a call to RAMLN. RAMLN
consists of two calls to DRWABZ, one to move the beam from its current
position to the first endpoint of the line and the other to draw the Iine
in the specified color, between the two enﬁpoints. Horizontal or
vertical lines may be drawn on the Dicomed and Varian by assigning the
proper values to all points in a line of transmitted data (for horizontal
line drawing) and by assigning certain values to corresponding points
in each line of data transmitted (for vertical lines). Skew lines could
be drawvn by calculating slope and assigning values according to line

number, pixel number and slope.

5.4 Solid Rectangle Drawing

Solid rectangle drawing is a primitive function which is useful when
drawing histograms or spotlighting color functions. RECTZ is a subroutine
that may be used for drawing rectangles of arbitrary size and color om a
Ramtek screen. RECTZ calls RAMZ, setting graphic cartesian mode and using
LELlL, LL1, LE2, LL2? to define the corners of the rectangle. Raster data
mode may be used when rectangles of small size (i.e. 1 X 1) are desired.
This mode is used when drawing a joint histogram, which also uses the
BLOKZ routine rather than calling RAMZ directly. For drawing rectangles
with the film recorder, RECTFR is used, When given the starting coordinates,

size, resolution, filter color and intensity for a desired rectangle, RECTFR

/14

calls DICOMD, RANDHV, FILTER a&nd CINE in order to output the rectangle.
Solid rectangles may also be drawn on the Varian, but there is no separate
routine to handle this operation,
5.5 Character Display

Character display is another functional primitive available on most
devices either through hardware or software programming. The Ramtek is
equipped with hardware character generation facilities which may be
accessed by using the alphanumeric data mode. The ALPHAZ subroutine
accepts a string of characters packed two to a woxd, and through a call
to BLOXZ, outputs this character string in the desired color and at the
desired position on the Ramtek screen. Currently, software character
generation is required on the Dicomed. FRLIST is a subroutine which,
given the required parameters of positioning, length of character string,
magnification, resolution, character color and background color, writes
a character string on the film. FRLIST writes the character string in
normal polarity then creates a background by writing the character string
in the complement mode in the specified background color. FRLIST calls
FRKHAR which is the routine which interfaces with the lower level routine
DICOMD thus causing output of the characters. KGEN is the routine used

to generate the character dot matrix patterns. Each character is a dot

pattern within a 10 X ¢ dot matrix. Character size may be enlarged by
using medium or low resclution or by using a magnification factor greater
than one. Software character generation is also necessary when using the
Varian. This character generation is achieved by using the subroutine
VARPC. Each character for the Varian consists of an eight by nine dot
matrix. VARPC translates the ASCII character codes to the proper dot
format, fills a buffer with these dot codes, and calls PLOTV to plot the

dots on the paper.

5.6 Erasure _

Erasure is another function which applies to all devices. For the
Ramtek, erasure is handled througp a call to ERASEZ which, through RAMZ,
causes the ERS command to be issued. BSelective erasure of color is
possible, as ERASEZ also uses the SSC comm;nd in RAMZ. Erasure of hardcopy

devices such as the Varian and Dicomed is interpreted as setting a new

Y115

page for output. Since we were concerned primarily with the use of
polaroid film on the Dicomed, new film had to be manually inserted.
However, if roll f£ilm were to be frequently used, instructions for
advancing the film through software programming could be included as
part of the erase procedure. When using the Varian, after each line is
printed the paper is automatically moved in preparation for the next
line of printing. In oTder to have greater spacing between plotted

images, the form feed command is sent through PLOTV. *

5.7 Image Scan Line Display

Another primitive function available on graphic display devices is
display of an image scan line. An image scan line results from reading
and, if necessary, transforming all the pixel wvalues across one line of
a digitized image. Where software character generation is required, a
string of characters may be considered an image so the character
drawing is actually a display of several image scan lines.

Image scan line display is achieved on'the Ramtel through use of the
BLOKZ routine. The complex data control mode is set as is byte format
(8 pits per pixel). The Ramtek reads the byte data and displays the
pixels according to their color bit format. In order to have all color
subchamnels available, the color parameter in the BLOKZ command 1s set at
14 (11102).

On the Dicomed, image scan line display requires calls to the CINE
subroutine. If more than cne color is desired in the final image
photograph, each scan line must be written up to three times; once with
a red filter, once with green, and once with blue. As each scan line is
read in, for each pixel the bits corresponding to the color being
displayed must be extracted and transformed into intensities to be sent
to the film recorder. CINE is then called with a buffer holding these
color pixel values. The number of lines actually recorded on the film
for each call to CINE depends on the resolution for which the recorder was
set.

Scan line display on the Varian consists of plotting points across
one or more lines of the paper. All points are either black or white
{(blank), with no grey level shading, so various dot patterns must be used
to give the final image the appearance of varying grey levels. These

patterns are in the form of m x n dot patterns corresponding to the various

11¢

pixel values. 1In our case, 4 X 4 or 5 X 5 dot patterns are available,
with 8 different grey levels in the 4 X 4 pattern and 16 in the 5 X 5.
Each pixel value must be tranformed to the desired dot pattern before a
scan line is sent to PLOTV. M lines must be plotted for each scan line

of the image.

5.8 Summary

The functional primitives form an integral part of the database
operations included in the device module, They represent the basic
display functions required for design and implementation of more complex
graphic output. Figure 5.1 summarizes the availability of these seven

functional routines and the routines used in implementing them.

7

Other Routines

Functional Primitive Devices Routines Required
Beam movement Ramtek DRWABZ RAMZ
Dicomed RANDHV CINE
Point drawing Ramtek DRWABZ RAMZ
Varian PLOTV
Line drawing Ramtek RAMLN DRWABZ
Solid rectangle drawing _Ramtek RECTZ RAMZ
Dicomed RECTFR DICOMD, RANDHV, CINE
Character display Ramtek ALPHAZ BLOKZ
Dicomed FRLIST, DICOMD
FRKHAR, KGEN
Varian VARPC PLOTV
Erasure Ramtek ERASEZ RAMZ
Varian PLOTV
Display image scan line Ramtek BLOKZ
Dicomed CINE
Varian PLOTV
FIGURE 5.1

Functional Primitive Implementation

£18 R

6. Chapter VI, Database Operations

The two levels, of the device module hierarchy diécuSSed in.chapters -
four and five are necessary in order to support the main action of the
project - performing the requested database operations and showing the
results to the user. After the query module determines which operation
the user desires, device independent questions are asked, a few preliminary
calculations may be performed, and then the query module invokes the device
module routine for that operation. Thus the highest level routines in the
device module form the interface between the query module and the functicnal
primitives of the device module.

These interface level routines are still device independent. In them,
any device independent operations such as statistical calculations and
obtaining information about the file contents are completed. At this time, ,
a check is made to see if the operation and the specified device are
compatible. If not, contrel returns to t@e query module where an error
message is given to the user. if the operation is compatible with the
specified device, routines dependent on that device are called, As a
first step in these routines, any necessary device dependent information

is requested of the user. This is desirable in order to more fully

ytilize the capabilities of each device. Device dependent gquestions may
include inquiries as to color, positioning, magnification, or other
factoxrs. Explanatory information for tﬁe user may also appear at this
time.

The next step 1s to compile the data into proper form for the requested
database operation. This may involve extracting data values, selecting
colors and transforming bit patterns. After the output data is prepared,
the routines in the two lowest levels {chapters four and five) are called
in order to complete the database operation.

Query language commands invoking device module routines fall into
four categories. A definirion command which uses the device module is
build window (BW). Display commands using the device module are display
(DI1), erase (ER) and exhibit pixel area (EP). Statistical operatioms

supported by the device module are exhibit histogram (EH), exhibit

et

/7

distribution (ED), exhibit joint histogram (JH), exhibit joint distri-

bution (JD), and exhibit contingency matrices (CM). A utility operation

supported by the device module is spotlight (SP). These database

operations and their corresponding top level device module routines are

listed in figure 6.1.

Database Operation Device Module Routine
Type Name
Definition BW GETPT
Display DX DISPL, DRWIND, LEGEND
ER ERASES
EP EXHBPA
Statistical EH HISTO
ED DISTR '
JH JHISTO
JD JDISTR
CM CONMAT
Utility SP SPOTLT
FIGURE 6.1

Top Level Device Module Routines

Gfticac L BAG
(0 Lant A RS

ag
[

/20
6.1 Definition Operation
Build window is a definitional database -operation which allows the
user to construct a window through interaction with the query module.
If the user chooses to build a window using cursor rather than absolute
mode, he selects window vertices by using the trackball. A call to
GETPT from the query module is required to obtain each point input

through the trackball and also to indicate when no more points are to

be entered.

6.2 Display Operations

Five display operations resulting from three query language
commands are controlled by the device module. Image display, window
display and legend display are all initiated by the query language
display command. Erasure is requested through the erase command.
Exhibit pixel area is the fifth operation in this display category.

One common area, labelled as the CURRENT common block, is used by
the query module and the device module for retaining information concern—
ing the current state of each of the Ramtek screens. If an image is
present on a screen, the scale, positioning and name of the image are
retained in CURRENT. If no image, or an unmeaningful image is presently

showing on the screen, the 'erased' indicator in CURRENT is set. This

information may be used when displaying a window or a portion of an

image.

6.2.1 Tmage Display

When an image is to be displayed, the query module must determine
the image file name, display device, color function, if any, to be applied
to the image, and starting scan line and scan element of the image portion
to be displayed. These parameters are then sent to routine DISPL. In
DISPL, the file module core table entry routine GETCTE is called to cbtain
the size of the image in pixels east to west and north to south. L6]
Control then flows to the second level device dependent user interaction
routines. These routines are RAMQ, DIC0OQ and VARQ for the Ramtek, Dicomed
and Varian, respectively. After obtaining device dependent informatiom,

these routines return control to DISPL. DISPL then calls the third

: rad

level routine RAMD, DICOD, or VARD.

RAMQ first determines whether the user wishes to use the trackball
or the user terminal to input the starting display coordinates. In
either case, the user inputs one point. RAMQ then determines, using the
image size, screen size and starting screen coordimates, whether the
image will fit on the screen. If not, the user may request either that
the image be compressed to fit or that only the northwest corner be
displayed. Whatever the result, RAMQ them calculates the compressiocn
ratic and the size of the image to be displayed. Before returning these
parameters to DLISPL, RAMQ also must store information concerning this
to-be-displayed image in the CURRENT common area for use by the query
module,

DISPL then passes the parameters determined in RAMQ to RAMD., RAMD
invokes the file module routine which applies the color function and
compression factor to the image file and creates a new temporary image.
file whose name is returned to RAMD. Using the file module, each scan
line of the new image is read in and RAMD causes each scan line to be
displayed by calling the functional primitive routine BLOKZ until the
screen is full or the image is completed, at which time control returns
to DISPL and then to the query module.

When the Dicomed film recorder is requested as the display device,
DICOQ must obtain several parameters from the user. Besides selecting
the film coordinates at which the display is to start, the user must
also select how much software image magnification he wants, what hardware
resolution he wants, how many different colors may appear, whether the
maximum pixel wvalue 1s 63 or 255, whether the display is to appear imn
normal or complemented intensities, whether intensity is to be a linear
or logarithmic transfer function and which filters are to be used. Before
returning to DISPL, DICOQ also calculates the size of the image to be
displayed.

DICOD, which receives the parameters obtained in DICOQ from DISPL,
calls the file module compression and coloring routine in the same manner
as RAMD. TFor each desired filter, DICOD must then call the functional
primitive routines CINE and DICOMD and activate device commands in order

to prepare the film recorder for receiving data and outputting it in the

o \
/33 9 .t

correct format. +DICOD then reads each scan line and outputs it through
further calls to CINE and DICOMD. This functiomal primitive operation
is repeated until all scan lines have been displayed.

-- Images displayed-on the—Varian printer/plotter appEaf 48 4 matriX
of black dots and null dots. Grey-level shading is accomplished by
having small dot pattern matrices corresponding to various pixel wvalues.
Two patterns were implemented - one a 4 X 4 matrix giving eight different
grey levels and the other a 5 X 5 matrix giving 16 levels. VARQ asks the
user to choose one of these patterns. Then using the image dimensions and
pattern size, the amount of paper required for plotting the image is
determined. Compression is not necessary on the Varian, as a large image
may be plotted in several vertical sections. The user may specify the
number of sections to be plotted. Selection of fewer strips than required
to plot the entire image is equivalent to requesting display of the western
portion of an image. The size of the image to be -plotted is then calculated
before control returns to DISPL. DISPL then passes the pattern size and
image size to VARD,

VARD is divided into two sections, one for displaying eight grey
levels usging the 4 X 4 dot matrix pattern and one for displaying 16 grey
levels using the 5 X 5 pattern. For either pattern choice, the resulting
image is framed by a dark border. TFor the image display, scan lines are
‘read in one at a time, each pixel value is converted tc the corresponding

dot matrix, and the scan line is displayed through a call to PLOTV.

6.2.2 TLegend Display
Display of a legend is an option included im the image display
operation at the query level, but is considered a separate database
operation at the device module interface level. After an image has been
displayed, the user is allowed to enter a legend, which is a string of 80
or fewer characters. The query module counts these characters and then
sends them to the device module routine LEGEND. LEGEND sets the character
size for each device and calls the device dependent character writing
routines RAMPC, DICOPC and VARPC. !
When using a Ramtek, the user is allowed to input a point, through
* the trackbail or the terminal, at which to begin the character display.

RAMPC checks to see if the characters will fit below and to the right

/a3

of this point and prints as many as will £it by calling the functional
primitive ALPHAZ.

The user may also select the character display position for the film
recorder, DICOPC sets the character size and color as well as determining
the size of the area in which the characters are to appear. DICOPC prints
a maximum of two lines of characters and returns a status code indicating
that not all characters were printed if such is the case. In order to
print the characters DICQOPC calls FRLIST,

For legend display on the Varian, the user is given no choice of
positioning. Fach legend i1s left-justified starting on the next available
line on the paper. The VARPC subroutine encompasses three levels of the
device module hierarchy. It transforms the ASCII characters to their
octal values, determines the dot pattern for these characters and puts

these patterns in a buffer, then calls the device command level routine,
PLOTV.

6.2.3 Window Display

Another display operation available is drawing a window. Window
drawing is only implemented on the Ramtek. The first action in DRWIND
is to get the header information about the window file - number of vertices
in the window and-X-and ¥ minima and maxima. Next the current status of
the specified Ramtek screen, stored in the CURRENT common area, is checked
to see if there is any image displayed on that screem. If so, the window
mode flag is set to one to indicate that the vertices of the window should
be drawn to correspond to the coordinates of a currently displayed image.
Otherwise, the window mode flag is set to zero. DRWIND then determines the
scaling and offsetting factors for the window vertices relative to the
screen size and, if applicable, to the image currently displayed.on the
screen. These factors, along with the number of points in the window and
the window mode, are passed to RAMDW, the device dependent window display
routine.

In RAMDW, the user is asked which color he wants the window displayed
in so if an image 1s currently on the screen, he can pick a celor which will
show up on the image. The scaling and positioning factors are then applied

to the window vertices to convert them to screen coordinates. These screen

/34

coordinates are then sent two at a time to RAMLN, the line drawing primitive.
If the window is not drawn relative to a currently displayed image, the

user may request that the window coordinates be displayed so that he has some
- -idea of--the -actual window size and-orientation. "ThHesé ¢oordinates are™

encoded to character form and themn displayed through ALPHAZ.

