
A DATABASE SYSTEM TO SUPPORT IMAGE ALGORITHM EVALUATION

FINAL TECHNICAL REPORT

Y. Edmund Lien, Principal Investigagor

The University of Kansas

Department of Computer Science

Lawrence, Kansas 66045

(NASA-CR-155928) A DATABASE SYSTEM TO ~N8-17725
SUPPORT IMAGE ALGORITHM EVALUATION Final
Report, 15 Nov. 1976 - 31 Dec. 1977 (Kansas
Univ.) 221 p HC A10/MF A01 CSCL 09B Unclas

G3/61 04211

ByRERODUCED

NATIONAL TECHNICAL
INFORMATION SERVICE

US 	 DEPARIMENT'OF COMMERCE
SPRINGFIELD,VA 22161

This research was sponsored by the National Aeronautics and

Space Administration through Research Grant No. NSG-8046.

0

Research Grant Title:

Principal Investigator:

Grant Period:

Grantee Institution:

Grant,Number:

FINAL TECHNICAL REPORT

A Database System to Support Image

Algorithm Evaluation

Dr. Y. Edmund Lien

Associate Professor

Department of Computer Science

November 15, 1976 - December 31, 1977

University of Kansas

Lawrence, Kansas 66045

NASA Research Grant No. NSG-8046

This final report

(1) 	 describes the design and implementation of an image database system

IMDB

(2) provided sufficient information for the maintenance and upgrade of

the IMDB system

(3) 	 includes a user manual describing use of the IMDB system

(4) provides a list of publications issued during the course of the

research.

Preceding page blanks

TABLE OF CONTENTS

-ACKNOWLEDGEMENT- -

REPORTS:

I. 	 An Interactive Query Language for an Image Database

(by Y. E. Lien and R. Schroff)

IT. Implementation of the IMDB System

1. Overview 	 (by Y. E. Lien)

2. Implementation of the Query Module (by Y. E. Lien)

3. Implementation of the Device Module (by S. K. Harris)

4. Implementation of the File Module (by R. Law)

5. Implementation of the Manipulation Module (by R. Law)

APPENDICIES: 	 (by Y. E. Lien)

I. IMDB User Manual

II. Independent Utility 	 Routines

III. Permanent File Header Format

IV. Bibliography of Publications

V. Documentation Package

(vv.ItI, TM\.0 P

IV

ACKNOWLEDGEMENT

We would like to thank Dr. Robert R. Jayroe, Jr. of Marshall

Space Flight Center for his many helps throughout the period of this

research. Without him, this research would have been impossible to

carry out to its completion. Mr. Malcomb E. Gillis of Computer

Science Corporation, Huntsville has also provided tremendous assistance

in the programming phase. He taught us how to use RSX-11D commands,

shared with us his experiences in graphics software, wrote the

package Z which later became part of the Device Module and many times

managed to save our files of thousands of source lines after several

severe disk crashes.

Many students at the Department of Computer Science, University

of Kansas participated in the early phase of the project. The efforts

of Al Poston, Sharon White and Claudia Dale are greatly appreciated.

We also would like to thank Susan Walker, Portia Kibble, and

John Ying (of Bell-Lab, Murray Hill) for their excellent typing of

this report.

V

REPORT I

AN INTERACTIVE QUERY LANGUAGE FOR AN IMAGE DATABASE

vi

ABSTRACT

Images, such as those created through satellite remote sensing or

photography, can be integrated into a central database to permit appli­

cation-oriented interactive data access and manipulation. Instead of

each user building the image processing tools for his own applications,

an image database offers to all its users a set of general purpose

image data operations. These operations can be used to analyze images,

to extract their informational content, to compare images, to overlay

images, etc. Unique and essential to image database systems is the

capability of conversational system-user interaction through both con­

ventional terminals and graphic display devices. Presented in this paper

is the design of an interactive image database system IMDB, which allows

the user to create, retrieve, store, display, and manipulate images

through the facility of a high-level, interactive image query (IQ) language.

The query language IQ permits the user to define false color functions,

pixel value transformations, overlay functions, zoom functions, and

windows. The user manipulates the images through generic functions.

The user can direct images to display devices for visual and qualitative

analysis. Image histograms and pixel value distributions can also be

computed to obtain a quantitative analysis of images.

WIi

REPORT I

AN INTERACTIVE QUERY LANGUAGE FOR AN IMAGE DATABASE

vfiij

1. INTRODUCTION

This paper addresses itself to an image database system IMDB. The

system supports the processing of discrete, geographically-associated

images, such as those produced by the LANDSAT satellites. Although

primarily intended for use with this type of image, the system design

is both general and flexible, permitting its use in other image processing

applications. Central to the system design is an interactive user­

oriented query language. Here the user is offered a convenient facility

by which images may be created, stored, retrieved, manipulated and

displayed.

1.1 Database Images

In 1972 and 1975 respectively, satellites LANDSAT 1 and LANDSAT 2

were launched by the National Aeronautics and Space Administration (NASA).

The LANDSAT program,, formerly Earth Resources Technology Satellite (ERTS),

has provided a capability for repeated surveys and assessments of earth

conditions and resources.

Each satellite has a multispectral scanner which permits simultaneous

imaging in four channels. The digitized images from these channels are

sent to the ground where computers are used to reconstruct the images.

A four-channel LANDSAT image contains 7,581,000 picture elements (pixels)

and for each channel the data value of each pixel is represented as an

integer between 0 and 255. This value indicates the intensity of light

reflection from an area of 79 x 79 meters.

There is an urgent need to provide a database system to support

LANDSAT image processing and application. After years of research and

development, the processing of LANDSAT images has not yet provided pro­

duction facilities capable of extracting and organizing information

2

contained in the images. Only a small fraction of the images have been

fully processed and classified, leaving an enormous fund of data still

unavailable for public use. The situation is compounded by the LANDSAT-C

project (scheduled for a late 1977 or early 1978 launch) and the LANDSAT-D

follow-up project.

An obvious difficulty lies in the extremely large size of the image

data. The present LANDSAT will produce a new set of images covering

the entire earth every nine days. It is evident, from the sheer magni­

tude of the data alone, that the processing of LANDSAT images requires

a formidable amount of computer resources.

A second type of image is produced from hand-drawn ground-truth

maps. These maps represent the data gathered by scientists, for

instance, data regarding land use, soil type, slope, mineral resources

and energy resources. Quite often satellite images are overlaid or

compared with ground-truth maps to obtain meaningful interpretations of

the images.

The IDB design does not address the data magnitude problem of

LANDSAT images, nor does it include a direct capability for classifying

images and organizing classification data for later retrieval. IMDB is

primarily intended for image manipulation and statistical analysis. It

can, for example, be used as a tool to assist in the image classification

process. It can also be used to evaluate the performance of different

image processing algorithms such as image registration and compression.

Other applications might include the production of map data, the studying

of geographic and geological features, the assessment of crop inventories,

etc.

3

1.2 IMDB System

Within the framework of an image query language (IQ language), the

IMB system incorporates the facilities requisite for the processing

of satellite and ground-truth images. Although IMDB is a response to

the specific computational requirements associated with LANDSAT images,

the system can and should be viewed as a generalized image database

system. Let us informally summarize the facilities of such a system.

These include

. A database management system capable of maintaining image data.

" Image manipulation facilities which permit images to be edited,

colored, transformed, superimposed, compressed, and expanded.

* Display facilities permitting the visual interpretation of

image data on one or several output devices.

* Statistical facilities allowing an analysis of an image's

composition or spectral distribution.

Although the implementation of an image database poses difficulties

not normally encountered in traditional databases such as IMS [6] and

IDS [7], the structuring techniques employed by IMDB do not vary signi­

ficantly from conventional methods. Consequently, we shall not discuss

at length the physical characteristics of the IMDB database. Rather we

shall focus our attention on the user's view of IMDB as seen through

the facilities offered by the IQ language.

The design of the IQ language reflects an adherence to certain

general principles:

4

• The language must combine the display, manipulative, statistical

and management facilities within a continuous framework, i.e.,

a single program.

*
 The language must view the database from a logical standpoint

which is conceptually removed from physical considerations.

*
 The language must be highly user oriented, employing where

feasible, English language prompting.

In presenting the IQ language we have chosen to emphasize conceptual

and operational aspects at the expense of syntactic considerations.

Certain query statements have been simplified while prompting has been

discarded in favor of a less spacious and more direct presentation. A

grammar of the IQ language is included in the Appendix.

1.3 Hardware Configuration

IMDB is implemented at the Data Technology Testbed (DTTB) of the

Data System Laboratory, NASA Marshall Space Flight Center. The central

processing unit is a PDP-11/45 with 128K bytes of memory and 600 million

bytes of disk storage. Conventional input-output peripherals such as

line printer and magnetic tape are available. The PDP system runs under

the standard RSX-11D operating system.

Image display functions of the IMDB system require input-output

peripherals which provide graphic and color capabilities. The color

graphic device is a Ramtek GX-100B digital TV system which is an on-line

device of the PDP-11/45. This particular system has two 19-inch color

monitors and one 17-inch black and white monitor, three keyboards and

one trackball. The trackball is used for graphic input.
 Currently there

is sufficient refresh memory for two 256 by 256 pixel color monitors and

each pixel can be assigned any of the eight colors. Contents of the

5

refresh memory can also be read, which provides a convenient way to

construct composite images interactively. With additional memory each

Ramtek display can be expanded to a maximum of 512 by 512 pixels with

a maximum of 4096 colors. Graphic capability is also available with

two Tektronix 4014-1 storage tube terminals. The screen contains.4096

by 3120 addressable points. Graphic input capability on each Tektronix

terminal is provided through a thumb-wheel controlled cursor.

Hardcopy graphic output can be obtained through the hardcopy

devices attached to the Ramtek or Tektronix terminals or directed to

a Varian 4115 electrostatic printer/plotter. Dicomed D47 image recorder

provides the capability for film recording. Each film is formatted as

a matrix of 4096 by 4096 points. Each point in the matrix can be

assigned an exposure value in the range of 0 through 255.

Although IMDB is implemented on the hardware described above, its

logical structure is designed to be flexible as to the particular computer

configuration.

1.4 	 Related Work

Database concepts such as data integration and data independence

[1] have not been actively pursued in the field of image and picture

processing until only recently. Image and picture processing encompasses

a wide range of distinct application areas; the need of database tech­

nology in these areas are equally diversified. For example, McKeown and

Reddy describeda multi-sensor image database system MIDAS designed to

perform knowledge acquisition, error analysis, and algorithm evaluation

[2]. Chang et al presented a relational database system for managing

pictorial and alphanumeric information [4]. Zabrist presented an image­

based information system designed especially to manage spatially-referenced

6

data [3]. Kunni, Weyl, and Tenenbaum proposed a relational database

schema for colored picture description [5].

2. BASIC ELEMENTS

The database facilitates the storage and retrieval of images and

windows, each of which is addressable by means of a unique name. In

addition to these items, the database is also used for the storage of

generic functions. These will be discussed in separate sections.

2.1 Images

An image consists of picture elements, or pixels. Each pixel is

a one-byte integer associated with a precise geographic area and having

a range of values from 0 to 255. The area represented by a pixel is

dependent upon the scale of the pixel. In terms of z pixels/km, the

2 2
pixel represents a square of area I/z km . The value of a pixel is

the image representation of its area; if a pixel results from a photo­

graphic measure of grayness, then a pixel value corresponds to a gray-level.

An image is a two-dimensional pixel matrix. Each row and column

consists of contiguous non-overlapping pixels which respectively follow

the geographic lines of latitude and longitude. The dimensions of an

image are a measure of the geographic area represented by its component

pixels.

Within the database the unit of storage is the row. This is referred

to as a scan line. All images, before being entered into the database,

are assumed to have been geometrically corrected and geographically

registered.

2.2 Windows

A window is the polygon described by a circuitous ordered set of

points, each point located in terms of longitude/latitude. Each pair of

7

consecutive points determines a vector, and according to an IMDB convention,

the vectors are required to form a non-intersecting clockwise closure.

Each window is further assumed to be either an inclosure or an exclosure.

The restriction that the window be non-intersecting corresponds to

the normal view of a polygon. (It also avoids an unwieldy interpretive

problem.) The restriction does not, however, disallow colinear vectors

on "richochets". In this context an intersection is interpreted as an

actual crossing of two vector chains.

In the construction of the union or intersection of two windows, a

determination of the window's direction is essential. Since there

exists a relatively simple algorithm for determining direction, the

clockwise requirement is seen as a matter of conceptual and computational

convenience.

3. FUNCTIONS

Functions provide the user with methods by which images and windows

may be combined to form new images and windows. The IQ language supports

nine different functions. These can be conveniently classified in two

categories, built-in and generic. In this section we shall primarily

concentrate on the operational aspects of these functions, leaving to

succeeding sections the bulk of the discussion of syntax.

All functions require a specific set of image/window parameters

and return, either an image or a window. The masking function, for

example, requires an image and a window as parameters. This function

returns a masked image.

The query language is constructed such that whenever an image is an

appropriate function parameter, an image expression is an equally appro­

priate parameter. This equivalence holds true for windows as well.

In the case of the masking function, since the function returns an image,

8

it is the expressional equivalent of that image. In the succeeding

sections we will use the following notation to describe the relationship

between a function, its parameters, and its equivalence:

MASK(<window expression>,<image expression>) image

3.1 	 Built-in Functions

There are five built-in functions: JOIN, MASK, CLIP, UNION, and

INTERSECTION. These functions are tailored for immediate use much in

the same fashion as the built-in functions of PL/I. We shall discuss

each of these individually.

A. JOIN(<image expression>,<image expression>) - image.

This function "pastes" two images together to form a new image, according

to their geographic coordinates. The dimensions of the new image are

those which are minimally sufficient to contain the areas of the originals.

The first of the original images is defined to be the dominant image;

this image takes precedence when the two images overlap. The following

examples show the joining of images A and B (A is dominant). "0" denotes

an area that is not contained in either image; all pixels in these areas

have zero value.

JOIN is commonly used to create geographically large images by

placing component images side by side (or top to bottom).

ic

0
A

IB

A 0A

0 10
A BL
 °

FIGURE 1.
Examples of JOIN function.

B. MASK(<window expression>,<image expression>) -> image.

This function masks a window onto an image to form a new image. If the

window is an inclosure, pixels interior to the window will retain the

values of the original image while exterior pixels will be zeroed.

Exclosures function in the opposite manner:
 Exterior pixels are trans­

fered and interior pixels are zeroed.
 In either case, the resultant

image has the same dimension as the original image.

The masking algorithm makes use of the window's topological

properties.
A pixel is contained within a window if the a ray eminating

from the pixel crosses the window boundaries an odd number of times.
 In

terms of a scan line this amounts to an identification of the points where

the window intersects the
 scan line (or its infinite extension), and a

determination of interior pixel intervals through a pairing of intersection

points.

to

C. CLIP(<window expresston>,<image expression>) - image.

Although clipping is computationally a single operation, it can be con­

veniently viewed as a two step process. The window is first masked

onto the image; thereafter, the image is dimensionally reduced by dis­

carding those outermost rows and columns which do not intersect the

window. The resultant image has dimensions which are minimally sufficient

to contain the window. The solid lines in Figure 2 show an image and an

inclosure window; the dashed lines are the boundaries of the image resulting

from CLIP.

FIGURE 2. Example of CLIP function.

The CLIP function permits the user to reduce storage requirements

by discarding the frame that encompasses the relevant data. CLIP is

also commonly used to produce a sub-image by masking with a rectangular

window.

D. UNION(<window7 expression>,<window expression>) window.

INTERSECTION(<window expression>,<wndow expression>) window.

These functions permit the user to regard windows as Boolean operands.

Included within this framework is the notion of an inclosure and an

exclosure: if W1 is an inclosure then 1WI is an exclosure; likewise, if

W1 is an exclosure than 4'Wl is an inclosure.

The result of a Boolean operation is always a single window. In

some situations this can be accomplished only through the use of arti­

ficial colinear vectors. (See Figures 3b and 3c.) Since these vectors

do not alter the area defined by a window, they have no effect on the

functional usage of the window.

Figure 3a below shows the relative positions of windows A and B,

both of which are inclosures. The resultant windows shown in Figures

3b and 3c are inclosures, while the window of Figure 3d is an exclosure.

The window in Figure 3b can be described as a sequence of vectors

(a,b), (b,c), (c,d), (d,e), (e,f), and (f,a). The arrows in the figure

show the clockwise direction of the window. The windows in Figures 3c

and 3d can be similarly described.

Ae

Figure 3a. Windows A and B. Figure 3b. INTERSECTION (A,B).

Figure 3c. UNION (A,B). Figure 3d, UNION(A,'uB).

ORIGNAL PAGE IS
OF POOR QUALITY

13

3.2 Generic Functions

One of the four generic functions is TRANSFORM. We shall use this

function to illustrate the general properties of generic functions. As

will be seen in the next subsection, the transformation process creates

a new image by a mapping of the pixel values of a given image. For an

image I and a mapping M, the new image might be represented as TRANSFORM(I,M).

But suppose that M is fixed through the assignment M = a. This defines

a new function, say TR, where TR(T) = TRANSFORM(I,M) M = a.

It is evident that an assignment of different values to M determines

a family of transformation functions, each function operating under its

assigned mapping. These we call the generic functions of TRANSFORM.

There are four generic functions: TRANSFORM, COLOR, OVERLAY, and

ZOOM. None of these is useable in the operational sense; instead, these

are generalized functions providing a framework within which the user

may construct specific operational functions. In defining a function the

user must give the function a name. This allows the function to be

stored in the database, ready to be invoked by a query statement. In

this manner the user is able to build a library of generic functions,

each function tailored to a special use.

A. <TRANSFORM-name>(<image expression>) + image.

TRANSFORM allows the user to define a method by which pixel values of a

given image can be linearly transformed to create a new image. The

transformation consists of a set of subtransformations and a default

transformation.

A subtransformation is written (a,b) (c,d). This specifies that

all pixel values in the interval (a,b) are to be linearly mapped to the

interval (c,d). For x1 e (a,b) and x2 e (c,d) this mapping is defined by

14

b -a (x - a) a < b
b a 1

x2= c a=b

ERROR a > b

Since the general equation x2 = nx 1 + k, m > 0, is equivalent to

the mapping (a,b) e (ma + k, mb + k), it can be seen that this mapping

permits all non-inverted linear transformations. An inversion (a

negative in the photographic sense) may be achieved by (a,b) 4- (mb + k,

ma + k) for m > 0.

The default transformation is a sort of catch-all. It is used to

define the pixel value which results from intervals that are not explicitly

defined.

Let us take an example. Suppose that an image has pixel values in

the range 0 - 127. The transformation

(0,63) - (0,3)

(96,100) + (4,4)

DEFAULT: 5

will produce the following mapping:

7 60 83 0 3 5

38 97 18 + 2 4 1

120 127 12 5 5 0

B. <COLOR-name>(<image-expression>) image.

Color display devices accept streams of integers which are translated into

colors. Prior to displaying an image, the user must transform the image

to the integer values appropriate to the display device and the desired

15

color picture. This poses two difficulties: First, the integer/color

equivalence varies among devices of different types. Second, the use

of a color equivalence is by no means accomodating to the user.

The color function is a response to these difficulties. Here the

user is permitted to specify a set of interval-to-color transformations.

He might, for example, specify the following:

(0,20) - RED

(50,70) BLUE

(100,200) 4 YELLOW

DEFAULT: BLACK

This can be regarded as the first phase of a transformation. The

second phase takes place when the user specifies a display device. At

this point the user-specified colors can be translated to their device­

dependent color equivalents.

C. <OVERLAY-name>(<image expression>,<image expression>) - image.

The overlaying of two images produces an image which has the dimensions

of the overlapping area. The overlapping area is determined by the

geographic coordinates. The relation between the original images and

the resultant image is illustrated in Figure 4. Here we see the overlaying

of two images, A and B. The shaded area shows the result.

16

FIGURE 4. Example of OVERLAY function.

Based upon pixel values, the OVERLAY function maps the cartesian

product of the two original images onto the resultant image. The

mapping is supported by ten binary operators: ADD, SUB, DIV, MULT,

MAX, MIN, AVG, AND, OR, and EXOR - and is defined by a transformation

set wherein these ten can be freely mixed. The first seven operations

refer to the common arithmetic operations between two pixel values:

addition, subtraction, integer division, multiplication, maximum,

.minimum, and averaging. The last three operators refer to the bit-wise

logical operations between pixel values: AND, OR, and EXCLUSIVE OR.

An OVERLAY function consists of a set of transformation rules.

Each rule is associated with a range of pixel values and an operator.

In addition to, or in lieu of transformation rules of this type, the

user may specify a default pixel value or a default operator. This

17

default option defines the transformation that is to take place for other­

wise undefined interval products. By using the default pixel value the

user specifies that all undefined interval products are to be mapped to

that value; the default operator specifies the operation that is to be

performed for undefined intervals.

The following example shows a mapping (0,255) x (0,255) -- (0,255):

MAX: (0,127) x (0,127)

AVG: (0,127) x (128,255)

DEFAULT: 0

Maximum or averaging will be used for a pixel value pair (x,y) if

0 < x < 127 and 0 < y < 255. Otherwise, the new pixel value will be

zeroed.

D. <ZOOM-name>(<image expression>).

This is a relatively simple function which allows the expansion or

compression of an image. A one-to-three zoom expands a 15 x 25 image to

45 x 75, while a five-to-one zoom compresses this same image to 3 x 5.

The expansion of an image entails a repetition of pixels as shown in

the following one-to-two zoom:

3 3 3 0 0

4 2] 1/2 3 3 0 0

4 4 2 2

4 4 2 2

A compression, on the other hand, causes pixels to be selected

according to the toom factor. A 25 x 25 image, for instance, is zoomed

five-to.-one by selecting pixels 3, 8, 13, 18, and 23 from scan lines

3, 8, 13, 18, and 23. Here is an example:

8 9 7 8 6 5

8 8 6 8 8 5

6 7 6 7 6 2 F K
6 5 5 6 4 1i 3 /­

4 6 5 3 2 3

5 5 4 3 1 3

It should be noted that zooming is not a commutative. That is, for

two zoom functions Z1 and Z2, Zl(Z2(A)) is not necessarily equal to

Z2(Zl(A)).

The compression scheme adopted is to simplify the implementation of

the system and the presentation in this paper, it is understood that

other compression schemes such as averaging pixel values can be used as

well.

4. THE QUERY LANGUAGE

The IQ language is a command oriented interactive language. The

user specifies a command through a terminal keyboard. The execution of

the command (normally) begins with question-answer sequence between the

terminal and the user. Once the user has supplied the appropriate infor­

mation, the operation specified by the command is executed.

4.1 Definition Facilities

A. Define Function

The DEFINE verb permits the user to define a function and to attach

to this function a unique name. Once a function has been defined, it

achiev~s a status not unlike that of a catalogued object subroutine, and

can be immediately invoked by the use of the function name. The following

example shows the definition of a transformation function.

19

DEFINE TRANSFORM TRSO

ENTER TRANSFORMATIONS:

(0,63) - (0,3)

(96,100) (4,4)

DEFAULT: 5

Underlining denotes that the character string is entered by the user.

The first line gives the name of the transform function. The last three

lines give the desired mapping.

ZOOM, COLOR, and OVERLAY are defined in a similar manner. ZOOM

requires the specification of a zoom-ratio; COLOR requires a set of

interval-to-color transformations; OVERLAY requires a set of interval

product transformations with overlay operators.

B. Define Window

Windows may be defined by one of two methods. The user may specify

points in the window by specifying their absolute coordinate (such as

longitude/latitude); or he may select points on an interactive display

device, relative to the image on the device. The window is entered into

the database with a user-specified name.,

C. LET Statement

This statement allows an expression to be replaced by a simple label.

In the following examples, Il and 17 are images; WI, W2, W3, and W6 are

windows; Ti andZl are TRANSFORM and ZOOM functions respectively.

LET W6 = INTERSECTION(W,UNION(W2,vW3))

LET 17 = Tl(Zl(CLIP(W6,11)))

Note that if these statements were entered consecutively, the second

statement would be dependent upon the first (because of W6).

20

4.2 	 Maintenance Facilities

WRITE TAPE allows an image, window, or function to be copied from

the database to magnetic tape. The data items contained on this tape

can at a later time be reentered in the database by READ TAPE. The

READ TAPE command is also used to copy into the database images which

originate from external sources.

Obsolete or unwanted items can be removed from the database by

PURGE. When a data item is originally defined through definition

facilities, it is treated as a temporary object, i.e., it will be

deleted at the conclusion of the interactive session. The SAVE command

permits functions, images, or windows to be stored permanently in the

database.

A listing of all items contained in the database can be obtained

by LIST DIRECTORY. Condensed information concerning each image, window,

and function such as dimensions of an image, definition of a function,

etc., can be obtained by the SPOTLIGHT command.

O)RIGINAL PAGB 11

4.3 	 Display Facilities 	 OF POOR QUA IS

A. DISPLAY<image expression>

This command requests that an image be directed to a display unit.

The operation is straight-forward if the image is small enough to be

displayed on the device. If it is not, the user has several options at

his disposal.

1. He can request that the image be displayed starting from the

northwest corner and continuing until the display area of the device is

full. Here he displays as much of the image as can be fitted on the

device.

2. He can request image compression. This option calculates a

compression ratio and automatically zooms the image to fit the device.

21

3. He can enter scrolling mode, permitting him to select and

display certain portions of the image. This is most conveniently done

by displaying a compressed image on one device (as in 2), and then using

crosshairs or a cursor to identify the desired areas to be displayed on

another device. Only interactive display devices can be used to perform

scrolling.

B. DISPLAY<window expression>

In displaying an image one is very much dependent upon the size and

discreteness of the display unit. This is not true of windows since a

window can be readily scaled to fit any device. The algorithm used to

display windows chooses a scale such that extremities of the window

very nearly touch the edges of the display.area. The scale and the

location of extreme points also appear on the display.

4.4 	 Statistical Facilities

The purpose of the statistical facilities is to provide an analytical

means to study and-compare images. For example, pixel values of an image

can be examined to obtain a histogram. Pixel values of a pair of images

can be correlated to construct a joint histogram. There is no limit to

the type of operations that can be included in this category. We present

several statistical operations here to illustrate the nature of the

statistical operations.

A. 	 EXHIBIT HISTOGRAM<image expression>

Pixel values of the image are tabulated to determine their distribution.

A histogram is then displayed to the selected device to show, for each

pixel value or each range of pixel values, the number of occurrences in

the image. For certain display devices, resolution may not be high enough

to indicate a precise pixel value count.

22

B. EXHIBIT IISTRIBUTION<image expression>

This command produces a list which shows the numerical count of the

pixel value occurrences for each pixelvalue. 'For example,, a distribution

can be exhibited on a line printer for studying the composition of an image.

C. 	 EXHIBIT JOINT HISTOGRAM<image expression>,<image expression>

Two images of the same size are retrieved and a frequency count is

maintained for each unique pair of values of the corresponding pixels.

A diagram is then displayed to show the pixel values of the two images,

as the X and Y axes, and the frequency count of each pair of values. For

example, on a color display device, different colors will be used to

indicate different frequency counts.

D. 	 EXHIBIT JOINT DISTRIBUTION<image expression>,<image expression>

This operation is similar to the joint histogram display except that

numerical values of the frequency counts will be exhibited.

5. 	 AN EXAMPLE

In this section-we present an example which demonstrates a relatively

sophisticated application of the IQ language. So as to emphasize concep­

tual content rather than syntax, the IQ statements have been pruned to

their bare essentials. We begin by presenting the problem and the data

which are available for its solution.

5.1 	 The Problem

We wish to determine the pixel value distribution of a certain agri­

cultural area. The region is identified by its elevation which is between

100 and 149 meters above sea level. So as to make this region readily

comparable to other similar regions, the distribution should not contain

values from the two major lakes located in the region.

23

5.2 	 Available Data

1. Three pairs of images: (AI,Bl), (A2,B2), and (A3,B3). Each

pair, considered as a unit, contains the region in question. An

atmospheric haziness has caused portions of each pair to be somewhat

lighter than the expected grayness. Fortunately, this lightness has not

affected the same portions of all three pairs. The images have a range

0-255, where 0 is white.

2. A contour image C. Each pixel in the image is linearly related

to the elevation of the area represented by the pixel. Elevation is incre­

mented in steps of 25 such that pixel value 0 represents 0-24 meters, 1

represents 25-49 meters, etc. Therefore, elevations between 100 and 149

meters are represented by pixel values 4 and 5. The region to be studied

is wholly contained in this image.

5.3 	 The Solution

We begin by joining the component images of each pair:

LET 	C1 = JOIN(Al,B1)

LET 	C2 = JOIN(A2,B2)

LET 	C3 = JOIN(A3,B3)

Here we have assumed that the A-images are dominant. This assumption is

valid since pixel values in overlapping areas are nearly identical.

