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Economic Problems, Leningrad, USSR Academy of

Sciences

(Presented by Academician G. I. Petrov, November 3, 1976)

1. The proposed explanation of the mechanism of formation /60*

of the equatorial jet on the surface of Jupiter is based__pn a,..fact,,_

that is a direct consequence of the Taylor-Proudman theorem and that

is known from the asymptotic theory of motion of low-viscosity fluids

in a rotating. spherical shear layer /l-_3/. The similarity

parameters of this motion include the Reynolds number Re =
Q

= o^r^T/v, the relative rate of rotation e = (fl2 ~ ̂ 1)/ 1̂ >
 and the

relative thickness of the layer 6 = (r^ - r^/r^ (r^, r^, tt^, and

ft are the radii and angular velocity of the internal and external

boundaries of the spherical layer, and v is the kinematic visco-

sity) . We know /T-3/ that for large Reynolds numbers Re » 1

and small e « 1, in the liquid is formed a cylindrical shear

layer with radius R, equal to the radius of the internal boundary

r., separating the fluid rotating as a solid at angular velocity

^2 outside the cylinder R > r-^ from the stream inside the cylinder.

Numbers in the margin indicate pagination in the foreign text.



Inside the internal region R < r^, everywhere—except for the

boundary layers—the angular rate of rotation u>. and the stream

function ^ of the meridional stream depend only on the distance

R from the axis of rotation. The angular rate of rotation changes

from fi-, to ftp; the meridional stream represents motion from the

slowly rotating boundary to the more rapidly rotating boundary

along the cylindrical surfaces with generatrices parallel to the

axis of rotation. All the backflow of the fluid takes place in

the thin cylindrical £̂ 5̂r laYer— ne^r the cylinder with radius

R =.r-,. Both the angular and the meridional stream velocities

change sharply in the _she_ar layer, which is wholly within the

spherical layer and does not extend beyond the boundaries.

When we look at planetary atmospheres, the role of the upper

boundary can be played by the zonal geostrophic stream caused by

solar radiation in the upper thin cloud layer of the atmosphere

C^J-
As shown in / 5_/> temperature stratification in the upper

cloud layer is stable down to depths of 20-50 km. Below this it

appears that there is a region of turbulent convection, where

the coefficient of effective viscosity n must be much larger

than in the upper layer. Then the effect of the upper layer on

the lower can be depicted as tangential stresses T
rrfl(^) (

r> ^>

$ are spherical coordinates). The dynamic condition for speci-

fying T, in contrast to the Proudman-Stewartson kinematic condi-

tion /2, 3/, lets us extend the cylindrical shear layer to the

external boundary and allow it to suffer a discontinuity in the

angular.rate of rotation at the external boundary.

2. To confirm this fact, numerical calculations were made /6l

of the nonlinear boundary value problem for Navier-Stokes equa-

tions under the following boundary conditions written in dimen-

sionless form:



= sin 0;
or

w
= T sind;

;=o)r sn

Appearing instead of e in this case is the dimensionless tangen-

tial stress T = TQ/Cpn0^) (^ is the angular rate of rotation of

the internal sphere,p is the density of the medium, and T is the

tangential stress at the equator).

Fig. 1. Distribution of ang-

ular velocity u> at the exter-

nal boundary when T = 160 and

& = 0.025:

1. Re = 2000 2. Re =5000

3. Re = 7500

Pig. 2. Distribution of angular

velocity w at the external boun-

dary when Re = 7500 and &.= 0.025

1.

3.

= 10

5-

2.

.= 160

= 3 0

= 8 0

The system of equati.ons was solved by the method of finite

differences using a procedure described in / 6_7, for different

values of the determining parameters. Some results of the cal-

culations are shown in Figs. 1-3. In all these cases the flow

pattern near the equator was symmetrical. Calculations were also

made for flows of the fluid layer, in which the density and the



dynamic viscosity underwent a discontinuity equal to P-L/
P
2 ~

= y /p = k in the middle of the layer when r = r^ + 5/2 (.the

subscripts 1 and 2 here refer to the internal and external parts

of the layer, respectively).

The conclusions following can be drawn on the basis of cal-

culations :

1) for large Re numbers, just as in the Proudman-Stewartson

problem, there is a tendency for a cylindrical drifting layer to

form near the cylinder with radius r ; however, in contrast to

the first problem, . this ___shear layer__ extends to the external

boundary of the spherical layer, which shows up in an abrupt

change in the angular velocity at the surface near 9=, arc sintr-Yr^)

(Figs. 1-3), that is, the phenomenon of significant equatorial

acceleration is disclosed.

2) an increase in the Re number, given constant 5 and T leads

to thinner boundary layers (Fig. 1);

3) T determines the amplitude of the discontinuity in the

azimuthal velocity in the _shear layer for large fixed Re '

(Fig. 2);

4) the smaller the 6 and T, the larger must be the Re num- /62-

ber in forming the shearJLayer (Figs. .1 and 3);

5) the internal boundary r, is not necessarily a solid sur-

face, but can be the interface of fluids differing in density.

