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Summary

We have investigated procedures for dealing with a variety

of different sources of noise and systematic errors that are

commonly found in Hadamard transform and also in other multiplex

systems. We were able to set up criteria for comparing instruments

in the Fourier and Hadamard transform families through the use

of a commonly applicable mathematical formalism. The results

obtained in this study have led to the completion of one Ph.D.

thesis by a Cornell University graduate student, Ming-Ring Tai,

and we have also published four journal articles under this same

contract. The most recent one of these which has been accepted

for publication in 1978 appears here as Appendix. It contains

most of the results we have been able to derive, in collaboration

with Dr. N. J. A. Sloane, on sources of noise and errors, and the

correction procedures that they call for.
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1. Introduction

Our initial proposal submitted to NASA Langley in 1975

undertook to investigate a number of sources of noise and error

correcting procedures characteristic of Hadamard transform optical

systems. Specific questions to which we proposed to address

ourselves involved the following four topics--as listed verbatim

in the original proposal.

The questions of main concern are these:

1. A spectrum or picture can always be 'framed' within

a region of constant known brightness. In spectroscopy, for

example, the ends of a spectrum can be blocked off, so that m

spectral elements on each end are known to have zero intensity.

If N measurements are then made to determine the N-2m unknown

spectral intensities, there is a redundancy that enters because

of the 2m constraints on the spectrum's end elements. Under

these conditions, what is the optimum choice of the number m that

will permit recovery of the best spectrum? Is there a better

choice of an and pattern than a zero level constant signal?

2. Continuing in the same vein, we can ask to what extent

the end elements can be used to help reduction of spectra].

noise due to noise spikes in the data. We mentioned above that

a noise spike can be eliminated with good results and replaced

by a mean data value. however, if the end elements are known

to be zero intensity, it should be possible to eliminate spikes

more judiciously by forcing the replaced readings to replace

zeroes in the end positions of the spectrum.
r
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3. Turning to errors in the mask construction, we need

to know

i) What is the effect of random errors in the width of

open and closed elements?

ii) What is the effect when the open elements, say, are

systematically larger than the closed ones? This is an effect

that can be brought about by excessive 'undercutting' in the

photo-etch process frequently used in mask production.

iii) What errors are brought about when the steps in the

mask motion systematically differ by a small amount from the size

of the encoding element? In a typical application, the mask may

have a dimension measuring some N elements. At the end of the

j
pass, however, the mask has only been moved some (N - e) elements,

where, say, c< 1/2. What is the cumulative effect of this kind

of error? How can it best be compensated? In practice stepper

motors are driven by an accurate screw, and the errors discussed

here are errors inherent in the construction of the screw.

4. In addition we also undertook "a study of a number of

important limitations of this family of instruments that have not

been attacked to date. Some of these correspond to related

limitations found in Fourier transform instruments."

2.	 1tesul is

lie have been.able to obtain an improved understanding of all

of these effects, and have in fact been able to obtain analytical

}	 insights into a larger variety of sources of noise and error than

had been originally anticipated.

—•s,
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Ile start with item 4 lisLod above. here two publications

have appeared in print (see section 3 below for publications

1 and 2). These two papers show the relative performance of

Fourier and Hadamard transform spectrometers operated under

identical detector-noise-limited conditions. Two main conclusions

emerge from these papers. First, the singly-encoded Hadamard

transform systems encode with an efficiency that is roughly ,/2

times higher than the corresponding efficiency obtained with a

Michelson interferomeL•ric spectrometer. Second, the Michelson

interferometer is less efficient than presented in standard texts.

This second statement is not of the ctreatest importance because

there had been some papers in the literature that had derived
i

the correct performance figures; unfortunately, however, these

papers had been widely ignored. Our contribution on this score

was primarily to focus attention on the omission.

Among the topics listed under section l,item 3., systematic

means for dealing with mask defects of the type 3 i) and 3 iii) are

treated exhaustively in publication 4 (see Appendix A and the

list in section 3 below). In that paper written with Dr. Neil

J. A. Sloane of the Bell Laboratories, Murray Hill, N.J., we have

discussed: effects of faulty mask alignment; differences between

slit width and step size; excessive gaps between encoding and

and blocking masks, distortions produced by continuously moving,

rather than stepped, masks, and so on.

Item 3, ii) is a complicated problem that turned out to

have an analytical solution, described in a previously published

f	 paper, written before the grant award had actually been made.
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" Errors in Iladamard Transform Spectroscopy or Imaging Caused by

imperfect Masks" M.H. Tai, M. liarwit, and N.J.A. Sloane, Appl.Opt•.

14, 2678 (1975).

Errors listed under item 2 of section 1 also are treated in

paper A ( again, see Appendix). We were able to treat the effect

of noise spikes, random noise and sinusoidally shaped noise froms.

From these other types of noise can be analyzed by means of Fourier

techniques. The question of obtaining more data points than are

strictly necessary is one whose mathematical treatment bears the

name of 'theory of singular weighing designs'. Again, the detailed

analysis is difficult to summarize, but the mathematical treatment

is given in Appendix A, and we provide results there on optimum

mask patterns that provide the best- signal to noise ratios.

Finally, turning to item 1, the theory of singular designs

also applies here, and again optimum mask patterns can be selected

for given conditions. Improvements in signal to noise ratio can

in fact be obtained by constraining some of the values of the

spectrum ' s end elements to take on a constant known brightness.

Here the precise value of the brightness enters not directly into

the signal -to-noise ratio. It affects system performance more

immediately in the requirements on dynamic range. By choosing

the frame brightness to equal the mean brightness of the entire

spectrum or scene, the dynamic range required by the data handling

system can be made small, and this facilitates data handling.

i

I^
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3. Publications

1. Fourier and Hadamard transform spectrometers: a

limited comparison, Ming Hing Tai and Martin Harwit,

Applied Optics 15, 2664 (1976).

2. Fourier and Hadamard transform spectrometers: a .limited

comparison II, Martin Ilarwit and Ming Icing Tai, Applied

Optics, 16, 3071 (1977).

3. Hadamard transform techniques in spectroscopy and imaging

spectroscopy, M. Ilarwit, in "Transform Techniques in Chemistry"

edited by Peter Griffiths, Plenum Press 1978.

4. Errors in Hadamard transform optics, N. J. A. Sloane,

Martin Ilarwit and Ming Hing Tai, to be published, Applied

Optics, 1978

5. "A practical Hadamard transform spectrometer for asL• ro-

nomical application," Ming Ring Tai, Cornell University Ph.D.

thesis and Center for Radiophysics and Space Research Report,

CRSR 655 (208 pages).