The next step is to combine these three images in a way such that

effects of atmospheric haziness are eliminated. This is accomplished by

comparing the three images and choosing, for each pixel area, the greatest

pixel value (i.e., the darkest). This requires an overlay function:

DEFINE OVERLAY MAXPIXEL

MAX: (0,255) x (0,255)

24

We can now define the desired image:

LET D = MAXPIXEL(Cl,MAXPIXEL(C2,C3))

The areas which contain the lakes must now be identified. This might

be accomplished in terms of absolute coordinates by referring to a hand­

drawn map. But for the sake of example, let us try another approach.

Assume that past experience has shown bodies of water to have pixel values

in the interval 75-90. A color function can be used to accentuate this

interval:

DEFINE COLOR BLUELAKES

(0,74) + YELLOW

(75,90) - BLUE

(91,255) + RED

Using the color function we display the imiage D:

DISPLAY BLUELAKES(D)

We assume that the two lakes are now identifiable as blue areas on

the screen. The cursor can now be used to define two windows:

DEFINE WINDOW Wl

(The first lake is identified in cursor mode.)

DEFINE WINDOW W2

(The second lake is identified in cursor mode.)

Note that the window containing both lakes is defined by UNION(Wl,W2).

Let us now turn our attention to the contour image C. Pixel values

4 and 5 identify the agricultural region of the specified elevation. The

following transformation allows the contour image to be converted to a

Boolean image.

25

DEFINE TRANSFORM TRI

(4,5) - (l,1)

DEFAULT: 0

The Boolean image can now be expressed as TRI(C). By multiplying

this image pixel by pixel with the image D, all pixels not at elevation

100-149 will be zeroed. This involves the overlay function which we now

define:

DEFINE OVERLAY MULTIPLY

MULT: (0,1) x (0,255)

The image defined by MULTIPLY(TRI(C),D) contains zeroes for all areas

not lying at the appropriate elevations. Let us simplify by

LET F = MULTIPLY(TR1(C),D)

The last step is to remove the pixel values contained in the lake

areas. This is accomplished by masking the exclosure of UNION(Wl,W2)

onto the image F. The required pixel value distribution may then be

obtained by

EXHIBIT DISTRIBUTION(MASK(UNION(Wl,W2),F)

6. VIABILITY OF THE IQ LANGUAGE

By its very nature as a language of predefined procedures, the IQ

language is not complete, that is, it is not capable of solving every

problem. While one user, for example, may find the built-in and generic

functions to be more than adequate, another user may find these same

functions insufficient and restrictive. This directs our attention to

an important feature of any language, to wit, the readiness with which the

26

language can be adopted to meet new requirements. Within the area of

programming languages one needs to search no further than RPG and FORTRAN

o 	 find examples of languages which do not have this adaptiveness.

In the last paragraphs of this paper we shall examine several natural

and obvious extensions to the IQ language, showing, in each case, that

these can be incorporated within the language without a disruption of

the language's general structure. In this way we present a persuasive

(as opposed to conclusive) argumentation for the language's adaptiveness

and viability.

The most obvious extension of the language is the addition of new

functions. Since the language is readily compatible with functions

which return windows or images, this type of language extension poses no

difficulty. Plausible new functions might be the following:

* A zoom function which uses an averaging technique rather

than a pixel selection.

* A generic transformation function which is based upon pixel

distribution quantiles.

* Join, union, and intersection functions which permit more

than two parameters.

\Also within the area of functions one might consider a macro

funceion facility which permits the redefinition of composite functions.

In this manner Zl(CLIP(W1,OVERLAYA(Il,I2))) might be defined as MACROl(WI,Il,I2).

Another variation of the macro function might permit function names to be

used as parameters. In any case, since the macro function returns the same

data item as the original composite function, this extension of the

language can be readily admitted.

27

As a final example let us consider the implementation of a new data

item, the image plane. By supporting this type of item, the user may

request that a collection of images be fitted together to form a plane.

The construction of a plane can be viewed as an on-going process where

the user may at any time reference the plane as the basis for the definition

of an image. This may be done by specifying the area of the plane which

corresponds to the desired image. To implement the image plane three

commands are required, a command which defines a plane, a command which

includes an image within a plane, and a command which defines an image as

a portion of a plane.

Although relying on brief explanations, these examples indicate

several general approaches to the further development of IHDB. We

have shown how these developments might be handled within the IQ language,

and on the basis of these-examples we submit that the IQ language offers

a sound foundation for the continued development of an interactive image

query language.

28

REFERENCES

[13 C.J. Date An Introduction to Database Systems, Addison-Wesley,
Reading, Massachusetts 1975.

[2-1 D.M. McKeown, Jr. and D.R. Reddy A Hierarchical Symbolic Represen­
tation for an Image Database, Proceedings of the Workshop on
Picture Data Description and Management, April 21-22, 1977,
IEEE, pp. 40-44.

[3] A.L. Zobrist Elements of an Image-based Information System,
Proceedings of the Workshop on Picture Data Description and
Management, April 21-22, 1977, IEEE, pp. 55-60.

[4] S.K. Chang, N. Donato, B.H. McCormick, J. Reuss, and R. Rocchetti
A Relational Database System for Pictures, Proceedings of the
Workshop on Picture Data Description and Management, April
21-22, 1977, IEEE, pp. 142-149.

[5] T. Kunii, S. Weyl, and J.M. Tenenbaum A Relational Database
Schema for Describing Complex Pictures with Color and
Texture. Proceedings of the Second International Joint
Conference on Pattern Recognition, Lyngby-Copenhagen, Denmark,
August 1974.

[6] IBM Manual. Information Management System/360, Version 2,
System/Application Design Guide (Program Product).
Form SHO-0910, 1975.

[7] Honeywell Information System. Integrated Data Store Reference
Manual, Order No. BR69, 1972.

29

IQ - IMAGE QUERY LANGUAGE

Syntax

The rules below describe the major constructs of the IQ language.

Prompting sequences for each query statement are not included here.

For example, when a DISPLAY is specified, the user will be asked the

question "DEVICE?" as well as other parameters directly related to the

device. Also excluded from the description is the semantic rules

defining the meaning of a query statement. A statement may be syntac­

tically correct but not executable. For example, T(C(Il)) for an image

Ii, color function C and transform function T is not meaningful, since

the color function maps to symbolic color names. In this case, an error

message will be directed to the user.

In the following description, e is used to denote an empty sentence.

Capital letters are system keywords.

<query program> + <program body> STOP

<program body> 4 <statement><program body> I E

<statement> + <definition statement> I <let statement>

I <display statement> I <statistics statement>

<file maintenance statement> I <control statement>

<definition statements DEFINE WINDOW<window name>

DEFINE TRANSFORM<transform name>

DEFINE COLOR<color name>

DEFINE ZOOM<zoom name>

DEFINE OVERLAY<overlay name>

<let statement> 4 LET<image name> = <image expression>

I LET<window name> = <window expression>

<display statement> + DISPLAY<image expression>

I DISPLAY<window expression>

30

<statistics statement> + EXHIBIT HISTOGRAM<image expression>

EXHIBIT JOINT HISTOGRAM<image expression>,

<image expression>

I EXHIBIT DISTRIBUTION<image expression>

EXHIBIT JOINT DISTRIBUTION<image expression>,

<image expression>

<file maintenance statement> -+<save command> I <purge command>

I <spotlight command> j <list command>

I <activate command> <tape command>

<control statement> - <restart command> I <journal command>

<save command> SAVE<name list>

<purge command> + PURGE<name list>

<spotlight command> + SPOTLIGHT<name list>

4<list command> LIST DIRECTORY

<activate command> - ACTIVATE<name list>

<tape command> + READ TAPE WRITE TAPE

<restart command> RESTART

<journal command> + JOURNAL NO JOURNAL

<image expression> - JOIN (<image expression>,<image expression>)

MASK (<window expression>,<image expression>)

CLIP (<window expression>,<image expression>)

<color name> (<image expression>)

<zoom name> (<image expression>)

I <overlay name> (<image expression>,<image expression
I <image name>

<window expression> * UNION (<window expression>,<window expression>)

I INTERSECT (<window expression>,<window expression>)

31

x,(<window expression>)

I <window name>

<name list> + <data item name> <data item name>,<name list>

<data item name> + <image name> <window name> I <transform name>

I <color name> j <zoom name> I <overlay name>

<image name> <ident>

<window name> + <ident>

<color name> <ident>

<transform name> - <ident>

<zoom name> + <ident>

<overlay name> + <ident>

<ident> + a character string within a fixed length

The IMBD system distinguishes between permanent and temporary data

files (images, windows, and functions). When a user initiates a session,

no data file is available to him unless he activates the files with the

ACTIVATE command. Although not presently implemented, access control

and password verification can be incorporated in the ACTIVATE to avoid

unauthorized use of files. At any time, the user can access all temporary

files he has created and all permanent files he has activated. The system

maintains a directory of active permanent files and temporary files.

RESTART command can be used to clear the directory and restart the session.

All conversation between the user and the system can be recorded if the

JOURNAL command is issued. NO JOURNAL clears the journal system.

REPORT II

IMPLEMENTATION OF THE IMDB SYSTEM

33

This documentation details the IMDB software implemented on a

PDP-l1/45 computer system running under RSX-llD operating system. Design

principles and major concepts of the IMDB system have been presented in a

separate paper [1,2]. The details of the query language was also described

in [2]. This documentation will provide sufficient information for main­

taining and 	 expanding the IMDB system.

The presentation is divided into five parts. We first summarize the

main concepts of the system in Part 1. Each of the other four parts explains

a module of the IMDB system. The four modules are Query Module, Device

Module, File Module and Manipulation Module.

The version of the query language described here varies slightly from

the design presented in [2]. This version is described in Part 2, Query

Module. This version has been implemented at the Data Systems Laboratory

of the NASA Marshall Space Flight Center and has become operational since

August 1977.

References:

[I] 	 Y.E. Lien and D.P. Utter, Jr., Design of an Image Database

Proceedings of the Workshop on Picture Data Description and

Management, IEEE, April 21-22, 1977.

[2] 	 Y.E. Lien and R. Schroff, An Interactive Query Language for

an Image Database to appear in the International Journal on

Policy Analysis and Information Systems, January, 1978.

(see also Report I)

1. OVERVIEW

IMDB is an image database system. The user of the system can access,

manipulate and manage imagery data in the database through the facilities

provided by the image querylanguage IQ. One objective of the IMDB design

is to keep minimal the information the user needs to know in order to manage

his data. As a result, the query language has been designed to encourage

system - user interactive dialogue. The user needs only enter the 2-character

command codes of the 24 commands. All other information can be obtained

from the user through prompting. However, a user well versed in the language

also has the option to provide parameters directly and thus bypass the

prompting sequence.

From the user's view, the IMDB system is what is described to him

through the query language. The database consists of five basic elements:

(i) 	 Image: It is assumed that an image is, rectangular in shape. If an

image is obtained through windowing operation, a background

rectangle may have to be created artificially. Each pixel in

each scanline of an image is associated with a coordinate.

The coordinate of a pixel is always in the set {0,1,2,...,

4095, * } x { 0,1,2,...,4095,* 1. The components of each

coordinate are referred to as LOQ and LAQ. A component marked

as * is a don't care. The coordinate of the left upper corner

of an image is either specified directly by the user as the

image is entered into the database, or is derived from the

parent images when this image is formed as a result of a user

specified query.

(2) Window: A window is a polygon described by a circuitous ordered set

of points. Each point has a coordinate in the grid structure

fO,l,..., 40951 x {O,l,...,4095}; As a convention, no two

edges of the polygon can cross each other. Each window also

has a closure code to indicate whether an inclosure or an

exclosure is of interest.

(3) 	transform function: Each pixel of an image has an integer value

between 0 and 255. A transform function defines a mapping

from one set of values to another set of values.

(4) 	 color function: A color function defines a mapping from a set of

pixel values to a set of color names. This is the primary

tool for the user to perform false coloring onto an image

for later display.

(5) 	 zoom function: This type of function adjusts the size of an image.

Either expansion or reduction can be specified.

The data base is simply a collection of the five types of basic

elements. The user can generate new basic elements through query commands.

Windows, transform functions, color functions or zoom functions have a rather

straight-forward and direct way to generate. For generating images, a

fairly powerful concept called image expressions is introduced. A new image

can be defined as an expression of existing images. A uniform representa­

tion for concatenating or overlapping two images, for masking a window on

an image, for coloring an image, for transforming or zooming an image, or

for any repetition or sequence of the above operations is included in the

mechanism of an image expression. Thus a user can build new images by

entering relatively simple expressions.

From the system point of view, the IMDB software is divided into four

modules: Query Module, Device Module, File Module and Manipulation Module.

The Query module interacts directly with the IMDB users. Query

commands and other device-independant parameters are received and analyzed

by the Query module. Error messages are returned to the user through the

Query module. The Query module is designed to be independent of device

types and therefore is transportable to other hardware configuration.

The Device module handles all graphic I/0 activities. It supports

color graphic devices such as Ramtek GX-100B color screen and a DICOMED

D47 film recorder, and continuous tone devices such as a Varian 4115

4
electrostatic printer/plotter. The module may request device dependent

parameter directly from the user or send error messages related to the

devices to the user. The Device module makes characteristics of graphic

devices- -transparent to- the-Query modul-; -

The File module provides an interface between other IMDB modules

and the RSX-llD Files-li file system. File retrieval and file storage are

performed by the File module upon requests from the Query module, the

Device module or the Manipulation module. The File module makes database

management essentially transparent to the residue of the IMDB system.

The manipulation module provides an interface between other InDB modules

the data manipulation commands entered by the user. (Other query commands

are either performed directly by the Query module or dispatched to the

Device module by the Query module.)

The four modules communicate through several common areas. COMMON

contains in-core file directories, buffer areas to store file header and

two scanlines of images and global flags. LUNIT stores logical unit

numbers of the peripheral devices. CURRENT records information about the

most recently displayed image, such as image name, size, LOQ and LAQ of

the north-west corner, etc.

Because of the restrictions imposed by the RSX-11D operating system,

the IMDB program was-divided into several overlay segments. The overlay

structure is described in the Task Build Files of the Documentation

package. (Appendix V).

r 1,0

37

2. Implementation of the Query Miodule.

The presentation of the query module is divided into

two chapters. The first chapter describes the details of

the revised IQ language and is written as a self contained

reference manual. The second chapter outlines the implemen­

tation of the nodule.

The reader should refer to Report I: An Interactive

Query Language for an Irage Database, for insight into and

rationale of the IQ design. The present version, as imple­

rrented in NT11A Marshall Space Flight Center, differs only

slightly from the version presented in the said report. The

differences wlll be sumrrarizEd in Chapter I.

CHAPTER I

IC Language

This chapter is written as an IQ reference manual. The

presentation rriiics that of the original report on IQ design

[Report I]. We shall skip justifications and explanations

of certain design decisions, as they have already been

covered in [Report I].

1.1 Basic Elements.

There are five types of basic elements in the iQ

language: images, windows, transform functions, color func­

tions and zoom functions. Each basic element is a file in

the IMDB system.

1.1.1 Image

An image is a matrix of pixel values along with a

header block. Since it is assumed to be a matrix, the image

is always rectangular in shape. Pixel values range from 0

to 255. The upper left corner of the image is associated

with a coordinate in *, 0, 1, ... , 4095 } X I *, 0, 1,

., 4095 1.' 1he first component of the coordinate is

referred to as the LOQ, and the second component LAQ. The

intention is that when the image is first entered into the

database, the user can assign its LOQ and LAQ relative to a

4096X4096 grid structure. The asterisk * is used to denote

"don't care". The LOG and LAQ pair is essential to binary

image operations to be presented later.

The header block of an image contains:

(a) type: This field is always filled with ' I' to

denote the type image.

(b) LOG

(c) LAQ

(d) pixels/line: It is the number of pixels in a scan line.

(e) scan lines: It is the number of lines in the image.

(f) description: It is a string of characters entered by the

user for annotation. The size is limited

to 228 characters. 8 - ­

1.1.2 Window I-

A window is a secuence cf points together with a header

block. Each point falls within f 0, 1, ..., 4095 } X { 0,

3, ..., 4095 } grid coordinates. The sequence of points

form one not necessarily convex polygon. The header block

contains the following infornation:

(a) type: The field contains W1.

(b) maximum LCQ/LAC: The maximum of LCQs of all points and

the aximum of LAQs of all points are

encoded into this field.

(c) minimum LOG/LAG: This field stores the minimum LOQ and

LAQ in a way similar to (b).

(d) closure code: The field denotes whether the window

is an enclosure or an exclosure.

(e) number of points: It is the number of points in the window.

(f) description.

1.1.3 Transform

A transform function is a rapping from { 0, 1, ..., 255

to { 0, 1, ..., 255 }. It usually consists of a

qoU

collection of subtransformations Each subtransformation is

in the form of

a - b = c where a < b

It means that the pixel values from a to b inclusive are

to be transformed into -c--.

The header block of a transform contains:

(a) type: it is always T'-.

(b) description.

1.1-:4 Color

A color function is z mapping from [0, 1, ... , 255 }

to a set of color synmbols. There are two systems of color

symbols used in the IQ language. The first one uses a 4-bit

format and consists of eight different colors: dark (D),

blue (B), green (G), red (R), cyanine (C), magenta (M), yel­

low (Y) and white (W). The user uses the one-character sym­

bols to denote colors. The other system allows sixty-four

colors and uses a 6-bit format. The basic components of

each color are still blue (B), green (G) and red (R). How­

ever each basic color has four shades. For example, 1 part

of B, 3 parts of G and 3 parts of R give a yellowish color.

The user c~n Use PICSR3 to denote this formation of color.

In general, it is hard for the user to visualize the result­

ing color from the tbree components. Hence, the user is

provided with a color tate which maps each of the sixty­

four colors to a numbe. The user cah also Use this number

to select a color.

A color function is similar to a transform function; it

consists of a collection of subtransformations. Each sub­

transformation is in the form of

a - b = c where a < b

where c is a color specification. All subtransformations in

a color function are either all in 4-bit format or all in

6-bit format.

The 	 header block of a color function consists of:

(a) type: The content is always " C"
(b),description.

1.1.5 	 Zoom

A zoom-function contains a mapping from old size to new

size and a header block. The zoom ratio is a / b where a

is the new size, b is the old size and both a and b are

positive integers.

The header block consists of:

(a) type: The content is ' Z'.
(b) new size

(c) old size

(d) description

1.2 System Functions.

There are several built-in functions in the IQ language

which can be used to create new images. These functions can

be invoked by name. They consist of JOIN, MASK, CLIP and

ten different overlay functions.

1.2.1 Join

This function pastes two images together to form a new

image, according to their LOC/LAQ coordinates. The dimen­

sions of the new image are those which are minimally suffi­

cient to contain the areas of the originals. The first of

the original images is defined to be the dominant image:

this image takes precedence when the two images overlap.

When the result is padded to become rectangular, the pixel

value zero is fillcd. ofU(VfNXIl PV. UJ

The rules used to deterrine the relative positions of

the two images are:

(a). 	 If LOQ/LAQ of the first and second images do not con­

tain * , then the two pairs of LCC/LAQ all refer to

well-defined points in the 4096X4096 grid structure.

Neighboring pixels along the same scan line differ in

LOQ by one and neighboring lines differ in LAQ by one.

(b). 	 If LOC of the one image is * while the other is

not, then the * one is assumed to have the same value

as the other one. The * for LAQs are treated in a

similar way.

(c). 	 If LOQs in both image are * , then both are treated

as zero. The * in LPQs are treated similarly.

Ooin function results in a new image and the header

block of this new image will be derived from the originals.

Description field will be empty.

1.2.2 Mask

This function masks a window onto an image to form a

new image. If the window is an inclosure, pixels interior

to the window will retain the values while exterior pixels

will be zeroed. Exclosure functions in the opposite manner.

In either case, the result is an image with the same LOQ/LAQ

and the same dimensions as the original. Again, the

description field will be empty.

1.2.3 Clip

This function is sirrilar to MASK except that the result

image has dimensions which care minimclly sufficient to con­

tain the window. This function discards those outermost

rows and columns which do not intersect the window.

1.2.4 Overlay Functions

An overlsy function takes two images and produces a new

image by performing a binary pixel-to-pixel operation over

corresponding pixels. There are ten different overlay func­

tions: ADD, SUB, U'ULT, DIV, MAX, MIN, AVG, XOR, AND, OR.

These functions perform respectively addition, subtraction,

multiplication, integer division, maxiwum, minimum, aver­

age, exclusive CR, logical PND, and logical OR. Whenever

overflow occurs (e.g., in multiplication), the result is

always truncated by taking the rightmost eight significant

bits.

The relative positions of the two images are determined

according to the rules specified in Join (Section 1.2.1).

1.3 Image Expression

A salient feature of the IC language is its capability

for specifying construction of a new image as a functional

expression of existing basic elements and system functions.

Such an expression is called an image expression. The rules

for constructing image expressions are given below. These

rules can be applied recursively.

<image expression>:

<image>

<transform> (<image expression>

<zoom> (<image expression>)

JOIN (<image expression> , <image expression>

MASK (<image expression> , <window>)

MASK (<window> , <image expression>)

CLIP (<image expression> , <window>)

CLIP (<windbw> , <image expression>)

<overlay function> (<image expression>,

<image expression>)

In the above rules, <image> and <window> refer to an

image file and a vindow file respectively. The symbol

<overlay function> refers to one of the ten system overlay

functions. Since the rules can be applied recursively, a

sophisticated image can often be specified as one single

image expression. For example, JOIN(AND(X1(Tl(MASK(Wi,

I I °

11))), X2(32)), 13) is a legitimate image expression if

X1 and X2 are zoom files, 11 is a transform file, I1, 12,

and I3 are irage files, and W1 is a window file.

Note that color functions are not included in the image

expression rules. Strictly speaking, a colored image only

contains syibolic color narres as its pixel values and hence

it is not logical to perform any other operation on it.

Nevertheless, the internal representation of a colored image

is no different from a regular image and, if the user

chooses to do so, a colored image may be used to replace

<image> in an image expression without any system error.

The interpretation of the result is up to the user.

1.4 Devices

The graphics devices can be and can only be referred to

by symbolic names in a query session. The user does not

have to know any particular logical or physical device

numbers used internally in the liDE system.

The devices supported by the present version of the IQ

language and their corresponding device names are:

(a) 	 Two color Ramtek screens: Rl(left) and R2(right), with

a trackball attached to Rl.

(b) 	 One Tektronix 4014-J terminal: PTK

0qfr

(c) One user comrrend terminal: UT

(d) One line printer: LP

(e) One Dicomcd film recorder: FR

(f) One Varian printer/plotter: PL

(g) Two magnetic tapes: TO and Ti

A future expansion will include keyboards and an addi­

tional trackball attached to the Ramtek system. The Tek­

tronix terfrinal is only used as an alphanumeric CRT,

although future expansion can take advantage of its graphic

capability.

1.5 Compands

The IC language is a command oriented query language.

Each database command activates one specific operation. A

comn'rand consists of two parts: coinand code and parameters.

A command code is always a two-cbaracter name followed by a

separator (blank, corra or carriage return). Parameters may

be supplied along with the command code, or deferred until

answering system prompted questions. Note that all parame­

ters way be entered through prompting. Therefore, the

minimal information needed to be entered by the user to ini­

tiate a command will be the 2-character command code.

The commands are grouped into five categories: defini­

tion, display, statistics, file manipulation and control.

1.5.1 Definition Commands (5)

These commands are used to create new basic elements or

equivalently new files.

1.5.1.1 Build Irrage (BI)

The form of a build image command is

LI <new image name> = <image expression>

or EI <ncw image name> , <image expression>

1.5.1.2 Build Window (BW)

The form of this command is

BW <window name>, <closure>, <mode>, <device>

The <closure> code can be EX or EN for exclo­

sure or enclosure respectively. The default value

is EN.

There are two nodes in window construction: C for

cursor and A for absolute. The default mode is A. In

A mode, the user types in LCQ/LAQ pairs of the window

vertices from the user command terminal. After the user

enters

W WI,EN,A

The system will repeat the question until all points

are entered:

165

ENTER COORDINATES(ONE POINT PER LINE WITH X AND
Y SEPARATED BY ,):

The Question can be escaped by a carr-iag.e retun.

In C mode, the uset indicates that a window is to

be constructed relative to an image presently displayed

on <device>. Since there is only one track ball

attached to Hl, it is only meaningful to specify R1

as the <device>. The user can move the cursor on Ri

and select a point by hitting ENTER key of the track

ball. To end the construction of the window, the user

hits VISIBLE (to make cursor invisible) and ENTER. In

C mode, the LOQ/LAQ of the selected points are calcu­

lated from the LOQ/LAQ of the displayed image. Whether

the image is displayed in its true form or in a

compressed form, the calculation will produce actual

positions of the points relative to the image.

1.5.1.3 Puild Transform (BT)

The form of the ET command is

BT <transform nare> , <subtransformations>

Each subtransformation is in one of the two forms:

lower bound - upper bound = new value

old value = new value

The right side of a subtransformation is res­

tricted to be one single value. All unspecified

intervals can be assigned to one default value

upon 	 answering

NUEBER FOR UNLEFINED INTERVALS?

1.5.1.4 Euild Color (BC)

The form of this command is

BC <color name>,<format>,<color transformations>

The color format can be 4 or 6 for 4-bit or 6-bit for­

mats respectively. Each color transformation is in one

of the two forrs:

lower boun. - upper bound = color symbol

value = color symbol

Lerc 	 the color symbols referred to the symbolic forms of

color representation as described in Section 1.1.4.

Again, all unspecified 1ntcrvals can be assigned to one

default color upon answcrang:

CCLOR FCh U1DEFINED INIERVPLS?

1.5.1.5 Build Zoom (EZ)

This comnand has the form

BZ <new zoom name> , <scale ratio>

The <scale ratio> is Always NEb/OLD.'

5o

1.5.2 Display Coumands (3)

1.5.2.1 Erase (ER)

The form of this coammand is

ER <list of devices>

where <list of devices> are device names separated by com-

Was. The effect of erasure depends on the device specified.

For RI or R2, the screen is erased. For LP, a new page of

paper is moved under the print head. For PL, the command

also slews the paper. Al] other devices are nor permitted

in ER command.

The future expansion will include a capability to

advance the roll film in the device FR.

1.5.2.2 Exhibit Pixel Area (EP)

The form of this command is

EP <input device> , <output device>

This command is used to examine the irage pixel values of a

rectEngular area of no wore than 20X20. The image is

presently displayed on <input device>. The pixel value

array is to be displaycd en <output device>.

The user is also required to specify

(Q) The dirns~ons of the rectangular area ­

nuyber of lires and number of pixels.

(b) The uppcr-left corner of the area through the

track ball.

This command is only meaningful when <input device> is RI.

The <output device> is restrictc to be U!, LP, RI or R2.

1.5.2.3 Display (E?)

The form of DI cormmn is

DI <image nare>,<devicc>,<color function name>

or DT <window namc> , <evice>

The <color function ncer> is optional.

For window, display, the device can only be R! or P2.

74'displayed output 6eprnCs on the existing contents of the

sclected screen. If the screen is blank, the window will be

scaled properly so Lhat it can be displyee entirely on the

screen. After the window polygon is drawn, the system will

ask

DC YOU WISH THE PCI.TS LAPLLEL VI2H PIXEL/LiNE CCCRDINATES?:

S'Y' answer will causc the coordinates displayed along with

the polygon.

If the selected screen Las Fn image displayed, the win­

5" 1

dow will be scaled according to the displayed image and the

window polygon will be positioned correctly on the irtage so

that the coordinates of the image and the window are con­

sistent. A window may be too large to fit on the image. If

so, the conurand will be aborted and error signaled.

In both cases of window display, the color in which the

window is to be displayed will be solicited from the user.

Image display is much more involved than window

display. If the user specifies a color transformation, it

will be applied to the image to produce a colored image.

The colored image can later he saved as a regular image

file. The sequence of events can be described as the fol­

lowing procedure:

Step RI.

If the device is FR, goto Fl.

If the device is PL, goto Pl.

If the device is not Rl or R2, then error return.

Step R2.

(The device is R1 or R2.)

Ask the user to select a point on the specified screen.

Let the specified screen be X and the other one Y.

(The system will attempt to display the image on the

rectangular area VILW defined by the selected point

and the bottom riqbt corner of screen X.)

Step R3.

Can the colored image fit in the area \IEW?

If yes, display the image and goto R9.

Step R4.

(The mwage does not fit in the area VIEW.)

Ask the user if iragc compression is desired?

If yes, compress the image sufficiently to fit in VIEW,

display it and then goto R5. Otherwise, display the

upper left portion of the colored image in VIEW and

gotoR9-.

Step R5.

(The corrpresse6 i-age is on X.)

Ask if the user wants to display legend.

If yes, ask the user to select legend position and to

enter legend; then display legend at the position

selected.

Step R6.

Ask if the user wants to scroll the compressed image.

Lf no-, exit.

Step R7.

(Scrolling)

Erase screen Y.

Ask the user to select a point on screen Y.

Ask the user to select the scrolling point, which is a

point in the coupressed image as presently displayed on

screen X.