6.2.4 Erasure

As previously described, erasure is a functional primitive. It is also
a database operation handled by the top level routine ERASES. Allowing the
user to suppress erasure permits him to display more than one image on the

display surface at the same time.

6.2.5 Exhibit Pixel Area

Exhibit pixel area is an operation used to display the exact pixel
values of the pixels in a specified area of a currently displayed image.
After displaying an image on a Ramtek screen, the user designates a point
on the image and specified how many elements of how many lines south and
east of this point he wishes to know the pixel wvalues for. Within the
query module, the current image name, size of the area to be exhibited and
the image scan element and scan line corresponding to the northwest corner
of the area must_be_determined. These parameters are then sent to EXHBPA.
This routine reads in the scan lines containing the desired pixels, extracts
the designated pixel values, and outputs them on the selected device. TFor
the user terminal and line printer, the WRITE statement is used. For the
Ramtek, the values must be encoded to character form and then displayed
using ALPHAZ.

6.3 Statistical Operatioms

Several statistical operations are supported by the IMDB system. These
involve computations as well as graphical output. Some of them compare
qualities of two images. Because of the type of output required, fewer
devices are usually available for displaying the results of each of these

statistical operations.

6.3.1 Exhibit Histogram and Exhibit Distribution

Exhibit histogram and exhibit distribution both involve computing the

.15 i

frequency of occurrence of every pixel value found in an image. The
routines in which these calculations take place are HISTO and DISTR.
After all pixel values have been tallied, the frequency count array is
sent to the device dependent routine. When a histogram on a Ramtek is
desired, RAMHI receives the count array from HISTO. RAMHI determines
the color in which the histogram is to be output and then passes this
color and the count array to DHISTZ. DHISTZ determines the maximum
frequency and the largest pixel value in the image in order to scale the
histogram to fit the screen. The histogram is displayed as a sequence
of rectangles whose heights indicate frequency of occurrence. These
rectangles are drawn through calls to the RECTZ functional primitive
routine. Included in DHISTZ is code to label the X and Y axes of the
histogram through calls to ALPHAZ.

For a distribution, the device is expected to be the line printer
and LPDT is the program which is called. LPDT prints out, using the
WRITE statement, the number of occurrences of each pixel value within

the image.

6.3.2 Exhibit Joint Histogram and Joint Distribution

Exhibit joint histogram and exhibit joint distribution also differ
mainly due to the-devices on which they can be displayed, as joint
histograms may only appear on the Ramtek while joint distributions may
only be directed to the line printer. Both JHISTO and JDISTR calculate
the frequency of the pixel value pairs obtained by extracting points from
the same position on two images. Before the pixel values can be extracted,
the northwest corner coordinates and the sizes of the images must be
obtained from the file headers. These are used to determine what portion
of each image is included in the intersection of the two images.

When first created, images are declared to be in either grid coordinates,
with a specified northwest corner, or in absolute coordinates with an
arbitrary 'don't care' northwest corner. If two images are both in absolute
coordinates, their northwest corners are assumed to have the same coordinates.
If one is in absolute and the other in grid coordinates, the northwest
corners are also assumed to match up. If both are in grid coordinates, the
novthwest corner of the overlapping portion and its relative position in

each image must be determined.

94
/9 .

After the starting and ending scan element and scan line within each
image have been determined, one scan line from each image is read. Each
pixel value from the first image is concatenated with the corresponding

pixel walue from the second image.and. .2 frequeney-ecount--of these--pixel pair-
values is tabulated. Scan lines are repeatedly read in and their pixel
values extracted until all in the intersecting image portion have been
examined.

After this point JHISTO and JDISTR differ, as the device dependent
digplay portion of each routine has been reached. When a joint histogram
has been requested, the pixel pair values are sorted in order of asceanding
frequency. Pixel pair occurrence is shown on a joint histogram by a small
rectangle at the'point where the X coordinate is the value in one image and
the Y coordinate is the value in the other. Frequency is indicated by the
color of the rectangle. 8o that the user may highlight certain frequencies,
he is given two options. His first option is choosing the ranges into
which he wants the frequencies divided. If he does not use this option,
seven equally spaced ranges will be assumed. His second option is selecting
a color for each range. Default colors, a different one for each of up to
seven ranges, will be assigned if he does not choose this option. After
colors and ranges have been assigned, the subroutine JOUT is invoked for

each range. JOUT calls BLOKZ using raster data mode to output squares of

color on the Ramtek.

When exhibiting a joint distribution, the user may specify whether he
wants the output sorted by pixel pair value or frequency, but pixel pair
value should only be chosen if all values are less than 128 as larger numbers
may cause the pair value to be interpreted as a negative number which would
be incorrectly sorxrted. The pixel pairs and their frequencies are then output

to the line printer through repeated use of the WRITE statement.

6.3.3 Exhibit Contingency Matrices

CONMAT is the top level device module routine for computing contingency
matrices for two classification maps. The computations take place in CONTIN
and the line printer output is handled in COMMXP. Contingency matrices may
be used in determining the degree of correspondence between two maps of the

same region which have been processed using different algorithms.

- v 4

Two things are computed when producing contingency matrices — boundary
transition type and neighborhood agreement between two maps. Boundary
transition type refers to comparison of two pixel values within the same
image. The class value of each pixel is coﬁpared with its morth neighbor
and its west neighbor to see which of four boundary transition types it
falls into. All three pixels may be in the same class (no boundary), the
west neighbor may be the same but the north neighbor different (vertical
boundary), the north neighbor may be the same but the west neighbor different
(horizontal boundary) or both neighbors may differ from the pixel currently
being examined (vertical/horizontal boundary).

To determine the neighborhood agreements between two maps, three
comparisons must be made for each pixel. Agreement and disagreement of
the corresponding pixels from two classification maps, their north neighbors
and their west neighbors is computed. The number of neighborhood agreements

for each classification pair with respect to each boundary type is recorded.

6.4 Utility Operation

0f the control and utility database éperations available, spotlight is
the only one allocated to the device module. Spotlight is a command the
user gives when he wishes to know the nature of the data in a certain file.
An IMDB file can be an image, a window, a zoom function, a color funection,
or a transform. At the query level, the user is required to state the name
of the file he wishes to spotlight and the device on which he Wants the
spotlight information to appear. These two parameters are then passed to
SPOTLT.

Within SPOTLT, the file type and whether the file is a permanent or
temporary file are determined. Depending on the file type, the correct
type-dependent routines are called; image - SPIMAGE, window -~ SPWIND,
zoom — SPZOOM, transform - SPTRSF or color — SPCOLR.

SPIMAGE prints out, on either the user fterminal or the line printer, the
image file name, the northwest corner coordinates of the image, the size of
the image in pixels east to west and north to south, and, if the file is a
permanent file, the file description. SPWIND prints out the window file
name, the maximum and minimum X and Y coordinates, whether the window is an
enclosure or an exclosure, and how many vertices the window has. If the file

(ORTFENY it '3
R NS AR LER YRR YT

g6 g

/a8 ‘ .

is a permanent file, the file description is also printed. SPZOOM prints
the two numbers forming the new size to old size ratio as well as the file
name and description.

SPTRSF- prints the “file name and description as well as the entire
transform table. This indicates to the user which pixel values are transformed
into which new values when that transform is used. SPTRSF also only appears
on the user terminal or line printer. SPCOLR is more complicated because
a color function spotlight may be displayed on the Ramtek or the Dicomed as
well as on the user terminal or line printer. SPCOLR calls the file module
routine which puts the color table in a designated buffer before passing
control to the device dependent routines. For the Ramtek, RAMSC determines
which colors are used in the color function and in which pixel value ranges
they cccur. RAMSC then calls the functional primitive routines RECTZ and
ALPHAZ to output a square of each color and the ranges of. pixel values that
will acquire this coloring when the color function is applied. The Dicomed
routine, DISOSC, alkso determines the colors and ranges and then invokes the
functional primitive rectangle and character routines RECTFR and DICOPC.

If the line printer or user terminal is specified, UTSC is used to output

either the color name or number and the ranges to which it is to be mapped.

1 39

REFERENCES

[1]

(2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

Newman, W.M., and Sproull, R.F., Principles of Interactive
Computer Graphics, McGraw Hill, 1973.

Haralick, R.M. and Currier, P., "Image Discrimination
Enhancement Combination System (IDECS)," Computer Graphics
and Image Processing, Vol. 6, 1977, pp. 371-381.

Lien, Y.E. and Schroff, R., "An Interactive Query Language
for an Image Database," University of Kansas Dept. of
Computer Science, 1977.

Ramtek GX-100B Programming Manual, 1975.

Operation and Programming Manual, Dicomed Image Recorders,
Dicomed Corporation, 1974.

Dijkstra, E.W., "A Constructive Approach to the Problem of
Program Correctness,' BIT, Vol. 8, No. 3, 1968, pp. 174~186.

Bohm, C. and Jacopini,G., "Flow Diagrams, Turing Machines
and Languages with Only Two Formation Rules,’ Comm. ACM,
Vol. 9, 1966, pp. 366-371.

Mills, H.D., "Top Down Programming in Large Systems,"
Debugging Techniques in Large Systems, Courant Computer
Science Symposium, NYU, 1971, pp. 41-45.

Mills, H.D., "On the Development of Large Reliable Programs,"
IEEE Symposium on Computer Software Reliability, 1973,
pp. 155-159.

Kerighan, B.W. and Plaugher, P.J., Software Tools, Addison
Wesley, 1976.

Fish, R.C., "Structured Design Ensures High Quality Systems."
Computer World.

/30

APPENDIX

Description of Subroutines
Included in the Device Module
of the IMDB System

w3/ '

DISPL (DEVICE, FILENM, SCANEL, SCANLI, COL¥TN, STATUS)

RAMQ

DEVICE = device on which image is to be displayed - Ramtek,
Dicomed, Varian.

FILENM = name of image fale.

SCANEL, SCANLI = northwest corner to display.

COLFIN = name of desired color function.

STATUS = 0: okay-image displayed.

illegal device for display.
¢! image was compressed.
: error from file module routine.

1

= 2
. > 4
Routines called:

GETCTE - file module

RAMQ

RAMD

DILOQ

DILOD

VARQ

VARD

DISPL call device dependent voutines for displaying an image.

(DEVICE, FILENM, SCANEL, SCANLI, EW, NS, NELEM, NLINE, JX, JY,
OLDCF, NEWCF, STATUS)

DEVICE = specific Ramtek screen on which to display image.
FILENM = name of image file.

SCANEL, SCANLI = starting northwest corner to display.

EW, NS = pixels, lines in image.

NELEM, NLINE = number of elements and lines to display.

JX, JY = screen coordinates for northwest corner of image.
QOLDCF, NEWCF = compression factors: old size and new size.
STATUS 0: okay.

o

2: 1mage was compressed.
Routines called:

MSGOUT - utiliry

GETPT

RAMO determines image display size, positioning and compression.

(DEVICE FILENM, SCANEL, SCANLI, NELEM, NLINE, COL¥FTN, JX, JY, OLDCF,

NEWCF, STATUS)

DEVICE = specific Ramtek screen

FILENM = name of image file

SCANEL, SCANLT = northwest cormer of image

NELEM, NLINE = number of elements and lines to be displayed.
COLFTN = color function (if any) to be applied to image.

JX, JY = northwest screen coordinates for display.

OLDCF, NEWCF = compression factors.

STATUS = 0O: okay

> 0: otherwise ~ error in file or manipulation module

routine.

122

Routines called:
CCFTN - manipulation module
RDSCLN - file module
MOVE ~ manipulation module
DVICEZ
BLOKZ

RAMD displayed an image on a Ramtek screen.

DICOQ (FILENM, MAGFR, RES, NKOLOR, NBIT, POLAR, LOGLIN, KOLRCD, SCANEL,
SCANLI, EW, NS, NELEM, NLINE, JX, JY, OLDCF, NEWCF, STATUS)

FILENM = mname of image file.

MAGFR = magnification factor.

RES = resolution (0,1,2 for low, med, high).
MOLOR = number of colors (8 or 64).

NBIT = 6&-bit or 8-bit intensity values.

POLAR = polarity: normal or complemented exposure.
LOGLIN = Jlogarithmic or linear tramsfer function.
KOLRLD = color code: specifies which filters to use.
SCANEL, SCANLTI = northwest corner to be displayed.
EW, NS = size of image inelements and lines.

NELEM, NLINE = number of elements and lines to display.
J¥X, JY = film coordinates for northwest corner.
OLOCF, NEWCF = compression factors.

STATUS = 0: okay. -

Routines called:
MSGOUT - utility

DICOQ determines parameters to be used by Dicomed film recorder in
displaying an image,

DICOD (FILENM, SCANEL, SCANLI, JX, JY, OLDCF, NEWCF, MAGFR, RES, NKOLOR,
NBIT, POLAR, LOGLIN, KOLRCD, COLFIN, NELEM, NLINE, STATUS)

~

FILENM = mname of image file.

SCANEL, SCANLI = northwest corner of image to be displayed.
JX, JY = film coordinates for northwest corner.

OLDCF, NEWCF = compression factors.

MAGFR = magnification factor.

RES = regolution (0,1,2 for low, med, high)

NKOLOR = number of colors (8 or 64).

NBIT = number of bits for each intensity = 6 or 8.

POLAR = polarity = normal or complemented.

LOGLIN = linear or logarithmic transfer function.

KOLRCD = c¢olor code: designates filters to be used.
COLFTN = color function to be applied to image.

NELEM, NLINE = number of elements and lines in image to be displayed.
STATUS = 0: okay.

> 4: error from file or manipulation module routine.

VARQ

VARD

/38

Routines called:
CCFIN - manipulation moduile
RDSCLN - file module
MOVE - manipulation module
CINE
DICCMD
FILTER
RANDHV

DICOD displays an image on film using the Dicomed film recerder.

(FILENM, SCANEL, SCANLI, EW, NS, NELEM, NLINE, NSTRIP, PCODE)

FILENM = name of image file to be displayed.

SCANEL, SCANLTI = northwest corner of image.

EW, NS = size of image in pixels east to west and north to south.
NELEM, NLINE = number of elements and lines to be displayed.

NSTRIP = number of strips (image sections)} to be printed.

PCODE = pattern code: 4 for 4 X 4 pattern or 5 for 5 X 5 pattern.

Routine called:
MSGOUT - utility

VARQ determines the number of sections of the image to be plotted
on the Varian,

(FILENM, SCANEL, SCANLI, EW, NS, NELEM, NLINE, NSTRIP, PCODE, STATUS)

FILENM = mname of image file to be displayed.

SCANEL, SCANLI = northwest corner of image

EW, NS = size of image in pixels east to west and north to south.
NELEM, NLINE = number of elements and lines to be displayed.
NSIRIP = number of sections to be printed.

PCODE
STATUS

pattern code: 4 for 4 X 4 pattern, 5 for 5 X 5 pattern.
0: okay.

3: improper pattern code.

0 and > -256: bad device status in PLOTV.

-1000: bad directive status in PLOTYV.