4. Ph.D. Thesis Work

A graduate student, Mr. Ming Ming Tai, was partially

supported by the present contract while working on his Ph.D.

thesis. His thesis work dealt• with the performance of Hadamard

transform spectrometers and the astronomical results that could

be obtained with them, particularly in planetary observations.

The thesis appeared as a Center for Radiophysics and Space

Research (Cornell University) report CRSR 655, listed above.
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Para: of this 208 page compendium involves procedures for dealing

with noise and systematic errors.

5. Personnel

Prof. M. Ilarwit, Principal Investigator

Mr. M. 11. Tai, Graduate Research Assistant

Mr. G. Melnick, Graduate Reserach Assistant

Mr. P. Dain, Undergraduate Reserach Assistant

Mr. G. Stasavage, Research Technician

6. Budget Status

No uncomnitL•ed funds, as of November 20, 1977.
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Distortion in Hadamard Transform optics

N. J. A. Sloane, Martin Flarwit• and Ming Bing-Tai

to be published in Applied optics 1978



Distortion in Hadamard Transform Optics

N, J. A. Sloane

Bell Laboratories
Murray Hill, New Jersey 07974

,Marti; Harwir and Ming-Hing Tar.

Center for Radiophysics and Space Research,
Cornell University, Ithaca, N.Y. 14850.

asr&I CT

This paper analyzes the distortion in Hadamard transform optical instru-
ments caused by moving masks, incorrect mask alignment.. missing measure-
ments, diffraction, etc„ and describes techniques for reducing or eliminating
this distortion. In a great many cases the behavior of the instrument can be
characterized by a single matrix equation of the form n a TWa e, where the
components of 7) are the measurements, T is a matrix characterizing the instru-
ment, W specifies the mask configurations, a is a vector containing the unk-
nown spectral intensities, and the components of a are small random errors.

_

Present address; Langley Research Center, NASA, Hampton, Va., 13665.
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1. Introduction

Hadamard transform optical systems have been widely studied during the past few ,years.
By encoding the light with properly designed masks these instruments benefit from the so-
called atulnplez advantage and achieve an increased signal-to-noise ratio. A variety of multiplex-
ing instruments have been described in the literature, designed to improve images, spectra or
both. t —to

Any optical technique that leads to improved performance is likely to have its limitations.
Some of these limitations may be inherent in the design of the system, while others may be
caused by practical dif iculties'with the apparatus. In either case once such a limitation is recog-
nized ways of working with or around it can be examined. The purpose of this paper is to
describe a number of sources of error encountered in Hadamard transform optical instruments,
to give techniques for reducing or eliminating these errors where such techniques have already
been worked out, and to suggest some possible ways of dealing with errors that have not yet
been fully studied.

We shall mainly describe errors occurring in singly encoded spectrometers, although most
of the discussion will apply equally well to imagers. Similar errors occur in doubly encoded sys-
tems but have not yet been extensively Investigated.

2. Description of Instrument and Spectrum: Simplest Case

In this section we consider a multiplexing spectrometer in its simplest mode of operation.
We give a mathematical description of the instrument under the assumption that no errors
occur except random fluctuations in the detractor readings. Subsequent sections will consider
various departures from this ideal behavior.

2.1 Description of Instrument

Let us consider then a spectrometer with a single narrow entrance slit and with a mask in
the exit focal plane. 3•5 R is assumed that the entrance slit is sufficiently narrow so as to be
always filled by the incoming radiation. Tha input to cite spectrometer can therefore be com-
pletely specified by giving the frequency distribution of rte radiation. It is most convenient to
express this as a function F(v), say, of the wavenumber v. We further assume that over the
operating range in which we are interested the optical system between the entrance slit and the
exit mask behaves like a linear system. 11 . In particular it the input consists of monochromatic

_I

T	 .	 .,J.{
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light at wavenumber vq and with unit intensity, so that F(v) - S(v —vo), then the distribution
of intensity along the exit focal plane can be written as

H(v — vo) .

(We assume that distances along the exit focal plane have been calibrated in terms of
wavenumber.) Thus H(v — v,)) is the instrument's spectral display for monochromatic input at
wavenumber vi), H(v — vo) is called the unptdse response or pmnr spread ;ittionon t ' of the instru-
ment. Because of aberrations and diffraction H(v — vq) can never be concentrated at a single
point, no matter how narrow the entrance slit is. By superposition the distribution of intensity
along the exit focal plane produced by an arbitrary input FM is given by

v

G 	 — f F(vo)H(v — vo)dvp.	 (U

In other words G(v) is the spectral display along the exit focal plane if the input spec'mitn is
FM.

An ideal instrument, free of aberrations and diffraction, would have impulse response
H(v — vo) — 8(v — vo) and (from (I))

G(v) — F 	 .

Thus the linear spectral display G(v) in the exit focal plane would be identical to the spectral
distribution of the input. But in any real instrument G(v) ;t F(v),

01' course strictly speaking we should write Gas a function G(x) of the position, a; along
the exit focal plane, rather than as a function of wavenumber. But the latter notation is simpler
and more suggestive.

Suppose a single exit slit is used, extending say from wavenumber v t to wavenumber v;
along the exit focal plane, The detector output is given by the integral of the exit plane distri-
bution over the slit area:

1' 7

>1(v t ,u t ) — f G(v)dv + e
p,

f F(vo)dvo f H(v—vo)dv+e

f F(vo)S(vo;v t ,v t )dvo + e ,	 (2)

where a is the error due to detector noise, and S (vo;v,, v t ) is defined by

S(vo;ut,v t ) — f H(v — vo)dv	 (3)
,I

S(v,j;vi,v;) is called the slit jitnctton 12 of the instrument; it is the total intensity of radiation
passing through a slit extending from v i to u 2 in the exit focal plane, when the input is mono-
chromatic radiation at wavenumber vo.

Figures I(a) and I (b) show two examples of H (v — vo). Figure I (a) corresponds to an
input slit which is wide enough for diffraction to be ignored, %vhile Fig. I (b) shows the opposite
extreme when diffraction effects dominate and H(v — v j ) — stile , (v — vr,), where
sine x - (sin x)/.t The main lobe of H(v —vo) has width 2d, in Pig. I (a), or I' d ., in Fig. I (b).
The corresponding slit functions S(vo;v,,v.) are shown in Figs. 1(c), I(d), assuming the exit
slit has width v; — v, equal to 2.1 1 or 2d2 respectively. For example in Fig. I (c) when
vo a (v,+v 2 )12 the exit slit extends from vo — d l to vo + d, and gathers all the radiation. while

i
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if vo - (ii, +t, 2 )/2 :'dt only half of the radiation passes through the slit,

Equation (2) Is the fundamental equation that relates the output of the detector to the

input spectrum F(v) when the exit slit extends from v - v t to v - v2.