The selected point on Y and its bottom right corner

define a rectangular area called SVIEW. The scrolling

point-together with SVIEV specifies a rectangular por­

tion of the colored image whose LOQ/LAQ are those of

the scrolling point and whose dimensions are those of

SVIEW. Lasp]ay this rectangular portion in SVIEW.

Step Rb.

Tsk if the user wants to scroll again?

If yes, goto Step R7.

Step 	 R9.

Ask if the user Nvants to display legend on the most

recently used screen (X if come from R3 or R4 and Y if

from R8).

If yes, ask the user to select legend position and to

enter legend; display characters entered at the posi­

tion selected.

Step RI0. Exit.

Step Fl.

Ask the user to sc]ect a point on the film. The film

has 4G96 X 4096 positions.

Step F2.

Ask the user to enter Diconed related parameters such

as magnification factor, rcsolution, intensity, polar­

ity, etc.

Step F3.

Can the colored image fit in the rectangular area

defined by the selected point and the bottom right

corner of the film?

If yes, display thc image and goto FG.

Step F4.

(The image is too largc.)

Ask the user if iragc compression is dcsared?

56 24

If yes, compress the image sufficiently to fit, display

th iwmage cnd goto F6.

Step F5.

(Display the upper left corner.)

Display the upper left portion of the colored image in

the selected rectangular area.

Step F6.

Ask if the user wants to display legend.

If yes, ask the user to select legend position on the

film and to enter legend; then display legend at the

position selected.

Step F7. Exit.

Step Pl;

The user cpn specify either 4x4 dot matrix for one

pixel or 5x5 dot natrix.

Step P2.

Calculate the number of strips required to display the

entire image. Inform the user.

Step P3.

[751

Ask the user "flow nany strips do you want printed?:".

Step P4.

Display the strips.

Step P6.

Ask if the user wants to display legend. If yes, ask

the user to enter the legen6, then display it.

Step P7. Exit.

1.5.3 Statistics Coerrrands (5)

1.5.3.1 Exhibit flistogran (EH) - - - - - A

The form is

EH <image name> , <device>

The device can only be RI or R2. The user can also specify

the color of the histogram upon answering

WHAT COLCR DO YOU WISH THE HISTOGRAM

TC EE DISPLAYED IN?

The output is a two-aimensional colored greph with horizon­

tal coordinate corresponding to pixel values and vertical

58 26

coordinate frequencies.

1.5.3.2 Exhibit Distribution (ED)

The form is similar to EH . The device can only be

LP. The histogram of the image will be calculated and

displayed as "pixel.%alue: frequency" pair.

1.5.3.3 Exhibit Join Histogram (JH)

The form is

J11 <image naire>,<jmage name>,<device>

The two images irust be of the same dimensions. The frequen­

cies of pixel vElue pairs will be calculated. The frequency

values will be partitioned into at post seven ranges as ­

directed by the user. Each range can be assigned a color by

the user. If the user chooses not to define the range or

the coloring of the ranges, the frequency values will be

equally partitioned into seven ranges and default colors

assigned.

When the joint histogram is displayed, the two coordi­

nates correspond to pixel values of the two images. The

colors of the displayed points indicate the frequency range

of the pixel value pairs.

The user is also given an option to view the magnified

joint histogram. The ragnification is by 2 or by 3.

1.5.3.4 Exhibit Joint Distribution (JD)

The form is the same as JH. The device has to be LP.

The output is in the form of "pixel value : pixel value ­

frequency" for each pair of pixel values. The output format

can either be sorted by frenuency or by pixel value pair.

1.5.3.5 Exhibit Contigency Matrix (CM)

The form of this command is the same as JH. The dev­

ice can only be LP and the images are restricted to have

pixel values between G and 7. All higher values are trun­

cated on the left. 'hc purpose of the command is to compare

two classified images to find their differences.

1.5.4 Fil -Manipulation Commands (7)

All basic elenents in the INDB systen are treated as

files. A file can enter into the database in two ways.

First, image files can be brought into the database from

tape through the use of Read Tape (RI) command, which will

be discussed in this section. Secondly, a file may be

created through the use of definition dommands (Section

1.5.1). Vc distinguish permanent and temporary files.

Files created through definition commands are all temporary

in the sense that they will be removed automatically at the

end of the oucry session unless they ere explicitly saved.

Permanent files are hose which lest through query sessions.

60.

Specifically, files brought in by RT are considered per-

Yranent.

When a user first logs onto a command terminal, a file

directory is assigned for his exclusive use. The file

directory is separated into two sections: one for temporary

files and one for permanent files. Existing database files

can not be used in any command until they are 'activated'.

Activation of a file is a process of making the file name

known to the user's file directory.

1.5.4.1 Activate (AC)

The form of this command is

AC <list of ftle names>

where <list of file names> is a list of names of existing

files sepacatc6 by commas. File names specified in the com­

irand will be entered into the permanent file section of the

file directory.

1.5.4.2 Savc (SA)

The forr is

SA <list of file names>

This command causes existing temporary files to become per­

manent. File naecs specified in the command will be moved

from the temporary file section of the file directory to the

permanent file section.

61

].5.4.3 Purge (PU)

The form is

PU <list of file names>

This command causes files in the directory, whether per­

manent or temporary, to be removed. Removal of a permanent

file also purges the file from the database.

This command is not implemented at the present time.

The user has to use PP command of the RSX-IID to remove a

file from the file system.

1.5.4.4 Modify (MC)

The form of this comnand is

MO <file name>

The purpose of this command is to allow the user to change

certain information in the herder block of the file.

The alterable fields of the heater block are listed

below according to file types:

(a) imege: LOQ,LC,description

(b) window: closure code, description

(c) transform: description

(d) color: description

(e) zoom: new size, old size, 6escription

The above rules apply to only permanent files. Tem­

porary files con also be modified in exactly the same way

except that they do not contain the description field.

1.5.4.5 List Directory (LD)

This command has the form

LD <device>

where <device> can be UT or LP. Contents of the file

directory will be printed at the specified device. The file

directory contains all information stored in the header

block about the files activated or created by the user. (In

the actual implementation, en activated permanent filc has

its header inforiration stcred both in the physical file as

well as in tie directcry; and a temporary file does not have

a header in the physical file, its header information is

stored only in the directory.)

1.5.4.6 Spotlight (SP)

61

The forT is

SP <file name>, <device>

The <device> can be LP or U1 for image, window, transform or

zoom files. It can be LP, UT, R], R2 or FR for color files.

This command performs P similar function as LD for a

single file: it displays header information of the file.

However, if the file is a transform or a color file, SP

also displays the definition of the mapping in the file.

That is, it lists all the subtransformations in the file.

The most interesting use of SP is to spotlight color

function onto a graphics device (R1, R2 or FR). It will

display, for each subtransformation, the range of pixel

values and F small colored square to indicate the actual

color of the subtrensforration. If SF is used on LP or UT

for a color function, symbolic names of the colors will be

displayed.

1.5.4.7 Read Tape (RU)

The form of this command is

RI <device>

The device is either TO or T1, indicating one of the two

tape drives. The options available to the users are:

fa) 	 to read any file on the tape;

(b) 	 to rna-d any number of files on the tape;

(c) 	 to edit a tape file by specifying the starting and the

ending line numbers and the starting and the ending

pixel numbers;

(d) 	 to read multi-channel composite files up to 16 chan­

nels: for each channel, the user can indicate whether

the image for this channel is wanted or not, and if

wanted, a separate file will be created. In general,

an n-channel image can be moved into the database and

becomes n+l separate files - one for each channel and

one for the original n-channel file.

1.5.5 Control Commands (5)

These commands are special facilities built into the

IMDB system to ease the user-system interaction.

1.5.5.1 Stop (ST)

The 	 form is simply

ST

which ends the query session, causes all temporary files to

be removed and is the only command for the user to log off

the system gracefully.

1.5.5.2 Restnrt (RE)

The 	 form is

RL

which performs the similar function as ST except that the

user is not logged off and is assigned a new file directory

with no entry in it. (The old directory is erased.)

1.5.5.3 Help (HE)

The form of this comrrand is

HE <device>

where the <device> can be LP or UT. It lists all IQ

commands with explanations at the specified device.

One of the goalF of the 1C design is to minimize the

information the user bs to remembet in order to use the

IMDB system. In fact the user does not have to remember the

forms of the coirnands. The user can obtain assistance in

two ways:

(a) 	 To consult the system for the command format and its

function by typing HE, or

(b) 	 To use prompting to enter command parameters. (The

absolute mnimum needed to initiate system activity is

a 2-character command code.)

1.5.5.4 Journal (JOC) End No Journal (NJ)

The forms of these commands are

JC <file name>

NJ

The conversation between the user and the system - in gen­

eral, it is whatever shown on the UT terminal - can be

recorded verbatim in a journal file. The <file name> is the

name of the journal file. If the file does not exist prior

to the JO command, a new one will be created bearing the

name given by the user. If the file is an old one, new

journal information will be appended at the end. The com­

mand NJ is used to turn off the journal activity. With

these two commands, the user can specify journal mode or no

journal mode at any tine during the query session, switch

between two modes any number of times, create several jour­

nal files and disperse journal information in any way the

user desires. The only restriction is that no two journal

files can be active at the same time, one has to be closed

by NJ before the other can be nan'ed in JC.

The contents of the journal files can be printed at the

line printer through PIP facility of the RSX-lID.

1.6 Log On

The Jog-on secuence to start the IMDE system is very

snrple. If the user is a legitimcte user of the RSX-1ID

system, that is, the user hcs & legitrante UID, the follow­

ing sequence can be followed to start the IMEE system:

Step 3. Turn on a terminal.

Step 2. Type in Control C to get

MCF>

printed on the terminal.

Step 2. Type in

HEL [UIE]

so that the operating syster

can v olDte whether UID is legal.

Step 4. If UID is legal, the system will

come back with

MCF>

then enter "ICL" after MCR>.

At this time the log-on process is completed, the IMDB

is activated and a message will be printed:

* WLLCCME TC THE ID IEYS2EN

Any permassiblc IC ccrmrens can be entered after the second

asterisk. In summary, the entire log-on sequence will look

like the following if the user has the access right:

(Control C)

MCR> HEL[UTBI

MCR> IQL

* 	 WELCOME TC THE IMDB SYSTEM

* (ready to accept IQ command here)

? blank file directory has also been created for the

user.

1.7 Special Notes

Some conventions and special cases not covered in the

prcvious sections are covered here:

(a) 	 A window is assumed to be a simple polygon. No two

-edges, 	 of the polygon can cross each other, of course,

other then meetipg end to end for neighboring edges.

The system does not check the crossing of edges and the

user is responsible for the correctness of polygon for­

motion.

(b) 	 Whenever a Question is asked the user, a carriage

return is taken as VO, O(zero), or the default answer,

depending on the nature of the question.

(c) 	 The operating system PIP facility can be used to copy

files from tape to tape or from disk to tape, to purge

files from the data base, and to rename files in the

date base. The INEB system is huilt on top of the

FILE-li file system and any file operation available in

the operating system can be applied to INDE files.

(d) 	 A 'Carriage Return' as an answer to the question 'DEV-

ICE?' will cause the list of all permasssible device

names to be printed At UT.

Ce) 	 The reserved words in the IC language are JOIN, MASK,

CLIP, MULa, DD, SUE, DIV, NAX, IVC, AND, XOR, MIN and

OR. These can not be used as a file name of any file.

1.8 Variotions fror Origina] FC Design

The differences between the version of IC as imple­

rented and described in this manual and the one in [Report

I] can be summarized as follows:

(a) 	 This -version uses 2-character commend code and the ori­

ginal version does not.

(0) 	 This version does not hFve window union or intersection

capability.

(c) 	 New comrands are added in this version: ER, EP, CM, MO,

and HE.

(d) 	 Write Tapr corrand is not included in this version.

(e) 	 Overlay functions are not treated as generic functions

in this version. That is, only ten system built-in

overlay functions are allowed and the user can not

'70

define his own.

a

new name (in Bi) before it can be used in DI. In the

original %ersion LET and DEFINE are distinguished. In

this version they are combined into build commands.

(f) Image cxpressions hove to be evaluated and assigned

(g) 	 The original version assumes a longitude/latitude coor­

This version assumes a 4096 X 4096 grid
dinate system.

coordinate system. The imagcs are no longer associated

with geographic position.

11

CHAPqER II

Irplementation

The 	query module is a collection of 31 subroutines.

The design of these routines follows strictly two princi­

ples: the query rodule must be independent of the graphics

devices and the query module must be independent of the

operating system. As such, the only functions performed by

the cuery module are to extract parameters from the user

command line, to solicit missing parameters from the user

through prompting end to dispatch tasks to device module,

menipulation module or file module. The main activity in

the query module is to perform lexical analysis.

2.1 Subroutine Structure

The subroutines ere organized in such a way that there

is one subroutine for each coinnand. These routines perform

the follouing functions:

(a) 	 Check if the parameters needed for the command are

missing - if they arc nissang, ask the user to enter

them, otherwise, extract the parameters from the com­

mand 	 line.

(b) 	 Check the validity of the parameters - if any error is

detected, inform the user and ask for the parameter

g n.

(c) Callilower lc\'el modules to execute the command.

Sometimes, a parameter can be related to characteris­

tics of a graphics device. For example, resolution of the

Dicomed film recorder or dot matrix pattern of the Varian

printer. The query irodule is restricted to handle only

device-independent parameter.

The following routines correspond to the basic commands

in IQ:

I-si

(a) ACTVAMi AC

(b) PUILDC EC

(c) BUILDi BI

(d) EUILET BT

(e) EUI LDW :EW

(f) EUILDZ FZ

(g) DISPLA EI

(h) ERASE ± ER

(i) EXHIED ED, EH

(3) EXHIEP EP

(k) FIt']SE : T

(1) HELP lIE

(m) J0ND JD, J, C.

(n) JOURNU 3c

(o) LISTET LB

(p) MNOLI FY MO

(q) NCJOU :,<J tXIAA &,UC [S

(r) READIA RT

(s) SAVEST SA

(t) SPOLIf SP

On top of these routines there is a main prograir seg­

went which perforws the brenching upon detection of the com­

wand codes listed above, or restarts if the command code is

RE.

Commonly used by these routines to perform lexical

74

analysis are a set of subroutines which parse the input

perameters character by character. We shall discuss them in

the next section.

2.2 Analysis Subroutines

The routines used to manipulate and analyze the input

character stream to obtain parameters are presented in this

section.

2.2.1 COMPRE

This routine compresses a character string to get rid

of blanks.

2.2.2 COPUT

This routine converts a string of digits in ASCII code

to an integer numeric value. If the input string does not

represent an integer, an crror flag will be signaled. The

routines in Section 2.1 always read the parameters entered

by the user as character strings, that is, in FORTRAN A for­

mat. If a parametcr is expected to be a number, it will be

converted by calling COMPUT.

2.2.3 DEVICO

This routine asks the cuestion 'DEVICE?' and compares

the user's answer against the list of permissible device

names. A Carriage Return to the question will cause the

list of device names to be printed at UT.

75

2.2.4 ERROUl

This is the routine useC to relay en error message to

the user. The messages are usually generated as a result of

inappropriate parameters detected during lexical analysis.

2.2.5 EXPRES

The lexical tokens are grouped into eleven classes.

The classes are:

Class 1: System functions other than

MASK or CLIP

Class 2: MASK or CLIP

Class 3: Transform function or zoom function

Class 4: image

C]ass 5: Image expression

Class 6: Window

Class 7: Right perEntbesis

Class C: Comma

Class 9: File narc error (file not

activrtoe or nonexistent)

Class 10: File type crror

Class 11: End mark of input string

This subroutine produces a list of class numbers from a

string of tokens in an irnage expression. The class number

list is stored in a stack. The tokens representing file

26

ncmes are stored in z separate stack. Eoth stacks are then

passed to another routine SYNTAX for parsing the syntax of

an image expression.

2.2.6 GETTOK

This subroutine actually performs lexical analysis. It

takes a string of characters, presumably representing a com­

mand line, and produces one token for each activation.

Repeated call to this routine can generate a complete list

of tokens.

2.2.7 GETYPE

This routine obtains the file type from the file direc­

tory for a given file name. The file name is usually passed

as a token to GETYPE.

2.2.8 NAMEQ

The routine asks the user to enter a file name. The

actual question depends on the type of the file. It may ask

file names for im'ge, window, transform, color zoom or

unspecified files.

2.2.9 PACK

this routine eliminates the blanks in an input string

and returns the number of nonblank characters in the input

string.

2.2.10 SYNTAX

This routine takes token class numbers and file names

passed from EXPRESS anC produces a poestfix representation of

an image expression. The postfix forr can be written into

the database as a file (of type ' E') and later be con­

verted to a real imae. These two operations are performed

by routines WTEXPF and XINTRP of the file module and manipu­

lation module respectively. The activation of WTEXPR and

XINTRP takes place in EUILDI.

2.2.11 SYSFUN

This routine checks if the user uses a reserved system

function name as e file name. The reserved names are JOIN,

MASK, CLIP, NULT, ADD, SUP, DIV, MAX, AVG, AND, XOR, MIN,

and OR.

'~46

IMPLEMENTATION OF THE DEVICE MODULE

3.1 Chapter I, Introduction

During the past few years there has been an increasing interest in

computer graphics. Computer graphics systems design, data structures,

languages, user interaction and uses have been discussed and researched

to a great extent. Most of this research has been restricted to a few

specialized applications involving either vector graphics or image

graphics. In vector graphics dots, lines, surfaces or solids are

combined to form pictures. Various transformations on pictures such

as rotation, translation, clipping and scaling may be performed. [11

Image graphics, on the other hand, deals with images digitized from

actual physical data such as aerial or satellite photographs or maps.

Complex algorithms for processing such images have been developed, but

emphasis of most of the prior work has been in image enhancement, image

preprocessing or classification. [21 . For instance, images are processed

to cut down on blurring, jaggedness, and other undesirable features.

Most hardware used in image graphics operates according to the

principle of raster scanning. An image is treated as an array of

spots. Each spot is called a picture element (pixel). A horizontal

line of pixels is called a scan line. Each pixel has a value which

reflects the brightness or color of the spot in the original image.

The pixel values may have specific meanings in the user's application.

For example, a pixel value in a classification map may indicate the class

number of the pixel. The raster scanning concept presents a difficulty

when a line or text is to be displayed. Line segments must be converted

by computer to raster information, which will then be transmitted to the

display hardware. It often requires extensive central processor time

to perform the conversion and large memory space to store the scan lines.

This report-describes the design principle and implementation of a

software package which involves both vector and image graphics. The

package is an integral part of a larger software system called the Image

Database (IMDB) system.[32 The IMDB system is designed to support image

editing, transformation, storage and display. Essential to the operation

of the IMDB system is the ability to display images, vectors and

text information. The software-subsystem

presented in this report, called the device module (DM) of the IMDB

system, performs these display functions on several different raster

graphic devices. In addition, the device module performs several

statistical computations, with the results appearing as listings or

in graphical form.

1.1 	 Overview of IMDB Design

Project Delta, a research project to design and implement an

image database system, was begun in January of 1977 at the University

of Kansas. The project was motivated by a need to manage imagery data

produced by NASA's Landsat program. Landsat images can be utilized in

many different areas including geography, geology, cartography,

meteorology, oceanography, agriculture, forestry, urban planning,

pollution control, energy resources discovery and allocation, and

military reconnaissance. But before experts in any of these disciplines

can economically and efficiently access the Landsat information, a

system must be developed so that a specialist in the area can analyze

the data without having extensive knowledge of computer programming or

image processing. It is also desirable to have a single system that

can be used by specialists in all of these areas.

The goal of project Delta was to design a graphics system which

allows the user to view a desired digitized image and perform various

operations on the image in order to obtain information helpful in

research or problem solving in the user's field. Operations supported

by the system include image display, false coloring, clipping and

windowing of images and transformation of images, as well as several

statistical operations.

The final product of the project is the image database system

called I1DB. The user can access the database through an interactive

query language called IQ. When a user enters a query statement he

specifies one or more files and a database operation to be performed

on the files. The database consists of five types of files; image,

window, color, transform and zoom. A window file contains coordinates

of points defining a window polygon. A window is used for specifying

the area of interest in an image. A color file, which is used for

so

highlighting various properties of an image, specifies for each pixel

value the color value to which it should be transformed. Transform

files are similar to color files in that a new pixel value is specified

for every prev-ious- pixel value- A zoom file contains two numbers which

form the ratio of new image to old image size for a compressed or

enlarged image.

The tasks of the image database system are grouped into four

modules; query module, manipulation module, file module and device

module. Figure 1.1 shows the relationships between the four modules.

Each directed line signifies that routines in one module call routines

in the module to which the arrow points.

Query

Module

Manipu­

lation Device

Module Module

File

Module

FIGURE 1.1

The query module has four main tasks. First, the query module must

identify the database operation to be performed. It must also identify

the file or files on which the operation is to be performed and check

that the file type and requested operation are compatible. A third

task of the query module is to interact with the user and thereby obtain

information necessary for carrying out the requested operation. The

8(

fourth task of the query module is to coordinate the other modules.

When using the system, the user inputs a command stating what

action or operation he wishes to have performed. The query module

then parses this input, asks the user questions as necessary,

occasionally performs calculations, and then calls the correct

subroutine in one of the other modules. The query module must be

responsive to errors occuring at any level, and must instruct the

user as to what to do when an error appears.

The manipulation module executes operations such as mask, clip,

join, overlay, transform and zoom. When a new image is created by the

user, it is expressed in terms of a sequence of these operations on

existing files. The manipulation module interprets the operation

sequence and constructs the image.

The file module manages storage and retrieval of image scan lines,

window vertices, and color or other transform tables. All of the

physical input/output operations necessary to perform the file manage­

ment are handled through the operating system.

Display and listing functions are performed by the device module.

These functions include displaying color images, windows, histograms

or color tables on raster graphic devices and listing statistical

information on character oriented devices such as the line printer and

CRT terminals.

Responsibility for the design and implementation of each of these

modules was assigned to one person. Managing the project in this way

allowed each person to concentrate on a particular aspect of the problem,

yet frequent discussions permitted a sharing of ideas and theories and

also gave each person an understanding of the overall project. In the

initial stages of the project this separation was also important as it

permitted project members with varying amounts of experience and time

to work at a pace suited to them.

250

1.2 	 The Device Module

Design of the device module involves consideration of two major

tasks. On one hand, various database operations require graphic display

or alphanumeric listing. On the other hand, devices of various types

-and-with-var-ying capabilities-must be supported-.------­

1.2.1 Database Operations Supported by the Device Module

Among the database operations supported by the query language

IQ [41, ten depend on the device module for input or output. Each of

the operations supported by the device module falls into one of four

categories.

a. 	 Definition Operations

Build window (BW) is the only definition operation which

relies on the device module. The user may specify window

vertices through a graphical input device and each vertex

point will then be displayed through graphical output.

b. 	 Control and Utility Operations

Spotlight (SP), which describes the contents of a given

file, requires alphanumeric output and, in the case of

color files, may also use graphic output.

c. 	 Display Operations

The device module is responsible for all of the display

operations which include window display, image display,

text display (in DI), erasure (ER) and exhibiting pixel

area (EP).

d. 	 Statistical Operations

A variety of statistical operations, all of which require

either graphical or alphanumeric output, may be specified

by the user. These operations are exhibit histogram (EH),

exhibit distribution (ED), exhibit joint histogram (JH),

exhibit joint distribution (JD) and exhibit contingency

matrices (CM). (-i-,L, 1'1\j I

1.2.2 Devices supported by the Device Module 	 r
The IMDB system has been implemented for the hardware configuration

located in the Data System Laboratory of the NASA Marshall Space Flight

Center in Huntsville, Alabama. The major components of the system are

shown in Figure 1.2.

PRINTER

/ JFLM
RECORDER COLOR T.V.

USER PDP 11/45 nfRICOMED C

TERMINAL (128 K bytes) /

FGRAPHISr,.ITERMINAL
I RAMTEK " - B&W T.V.

qxfi30B) I

PLOTTER C .VLO

'I1S.. . ,(VARIAN~STATOS R .V

DISK 14115)...J

MAGNETIC STORAGE

(600M bytesY-
TAPE

FIGURE 1.2

The Ramtek GX-100B system is a raster graphics device with two

19 inch color monitors, one 17 inch black and white monitor and a

trackball. Each screen surface consists of 256 by 256 individually

addressable points, each of which may be assigned any of the eight

colors red, green, yellow, blue, magenta, cyan, white or dark.

The Dicomed D47 film recorder produces either black and white

or color photographs. The film, either standard roll film or polaroid

film, is considered to be a matrix of 4096 by 4096 points. Each point

in the matrix can be assigned an exposure value in the range 0

through 255 for any one of three color filters or a neutral filter.

The Varian 4115 electrostatic printer/plotter is capable of

plotting 1408 points across each line on a strip of paper 14 7/8

inches wide. Each point is either black (printed) or white (blank).

Any number of lines may be drawn.

The line printer has the standard format of 132 characters per

line. Device module output may also appear on the user terminal,

which may be one of several available hard or softcopy terminals.

All of the devices mentioned above are attached to the

Input/Output bus of the PDP 11/45 system. I/0 commands can be issued

to the devices through the operating system RSX-llD. The commands

relevant to the device module will be explained in chapter four.

1.2.3 Database Operations and Associated Devices

The two major concerns of the device module, operations and

devices, must be integrated to form a system capable of producing

whatever output the user desires and on whichever device he wishes.

Figure 1.3 shows the relationships between the database operations

and the devices on which they may be displayed.

LINE

RAMTEK DICOMED VARIAN PRINTER USER TERMINAL

output input output input

BW X X X

ED,JD X X

EHJH X X

CM X X

DI (I) X X X X X

DI (W) X X

DI (L) X X X X X

ER ICX X

SP X X X X X

EP X X X X X

FIGURE 1.3

Relationships between database operations supported

by DM and devices used by the operations. DI command

may be-used to display an image (I), a window (W)

or legend information (L). The trackball on the

Ramtek system is an input device to be used to

select points of a window or to position the image

or legend being displayed. All operations require

the user to enter parameters through the user

terminal.

3.2 	 Chapter II, Device Module Design Strategy

As Dijkstra pointed out [6], a program must be carefully structured

in order for its correctness to be demonstrated in a convincing manner.

This 	job is particularly difficult when the size of the program

approaches, say, several thousand lines. It is the programmers

obligation to modularize a program, to simplify its control logic

and to organize the program into comprehensible form.

For a program of moderate size, it has been shown that the three

basic control structures - sequencing, IFTHENELSE and DOWHILE - are

adequate for expressing any control logic [7]. This concept can be

extended to systematic development of very large programs, as described

by Dijkstra [6] and Mills [8,9]. This methodology for large programs

is called top down structured programming.

The IMDB system is implemented using top down structured

programming. In this chapter we first present an overview of top

down 	structured programming and then describe how the method is

used 	to develop IMDB and in particular, the device module.

2.1 	Top Down Structured Programming

Structured programming has long been advocated by Dijkstra[6]

as a programming methodology to facilitate correctness proofs and

to enhance program readability as well as manageability. Clarity

of program structure and simplification of program control logic

are achieved through the use of fundamental program constructs

such 	as IFTHENELSE, DOWHILE and blocking, and through the elimination

of arbitrary GOTO's. Mills further extended the methodology to

top down structured programming, a systematic way to specify,

document and code a large program [8].

Top down structured programming is an evolving process, beginning

with a reasonably sized functional specification of the entire system,

for example, a page or two in size. The functional specification,

called the root segment here, defines the top level control logic and

necessarily leaves out many details. Within the root segment, several

subspecifications may be defined. Each subspecification may later

evolve into a program segment of manageable size. At each step of

the process a subspecification is expanded to simpler and simpler

functions until all functional specifications or subspecifications

are translated into statements of the programming language itself.

At the conclusion of the process, the total system is implemented

as a tree of program segments.

The main features of the top down programming process can be

stated as follow:

1. The entire program is broken into its constituent parts through

a series of successive refinements. Each refinement takes one

functional specification or subspecification and expands it into

a segment of finer functional subspecifications.

2. Program segments are natural units of documentation, specifi­

cation and coding. Therefore, top down programming allows

documentation, specification and coding to proceed concurrently.

3. Each program segment has a single entry and a single exit.

Thus, when reading a segment name, one can be assured that

control flow will pass through the segment with no side effect

on the control logic.

4. Higher level segments may contain program stubs representing

sections of code not yet fully developed. In practice, this

can be done by inserting dummy routines to hold the place for

the code for the next level of expansion.

5. Each segment is written as a structured program. The final

system is a hierarchy of segments.

6. Program debugging also becomes a top down process. The process

begins with verification of the root segment and proceeds

through debugging of each level of refinement.

Top down structured programming requires two software tools.

Since each segment is a structured program by itself, a programming

language which offers control structures such as IFTHENELSE and

DOWHILE is needed. We decided to use RATFOR (RATional FORTRAN [10])

for two main reasons: RATFOR offers a convenient set of control

structures adequate for writing GOTO-free code, and a RATFOR trans­

lator produces ANSI Standard FORTRAN code which is accepted by most

machines.