4: error from file module routine,

v v ALl

Routines called:
RDSCLN - file module
MOVE - manipulation module
PLOTV
PACKSS -

VARD displays a grey level image on the Varian printer/plotter.

PACK85 . (BUF, BUF1)

BUF -~ input buffer, 2 bytes per word.
BUF1 - result buffer, byte array.

134

Routines called; none
PACK85 packs the right most 5 bits of the 8 words of BUF into 5 bytes

of BUFl. The packing resuvlts in the feollowing structure: 11111222
22333334 44445555 56666677 7778888.

DRWIND (DEVICE, FILENM, STATUS)

DEVICE = device on which to display window - Ramtek.
FILENM = name of window file.
STATUS okay

1B

improper device.
window won't fit on image on screen.
error from fileor manipulation module routine.

£HWwk O

A}

Routines called:
GETCTE - file module
MOVE - manipulation module
MSGOUT ~ utility
RAMDW

DRWIND determines coordinates for drawing a window polygon on the
Ramtek screen.

RAMDW (DEVICE, FILENM, DSCALE, DMOVEX, DMOVEY, NPTS, WMODE, STATUS)

DEVICE = specific Ramtek screen on which to display window.
FILENM = name of window file.
DSCALE = scale factor.
DMOVEX = ZX-offset.
DMOVEY = Y offset.
NPTS = number of points in window polygon.
WMODE = 0 ~ no current image on screen; l-image currently on screen.
STATUS = 0O: okay.
> 4: error from file module routine.
Routn{:;;n]c;alleg: ORIGINAL PAGE 1S
- file module TTY
MSGOUT — utility OF POOR QUAL
RAMLN
ALPHAZ

RAMDW draws a window polygom on a Pamtek screen.

LEGEND (DEVICE, BUFF, NCHAR, STATUS)

DEVICE = device on which legend is to appear — Ramtek, Dicomed, Varian.
BUFF = buffer containing characters to be displayed.
NCHAR = number of characters to be displayed.

/35

STATUS = 0: cutput okay.
= 1: illiegal device.
= 3: charactexr string was truncated because characters

didn't all fit in display area.

Routines called:
RAMPC
DICOPC
VARPC

LEGEND displays a character string. Character color is white on
Ramtek and Dicomed, dark on Varian.

RAMPC (DEVICE, BUFF, NCHR, CHRSZ, STATUS)

DEVICE = Ramtek screen to be used for character display.
BUFF = buffer containing characters to be displayed.
NCHR = number of characters in BUFF,

STATUS = 0: okay.

3: not all characters will fit.

Routines called:
MSGOUT - utility
GETPT
ALPHAZ

BAMPC displays characters in white at point specified by user on
Ramtek screen.

DICOPC (BUFF, NCHR, CHRSZ, STATUS)

(BUEF = buffer containing characters to be displayed.
v NCHR = " number of characters im BUFF.

CHRSZ =‘: character size: 1,2,3 or 4 - 1 is largest, 4 smallest.
STATUS = 0: cokay
3: characters didn't all fit so character string was
truncated.

Routines called:
MSGOUT - wutility
CINE
FRLIST

DICOPC prints characters on Dicomed film starting at point specified
by user.

VARPC (BUFF, NCHR, STATUS)

BUFF = buffer containing characters to be output
NCHR = number of characters in BUFF.
STATUS = 0: okay

< 0 and >-256: bad device status.

< =1000: bad directive status

136

Routine called:
PLOTV

VARPC prints one line of characters on the Varian printer/plotter.
Characters are in an 8 X 9 dot matrix.
ERASES (DEVICE)

DEVICE = device to be erased or set to a new page - Ramtek, Varian,
iine printer.

Routines called:
DVICEX
ERASEZ
PLOTV

ERASES erases a Ramtek screen, advances the paper on the Varian
or goes to the top of a new page on the line printer.

EXHBPA (DEVICE, FILENM, SCANEL, SCANLI, NELEM, NLINE, STATUS)

DEVICE = output device for display of pixel values in a2 given area -
user terminal, line printer or Ramtek.
FILENM = name of image file from which pixel values are to be
extracted.
SCANEL, SCANLTI = starting image coordinates of area to be exhibited.
NELEM, WNLINE = number of elements and likes to be exhibited - must
be no greater than 20.
STATUS = 0: okay
= 1: dimproper device.
> 1: error from file module routine.
R L M T
Routines called: (‘niu_'"":.‘.“;;‘]\!, Vi
RDSCLN - file moudle AN RN

MOVE - manipulation module
MSGOUT ~ utility

DVICEZ

ALPHAZ

EXHBPA displays pixel values of an NELEM by NLINE area starting at
SCANEL, SCANLI in image FILENM. -

HISTO (DEVICE, FILENM, STATUS)

=

DEVICE = device on which to display histogram - Ramtek.
FILENM = mname of image file for which histogram is to be displayed.
STATUS 0: okay

1: improper device.
i: error from file module routine.

v ol

Routines called:
GETCTE - file module
RDSCLN - file module
MOVE - manipulation module
MSGOUT - utility
RAMHT

HISTO computes frequency counts used for drawing a histogram of
an image.

RAMHI (PARRAY, DEVICE)

PARRAY = 256 word array containing frequency counts for pixel walues.

DEVICE

n

specifies which Ramtek screen,
Routines called:

MSGOUT - utility

DVICEZ

DHISTZ

RAMHI initiates display of a histogram on the Ramtek screen.

DHISTZ (XOUNT, KOLOR)

KOUNT
KOLOR

256 word array containing frequency count of pixel wvalues.
color in which histogram is to be displayed.

Routines called:
RECTZ
ALPHAZ
DRWABZ

DHISTZ displays a histogram on the Ramtek screen.

DISTR (DEVICE, FILENM, STATUS)

DEVICE = device on which to display distribution of pixel walues -
Jine printer,

FILENM = name of image file for which distribution is to be displayed.

STATUS = 0: okay

= 1: dimproper device.
> 1: error from file module routine.

Routines called:
GETCTE ~ file module
RDSCLN - file module
MOVE — manipulation module
MSGOUT —~ utility
LPDT

DISTR computes the frequency of each pixel value in a given image,

/38 3

LPDT (FILENM, PARRAY)

FILENM

1

name of image file for which distribution is to be printed.

PARRAY = 256 word array containing frequency counts of pixel values,

-~Routines called:
MSGOUT — utility

LPDT prints the distribution of pixel values on the line printer.

JHISTO (DEVICE, IMAGEl, IMAGEZ, STATUS)

DEVICE = display device for joint histogram — Ramtek

IMAGELl, IMAGEZ2
STATUS = 0:
= 13
= 2:
4

= names of image files for which joint histogram is
to be displayed.

okay.

improper device.

too many different pixel pairs - joint histogram
not possible.

images don't intersect.

Routines called:

GETCTE - file module
RDSCLN - file module

MOVE - manipulation moudle
MSGOUT - utility

JSORT
JOUT
ALPHAZ

ERASEZ ——

JHISTO computes pixel pair walues and frequencies in preparation for
display of a joint histogram. User may select ranges and colors for
display of pixel values.

JSORT (KBUFF, NPAIRS, KEY)

KBUFF
NPAIRS
KEY

2 by NPAIRS array of pixel value pairs and frequencies.
number of different pairs to be sorted.
indicates whether sorting is to be first or second word.

Routines called: none " ORIGINAL PAGE 8
JSORT sorts a 2 X N array in ascending order. OF POOR QUALITY

JOUT (KOUNT, NAPIRS, KOLAR, MA6)

KOUNT
NPAIRS
KOLOR

MG

(2,N) array of pixel value pairs and frequency counts.
number of data pairs in KOUNT,
color histogram is to be displayed in.

magnification factor.

/39

Routines called:
BLOKZ
BITSET

JOUT displays a line of the jeint histogram on the Ramtek.

BITSET (IARRAY, NBIT)

IARRAY = target array.
NBIT bit to be set.

Routines called: none

BITSET sets a bit in an array.

JDISTR (DEVICE, IMAGEl, TMAGE2, STATUS)

DEVICE = output device - line printer.

IMAGEL, IMAGEZ = names of image files for which joint distribution
is to be displayed.

okay.

improper device

too many different pairs.

: images don't intersect.

STATUS

Il
N O

Routines called:
GETCTE -~ file module
ROSCIN — file module
MOVE - manipulation module
MSGOUT = utdility
JSORT

JDISTR computes pixel pair values in preparation for display of a
joint distribution.

CONMAT (DEVIGE, MAP1, MAP2, STATUS)

DEVICE = output device for display of contingency matrix — line
printer.
MAP1, MAP2, = names of image files for which contingency matrix is
to be computed.
STATUS = 0: okay
= 1: dimages not of same size.
= 2: pixel number exceeds limit,
= 3: improper device.
> 3: error from file module routine.

Routines called:
GETCTE - file module
MSGOUT - utility
CONTIN
CONMXP

hHo (LU

CONMAT computes contingency matrices of two classification maps by
calling CONMAT and prints out the matrices by calling CONMXP. Each
map has eight or fewer classes,

CONTIN (MAPl, MAP2, NPIXEL, NLINE, NCLAS1, NCLAS2, IX, IY, MATRIX, STATUS)

MAP1, MAP2 = names of image files (classification maps) for which
contingency matrices are to be completed.
NPIXEL, NLINE = number of elements and lines in the ranges.
NCLASI, NCLAS2 = number of classes in MAPI and MAP2,
IX, I¥ = buffers for scan lines.
MATRIX = array for contingency matrix.
. STATUS = 0O: okay.
0: error in file module routine.

Routines called:
RDSCLN - file module

MOVE ~ manipulation module
AGREE

CONTIN computes contingency matrices for two classification maps.
Boundary transition types and neighborhood agreements are computed.

CONMXP (DEVICE, MAPl, MAP2, TITLE, IH, IH2, INVi, INV2, NPIXEL, NLINE, M, N)

DEVICE = output device — line printex
MAP1l, MAP? = names of image files for which contingency matrices are
to be computed,

TITLE = 80 character (max) title to be printed on top of each page
of “output.

IH, IH2Z = contingency matrices computed by CONTIN.

INV1, INV2Z = dnventory matrices.

NPIXEL, NLINE = number of lines and pixels in images.

M, N = number of classes in MAPl and MAP2 respectively.

Routine called:
MSGOUT - utility

CONMXP prints matrices showing number of agreements and disagreements
of transitions for each pair of classes.

AGREE (IX, IY, NPIXEL, Il, I2, MATRIX)

X = array holding two scan lines of one map.
IY = array holding two scan lines of other map.
NPIXEL = number of pixels in each scanline.

I1, I2 = either 1 or 2, tells which part of IX or IY has the
present line and the previous line.

MATRIX contingency matrix.

o /ql

Routine called:
INTLOG

AGREE compares one pair of scan lines for agreement for the two maps.
INTLOG (L) (function)

L. = true or false,
INTLOG returns 1 if true, O if false.

SPOTLT (DEVICE, FILENM, STATUS)

DEVICE = device on which to display spotlight output,
FILENM = name of file to be spotlighted.
STATUS = O0: okay

1: device incompatibile with file type
2: file type not recognized
4: dimproper color format for color spotlight on Ramtek.

Routines called:
GETCTE - file module
SPIMAGE
SPWIND
SPZO0M
SPCOLR
SPTRSF

SPOTLT digplays core table and file content information.

SPIMAGE (DEVICE, IMGNM, STATUS)

DEVICE = device on which to display information about an image~line
printer or user terminal.

IMGNM = name of image file for which information is desired.

STATUS 0: okay.

it

1: dmproper device.
Routines called:
RDDSCR - file module
MSGOUT - utility

SPIMAGE prints out coordinates, size and description of an image.

SPWIND (DEVICE, FILENM, STATUS)

DEVICE = device on which information about window file is to be
displayed-line printer or user terminal.

FILENM = name of window file.

STATUS = ©O: okay.

1: improper output device.

S HR 12

Routines called:
MOVE - manipulation module
MSGOUT - utility
RDDSCR ~ file module

SPWIND-.prints -out- closure maximum and mifiifmdm céordinates, number of
vertices and description of a window polygon.

SPZOOM (DEVICE, FILENM, STATUS)

DEVICE = device on which to display information about zoom function-
line printer or user terminal.

FILENM = mname of zoom file.

STATUS = 0: okay.

= 1: improper output device.
Routines called:
MSGOUT - utility
RDDSCR -~ file module
SPZOOM prints name, new to old image size ratio, and description of a

zoom file.

SPTRSF (DEVICE, FILENM, STATUS)

DEVICE = device on which to display information about transform
function-line printer or user terminal.
FILENM = name of transform file.
STATUS = 0: okay. .
= 1: improper output device, T { '
G
Routines called:. . ‘ngaéPé:E;JEXF“
MSGOUT - utility “ﬁF.T\ﬁJa_"‘
RDDSCR - file module %!‘

RDTNSF ~ file module
MOVE — manipulation module

SPTIRSF prints each pixel value and what value it is transformed to.

SPCOLR (DEVICE, COLFCN, STATUS)

DEVICE = device on which to display color function information.
COLFLN = name of color file.
STATUS = 0: okay.

1: improper device.
= 4: color format not compatible with display device.

Routines called:
RDCOLR - file module
RAMSC
DICOSC
UTSC

{qg f j. 2 I)

SPCOLR ocutputs a square of each color and the ranges in which it occurs
on the Ramtek or Dicomed and prints the number or name of each color and
its ranges on the line printer or user terminal,

RAMSC (DEVICE, STATUS)

DEVICE = Ramtek screen on which color function is to be displayed.
STATUS 0: okay.

Routines called:)
MOVE - manipulation module
DVICEZ
RECTZ
ALPHAZ

RAMSC draws rectangles on Ramtek to illustrate colors of ranges for
a color function.

DICOSC (COLFRM, STATUS)

COLFRM
STATUS

color format: &4-bit for eight colors, 6-bit for 64 colors.
0: okay,.

Routines called:
MOVE -~ manipulation module
MSGOUT — utility
CINE
RECTIFR
FRLIST

DICOSC displays a rectangle of each color used in the color functiom
and the ranges in which it is used on Dicomed film.

UTSC (DEVICE, FILENM, COLFRM, STATUS)

DEVICE = display device ~ user terminal or line printer.

FILENM = name of color file.

COLFRM = color format: 4-bit for 8 colors, 6-bit for 64 colors.
STATUS = 0: okay

Routines called:
MSGOUT - utility
MOVE - manipulation module
RDDSTR - file module

UTSC displays color name, if 4-bit format, or color number, if 6-bit
format, and ranges,

TR

/4R,
i 4
GETPT (DEVICE, X, Y, STATUS)
DEVICE = Ramtek screen from which to obtain point.
X = X-coordinate of point.
Y = Y-coordinate of point.
STATUS = 0: cursor visible-point returned-. -
= 1: cursor not visible - point not returned.
2: dmproper device.
Routines called:
DVICEZ
KURSRZ

GETPT returns the screen coordinates of a point entered through the
trackball by the user.

KURSRZ (JX, JY) (function)
JX, JY = trackball coordinates.

Routine called:
RAMZ

KURSRZ is used to input a point through the Ramtek trackball. KURSRZ

returns a value giving the condition of the trackball switeches.