2.2 Description of Spectrum

It is customary when measuring a spectrum with a dispersion instrument to divide the
spectrum into it intervals, estimate the intensity in each interval, and then join the estimates by
straight line segments. The result is a ptecelwse linear curve as shown in Fig, 2, Any spectrum
can be approximated as closely as we please by such a curve, if it is taken large enough. We
shall therefore start oJrwith the assumption that the input spectrum FM is a piecewise linear
curve as shown in Fig. 2: the spectrum is divided Into it segments t1'0 0' t , 0' 1 0';, , , , ,0'„_121',,,
corresponding to positions 0 00 1 , 0 1 0 2 , , , , ,4„_ 1 B„ of the slits in the mask, and a, is the inten-
sity at the center of 0,0,+t. (We assume that the scales have been chosen so that 0', and 0, are
related by an equation of the farm 0', - 0, + A 02 + - • • , where .4 Is a constant.)

The goal is to determine the it ao,a 1 , , , , , a„- t as accurately as possible. In
order to have an unarribiguous expression for FM in the first and lest segments we assume
that FM is periodic oinside the interval OoO,,, as shown by the broke;t lines in Fig. 2, Thus we
define a- 1 - a„_t Lad a„ - a0 as the intensities in the segments _ 1 0.j to the left of 000 1 , and

to the rig42 .t of 0„_ 1 0,,, respectively. Analytically we are assuming that FM is given by

FM - a, + (a,+t -a) (v -0,. 1 +0126	 (4)

for B ,+I - It .< v S 0,+1 + b

where 2b - 0 ,+t - 0, is the length of each segment.

2.3 Operation as a Multiplexed Spectrometer

Let us consider what happens when the instrument is operated as a multiplexed spectrom-
eter, by allowing light from several slits to fall simultaneously onto the detector during each
measurement. Suppose there are rt slit positions in all: 0 00 1 , 010,.... , 0„_ 1 0,,. The pattern of
open and closed slits is specified by means of the configuration matrix W - (w;,), where
w,, - I if the J-th slit is open during the i - th measurement and w„ - 0 otherwise, for
0 ^< Q ^< n- I, In statistical terminology Wspecifies a weighing design. 13 The mechanical
design of the instrument is simplified (as will appear in the next section) if IV is either a (right)
circulant matrix, with wq - w, _j or a left circulant matrix, with w, - w,+, (and subscripts
taken modulo it 	 both cases). From now on we assume that IV is a left circulant , imilal
results hold in the other case.

If the J-th slit is open during a particular measurement the total intensity of light passing
through that slit is

	

J G(v)dv	 (5)
N,

Since GM is a linear function of F(v) (Eq. (I)) and F(v) is a linear function of the at (Eq.
(4)) this intensity may be written as

„-t

	

t,_ t ax	 (6)
a-o

where the t, _ r are constants characterizing the instrument. Thus t,_ t specifies the amount of
radiation that is transferred through an open slit at position j, for unit intensity at the k -lh
spectral element. We assume that this is only a function of the separation J-k, independent of
the actual values of j and k. To include more general situations (for example, misaligned
masks - see Sections 3 and 4) we allow these constants to vary from measurement to measure-
ment. Thus we assume that if the J-th slit is open during the 2-th measurement, the total
intensity of light passing through that slit (i.e, the contribution of this slit to the i-th detector
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reading) is given by
a-I

r; e Z N,_,a4 ,	 (7)

A-e

where again the r _, are constants depending on the particular instrument. The t-th detector

reading 71, is given by the sum of all r; for which the corresponding slit is open:

„-1

TI, °	 r;,V i + e,	 (8)
-a
-1 a

L rl - I IV, a4+e,

n -I

	

0,4 a t + e,	 (9)
A-J

where e, is the error in the r -th reading and the constants c, 4 are given by

n —I

C,4 ° L rJ _ 4 1VrI
r-0

n—I
°	 tj _ 4 w,, ,	 (since IV is a leji circulanr)

-a

°	 r;_,w,^4	 (lvlrere r ° ,+j ^k)

+r —I

F r,-ov,.k ,	 (10)
.-o

This is simpler in matrix notation. Let

denote column vectors of measurements, unknowns, and errors, respectively. From (9) and
(10) we obtain

	

TI ° C a + e	 (11)

° TIVa + e ,	 (12)

where Cis the matrix with Gk)-th entry c, 4 , and

rn	 t1	 r	 r^-t

T .	...	 .`..	 .`'.	 ...	 `'!:	 (13)

	

n -1 p -t t3 -t	
0 - 1

T is called the rrans%er ntalriv of the instrument. In an ideal instrument in which distortion,
aberrations and diffraction were negligible T would be the unit matrix /. In a real instrument,
however, radiation that should be exiting through a given mask slit often spills over onto neigh-
boring mask positions, so that diagonal elements of Tare reduced in value and off-diagonal ele-
ments of the matrix grow. Since radiant energy incident on a detector cannot be negative,

0 <, t,_ 4 < 1. Conservation of radiant energy requires that the sum of the matrix elements in
any row or column of T equals unity, unless dissipative processes such as absorption or



scattering play a role. If dissipation is significant these sums, 	 r; _ 4 or	 rf _ A , may be less

than unity and greater than zero, A zero value for any one of these sums would imply a sys-

tematic blockage in the spectrometer -- either by design, or through faulty construction. if no

light is lost then Tsatisfies

TJ - T-ij - j

where J is a square matrix of ones.

Equations (11) and (12) are the basic equations describing the performance of this audnplexing
spectrometer, They relate the unknowns ao, , .. , a„- t of Fig. 2 to the measurements
Tlo ..... n „-t via the matrix C - (c,R ) or via the matrices Tand W. Here W - (w,,) - ()V,-,)
is the configuration matrix that describes which slits are open and which are closed during the
measurements, and the transfer matrix T (Eq. (13)) characterizes the particular instrument but
is independent of the multiplexing. The entries in Tare determined by Eq. (7) and depend on
the impulse response H(v) and on the positions Bo, . , . ,B„_,. We shall see below that by suit-
ably choosing the transfer matrix Tin (12) we can use the same equation to describe the distor-

tion introduced by a number of different sources of error.