Another tool needed for top down programming is an operating

system which provides program library facilities. Each segment

can be compiled and its object code saved under a symbolic name

in an object program library. The linking loader (task builder)

can later build an executable task by combining all relevant

object segments. RSX-11D provides this capability. In fact, if a

segment named by higher level segments is not yet written (not in

the library), the task builder will issue a warning flag and proceed

to build the rest of the task. During the execution time, if

control logic actually reaches the undefined segment, the program

will be aborted. Otherwise the program is'not aware of the incom­

plete part. This capability allows the programmer to develop the

entire program hierarchy in a depth-first manner when necessary,

without having to insert dummy segments in the program library.

2.2 Top Down Structured Implementation of IMDB

The root segment of the IMDB system is a simple branching

statement conditioned on IQ query commands. Upon detection of a

legal command code, branching takes place and control passes to the

next level segments. There is one segment for each command code

(each database operation). Depending on the complexity of its

corresponding command code, a segment may develop into a large

subtree of segments or it may be a leaf segment of the total

hierarchy.

As the process evolves, many common functions at the lower

levels are identified. For example, a segment to retrieve one

scan line of an image may be needed in several places. Many

functional primitives for graphics devices are also gradually

developed. Examples are: drawing a line between two points,

printing a string of characters, erasing a screen, etc. Commonality

/57

of functions gradually leads to partitioning of the entire hierarchy

into several independent parts so that each part can be programmed

by one person. Once some initial segments are written and the

interfaces between segments are defined, several programmers can

work concurrently and independently on the coding. Of course, each

programmer will have to incorporate his new segments into the main

body of the hierarchy.

The IQ language contains 24 commands, hence the total hierarchy

can be viewed as a tree with 24 branches at the root level. All

database commands requiring graphical or statistical output are

allocated to the device module. These commands were listed in

Chapter 1. The command BI requires parsing and evaluation of an

image expression and is by itself in the manipulation module.

Many low level file manipulation operations, mainly those involving

direct interface with the operating system, and AC, SA, PU, RT, JO

and NJ commands are grouped into the file module. The query module

is engaged in device independent, operating system independent

interaction with the user, such as collecting command parameters,

and also performs the rest of the commands with the help of the

file module segments. The query module and the device module are

separately implemented, each by one programmer. The file module and

the manipulation module are implemented by the third programmer.

Within the device module, each database command corresponds to

at least one segment. In case of the DI command, three segments

are involved; each of the image, window and character display

operations takes one segment. Therefore, the device module is

actually a collection of subtrees, with each subtree responsible

for one basic database operation. This division of tasks, according

to database operations as opposed to devices, allows us to defer

the device dependent decisions to the lower levels and hence

localize device dependencies to a smaller collection of segments.

Some segments found in the lower levels of the hierarchy may be

referenced by more than one segment at a higher level. This can

be conveniently done through the use of the program library.

At the level of finest refinement of segmentation, each segment

must develop a structure. RATFOR is the programming language used in

the implementation of IMDB. RATFOR includes versions of the three

basic control structures sufficient for program coding, as well as

several other useful structures. Besides basic sequencing-, RATFOR

has an IFELSE statement and a WHILE statement. Block structuring

is available, as one need only enclose several statements in brackets

in order to form a block. These blocks may be nested to any desired

level.

RATFOR programs can be written so as to be easily read. State­

ments may start anywhere on a line, so indentation is commonly used to

highlight blocks and loops. Flow of control is straightforward, as

the available control structures eliminate the need for GOTO's.

RATFOR code may be readily documented, as comments are delimited by

a '#' occuring anywhere on a line. Anything after the W and on the

same line is considered to be a comment.

2.3 Advantages of Top Down Structured Programming

Using top down structured programming techniques is advantageous

for several reasons. After the process of refinement of subfunctions

is completed, each resulting segment has a single function of mapping

initial data to final data. By limiting the tasks of each segment,

the segments may be more easily coded and more easily read. Structured

programs are usually GOTO free, so code can be read sequentially

without jumping around mentally to follow the flow of control. This

property adds to readability by allowing better mental association

of program static text with dynamic execution. Due to the one entrance,

one exit property of structured code, each segment flows from top to

bottom without any side effects in control logic other than in that

particular page or segment. This ease of reading is especially

important in a system such as the IMDB system where the original

designers and implementors will not be the persons maintaining or

using the software.

As well as being designed in a top down fashion, a system may

be coded in a top down manner. Segments of code can be successively

generated and tested. In order to test each segment, dummy routines

can be inserted in place of lower level functions. Progressive

testing of segments isolates problems of syntax and control logic,

thus simplifying the task of debugging. Data provided for newly

designated segments at the next level can be tested by introducing

dummy versions of these new segments.

A major advantage in top down structured programming is the

decrease in complexity of a proposed system. Through successive

refinement of segments and structuring within these segments a

system can be produced that is no more complex than the actual

problem [11]. This reduction in complexity subsequently results

in significant cost reduction during implementaion because the

goals of each segment and its inputs and outputs are clearly stated.

The resulting system is also more reliable, easier to maintain and

easier to modify than it would be if such a programming scheme were

not used.

A segmented, hierarchical system also permits relative ease

of expansion. This is important in a graphics system, because new

devices or devices with extended capabilities are continually

being developed, so it is probable that the user of a graphics soft­

ware system will wish to extend his system to be used on such

devices. The hierarchical structure of a system makes the problem of

deciding where new code or new segments need to be inserted less

tedious. Changes can be made at the proper levels of the hierarchy

without the necessity of redesigning the entire system. More

segments can be added as required to extend the device interface

capabilities of the system.

In the IMDB system, it is possible that in the future more

database operations will be included. This type of expansion of

the system is also simplified due to top down structured programming.

An entire new branch to the hierarchy can be developed, working

top down from the database operation and using the segmentation in

the previous branches as a guideline.

Due to the hierarchical structure of the IMDB device module,

unit debugging is possible. By including dummy routines at the

lower levels, routines near the top of the hierarchy can be checked

for correctness in the early stages of coding. Each database

operation can be compiled and taskbuilt without the need for completing

the entire IMDB system or even the device module. This step by step

testing makes it possible to discover and correct errors in logic or

syntax before they cause more errors and become more difficult to

find by being embedded in a lengthy piece of code.

Top down structured programming is also a good strategy for

designing graphics systems because it aids the localization and

minimization of device dependence. All device dependent code can

be allocated to segments at a given level or levels. Since the

device module is structured according to database operations rather

than devices, all of the device dependent routines are placed as

low as possible in the hierarchy, thus localizing the device

dependent activities.

q9

3.3 Chapter III, Hierarchical Structure of the Device Module

Implementation of the device module employs a top down, hierarchical

programming strategy. Routines are grouped according to the database

operations for which they are required. Each major database function

invokes one single device module routine at the top level of the

hierarchy; within this routine, computational or input/output functions

are further divided according to the devices. The program control flows

from the device-independent routines at the top levels down to the

device-dependent routines at the lower levels. At the bottom level of

the hierarchy, operating system I/O routines are called to issue commands

to specific devices.

In order to facilitate communication between the query module,

device module and file module, several common areas have been set

aside. The common areas relevant to the device module are Permanent

File Core Table (PFCT), Temporary File Core Table (TFCT) and Core Table

Entry Buffer (CTEBUF). File name and header information about each

permanent or temporary file are stored in the PFCT or TFCT. Information

in the file header may include file type, size of an image, number of

points in a window or color format. CTEBUF is used to store the

header information for the most recently accessed file.

3.1 The Hierarchy

The hierarchial structure of the device module consists of five

basic levels. Figure 3.1 illustrates the hierarchical structure and

the relationships of the query and file modules to the device module.

It also shows the information passed between the levels.

q4 r

i QUERY MODULE

file name
device name i !status
text - _

DEVICE MODULE 	 filename

Device Independent 	 FILE

Level 1. 	 Database Operation MODULE

Routines .header info

__,_-
 file contents--­

{" status!

file name
header info.l 'r_ri~dep.

heade 	 arameters
i

,Device Dependentj

Level 2. User Interaction)

Routines

file name status

text

device params.

statistical data

file name
Device Dependent

Level 3.
 Database Operation

[Routines 	 [iecnet

data (text, I
colors, points, status
scan lines, etc.)

Level 4. 	 Functional Primitive

Routines

data status

Level 5. 	 Device Commands

1/o commands j-	 jstatusdata _ ..

Operating System

I/0 Routines

FIGURE 3.1

Device Module Hierarchical Structure

C15

The subroutines in the device module correspond to the five

categories of the hierarchy. The top level in the structure provides

the interface between the query module and the device module. Before

calling device module routines, the query module determines which

database operation the user has requested, which files the operation

should be performed with, and on which device the output is to appear.

Type checking is done by the query module to see if the file and the

operation are compatible. The query module then passes information

concerning device, file name, color function and text to the top level

routines of the device module.

In the top level of the device module as many device independent

operations as possible are completed. This usually requires

accessing the core table entry for the given file to obtain the header

information. When a statistical operation has been requested, the

necessary statistical computations can usually be performed at this

level.

The top level routines also check compatibility of the database

operation and the specified device. If the operation cannot be

performed using the designated device, the device module indicates

this to the query module by passing back an error status. The

query module is then responsible for informing the user of his mistake

and advising him of what action to take. A bad status may also be

returned to the query module at this time in a few other instances, such

as statistical information overflowing the buffer area set aside for it.

In such cases, the operation is usually aborted and the user may

re-enter a database operation command.

If the specified device is compatible and no other errors have

occurred, control passes to a subroutine at the next lower level, level

two. Parameters passed from level one to level two generally include

file name and core table information. Level two is the point at which

device dependent user interaction takes place. Since display devices

vary widely in their capabilities and design, dach requires different

parameters in order to be utilized to its capacity. In order for the

query module to remain device independent, these device dependent

parameters must be solicited by the device module. These device

64

dependent parameters are used by the display devices to position the

output on the display surface, to select the desired colors, to select

the magnification factor and to perform other device specific operations.

Various device dependent calculations may-also be-performed at­

level two. These calculations include size of display, scaling factors,

number of characters to be displayed, and positioning. All of these

parameters are then either returned to the top level routine or passed

directly to level three. Level two routines occasionally return

status codes indicating actions such as compression of images or

truncation of character displays. The status codes received from level

two usually do not cause the operation to be aborted, but may be

interpreted by the query module at a later point in order to indicate

possibly unexpected occurrences to the user.

At the third level of the hierarchy are found the device dependent,

database operation specific routines. At this level any further

calculations involving information acquired in the second level are

performed. Data must be read from the database, possibly transformed

through calls to the file module, and put in the proper form to be

passed to routines at the lower levels in the hierarchy.

The fourth level of the hierarchy contains the routines imple­

menting the functional primitives of the graphics system. It is these

basic graphic primitives which are combined in order to execute the

database display operations. Functional primitives include beam

movement, point drawing, line drawing, rectangle drawing, character

display, scan line display and erasure. The functional primitive

routines are device dependent, yet each device may theoretically have

a corresponding functional primitive at this level.

At the fifth and lowest level are found the routines which send

the device commands to the device. These routines take the parameters

passed to them by the functional primitives and put them in a form for

sending to the I/0 subsystem of the operating system. Through this

interface with the operating system the desired output device is

addressed and command codes provided by the device manufacturer are

relayed to the device.

In order for any database display operation to be executed,

65_

el

control must flow from the query module to level one of the device

module and then on through each level to level five, the operating

system interface. Within the device module, a separate subroutine

could be provided for each of the five levelsof the hierarchy. In

some cases, however, efficiency is increased and redundancy of code

or excessive parameter passing decreased by combining two or more

levels in one subroutine. Such is the case for instance when no

device dependent questions need to be asked of the user. Occasionally

a level may be skipped due to the hardware capabilities of a certain

device. For some operations which are very simple or which may only

be performed on one device or device type, it is unnecessarily

confusing to branch out to numerous subroutines.

3.2 Example of Hierarchical Structure

As an example of the five level device module hierarchy, let's

look at what takes place when the user requests that an image be

displayed. At the query level, the user is asked for the name of

the image file, the name of the device on which he wishes the image

to appear, and the color function, if any, that he wishes to be

associated with that image. These three parameters are then passed

to the top level display subroutine of the device module, DISPL.

The display routine DISPL calls the file module core table

entry routine to determine how many pixels and lines there are in

the image. DISPL then passes the device, file name, starting scan

line and scan element, number of lines, and number of elements to the

second level routine. For our example, let's suppose that the user

has requested one of the Ramtek screens as the display device. This

second level routine, RAMQ, first asks the user to input a point at

which he wishes the northwest image corner to appear on the screen.

The routine then determines whether or not the entire image will fit

on this portion of the screen. If so, the compression ratio is set

at one to one, indicating no compression. If not, the user may request

compression or may ask that only the northwest corner of the image be

displayed. If the first choice is made, a compression ratio will be

calculated and the status parameter set to indicate compression to the

66

query module. If no compression is desired, the ratio is again set at

one to one. In all three cases the number of lines and pixels to be

displayed on the screen is determined. All of these parameters are

then -passedback.to DISP-L.-

DISPL now calls the level three routine, RAMD. RAMD attaches

the correct Ramtek screen and calls the file module routine to trans­

form the image as required by the color function or the compression

factor. Repeated calls to RDSCLN, the file module routine for reading

data from a file, are made to obtain the transformed pixel values.

RAND extracts the desired pixel values and sends them to the BLOKZ

subroutine. This routine performs the functional primitive operation

of image scan line display and is also the fifth level routine.

At the lowest level, BLOKZ is responsible for sending the commands

and data to the operating system in order to initiate output on the

Ramtek. Through the use of the BLOKZ routine the correct mode, format,

color and positioning are selected.

http:passedback.to

q

QUERY MODULE DISPLA

file name

device name
 color funto
 status

starting

DEVICE MODULE coordinates

- file ----- f-T ­ -name -TCTE '-
Level 1. DISPL I'image .. .file mod.)1_ , mage size

device name display size

file name screen coordinates

starting compression factors

coordinates j status

image size status

device name CCFTN
Level 2. RAMQfile name I (I? ation

image & (man

screen coordinates file name I

display size color fcn

color function coloren

compressioncompressn

__starting

t
factors
factors

Level 3. _A__ s

screen coordinates

pixel value data

BLOKZ
Levels 4 & 5.

RAMZ

I/0 connands

pixel value data
 sau

GETADR, WTQIO

Operating System I/0

[Routines

FIGURE 3.2

Device Module Hierarchy for

Image Display Operation

68 5

3.4 Chapter IV, Device Commands

The--lowest--level--of t-he-device-module--hierarchy contains the­

device dependent routines which are responsible for sending the

commands to the device. The commands available depend on the

hardware characteristics of the particular device. The routines at

this level are used independently of the function being performed.

They provide the interface between the programmer and the device

through the operating system. Many of these routines fill command

buffers and parameter blocks with information about logical unit

number of the device, how many commands or bytes of data are to be

read, and which instructions are to be performed by the device

hardware.

Two system input/output routines which can be called

from FORTRAN programs are provided by the operating system: GETADR

and WTQIOGETADR loads the initial address of a specified user

buffer into an array for use by the I/O routines. WTQIO issues an

input/output command and waits for I/O completion before continuing.

4.1 Ramtek Hardware and Commands

The Ramtek GX-100B display system has the hardware configuration

shown in Figure 4.1. This system uses the raster scan technique to

produce an image on the cathode-ray screen. [4]

The bi-directional interface interconnects the local CPU and

the display generator and device multiplexor. The instruction buffer

stores received commands and data into a 256-work FIFO buffer in order

to provide asynchronous operation of the CPU and display generator.

These commands and data are input, decoded and processed by the

instruction processor. Dot-matrix character patterns are generated

from ASCII character codes by the character generator, while the

vector generator performs the essential parameter manipulation and

linear interpolation for automatically drawing lines between arbitrary

end points. The scan converter controls the writing of all data into

the refresh memory which stores the display image. The video generator

% 1>

I
haracter

Generator

L Instruction
Buffer

T~h

|-­

-----.
nstruction
rocessor

I Vector

N benerator 1

E
R

F
A

Local
CPU

C
E

,

S C
C 0

A N
NV
N
E

Refresh
Memory

IVideo
iGenerator

Screen I
Color

J Screen 2
3W

B Screen 3

Color

I

'Memory
Readbackj

Device

Multiplexor
--­

:
Cursor

Generator

Trackball

FIGURE 4.1

Ramtek Display Hardware

70

scans the refresh memory and generates video and synchronization

signals which are decoded by the selected television monitor. This

television monitor then drives the electron guns which excite the

-phosphors -painted on-the picture tube in-order-to display- the--magec

The cursor generator interconnects the cursor/trackball

registers of the device multiplexor with the video generator for

the purpose of displaying a maneuverable cursor which bypasses the

refresh memory. The trackball option converts the rotational

movements of a mounted sphere into X and Y step codes for serial

transmission to the device multiplexor. The keyboard option

converts input into ASCII character codes for serial transmission

to the device multiplexor. The memory readback option interconnects

the CPU and circulating refresh memory in order to read the contents

of the refresh memory.

The Ramtek routines at this lowest level in the hierarchy

are BLOKZ, ARAMZ, and RAMZ. These routines use the KRAMZ assembly

language function to stack the Ramtek opcodes into a buffer for

I/0 to the Ramtek. These opcodes are the instructions and flags

on instructions which are used by the display generator in writing

output on the screen. These instructions to the display generator

fall into three categories; channel/subchannel partitioning, positional

addressing, and control modes and flags. Some special functions are

also provided. A summary of the Ramtek instructions is given in

Figure 4.2.

Channel and subchannel partitioning allows a particular screen

to be addressed and also allows for color selection. The select dis­

play channel (SDC) instruction establishes access to the refresh memory

of a specific television monitor and thus performs the function of

attaching the device. The select subehannels (SSC) instruction

establishes access to the subehannels for the various colors. Seven

colors, plus dark, capability is achieved using three subchannels,

with a fourth subchannel used for white overlay.

There are three modes, absolute, indexed and relative, and

eight instructions associated with the positional addressing of the

Instruction
Mnemonic Meaning

SIC

SSC

LEX

LLIX

LE2

LL2

LER

LLR

select display channel

select subchannels

load element index register

load line index register

load element register 2

load line register 2

load element relative

load line relative

LCM load control mode

AN - alphanumeric

TD - transverse data

RD - raster data

CD ­ complex data

GV ­ graphic vector

GC - graphic cartesian

GP - graphic plot

GE - graphic element

LDX load and execute data

BLK block transfer

ERS erase

Function

attach device

designates colors

define starting element address

define starting line address

define terminating element addrE

define terminating line address

displace element address

displace line address

specifiy type of graphic output

transmit data to display

generator one byte at a

time.

transfer up to 256 words of

data to display generator

full screen erasure

FIGURE 4.2

Ramtek Instructions

?'100,

refresh memory.- These instructions carry a line or element address

to the display generator in order to update the current operating

point (COP). In a 256 line by 256 element system, the least

s-ign-ificant bit of the effective address is truncated, as this

effective address is in the range 0 to 511. The load element index

register (LEX) and load line index register (LLX) instructions define

the starting element and line address, while the load element

register 2 (LE2) and load line register 2 (LL2) instructions define

the terminating element and line address. If the indexed addressing

mode is selected, these element and line addresses are summed with

the element or line index register; otherwise, the origin is assumed

to be at element zero, line zero. Relative displacement of the

element or line address is accomplished through the load element

relative (LER) and load line relative (LLR) instructions.

The control mode, as established by the load control mode (LCM)

instruction, stipulates the type of graphic form to be written into

refresh memory. Eight control modes are available - four data modes

and four graphic modes. In the data modes, alphanumeric, transverse,

raster and complex, each programmed instruction sequence accesses

and addresses the refresh memory, issuing one or more data sequences

to be decoded. After decoding this data, the display generator

writes the data into the accessed subchannels beginning at the current

operating point, then recalculates the COP. In the graphics modes,

vector, plot, cartesian and element, element addresses are issued

instead of data sequences.

In alphanumeric mode (AN), each data byte is interpreted as an

ASCII character code. In the Ramtek character set, each character

consists of a 5 by 7 dot matrix within a 7 by 12 matrix. Double width

or double height flags may be set to get larger characters. Characters

are written in the same bit pattern as received, rather than being

decoded and transformed. Transverse mode results in an eight bit

wide vertical column being written, from top to bottom. Raster mode (RD)

is identical to the transverse mode, except that the data is

written from left to right across a specific raster line instead of

in a vertical column. The complex data mode (CD) is most often used

for generating multi-colored displays. Each bit of each pixel

description is written into one or more subchannels and the data is

written from left to right across a raster line. Either the word

format or the byte format flag may be set in complex data mode.

Word format specifies that a 16 bit word be decoded for the Z-axis

data and byte format selects an 8 bit byte format for decoding.

Two forms for transmitting data to the display generator are

available. The first form, using the load and execute data (LXD)

instruction, transfers one 8-bit data byte at a time. Although this

method is very simple, it is often inefficient. The second form of

data transmission is via the block transfer (BLK) instruction. This

instruction conditions the display generator to receive a specified

number of data words (up to 255) for processing. A reverse packing

flag is available with the BLK instruction. This flag may be set

for implementations where the right byte is to be processed first,

e.g., in the PDP 11.

While operating in any of the four graphics modes, the display

generator draws specified graphic forms by decoding and processing

positional addressing instruction rather than transferred data.

Graphic vector mode (GV) is used for drawing lines between two

specified points.-These points are defined through the LE2 or LER

and LL2 or LLR instruction. For drawing solid rectangles between

arbitrary endpoints the graphic cartesian mode (GC) may be used. The

graphic plot mode (GP) draws contiguous vertical line segments in

order to produce a histogram style plot of consecutive data points.

In the graphic element mode (GE), each individual pixel is activated

as addressed by line and element. All of these graphic modes permit

a third dimension of color or intensity, which is determined by the

SDC and SSC instructions.

One useful special function provided in the Ramtek instruction

set is erasure. The ERS command performs a full screen erasure.

Selective erasure of colors may be performed by using the SSC instruc­

tion to select specific subchannels to be erased.

The BLOKZ subroutine can be used for output to the Ramtek while

in any mode using block transfers. Parameters required by BLOKZ are

'100 	 74 ­

the control mode, starting element and line coordinates, colors to be

used 	 and a buffer containing physical device, logical unit number,

number of bytes of data and the actual data. BLOKZ places more

-information-concerning -thenumber of commands-t b- ectediln the­

buffer and then calls ARAMZ. ARAMZ puts all the information for an

I/0 to the Ramtek in a single array and then calls RAMZ. Inputs to

RAMZ, the routine which calls the operating system routines GETADR

and WTQIO in order to output the data on the screen, are a buffer

containing the Ramtek operations, the logical unit number, the

number of bytes of data involved and the desired functions.

4.2 	 Dicomed Hardware and Commands

The Dicomed model D47 image recorder is based on high-performance

cathode-ray tube (CRT) technology [51. A simplified diagram of the

film 	 recorder is shown in Figure 4.3. The image area of a CRT is

projected through a lens and a colored filter and focused on the film.

The CRT beam intensity level is related to an exposure index which is

manually entered for the type of film in use. Each data element

received during the recording process consists of a digital value

proportional to the desired exposure. This number is entered in the

exposure register via the I/0 interface. When the beam is positioned

to the desired location it is turned on for a length of time

proportional to the exposure value stored in the exposure register.

The recording along a given line (horizontal) is achieved by

incrementing the horizontal counter after each point is exposed until

an end-of-the line command is received. This command causes the beam

to be positioned at the beginning of the next line. The recording

of an image is complete when the desired number of lines have been

exposed through each filter.

Commands are sent to the Dicomed film recorder through the

DICOMD and CINE subroutines. DICOMD accepts a list of commands and

sends these commands one at a time to CINE, the routine which builds

the calling sequence for the operating system I/0 routines GETADR and

WTQIO. There are five functions available when using CINE: write

commands, read status, attach Dicomed, detach Dicomed and write data.

-)

Exposure Code
(Data Words)

End of Line Command

Direct Coordinate Entry

Exposure
R[gisterRgs

SElectronic

Timing

T Vertical
1 Counter r

Deflection

Register

iztPosition

Lens

T FilterPositioning

|Motorr

Commands

Intensity alnd CRT -­

Filter Film

DiretCordiate ntr
Diret Cordinte Etry

4Counte

Horizontal
Deflection

U" J Horizontal

- - Counter

FIGURE 4.3
Dicomed Hardware Diagram

A set of operations along with their functional type is sent to the

film recorder through CINE. The Dicomed opcodes and functions are

summarized in Figure 4.4.

Before data is output on the Dicomed, the image recorder must be

initialized through the initialize command (op code 000). The Dicomed

is then ready to receive further commands. Resolution may be set to

low (014 - a 4 x 4 point matrix is output for each pixel received),

medium (015 - 2 x 2) or high (016 - one point per pixel). This allows

an image to be magnified without further software programming. The

desired polarity, i.e. whether the image exposure data is to be

recorded in uncomplemented or complemented form (201, 202), may also

be chosen. Input format of six or eight bits must also be selected

(005, 006). In 6 bit input format, the six least significant bits

of each exposure data word are interpreted as a value in the range

0 to 63, whereas in 8 bit format, exposure data is interpreted as

being of intensity between 0 and 255. A linear or logarithmic trans­

fer function may also be chosen (211, 212). Selection of a logarithmic

function means that film transmittance will be linearly proportional

to the log of the exposure values while a linear function means that

film transmittance will be linearly proportional to the exposure

values. A filter-of the desired color is positioned in the optical

path through command 230 (neutral filter), 231 (red filter), 232 (green)

or 233 (blue). The FILTER subroutine is used for filter selection.

Starting position on the film may be set through the random horizontal

(010) 	 and random vertical (011) commands.

At-this point the start-of-input command (001) must be sent to

prepare the image recorder for the input of data. After each line of

data is sent to the Dicomed, an end-of-line (003) command is sent to

reposition the cathode-ray tube beam for the next line of plotting.

After all lines have been transmitted, an end-of-input (004) code

causes the recorder to recognize an end-transmission operation.

4.3 	 Varian Commands

The Varian Statos 4115 electrostatic printer/plotter is a black

and white hardcopy output device. Only three functions are used with

4109

Command Code Function

External Initialize 000 prepare for operations

Start of Input 001 prepare for data input

End of Line 003 position cathode ray tube beam to left

margin

End of Input 004 recognize end of transmission operation

6-Bit Select 005 least significant six bits of word interpreted

as exposure energy value

8-Bit Select 006 eight bits of data word interpreted as

exposure energy value

Random H Position 010 prepare to receive horizontal positioning

Random V Position 011 prepare to receive vertical positioning

Low Resolution Select 014 record at low resolution (sixteen points

per pixel)

Medium Resolution Select 015 record at medium resolution (tour points

per pixel)

High Resolution Select 016 record at high resolution (one point per

pixel)

Polarity Normal Select 201 record input exposure data in uncompleted

form

Polarity Complement Select202 Pecord input exposure data in complemented

form

Linear Select 211 select linear steps in transmissivity

Log Select 212 select linear steps in density

Filter Select 1 230 positions neutral filter in optical path

Filter Select 2 231 position red filter in optical path

Filter Select 3 232 position green filter in optical path

Filter Select 4 233 position blue filter in optical path

FIGURE 4.4

Dicomed Instructions

76

the Varian. These three functions are paper slew, form feed and data

write. The subroutine PLOTV forms the interface between the functional

primitive level and the operating system. PLOTV prepares a parameter

block containing the actual memory address of the data buffer and the

number of bytes to be output. The mode (slew, form feed or data write)

is set and all this information is passed to the operating system

through the WTQIO subroutine.

Slew and form feed are similar operations causing the paper in

the plotter to advance. Form feed causes an advance of about four

inches and is useful when doing several plotting operations in a

sequence. Slew causes the paper to advance about ten inches, allowing

the last line which was printed to be seen. Paper advancement can

also be done manually. Data write causes a buffer of the specified

length to be read as data and printed on the Varian. Each bit is

interpreted as a print (1) or skip (0) signal to the printer. 1408

points are plotted across each line.

4.4 Line Printer and User Terminal

Output is directed to the line printer through the FORTRAN

WRITE statement and is formatted through the use of a FORMAT statement.

Output can also be directed to the user terminal by specifying the

user terminal as the output device in a WRITE statement.

4.5 Summary

The routines included at this level are shown in Figure 4.5.

These routines make it possible for routines at a higher level to

perform display functions without knowing the specific commands

associated with the display devices.

91 f'79
it

Device Routines Function

Ramtek BLOKZ Set control mode, starting
element and line coordinates,
colors to be used, physical
device, logical unit, number of
bytes of data, actual data,
commands for Ramtek display

ARAME generator.

RAM-

Dicomed DICOMD Send Dicomed operations and
their functional type to the

CINE film recorder through operating
system I/0 routines.

FILTER

Varian PLOTV Send address of data buffer and
number of bytes to be output to

printer/plotter,

Line Printer WRITE statement Direct output to line printer
and (FORTRAN I/O) or user terminal.