DRPT (DEVICE, X, Y)

DEVICE = Ramtek screen on which to display a point.
X = x-coordinate of point.
Y = y-coordinate of point.

Routines called;
DVICEZ .
DRWARZ

DRPT displays a point in white on the specified Ramtek screen.

DRWABZ (JX, JY, KOLOR)

JX, JY = ending coordinates of line.
ROLOR = desired color: 1 - white overlay
2 - red
4 - green
8 - blue - T ,‘dﬂ’ &
Y)
5 “3‘: L .\‘\l‘:{_
Routines called: &“?§%4v§? (e
COORDZ Avs b
RAMZ

KRAMZ

145

DRWABZ draws a wvector from the point last drawn by this routine to the
point specified in the call. The current point is remembered until
the next call.

RAMLN (DEVICE, X1, Y1, X2, Y2, COLOR)

DEVICE = which Ramtek screen to draw line on.
X1, YI = starting coordinates for line.

X2, Y2 = ending coordinates for line.

COLOR = color in which to draw line.

Routines called:
DVICEZ
DRWABZ

RAMILN draws a line on a Ramtek screen.

RECTZ (K1, KYl, KX2, KY2, KOLOR)

KX1, K¥Y1 = starting coordinates for rectangle.
KX2, KY2 ending coordinates for rectangle.
¥OLOR color in which to draw rectangle.

Routines called:
RAMZ
KRAMZ
NVERSZ

RECTZ draws rectangles on the Ramtek using graphic cartesian mode.

BORDER (JX, JY, NPIX, NLINE, JXB, JYB, IRES, KOLOR, INTENS, IBUF, JBUF)

JX, JY = upper left coordinates.

NPIX = picture width.

NLINE = picture height.

JXB = vyertical border width.

JYB = horizontal border width.

IRES = resolution (0,1,2 for low, med, high}.

KOLOR = COLOR (0,1,2,3 for whiter, red, green, blue).
INTENS = dintensity level (0-255).

IBUF = integer array to give border temporary storage.
JBUF = annotation for bottom border.

Routines called
RECTFR

BORDER draws a border around pictures or text on the Dicomed film
recorder.

146 '

RECTFR (JX, JY, NX, NY, IRES, KOLOR, INTENS, IBUF)

it

JX, JY upper left cormer of border (scaled).

NX = number of data points across.

NY number of data points dowm.

IRES resolution (0,1,2 for low, med, high).

KOLOR = color (0,1,2,3 for white, red, green, blue).

ITENS intensity value (0-255).

IBUF temporary array for use by RECTFR (of size NX¥+1 words).

o

I

Routines called:
DICOMD
RANDHV
FILTER
CINE

RECTFR draws filled-im rectangles on the Dicomed film recorder.

RANDHV (IPOSH, IPOSV)

IPOSH = horizontal position.
IPOSV vertical positiom.

Routine called:
CINE

RANDHV positions output through the Dicomed film recorder, permitting
plotting to begin anywhere on the film.

ALPHAZ (JX, JY, KOLOR, IARRAY, NCHAR)

JX, JY = screen coordinates for character display.

KOLOR = color.

TARRAY = array containing the characters to be displayed.
NCHAR = number of characters in TARRAY.

Routines called: none
ALPHAZ outputs characters on the Ramtek display screen selected by
the most recent call to DVICEZ.

FRLIST (JX1, J¥1, JX2, JY2, 1STR, 1SIZE, MAG, KX, KY, IRES, KOLOR, KBACK,
ITEMP, NCSIZE)

JX1, JYi, JX2, JY2 = coordinates of rectangle to be filled in with
backround color (scaled per resolution).

ISTR = buffer containing characters to be printed.

ISIZE = number of characters in string.

MAG = magnification.

XY, KY

IRES
KOLOR

KBACK

ITEMP
NCSIZE

it

Ml

o 147

coordinates (scaled) of upper left corner of first character,

If either is zero, characters will be centered in the rectangle.
resolution (0,1,2 for low, med, high).

4 word array containing intensity of characters for the four
filter colors.

4 word array giving intensity of backround for the four

filter colors.

temporary buffer for output.

size of field characters are to be spread over. If zero, no
extra spaces are added.

Routines called:
FRKHAR
RECTFR

FRLIST places a line of characters and backround on Dicomed film.

FRKHAR (KBUF, NCHAR, MAG, JX, JY, IRES, KOLOR, INTENS, KOMP, ITEMP, NCSIZE)

KGEN

KBUF
NCHAR
MAG
JX, JY
IRES
KOLOR
INTENS
KOMP
ITEMP
NCSIZE

1|

non

Il

array of characters to be output.

number of characters in KBUF.

magnification.

film coordinates.

resolution (0,1,2,3 for low, med, high)

color (0,1,2,3 for white, red, green, blue).

intensity (0-255)

polarity (0,1 for normal, complemented).

temporary array for output.

number of character spaces string is to be spread over.

Routines called:
DICOMD
FILTER
RANDHV
KGEN
CINE

FRKHAR places a string of characters on Dicomed f£ilm in the color,
position and intensity specified.

(KBUF, NCHAR, MAG, MAGV, IROW, INTENS, ITEMP, NCSIZE)

KBUF
NCHAR
MAG
MAGV
INTENS
NCSIZE

buffer containing characters to be output.

number of characters in KBUF,

magnification.

which row is to be formatted.

intensity value for the 'on' bits.

number of character spaces string is to be spread over.

143

Routines called:
KFILL
TFILL
SPCL

KGEN £ills output buffer with oné Tow of nine row character string
pattern.

TFILL (KDATA, MAG, MAGV, INTENS, KPTR, ITEMP)

XDATA = 7 X 3 array with pattern and corner fill

MAG = magnification

MAGV = which row from 1 to MAG is being done

INTENS = value to which ITEMP is set if pattern is 'on'
KPTR = pointer used to f£ill ITEMP

TTEMP = output buffer.

Routines called: none
TFILL fills the ocutput buffer with one row of one 7 X 9 character
pattern..

KFILL (IBUF)

TBUF = 7 X 3 array across a character with a 1 for a character
element and a 0 for a blank element.

Routines called: none

KFILL tests for corner f£ill in character generation.

SPCL (IROW, XHAR, KTEMP)

IROW = row being filled (one of 9 rows).
KHAR code of character being generated.
KTEMP 7 X 3 array with bit pattern and corner indicators.

Routines called: none

SPCL sets corner indicators for special cases not handled by KFILL,

ERASEZ (KOLOR)

KOLOR = c¢colors to be erased.
1023 erases all.

Routines called:
RAMZ
KRAMZ

o 149 L

ERASEZ erases a color or colors from the Ramtek screen. Use of a
negative color sets the reverse backround bit and causes the color
to be written instead of erased.

BLOKZ (MODE, JX, JY, KOLOR, IBUF)

MODE = any Ramtek mode that uses block transfers.

JX, JY = starting screen coordinates.

KOLOR = subchannels for color,

IBUF = buffer containing data and header information.

IBUF(1l) = physical device or zero.
IBUF{2) logical unit or zero.

IBUF(3) = number of bytes of data
IBUF(4-11) = Theader filled in by BLOKZ
IBUF(12-) = data

Routines called:
KRAMZ
ARAM7Z

BLOKZ outputs data in a buffer to the Ramtek using the BLK command
and the specified mode.

i

PLOTV (BUFFER, BUFSEZ, IOFCN, STATUS)

[}

BUFFER = buffer containing data.
BUFSIZ = mnumber of bytes of data in buffer.
IOFCN = function: O-slew.
1-form feed.
2-data write.
STATUS.- = 0: output okay.
< 0 and = ~256 = bad deviece status.
< -1000: bad directive status.

Routines called:
GETADR ~ operating system I/0 routine.
WTQIO - operating system I/0 routine.

PLOTV performs 1/0 functions on the Varian plotter.

DVICEZ (IPD, LVN)

IPD
LUN

physical device.
logical unit number.

Routine called:
RAMZ

DVICEZ sets default values for the Ramtek device and unit.

T 20

150
ARAMZ (IBUF)
IBUF(1) = physical device
IBUF{2} = logical unit number.
IBUF(3) = number of bytes of Ramtek commands.
IBUE(4) —=-— function: ~ I=writ® -
2-read
3-attach
4—detach

IBUF(5-) = Ramtek commands

Routine called:
RAMZ

ARAMZ sends data to the Ramtek from a single array.

RAMZ (IBUF, LUN, NBYTES, IFUNC)

IBUF = Ramtek commands.

LUN = logical unit number.

NBYTES = mnumber of bytes.

IFUNC = desired function: l-write -
2-read I ;’\{11*\ L{;
3-attach Ve N AT Pt M
4~detach LD MAL Qih\l-i_‘,ff 3

Routines called:
GETADR
WTQIO
ERRCKZ

RAMZ builds the calling sequence for WIQIO, calls WTQIO to I/0 data
and commands to the Ramtek, and then does error checking.
KRAMZ (args) (function)
args = Ramtek op codes, modes, flags, colors
KRAMZ is used to stack op codes for Ramtek commands into a buffer for

I/0 to the Ramtek.

ERRCKZ (ISW, ISTAT, IPRM, MUNIT)

IsW = system status word.
ISTAT = Thandler status word.
IPEBM = parameter list.

MUNIT = wunit for error messages.

Routines called: mnone

ERRCKZ checks system I/0 status, handler I/0 status and number of bytes
input or output.

151

COORDZ (JX1, JY1, JX2, JY2)

JX1, JY1i
JX2, JY2

previous coordinates.
new coordinates.

Routines called: none

COORDZ accepts a set of coordinates and returns the set sent over
in the previous call.

NVERSZ (KQOLOR) (function)
KOLOR = color — if color is megative, reverse backround mode is
selected.

Routines called: mnone

NVERSZ returns the code for reverse backround if the color is negative.

FILTER (KOLOR)

KOLOR = color of filter to position on Dicomed:
O-neutral.
l-red.
2-green.
3-blue.

Routines called:

DICOMD

CINE)
FILTER positions a filter in the optical path of the Dicomed film
recorder.

DICOMD (IARRAY, ISIZE)

TARRAY = array of commands to be sent to the Dicomed.
ISIZE number of commands in the array.

Routine called:
CINE

DICOMD sends commands to the Dicomed film recorder.

CINE (IBUF, LUN, NBYTES, IFUNC)
IRUF = buffer containing Dicomed operations.
LUN logical unit number.
NBYTES number of bytes of data

152

ITUNC = desgired function: l-write commands.
2-read status.
3-attach
4—detach
5-write data,

Routines called: .
GETADR — operating system 1/0 routine.
WEQIO - operating system I/0 routine.

CINE sends Dicomed I/0 operations to WIQIO.

/53

Description of routines invoked by the device module but not
included in the device module.

GETCTE: searches the core tables for a given file name and
returns the core table information in a common
buffer. Core table information includes file type,
coordinates and size.

MOVE: moves an arbitrary number of bytes from a specified
source address to a specified destination.

CCFTHN: compresses and performs a color transform on a
given image file and returns the name of a file
containing the resultant image.

RDCOLR: reads a color transformation into a common buffer.

RDDSCR: reads the description field of a file header into
a buffer.

RDSCLN: reads a scan line from a file into a buffer.
RDTNSF: reads a transformation into a common buffer.

RDWNDW: reads window vertices into a buffer.

MSGOUT: outputs a message on the specified logical unit.

214

.
.

/54

4. TIMPLEMENTATION OF THE FILE MODULE
The IMDB File Module provides an interface between the IMDB program
structure and the RSX-11D FILES-11 file system, making data management

essentially transparent to the other modules of IMDB.
4.1 IMDB DATA STRUCTURES

4,1.1 FILES

The primary IMDB data structure is the file. This is organized as a
FILES-11 direct access file having a 256 byte header record followed by one
or more 256 byte data records.

The header record of a permanent file consists of six 4-byte fields
containing the information corresponding to columns 5 through 10 of the
core table entry (see 4.1.2), a 4-byte file size £field recording the number
of records in the file, and a 228-byte file description field.

A distinciton is made between temporary files and permanent files.

For a temporary file, the file header record is not maintained and the file
is deleted at the end of the IMDB session. Files may be converted from

temporary to permanent by invoking the IMDB SAVE command.

4,1.2 DIRECTORIES
The file directory structures maintained by IMDB are in-core file
tables TFCT (Temporary File Core Table) and PFCT {(Permanent File Core Table).
Only files entered into the core tables are accessible to the user. Directory
entries are created by the user ACTIVATE, BUILD, and SAVE commands.
Structurally, the PFCT and TFCT are INTEGER*4 (50,10) arrays. Each
of the 50 rows may contain an entry. The first four columns of an entry
contain the 16 character file name (left justified, blank filled). Unused
entries are completely blank filled- Columq 5 contains a file type indicator

and columns 6 through 10 contain file speecific header information as indicated

in the table on the following page.

755

CORE TABLE COLUMN

File Type 5 6 7 8 9 10
IMAGE 'T ! LOO LAQ * Pixels/ Secan
scan line Lines
Maximum X & Y Minimum X & Y Glosure Number of
WINDOW ‘wo ! coordinates coordianates code points in &
of window®#® of windowk# window
EXPRESSICON ' ¢ Number of * * * %
16 byte terms
TRANSFORM ' ! * * % i *
COLOR 'c ! % # % * *
FUNCTION
Relative size Relative size
Z00M tz ! of resultant of base image * * *
image
v T *
LINE (not L X. Yl X2 Y2
TImplemented

*® indicates field is unused

*% MAXX, MAXY and MINX, MINY are packed with the X portion in the
low address word and the Y portion in the high address word

156

4.2 TIMDR FILE MANAGEMENT PRIMITIVES
These routines handle all file create, open, delete, read and write
operations. Also included in this group are the routines which acecess

and enter core table information.

4.2.1 MISCELLANEOUS PRIMITIVE ROUTINES
MOVE - A MACRO-11 routine which copies (left to right) an arbitrary
number of bytes from any memory address to any other address

SEARCH -~ Attempts to find the core table and row number for a given
file name

FDSCRP - Converts a 16 byte IMDB system file name to a null-character
terminated FTLES-11 file descriptor. If the IMDB system
file name does not specify device, directory, type, and
version information, the following defaults are assumed:
Device ~ SYO
Directory — directory under which IMDB is currently rumming
Type - .DLT
Version - 31 {in order to avoid proliferation of versions)

DSDSCR ~ Creates the dataset descriptor information required by the
CHKFIL routine

CHKFIL - (module FILAUX.MAC) - Checks whether a file exists by
attempting to open it (written in the MACRO-11 language)

4.2.2 THE FILPRM FILE PRIMITIVE ROUTINE

FILPRM performs three different functions - create, open and delete -
on the IMDB standard random files. The function is specified by the FCN
parameter.

Create calls CHKFIL to determine whether the file exists, then uses the
FORTRAN OPEN statement to open the file with TYPE = "NEW'., The file is then
closed before returning. Open uses the FORTRAN OPEN statement to open the
file with TYPE = 'OLD'. Delete opens the file, then uses the FORTRAN CLOSE
statement to DISPOSE = 'DELETE'.

¥ 457

4.2.3 FILE READ AND WRITE PRIMITIVES

For purposes of reading and writing, IMDB f£iles are viewed as
continuous byte strings. Data is transferred to or from a file by
calculating the byte offset from the beginning of the file (byte 0)
and calling the READP or WRITEP routine.