2.4 Examples
(1): No Diffraction

As a first example we assume a wide entrance slit and no diffraction, so that the impulse
response is as shown in Fig. l(a). We take di - 1/2, so that H(v - PO ) - I for

-1/2 < v-vo 1/2, H(v-vo) - 0 elsewhere. We also assume that the exit slits have width
1, so that B ,+t - B, - I and b - 1/2 in Eq. (4) and Fig. 2. The slit function S(vo;d),B,+t) is
given in Fig. l(c), or analytically by

	

vo -B,+2	 if	 B, - 2 4 vo d,+ L

	

S(vo;oj,9j+t) - -vo+B j+ 2 	 if	 8,+25	 vo	 Bj+Z

0	 otherwise

(l4)
If the j -th slit is open during, the i -th measurement, the total intensity of light passing through
that slit is found by substituting S(vo;B,, d,+t) and FM into Eq. (2), to give

r^ > f (vo -0 +- )(aj _ t + (aj-a,_t)(vo-0,+
O, 1/2

+ f (-vo+A/+Z)(aj+(a,+t-aj)(vo-Bj-L))dvo
x/mot/^

'I

- 6 (a,-t + 4aj + a,+t)	 (l5)

j	 Therefore the constants t,1 _ 4 in Eq. (7) are given by

(	 4	 1

rf > 0 orherivise .

(Note that in this instrument the rf are independent of t:) The transfer matrix Tfor this instru-
ment is therefore

1010

1 0 ... 0 l

	

4 1	 0 0

	

T-6	
1 4 .

.. 00(16)

	

0 0	 ••• 4 1

	

  0	 •••	 1 4

- 5 -
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Exampfe (2): Full Diffraction

The second example assumes a very narrow entrance slit, so that the impulse response is

	

H(v —vo) - 2 sinc-(27r(v-vo)) , 	 (17)

as in Fig, 1(b) with d2 - 1/2, (The constant 2 is chosen so that the total area under H(v -vO)
is one), Again we assume the slits have width 1, 0,- 1 - 0 , a 1, b m 1/2. Now the contribu-
tion of the J-th slit to the i-th measurement is (from Eqs, (2),(4),(17)):

n-1 q 'I .1/2

r; °	 f (a, + (a,+1 —a,) (Po —0 ,+ 1 +2 )Idvo .
/-0 4"1-1/2

H1+1

f2 sinc227r(v -vo)dv
N/

After some algebra this becomes

T,' - toa/ + 0ja/ - 1 + 
tl_Ia/

+1) +

(i.e. Eq. (7)), where the coefficients t; are given by
3/2

	

t; s 2 f J'Wstnc 3 2a(x -r)dr ,	 (l3)
—3/2

and

	

I	
1)2 
	 3	 1

	

3 - 2	 1	 1	 (19)

	

4	
r	 if - 2 .r	 2

Numerical evaluation of the integrals (18) shows that the transfer matrix Tor this instrument is
a symmetric circulant matrix with first row equal to

(0.6667, 0,1482, 0.0080, 0.003 1, 0.0017,
0.0010, 0.0007, 0.0005, 0.0004, 0.0003,
0,0003, 0.0002, ..,, 0,0017, 0.003 1,
0,0080, 0,1432)

(20)

correct to four decimal places. Notice the very slow decay of elements of the main diagonal,
illustrating the pronounced spreading effect of this impulse response.

in general whenever H(v) is an even function, i.e, satisfies H(-v) - H(P), then T is a
symmetric circulant - a matrix of the form

	

11 0	11 1	11,	 113	 1 2	 111

	

111	 Ua III'

	

ll	 ..	 n4 t13 Ih

11 2 111 11)	 US 11 4 U3	 (21)

111 U2

	

1;3	
' ' '	

U 2 U1 !iq
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2.6 Operation as a Vlonochrontator'

	

If the same instrument is operated as a conventional tnonochromator, n measurements are 	 ^.
made, where in the -th measurement a single exit ,lit extends from A, to n _ 1 . The basic
equation is now	 r

i) — Ta + e .	 (22)

obtained by setting iV - /in 02).

2.7 Recovery of Spectrum

To estimate the spectrum from the measurements we proceed as follows. We assume
(again this is the ideal case) that e„ the detector error in the i-th measurement, is a random

variable with mean zero:

E(e,) — 0 ,	 (23)

that the errors in distinct measurements are uncorrelated:

E(e,er ) — 0 ,	 i = j ,	 (24)

and that

E(e,2) - 0-2
	 (25)

where the variance a•= is independent of the amount of radiation falling on the detector, Under
.these assumptions if (12) holds then the best estimate of the a,'s is given by

a — tV' t T' t rt	 (26)

= a + 1V` T" t e .	 (27)

This is best in the sense of being that linear unbiased estimate which minimizes the average
mean square error

II -t

E — n	
E((a,—a,)2)

-J

0.2

— — Trace((T1V)'i((T1V)'t)^
n

v^
— — x (sure of squares of elements of (T1V)' t )	 (23)

n

-- see Refs. 3,18. Then a is a measure of the accuracy of the experiment, and should be made
as small as possible.

2.8 Computing the Spectrum. Inverse Matrices

The spectrum is estimated by (26). Usually IV -1 is known explicitly, 3 but problems may
arise in finding T' t , since in general the inverse of say a 255x255 matrix is both ditlicult to
compute and awkward to store.

If Tis a circulant matrix, as is often the case, then the inverse is fairly easy to find and to
store -- see below, If T is Toeplitz (constant along diagonals) but not a circulant, then the
inverse can still be found but with more difficulty. 19 ' 21 But usually if T is not a circulant then
the best method of computing the spectrum is not to attempt to find T

_ 1 
but to directly solve

the system of equations

Tj — TiVa	 (29)

for a. This is particularly straightforward in the important case when 111_1 is known and T is a

band matrix, i.e. the only nonzero entries in T are those within a fixed distance of the main
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diagonal,t=,
The following are two methods for finding the inverse of an invertible circulant matrix C

with first row c, t ,c 1 , ... ,c„ -1. Method (1) 16.11 often gives an explicit formula for the inverse:
Let	 c(x) - c,)+c l x+ • • we„_ l x" "1 .	 Find	 the	 unique	 polynomial

j	 d(x) e o/q+d l x+ • • • +d„ - t.r"
-1 such that cWd(x) = I (mod x” - l). Then C -1 is the cir-

culant with first row do, . , . , d„- 1 . Method (11) (which may be new) is an efficient algorithm
for finding the inverse of a symmetric circulant with a computer: For large is the its -th entry d,,,
of the first row of the inverse approaches

1 tt!	 cos mBdO	 (30)
17' o CO + 2	 c,cos ro

.-t

In calculating (26) it is useful to remember that any two right circulants commute, i.e.
satisfy .4B •- BA, any two left circulants commute, and any left circulant commutes with any
symmetric right circulant.