User Terminal

FIGURE 4.5

Low Level Routines of the Device Module

- 1/

fi1x

5. Chapter V, Functional Primitives

At the next level in the device module hierarchy appear the routines

which support the functional primitives. These routines represent the

capabilities of a graphic output system. Seven functional primitives

are considered in this chapter: beam movement, point drawing, line

drawing, solid drawing, character display, erasure, and image scan

line display. Most devices are capable of performing these functional

primitives, but the method of implementing them on the various devices

may differ.

5.1 Beam Movement

Beam movement involves initializing or reinitializing the location

for display. On the Ramtek, beam movement is accomplished through the

DRWABZ routine. By calling DRWABZ with the desired beam coordinates and

dark (0) as the color, the beam position is changed from the current

operating point (COP) to a new COP. DRWABZ uses RAMZ to set the graphic

vector mode and send the LEX, LLX, LE2, and LL2 commands for repositioning.

On the Dicomed, the beam is positioned by using the RANDHV routine.

Arguments of RANDHV are the desired x and y film coordinates. RANDHV

calls CINE to send the positioning commands to the device. The Varian

printer/plotter starting x and y coordinates may be changed by instructing

the printer to offset each line of points to be plotted. However, this

was not implemented, so the appearance of offset may be given by zero

filling the desired number of bits at the beginning of each print line

buffer area.

5.2 Point Drawing

Point drawing is the basic display operation through which most other

graphic entities are derived. Point drawing can also be useful by itself,

for example in marking points designated by the user through the Ramtek

trackball. Points may be displayed on the Ramtek screen by a sequence of

two calls to DRWABZ - one to relocate the COP at the point and one to

draw a line segment of length zero from that point to the same point in

the desired color. Point display might also be obtained by using the

graphic element mode, but this was not implemented as individual points

are seldom drawn. Single point plotting on the Dicomed is not used, but

each image recorded on the film is actually just a series of small dots.

This is also true of the Varian. Points are plotted on the Varian by

setting bits to 1 in a buffer sent to PLOW along with a write data

function specification.

5.3 	 Line Drawing

Line drawing may be performed on any graphical device, but we did

not implement non-vertical, non-horizontal lines on the Dicomed and

Varian, as each point on the line must be software defined. Line

drawing on the Ramtek is accomplished through a call to RAMLN. RAMLN

consists of two calls to DRWABZ, one to move the beam from its current

position to the first endpoint of the line and the other to draw the line

in the specified color, between the two endpoints. Horizontal or

vertical lines may be drawn on the Dicomed and Varian by assigning the

proper values to all points in a line of transmitted data (for horizontal

line drawing) and by assigning certain values to corresponding points

in each line of data transmitted (for vertical lines). Skew lines could

be drawn by calculating slope and assigning values according to line

number, pixel number and slope.

5.4 	 Solid Rectangle Drawing

Solid rectangle drawing is a primitive function which is useful when

drawing histograms or spotlighting color functions. RECTZ is a subroutine

that may be used for drawing rectangles of arbitrary size and color on a

Ramtek screen. RECTZ calls RAMZ, setting graphic cartesian mode and using

LEI, LLI, LE2, LL2 to define the corners of the rectangle. Raster data

mode may be used when rectangles of small size (i.e. 1 X 1) are desired.

This mode is used when drawing a joint histogram, which also uses the

BLOKZ routine rather than calling RAMZ directly. For drawing rectangles

with the film recorder, RECTFR is used. When given the starting coordinates,

size, resolution, filter color and intensity for a desired rectangle, RECTFR

//f

calls DICOMD, RANDHV, FILTER And CINE in order to output the rectangle.

Solid rectangles may also be drawn on the Varian, but there is no separate

routine to handle this operation.

5.5 Character Display

Character display is another functional primitive available on most

devices either through hardware or software programming. The Ramtek is

equipped with hardware character generation facilities which may be

accessed by using the alphanumeric data mode. The ALPHAZ subroutine

accepts a string of characters packed two to a word, and through a call

to BLOKZ, outputs this character string in the desired color and at the

desired position on the Ramtek screen. Currently, software character

generation is required on the Dicomed. FRLIST is a subroutine which,

given the required parameters of positioning, length of character string,

magnification, resolution, character color and background color, writes

a character string on the film. FREIST writes the character string in

normal polarity then creates a background by writing the character string

in the complement mode in the specified background color. FRLIST calls

FRKHAR which is the routine which interfaces with the lower level routine

DICOMD thus causing output of the characters. KGEN is the routine used

to generate the character dot matrix patterns. Each character is a dot

pattern within a 10 X 9 dot matrix. Character size may be enlarged by

using medium or low resolution or by using a magnification factor greater

than one. Software character generation is also necessary when using the

Varian. This character generation is achieved by using the subroutine

VARPC. Each character for the Varian consists of an eight by nine dot

matrix. VARPC translates the ASCII character codes to the proper dot

format, fills a buffer with these dot codes, and calls PLOW to plot the

dots on the paper.

5.6 Erasure

Erasure is another function which applies to all devices. For the

Ramtek, erasure is handled through a call to ERASEZ which, through RAMZ,

causes the ERS command to be issued. Selective erasure of color is

possible, as ERASEZ also uses the SSC command in RAMZ. Erasure of hardcopy

devices such as the Varian and Dicomed is interpreted as setting a new

page for output. Since we were concerned primarily with the use of

polaroid film on the Dicomed, new film had to be manually inserted.

However, if roll film were to be frequently used, instructions for

advancing the film through software programming could be included as

part of the erase procedure. When using the Varian, after each line is

printed the paper is automatically moved in preparation for the next

line of printing. In order to have greater spacing between plotted

images, the form feed command is sent through PLOTV.

5.7 Image Scan Line Display

Another primitive function available on graphic display devices is

display of an image scan line. An image scan line results from reading

and, if necessary, transforming all the pixel values across one line of

a digitized image. Where software character generation is required, a

string of characters may be considered an image so the character

drawing is actually a display of several image scan lines.

Image scan line display is achieved on the Ramtek through use of the

BLOKZ routine. The complex data control mode is set as is byte format

(8 pits per pixel). The Ramtek reads the byte data and displays the

pixels according to their color bit format. In order to have all color

subchannels available, the color parameter in the BLOKZ command is set at

14 (11102).

On the Dicomed, image scan line display requires calls to the CINE

subroutine. If more than one color is desired in the final image

photograph, each scan line must be written up to three times; once with

a red filter, once with green, and once with blue. As each scan line is

read in, for each pixel the bits corresponding to the color being

displayed must be extracted and transformed into intensities to be sent

to the film recorder. CINE is then called with a buffer holding these

color pixel values. The number of lines actually recorded on the film

for each call to CINE depends on the resolution for which the recorder was

set.

Scan line display on the Varian consists of plotting points across

one or more lines of the paper. All points are either black or white

(blank), with no grey level shading, so various dot patterns must be used

to give the final image the appearance of varying grey levels. These

patterns are in the form of m x n dot patterns corresponding to the various

I Iteo

pixel values. In our case, 4 X 4 or 5 X 5 dot patterns are available,

with 8 different grey levels in the 4 X 4 pattern and 16 in the 5 X 5.

Each pixel value must be tranformed to the desired dot pattern before a

scan line is sent to PLOTV. M lines must be plotted for each scan line

of the image.

5.8 Summary

The functional primitives form an integral part of the database

operations included in the device module. They represent the basic

display functions required for design and implementation of more complex

graphic output. Figure 5.1 summarizes the availability of these seven

functional routines and the routines used in implementing them.

Other Routines

Functional Primitive Devices Routines Required

Beam movement Ramtek DRWABZ RAMZ

Dicomed RANDEV CINE

Point drawing Ramtek DRWABZ RAMZ

Varian PLOTW

Line drawing Ramtek RAMLN DRWABZ

Solid rectangle drawing Ramtek RECTZ RAMZ

Dicomed RECTFR DICOND, RANDHV, CINE

Character display Ramtek ALPHAZ BLOKZ

Dicomed FRLIST, DICOMD

FRKHAR, KGEN

Varian VARPC PLOTV

Erasure Ramtek ERASEZ RAMZ

Varian PLOTV

Display image scan line 	 Ramtek BLOKZ

Dicomed CINE

Varian PLOTV

FIGURE 5.1

Functional Primitive Implementation

6. Chapter VI, Database Operations

_The two levels of thadevice module hierarchy discussed in-chapters­

four and five are necessary in order to support the main action of the

project - performing the requested database operations and showing the

results to the user. After the query module determines which operation

the user desires, device independent questions are asked, a few preliminary

calculations may be performed, and then the query module invokes the device

module routine for that operation. Thus the highest level routines in the

device module form the interface between the query module and the functional

primitives of the device module.

These interface level routines are still device independent. In them,

any device independent operations such as statistical calculations and

obtaining information about the file contents are completed. At this time,

a check is made to see if the operation and the specified device are

compatible. If not, control returns to the query module where an error

message is given to the user. If the operation is compatible with the

specified device, routines dependent on that device are called. As a

first step in these routines, any necessary device dependent information

is requested of the user. This is desirable in order to more fully

utilize the capabilities of each device. Device dependent questions may

include inquiries as to color, positioning, magnification, or other

factors. Explanatory information for the user may also appear at this

time.

The next step is to compile the data into proper form for the requested

database operation. This may involve extracting data values, selecting

colors and transforming bit patterns. After the output data is prepared,

the routines in the two lowest levels (chapters four and five) are called

in order to complete the database operation.

Query language commands invoking device module routines fall into

four categories. A definition command which uses the device module is

build window (BW). Display commands using the device module are display

(DI), erase (ER) and exhibit pixel area (EP). Statistical operations

supported by the device module are exhibit histogram (EH), exhibit

distribution (ED), exhibit joint histogram (JH), exhibit joint distri­

bution (JD), and exhibit contingency matrices (CM). A utility operation

supported by the device module is spotlight (SP). These database

operations and their corresponding top level device module routines are

listed in figure 6.1.

Database Operation Device Module Routine

Type Name

Definition BW GETPT

Display DI DISPL, DRWIND, LEGEND

ER ERASES

EP EXHBPA

Statistical EH HISTO

ED DISTR

JH JTHISTO

JD JDISTR

CM CONMAT

Utility SP SPOTLT

FIGURE 6.1

Top Level Device Module Routines

6.1 Definition Operation

Build window is a definitional database -operationwhich allows the

user to construct a window through interaction with the query module.

If the user chooses to build a window using cursor rather than absolute

mode, he selects window vertices by using the trackball. A call to

GETPT from the query module is required to obtain each point input

through the trackball and also to indicate when no more points are to

be entered.

6.2 Display Operations

Five display operations resulting from three query language

commands are controlled by the device module. Image display, window

display and legend display are all initiated by the query language

display command. Erasure is requested through the erase command.

Exhibit pixel area is the fifth operation in this display category.

One common area, labelled as the CURRENT common block, is used by

the query module and the device module for retaining information concern­

ing the current state of each of the Ramtek screens. If an image is

present on a screen, the scale, positioning and name of the image are

retained in CURRENT. If no image, or an unmeaningful image is presently

showing on the screen, the 'erased' indicator in CURRENT is set. This

information may be used when displaying a window or a portion of an

image.

6.2.1 Image Display

When an image is to be displayed, the query module must determine

the image file name, display device, color function, if any, to be applied

to the image, and starting scan line and scan element of the image portion

to be displayed. These parameters are then sent to routine DISPL. In

DISPL, the file module core table entry routine GETCTE is called to obtain

the size of the image in pixels east to west and north to south. [61

Control then flows to the second level device dependent user interaction

routines. These routines are RAMQ, DICOQ and VARQ for the Ramtek, Dicomed

and Varian, respectively. After obtaining device dependent information,

these routines return control to DISPL. DISPL then calls the third

level routine RAND, DICOD, or VARD.

RAMQ first determines whether the user wishes to use the trackball

or the user terminal to input the starting display coordinates. In

either case, the user inputs one point, RAMQ then determines, using the

image size, screen size and starting screen coordinates, whether the

image will fit on the screen. If not, the user may request either that

the image be compressed to fit or that only the northwest corner be

displayed. Whatever the result, RAMQ then calculates the compression

ratio and the size of the image to be displayed. Before returning these

parameters to DISPL, RAMQ also must store information concerning this

to-be-displayed image in the CURRENT common area for use by the query

module.

DISPL then passes the parameters determined in RAMQ to RAND. RAND

invokes the file module routine which applies the color function and

compression factor to the image file and creates a new temporary image,

file whose name is returned to RAMD. Using the file module, each scan

line of the new image is read in and RAND causes each scan line to be

displayed by calling the functional primitive routine BLOKZ until the

screen is full or the image is completed, at which time control returns

to DISPL and then to the query module.

When the Dicomed film recorder is requested as the display device,

DICOQ must obtain several parameters from the user. Besides selecting

the film coordinates at which the display is to start, the user must

also select how much software image magnification he wants, what hardware

resolution he wants, how many different colors may appear, whether the

maximum pixel value is 63 or 255, whether the display is to appear in

normal or complemented intensities, whether intensity is to be a linear

or logarithmic transfer function and which filters are to be used. Before

returning to DISPL, DICOQ also calculates the size of the image to be

displayed.

DICOD, which receives the parameters obtained in DICOQ from DISPL,

calls the file module compression and coloring routine in the same manner

as RAND. For each desired filter, DICOD must then call the functional

primitive routines CINE and DICOND and activate device commands in order

to prepare the film recorder for receiving data and outputting it in the

90

correct format. 'DICOD then reads each scan line and outputs it through

further calls to CINE and DICOMD. This functional primitive operation

is repeated until all scan lines have been displayed.

-- Images displayed -on the-Variat printer/plotter appit a id matti

of black dots and null dots. Grey-level shading is accomplished by

having small dot pattern matrices corresponding to various pixel values.

Two patterns were implemented - one a 4 X 4 matrix giving eight different

grey levels and the other a 5 X 5 matrix giving 16 levels. VARQ asks the

user to choose one of these patterns. Then using the image dimensions and

pattern size, the amount of paper required for plotting the image is

determined. Compression is not necessary on the Varian, as a large image

may be plotted in several vertical sections. The user may specify the

number of sections to be plotted. Selection of fewer strips than required

to plot the entire image is equivalent to requesting display of the western

portion of an image. The size of the image to be-plotted is then calculated

before control returns to DISPL. DISPL then passes the pattern size and

image size to VARD.

VARD is divided into two sections, one for displaying eight grey

levels using the 4 X 4 dot matrix pattern and one for displaying 16 grey

levels using the 5 X 5 pattern. For either pattern choice, the resulting

image is framed by a dark border. For the image display, scan lines are

read in one at a time, each pixel value is converted to the corresponding

dot matrix, and the scan line is displayed through a call to PLOTV.

6.2.2 Legend Display

Display of a legend is an option included in the image display

operation at the query level, but is considered a separate database

operation at the device module interface level. After an image has been

displayed, the user is allowed to enter a legend, which is a string of 80

or fewer characters. The query module counts these characters and then

sends them to the device module routine LEGEND. LEGEND sets the character

size for each device and calls the device dependent character writing

routines RAMPC, DICOPC and VARPC.

When using a Ramtek, the user is allowed to input a point, through

'the trackball or the terminal, at which to begin the character display.

RANPC checks to see if the characters will fit below and to the right

193

of this point and prints as many as will fit by calling the functional

primitive ALPHAZ.

The user may also select the character display position for the film

recorder. DICOPC sets the character size and color as well as determining

the size of the area in which the characters are to appear. DICOPC prints

a maximum of two lines of characters and returns a status code indicating

that not all characters were printed if such is the case. In order to

print the characters DICOPC calls FRLIST.

For legend display on the Varian, the user is given no choice of

positioning. Each legend is left-justified starting on the next available

line on the paper. The VARPC subroutine encompasses three levels of the

device module hierarchy. It transforms the ASCII characters to their

octal values, determines the dot pattern for these characters and puts

these patterns in a buffer, then calls the device command level routine,

PLOTV.

6.2.3 Window Display

Another display operation available is drawing a window. Window

drawing is only implemented on the Ramtek. The first action in DRWIND

is to get the header information about the window file - number of vertices

in the window and-X-and Y minima and maxima. Next the current status of

the specified Ramtek screen, stored in the CURRENT common area, is checked

to see if there is any image displayed on that screen. If so, the window

mode flag is set to one to indicate that the vertices of the window should

be drawn to correspond to the coordinates of a currently displayed image.

Otherwise, the window mode flag is set to zero. DRWIND then determines the

scaling and offsetting factors for the window vertices relative to the

screen size and, if applicable, to the image currently displayed on the

screen. These factors, along with the number of points in the window and

the window mode are passed to RAMDW, the device dependent window display

routine.

In RAMDW, the user is asked which color he wants the window displayed

in so if an image is currently on the screen, he can pick a color which will

show up on the image. The scaling and positioning factors are then applied

to the window vertices to convert them to screen coordinates. These screen

92,J

coordinates are,'then sent two at a time to RAMLN, the line drawing primitive.

If the window is not drawn relative to a currently displayed image, the

user may request that the window coordinates be displayed so that he has some

--idea of--the -actual window size and -ortentation. -Thes doddna
dit
 are-­

encoded to character form and then displayed through ALPHAZ.

6.2.4 Erasure

As previously described, erasure is a functional primitive. It is also

a database operation handled by the top level routine ERASES. Allowing the

user to suppress erasure permits him to display more than one image on the

display surface at the same time.

6.2.5 Exhibit Pixel Area

Exhibit pixel area is an operation used to display the exact pixel

values of the pixels in a specified area of a currently displayed image.

After displaying an image on a Ramtek screen, the user designates a point

on the image and specified how many elements of how many lines south and

east of this point he wishes to know the pixel values for. Within the

query module, the current image name, size of the area to be exhibited and

the image scan element and scan line corresponding to the northwest corner

of the area must-be-determined. These parameters are then sent to EXHBPA.

This routine reads in the scan lines containing the desired pixels, extracts

the designated pixel values, and outputs them on the selected device. For

the user terminal and line printer, the WRITE statement is used. For the

Ramtek, the values must be encoded to character form and then displayed

using ALPHAZ.

6.3 	 Statistical Operations

Several statistical operations are supported by the IMDB system. These

involve computations as well as graphical output. Some of them compare

qualities of two images. Because of the type of output required, fewer

devices are usually available for displaying the results of each of these

statistical operations.

6.3.1 	 Exhibit Histogram and Exhibit Distribution

Exhibit histogram and exhibit distribution both involve computing the

frequency of occurrence of every pixel value found in an image. The

routines in which these calculations take place are HISTO and DISTR.

After all pixel values have been tallied, the frequency count array is

sent to the device dependent routine. When a histogram on a Ramtek is

desired, RAMHI receives the count array from HISTO. RAMHI determines

the color in which the histogram is to be output and then passes this

color and the count array to DHISTZ. DHISTZ determines the maximum

frequency and the largest pixel value in the image in order to scale the

histogram to fit the screen. The histogram is displayed as a sequence

of rectangles whose heights indicate frequency of occurrence. These

rectangles are drawn through calls to the RECTZ functional primitive

routine. Included in DHISTZ is code to label the X and Y axes of the

histogram through calls to ALPHAZ.

For a distribution, the device is expected to be the line printer

and LPDT is the program which is called. LPDT prints out, using the

WRITE statement, the number of occurrences of each pixel value within

the image.

6.3.2 Exhibit Joint Histogram and Joint Distribution

Exhibit joint histogram and exhibit joint distribution also differ

mainly due to the-devices on which they can be displayed, as joint

histograms may only appear on the Ramtek while joint distributions may

only be directed to the line printer. Both JHISTO and JDISTR calculate

the frequency of the pixel value pairs obtained by extracting points from

the same position on two images. Before the pixel values can be extracted,

the northwest corner coordinates and the sizes of the images must be

obtained from the file headers. These are used to determine what portion

of each image is included in the intersection of the two images.

When first created, images are declared to be in either grid coordinates,

with a specified northwest corner, or in absolute coordinates with an

arbitrary 'don't care northwest corner. If two images are both in absolute

coordinates, their northwest corners are assumed to have the same coordinates.

If one is in absolute and the other in grid coordinates, the northwest

corners are also assumed to match up. If both are in grid coordinates, the

northwest corner of the overlapping portion and its relative position in

each image must be determined.

After the starting and ending scan element and scan line within each

image have been determined, one scan line from each image is read. Each

pixel value from the first image is concatenated with the corresponding

jpxelvaluefrom the second image -and-,a frequency- count--of these--pixel pair­

values is tabulated. Scan lines are repeatedly read in and their pixel

values extracted until all in the intersecting image portion have been

examined.

After this point JHISTO and JDISTR differ, as the device dependent

display portion of each routine has been reached. When a joint histogram

has been requested, the pixel pair values are sorted in order of ascending

frequency. Pixel pair occurrence is shown on a joint histogram by a small

rectangle at the'point where the X coordinate is the value in one image and

the Y coordinate is the value in the other. Frequency is indicated by the

color of the rectangle. So that the user may highlight certain frequencies,

he is given two options. His first option is choosing the ranges into

which he wants the frequencies divided. If he does not use this option,

seven equally spaced ranges will be assumed. His second option is selecting

a color for each range. Default colors, a different one for each of up to

seven ranges, will be assigned if he does not choose this option. After

colors and ranges have been assigned, the subroutine JOUT is invoked for

each range. JOUT calls BLOKZ using raster data mode to output squares of

color on the Ramtek.

When exhibiting a joint distribution, the user may specify whether he

wants the output sorted by pixel pair value or frequency, but pixel pair

value should only be chosen if all values are less than 128 as larger numbers

may cause the pair value to be interpreted as a negative number which would

be incorrectly sorted. The pixel pairs and their frequencies are then output

to the line printer through repeated use of the WRITE statement.

6.3.3 Exhibit Contingency Matrices

CONMAT is the top level device module routine for computing contingency

matrices for two classification maps. The computations take place in CONTIN

and the line printer output is handled in CONMXP. Contingency matrices may

be used in determining the degree of correspondence between two maps of the

same region which have been processed using different algorithms.

Two things are computed when producing contingency matrices - boundary

transition type and neighborhood agreement between two maps. Boundary

transition type refers to comparison of two pixel values within the same

image. The class value of each pixel is compared with its north neighbor

and its west neighbor to see which of four boundary transition types it

falls into. All three pixels may be in the same class (no boundary), the

west neighbor may be the same but the north neighbor different (vertical

boundary), the north neighbor may be the same but the west neighbor different

(horizontal boundary) or both neighbors may differ from the pixel currently

being examined (vertical/horizontal boundary).

To determine the neighborhood agreements between two maps, three

comparisons must be made for each pixel. Agreement and disagreement of

the corresponding pixels from two classification maps, their north neighbors

and their west neighbors is computed,. The number of neighborhood agreements

for each classification pair with respect to each boundary type is recorded.

6.4 Utility Operation

Of the control and utility database operations available, spotlight is

the only one allocated to the device module. Spotlight is a command the

user gives when he wishes to know the nature of the data in a certain file.

An IMDB file can be an image, a window, a zoom function, a color function,

or a transform. At the query level, the user is required to state the name

of the file he wishes to spotlight and the device on which he wants the

spotlight information to appear. These two parameters are then passed to

SPOTLT.

Within SPOTLT, the file type and whether the file is a permanent or

temporary file are determined. Depending on the file type, the correct

type-dependent routines are called; image - SPIMAGE, window - SPWIND,

zoom - SPZOOM, transform - SPTRSF or color - SPCOLR.

SPIMAGE prints out, on either the user terminal or the line printer, the

image file name, the northwest corner coordinates of the image, the size of

the image in pixels east to west and north to south, and, if the file is a

permanent file, the file description. SPWIND prints out the window file

name, the maximum and minimum X and Y coordinates, whether the window is an

enclosure or an exclosure, and how many vertices the window has, If the file

2 \ I 3

is a permanent file, the file description is also printed. SPZOOM prints

the two numbers forming the new size to old size ratio as well as the file

name and description.

SPTRSF-prints, the fi-le name and description as well as the entire

transform table. This indicates to the user which pixel values are transformed

into which new values when that transform is used. SPTRSF also only appears

on the user terminal or line printer. SPCOLR is more complicated because

a color function spotlight may be displayed on the Ramtek or the Dicomed as

well as on the user terminal or line printer. SPCOLR calls the file module

routine which puts the color table in a designated buffer before passing

control to the device dependent routines. For the Ramtek, RAMSC determines

which colors are used in the color function and in which pixel value ranges

they occur. RAMSC then calls the functional primitive routines RECTZ and

ALPHAZ to output a square of each color and the ranges of. pixel values that

will acquire this coloring when the color function is applied. The Dicomed

routine, DISOSC, also determines the colors and ranges and then invokes the

functional primitive rectangle and character routines RECTFR and DICOPC.

If the line printer or user terminal is specified, UTSC is used to output

either the color name or number and the ranges to which it is to be mapped.

REFERENCES

[1] 	 Newman, W.M., and Sproull, R.F., Principles of Interactive

Computer Graphics, McGraw Hill, 1973.

[2] 	 Haralick, R.M. and Currier, P., "Image Discrimination

Enhancement Combination System (IDECS)," Computer Graphics

and Image Processing, Vol. 6, 1977, pp. 371-381.

[3] 	 Lien, Y.E. and Schroff, R., "An Interactive Query Language

for an Image Database," University of Kansas Dept. of

Computer Science, 1977.

[4] 	 Ramtek GX-100B Programming Manual, 1975.

[5] 	 Operation and Programming Manual, Dicomed Image Recorders,

Dicomed Corporation, 1974.

[6] 	 Dijkstra, E.W., "A Constructive Approach to the Problem of

Program Correctness," BIT, Vol. 8, No. 3, 1968, pp. 174-186.

[7] 	 Bohm, C. and Jacopini,G., "Flow Diagrams, Turing Machines

and Languages with Only Two Formation Rules," Comm. ACM,

Vol. 9, 1966, pp. 366-371.

[8] 	 Mills, H.D., "Top Down Programming in Large Systems,"

Debugging Techniques in Large Systems, Courant Computer

Science Symposium, NYU, 1971, pp. 41-45.

[9] 	 Mills, H.D., "On the Development of Large Reliable Programs,"

IEEE Symposium on Computer Software Reliability, 1973,

pp. 155-159.

[10] 	 Kerighan, B.W. and Plaugher, P.J., Software Tools, Addison

Wesley, 1976.

[11] 	 Fish, R.C., "Structured Design Ensures High Ouality Systems."

Computer World.

130

APPENDIX

Description of Subroutines

Included in the Device Module

of the IMDB System

DISPL (DEVICE, FILENM, SCANEL, SCANLI, COLFTN, STATUS)

DEVICE = device on which image is to be displayed - Ramtek,
Dicomed, Varian.

FILENM = name of image file.

SCANEL, SCANLI = northwest corner to display.

COLFTN = name of desired color function.

STATUS = 0: okay-image displayed.

= 1: illegal device for display.

= 2: image was compressed.

> 4: error from file module routine.

Routines called:

GETCTE - file module

RAMQ

RAMD

DILOQ

DILOD

VARQ

VARD

DISPL call device dependent routines for displaying an image.

RAMQ 	 (DEVICE, FILENM, SCANEL, SCANLI, EW, NS, NELEM, NLINE, JX, JY,

OLDCF, NEWCF, STATUS)

DEVICE = specific Ramtek screen on which to display image.

FILENM = name of image file.

SCANEL, SCANLI = starting northwest corner to display.

EW, NS = pixels, lines in image.

NELEM, NLINE = number of elements and lines to display.

JX, JY = screen coordinates for northwest corner of image.

OLDCF, NEWCF = compression factors: old size and new size.

STATUS = 0: okay.

= 2: image was compressed.

Routines called:

MSGOUT - utility

GETPT

RAMQ determines image display size, positioning and compression.

RAND (DEVICE FILENM, SCANEL, SCANLI, NELEM, NINE, COLFTN, JX, JY, OLDCF,

NEWCF, STATUS)

DEVICE = specific Ramtek screen

FILENM = name of image file

SCANEL, SCANLI = northwest corner of image

NELEM, NMINE = number of elements and lines to be displayed.

COLFTN = color function (if any) to be applied to image.

JX, JY = northwest screen coordinates for display.

OLDCF, NEWCF = compression factors.
STATUS = 0: okay

> 0: otherwise - error in file or manipulation module routine.

Routines called:

CCFTN - manipulation module

RDSCLN - file module

MOVE - manipulation module

DVICEZ

BLOKZ

RAMD displayed an image on a Ramtek screen.

DICOQ 	 (FILENM, MAGFR, RES, NKOLOR, NBIT, POLAR, LOGLIN, KOLRCD, sCANEL,
SCANLI, EW, NS, NELEM, NINE, JX, JY, OLDCF, NEWCF, STATUS)

FILENM = name of image file.

MAGFR = magnification factor.

RES = resolution (0,1,2 for low, med, high).

SCOLOR = number of colors (8 or 64).

NBIT = 6-bit or 8-bit intensity values.

POLAR = polarity: normal or complemented exposure.

LOGLIN = logarithmic or linear transfer function.

KOLRLD = color code: specifies which filters to use.

SCANEL, SCANLI = northwest corner to be displayed.