GETSIZ - Calls SEARCH (see 4.2.1) to determine the row number
and core table of the given file, uses this Information to find
the number of records in the file from the file size tables (PFST
and TFST)} in the FILCOM area,

PUTSIZ - Calls SEARCH, then updates information in the PFST
or TFST. If the file is permanent, the file size field of the file
header (bytes 24-27 of the file) are also updated,

READP -~ Reads the specified bytes of the named file, one random
record at a time, unblocking the data into the buffer area designated
by the caller.

WRITEP - Writes data form caller-designated buffer area to a
specified byte offset within a file and performs blocking as necessary,
GETSIZ is called when a preliminary readback 1s indicated in oxrder
to avoid attempted reads beyond the end of the file. If the write
operation resulted in extension of the file, PUTSIZ is called to update

the file size . information,

4,2,4 CORE TABLE MANAGEMENT PRTMITIVES

These routines provide an interface between 311l other IMDB routines
and the information stored in the system core tables TFCT and PFCT,
Data transfers rely on CTEBUF in the /GENCOM/ common area which is a
six entry INTEGER*4 array corresponding to core table columns 5 through
10.

CTENAM - Returns the name portion of the core table entry for the
given table and row number,

GETCTE ~ Calls SEARCH to determine the table and row number of the
specified file. The requested core table entry is returned to CTEBUF
and the STATUS parameter is set to indicate in which table the entry

was found.

UPDCTE - Calls SEARCH to determine the core table and row number

/58

for the specified file, then copies the contents to CTEBUF to the core
table entry. If the specified file is permanent, its header record
is updated from CTEBUF.

DELCTE - Calls SEARCH to find the core table entry for the
specified file, then blanks out that entry.

PUTCTE - Finds a blank row in the specified core table, then
enters the filename in columns 1-4 of the core table entry and copies
the contents of CTEBUF to colummns 5-10. If the entry is made in PFCT,
CTEBUF is also writtenm to the file header.

4.3 FILE MODULE UPPER LEVEL ROUTINES
4.3.1 FILE MANAGEMENT ROUTINES

MAKFIL ~ Create a permanent file.
MA%FIL

I i I L i !
MOVE GEICIE PUTICTE DELCTE PUTSIZ FILPRM WRITE?P

Call GETCTE to verify that no file by the given name

is already active. .

Call PUTCTE to make a PFCT entry for the new permanent

file using information passed in CTEBUF,

Call FILPRM to create the file and call PUTSIZ to initilize
the PFST entry.

Finally, call WRITEP to copy header information to the file.

MKTFL - Create a temporary file.
METIFL
| | } {
GETCTE PUTCTE DELCTE FILPRM PUTSIZ

The procedure is the same as for MARFIL except that the
core table entry is made in the TFCT instead of the PFCI

and no header is written.

MESYFL — Create a temporary file having a system generated name,

. ¥%(337 79

MKSYFL

{ | | |]

GENSYM GETCTE PUTCTE FILPRM PUTSIZ DELCTE
GENSYM is called to obtain a file name, then the

procedure followed parallels that of MKTFL.

GENSYM - Generates a name for a system temproray file,

MKZOOM - Because the BZ (build zoom) command always results iﬁ a zoom
having a temporary status and because all zoom information can
be kept in the core table entry, no file 1s actually created.
The create function of FILPRM is called to ascertain that there
is not already a file having the specified name, but the file
is immediately deleted by a second call to FILPRM. PUTCTE is
called to make a core table entry using the information passed
in CTEBUF.

DL.TFLS

Clears the TFCT, deleting all temporary files, TFCT is searched
for non-blank entries, and for each file found, DELCTE is

-called to delete the entry and FILPRM is called to delete the
file, L

DELETE - Calls DELCTE and FILPRM to delete a file from the system.

DELBLK — This routine is passed a 126-word linear array, each successive

]
8 words of which either specify a file name or are zero. TFor
each non-zero eight word field, DELBLK calls DELCTE and FILPRM

to delete the named file from the system.

ACTIVA

Activate (make a core table entry for) a permanent file.

ACTIVA
[|]
GETCTE READP PUTCTE PUTSIZ MOVE

GETCTE is called to make sure the file name is not currently active.
The CREATE function of FILPRM is called to determine whether the
file exists. READP is called to read the core table information

from the file header into CTEBUF. PUTCTE is called to make the

160

core table entry, and finally PUTSIZ is called to initialize the
PFST entry.

SAVE - Make a temporary file -permanent.
SAVE

i I ;
| | |

GETCTE MAKFIL PERMFL

' | 1
MOVE GETSIZ GETCTE DEJCTE PUTCTE PUTSIZ WRITEP

GETCTE is called to verify that the file is indeed temporary. If
the named file is a zoom function, MAKFIL must be called. Otherwise,

PERMFL is called to move the core table entry from TFCT of PF(CT.

PERMFL — GETSIZ is called to obtain the number of records inm the
file. GETCTE is called to obtain the core table information.
DELCTE deletes the TFCT entry and PUTCTE makes an entry
in the PFCT. PUISIZ makes the entry in PFST and WRTIEP

is called to write the file header.

INICOM - Opens the system message file and initializes the /GENCOM/
common area which includes the core tables. (Note that the
constants TYPEL, TYPEW, BLANKS, etc, must be initialized in
this way. The FORTRAN DATA statement does not handle initializing
INTEGER#*4 variables with 4-byte Hollerith constants correctly)

JSTART - Begin journalizing. If the JMODE flag in /common/ is set, the current
journal file is closed. FDSCRP and BSDSCR are called to create
a file descriptor and dataset descriptor for the file CHKFIL
is called to determine whether the named file already exists and
the FORTRAN OPEN statement 1s used to open the file with TYPE =
'NEW' or else with TYPE = 'OLD' and ACCESS = 'APPEND' depending
on the status returned by CHKFIL.

/of

MSGOUT -~ Writes message lines from the system message file to the

specified device, and, 1f appropriate, to the current

journal file.

4.3.2 DATA ACCESSING ROUTINES

This group of routines provides caller transparent access to data

contained in IMDB system files. The general procedure for each of these

routines if to call GETCTE to verify that the file is active and of the

appropriate type. The location of the specified information in the file

is calculated and READP or WRITEP is called teo effect the requested data

transfer.

RESCLN
WTSCLN
RDWNDW
WIWNDW
RDDSCR
WIDSCR
RDEXPR
WIEXPR
RDCOLR
WICOLR
RDTNSF
WITNSF

Return the specified scanline in the designated buffer.
Copy the specified scanline from buffer to file.

Read a window into the designated buffer.

Copy window data from buffer to file.

Read description field of file header into specified buffer.
Copy from buffer to description field of file header.
Read expression from buffer to expression file.

Copy expression from buffer to expression file.

Read color table from file to TCBUF in /GENCOM/.

Copy color table from TCBUF to file.

Read transform table from file to TCBUF.

Copy transform table from TCBUF to file.

/64

5. TIMPLEMENTATION OF THE MANIPULATTON MODULE
The manipulation module of IMBD provides data handling routines which
realize the data manipulation commands entered by the user at the terminal.
The three sections of the manipulation module are
1) the expression interpreter which realizes the image expressions
entered through the BI (build image) command,
2) the display support routine which is responsible for coloration
and reduction to screen size of images to be displayed, and
3) the data entry routine which provides for the reading, editing
and channel separation of ANSI standard tape image files so that

new image data may be introduced into the IMDB system.

N -

163 33

5.1 MANTPULATION MODULE DATA STRUCTURES

The manipulation moudle creates, combines, and modifies IMDB system
standard files, relying on the file module facilities discussed in Part 4.
Of special interest is the expression file. The data portion of an
expression file contains a seguence of 16-byte IMDB system filenames or
operation symbols representing the postfix form of an image expression as
entered through the BI command. The only addtional data structure of
significance is the operand stack managed by the expression interpretatiom
section of the manipulation module. This is the 160 word INTEGER array
STACK in the /EXPCOM/ common area which allows for the stacking of up to

twenty operand file names.

5.2 MANTPULATION MODULE PRIMITIVE ROUTINES

These routines provide caller transparent stack management and
dynamic allocation and deletion of intermediate temporary files for the
expression interpreter routines.

PUSH ~ After checking for stack overflow, PUSH copies the name of an
operand file to the first empty entry in the stack, sets the deletion flag
for the new stack entry as directed by the DFLAG parameter, and adjusts
the stack pointers.

POP - After checking for stack underflow, POP adjusts the stack
pointers, effectively removing an entry from the top of the stack: Also,
POP checks for the deletion flag (i.e., entry of the DELMK array in
/EXPCOM/)} corresponding to the deleted stack entry and, if indicated, calls
DELCTE and the delete function of FILPRM to delete the file from the
system.

NXTERM ~ GETCTE is called to determine the number of terms in the
expression being interpreted. This is compared with the term pointer TNUM
in /EXPCOM/ to determine whether the last term of the expression has already
been returned by a previous call. If so, an end of expression status is
returned and the end of expression flag FINISH in /EXPCOM/ is set. Other-
wise, READP is called to obtain the next term of the expression. If this
term is a filename (as opposed to a system-defined operation), GETCTE is

called so that the core table information is returned to the caller in CTEBUF.

164

GTOUFL - This routine returns to the user the name of the file which
is to receive the result of the next operation performed by the expression
interpreter.

GETCTE is called to obtain the length of the expression being inter-
preted, and the expression length is composed with TNUM and the FINISH flag
tested. 1If the operation to be performed is not the final operation of
the expression, MKSYFL is called to generate a temporary intermediate file
and DFLAG = 1 is returned to indicate that the file is to be deleted after
being used as an operand and popped off the stack. TIf the operation to be
performed is the final operation of the expression, the expression file
itself is designated to receive the result, FINISH is set to 1, and DFLAG = 0
is returned along with the name of the expression file.

Note that the information passed in CTEBUF 15 copied to the core table
entry of the file whose name is returned. This is accomplished by MKSYFL
when a temporary file is generated and by UPDCTE when the expression file

itself is returned for use as the output file for the next operation.

5.3 LOWER LEVEL MANTPULATION ROUTINES

These routines implement most of the actual data manipulation functions
of IMDB., For clarity of presentation, a distinciton is made between image
manipulation routines which operate only on images, and window manipulation

routines which take an image and a window as operands.

5.3.1 TIMAGE MANTPULATTON ROUTINES

OLINE - The overly function code parameter is used to effect a case
branch (via a COMPUTED GOTO) to pérform the specified function on a byte
from SCLBFl and the corresponding byte from SCLBF2 (both in the /GENCOM/
common area). The correspondence between bytes of SCLBF1l and SCLBF2? is
determined by the BYTEl and BYTE2 parametexs. This byte by byte approach
is adopted to avoid overflow which could result from some of the overlay
functions. Each overlaid byte is reinserted in SCLEBF1.

ZPREP - GETCTE is called once to determine the zoom ratio and a second
time to find the size in lines and pixels of the image to be zoomed. The
size of the resulting image is computed and UPDCIE is called to enter this
information in the core table entry for the file which will receive the

zoomed image.

05 %

B e WS,

ZLINE - This routine handles the actual magnification or reduction of

an image on a

4
scanline by scanline basisi. When called upon to produce a

specified line of the zoomed image, ZLINF calculates which line of the

original image is to be used as the basis for the requested line of the

resultant image. RDSCLN is called to obtain the base line. Reduction is

achieved by averaging groups of adjacent pixels. Each group consists of

approximately

one plus the reciprocal of the zoom ratio pixels. Magnifica-

tion is achieved by duplicating pixels. The zoomed scanline is .returned

left justified in the specified buffer (this buffer must be at least 4096

bytes long).

5.3.2 WINDOW MANIPULATION ROUTINES,

WOPRND -

BLDLST -

Call GETCTE for the top two operands on the stack and deter-
mine which is the window and which-is the imzuge.
Build an intersection list for the given window and scanline,
An intersection list is defined as a list, sorted in ascend-
ing order, cof the x-coordinates of all the points between 0
and 4095 inclusive where the window crosses the line and the
points 0 and 4095. Such a list should always contain an
even number of points.
RDWNDW_is called to read the window into SCLBF1l and GETCTE
is called to determine the number of points in thg window.
X-coordinate 0 is always the first point of intersection.
A point of the window is selected which does not lie on the
given scanline. The window is then traversed point by point
until the starting point is reached. After each advance to
a new point, a test is made to determine whether the advance
has resulted in an intersection. An intersection is considered
to have occurred if and omly if:

1) the previous point and the new point lie on opposite

sides of the scanline, or
2) the previous point lies off the scanline and the new
point lies on the scanline, or
3) the previous point lies on the scanline and the new

point lies off the scanline and the last point visited

ST LI AR PR LR Y
ST IS [E R S T R B N

1bb

which does not lie on the scanline lies on the same
side of the scanline as the new point. Some examples
are given in Figure 5.1.

Each time an intersection occurs, its x—coordinate
is entered in the intersection list being built in
SCLBFZ.

In case 1) above, the point of intersection must be

calculated. The formula

x=x +y-y 2 7 *1)
Y277
is used to (note the use of INTEGER*4 variable DISP
to avoid overflow and truncation) where (xi, yl) are
the coordinates of the previous point, (XZ’ yz) are
the coordinates of the new point, and y is the scan
line number.
- QSORT is called to sort the list and 4095 is inserted

- as the last point of the list.

W 2 *) @/é
*

~
(2) @z (5) * o2
© o b

(3)

* indicates one point of intersection

*% indicates two points of intersection

Figure 5.1 Example of intersections

167

QSORT - An adaption of the version of C.A.R. Hoare's quicksort
algorithm presented in Kernighan and Plauger, Software
Tools, p. 115.

WINDOP - The intersection list in SCLBF2 is consulted in order to
determine which sections of the scanline in SCLBFl are to
be zeroed. If enclosure is specified, then the areas of
SCLBF1 between the points sgpecified by each odd-even pair
of list elements (SCLBFZ (1)}-SCLBF2 (2), SCLBFZ2 (3)-
SCLBF2 (4), etc.) inclusive is zeroced. If exclosure is
specified, the area between the points of SCLBFl specified
by even-odd pairs (SCLBF2 (2)-SCLBF2 (3), etc.) exclusive

are zeroed.

5.4 HIGH LEVEL DATA MANIPULATION ROUTINES

These routines are characterized by the fact that they operate on

entire images through calls to file module and low level manipulation
. =

module routines. -

ZOOM -

Z%DM

T
GETCTE ZPREP ZLINE WISCLN

ZPREP is called to set output file core table information.
GETCTE is called to determine the number of lines in the zoomed
image, For each line in the’'zoomed image, ZLINE is called and

the zoom line is written on the output file wia WTSCLN.

TNSFM -

TNSFM

|
GETCTE UPJCTE RETNSF RDSCLN WTS%LN

GETCTE obtains core table information for the input file. Since
this information will be exactly the same for the result image,
UPDCTE is then called to set the core table entry for the output
file. RDTINSF reads the transform table into TCBU¥. Then each

i 68

line is read via RDSCLN, transformed byte by byte - each byte
used as an index into the transform table in order to pick up
the value to which it maps ~ and written to the output file

via WISGLN. ’

ZT -
ZT
1 | |] |

GETCTE ZPREP RDTNSF ZLINE WISCLN
A zoom and a transform are combined. ZPREP sets the core table
entry for the ocutput file. GETCTE obtains the number of lines
in the zoomed, transformed image. RDTINSF reads the transform
table into TCBUF. Then, for each Iine of the result image,
ZLINE is called, the line is transformed as in TNSFM, and the
resulting line written by WISCLN to the output file.