Example (1) (cont.)
The inverse of (16) was found by Method (I). First define the sequence of integers

bo,bt,b1,.., by

Ito - 1, b t - -4
b„ a -4b„_ 1 - b„-2 , it	 2 .	 (31)

This is Sequence 1420 in Ref. 23. The first few terms are

bo	 b t	 b 1	 b 3	 b,	 bs

l	 -4 IS	 -56 209	 -730

An explicit formula is

b„ °6((3-2f)(-2^)"+ (3+2,f3)(- 2-,,r3-),'j	 (32)

and also

ri	 b,?_1 - b„b„_ Z a l ,	 it 	 (33)

Then the inverse of (16) is given by the symmetric circulant (21) with

3 b,	 1

ua -- 2b„	 1-1 + b„ -1 +	
(34)

3(b„-,_ t + b,-1) (35)

(This may be verified by using Method (I): we omit the rather lengthy details.) For example

when is - 4

	

7 -2	 1 -2
(((4 1 0 l	 -2	 7 -2	 1

1 I1 4 l 1 1	 _1	 t
T- 6 0	 1 41	

T s 4	 1 -2	 7 -2
-2	 l -2 7

For large it the second term in (32) dominates and we can approximate u, by

u, = u', - (-I)'f(2-f)'	 (36)

!I
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for 0 4 1 S n /2, independent of n. The approximation is very accurate, in fact

< 10 -3 if it 3 20.

Table I gives the values of it', correct to three decimal places, Note that a', approaches 0

rapidly as (increases. Also

detT= ^
2+f ^"

6

First Row of Inverse
Table I

,Matrix of (16)

0 1.732
1 —0.464
2 0.124
3 —0.033
4 0.009
5 —0.002
6 0,001

Therefore for example if the instrument is being operated as a monochromator, so that
Eq. (22) applies, the best estimate of the a,'s is given by

u — T -1 71 .	 (38)

and for it	 20 we can write Eq. (33) as

6, — 14 17, + it' I(TI,-1.1.7),,1) 'f ... + It 6(T),-6+T),.6)

with an error of less than 10 -3 , where the tr'r are given by Table 1, and subscripts are read
modulo it. The average mean square error a for this mode of operation can be found from Eqs.
(28), (36) and is

e	 2f a• -' ,	 (39)

Incidentally, if the correction matrix T
- 1 

is'not applied, the result is a coarsening of the spec-
trum. Consider an input spectrum with a single sharp line, corresponding to
a — (0,0,0, 1 , 0,0,...) as shown in Fig. 3 (a). Then from Eq. (22), ignoring e,

17 — Ta — (0, 0, 1/6, 2/3, 1/6, 0, 0,... ) .

If we ignore T
- 1 

and estimate 3 by 71 (instead of (33)) the resulting spectrum is shown in Fig.
3 (b).

Suppose the same instrument is operated as a multiplexed spectrometer, so that Eq. (12)
applies. The argument used in the Appendix of Ref. 15 can be modified to show that for any
(0, l)-matrix W we have

e	 10.3 t a =
	 it large ,	 (40)

n

(using Eq. (37)). If W is an S- matrixs Is then it can be shown that

e — 13,36 0'
11 large ,	 (41)

n

(37)
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1
which is reasonably close to (40) and may well be the smallest E that can be achieved. Compar-
ing (39) with (41) we see that

rn.s.e, with nn,rnplextng _= 4.00	 (42)
nt.s.e, without nudpplexutg	 n

and in fact for this choice of IV it can be shown that (42) holds for any matrix T.

Example (2) (cont)

The inverse of (20) was found by Method QI), and is a circulant with first row which
approaches

(1.6683, —0.3820, 0.0705, —0.0183, 0.0017,

—0.0017, —0,0006, —0.0006, —0.0004, —0,0003....)	 (43)

correct to four decimal places, for large n. Again the elements off the main diagonal decay very
slowly, Without multiplexing the average mean square error for this instrument is

E	 2.93 e'z ,

while multiplexing with an S-matrix gives

11.74 0=

Il

and again (42) holds.
Of course for any instrument we can ask the following question. The impulse response

H(v) determines the transfer matrix T. as in Eq. (13). Then which configuration matrix IV
minimizes the average mean square error (28)? In Ref, 15 we studied the performance of vari-
ous U's in the very special case when T is the identity matrix (thus ignoring the spreading
effect of HM). The more general question for an arbitrary H(v) or T remains unsolve8.

3. Errors Occurring with a Mask which is Nloved in Steps

This section deals with some classes of errors that can occur with a mask which is stepped
to the next position between measurements. Most of these can be described by a suitable
modification of the transfer matrix Tin the basic equation (12). These errors may also arise in
instruments with a continuously moving mask (see $ 4). The resulting Tis then the product of
the matrices described in $4 and those below. The echo effects produced by slits which are uni-
formly too narrow (or too wide) were described by Tai et al.t't

3A Faulty Mask Alignment
Sometimes the position of an encoding mask is systematically displaced by some small dis-

tance b from its correct position (see Fig. 4). Plankey et al. 9 have described the effects pro-
duced by deliberate misalignment of a spectral encoding mask by 0.5 and 2.5 slit widths. As
one would expect, the main result is an apparent spectral shift by 0.5 and 2.5 resolution ele-
ments, respectively, and an increase in spectral noise. The exact form of this noise may be
determined as follows. We assume that 5 is small compared to the slit width. Then the contri-
bution to the i-th detector reading from light passing through the j-th slit is now given by

r o f G(v)dv	 (44)
Nj -a

i
	

instead of Eq. (5). For the instrument of Example (1), this becomes

i
r.
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a -v2

-01+ 2 +8+ve)ja,-z+(a,-t-a, -1)(ve -0,+ 3Nve

+f	 ( -9,+ l +8+ve)(a,-t+(a,-a,-1)(vo -0.+ 1)1dve2	 2

x,+lit

+ f	 (0, 4. 2 -a - vx)(a,-t + (a, -a,- t )(ve - 0 ; + •Z ))dve
x+112 —3

01 +312-4

+ f	 (0, + 3 - o - va)(ai + (a,+ i -a,) (vr) - 0, - )I dv,
n,+uz	 2

- 6 (a,- 1 +4a,+a) +i) +28(a,-t -a, +,)

+Z 52(a,-t-2a,+a,+t) + 6 o3 (a,_ 2 -3a,- 1 +3 a,-a,..1)	 (45)

Hence the transfer matrix Tis an asymmetric circulant with first row equal to

6 
(4 -65 2 +38 3 , (1 -0 3 , 0,,... 0, 8 3 , 1+38+35 2 -35 3 ) ,	 (46)

Thus a sharp spectral line is dispersed asymmetrically into the adjoining resolution elements.
Furthermore a sharp line at one end of the spectrum affects elements at the opposite end of the
spectrum.