EW, NS = size of image in elements and lines.

NELEM, NLINE = number of elements and lines to display.

JX, JY = film coordinates for northwest corner.

OLOCF, NEWCF = compression factors.

STATUS = 0: okay.

Routines called:

MSGOUT - utility

DICOQ determines parameters to be used by Dicomed film recorder in

displaying an image,

DICOD (FILENM, SCANEL, SCANLI, JX, JY, OLDCF, NEWCF, MAGFR, RES, NKOLOR,

NBIT, POLAR, LOGLIN, KOLRCD, COLFTN, NELEM, NLINE, STATUS)

FILENM = name of image file.

SCANEL, SCANLI = northwest corner of image to be displayed.

JX, JY = film coordinates for northwest corner.

OLDCF, NEWCF = compression factors.

MAGFR = magnification factor.

RES = resolution (o,1,2 for low, med, high)

NKOLOR = number of colors (8 or 64).

NBIT = number of bits for each intensity = 6 or 8.

POLAR = polarity = normal or complemented.

LOGLIN = linear or logarithmic transfer function.

KOLRCD = color code: designates filters to be used.

COLFTN = color function to be applied to image.

NELEM, NLINE = number of elements and lines in image to be displayed.

STATUS = 0: okay.

> 4: error from file or manipulation module routine.

Routines called:

CCFTN - manipulation module

RDSCLN - file module

MOVE - manipulation module

CINE

DICOMD

FILTER

RANDHV

DICOD displays an image on film using the Dicomed film recorder.

VARQ (FILENM, SCANEL, SCANLI, EW, NS, NELEM, NLINE, NSTRIP, PC.ODE)

FILENM = name of image file to be displayed.

SCANEL, SCANLI = northwest corner of image.

EW, NS = size of image in pixels east to west and north to south.

NELEM, NLINE = number of elements and lines to be displayed.

NSTRIP = number of strips (image sections) to be printed.

PCODE = pattern code: 4 for 4 X 4 pattern or 5 for 5 X 5 pattern.

Routine called:

MSGOUT - utility

VARQ determines the number of sections of the image to be plotted

on the Varian.

VARD (FILENM, SCANEL, SCANLI, EW, NS, NELEM, NLINE, NSTRIP, PCODE, STATUS)

FILENM -= name of image file to be displayed.

SCANEL, SCANLI- = northwest corner of image

EW, NS = size of image in pixels east to west and north to south.

NELEM, NLINE = number of elements and lines to be displayed.

NSTRIP = number of sections to be printed.

PCODE = pattern code: 4 for 4 X 4 pattern, 5 for 5 X 5 pattern.

STATUS 	= 0: okay.

= 3: improper pattern code.

* 0 and > -256: bad device status in PLOTV.

> -1000: bad directive status in PLOTV.
> 4: error from file module routine.

Routines called:

RDSCLN - file module

MOVE - manipulation module

PLOTV

PACK85.

VARD displays a grey level image on the Varian printer/plotter.

PACK 85, (BUF, BUF)
BUF - input buffer, 2 bytes per word.
BUrl - result buffer, byte array.

Routines called: none

FACK85 packs the right most 5 bits of the 8 words of BUF into 5 bytes

of BUFl. The packing results in the following structure: 11111222

22333334 44445555 56666677 7778888.

DRWIND (DEVICE, FILENM, STATUS)

DEVICE = device on which to display window - Ramtek.

FILENM = name of window file.

STATUS 	= 0: okay

= 1: improper device.

= 3: window won't fit on image on screen.

4: error from file or manipulation module routine.

Routines called:

GETCTE - file module

MOVE - manipulation module

MSGOUT - utility

RANDW

RWIND determines coordinates for drawing a window polygon on the

Ramtek screen.

RAMDW (DEVICE, FILENM, DSCALE, DMOVEX, DMOVEY, NPTS, WMODE, STATUS)

DEVICE = specific Ramtek screen on which to display window.

FILENM = name of window file.

DSCALE = scale factor.

DMOVEX = X-offset.

DMOVEY = Y offset.

NPTS = number of points in window polygon.

WMODE = 0 - no current image on screen; 1-image currently on screen.

STATUS = 0: okay.

> 4: error from file module routine.

Routines called:

 ORIGINAL PAGERDWNDW - file module
OF POOR QUALITYMSGOUT - utility

RAMLN

ALPHAZ

RAMDW draws a window polygon on a Pamtek screen.

LEGEND (DEVICE, BUFF, NCHAR, STATUS)

DEVICE = device on which legend is to appear - Ramtek, Dicomed, Varian.

BUFF = buffer containing characters to be displayed.

NCHAR = number of characters to be displayed.

STATUS 	= 0: output okay.

= 1: illegal device.
= 3: character string was truncated because characters

didn't all fit in display area.

Routines called:

RAMPC

DICOPC

VARPC

LEGEND displays a character string. Character color is white on

Ramtek and Dicomed, dark on Varian.

RAMPG (DEVICE, BUFF, NCHR, CHRSZ, STATUS)

DEVICE = Ramtek screen to be used for character display.

BUFF = buffer containLng characters to be displayed.

NCHR = number of characters in BUFF.

STATUS = 0: okay.

3: not all characters will fit.

Routines called:

MSGOUT - utility

GETPT

ALPHAZ

RAMPC displays characters in white at point specified by user on

Ramtek screen.

DICOPC (BUFF, NCHR, CHRSZ, STATUS)

'BUFF '=.
 buffer containing characters to be displayed.

NCHR ='-number of characters in BUFF.

CHRSZ = character size: 1,2,3 or 4 - 1 is largest, 4 smallest.
STATUS 0: okay

3: characters didn't all fit so character string was

truncated.

Routines called:

MSGOUT - utility

CINE

FRLIST

DICOPC prints characters on Dicomed film starting at point specified

by user.

VARPC (BUFF, NCHR, STATUS)

BUFF = buffer containing characters to be output

NCHR = number of characters in BUFF.

STATUS = 0: okay

< 0 and >-256: bad device status.

< -1000: bad directive status

Routine called:

PLOTV

VARFC prints one line of characters on the Varian printer/plotter.

Characters are in an 8 X 9 dot matrix.

ERASES (DEVICE)

DEVICE = 	 device to be erased or set to a new page - Ramtek, Varian,

line printer.

Routines called:

DVICEX

ERASEZ

PLOTV

ERASES erases a Ramtek screen, advances the paper on the Varian

or goes to the top of a new page on the line printer.

EXHBPA (DEVICE, FILENM, SCANEL, SCANLI, NELEM, NLINE, STATUS)

DEVICE = output device for display of pixel values in a given area ­
user terminal, line printer or Ramtek.

FILENM = name of image file from which pixel values are to be
extracted.

SCANEL, SCANLI = starting image coordinates of area to be exhibited.
NELEM, NLINE = number of elements and likes to be exhibited - must

be no greater than 20.

STATUS 	 = 0: okay

= l:-improper device.

> 1: error from file module routine.

Routines called:

RDSCLN - file moudle I

MOVE - manipulation module

MSGOUT - utility

DVICEZ

ALFHAZ

EXHBPA displays pixel values of an NELEM by NLINE area starting at

SCANEL, SCANLI in image FILENM.

HISTO (DEVICE, FILENM, STATUS)

DEVICE = device on which to display histogram - Ramtek.
FILENM = name of image file for which histogram is to be displayed.

STATUS = 0: okay
= 1: improper device.
> 1: error from file module routine.

Routines called:

GETCTE - file module

RDSCLN - file module

MOVE - manipulation module

MSGOUT - utility

RAMHI

HISTO computes frequency counts used for drawing a histogram of

an image.

RANHI (PARRAY, DEVICE)

PARRAY = 256 word array containing frequency counts for pixel values.

DEVICE = specifies which Ramtek screen,

Routines called:

MSGOUT - utility

DVICEZ

DHISTZ

RAMHI initiates display of a histogram on the Ramtek screen.

DHISTZ (KOUNT, KOLOR)

KOUNT = 256 word array containing frequency count of pixel values.
KOLOR = color in which histogram is to be displayed.

Routines called:

RECTZ

ALPHAZ

DRWABZ

DHISTZ displays a histogram on the Ramtek screen.

DISTR (DEVICE, FILENM, STATUS)

DEVICE = device on which to display distribution of pixel values ­

line printer.

FILENM = name of image file for which distribution is to be displayed.

STATUS = 0: okay

= 1: improper device.

> 1: error from file module routine.

Routines called:

GETCTE - file module

RDSCLN - file module

MOVE - manipulation module

MSGOUT - utility

LPDT

DISTR computes the frequency of each pixel value in a given image.

LPDT (FILENM, PARRAY)

FILENM = name of image file for which distribution is to be printed.

PARRAY = 256 word array containing frequency counts of pixel values.

-Routines catl-e&:

MSGOUT - utility

LPDT prints the distribution of pixel values on the line printer.

JHISTO (DEVICE, IMAGE1, IMAGE2, STATUS)

DEVICE = display device for joint histogram - Ramtek

IMAGE1, IMAGE2 = names of image files for which joint histogram is

to be displayed.

STATUS = 0: okay.
= 1: improper device.
= 2: too many different pixel pairs - joint histogram

not possible.
= 4: images don't intersect.

Routines called:

GETOTE - file module

RDSCLN - file module

MOVE - manipulation moudle

MSGOUT - utility

JSORT

JOUT

ALPHAZ

ERASEZ

JHISTO computes pixel pair values and frequencies in preparation for

display of a joint -istogram. User may select ranges and colors for

display of pixel values.

JSORT (KBUFF, NPAIRS, KEY)
KBUFF = 2 by NPAIRS array of pixel value pairs and frequencies.
NPAIRS = number of different pairs to be sorted.
KEY = indicates whether sorting is to be first or second word.

Routines called: none ORIGINAL PAGE IS

JSORT sorts a 2 X N array in ascending order. OF POOR QUALITY

JOUT (KOUNT, NAPIRS, KOLAR, MA6)

KOUNT = (2,N) array of pixel value pairs and frequency counts.

NPAIRS = number of data pairs in KOUNT.

KOLOR = color histogram is to be displayed in.

M S = magnification factor.

Routines called:

BLOKZ

BITSET

JOUT displays a line of the joint histogram on the Ramtek.

BITSET 	 (IARRAY, NBIT)

IARRAY = target array.

NBIT = bit to be set.

Routines called: none

BITSET sets a bit in an array.

JDISTR (DEVICE, IMAGE1, IMAGE2, STATUS)

DEVICE = output device - line printer.
IMAGE1, IMAGE2 = names of image files for which joint distribution

is to be displayed.
STATUS 	 = 0: okay.

= 1: improper device

= 2: too many different pairs.

= 4: images don't intersect.

Routines called:

GETCTE - file module

RDSCLN - file module

MOVE - manipulation module

MSGOUT - utility

JSORT

JDISTR computes pixel pair values in preparation for display of a

joint distribution.

CONMAT (DEVICE, MAP1, MAP2, STATUS)

DEVICE = output device for display of contingency matrix - line

printer.

MAP1, MAP2, = names of image files for which contingency matrix is

to be computed.

STATUS 	 = 0: okay

= 1: images not of same size.

= 2: pixel number exceeds limit.

= 3: improper device.

> 3: error from file module routine.

Routines called:

GETCTE - file module

MSGOUT - utility

CONTIN

CONMXP

140 in

CONMAT computes contingency matrices of two classification maps by

calling CONMAT and prints out the matrices by calling CONMXP. Each

map has eight or fewer classes.

CONTIN (MAPI, MAP2, NPIXEL, NLINE, NCLASi, NCLAS2, IX, IY, MATRIX, STATUS)

MAPi, MAP2 = names of image files (classification maps) for which

contingency matrices are to be completed.

NPIXEL, NLINE = number of elements and lines in the ranges.

NCLASI, NCLAS2 = number of classes in MAPI and MAP2.

IX, IY = buffers for scan lines.

MATRIX = array for contingency matrix.

STATUS = 0: okay.

0: error in file module routine.

Routines called:

RDSCLN - file module

MOVE - manipulation module

AGREE

CONTIN computes contingency matrices for two classification maps.

Boundary transition types and neighborhood agreements are computed.

CONMXP (DEVICE, MAPl, MAP2, TITLE, IH, IH2, INVI, INV2, NPIXEL, NLINE, M, N)

DEVICE = output device - line printer
MAP1, MAP2 = names of image files for which contingency matrices are

to be computed.
TITLE 80 character (max) title to be printed on top of each page

of-output.
IH, IH2 contingency matrices computed by CONTIN.

INVI, INV2 = inventory matrices.

NPIXEL, NLINE = number of lines and pixels in images.

M, N = number of classes in MAPl and MAP2 respectively.

Routine called:

MSGOUT - utility

CONMXP prints matrices showing number of agreements and disagreements

of transitions for each pair of classes.

AGREE (IX, IY, NPIXEL, Il, 12, MATRIX)

IX = array holding two scan lines of one map.

IY = array holding two scan lines of other map.

NPIXEL = number of pixels in each scanline.

II, 12 = either 1 or 2, tells which part of IX or IY has the

present line and the previous line.

MATRIX = contingency matrix.

Routine called:

INTLOG

AGREE compares one pair of scan lines for agreement for the two maps.

INTLOG(L) (function)

L = true or false,

INTLOG returns 1 if true, 0 if false.

SPOTLT (DEVICE, FILENM, STATUS)

DEVICE = device on which to display spotlight output.

FILENM = name of file to be spotlighted.

STATUS = 0: okay

= 1: device incompatible with file type
= 2: file type not recognized
= 4: improper color format for color spotlight on Ramtek.

Routines called:

GETCTE - file module

SPIMAGE

SPWIND

SPZOOM

SPCOLR

SPTRSF

SPOTLT displays core table and file content information.

SPIMAGE (DEVICE, IMGNM, STATUS)

DEVICE device on which to display information about an image-line
printer or user terminal.

IMGNM = name of image file for which information is desired.
STATUS = 0: okay.

= 1: improper device.

Routines called:

RDDSCR - file module

MSGOUT - utility

SPIMAGE prints out coordinates, size and description of an image.

SPWIND (DEVICE, FILENM, STATUS)

DEVICE = device on which information about window file is to be
displayed-line printer or user terminal.

FILENM = name of window file.

STATUS = 0: okay.
= 1: improper output device.

Routines called:

MOVE 2 manipulation module

MSGOUT - utility

RDDSCR - file module

SBWIND--prints-out-closure maximum and-miffimdf c6orT[altes- number of

vertices and description of a window polygon.

SPZOOM (DEVICE, FILENM, STATUS)

DEVICE 	 = device on which to display information about zoom function­

line printer or user terminal.

FILENM = name of zoom file.

STATUS = 0: okay.

= 1: improper output device.

Routines called:

MSGOUT - utility

RDDSCR - file module

SPZOOM prints name, new to old image size ratio, and description of a

zoom file.

SPTRSF (DEVICE, FILENM, STATUS)

DEVICE 	 = device on which to display information about transform

function-line printer or user terminal.

FILENM = name of transform file.

STATUS = 0: okay.

= 1: improper output device.

Routines called: No 0I

MSCOUT - utility YOU
1KtJ
RDDSCR - file module Ut
RDTNSF - file module
MOVE - manipulation module

SBTRSF prints each pixel value and what value it is transformed to.

SPCOLR (DEVICE, COLFCN, STATUS)

DEVICE = device on which to display color function information.

COLFLN = name of color file.

STATUS 	 = 0: okay.

= 1: improper device.
= 4: color format not compatible with display device.

Routines called:

RDCOLR - file module

RAMSC

DICOSC

UTSC

SPCOLR outputs a square of each color and the ranges in which it occurs

on the Ramtek or Dicomed and prints the number or name of each color and

its ranges on the line printer or user terminal.

RAMSC (DEVICE, STATUS)

DEVICE = Ramtek screen on which color function is to be displayed.
STATUS = 0: okay.

Routines called:

MOVE - manipulation module

DVICEZ

RECTZ

ALPHAZ

RAMSC draws rectangles on Ramtek to illustrate colors of ranges for

a color function.

DICOSC (COLFRM, STATUS)

COLFRM = color format: 4-bit for eight colors, 6-bit for 64 colors.

STATUS = 0: okay.

Routines called:

MOVE - manipulation module

MSGOUT - utility

CINE

RECTFR

FRLIST

DICOSC displays a rectangle of each color used in the color function

and the ranges in which it is used on Dicomed film.

UTSC (DEVICE, FILENM, COLFRM, STATUS)

DEVICE = display device - user terminal or line printer.

FILENM = name of color file.

COLFRM = color format: 4-bit for 8 colors, 6-bit for 64 colors.

STATUS = 0: okay

Routines called:

MSGOUT - utility

MOVE - manipulation module

RDDSCR - file module

UTSC displays color name, if 4-bit format, or color number, if 6-bit

format, and ranges.

14

GETPT (DEVICE, X, Y, STATUS)

DEVICE = Ramtek screen from which to obtain point.

X = X-coordinate of point.

y = Y-coordinate of point.

STATUS = 0: cursor visible point returned-.

= 1: cursor not visible - point not returned.
= 2: improper device.

Routines called:

DVICEZ

KURSRZ

GETPT returns the screen coordinates of a point entered through the

trackballby the user.

KURSRZ (JX, JY) (function)

JX, JY = trackball coordinates.

Routine called:

RAMZ

KURSRZ is used to input a point through the Ramtek trackball. KURSRZ

returns a value giving the condition of the trackball switeches.

DRPT (DEVICE, X, Y)

DEVICE = Ramtek screen on which to display a point.

X = x-coordinate of point.

Y = y-coordinate of point.

Routines called;

DVICEZ

DRWABZ

DRPT displays a point in white on the specified Ramtek screen.

DRWABZ (JX, JY, KOLOR)

JX, JY = ending coordinates of line.
KOLOR = desired color: 1 - white overlay

2 - red
4 - green
8 - blue

Routines called:

COORDZ
RAMZ

KRAMZ

DRWABZ draws a vector from the point last drawn by this routine to the

point specified in the call. The current point is remembered until

the next call.

RAMLN (DEVICE, Xl, Y1, X2, Y2, COLOR)

DEVICE = which Ramtek screen to draw line on.

Xl, Y1 = starting coordinates for line.

X2, Y2 = ending coordinates for line.

COLOR = color in which to draw line.

Routines called:

DVICEZ

DRWABZ

RAMLN draws a line on a Ramtek screen.

RECTZ (KXl, KY1, KX2, KY2, KOLOR)

KXI, KY1 = starting coordinates for rectangle.

KX2, KY2 = ending coordinates for rectangle.

KOLOR = color in which to draw rectangle.

Routines called:

RAMZ

KRAMZ

NVERSZ

RECTZ draws rectangles on the Ramtek using graphic cartesian mode.

BORDER (JX, JY, NPIX, NLINE, JXB, TYB, IRES, KOLOR, INTENS, IBUF, JBUF)

JX, JY = upper left coordinates.

NPIX = picture width.

NLINE = picture height.

JXB = vertical border width.

JYB = horizontal border width.

IRES = resolution (0,1,2 for low, med, high).

KOLOR = COLOR (0,1,2,3 for whiter, red, green, blue).

INTENS = intensity level (0-255).

IBUF = integer array to give border temporary storage.

JBUF = annotation for bottom border.

Routines called

RECTFR

BORDER draws a border around pictures or text on the Dicomed film

recorder.

/0 	 141

RECTFR 	 (JX, 3Y, NX, NY, IRES, KOLOR, INTENS, IBUF)

JX, JY = upper left corner of border (scaled).

NX = number of data points across.

NY = number of data points down.

IRES = resolution (0,1,2 for low, med, high).

KOLOR = color (0,1,2,3 for white, red, green, blue).

ITENS = intensity value (0-255).

IBUF = temporary array for use by RECTFR (of size NX+l words).

Routines called:

DICOND

RANDHV

FILTER

CINE

RECTFR 	 draws filled-in rectangles on the Dicomed film recorder.

RANDHV 	 (IPOSH, IPOSV)

IPOSH = horizontal position.

IPOSV = vertical position.

Routine called:

CINE

RANDHV positions output through the Dicomed film recorder, permitting

plotting to begin anywhere on the film.

ALPHAZ (JX, JY, KOLOR, IARRAY, NCHAR)

JX, JY = screen coordinates for character display.

KOLOR = color.

IARRAY = array containing the characters to be displayed.

NCHAR = number of characters in IARRAY.

Routines called: none

ALPHAZ outputs characters on the Ramtek display screen selected by

the most recent call to DVICEZ.

FRLIST 	 (JXI, JYI, JX2, JY2, ISTR, ISIZE, MAG, KX, KY, IRES, KOLOR, KBACK,

ITEMP, NCSIZE)

JI, JY, JX2, JY2 = coordinates of rectangle to be filled in with
backround color (scaled per resolution).

ISTR = buffer containing characters to be printed.
ISIZE = number of characters in string.
MAG = magnification.

|I

KX, KY = coordinates (scaled) of upper left corner of first character.
If either is zero, characters will be centered in the rectangle.

IRES = resolution (0,1,2 for low, med, high).
KOLOR = 4 word array containing intensity of characters for the four

filter colors.
KBACK = 4 word array giving intensity of backround for the four

filter colors.
ITEMP = temporary buffer for output.
NCSIZE = size of field characters are to be spread over. If zero, no

extra spaces are added.

Routines called:

FRKH-AR
RECTFR

FRLIST places a line of characters and backround on Dicomed film.

FRKHAR (KBUF, NCHAR, MAG, JX, JY, IRES, KOLOR, INTENS, KOMP, ITEMP, NCSIZE)

KBUF = array of characters to be output.

NCHAR = number of characters in KBUF.

MAG = magnification.

JX, JY = film coordinates.

IRES = resolution (0,1,2,3 for low, med, high)

KOLOR = color (0,1,2,3 for white, red, green, blue).

INTENS = intensity (0-255)

KOMP = polarity (0,1 for normal, complemented).

ITEMP = temporary array for output.

NCSIZE = number of character spaces string is to be spread over.

Routines called:

DICOND

FILTER

RANDHV

KGEN

CINE

FRKHAR places a string of characters on Dicomed film in the color,

position and intensity specified.

KGEN (KBUF, NCHAR, MAG, MAGV, IROW, INTENS, ITEMP, NCSIZE)

KBUF = buffer containing characters to be output.

NCHAR = number of characters in KBUF.

MAG = magnification.

MAGV = which row is to be formatted.

INTENS = intensity value for the 'on' bits.

NCSIZE = number of character spaces string is to be spread over.

Routines called:

KFILL

TFILL

SPCL

KGEN -fills output buffer with one tow of nine row character string

pattern.

TFILL (KDATA, MAG, MAGV, INTENS, KPTR, ITEMP)

IDATA = 	 7 X 3 array with pattern and corner fill

MAG = magnification

MAGV = which row from 1 to MAG is being done

INTENS = value to which ITE P is set if pattern is 'on'

KPTR = pointer used to fill ITEMP

ITEMP = output buffer.

Routines called: none

TFILL fills the output buffer with one row of one 7 X 9 character

pattern..

KFILL (IBUF)

IBUF = 	 7 X 3 array across a character with a 1 for a character
element and a 0 for a blank element.

Routines called: none

KFILL tests for corner fill in character generation.

SPCL (IROW, KHAR, KTEMP)

IROW = row being filled (one of 9 rows).

KHAR = code of character being generated.

KTEMP = 7 X 3 array with bit pattern and corner indicators.

Routines called: none

SPCL sets corner indicators for special cases not handled by KFILL.

ERASEZ (KOLOR)

KOLOR = 	 colors to be erased.

1023 erases all.

Routines called:

RAMZ

KRAMZ

19

ERASEZ erases a color or colors from the Ramtek screen. Use of a

negative color sets the reverse backround bit and causes the color

to be written instead of erased.

BLOKZ (MODE, JX, JY, KOLOR, IBUF)

MODE any Ramtek mode that uses block transfers.

JX, JY = starting screen coordinates.

KOLOR = subchannels for color.

IBUF = buffer containing data and header information.

IBUF(l) = physical device or zero.

IBUF(2) = logical unit or zero.

IBUF(3) = number of bytes of data

IBUF(4-11) header filled in by BLOKZ

IBUF(12-) data

Routines called:

KRAMZ

ARAMZ

BLOKZ outputs data in a buffer to the Ramtek using the BLK command

and the specified mode.

PLOTV (BUFFER, BUFSEZ, IOFCN, STATUS)

BUFFER = buffer containing data.
BUFSIZ = number of bytes of data in buffer.
IOFCN = function: 0-slew.

1-form feed.
2-data write.

STATUS- 0: output okay.
< 0 and -256 - bad device status.

< -1000: bad directive status.

Routines called:

GETADR - operating system I/0 routine.

WTQIO - operating system I/0 routine.

PLOTV performs I/0 functions on the Varian plotter.

DVICtZ (IPD, LVN)

IPD = physical device.
LUN = logical unit number.

Routine called:
RAMZ

DVTCEZ sets default values for the Ramtek device and unit.

20

ARAMZ (IBUF)

IBUF(1) = physical device

IBUF(2) = logical unit number.

IBUF(3) = number of bytes of Ramtek commands.

I BUY(4) .. functior: ° -- 1wrft ­

2-read

3-attach

4-detach

IBUF(5-) = Ramtek commands

Routine called:

RAMZ

ARAMZ sends data to the Ramtek from a single array.

RAMZ (IBUF, LUN, NBYTES, IFUNC)

IBUF = Ramtek commands.
LUN = logical unit number.
NBYTES = number of bytes.
IFUNC = desired function: 1-write

2-read
3-attach \..ga J. j t U

4-detach 4UV

Routines called:

GETADR
WTQIO
ERRCKZ

RAMZ builds the calling sequence for WTQIO, calls WTQIO to I/O data

and commands to the Ramtek, and then does error checking.

KRAMZ (args) (function)

args = Ramtek op codes, modes, flags, colors

KRAMZ is used to stack op codes for Ramtek commands into a buffer for

I/O to the Ramtek.

ERRCKZ (ISW, ISTAT, IPRM, MUNIT)

ISW system status word.

ISTAT = handler status word.

IPRM = parameter list.

MUNIT = unit for error messages.

Routines called: none

ERRCKZ checks system I/0 status, handler I/0 status and number of bytes

input or output.

/67

COORfDZ (JX1, J l, JX2, JY2)

JXI, JYl = previous coordinates.

JX2, JY2 = new coordinates.

Routines called: none

COORDZ accepts a set of coordinates and returns the set sent over

in the previous call.

NVERSZ (KOLOR) (function)

KOLOR = 	 color - if color is negative, reverse backround mode is

selected.

Routines called: none

NVERSZ returns the code for reverse backround if the color is negative.

FILTER (KOLOR)

KOLOR = color of filter to position on Dicomed:

0-neutral.

1-red.

2-green.

3-blue.

Routines called:

DICOMD

CINE

FILTER positions a filter in the optical path of the Dicomed film

recorder.

DICOMD (IARRAY, ISIZE)

IARRAY = array of commands to be sent to the Dicomed.

ISIZE = number of commands in the array.

Routine called:

CINE

DICOMD sends commands to the Dicomed film recorder.

CINE 	 (IBUF, LUN, NBYTES, IFUNC)

IBUF = buffer containing Dicomed operations.

LUN = logical unit number.

NBYTES = number of bytes of data

IFUNC = desired function: 	 1-write commands.
2-read status.
3-attach
4-detach
5-write data.

Routines called:

GETADR - operating system I/0 routine.

WTQIO - operating system I/0 routine.

CINE sends Dicomed I/0 operations to WTQIO.

/53 23

Description of routines invoked by the device module but not

included in the device module.

GETCTE: searches the core tables for a given file name and
returns the core table information in a common
buffer. Core table information includes file type,
coordinates and size.

MOVE: moves an arbitrary number of bytes from a specified

source address to a specified destination.

CCFTN: compresses and performs a color transform on a
given image file and returns the name of a file

containing the resultant image.

RDCOLR: reads a color transformation into a common buffer.

RDDSCR: reads the description field of a file header into

a buffer.

RDSCLN: reads a scan line from a file into a buffer.

RDTNSF: reads a transformation into a common buffer.

RDWNDW: reads window vertices into a buffer.

MSGOUT: outputs a message on the specified logical unit.

4. IMPLEMENTATION OF THE FILE MODULE

The IMDB File Module provides an interface between the IMDB program

structure and the RSX-llD FILES-li file system, making data management

essentially transparent to the other modules of IMDB.

4.1 IMDB DATA STRUCTURES

4.1.1 FILES

The primary IMDB data structure is the file. This is organized as a

FILES-il direct access file having a 256 byte header record followed by one

or more 256 byte data records.

The header record of a permanent file consists of six 4-byte fields

containing the information corresponding to columns 5 through 10 of the

core table entry (see 4.1.2), a 4-byte file size field recording the number

of records in the file, and a 228-byte file description field.

A distinciton is made between temporary files and permanent files.

For a temporary file, the file header record is not maintained and the file

is deleted at the end of the IMDB session. Files may be converted from

temporary to permanent by invoking the IMDB SAVE command.