TZOPT -

TZOPT

1 1 i | I

GETCTE .GTOUFL NXTERM ZOOM ZT TNSFfM POP PUSH

Called whenever a zoom or transform operation is to be done,
TZOPT acts as a traffic controller for ZOOM, TNSFM, and ZT.
GETCTE determines the type of the operation. NXTERM is called

to obtain the type of the next term of the expression. TZOPT
optimizes a zoom followed by a transform or a transform followed
by a zoom into a simngle call to ZT. If no optimization is
indicated by the call to NXTERM, the TNUM term pointer is backed
up by subtracting one. GTOUFL is called to obtain an output file
and the appropriate routine - ZOOM, TNSFM, or ZT - is called.

A c¢all to POP then removes thg operand from the stack and the

result is stacked through a call to PUSH.

e i
u

g'|'|.‘4

NI LA

{

169 -

OVRLAY -

OVRLAY

! ! | | [i
GETCTE GTOUFL RDSCLN OLINE WISCLN PUSH POP

GETCTE is called twice to cobtain the core table entries for

the images to be overlaid. TIf translation of the images before
overlaying is indicated, the translation factors are calculated.
The resultant image will be the overlay of those portions of the
two images which, after translation, overlap. GLOUFL obtains

the output file and sets its core table entry. TFor each line of
the result, RDSCLN is called twice to read 1lines from the operand
files. OLINE is called to overlay the scanlines and WESCLN
copies the result line to the output file. POP is called twice

to remove the operands from the stack, and PUSH stacks the result.

JOIN -

JOIN

| L] | { i i
GETCTE GTOUFL RDSCLN WISCLN POP PUSH

Two calls to GETCTE obtain core table information for the
operands. Translation factors, if any, are calculated along with
the dimensions of the result image. CGTOUFL returns an output
file and sets it core table entry. The concatenation process

is done on a line by line bagis in three steps. First, SCLBF1

is zeroed. Then a line from image two to read by RDSCLN, if
indicated by the calculated translation. Finally, a line from
image one is read by ‘RDSCLN, if indicated, on top of the line
from image two. Thus, in areas of overlap, image one will have
precedence. The scanline is then written by WISCLN to the output
file. When the entire result image has been built, two calls to

POP unstack the operands and a call to PUSH stacks the result.

170

CLMASK

CLMASK

[| | v]]]
GETCTE GTOUFL WOPRND BLDLST WINDOP WTSCIN PUSH ;bp

WOPRND is called to get the operand pointers. GETCIE is called
twice for the operand core table informatiom and the core table
entry for the result is calculated. If an operation is specified,
the result image will have the same size and location as the
operand image. If CLIP is specified, the image will be the
smallest rectangle which is bounded on each of its four sides by
either the image boundary or, if the window does not extend beyond
the image boundary, by a line paralied to the image boundary
which passes through the point of the window nearest the image
boundary. GTOUFL obtains the output file and sets its core table
entry.
For each line of the image,
1) BLDLST is called, and the intersection list translated
to reflect the origin of the scanlines comprising the
operand image
2) RDSCLN reads a line from the operand image
3) WINDOP is called
4) WTSCLN writes the masked or clipped line to the output file,
Two calls to POP and a call to PUSH update the stack

5.5 MANIPULATION MODULE TOP LEVEL COMPONENTS R

.
et H
."“l!‘

RS DALRNPYRTE

. Y)
5.5.1 TROUTINE TO PERFORM COLORING AND COMPRESSTON - CCFTN 0 TR

CCFIN — Ddisplay support routine

CCFIN
GETCTE MKSYFL RDCOLR ZLINE RDSCIN WTSCLN

GETCTE is called to obtain the core table information for the
image to be displayed.
If the image is to be compressed, the size of the new image is

calculated.

- 171

If neither compression nor coloring is requested, the name of
the image to be displayed is returned as the name of the final
display file. Otherwise, MKSYFL is called to obtain a display
file. '
If the image is to be colored, RDCOLR reads the color trans-—
formation table into TCBUF.
For each 1line of the final display image,

if the image must be compressed, ZLINE is called.

Otherwise RDSCLN is called.
if the image must be colored, the line is transformed byte
by byte according to the transform table.

The line of the final display image is written by WTESCLN.

5.5.2 Routine to copy tape to files to disk - CPYTD

CPYTD - Tape to disk interface routine.

CPYTD
! | ! I i
GETCTE UPDCTE RDTAPR WISCLN CHNLIZ
i l
GETCTE MOVE WISCLN

This routine implements the tape reads requested by the

user RT command.

5.5.2.1 CPYTD SPECIAL DATA STRUCTURES

NAMBLK - A 136 word array which may contain up to 17 file names -
one for a multichannel image file and up to 16 for single
channel file. Words 1 — 8 are reserved for the file name for
the entire image, words 9 ~ 16 for the file name for channel
1, ete. If the first word of the 8 word file name field is
0, no file has been requested for the corresponding channel.

EDBLK - A 5 word array indicating which portion of the image the
user wants to enter into the system image file. If word 1 is

0, the entire file is to be copied and words 2-5 are ignored.

5.5.2.2 CPYID
RDTAPR -

CHNLIZ -

CPYTD -

[

17 &

Otherwise, words 2 and 3 specify the beginning and ending
pixels within a scanline which are to be retained in the
system file(s). Words 4 and 5 specify the beginning and
ending scanline (tape record) numbefs. Pixels and scan-—

lines are assumed to be numbered from 0.

SPECIAL ROUTINES
Perform tape read by calling WIQIO and check for error or
end of file status.
Separate the channels of a scanline and copy them to
individual files.
For each file in NAMBLK,
call GETCTE for line length
assembla the single channel scanline {(except
for NAMBLK(1))
call WTSCLN to copy the line to the file.
Call WIQIO to rewind the tape if requested.
Call WTQIO to skip files if requested.
Call RDTAPR to read the first record and obtain the
record length.
Calculate the core table size entry for each NAMBLK file
based on NCHANS and EDBLK information and call UPDCTE
to enter the appropriate pixels-per-line wvalue in the
core table entry.
If the line is not to be edited out.
call WISCLN if no single channel files are required or
else call CHNLIZ to copy tape data to single chanpel files,
Read the next record from tape and if not end of file, request
the output process described above.
When the end of the tape file has been reached, call UPDCTE

to enter the number of lines for each NAMBLK file.

L
. P I B
. 1 '
'AM!'\.‘-"L" . v
it ;L‘!:'”” (L
o i

Lo
LAk

173 - -

5.5.3 Routine to interpret image expression - XINTRP

XINTRP ~ Expression interpreter.

XINTRP
i
] l | i |
GETCTE OPER PUSH NXTERM CPYFL
{ !] ¥
TZOPT JOIN OVRLAY CLMASK

5.5.3.1 EXPRESSION COMPONENTS

An expression is composed of operands and operators (each 16 bytes
long) arranged in postfix sequence, There are currently only two valid
operand types - the name of an image file and the name of a window file.
A third possibility, the name of a line file, has not yet been implemented.
Operators may be transform or zoom file names (these two classes are the
only file names which are valid operators) or system defined operations.
A system defined operation is stored as the ASCII characters '#%' in the
first word followed by a code number between 1 and 13 inclusive in the
second word. Words 3-8 are not used. The code numbers correspond to the

IMDB system reserved words.

CODE OPERATION
1 JOIN
2 MASK
3 CLIP
4 MULT
5 ADD
6 SUB
7 DIV
8 MAX
9 AVG
10 AND
11 XO0R
12 MIN

OR

=
Lo

174 ne,

5.5.3.2 EXPRESSION INTERPRETER ROUTINES

CPYFL ~

OPER -

XINTR? -

Invoked when an expression consists of only one term. The
operand file is copied to the expression file. GETCTE is
called to determine the file type, UPDCTE makes the core
table entry for the new file (formerly the expression file),
and a case branch is effected via a COMPUTED GOTO to copy
the file using the data accessing routines described in
section 5.3.2,
Called whenever an operation is to be performed by the
expression interpreter.
If the operator is not system defined, GETCTE is called to
verify that the operation is legal (i.e., file type T or Z)
and TZOPT is called. Otherwise, a COMPUTED GOTQ case branch
based on the operation code number (see section 5.5.3.1)
accomplishes a call to CLMASK or OVRLAY or JOIN.
GEICTE is called to obtain the expression length. If
the expression length is exactly 1, NXTERM obtains the term
and CPYFL 1s called. Otherwise, the following steps are
repeated.

NXTERM is called.

If no terms remain in the expression XINTRP returns.

Otherwise, if the term is an operand, it is stacked

by a call to PUSH.

.

If the term is an operator, OPER is called.

) kT g v ;] 1]
{)'L”UT\:'L\._‘, ‘}‘_,JI)’
(0N AR

APPENDIX I
IMDB USER'S MANUAL -3

TQ LANGUAGE

This chzpter is written as an IQ reference manual. The
presentation wimics that of the originel report on I{ design
[Report I]}. We chall skip justaificstions and explanations
of certain design decisions, as they have already been

covered in [Report Ij.

1.1 Rasgic Elerents.

There are five types of basic elements in the I
language: imeges, windows, transformr functions, color func-
tions and zoorm functions. Each basic element is a file in

the IMDB systerm.

1.1.1 Imeage

An 1mage 18 a nctrix of pixel wvelues along with e
header block. Since it is zssumed to be 2 metrix, the image
is always rectangular in shape. Pixel values range from 0
to 255. The upper left corner of the image 1s associated
with & coordainate in { *, 0, 1, ..., 4095 } X { *, o0, 1,
e.e, 40695 1}, The first corponent of the coordinzte is
referred tc es the LCC, andéd the seconé component LAG, The
intenticn 1s that when the irage is first entered into the
database, the user cen essign 1ts LCC and LAC relative to a

40%6%40%06 grid structure. The asterisk * is used to denote

17l

"don't crre". The LCC ond LIC peir is essential to binary

irage opcrations to ko presented later.
The heaéer block of zn imace conteins:

(2) type: This field 18 alweys filleG with ' ' to

édenote the type 1mege.
() LCC
{c) LAC

€ tho number of pixels in & scen line.
is the number of liree in the 1mage.

15 2 string of charecters entered by the
er for gnnotation. The size 1s limited
o 228 characters.

(d) pixrels/line:
{e) scen lines:

It
It
(f) dGescraiption: It
us
t

1.1.2 ‘%iindew

I window 1s o scouence of pointe together with a header

block. Ezch peint felle withain { 6, 3, «.., 4085 } X { @,

"

i1, ..., 4095 } grié coordinctes. The secuence o0f pointe

form one not nccessarily convex poclygon. The header block

contains the following information:

(c) type: The ficld centeineg ' W,
b) mexirum LOC/LMAG: The moximur of LOCe of all points and
the rexirum of LELs of 211 points cre
encoded into tris field.
(¢) rinimuor LCG/LZF{: This field storeg the minimum LCC 2nd
LAC in ¢ wey similer to (b).
(¢) closurg code: The ficld denctes vhether the window
1g &n enclocsure cr on exclosure.
{¢} numker of pointg: Tt ic the nurber of peinte in the window.
{(f} description.

1.1.3 Trensfornm

2 trencform function ie & mapping from { G, 1, ..., 255
} to { 0, 1, ..., 255 }. 1t uvusuelly consicsts of ¢ collec-

tion of suktrensformations. Each cubtrensformaticn 1s in

v

177

the form of

e ~-b=c where a {b
It means that the pixel velues from & te b inclusive are

t¢ be transformed into ¢

The header block of 2 transform contains:

(a) type: It is elways ! T'.
(b} description.

1.1.4 Colorx

A color function ic & mapping frem { 0, 1, ..., 255 }
to a set of color symbole. There are two systems of color
symbols used in the IC language. The first one uses a 4-bit
format and consists of eight different colors: dark (L),

blue (B), green (C), red (R), cyanine (C}, magenta (M}, yel-

low (¥) and white (W). The user uses the one-character sym-
bPols to denote coleors. The other system allows sixty-four
colors &nd uses a 6-bit format. The basic components of
cach color are still blue (B), green (G) and red (R). How~
ever each basic color has fovr shades. For example, 1 part
cf B, 3 perte of C end 3 parts of R give a vellowish <color.
The user can use EIC3R3 to denote thig formation of color.
In general, it 1s herd for the user to visualize the result-
ing color from the three corponents. Ilence, the user is
provided with a coleor tekle which maps esch of the sixty-
four «colors to & number. The user cen a2lsc use this number

to select 2 color. N
‘l'lill .

173

L ccler furciicr 18 sirilar to & trensform fenction; it
conesists o©of & collection cf suktrensforrations. Eaéh svb-

trensformetion is in tbe form of

e - b =c where e <k
where ¢ 15 & cclor specification. All subtransformations in
a2 color function &are either all in 4-bit formet or 311 in

G-bit formet.

The header btlock of & color function congists of:

() tyre: The content is aluays " cH
(b} description.

1.1.5 Zoor

L zoor function conteins 2 mapping from cld s1ze to new

size znd 2 beader bleck. The zoow ratic 18 & / b where =&

ie the nev g1ze, b 15 the 0ld si1ize and both a and b are

positive integers.

The header block consists of:

(2) type: The content 1g ! z',
(b} new size

(c) olid size

(d) cescription

1.2 Syster Functione.

There are several built-~in functions in the I¢ language
which can be used to create new 1msges. These functions can

be invoked by name. They consist of JCIN, MASK, CLIP and

s
W

wy 77

ten different overlay functions.
1.2.1 Join

This function pastes two imeges together to form a new
ireage, according to their LOC/LAC ccordinates. The dimen-~
sions of the new image are those which ere minimally suffi-
cient to contain the areas of the originals. The first of
the original images is defined to be the dominant image:
this imege tekes precedence when the two images overlsp.
When the result is pedded to become rectanguler, the pixel

value zero is filled.

The rules used to deterrine the relative positions of

the two images are:

(3). 1f LOC/LAC of the first and second Jﬁages do not <c¢on-

texn * , then the two pairs of LOC/LAC 211 refer to
well-defired pointe 1n the 4056X4096 grid structure.
Neighboring pirels along the same scan line differ in

LOG by one and ncighboring lings differ in LA2Q by one,

(b). If LOC of the one imace 1s * while the other is
nct, then the * one is azssumed to have the same value
ac the other one. 1he * for LAQs are tresated in a

similar way.

(c). If LCQs ir both imege ere * , then both are treated
ag zero. The * in LA(s are treated similarly.

;uwﬁll\t,v'iﬂ.\

1r‘tq,n:fnfﬂ*“

180

Join function results in 2 new 1image and the header
Elock of this new i1mege will be derived from the originals.

Bescription field will be smpty.

1.2.2 Mesk

This functicon resks & window onto en irage to form a
nevw 1mege. 1f the window 1s an inclosure, pixels interior
to the window will retain the velues while exterior pizxels
will be zcroed. Exclosure functicns 1n the cpposite manner.
In either case, the recult 1s an image with the same LOC/LAC
end the same dimensions es the original. Again, the

-

description field will bec enpty.