To deal with this problem the mask should first be repositioned so as to minimize the
misalignment. The remaining error can then be removed by using the correct T` in Eq. (26),

3.2 Differences Between Slit Width and Step Size

When a mask contains large number of slits, a similarly large number of steps must be
taken in order to move the encoding mask from one extreme position to the other. Over such
a range of steps, small differences between the step size and the encoding slit width can accu-
mulate. For example, a typical spectral mask might have a slit width of 0.1 mm and be 255
slits wide. Over this total width of 2.55 cm, the mask must be stepped with sufficient precision
that its final position is precisely one step short of cycling into the initial configuration. Thus
the systematic error in the mask motion has to be less than 4x10 -' mm per step, for the final
position to be within one-tenth of a slit width from the intended location,

If such precision cannot be attained then sharp spectral lines will take on a broadened
appearance. Figure 5 shows a computer simulation of this effect. The analysis of this distortion
is very similar to that in Sec. 3.1.

Suppose the initial position of the mask is correct, and the final position is as behind the
correct position. Then Eq. (5) must be replaced by

x - 1 — 1T'; -

	 f	 G(v)do ,	 (47)

The transfer matrix Tfor the instrument of Example (1) has i-th row equal to

(0,...,0, GAR 1+3iA+3G S)z-3(r9)3,
4-6(i^)z+3(i^)3,(l-r^)3,0,...,0) , 	 (48)

with the entry 4 — 6Ox) 2 +3 GAP on the main diagonal.

I
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3.3 Excessive Gap Between Encoding and Blocking husks

If the blocking mask and encoding mask are mounted too close together, there is a danger
that one of the opaque elements of the encoding mask may catch the edge of the blocking
mask, To avoid this there must be a gap between the two musks, If :his gap is too large, how-
ever, some of the radiation that strikes the blocking mask obliquely will pass into an encoding	 'I
slit that actually was meant to be obscured by the blocking mask and therefore inaccessible to
any incident radiation. Then a spectral line imaged on either extreme end of the blocking mask
will produce a false spectral line at the opposite end of the spectrum. This effect is most pro-
nounced in fast optical systems (with small focal ratios).

As long as the encoding (rather than the blocking) mask is placed in the plane where the
sharpest focus is obtained, this effect is not very serious because it only affects the extreme ele-
ments at the two ends of the spectrum. In contrast the mask misalignment mentioned in §3.2
produces distortion over the entire spectrum, 	 J

3.4 Nonlinearities	 {J

Any of the versions of Eq. (12) derived in this paper will only be valid as long as there is
a linear relation between the input and the detector readings, Eventually this linear relation will
fail, as the number of spectral elements increases, or as the resolution is increased, for exam-
ple. Equation (12) must then be replaced by a system of simultaneous nonlinear equations.
Although numerical techniques for solving systems of nonlinear equations are available, 25,26 lit-
tle work has been done so far to determine the exact form of the equations that will be needed
to replace (12),

Some nonlinearities can be compensated for very simply:

(a) A nonlinear response of the detector to increasing amounts of radiation can be elim-
inated through judicious calibration which permits nonlinear (compensating) scaling of the
actual detector output before further data processing is undertaken.

(b) A nonlinear wavelength or wavenumber response -- when G(P), the spectral display
function along the exit plane, is not a linear function of v -- can be compensated for b y suitably
plotting the final spectrum in a way that takes the actual wavelength calibration of the instru-
ment into account.

(c) However, if the detector response at one wavenumber is a nonlinear function of the
other wavenumbers present, compensation becomes very difficult, and the best procedure may
be to solve for the spectrum iteratively, by successive approximations.

4. Distortion Introduced by a Continuously Moving Mask

In this section we analyze the distortion introduced when the slits move continuously
across the exit focal plane instead of being discretely stepped between measurements. (An
alternative analysis, which applies also to imagers, has been given by Gottlieb. , However, the
matrix approach given here seems simpler.) We shall see that in many cases the basic equation
(12) still holds, with Tgiven by (13), where the entries r,'_ t are obtained from Eq. (7). Again
the spectrum is estimated by 3 — W -1 T -117, and the effect of T - 1 

is (theoretically at least) to
eliminate the distortion caused by the moving slits.

4.1 Derivation of Basic Equation

As mentioned in §2.3 we assume that the configuration matrix is a left circulant:

rvo	 wt ... W„-1

w t	 Iv 2	...	 iva

W —	 w 2 w3 . • .	 w t	(49)

	

IV, —I wo	 ..	
IV, —2

In many cases the S-matrices2.15 can be arranged so as to have this form. An example with
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it a 7 is given In Eq. (50),

• I I 1 0 1 0	 0

1 1 0 1 0 0	 1

1 0 1 0 0 1	 1

n, • 0 1 0 0 I 1	 I

1 0 a 1 I 1	 0

0 0 1 1 1 0	 1

0 I 1 1 0 1	 0

(50)

Then instead of using n separate masks of length n -- one for each row of (49) — we can use
one long mask of length 2n which is moved continuously across the exit plane. Figure 6 shows
the mask of length 14 corresponding to (50). The extra half-slit at each end of the mask is
necessary to avoid errors at the ends of the spectrum. if 1v„_ t - 0 in (49) the extra half-slits
are opaque. The mask is periodic with period it.

Ideally the slits have width 2b e 0 1, 1 — B,. Let T1 be the time for each measurement.
When operated correctly the mask should move at a constant velocity 2b/T0, so as to move one
slit width in the time taken to make a measurement.

In general, as in the previous section we let r; denote the contribution towards the i•th
detector reading from light passing through an open slit which crosses the j-1h segment 9,0,'t
(see Fig. 7), We may write

".1r .t

r; — J	 I(v)G(v)dv ,	 (51)

where v,,, v,, i are the endpoints of this slit at the start of the 1 •th measurement, v „1
are the endpoints of the slit at the conclusion of the i-th measurement, and I(v) is the

length of time during which light at wavenumber v can pass through the slit. Thus I(v) can be
read off Fig. 7; it is the length of the intersection of a vertical line at position v with the shaded
region which is the path swept out by the slit. By combining ( g ) and (51) we again get the
basic equation (12),

4.2 An Ideal Case

Figure 3 shows the ideal case, when the mask has the correct dimensions, is properly
aligned, and moves at the right speed. In this case
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i(v) - (u —O,+b)T "L 0,-6t r e4 0,wh.