4.1.2 DIRECTORIES

The file directory structures maintained by IMDB are in-core file

tables TFCT (Temporary File Core Table) and PFCT (Permanent File Core Table).

Only files entered into the core tables are accessibie to the user. Directory

entries are created by the user ACTIVATE, BUILD, and SAVE commands.

Structurally, the PFCT and TFCT are INTEGER*4 (50,10) arrays. Each

of the 50 rows may contain an entry. The first four columns of an entry

contain the 16 character file name (left justified, blank filled). Unused

entries are completely blank filled- Column 5 contains a file type indicator

and columns 6 through 10 contain file specific header information as indicated

in the table on the following page.

10

155

CORE TABLE COLUMN

File Type 5 6 7 8 9

IMAGE 'I ' LOQ LAQ * Pixels/
scan line

Scan
Lines

WINDOW 1W '

Maximum X & Y
coordinates
of window**

Minimum X & Y
coordianates
of window**

Olosure
code

Number of
points in
window

*

EXPRESSION 'E f Number of
16 byte terms

TRANSFORM 'T ' * *

COLOR

FUNCTION

ZOOM

'C

'Z

' *

Relative size
of resultant
image

* *

Relative size
of base image * * *

LINE (not

implemented

'L I X YI X2 Y *

•

•*

indicates field is unused

MAXX, MAXY and MINX, MINY are packed with the X portion in the
low address word and the Y portion in the high address word

4.2 	 IMDB FILE MANAGEMENT PRIMITIVES

These routines handle all file create, open, delete, read and write

operations. Also included in this group are the routines which access

and enter core table information.

4.2.1 	 MISCELLANEOUS PRIMITIVE ROUTINES

MOVE - A MACRO-II routine which copies (left to right) an arbitrary

number of bytes from any memory address to any other address

SEARCH - Attempts to find the core table and row number for a given

file name

FDSCRP - Converts a 16 byte IMDB system file name to a null-character

terminated FILES-li file descriptor. If the IMDB system

file name does not specify device, directory, type, and

version information, the following defaults are assumed:

Device - SYO

Directory - directory under which IMDB is currently running

Type - . DLT

Version - ;I (in order to avoid proliferation of versions)

DSDSCR - Creates the dataset descriptor information required by the

CHKFIL routine

CHKFIL - (module FILAUX.MAC) - Checks whether a file exists by

attempting to open it (written in the MACRO-11 language)

4.2.2 	 THE FILPRM FILE PRIMITIVE ROUTINE

FILPRM performs three different functions - create, open and delete ­

on the IMDB standard random files. The function is specified by the FCN

parameter.

Create calls CHKFIL to determine whether the file exists, then uses the

FORTRAN OPEN statement to open the file with TYPE = 'NEW'. The file is then

closed before returning. Open uses the FORTRAN OPEN statement to open the

file with TYPE = 'OLD'. Delete opens the file, then uses the FORTRAN CLOSE

statement to DISPOSE = 'DELETE'.

4.2.3 FILE READ AND WRITE PRIMITIVES

For purposes of reading and writing, IMDB files are viewed as

continuous byte strings. Data is transferred to or from a file by

calculating the byte offset from the beginning of the file (byte 0)

and calling the READP or WRITEP routine.

GETSIZ - Calls SEARCH (see 4.2.1) to determine the row number

and core table of the given file, uses this information to find

the number of records in the file from the file size tables (PFST

and TFST) in the FILCOM area,

PUTSIZ - Calls SEARCH, then updates information in the PFST

or TFST. If the file is permanent, the file size field of the file

header (bytes 24-27 of the file) are also updated,

READP - Reads the specified bytes of the named file, one random

record at a time, unblocking the data into the buffer area designated

by the caller.

WRITEP - Writes data form caller-designated buffer area to a

specified byte offset within a file and performs blocking as necessary.

GETSIZ is called when a preliminary readback is indicated in order

to avoid attempted reads beyond the end of the file. If the write

operation resulted in extension of the file, PUTSIZ is called to update

the file size-information,

4.2,4 CORE TABLE MANAGEMENT PRIMITIVES

These routines provide an interface between all other IMDB routines

and the information stored in the system core tables TFCT and PFCT.

Data transfers rely on CTEBUF in the /GENCOM/ common area which is a

six entry INTEGER*4 array corresponding to core table columns 5 through

10.

CTENAM - Returns the name portion of the core table entry for the

given table and row number.

GETCTE - Calls SEARCH to determine the table and row number of the

specified file. The requested core table entry is returned to CTEBUF

and the STATUS parameter is set to indicate in which table the entry

was found.

UPDCTE - Calls SEARCH to determine the core table and row number

for the specified file, then copies the contents to CTEBUF to the core

table entry. If the specified file is permanent, its header record

is updated from CTEBUF.

DELCTE - Calls SEARCH to find the core table entry for the

specified file, then blanks out that entry.

PUTCTE - Finds a blank row in the specified core table, then

enters the filename in columns 1-4 of the core table entry and copies

If the entry is made in PFCT,
the contents of CTEBUF to columns 5-10.

CTEBUF is also written to the file header.

4.3 FILE MODULE UPPER LEVEL ROUTINES

4.3.1 FILE MANAGEMENT ROUTINES

MATFIL - Create a permanent file.

MAKFIL

I I i I I I I
MOVE GETCTE PUTCTE DELCTE PUTSIZ FILPRM WRITEP

Call GETCTE to verify that no file by the given name

is already active.

Call PUTCTE to make a PFCT entry for the new permanent

file using information passed in CTEBUF.

Call FILPRM to create the file and call PUTSIZ to initilize

the PFST entry.

Finally, call WRITEP to copy header information to the file.

MKTFL - Create a temporary file.

MKTFL

I I I|

GETCTE PUTCTE DELCTE FILRM
 PUTSIZ

The procedure is the same as for MAKFIL except that the

core table entry is made in the TFCT instead of the PFCT

and no header is written.

MKSYFL - Create a temporary file having a system generated name.

MKSYFL

I I I I
GENSYM GETCTE PUTCTE FILPRM PUTSIZ DELETE

GENSYM is called to obtain a file name, then the

procedure followed parallels that of MKTFL.

GENSYM - Generates a name for a system temproray file.

MKZOOM - Because the BZ (build zoom) command always results in a zoom

having a temporary status and because all zoom information can

be kept in the core table entry, no file is actually created.

The create function of FILPRM is called to ascertain that there

is not already a file having the specified name, but the file

is immediately deleted by a second call to FILPRM. PUTCTE is

called to make a core table entry using the information passed

in CTEBUF.

DLTFLS - Clears the TFCT, deleting all temporary file; TFCT is searched

for non-blank entries, and for each file found, DELETE is

-called
 to delete the entry and FILPRM is called to delete the

file.

DELETE - Calls DELCTE and FILPRM to delete a file from the system.

DELBLK - This routine is passed a 126-word linear array, each successive

8 words of which either specify a file name or are zero. For

each non-zero eight word field, DELBLK calls DELCTE and FILPRM

to delete the named file from the system.

ACTIVA - Activate (make a core table entry for) a permanent file.

ACTVA

GETCTE READ? PUTOTE PUTSIZ MOVE

GETCTE is called to make sure the file name is not currently active.

The CREATE function of FILPRM is called to determine whether the

file exists. READP is called to read the core table information

from the file header into CTEBUF. PUTCTE is called to make the

/620

core table entry, and finally PUTSIZ is called to initialize the

PFST entry.

SAVE - Make a temporary file-permanent.

SAVE

I I
GETCTE MAICIL PERMFL

.IF I V I
MOVE GETSIZ GETCTE DELCTE PUTCTE PUTSIZ WRITEP

GETCTE is called to verify that the file is indeed temporary. If

the named file is a zoom function, MAKFIL must be called. Otherwise,

PERMFL is called to move the core table entry from TFCT of PFCT.

PERMFL - GETSIZ is called to obtain the number of records in the

file. GETCTE is called to obtain the core table information.

DELCTE deletes the TFCT entry and PUTCTE makes an entry

in the PET. PUTSIZ makes the entry in PFST and WRTIEP

is called to write the file header.

INICOM - Opens the system message file and initializes the /GENCOM/

common area which includes the core tables. (Note that the

constants TYPEI, TYPEW, BLANKS, etc, must be initialized in

this way. The FORTRAN DATA statement does not handle initializing

INTEGER*4 variables with 4-byte Hollerith constants correctly)

JSTART - Begin journalizing. If the JMODE flag in /common/ is set, the current

journal file is closed. FDSCRP and DSDSCR are called to create

a file descriptor and dataset descriptor for the file CHKFIL

is called to determine whether the named file already exists and

the FORTRAN OPEN statement is used to open the file with TYPE =

'NEW' or else with TYPE = 'OLD' and ACCESS = 'APPEND' depending

on the status returned by CHKFIL.

14(1

MSGOUT - Writes message lines from the system message file to the

specified device, and, if appropriate, to the current

journal file.

4.3.2 DATA ACCESSING ROUTINES

This group of routines provides caller transparent access to data

contained in IMDB system files. The general procedure for each of these

routines if to call GETCTE to verify that the file is active and of the

appropriate type. The location of the specified information in the file

is calculated and READP or WRITEP is called to effect the requested data

transfer.

RESCLN - Return the specified scanline in the designated buffer.

WTSCLN - Copy the specified scanline from buffer to file.

RD1NDW - Read a window into tte designated buffer.

WTWNDW Copy window data from buffer to file.

RDDSCR - Read description field of file header into specified buffer.

WTDSCR - Copy from buffer to description field of file header.

RDEXPR - Read expression from buffer to expression file.

WTEXPR - Copy expression from buffer to expression file.

RDCOLR - Read color table from file to TCBUF in /GENCOM/.

WTCOLR - Copy color table from TCBUF to file.

RDTNSF - Read transform table from file to TCBUF.

WTTNSF - Copy transform table from TCBUF to file.

IK

5. 	 IMPLEMENTATION OF THE MANIPULATION MODULE

The manipulation module of IMBD provides data handling routines which

realize the data manipulation commands entered by the user at the terminal.

The three sections of the manipulation module are

1) the expression interpreter which realizes the image expressions

entered through the BI (build image) command,

2) the display support routine which is responsible for coloration

and reduction to screen size of images to be displayed, and

3) 	 the data entry routine which provides for the reading, editing

and channel separation of ANSI standard tape image files so that

new image data may be introduced into the IMDB system.

16S 	 33

5.1 	 MANIPULATION MODULE DATA STRUCTURES

The manipulation moudle creates, combines, and modifies IMDB system

standard files, relying on the file module facilities discussed in Part 4.

Of special interest is the expression file. The data portion of an

expression file contains a sequence of 16-byte IMDB system filenames or

operation symbols representing the postfix form of an image expression as

entered through the BI command. The only addtional data structure of

significance is the operand stack managed by the expression interpretation

section of the manipulation module. This is the 160 word INTEGER array

STACK in the /EXPCOM/ common area which allows for the stacking of up to

twenty operand file names.

5.2 	 MANIPULATION MODULE PRIMITIVE ROUTINES

These routines provide caller transparent stack management and

dynamic allocation and deletion of intermediate temporary files for the

expression interpreter routines.

PUSH - After checking for stack overflow, PUSH copies the name of an

operand file to the first empty entry in the stack, sets the deletion flag

for the new stack entry as directed by the DFLAG parameter, and adjusts

the stack pointers.

POP - After checking for stack underflow, POP adjusts the stack

pointers, effectively removing an entry from the top of the stack; Also,

POP cheeks for the deletion flag (i.e., entry of the DELMK array in

/EXPCOM/) corresponding to the deleted stack entry and, if indicated, calls

DELCTE and the delete function of FILPRM to delete the file from the

system.

NXTERM - GETCTE is called to determine the number of terms in the

expression being interpreted. This is compared with the term pointer TNUM

in /EXPCOM/ to determine whether the last term of the expression has already

been 	 returned by a previous call. If so, an end of expression status is

returned and the end of expression flag FINISH in /EXPCOM/ is set. Other­

wise, READP is called to obtain the next term of the expression. If this

term is a filename (as opposed to a system-defined operation), GETOTE is

called so that the core table information is returned to the caller in CTEBUF.

GTOUFL - This routine returns to the user the name of the file which

is to receive the result of the next operation performed by the expression

interpreter.

GETCTE is cailled to obtain the length of the expression being inter­

preted, and the expression length is composed with TNUM and the FINISH flag

tested. If the operation to be performed is not the final operation of

the expression, MKSYFL is called to generate a temporary intermediate file

and DFLAG = 1 is returned to indicate that the file is to be deleted after

being used as an operand and popped off the stack. If the operation to be

performed is the final operation of the expression, the expression file

itself is designated to receive the result, FINISH is set to 1, and DFLAG = 0

is returned along with the name of the expression file.

Note that the information passed in CTEBUF is copied to the core table

entry of the file whose name is returned. This is accomplished by MKSYFL

when a temporary file is generated and by UPDCTE when the expression file

itself is returned for use as the output file for the next operation.

5.3 	 LOWER LEVEL MANIPULATION ROUTINES

These routines implement most of the actual data manipulation functions

of IMDB. For clarity of presentation, a distinciton is made between image

manipulation routines which operate only on images, and window manipulation

routines which take an image and a window as operands.

5.3.1 IMAGE MANIPULATION ROUTINES

OLINE - The overly function code parameter is used to effect a case

branch (via a COMPUTED GOTO) to perform the specified function on a byte

from SCLBFI and the corresponding byte from SCLBF2 (both in the /GENCOM/

common area). The correspondence between bytes of SCLBF1 and SCLBF2 is

determined by the BYTEl and BYTE2 parameters. This byte by byte approach

is adopted to avoid overflow which could result from some of the overlay

functions. Each overlaid byte is reinserted in SCLBF1.

ZPREP - GETCTE is called once to determine the zoom ratio and a second

time to find the size in lines and pixels of the image to be zoomed. The

size of the resulting image is computed and UPDCTE is called to enter this

information in the core table entry for the file which will receive the

zoomed image.

ZLINE - This routine handles the actual magnification or reduction of

an image on a scanline by scanline basis. When called upon to produce a

specified line of the zoomed image, ZLINE calculates which line of the

original image is to be used as the basis for the requested line of the

resultant image. RDSCLN is called to obtain the base line. Reduction is

achieved by averaging groups of adjacent pixels. Each group consists of

approximately one plus the reciprocal of the zoom ratio pixels. Magnifica­

tion is achieved by duplicating pixels. The zoomed scanline is returned

left justified in the specified buffer (this buffer must be at least 4096

bytes long).

5.3.2 	 WINDOW MANIPULATION ROUTINES.

WOPRND - Call GETCTE for the top two operands on the stack and deter­

mine which is the window and whieh-is the image.

BLDLST - Build an intersection list for the given window and scanline.

An intersection list is defined as a list, sorted in ascend­

ing order, of the x-coordinates of all the points between 0

and 4095 inclusive where the window crosses the line and the

points 0 and 4095. Such a list should always contain an

even number of points.

RDWNDW-is called to read the window into SCLBF1 and GETCTE

is called to determine the number of points in the window.

X-coordinate 0 is always the first point of intersection.

A point of the window is selected which does not lie on the

given scanline. The window is then traversed point by point

until the starting point is reached. After each advance to

a new point, a test is made to determine whether the advance

has resulted in an intersection. An intersection is considered

to have occurred if and only if:

1) the previous point and the new point lie on opposite

sides of the scanline, or

2) the previous point lies off the scanline and the new

point lies on the sbanline, or

3) the previous point lies on the scanline and the new

point lies off the scanline and the last point visited

which does not lie on the scanline lies on the same

side of the scanline as the new point. Some examples

are given in Figure 5.1.

Each time an intersection occurs, its x-coordinate

is entered in the intersection list being built in

SCLBF2.

In case 1) above, the point of intersection must be

calculated. The formula

x = x1 + y -yl (x 2 x.)

Y2­ yl

is used to (note the use of INTEGER*4 variable DISP

to avoid overflow and truncation) where (Xj, y1) are

the coordinates of the previous point, (x2, y2
) are

the coordinates of the new point, and y is the scan

line number.

QSORT is called to sort the list and 4095 is inserted

as the last point of the list.

(1)
*

Y(4)

(2) . (5)

(3)

*

**

indicates one point of intersection

indicates two points of intersection

Figure 5.1 Example of intersections

QSORT - An adaption of the version of C.A.R. Hoare's quicksort

algorithm presented in Kernighan and Plauger, Software

Tools, p. 115.

WINDOP - The intersection list in SCLBF2 is consulted in order to

determine which sections of the scanline in SCLBFl are to

be zeroed. If enclosure is specified, then the areas of

SCLBF1 between the points specified by each odd-even pair

of list elements (SCLBF2 (1)-SCLBF2 (2), SCLBF2 (3)-

SCLBF2 (4), etc.) inclusive is zeroed. If exclosure is

specified, the area between the points of SCLBFl specified

by even-odd pairs (SCLBF2 (2)-SCLBF2 (3), etc.) exclusive

are zeroed.

5.4 HIGH LEVEL DATA MANIPULATION ROUTINES

These routines are characterized by the fact that they operate on

entire images through calls to file module and low level manipulation

module routines.

ZOOM -

I I ZOOM

GETCTE ZPREP ZLINE WTSCLN

ZPREP is called to set output file core table information.

GETCTE is called to determine the number of lines in the zoomed

image. For each line in the'zoomed image, ZLINE is called and

the zoom line is written on the output file via WTSCLN.

TNSFM -

TNSFM

I I I

GETCTE UFDCTE RETNSF RDSLN WJSLN

GETCTE obtains core table information for the input file. Since

this information will be exactly the same for the result image,

UPDCTE is then called to set the core table entry for the output

file. RDTNSF reads the transform table into TCBUF. Then each

line is read via RDSCLN, transformed byte by byte - each byte

used as an index into the transform table in order to pick up

the value to which it maps - and written to the output file

via WTSCSL-N.

ZTT

ZT

F - I i I I
GETCTE ZPREP RDTNSF ZLINE WTSCLN

A zoom and a transform are combined. ZPREP sets the core table

entry for the output file. GETCTE obtains the number of lines

in the zoomed, transformed image. RDTNSF reads the transform

table into TCBUF. Then, for each line of the result image,

ZLINE is called, the line is transformed as in TNSFM, and the

resulting line written by WTSCLN to the output file.

TZOPT -

TZOPT

GETCTE I,GTOUFL NXTERM ZOOM ZT TNSFM POP PUSH

Called whenever a zoom or transform operation is to be done,

TZOPT acts as a traffic controller for ZOOM, TNSFM, and ZT.

GETCTE determines the type of the operation. NXTERM is called

to obtain the type of the next term of the expression. TZOPT

optimizes a zoom followed by a transform or a transform followed

by a zoom into a single call to ZT. If no optimization is

indicated by the call to NXTERM, the TNUM term pointer is backed

up by subtracting one. GTOUFL is called to obtain an output file

and the appropriate routine - ZOOM, TNSFM, or ZT - is called.

A call to POP then removes the operand from the stack and the

result is stacked through a call to PUSH.

39--

OVRLAY -

OVRJY
II ~ I I I I

GETCTE GTOUFL RDSCLN OLINE WTSCLN PUSH POP

GETCTE is called twice to obtain the core table entries for

the images to be overlaid. If translation of the images before

overlaying is indicated, the translation factors are calculated.

The resultant image will be the overlay of those portions of the

two images which, after translation, overlap. GTOUFL obtains

the output file and sets its core table entry. For each line of

the result, RDSCLN is called twice to read lines from the operand

files. OLINE is called to overlay the scanlines and WTSCLN

copies the result line to the output file. POP is called twice

to remove the operands from the stack, and PUSH stacks the result.

JOTN -

JOIN

I' I I I I i

GETCTE GTOUFL RDSCLN WTSCLN POP PUSH

Two calls to GETCTE obtain core table information for the

operands. Translation factors, if any, are calculated along with

the dimensions of the result image. GTOUFL returns an output

file and sets it core table entry. The concatenation process

is done on a line by line basis in three steps. First, SCLBFl

is zeroed. Then a line from image two to read by RDSCLN, if

indicated by the calculated translation. Finally, a line from

image one is read by"RDSCLN, if indicated, on top of the line

from image two. Thus, in areas of overlap, image one will have

precedence. The scanline is then written by WTSCLN to the output

file. When the entire result image has been built, two calls to

POP unstack the operands and a call to PUSH stacks the result.

170

CLMASK

CLMASK

FI 	 I 1 , 1
GETCTE GTOUFL WOPRND BtDLST WINDOP WTSCLN PUSH PuP

WOPRND is called to get the operand pointers. GETCTE is called

twice for the operand core table information and the core table

entry for the result is calculated. If an operation is specified,

the result image will have the same size and location as the

operand image. If CLIP is specified, the image will be the

smallest rectangle which is bounded on each of its four sides by

either the image boundary or, if the window does not extend beyond

the image boundary, by a line paralled to the image boundary

which passes through the point of the window nearest the image

boundary. GTOUFL obtains the output file and sets its core table

entry.

For each line of the image,

1) BLDLST is called, and the intersection list translated

to reflect the origin of the scanlines comprising the

operand image

2) RDSCLN reads a line from the operand image

3) WINDOP is called

4) WTSCLN writes the masked or clipped line to the output file.

Two calls to POP and a call to PUSH update the stack

5.5 	 MANIPULATION MODULE TOP LEVEL COMPONENTS

5.5.1 	 ROUTINE TO PERFORM COLORING AND COMPRESSION - CCFTN

CCFTN - Display support routine

CCVTN

GETCTE MKSYFL RDCOLR ZLINE RDSCLN WTSCLN

GETCTE is called to obtain the core table information for the

image to be displayed.

If the image is to be compressed, the size of the new image is

calculated.

If neither compression nor coloring is requested, the name of

the image to be displayed is returned as the name of the final

display file. Otherwise, MKSYFL is called to obtain a display

file.

If the image is to be colored, RDCOLR reads the color trans­

formation table into TCBUF.

For each line of the final display image,

if the image must be compressed, ZLINE is called.

Otherwise RDSCLN is called.

if the image must be colored, the line is transformed byte

by byte according to the transform table.

The line of the final display image is written by WTSCLN.

5.5.2 	 Routine to copy tape to files to disk - CPYTD

CPYTD - Tape to disk interface routine.

CPYTD

I I I I I
GETCTE JPDCTE RDTAPR WTSCLN CENILZ

I II
GETCTE MOVE WTSCLN

This routine implements the tape reads requested by the

user RT command.

5.5.2.1 CPYTD SPECIAL DATA STRUCTURES

NAMBLK - A 136 word array which may contain up to 17 file names ­

one for a multichannel image file and up to 16 for single

channel file. Words 1 - 8 are reserved for the file name for

the entire image, words 9 - 16 for the file name for channel

1, etc. If the first word of the 8 word file name field is

0, no file has been requested for the corresponding channel.

EDBLK - A 5 word array indicating which portion of the image the

user wants to enter into the system image file. If word 1 is

0, the entire file is to be copied and words 2-5 are ignored.

Otherwise, words 2 and 3 specify the beginning and ending

pixels within a scanline which are to be retained in the

system file(s). Words 4 and 5 specify the beginning and

ending scanline (tape record-) numbers. Pixels and scan­

lines are assumed to be numbered from 0.

5.5.2.2 	 CPYTD SPECIAL ROUTINES

RDTAPR - Perform tape read by calling WTQIO and check for error or

end of file status.

CHNLIZ - Separate the channels of a scanline and copy them to

individual files.

For each file in NAMBLK,

call GETCTE for line length

assemble the single channel scanline (except

for NAMBLK(l))

call WTSCLN to copy the line to the file.

CPYTD - Call WTQIO to rewind the tape if requested.

Call WTQI0 to skip files if requested.

Call RDTAPR to read the first record and obtain the

record length.

Calculate the core table size entry for each NAMBLK file

based on NCHANS and EDBLK information and call UPDCTE

to enter the appropriate pixels-per-line value in the

core table entry.

If the line is not to be edited out.

call WTSCLN if no single channel files are required or

else call CHNLIZ to copy tape data to single channel files.

Read the next record from tape and if not end of file, request

the output process described above.

When the end of the tape file has been reached, call UPDCTE

to enter the number of lines for each NAMBLK file.

43

5.5.3 Routine to interpret image expression - XINTRP

XINTRP - Expression interpreter.

XINTRP

II !
I I I

GETCTE OPER PUSH NXTERM CPYFL

TZOPT JOIN OVRLAY CLMASK

5.5.3.1 EXPRESSION COMPONENTS

An expression is composed of operands and operators (each 16 bytes

long) arranged in postfix sequence. There are currently only two valid

operand types - the name of an image file and the name of a window file.

A third possibility, the name of a line file, has not yet been implemented.

Operators may be transform or zoom file names (these two classes are the

only file names which are valid operators) or system defined operations.

A system defined operation is stored as the ASCII characters '**' in the

first word followed by a code number between 1 and 13 inclusive in the

second word. Words 3-8 are not used. The code numbers correspond to the

IMDB system reserved words.

CODE OPERATION

I JOIN

2 MASK

3 CLIP

4 MULT

5 ADD

6 SUB

7 DIV

8 MAX

9 AVG

10 AND

11 XOR

12 MIN

13 OR

5.5.3.2 	 EXPRESSION INTERPRETER ROUTINES

CPYFL - Invoked when an expression consists of only one term. The

operand file is copied to the expression file. GETCTE is

called to determine the fil-etype, UPDCTE makes the core

table entry for the new file (formerly the expression file),

and a case branch is effected via a COMPUTED GOTO to copy

the file using the data accessing routines described in

section 5.3.2.

OPER - Called whenever an operation is to be performed by the

expression interpreter.

If the operator is not system defined, GETCTE is called to

verify that the operation is legal (i.e.,
 file type T or Z)

and TZOPT is called. Otherwise, a COMPUTED GOTO case branch

based on the operation code number (see section 5.5.3.1)

accomplishes a call to CLMASK or OVRLAY or JOIN.
XINTRP - GETCTE is called to obtain the expression length. If

the expression length is exactly 1, NXTERM obtains the term

and CPYFL is called. Otherwise, the following steps are

repeated.

NXTERM is called.

If no terms remain in the expression XINTRP returns.

Otherwise, if the term is an operand, it is stacked

by a call to PUSH.

If the term is an operator, OPER is called.

lyqk1N 33,

APPENDIX I

IMDB USER'S MANUAL 1775,

IQ LANGUAGE

This chapter is written as en IQ reference manual. The

presentation mimics that of the original report on IQ design

[Report I]. We shall skip justifications and explanations

of certain design decisions, as they have already been

covered in [Report I].

1.1 Basic Elerents.

There are five types of basic elements in the IC

language: images, windows, transform functions, color func­

tions and zoom functions. Each basic element is a file in

the INDB system.

1.1.1 Image

An image is a matrix of pixel values along with a

header block. Since it is assured to be a matrix, the image

is always rectangular in shape. Pixel values range from 0

to 255. The upper left corner of the image is associated

with a coordinate in { *, 0, 1, ... , 4095 1 X { *, 0, 1,

.... 4095 1. The first component of the coordinate is

referred to as the LCC, and the second component LAQ. The

intention is that when the image is first entered into the

database, the user can assign its LCQ and LAQ relative to a

4096X4096 grid structure. The asterisk * is used to denote

1%

"don't cre". The LCC and L2Q pair is essential to binary

iWage opcrations to be presented liter.

The hea6er block of an imace contains:

(a) type: This fielC is always filled with I' to

denote the type image.

(b) LCQ

(c) LAQ
(d) pixels/line: It is tho number of pixels in a scan line.

(e) scan lines: It is the number of lines in the image.

(f) description: it as a string of charecters entered by the

user for annotation. The size is limited

to 228 characters.

1.1.2 Window

A window is a secuence of points together with a header

block. EEch point fells within [0, 3, ... , 4095] X { 0,

1, ... , 4L65] grid coordinates. The seauence of points

form one not nccessaraly convex polygon. The header block

contains thr following informEtlon:

c) type: The fiel6 contains 'I.

(b) maxUmum LOC/LI'G: The maximum of LOCs of all points and

the rrxirur of LAQS of all points are

encoded into this field.

(c) minimum LCQ/LTC: This field stores the minimum LOC and

LAC in z way similar to (b).

d) closure code: The fieli denotes whether the window

is an enclosure or an exclosure.

(o) number of points: It is the number of points in the window.

(f) descrjption.

1.1.3 Transform

A transform function is a mapping from { 0, 1, ... , 255

to { 0, I, ... , 255 1. it usually consists of a collec­

tion of subtransformations. Each subtransforNation is in

/77

the form of

a - b = c wrore a < b

It means that the pixel alues from a to b inclusive are

to be transformed into c .

The header block of a transform contains:

(a) type: It is always ' T'.
(b) description.

1.1.4 Color

A color function is a mapping from { 0, 1, ... , 255 1

to a set of color symbols. There are two systems of color

symbols used in the IQ language. The first one uses a 4-bit

format and consists of eight different colors: dark (D),

blue (B), green (G), red (R), cyanine (C), magenta (M), yel­

low (Y) and white (W). The user uses the one-character sym­

bols to denote colors. The other system allows sixty-four

colors and uses a 6-bit format. The basic components of

cach color are still blue (B), green (G) and red (R). How­

ever each basic color has four shades. For example, 1 part

of B, 3 parts of G and 3 parts of R give a yellowish color.