1.2.3 Clip

Thig function 1s similer to BASK except that the result
imege has dimensilons which are minimzlly sufficient to con-
tain the window. This function discards thosc outermost

rows end colurns which do net intersect the window.

1.2.4 Cverlay Functions

2n cverlcy furctaicn takes two images and produces a new
1mage by perforring & binary pixel-to-pixel operation over
corresponding pizels. There ore ten different overlay func-
tions: ADL, EUL, IMULYT, DIV, NAX, MIN, AVG, XOR, AMD, OR.
These functions perfeorm respectively adédition, subtrection,
rultiplication, intcger <divisicen, waxirur, minimur, aver-

age, exclusive CR, logical ENLC, end logical COCR. Whenever

s

/8l

cverflow occurs (e.g., in multiplication), the result is
always truncated by teking the rightrost eight significant

bits.

The relative positicns of the two images are determined

according to the rules specified in Join (Section 1.2.1).
1.3 Image Expression

2 salient feature of the IC lenguage is its capability
for specifying construction of & new imege as a functional
expression of existing basic eleﬁents and system functions.
Such &n exptession 1s celled an image expression. The rules
for constructing 1imegce expressions are given below. These

rules cen be spplied recursively. -
I—).'-'H';i}\u"-’ P s
Vo & 5 o :
<image cxpression>: “ U FAVETY
—— <image> S -
<transforr> (<image expression>)}
<zoom> (<imrage expression>)
JCIN (<image expression> , <image expression>)
MAEK (<imege exprescion> , <window>)
MAZK (<window> , <image expression>)
CLIP (<image expression> , <window>)
CLIP { <window> , <1image expression>)
<overley function> (<imege cxpression>,
<image expression’>)

In the above rules, <image> &and <wihdow> refer to an
image fi1le and & windcw file respectively. The symbol
<overlay function> refers to one of the ten system overlay
functions. Eince tihe rules can be applicd recursively, a
sophisticeted imeage can often be specified as one éingle

1rege expression. For exemple, JOIN({ AKD(X1 (T1(MASK(W1,

182)

—
ft
—
g
St
-
et
9]
_
et
N
—
—
-
e

3) 1s 2 legitimate 1megc cxpression if
X1 &and XZ oarc zoom f1lecs, 11 is & transform file, I1, 12,

and I3 are 1rage f1iles, and Bl is & window file.

Note that color functions are not included i1n the imege
expression rules. Etrictly speaking, ¢ cclored image only
containg symbolic color nemres ags its pixel values and hence
it dis nct logicel +to ﬁerform eny other operation on it.
Revertheless, the lntegnal representation of & colored image
1€ no different [from & reguler imegc and, if the vser
chcoses te do so, & colored 1image mey be used to replace
<irage> in &an image eoxpression withecut any syétem error.

The interpretation of the result is up tec the user.
1.4 Devices

The grephics devicecs cen be end can only be referred to

by syrbolic neaes 1in & query sescion. The user does not
have tc¢ knov any perticular logical or physical device

nurbers used 1internally in the 1iHDB syster.

The devices supported by the present version of the IQ

language ond their corresponding device names are:

{a) 1Two color Remtek screens: Rl (left) 2nd RZ(right), with

a2 trackbsll atteched to R1.

(k) Gne Tektronix 4uld-1 terminel: TK

83

{c) Cne user cormenc terrinel: UT
{d} One line printer: LP

(e) One Dicored film recorder: FR
(£} One Varian printer/plotter: PBL

(g) Two magnetic tepes: T0 ang T1

A future expansion will include keybcards and an addi-
tional trackball attached to the Ramtek system. The Tek-
tronix terwinal is only wused 2s an ealphanumeric CRT,

although future expansion can tzke advantage of its graphic

cepability. cee T

ll”ﬂ:hfﬁt;Pb{Ni‘}
e v 51 !
1.5 Cofnmancis r'(-}l‘ 1N ;1,}]_‘ A

The I¢ language is a commend oriented oguery language.
Each datebase command activates one specific operation. A
comrmand consists of two perts: comnrand code and parameters.
L command code is zlways o two-character name followed by a
seperator (blank, comrma or carriage return). Poaresmeters may
be supplied along with the command code, or deferred until
snswering syster prorpted cuestions. Note that all parame-
ters may be entereé through prompting. Therefore, the
rinimal information needed to ke entered by the user to ini-

tiate a2 commend will be the Z-character command code.

The commande ere grouped into five categories: defini-

184

tion, display, cteotistics, fi1le manipulation and control,

1.5.1 BPBefipitiop Cormendes (59

These cormende orc uged to create new besic elements or

ecuivalertly new files.
1.5.1.1 Euildé Inege (EI)

The forn of 2 build imagc command is
EI <new imrage narmc> = <image eXpression>

or EI <necw imege name> , <imege expression>
1.5.1.2 Euvilé Window (PW)

The forn of thic comwrend 1is

F <wirdow name>, <closurc>, <mode>, <device>

The <clcsure> code can be EX or ER for exclo-
surc ¢r enclosure resrectively. ‘the default value

ie FH.

Thero sre two modes i window construction: C for
cursor and A fcr eksolute. The defeult mode 1s A. In
A mocGe, the user types in LCC/LAC pairs of the window

vertices frow th¢ vuser commend termingl, After the user

enters

B Ww1,EN,2
The system will tepest the cuestion until all pe:ints

are enterecd:

185 o

FNTLR CCORLIMATES (CNE BFCINT PER LINE WITH X AND
Y SEFARMIED EY ,):

The auestion con be escaped by o carriage return.

In C mode, the user indicates thst a window is to
be constructed relstive to an image presently displeyved
on <device>. Since there 1is only one track beall
attached to R1, it is only meaningful to specify Rl
as the <device>. The user can move the cursor on Rl
and gelect & peint by hitting ENTER key of the treck
bzll. Te end the construction of the window, the user
hits VISIELE (to weke cursor invisible) znd ENTER. In
C rmode, the LCC/LLC of the selected points are calcu-
lated from the LCC/LAC of the displeyed image. Whether
the imege is displayed in 1its +true form or in a

compressed form, the celculetion will proauce actuzl

positions of the points relative to the image.
1.5.1.3 Buvild Tronsformw (LT)

The form of the BT commend is
ET <trensforr neme> , <subtrensfeormations>

Each subtransformeztion 1= in cne of the two forms:

Jower bound - upper bounc = new value

old valve = new value
The right side c¢f & subtransfcrmation 15 res-
tricted to be one single value. All unspecified

intervels cen be assigned to one default value

196

vpon answering
NUMBLR FCR URDEFINED INTERVALS?

1.5.1.4 PBuila Coloxr (BC)

The form cf this commanag is

RC <color namec>,<format>,<colcr transformations>

The color formect czn be & or & for 4-bit or 6-bit for-

mats respectively. Fach celeor trensformstion ie in one

of the twe forme:

lower bourd « upper bcund = color symbol

velue = coler symbol

Eere the color symkole referred tc the symbolic forms of

cclor representation es described in Section 1.1.4.

fgein, 211 vnepecified intervels can be assigned to one

default colcr upon enswering:

CCLCR FCR UNLCEFINED IRTERVALS?

1.5,1.5 Buildé Zoom (RZ)

Thiec comrmand has the form

EZ? <new ZzZoonmr name> , <scale ratio>

The <scale retic> is slways NEW/CLD.

187

1.5.2 UPispley Correonds (3)
1.5.2.1 Erase (ER)

The formr of this comrand 1is

ER <list of devices>

where <list c¢f devices> zre device names separated by com-
ras. The effect of erasure depends on the device specified.
For Rl or R2, the screen 1s erased. For LP, & new page of
peper 18 moved under the print head. For PL, the command

also slews the peper. All other devices are nor permitted

in ER cormand.

The future expension will 1include & capebility to

advence the rell film i1n the device FER.

1.5.2.2 Exhibit Pixel Area (EF)

The form of this comrmend is

EP <input device> , <cutput device>

This command is used tc cxamine the image pixel valuecs of a
rectengular &eree of no more than 20X20. The image is
prescntly displayed on <anput deviced. The pixel value

array is to be displayed on <output device>.

.

The user 1s also recguired to specify ‘..w.\\
[L]

! N [
Y “‘H' " i

ettt
Ly, [

199 g

(¢} The dimengions of the rectangular erea -

nunber ©f lince ond rurber of pixele.

(k) The upper-left corner of the szrea through the

track kall.

This cemrand 1s only weeningful when <input éevice> is RI.

The <output device> 18 rcstraicteé te be UT, LP, R1 or RZ,

1.5.2.3 Diegplay (GI)

The fornm of BI conmmerd 1is
LI <irege nerme>,<device>,<color function name®>

cr LI <window name> , <deviced
The <cclor function name> 1¢ opticnzl.

For window display, the device can only be R1I or R2.
The displayed output depends or the existing contents of the
cselected =crecn. IL the screen is blank, tle window will be
scaled properly so that it cer be digplayed entirely on the
screen. After the window polyeen is drawn, the system will

ask

EC YQU WIiEHn 1HE PCINTS LAELLED WITH PIXLL/LINE COCRDINATES?:

L "Y' answer will ceuse the coordinetes displayed along with

the polygon.

If the seclected screcn has an irage displayed, the win-

89 2

dow w1i1 be sczled according to the displayed image and the
window polygon will be positioned correctly on the image so
that the coordinates c¢f the image and the window ere con-
sistent. & window mwey be too large to fit con the irage. If

s¢, the command will be zkorted 2nd error signaled.

In both cases of window display, the color in which the

window 1s to ke displaye¢ will be solicited from the user.

Imege ¢isplay 18 much more invelved than window
display. If the user specifies 2 color trensformwmsticn, it
w1ll be applied to the image to produce a colored image.
The colored aimwzge cen later Lke saved as a reqular image
file. The seguence of everts can be described as the fol-

lowing preccedure:
Step RI1.

If the device is ?R, goto Fl.

if tﬂe device 1s PL, goto P1.

1f the device 1s not R1 or R2, then error return.
Step RZ.

{Lhe device is R]l or RZ2.)

Ask the user to sclect 2 point on the specified screen.
Let the especified screen ke X and the other one Y.

(The syster will zttempt to display the image on the

190

rectangulcr arear VIEE defined by the selected point

#rd the boitonr right corner of screen X.)

Cen the coleored irage £it in the eres VIEW?
If ves, display the imasce end goto K9.

Step R4.
{The image does not fit in the acree VIEW.)
2tk the wvser 1f image corpression is desired?

"If yes, compress the image §uff1c1ently to fit in VIEW,
display it &ané then gcto R5. Ctherwisce, display the
upper left portion of the colored imsge in VIEW and

goto RE.

Step ERS5.

ﬂJHJUQEJVAL* |
. .— g8 f“]“. LIRR
(The comppressed image is on X.) IR TRL

Ask 1f the user wvents to drsplay legend.

Tf yes, ask the user to select legend position and to
enter legend; then displsy lecend &t the position

gelected.

Step E6.

Step

Step

Step

w1 / q / iri

2sk 1f the user wents to scroll the comrpressed imege.
If no, exit.

R7.

{Scrolling)

Erase screen ¥'

Ask the user to select a point on screen Y.

Ask the user to select the scrolling point, which i1s a
point in the compressed irage 2s presently displayed on

screen X.

The selected point on ¥ end ite bottor right corner
define & rectencular srez callcd SVIEW. The scrolling
point together with SVIEYW specifies 2 rectangular por-
tior of the colored iwmage whose LCC/LAG are those of
the scrollinc point ené whose dimensions are those of

SVIEW, Display this rectengular portion in EVIEW.
R8.

sk 1f the user wents to scroll again?

I1f yes, goto Step R7.

RG.

Ask if the user wante to Gispley legenéd on the most

reccntly used screcn (X if come from R2 or R4 and ¥ if

Step

ctep

Step

Step

Step

e
A

9%

fror RG).

If yes, sk the uvser to selcct legend position and to
enter Jlegend; display charactcre entered at the posi-

tion selected.
R10. Exit.
Fl.

2sk the user ta select & point on the film. Trhe film

has 40U%6 X 4090 positions.

Ask the user to crter Dicomed releted parameters such
as mwognificatien factor, resolution, intensity, polar-

1ty, ¢tc.
FZ.

Can the colored imwage £it in the rectangular ares
defined by the selecte¢é point anéd the bottom right

corner of the filr?

If yees, display the imaage and goto F6.

. 7 o
rd. anHUiuAt,i?{.//_
¢ UM nity o

{1he image 1g too large.)

Ask the user 11 imesge compression is desired?

Step

Step

Step

SEtep

Step

Step

193 13

If yes, compress the 1mage sufficiently to fit, display

the image znd goto F6.
F5.
(Display the uvpper left corner.)

Dieplay the upper left portion of the colored image in

the selected rectengular area.
F6.
Ask if the user wants to display legend.

If yes, &sk the usger to select legend position on the
film and to enter legend; then display legend at the
position selected.

F7. —Exit.

P1.

The user can specifly either 4x4 dot matrix for one

Pizel or 5x5 dot matrix.

P2.

Calculete the number of strips required to display the

entire image. Inform the user.

P3.

194 £

hek the user "liow many strips do you went printed?:".

Step PB4.

Displey the strips.

Step FC.

Bsk 1f{ the user wants to display legend. I1f yes, ask

the user to enter the lcgend, then display it.
Step P7. Fxit.
1.5.3 Statistics Cermands (5) AL S P LA VA

LA RN “;7;'_”_,-}-.._‘!’
1.5.3.1 Exhibait Histegrem (EH)
The fcorm is
EIl <image nere> , <device>

The device c2n only be R] or R2Z. The user can also specify

the

coler of the histoarem vpon enswering

WEAT CCLOR DL ¥CU WISE THL RISTCGRAF

TC EE DISPLAYED IN?

cutput 1s ¢

coordinrzte

cecrrespondlng

two-dirensional colored greph with horizon-

to pixel values and vertical

1

5

cocrdingte frecrencaes.

1.5.3.2 Exhibit Distrabution (LLD)

The form 1gs similar to EB ., The device <c¢an only be
LP. The histograr of the iwmage will be calculated and

displayed as "pixgel valve: frecuency" ralr.

1.5.3.3 Exhibit Join Histogram (JH)

The form is

JHB <image name>,<imace name>,<device>

The two 1mages rust ke of the soame dimensions. The freguen-
cies of pixel value pairs will ke calculated. The freguency
values will-be pertitioned into at most seven ranges as
agirected by the user. Each range can be assigned a color by
the user. 1f the user chooses not to define the range or
the coloring of the renges, the freguency values will be
cqgually partitioned into seven ranges and default éolors

azssigned.

Wher the joint histogram 1g displayed, the two coordi-
nates correspond to pixcl values of the two images. The
colors of the dicplcyed points 1ndicete the freguency range

cf the pixel value peirs.

The user is elsoc given an option to view the magnified

194 Aé

~

joint histcgrem. The megnificeation 1s ky 2 or by 3.

1.5.3.4 Ixkikat Jornt Dastribution (JILT9

The forr is the sare zs JH. The device has to be LP,
The output 1g€ in the form of "pixel vzlue : pixel value -
freguency" for ezch pzir of pixel values. The output format

can either be sorted by frecuency or by pixel value pair.