I(v) - (0„ t +b — v)Toi2b , 0,,, t	b 'I . `: ^,,t + It
	

(52)

As an example, suppose the instrument of Example (1) is being operated in this ideal mode. It
follows from Eqs. (4), (51), (52) that

r' ! 384 (a1 _2+76a,- 1 +230ar +76aa+ t +a,,2) 	 (53)

Since this is of the same form as Eq. (7) we see that ( 12) still holds, where the transfer matrix
Tis now a circulant with first row equal to

384 (230, 76, 1, 0, 0,,,., 0, 0, 1, 76) , 	 (54)

Actually this is an approximation. Since the input spectrum F(v) is In fact not periodic as we
have assumed, Eq. (53) must be modified for i — 0. 1, 2,n — 3,n —2,n — t, and the top right-
hand and bottom left-hand corners of Tare missing, Thus Tis a Toepiitz P2 matrix, not a circu-
lant. However, it seems worthwhile changing T to a circulant and accepting the resulting distor-
tion in the ends of the spectrum, in order to obtain a matrix which has a manageable inverse.
The inverse of the circulant (54) Is easily obtained, e.g. by Method (11) of 424 The inverse is
a circulant with first row which approaches

(2,213, —0.826, 0,299, —0,108, 0,039,

—0.014, 0.006, —0.002, 0.001, 0, 0, 0....) 	 (55)

correct to three decimal places, as n increases. For n - 30 (55) is already valid to this order of
accuracy,

Again the effect of ignoring T is to broaden the spectrum, but now the broadening is
more pronounced than in Fig. 3.

4.3 If the Mask Velocity or Slit Width Is Wrong

It is not difficult to modify the above analysis to determine the distortion introduced if the
mask is misaligned or if the mask velocity or slit widths are incorrect. It can be shown that, as
long as each slit has the same (possibly Incorrect) width, Eqs, ( 12) and ( 13) still hold. E.g. for

the instrument of Example ( 1) operating with a misaligned mask moving with incorrect velocity
we find that

ri — tzaj - 2 + t(aj _ t + toaj + r'_ t a1 , t + t'_ 2 aj , 2	(56)

for certain constants r; (again with suitable modifications for the first and last few measure-

ments).

It does not seem worthwhile giving further examples, since each instrument will have its
own transfer matrix Tto be used in Eq. ( 12), and Tshould be determined when the instrument
is calibrated.

4.4 notating Two-i)imensionat Masks

The above efrects also occur in imagers, 6.10 when the encoding mask may be a two-
dim,.nsiona! mask mounted on a rotating disk. For example, a slight radial eccentricity will
cause an effective radial motion of the mask. The result of this run-out should be a superposi-
tion of three effects. There should be a widening of the image along the radial direction, simi-
lar to the effect discussed in 43.2 above. The overall appearance of the image should become
noisier, because of the continuous motion, as in 444.1, 4.2. Thirdly, there should be a single
cycle of roughly sinusoidal change in intensity along the unfolded two-dimensional chain of ele-

ments, somewhat similar to an effect described in 45 below. This is because the eccentric
motion of the mask will move an opaque portion of the wheel into the open frame in the block-
ing mask, reducing the intensity during that portion of the cycle.
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d,5 Imaging a Moving Source

If one of the sources bein g observed moves slightly during the measurements, the results
will be similar to those described in $3.2 and $4.4, depending on whether the motion is along
the direction of the mask ' s motion or across it. By and large, the result of a small displace-
ment, of the order say of one spatial element during the frame time (or complete cycling time)
of the mask will be to stretch the image along the direction of motion, and to add noise to the
entire scene.

S. Effect of Drift in Background Level

If the intensity of background radiation incident on a spectrometer or imaging system

varies during a spectral run, the derived spectrum will necessarily be affected. Suppose for
example that the infrared spectrum of a star is to be observed. If the foreground atmospheric
emission drifts during the course of the spectral run the instrument will record a corresponding
drift, and the final spectrum obtained for the star will contain a component which can be
directly attributed to the drift. Because the spectrum is estimated by a linear operation (Eq,
(26)), the drift component is simply added to the true stellar spectrum. In this section we
analyze the magnitude of this effect for several different types of drift, assuming for simplicity
that T - L (The analysis in the general case is much mare complicated and we do not go into
It here.)

Let n denote the vector of measurements with no drift present (Eq. (12)), let d t be the
drift in the j •th measurement,

d - (do,dt , ... , d„-t) r,

and let

71' - Tj + d	 (57)

be the actual measurements. The estimate of the spectrum is

W-i ro + W ' t d ,	 (58)

and we wish to analyze the drift component

D - IV -1 d .	 (59)

For concreteness we take W to be a symmetric, left circulant S-matrix, s, is with

W-t - S - t - 2 (2S -J) ,	 (60)
n+1

Case (d - Constant Offset
Suppose

	d - 61	 (61)

where 1 - (1, 1,..., l) r, Then

	

D - n2+	 2)1 1 .	 (b

Case fiift Sinuosoidal Drift
Suppose

di - cos 2aa(j-(b) , J - 0, 1,...,n -1 , 	 (63)

where a, (b are constants, h being a phase shift. The k •th component of the drift is
4-i

Dx -	 g,cos 2aa (j -k -6)	 (64)
^-o
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where

(fo,$t, • • • , tin -t)	 (65)

is the first row of (U —t . Simplifying (64) we obtain

'	 Dt - el cos 27ra (k+rb —44 ) ,	 (60

i	 where the amplitude is given by

	

A = -	
4n	 + 2	 f,f,cos 21ra (i -j)

(n+l) = 	,<,
s q	

(67)
n

for large n, since (65) is a pseudo-random sequence, 27 and the phase shift p Is given by
n •-t

f,sin 2-,raj

	

tan(2aaR) - ")	 (68)
I 9,cos 21ra,
-o

We conclude that a sinusoidal drift voltage adds to the true spectrum a sinusoid of the same
frequency as the drift, with amplitude multiplied by 2/ ,R, and with a phase shift given by (68).
Notice that a sinusoidal drift affects the spectrum more strongly than a constant offset of equal
amplitude.

Case (ndr A Single Noise Spike

Suppose dk - b, di - 0 for j x k Then )D,) - (8Sj_k) is a pseudo-random sequence of
r.m.s. value

4

l n 
Z Dit 1

ti' 
= 25/n	 (69)

Thus a single noise spike of amplitude S produces fairly random noise over the whole spectrum
with r.m.s. value 281n.

Case 60

Conversely, if d, - 5e,,. k , D has a single spike of amplitude 6 in the k -th component.

These results have been collected in Table 11, where the different drifts have been nor-
malized so as to have unit amplitude. The last line of the table shows the improvement in
signal-to-noise ratio obtained by considering random noise, obtained from Eq. (42). It is
interesting that this is approximately equal to the improvement obtained when the noise is
coherent. Only a constant offset in the data gives rise to a considerably smaller mean square
error in the final spectrum.

Similar results are obtained in Fourier spectroscopy. A noise spike in the data will again
produce a wide distribution of error signals in the final spectrum. A sinusoidal noise com-
ponent, on the other hand, will produce a single spectral line at a frequency corresponding to
that of the noise. (The analogous noise in the Hadamard instrument is that considered in Case
(iv).)