The user can use BIC3R3 to denote this formation of color.

In general, it is hard for the user to visualize the result­

ing color from the three components. Hence, the user is

provided with a color table which maps each of the sixty­

four colors to a number. The user can also use this number

to select a color. ,

4110

A color functiop is similar to a transform function; it

consists of P collection of subtransforrations. Eadh sub­

transformation is in the form of

=
 - b c where a < b

where c is a color specification. All subtransformations in

a color function are either all in 4-bit format or all in

6-bit formrt.

The header block of a color function consists of:

(2) type: The content is always C"

(b) description.

1.1.5 Zoor

A zoom function contains 0 mapping from old size to new

size and a header block. The zoom ratio is a / b where a

is the new size, b is the old size and both a and b are

positive integers.

The heaer block consists of:

(a) type: The content is ' Z.
(b) new size

(c) old size

(d) description

1.2 System Functions.

There are several built-in functions in the IQ language

which can be used to create new irages. These functions can

be invoked by name. They consist of JOIN, MASK, CLIP and

A­

ten 	 different overlay functions.

1.2.1 Join

This function pastes two images together to form a new

inage, accor6ing to their LOQ/LAQ coordinates. The dimen­

sions of the new image are those which are minimally suffi­

cient to contain the areas of the originals. The first of

the original images is defined to be the dominant image:

this image takes precedence when the two images overlap.

When the result is padded to become rectangular, the pixel

value zero is filled.

The rules used to determine the relative positions of

the two images are:

(a). 	 If LOQ/LAC. of the first and second amages do not con­

tain * , then the two pairs of LOQ/LAC all refer to

well-defined points in the 4096X4096 grid structure.

Neighboring pixels along the same scan line differ in

LOQ by one and neighboring lines differ in LPQ by one.

(b). 	 If LOC of the one image is * while the other is

not, then the * one is assumed to have the same value

as the other one. The * for LAQs are treated in a

similar way.

(c). 	 If LOQs in both image are * , then both are treated

as zero. The * in LACs are treated similarly.

/so

Join function results in a new image and the header

block of this new image will be derived from the originals.

Description field will be empty.

1.2.2 Mask

This function asks a window onto an image to form a

new image. If the window is an]nclosure, pixels interior

to the window will retain the values while exterior pixels

will be zeroed. Exclosure functions in the opposite manner.

in either case, the result is an image with the same LOC/LAQ

and the same dimensions as the original. Again, the

description field will be empty.

1.2.3 Clip

This function is sinilcr to MASK except that the result

image has imensions which are minimally sufficient to con­

tain the window. This function discards those outermost

rows end columns which do not intersect the window.

1.2.4 Cverloy Functions

An overlay furcticn takes two inages and produces a new

image by perfor-ng a binary pixel-to-pixel operation over

corresponding pixels. There are ten different overlay func­

tions: DDE, SUE, rULT, DIV, fAX, MIN, AVG, XOR, AND, OR.

These functions perform respectively addition, subtraction,

multiplication, intcger division, maximum, minimum, aver­

age, exclusive CR, logical AND, and logical OR. Whenever

I1

overflow occurs (e.g., in multiplication), the result is

always truncated by taking the rightmost eight significant

bits.

The relative positions of the two images are determined

according to the rules specified in Join (Section 1.2.1).

1.3 Image Expression

A salient feature of the IQ language is its capability

for specifying construction of a new image as a functional

expression of existing basic elements and system functions.

Such an expression is called an image expression. The rules

for constructing image expressions are given below. These

rules can be applieC recursively.

<image expression>: " IT u
<image>
<transfor> (<image expression>
<zoom> (<image expression>
JOIN (<image expression> , <image expression>
MASK (<image expression> , <window>)
MASK (<window> , <image expression>)
CLIP (<image expression> , <window>)
CLIP (<window> , <image expression>)
<overlay function> (<image expression>,

<image expression>)

In the above rules, <image> and <window> refer to an

image file and a windcw file respectively. The symbol

<overlay function> refers to one of the ten system overlay

functions. Since the rules can be applied recursively, a

sophisticated image can often be specified as one single

image expression. For example, JOIN(AND(XI(Tl(MASK(Wl,

II))), X2C 12)), 73) is a legitimate image expression if

Xl and X2 ore zoom files, a] is a transform file, I1, 12,

and 13 are image files, and W1 is a window file.

Note that color functions are not included in the image

expression rules. Strictly speaking, a colored image only

contains symbolic color names as its pixel values and hence

it is not logical to perform any other operation on it.

Nevertheless, the internal representation of a colored image

is no different from a regular image and, if the user

chooses to do so, a colored image may be used to replace

<inage> in an image expression without any system error.

The interpretation of the result is up to the user.

1.4 Devices

Thn 	 grrphics devices can be and can only be referred to

by symbolic nants in a quEry session. The user does not

have to know any particular logical or physical device

numbers used internally in the IMDB system.

The devices supported by the present version of the IQ

language and their corresponding device names are:

(a) 	 Two color Ramtek screens: R(left) and R2(right), with

a trackball attached to R.

(b) 	 One Tektronix 404-1 terminal: TK

(c) Cne user cormer'C terrinal: UT

(d) One line printer: LP

(e) One Dico'ed film recorder: FR

(f) One Varian printer/plotter: PL

(g) Two magnetic tapes: TO and T!

A future expansion will include keyboards and an addi­

tional trackball attached to the Pamtek system. The Tek­

tronix terminal is only used as an alphanumeric CRT,

although future expansion can take advantage of its graphic

capability... ­

1.5 Commands ''

The IC language is a commend oriented query language.

Each database command activates one specific operation. A

command consists of two parts: comand code and parameters.

A command code is always a two-character name followed by a

separator (blank, comma or carriage return). Parameters may

be supplied along with the command code, or deferred until

answering system prompted cuestions. Note that all parame­

ters may be entercd through prompting. Therefore, the

minimal information needed to Le entered by the user to ini­

tiate a command will be the 2-character command code.

The commands are grouped into five categories: defini­

tion, display, stctistics, file mnipulation and control.

1.5.1 Defiit2o.o C.omands (5-)

These cormcndc arc used to create new basic elements or

equivalently new files.

1.5.J.1 Build Image (EI)

The forn of P build imagc compand is

EI <new image natee> = <image expression>

or EI <ncw image name> , <image expression>

1.5.1.2 Euild Window (PW)

The fern of this comrrand is

Elu <window name>, <closure>, <mode>, <device>

The <closure> code can be EX or ElN for exclo­

sure cr enciosure respectively. The default value

is EN.

Therf are two modes in uindow construction: C for

cursor and A for absolute. The default node is A. In

A mode, the user types in LOQ/LA pairs of the window

vertices fror thc user command terminal. After the user

enters

mr U1,El§A

The system will repeat the question until all po:nts

are entered:

ENTER CCORDINATES (ONE POINT PER LINE WITH X AND
Y SEFPAFPTED BY ,):

The Question can be escaped by a carriage return.

In C mode, the user indicates that a window is to

be constructed relative to an image presently displayed

on <device>. Since there is only one track ball

attached to RI, it is only meaningful to specify R1

as the <dex'ice>. The user can move the cursor on Rl

and select a point by hitting ENTER key of the track

ball. To end the construction of the window, the user

hits VISIBLE (to wake cursor invisible) and ENTER. In

C mode, the LOC/LAQ of the selected points are calcu­

lated from the LCQ/LAQ of the displayed image. Whether

the image is displayed in its true form or in a

compressed form, the calculation will produce actual

positions of the points relative to the image.

1.5.1.3 Build Trcnsforr (CT)

The form of the BT commend is

ET <transforu namie> , <subtransformations>

Each subtrensformetion is in one of the two forms:

lower bound - upper bound = new value

old value = new value

The right side cf a subtransfcrmation is res­

tricted to be one single value. All unspecified

intervals can be asslgned to one default value

upon 	 answering

NUMBER FOR UNDEFINED INTERVALS?

1.5.1.4 Build Color (PC)

The form of this command is

BC <color namc>,<format>,<color transformations>

The color format can be 4 or 6 for 4-bit or 6-bit for­

mats respectively. Each color transformation is in one

of the two forms:

lower bou' - upper bcund = color symbol

value = color symbol

Here 	 the color symbols referred to the symbolic forms of

color representation as described in Section 1.1.4.

,Again, ell unspecified intervals can be assigned to one

default color upon answering:

CCLCR FOR UNEEFINED INTERVALS?

1.5.2.5 Build Zoom (2Z)

This command has the form

EZ <new zoom name> , <scale ratio>

The <scale ratio> is always NEW/OLD.

/67

1.5.2 Display Conironds (3)

1.5.2.1 Erase (ER)

The forir of this comirand is

ER <list of devices>

where <list of devices> are device names separated by coin-

Mas. The effect of erasure depends on the device specified.

For R1 or R2, the screen is erased. For LP, a new page of

paper is moved under the print head. For PL, the command

also slews the peper. All other devices are nor permitted

in ER corrmand.

The future expansion will include a capability to

advance the roll film in the device FE.

1.5.2.2 Exhibit Pixel Area (EP)

The form of this command is

EP <input device> , <output device>

This command is used to examine the image pixel values of a

rectangular area of no more than 20X20. The image is

presently displayed on <input device>. The pixel value

array is to be displayed on <output device>.

The user is also required to specify U'

iM2 'I -

too

(z) T11 -Cmcnsions of the rectangular area ­

nunLcy of ljncp pnd run'bor of pixels.

(b) The upper-left corner of the area through the

track ball.

This comirand is only nceningful when <input device> is R.

The <output device> is restricted to be U1, LP, R1 or R2.

2.5.2.3 Display (DI)

The form of DI co-imar is

DI <itage nawe>,<device>,<color function name>

or LI <window name> , <device>

The <color function name> is optional.

For window display, the device can only be RI or P2.

The displayed output depends on the existing contents of the

selected screcn. If the screen is blank, the window will be

scaled propcrly so that it can be displayed entirely on the

screen. After the window polygon is drawn, the system will

ask

DO YOU IS1 2EE PCINTS LAEELED WITH PIXEL/LINE COORDINATES?:

A 'Y' answer will cause the coordinates displayed along with

the polygon.

If the selected screen has an image displayed, the win­

dow will be scaled*accor6ing to the displayed image and the

window polygon will be positioned correctly on the image so

that the coordinates of the image and the window ere con­

sistent. A window wry be too large to fit on the image. If

so, the command will be aborted and error signaled.

In both cases of window display, the color in which the

window is to be displayed will be solicited from the user.

Image 6isplay is much more involved than window

display. If the user specifies a color transformation, it

will be applied to the image to produce a colored image.

The colored image cen later Le saved as a regular image

file. The sequence of events can be described as the fol­

lowing procedure:

Step RI.

If tbc device is FR, goto Fl.

If the device is PL, goto P1.

If the device is not RI or R2, then error return.

Step R2.

(The device is R1 or R2.)

Ask the user to select a point on the specified screen.

Let the specified screen be X and the other one Y.

(The system will attempt to display the image on the

6A

jqD

rectangular erec, VIEW defined by the selected point

rrd the bottom right corner of screen X.)

Step 	 R3.

Can the colored ivnage fit in the area VIEW?

If yes, display the image and goto R9.

Step 	 R4.

(The image does not fit in the area V2EW.)

Ask the user if image compression is desired?

If yes, compress the inage sufficiently to fit in VIEW,

display it and then goto R5. Otherwise, display the

upper left portion of the colored iage in VIEW and

coto R9.

Step R5.

(The compressed inage is on X.) y ,utt LW' -

Ask 	 if the user "ants to display legend.

If yes, ask the user to select legend position and to

enter legend; then display legend at the position

selected.

Step 	 RE6.

Ask if the user wants to scroll the compressed image.

If no, exit.

Step R7.

(Scrolling)

Erase screen Y.

Ask the user to select a point on screen Y.

Ask the user to select the scrolling point, which is a

point in the corrpressed image as presently displayed on

screen X.

The selected point on I and its bottom right corner

define a rectangular area callcd SVIEW. The scrolling

point together with SVIEV specifies a rectangular por­

tior of the colored image whose LCQ/LAQ are those of

the scrolling point en6 whose dimensions are those of

SVIEW. Display this rcct ngular portion in SVIEW.

Step R8.

Ask if the user wants to scroll again?

If yes, goto Step R7.

Step R9.

Ask if the user wants to display legend on the most

reccntly used screen (X if come from R3 or R4 and Y if

frorr RS)

If yes, esk the user to select lcgend position and to

enter legend; display charactcrs entered at the posi­

tion selected.

Step RIO. Exit.

Step Fl.

Ask the user to select a point on the film. The film

has 4096 X 4096 positions.

Step F2.

Ask the user to crter Dicomed related parameters such

as rcagnification factor, resolution, intensity, polar­

ity, etc.

Step 	 F.

Can the colorec irage fit in the rectangular area

defined by the selecteO point and the bottom right

corner of the film?

If yes, display the image and goto F6.

Step 	 F4. 	 o8' /
(ahe image is too large.)

Ask the user if iwage compression is desired?

If yes, compress the image sufficiently to fit, display

the image and goto F6.

Step F5.

(Display the upper left corner.)

Display the upper left portion of the colored image in

the selected rectangular area.

Step 	 F6.

Ask if the user wants to display legend.

If yes, ask the user to select legend position on the

film and to enter legend; then display legend at the

position selected.

Step F7. Exit.

Step P1.

The user can specify either 4x4 dot matrix for one

pixel or 5x5 dot matrix.

Step P2.

Calculate the number of strips required to display the

entire image. Inform the user.

Step P3.

Ask the user "How an'cy strips do you want printed?:".

Step P4.

Displzy the strips.

Step PC.

Ask if the user wants to display legend. If yes, ask

the user to enter the lcgcnd, then display it.

Step P7. Exit.

1.5.3 	 Statistics Commands (5) JJMI y X, V
'18* 1'j ti:#Iul 'lI

1.5.3.1 Exhibit Histogram (EH)

The form is

EK <image naue> , <device>

The device can only be R] or R2. The user can also specify

the color of the histogram upon answering

WHPT CGLOR DC YCU tISH THE ,ISTOGRA

TO EE DISPLAYED IN?

The output is a two-dimensional colored graph with horizon­

tal coordinate corresponding to pixel values and vertical

coordinate frequencies.

1.5.3.2 Exhibit D2strabution (ED)

The form is similar to EH . The device can only be

LP. The bistograw of the image will be calculated and

displayed as "pixel value: frecuency" pair.

1.5.3.3 Exhibit Join Histogram (JH)

The form is

JH <image name>,<image name>,<device>

The two images rust be of the same dimensions. The frequen­

cies of pixel value pairs will he calculated. The frequency

values will-be- partitioned into at most seven ranges as

directed by the user. Each range can be assigned a color by

the user. if the user chooses not to define the range or

the coloring of the rEnges, the frequency values will be

equally partitioned into seven ranges and default colors

assigned.

Wher the joint histogram is displayed, the two coordi­

nates correspond to pixCl values of the two images. The

colors of the displayed points indicate the frequency range

of the pixel value pairs.

The user is also given an option to view the magnified

joint histcgrcir. Thc magnification is by 2 or by 3.

l.1-.-3-.4 Ex-ki-b-it Jo-i-nt D-istri-bution (J-B-)

The for is the sai-e as 3H. The device has to be LP.

The output is in the form of "pixel value : pixel value ­

frequency" for each pair of pixel values. The output format

can either be sorted by frequency or by pixel value pair.

1.5.3.5 Exhibit Contigency Matrix (CM)

The form of this command is the same as OH. The dev­

ice can only be LP anO the images are restricted to have

pixel values between 0 and 7. All higher values are trun­

cated on the left. The purpose of the comirand is to compare

two classified inages to find their differences.

1.5.4 File ?,nipulation Coaraands 0)

All basic elements in the IMDB system are treated as

files. A file can enter into the database in two ways.

First, image files can be brought into the database from

tape through the use of Read Tape (RT) command, which will

be discussed in this section. Secondly, a file may be

created through the use of definition domirands (Section

1.5.1). le distinguish permanent and temporary files.

Files created through definition comman0s are all temporary

in the sensc that they will be removed automatically at the

end of the query session unless they ere explicitly saved.

Permanent files are those which last through query sessions.

Specifically, files brought in by R9 are considered per­

manent.

Wben a user first logs onto a command terminal, a file

directory is assigned for his exclusive use. The file

directory is separated into two sections: one for temporary

files and one for permanent files. Existing database files

can not be used in any comm&nd until they are 'activated'.

Activation of a file is e process of making the file name

known to the user's file directory.

1.5.4.1 Activate (AC)

The form of this comand is

AC <list of file names>

where <list of file names> is a list of names of existing

files separated by commas. File names specified in the com­

mand will be entered into the permanent file section of the

file directory.

2.5.4.2 Save (SA)

,,bNU U''\

The form is 1
 1%A ii\

SA <list of file names>

This coirmanO causes cxisting temporary files to become per­

manent. File names specified in the command will be moved

from the temporary file section of the file directory to the

permanent file section.

1.5.4.3 Furgc (PU)

Th	e Lorm is

PU <list cf file names>

This command causes files in the directory, whether per­

iranent or temporary, to be removed. Removal of a permanent

file also purges the fie from the database.

This command is not implemented at the present' tilre.

The user has to use PIP command of the RSX-11D to remove a

file from the file system.

1.5.4.4 Modify (NO)

The form of this ccmirand is

MC <file name>

The purpose of this command is to allow the user to change

certain information in the header block of the file.

The alterable fields of the hea6cr block are listed

below according to file typos:

M1 6)

(a) image: LCC,LQ,description

(b) window: closure code, description

(c) transform: description

(d) colcr: description

(e) zoom: new size, old size, description

The above rules apply to only permanent files. Tem­

porary files can also be modified in exactly the same way

except that they do not contain the description field.

1.5.4.5 List Directory (LD)

This command has the form

LD <device>

where <device> can be UT or LP. Contents of the file

directory will be printed at the specified device. The file

directory contains all information stored in the header

block about the files activated or crcated by the user. (In

the actual implementction, an activated permanent file has

its header information stored both in the physical file as

well as in the directory; end a temporary file does not have

a header in the physical file, its header information is

stored only in the directory.)

1.5.4.6 Spotlight (SP)

" I,~l lI%

The form is

SP <flc rare>, <device>

The <device> can be LP or UT for image, window, transform or

zoom Liles. It can be LP, UT, RI, R2 or FR for color files.

This command performs a similar function as LD for a

single file: it displays header inforration of the file.

However, if the file is a transform or a color file, SP

also displays the definition of the mapping in the file.

That is, it lists all the subtransforwations in the file.

The most interesting use of SF is to spotlight color

function onto a oreFhics device (RI, R2 or FR). It will

display, for each subtronsformation, the range of pixel

values and a small colored squerc to indicate the actual

color of the subtransfcrmation. If SP is used on LP or UT

for a color function, symbolic names of the colors will be

displayed.

1.5.4.7 Road Tapc (IT)

The form of this cormand is

RT <Vcvice>

The device is either TU or TI, indiceting one of the two

tape drives. The options available to the users are:

(a) 	 to reaC any filc on the tape;

(b) 	 to read any number of files on the tape;

(c) 	 to edit a tape file by specifying the starting and the

ending line numbers and the starting and the ending

pixel numbers;

(d) 	 to read wulti-channel composite files up to 16 chan­

nels: for each channel, the user can indicate whether

the image for this channel is wanted or not, and if

wanted, a separate file will be crested. In general,

an n-channel image cmn be moved into the database and

becomes n±1 separate files - one for each channel and

one for the original n-channel file.

1.5.5 Control Commands (5)

These coimupnds are special facilities built into the

IMDB system to ease the user-system interaction.

1.5.5.1 Stop (C%)

The 	 for is simply

ST

which ends the query session, causes all temporary files to

be removed and is the only command for the user to log off

the system gracefully.

a0G 	 72

1.5.5.2 Restart (RE)

The form is

RE

which performs the similar function as ST except that the

user is not logged off and is assigned a new file directory

with no entry in it. (The old directory is erased.)

1.5.5.3 Help (HE)

The form of this command is

HE <device>

where the <device> can be LP or UT. It lists all IQ

commands with explanations at the specified device.

One of the goals of the !C design is to irinimize the

infornittion the user has to remember in order to use the

IMD systen. Tn fact the user 6ocs not havve to remember the

fcrirs of the conirands. The user can obtain assistance in

two ways:

(a) 	 To consult the system for the command format and its

functicn by typing HE, or

(b) 	 To use prozptino to enter command parameters. (The

absolute mini'ur needed to initiate system zctivxty is

a 2-character command code.)

1.5.5.4 Journal (JO) Fnd No Journal (NJ)

The forms of these cormmands are

JO <file name> .it ;%',

NJ v~i\Y

The conversation between the user end the system - in gen­

eral, it is whatever sbown on the UT terminrl - can be

recorded verbatim in a journal file. The <file name> is the

name of the journal file. If the file does not exist prior

to the JO command, a new one will be created bearing the

name given by the user. If the file is an old one, new

journal information will be appended at the end. The com­

mand NJ is used to turn off the journal activity. With

these two commands, the user can specify journal mode or no

journal mode at any time during the query session, switch

between two modes any number of times, create several 3our­

nal files and disperse journal information in any way the

user desires. The only restriction is that no two journal

files cen be active at the same time, one has to be closed

by NJ before the other can be narred in JO.

The contents of the journal files can be printed at the

line printer through PIP facility of the BSX-llD.

1.6 Log On

The log-on secucnce to start the INDE system is very

75

simp]e. If the user is a legitimate user of the RSX-1D

system, that is, the user hcs a legitimate UID, the follow­

ing secuence can be followed to start the ImDE system:

Step 1. urn or. a terminal.

Step 2. Type in Control C to get

VCR>

printed on the terminal.

Step 3. Typc in

LIEL jUID]

so that the operating system

can valieate whether UIL is legal.

Step 4. If UIB is legal, the system will

come beck with

nCP>

then enter "IQL" after ICR>.

At this tic the log-on process is completed, the IMDB

is activated -nd F ncssaoe ,ill be printed:

* WELCCNL TO THE IN;DE SYSTEM

Pny pcrmissible IQ comrends can be entered after the second

asterisk. In summary, the entire log-on secuence will look

like the following if the user has the access right:

(Control C)

MCR> HEL[UID]

14CR> IQL

* WELCOME TC THE INDE SYSTEM

* (ready to accept IQ command here)

A blank file directory has also been created for the

user.

1.7 Special Notes

Some conventions end special cases not covered in the

previous sections are covered here:

(a) 	 A window is assumed to be a simple polygon. No two

edges of the polygon can cross each other, of course,

other than-meeting end to end for neighboring edges.

The system does not check the crossing of edges and the

user is responsible for the correctness of polygon for­

mation.

(b) 	 Whenever a auestion is asked the user, a carriage

return is teken as NC, O(zerc), or the default answer,

depending on the nature of the question.

(c) 	 The operating system PIP facility can be used to copy

files from tape to tape or from disk to tape, to purge

files from the data base, and to rename files in the

data base. The IMEB system is built on top of the

FILE-I file system and any file operation available in

the operating system can be applied to I D files.

(d) 	 A 'Carriage Rcturn' as an answer to the question 'DEV-

ICE?' will cause the list of all permisssible device

names to be printed at UT.

(e) 	 The reserved words in the IQ language are JOIN, MASK,

CLIP, NULT, ID, SUE, DIV, MAX, XVG, AND, XOR, MIN and

CR. These can net be used as a file name of any file.

1.8 Variations from Criginel IQ Design

The Oifferences between the version of IQ as imple­

mented vnd described in this manual anC the one in [Report

I] can be summarized as follows:

(a) 	 This version uses 2-character command code and the ori­

ginal version does not.

(b) 	 This version does not have window union or intersectlon

capability.

(c) 	 New commands are added in this version: ER, EP, CM, MO,

and HE.

(d) 	 Write Tape commend is not included in this version.

(e) 	 Overlay functions are not treated as generic functions

in this version. That is, only ten system built-in

overlay functions are allowed end the user can not

007

define his own.

(f) 	 Image expressions have to be evaluated and assigned a

new name (in Dl) before it can be used in DI. In the

original version LET and DEFINE are distinguished. In

this version they are combined into build commands.

(g) 	 The original version assures a longitude/latitude coor­

dinate system. This version assumes a 4096 X 4096 grid

coordinate system. The images are no longer associated

with 	geographic position.

ill

APPENDIX II

INDEPENDENT UTILITY ROUTINES

FIXCTE - useful in emergency situations when the file data is known to

be valid and the file parameters are known by the file header

information has been corrputed or non-existent. Interactive.

FIXCTE asks for a filename, calls ACTIVA to activate the file

as a permanent file, and prints the current file header infor­

mation corresponding to core table columns 5-10. FIXCTE then

asks for new information to be inserted and prints this infor­

mation back to the terminal for verification and asks the user

if he wishes to go ahead with the update. Any response except

'Y' terminates the program. The Y response causes the new

information to be written to the file header, and the program

terminates.

(FIXCTE needs to be rewritten to allow alteration of the number

of records in file field (header bytes 24-27) and to allow

more than one file to be fixed without having to rerun the

program.)

MESSFILE - interactive message file updata and examination routine.

CURRENTLY, MESSFILE MUST BE RUN UNDER THE UIC IN WHOSE DIRECTORY

THE SYSTEM MESSAGE FILE 'IMDB.MSG' RESIDES.

MESSFILE asks the user is he wishes to examine the message file

or to update it. The user responds with a 'U' or an IE' -- any

other response terminates the program. If examine is requested,

MESSFILE asks for a message number and reads the message from

the file and prints it on the user terminal. If update is

specified, a message number and message contents are requested,

and the message is written to the file. Specifying a message

number less than or equal to zero (or a carriage return) returns

the user to the question 'examine or update?'.

(The message file is organized as a random access file of

72-character records. Each record contains exactly one

message, with the message numbers corresponding to the

record numbers.

Note that since MESSFILE opens the message file with TYPE=

'UNKNOWN', MESSFILE can also be used to create a new message

file.)

APPENDIX III

PERMANENT FILE HEADER FORMAT

FILE TYPE BYTES

0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-255
z

PIXELS SCAN RECORDS
IMAGE TYPE LOQ LAQ UNUSED /LINE LINES IN FILE DESCRIPTION

MAXIMUM MINIMUN NUMBER FILE
LOQ & LOQ & CLOSURE OF SIZE IN

WINDOW' TYPE LAQ LAQ CODE POINTS UNUSED RECORDS DESCRIPTION
FILE

NUMBER SIZE IN
EXPRESSION TYPE OF TERMS UNUSED UNUSED UNUSED UNUSED RECORDS DESCRIPTION

FILE
TRANSFORM SIZE IN
FUNCTION TYPE UNUSED UNUSED UNUSED UNUSED UNUSED RECORDS DESCRIPTION

FILE
COLOR SIZE IN
FUNCTION TYPE UNUSED UNUSED UNUSED UNUSED UNUSED RECORDS DESCRIPTION

RELATIVE RELATIVE FILE
ZOOM SIZE OF SIZE OF SIZE IN
FUNCTION TYPE RESULT BASE UNUSED UNUSED UNUSED RECORDS DESCRIPTION

FILE

LINE (NOT LOQ LAQ LOQ LAQ SIZE IN
IMPLEMENTED TYPE POINT 1 POINT 1 POINT 2 POINT 2 UNUSED RECORDS DESCRIPTION

-E -

APPENDIX IV

BIBLIOGRAPH OF PUBLICATIONS

1 	 Y.E. Lien and D.F. Utter, Jr. "Design of An Image Database",

Proceedings of the Workshop on Picture Data Description and

Management, IEEE, April 21-22, 1977.

2 	 Y.E. Lien and R. Schroff "An Interactive Query Language for an

Image Database", to appear in the International Journal on Policy

Analysis and Information Systems, January, 1978.

3 	 R. Schroff, "Boolean Operations on Polygons",

M.S. Thesis, Department of Computer Science, University of

Kansas, Lawrence, Kansas, December, 1977.

4 	 S. Harris,

M.S. Thesis, Department of Computer Science, University of Kansas,

Lawrence, Kansas, December, 1977.

5 	 R. Law, "Design of an Interactive Digital Image Analysis System",

M.S. Thesis, Department of Computer Science, University of Kansas,

Lawrence, Kansas, December, 1977.

6 	 C.J. Chen

M.S. Report, Department of Computer Science, University of Kansas,

Lawrence, Kansas, December, 1977.

APPENDIX V

DOCUMENTATION PACKAGE

(This package provides a complete RATFOR and Assembly Language

listing of the IMDB system. It also includes a listing of the

utility routines, the message file and the task build file. One

complete package and a magnetic tape containing the entire program

have been provided to Dr. Robert R. Jayroe, Data Systems Laboratory,

Marshall Space Flight Center. Since the package consists of over

300 pages of program listing, it is not duplicated here.)