1.5.2.5 Exhibit Contigency katrix (CH)

The form of this command is the same ze JH. The dev-
1ice cen only bc LP ané the images zre restricted to have
pixel values ketween 0 and 7. All higher vslues are trun-
ceted on the left. The purposc of the comrand is to compare

two classified imwages to find their differences.

1.5.4 File benipulation Corrmands (7)

211 basic elements in the IMDE svystem are treated as
files. L file¢ car enter 1into the dotabsse in two weys.
First, imade files can be brought into the deztebase from
tape through the uvce of Read Tzpe (RT) comwand, which will
be @iscusged 1n this section. Secondly, ¢ file mnay be
created through the use of definition Gomrands (Section
1.5.1). lie distinguish permznent and temporary files.
Files creeted throuvgh éefinition commands are all temporary
in the senec thet they will be removed zutometically a2t the
cnd of the cuery session unless they zre explicitly saved.

Permanent files are those which last through guery sessions.

197

Specifically, £filecs brought in by RT are considered per-

manent.

When a user first leges onto a command terminal, a file
directory 1is @assigned for his exclusive use. The file
directory 1s separated into two scctions: cne for temporary
files and one for permanent files. xisting database files
can not be used in any command until they ore ‘'ectivated'.
Activation of & file is o process of making the file name

known to the uvser's file directory.
1.5.4.1 Activate (2C)

The form of this comrand is

AC <list of file names>

where <list of file namwes> is a list of names of existing
files separated by commas. File names specified in the com-
mand will be entered into the permanent file section of the

file directory.

1.5.4.2 ELave (82)

PG

The form 1s (Wit
TR I -

SA <Jist of file nemes>

This cormand cavses cxisting temporery files to become per-
manent. File names specified in the command will be moved
from the temporary file section of the file directory to the

rFermanent file secticn.

IR v AR

193 fiis

1.5.4.3 Furgc (FU)

The form is

PU <list cf file nares>

This cormwand cavses files in the directory, whether per-
manent or temporary, to be removeda. Removel of 2 permanent

file also purges the file frowr the datsbase.

This corrend is not irplemented a2t the present’ tire.
The user has to uvse PIP command of the REX-11D to remove 2

file from the file system.
1.5.4.4 HMedify (MO)

The form c¢f this ccmmand is

MC <file name>
The purpcse ¢f this cormend is to sllow the vser to change
cartein informetion in the header hlock of the file.

The slterable fields of the heacor block are listed

below according to f£ilc typoes:

199 v

{2} imsge: LCC,LE2C,description

(b) window: cleosure code, description
{c) trensform: descraption

(d) coler: description

{e} zoom: new size, 0ld size, descraiption

The above rules apply to only permanent files. Tem—
porary files c¢an also ke modified in exactly the same way

except that they do not contain the description field.

1.5.4.5 List Directory (LD)

This comrand hes the formw

LD <device>

where <device> <can be UL or LP. Contents of the file
directory will be printeé at the specified device. The file
girectory conteins all informaticn stored in the header
block about the files zctivated or crcated by the user. (In
the actual implementction, an ectivated permenent file has
its header 1nformation stored bkoth in the physical file as
well as 1n the directory; end & temporary file does not have
¢ header in the ©physical file, its header information is

stored only in the directory.)

1.5.4.6 Spotlight (8P)

ETEI T B D L S
GF L oy

900

The form 1s¢
EF <f1le nrere>, <deviced
The <device> can be LF or UT for image, window, transform or

zoom files. It cen ke LP, UT, Kl, RZ or FR for color files.

This command performg 2 similar function as LD for s
single file: it displays hescer inforration of the file.
Kowever, if the file 1s ¢ kransform or & color file; SP
2lso displays the definition of the mapping in the file.

That 1s, 1t liests 211 the subtransformations in the file.

The mcet interesting vse of €F is tec spotlight color
function onto a corepkics device (Rl1, R2 ¢r FR). It will
display, for each subtrensformetion, the range of pixel
velues end & £mell colored scuerc to indicote the actuéi
color of the subtrensfcrrmastion. If €P ig ucged cn LF or UT
fFor a color function, symbolic names of the colors will be

displayed.

1,5.4.7 Rcad Tope {RT)

The fornr of this corrend is

RT <deviced

The device 1s eitber T¢ or Tl, indiceting one of the two

tape drives. The options sveilable to the users are:

{b}

(c}

gol

to reecd any filc on the tape;
to read any number of filee on the tape;

to edit & tepe file by specifying the starting and the
ending linc numbers &nd the starting and the ending

pixel numbers;

to read rulti-chennel composite files up to 16 chan-
nels: feor each channel, the user can indicate whether
the imege for this channel is wanted or not, and if
wanted, & seperate file will be created. 1In general,
en n-channel image con ke moved into the database and

becomes n+l separate files ~ cne for each channel and

one for the originel n-channel file.

1.5.5 Control Comnmands {5)

These comnmands are special feacilities built into the

IKDE system to ease the user-system interaction.

1.5.5.1 Etop (1)

The forrw ie simply

ST

which ends the cuery session, ceuses 21l temporary files to

be

remcved end is the only command for the user to log off

the sycstem grascefully.

202

1.5.5.2 Restart (RLE)

The form is

RE

which pcrforre the similar function as ST except that the
user is not logged off and 1s assigned 2z new file directory

with no entry in it. (The o0ld directory is erased.)

1.5.5.3 Help (HE)

The form c¢f this command is

HE <dcviqe>

where the <device> cen ke LF or UT. It lists all I¢

commands with explenations at the specified device.

Onc of the goels of the IC design is to winimize the
information the ucer has to remermber i1in order to use the
IMDD éysten. in fnhct the vser does not heve to remember the
fcrrs of the cowrrends. The uvser cen cobtain assistance in

two ways:

(2} To consult the syetem for the command formet and its

functicn by typing HE, or

(b} To uce prorpting to enter comrend pararcters. (The
absolute minimew needed to 1nitieste system ectivity is

g Z2-character commaznd code.)

208

03

1.5.5.4 Jdournal (JC) 2né No Journal (RJ)

The forms of these cormands are

JO <file name> {ﬁq”11\3,yﬁngﬁl.'
oy oAy
"I G BRI
The conversaticn between the user end the system - in gen-
erzl, 1t 1is whatever sbhown on the UT terminsl - cean be

recorded verbatim 1n 2 journel file. The <file name> 15 the
name of the journal file. If the file does not exist prior
to the JC commwend, & new one will be creaved bearing the
name ¢given by the user. If the file 1s an old one, new
journal information will be eppended at the eond. The com-
mand NJ is used to turn off the journal activity. With
these two commands, the user cen specify journal mode or no
Jjournal modg__ét cny time during the cuery session, switch
between two mcfes ary number of times, create several Jjour-
nal files ané <&isperse Jjeurnal information in any way the
user desires. The only restrictaion ig that no two Jjournal

files c¢en be active @t the seme time, one has to be closed

by NJ before the other can be nawed 1n JG.

The contents of the journal files can be printed at the

line printer through PIP facility of the REX~11D.
1.6 Log Cn

The log-cor secucnce to start the IMDE system 1s very

-
[

Rlvg

simple. If the wuser 15 @ legitirate user of the REX-11C
syster, that is, the uscr hes a legitimate UID, the follow-

ing secuence can ke followed to start the TMDE system:

Step 1. 'lurn on a terminal.
Step 2. Type 1n Control C to get
FCR>
printed on the terminel.
Step 2. Typc 1n
BEL |UID]
so that the operating cysterm
cen velidete whether UIL is legsal.
Step 4. If UIL is legzl, the system will
come beck with
Ice>

then enter "IQL"™ zfter ICR>,

At thic time the log-on procesgs is completed, the INDB

15 activated ond ¢ nessace will be printed:

* WELCCME TC THE IMDE ESYSTLEM

*

2ny perrissible T(¢ comrends can be entered after the second
zeterisk. Tp summrary, the entire log-on secuence will look

like the following 1f the veer hes the access right:

. 805

{Control C)

MCR> HEL[UID]

MCR> ICL

* WELCOHME TC TEE IIDER SYSTEM

* (ready to accept IC commend here)

A blank file directcry has alsc been created for

user.

1.7 Special Wotes

fome conventicns eond speciel cases not covered in

previous secticns are coverced here:

() A window 1g assumcé to be @z simple polygon. No

the

the

two

cdges of the polygen can cross each other, of course,

other than-meeting end to end £for neighboring edges.

The system does not check the crossing of edges and the

user 1s responsible for the correctness of polygon for-

mation.

(b} Whenever & cuestion 1is asked the user, &a carriage

return 18 teken ss NC, O{zerc), or the default answer,

depending on the natuvre of the guestion.

(¢) The opcrating system PIP facility can be used to

copy

files from tepe to tepe or from disk to tape, to purge

files from the data base, and toc rename filee 21in

the

date base. The IMLCE system is built on top of the

a0b

FILLC-11 file system en¢ =ny file operation available in

the operating syster cen be ecpplied to INEE files.

(6} A 'Carriage Rcturn' ac an znswer to the cuestion 'DEV-
ICE?' will cecuse the list of 211 permisssible device

nawes to be printed ot UT.

fe) The reserved words in the IQ languege ere JCIN, MASK,
CLiP, MULY, ADL, SUE, DIV, MAX, &VG, PND, XCR, MIN and

CR. These can nct be used ag a file name of any file.

1.8 Verietions fror Criginzl I{ Design

The differences bctuwcen the version of IC as 1imple-~

rented and described in thie ranval ancd the one in {Report

I] can ke supmrarized 2= follows:

]

(z} This vercion uvees 2Z-character cormsnd code and the ori-

]

ginel version does not.

{b) Thie versicn decs not have window union or 1ntersectlion

cepebility.

(c) MNew comrmands arc addcd in this versgion: ER, EP, CH, MG,

and HE.
(d) Write Tape cormend is not included ir this vercion.

(e} OCOverlsy functicns are not treated as generic functions
in this wversaien. That 1s, only ten system built-in

overlay functions are gllowed @end the user c¢can not

(L)

207

define hie own.

Imege cxpresciones have to be evaluated and assigned a
new name (in B1) kefore it can be used in DI. 1In the
original version LET and CEFINE are distinguished. In

this version they are combined into build commands.

The original version essumes & longitude/latitude coor-
dinate systerw., This version assumes a2 4096 X 4096 grid
coordinate syster. The irages are no longer associcted

with geogrephic position.

FIXCTE -

MESSFILE

20%

APPENDIX II

INDEPENDENT UTILITY ROUTINES

useful in emergency situations when the file data is known to
be valid and the file parameters are known by the file header
information has been corrputed or non-existent. Interactive.
FIXCTE asks for a filename, calls ACTIVA to activate the file
as a permanent file, and prints the current file header infor-
mation corresponding to core table columns 5-10. FIXCTE then
asks for new information to be inserted and prints this infor-
mation back to the terminal for verification and asks the user
if he wishes to go ahead with the update. Any response except
'Y' terminates the program. The Y response causes the new
information to be written to the file header, and the program

terminates.

(FIXCTE needs to be rewritten to allow alteration of the number
of records in file field (header bytes 24-27) and to allow
more than one file to be fixed without having to rerun the

program.)

—~ 1nteractive message file updata and examination routine.
CURRENTLY, MESSFILE MUST BE RUN UNDER THE UIC IN WHOSE DIRECTORY
THE SYSTEM MESSAGE FILE 'IMPB.MSG' RESIDES.

MESSFILE asks the user is he wishes to examine the message file
or to update it. The user responds with a 'U' or an 'E' -~ any
other response terminates the program. If examine is requested,
MESSFILE asks for a message number and reads the message from
the file and prints it on the user terminal. If update is
specified, a message number and message contents are requested,
and the message is written to the file. Specifying a message
number less than or equal to zero (or a carriage return) returns

the user to the question ‘examine or update?'.

209 T

(The message file is organized as a random access file of
72-character records. Each record contains exactly one
message, with the message numbers corresponding to the
record numbers. ‘

Note that since MESSFILE opens the message file with TYPE=
'UNENOWN', MESSFILE can also be used to create a new message
file.)

aio

)

APPENDIX III

PERMANENT FILE HEADER FORMAT

FILE TYPE BYTES _
0-3 [y 8-11 12-15 16-19 20-23 24-27 28-255
PIXELS SCAN RECORDS
IMAGE TYPE L.0Q 1AQ UNUSED /LINE LINES IN FILE DESCRIPTION
MAXTMUM MINIMUN NUMBER FILE
L0Q & L0Q & CLOSURE OF SIZE IN
WINDOW ° TYPE LAQ LAQ CODE POINTS UNUSED RECORDS DESCRIPTION
FILE
NUMBER SIZE IN
EXPRESSION TYPE OF TERMS UNUSED UNUSED UNUSED UNUSED RECORDS DESCRIPTION
FILE
TRANSFORM . SIZE IN
FUNCTION TYPE UNUSED UNUSED UNUSED UNUSED UNUSED RECORDS DESCRIPTION
FILE
COLOR , - SIZE IN
FUNCTION TYPE UNUSED UNUSED UNUSED UNUSED UNUSED RECORDS DESCRIPTION
RELATIVE RELATIVE " FILE
ZOOM SIZE OF SIZE OF SIZE IN
FUNCTION TYPE RESULT BASE UNUSED UNUSED UNUSED RECORDS DESCRIPTION
) FILE '
LINE (NOT LOQ LAQ 10Q LAQ SIZE IN
IMPLEMENTED TYPE POINT 1 POINT 1 POINT 2 POINT 2| UNUSED RECORDS DESCRIPTION

1“35“‘

v\tﬁ"'

Ny
RYILR)
PR
"| L]

§i

Al .

APPENDIX IV
BIBLIOGRAPH OF PUBLICATIONS

Y.E. Lien and D.F. Utter, Jr. 'Design of An Image Database”,
Proceedings of the Workshop on Picture Data Description and

Management., IEEE, April 21-22, 1977.

Y.E. Lien and R. Schroff "An Interactive Query Language for an
Image Database", to appear in the International Journal on Policy

Analysis and Information Systems, January, 1978.

R. Schroff, '"Boolean Operatiomns onm Polygons",

M.8. Thesis, Department of Computer Science, University of

Kansas, Lawrence, Kansas, December, 1977.

S. Harris,

M.S5. Thesis, Department of Computer Science, University of Kansas,

Lawrence, Kansas, December, 1977.

R. Law, "Design of an Interactive Digital Tmage Analysis System",
M.S. Thesis, Department of Computer Science, University of Kansas,

Lawrence, Kansas, December, 1977.

C.J. Chen

M.S. Report, Department of Computer Science, University of Kansas,

Lawrence, Kangas, December, 1977.

{2

-1

APPENDIX V

DOCUMENTATION PACKAGE

(This package provides a complete RATFOR and Assembly Language
Tt also includes a listing of the
Cne

listing of the IMDB system.
utility routines, the message file and the task build file.

complete package and a magnetic tape containing the entire program

have been provided to Dr. Robert R. Jayroe, Data Systems Laboratory,

Marshall Space Flight Center. Since the package consists of over

300 pages of program listing, it is not duplicated here.)