6. Singular Designs
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Table II
Noise in Spectrum Produced by Drift of

Unit Amplitude in the Data

Type R.m.s. Noise R.m.s. Ratio of
of drift in

(
spectrum r.m.s, spectrum

drift in data spectrum noise noise to
I r.m.s. dri ft

Constant Constant
offset l offset 2/pt 2/n
Sinusoid I/y2 Sinusoid V21n 2/tin
Single
spike 1/ViT Eq. (69) 21n 2/	 rr

Random Random 21./n

6.1 More Measurements Than Unknowns

It is sometimes desirable to design the experiment so that the nuu4ber of measurements,
p, exceeds the number of unknowns, n. The purpose in doing this is to ensure that in case
some measurements are lost (for example if a cloud passes over an observatory during an astro-
nomical observation) the spectrum can still be calculated.-"

The basic equation (12) relating the vector of measurements n — ( 710, r7t, . . • . rtv—t) r to
the vector of unknowns a becomes

n - TIVa + e ,	 (70)

where Wit; a pxn (0,1) configuration matrix describing the experiment, and Tis a pxp transfer
matrix characterizing the instrument. The (i,j) -th entry of T is t;—„ 0 4 i,j	 p — 1 (see Eq.
(7)).

The best estimate for a is nowa, is

i — (TIV)'' •q ,	 (71)

where MW is the generalized inverse, given in this case by

MW (IV rTrTIV) —t (TIIr) r ,	 (72)

The average mean square error is thena

E — v Trace((IVrT rTfV) -1 ) .	 (73)
n

A mask of this type suitable for use in a spectrometer can be obtained by taking IV to be the
first a columns of a pxp circulant S-matrix. This can be accomplished by means of a blocking
mask which only exposes a frame of it slits at a time.

6.2 More Unknowns Than Measurements

Suppose an experiment has been designed to make a measurements in order to determine
a spectrum with n unknown components, via Eqs. 02), (26), but is prematurely terminated
after only p < it measurements have been made. In some cases it is itill possible to say some-
thing about the unknown spectrum. For example, suppose IV - S„ and T — /. Then 71 — S,,a,

and the sum of all it measurements is equal to ( n +0/2 times the sum of the unknown spectral
components:

z-I T (11+1) —t

Suppose the last measurement -1„ is missing: what can be said about its possible value? Since
71, is the sum of those v, for which there is a I in the last row of S,,, we have
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(75)

From (74) and (75) we obtain the bounds

2	 —t

0	 rin	 n —t	 nr .	 (76)

A similar result can be given if two measurements are missing, In some cases the lower bound
in (76) can be improved by considering the differences n, — q, for suitably chosen r and ).

An analysis of this type can also be given for other multiplexing schemes, including
Fourier spectroscopy. A single missing measurement never entails complete loss of informa-
tion about the spectrum. The uncertainty however increases rapidly as the number of missing
data points Increases.

6.3 Correction Procedures

A similar situation arises when one or more measurements are lost because of a burst of
noise. A single noise spike of amplitude S produces random noise over the whole spectrum
with r,m.s, value 28/n, as we saw In §5.

A large noise spike can often be recognized by examining the other measurements
obtained in the same run. When the spectrum is continuous, or contains a large number of

1 intense lines, the individual data values do not greatly deviate from each other. Only if one or
two spectral lines dominate do wide deviations occur, For a polychromatic spectrum, then,
large noise spikes tend to appear as well defined, extraordinary points.

In the laboratory we have tended to remove these spikes and replace them by the mean
value of adjacent data points on either side. The theoretical justification for this procedure is
somewhat questionable, but we find in practice that the spectra obtained b y means of such
corrections are rather good approximations to the' expected forms, The procedure is illustrated
in Figs. 9-12. Figure 9 shows a spectrum obtained in the usual way with a 25$x255 S - matrix.
Figure 10 shows the effect of a noise spike in the last measurement, while Fig, 1l shows the
result of replacing this and four adjacent data points by a straight line joining the 250-th and I-
st data points. Similarly in Fig, 12 the last 15 measurements have been replaced by 15 points
linearly Interpolated between the 240-th and l-st measurements.

A comparison of Figs. 9 and i l suggests that linear interpolation between values spanning
the gap of missing data entries produces relatively little distortion. A somewhat better pro-
cedure might be to use a quadratic or higher degree curve for the interpolation.

Figure 13 uses the same data as in Fig. 9, except that a correction has been inserted to

remove the negative echo caused by faulty slit deposition (or etching), as in Tai et al. (1975).
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Figure Captions

Fig. 1. Impulse response H(v —vo) (a) when diffraction can be ignored, and (b) when
diffraction dominates. (c) and (d) are the corresponding slit functions. (See Examples (1) and
(2) in $2,4.)

Fig. 2. A piecewise linear input spectrum F(v). a, is the intensity at the midpoint of the inter-
val 8,9, +1.

Fig, 3. Showing how a sharp input (a) is coarsened (b) it' the correction matrix T
_ 1 

is not
used.

Fig. 4. Faulty mask alignment.

Fig. S. Computer simulation of the errors produced by a systematic difference between slit
width and step size. The final position of the mask after 255 steps is displaced by one slit width
from the correct position, An input spectrum with a single sharp spectral line has been
broadened to a width of two spectral elements, and noise has appeared across the whole spec-
trum.

Fig. 6, Mask designed to be moved continuously. This is a mask or length 14 corresponding to
the lVmatrix of Eq. (50). Elements 1 .6 are repeated as elements 3-13 respectively. The extra
half slit at each end, corresponding to element 7, is needed to avoid errors at the ends of the
spectrum.

Fig. 7. Path swept out by an open slit crossing the j -th segment 9,9,. 1 during the i -th detector
reading. Time runs downward in this diagram, and the mask moves to the right.

Fig. 3. The ideal case when the mask has the correct dimensions, is property aligned, and
moves at the right speed. Again time runs downward and the musk moves to the right.

Fig. 9. Uncorrected 255-element spectrum of a laboratory source showing the 1.7µ mercury
vapor lines. There has been no data processing other than applying the inverse Hadamard
transformation.

Fig. 10, Same as Fig. 9 except that the last data point, of height 1.16x10, has been replaced
by a noise spike of height 4x10, The main spectral features remain, but noise is added to the
entire spectrum.

Fig. 11. Same as Fig. 9, except that we have simulated losing the last five data points and
replacing them by a straight line joining the 250-th and t-st data points.

Fig, 12. Same as Fig. 11, but now the last 15 measurements have been replaced by 15 points
linearly interpolated between the 240-th and l-st data points.

Fig. 13. The data used here Is the same as in Fig. 9, except that a correction has been inserted
to remove the negative echo caused by faulty slit deposition (or etching), as in Tai et al.
(1975).
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