3- Possibly, motions similar to the motions described above

— for specific values of the similarity parameters Re, T, and .6 —

can serve as a gross model in explaining that, on large planets

and, in particular, on Jupiter, there is an equatorial jet with

well-defined boundaries. We know /~8_7 that clouds forming the

visible surface of Jupiter have a striated structure and rotate

as two different systems: clouds in the limits +10° from the

equator have a mean period of rotation 9n50m30s and the extra-

equatorial zone rotates with the period 9h55miIOs. 6 . Thus, on



the Jovian surface there is observed an equatorial jet that has

a relative velocity of the order of 100 m/sec and ye.ry sharply

defined boundaries (Fig- *0 •

J* 50"

18S7-196S

( 2 )
56"

-I
tifnc/ioHiif cnepoctwti (njccx) ( j )

Fig. 3. Distribution- of angu-

lar velocity u> at the external

boundary when Re = 2000 and

T = 16.0:

1. T = 0.025 2. T = 0.05

Fig. 4. Mean relative rate

of rotation of Jovian surface

as a function of zenographic

latitude from the data in / 8_/

KEY: 1. Latitude

2. Period of rotation

3- Relative velocity

(m/sec)

If the proposed model is valid and if the well-defined boun-

dary of the Jovian equatorial jet is an outflow onto the surface

of the Stewartson : shear layer, from the observational data we

can obtain some estimates for the dimensionless parameters of



the problem. From the width of the equatorial jet, located ap-

proximately between <j> = ̂ f!0° latitude., we can readily find the

depth of th.e atmosphere and, therefore, the parameter 6 . . In

fact, r, = r~ cos <J>Q (here r~ is the visible radius of Jupiter,

equal to approximately 7-10° and identified with the upper boun-

dary of the spherical layer, and r is not necessarily the solid

boundary of the planet, but—possibly—the interface of the mater-

ial or layer with a large density gradient, and (J>Q is the width

of the boundary of the equatorial jet), from which 6 - (1 = cos 4>Q)/

/cos <J> % 0.015, that is, the depth of the layer proves to be of

the order of 1000 km, which coincides with the upper boundary of

the atmospheric depth, based on Peebles' estimates /~9_7. It must

be kept in mind that all estimates have a highly approximately 763

character, since in the real atmosphere the gas is highly strati-

fied and. compressible, while the theoretical calculations were

made for a homogeneous incompressible fluid. So in the following.,

treatment we will use the means of the parameters of the medium,

labelling them with the subscript s.

The thickness of the equatorial jet boundary is of the order

of 1-2°, that is, AR £ 200-400 km and A = AR/r^ £ 0.003-0-. 006.

If we know the relative velocity of the equatorial jet, we can

find the dimensionless parameter e = Afi/fi ^ 0.0084 and the dimen-

sionless tangential stress in the c:ylln,d̂ l'c™ai shear layer when

T = T0/(psn°0 £ Ae/A = 1-3.

Now we present some energy estimates. The total influx of

solar energy into the Jovian atmosphere /10/ Q ^ 10. erg/sec.

If we assume that a large part of this energy is 'transformed into

the kinetic energy of motion E % (O.l-O.Ol)Q, which then is dis-

sipated by the effective turbulent viscosity, chiefly in the [_.__

shear layer, then we can estimate the coefficient of this viscosity

in the planetary atmosphere n . Dissipation of the energy in the

cylindrical shear layer can be estimated as follows:



Assuming A.w % 100 jn/sec., p % 10" g/c.m , and r-,% 7 "10 cm,g

we find the coefficient of turbulent viscosity t\<\, 10^-10 cm /sec.

The Reynolds number corresponding to the large-scale motions in

the Jovian atmosphere here turns out to be of the order of 10

1011. The values of n agree with estimates of effective visco-

sity given in /Tl7 and are somewhat smaller than the values in

/J27- . . .

Numerical calculations, given values of the similarity para-

meters corresponding to the estimates obtained above for Jupiter,

do not now appear realistic, therefore we are limited only to

qualitative conclusions. -Qualitative analysis shows us that for

the values Re % 10 , 5^ 0.015, and x%l-3 we must expect that the

cylindrical shear layer will be quite thin and its outflow at the

upper boundary will caus.e an abrupt change in the rate of rotation

of the planetary surface. Within the scope of this model, the

striated structure of the Jovian surface at latitudes from +10

to +J45 can be attributed to the outflow at the external boundary

of convective cells having the shape of axisymmetric rolls L ex-

tended along the axis of rotation in the meridional section. This

shape of the cells, according to the Taylor-Proudman theorem, can

originate when there is rapid rotation /.1 37 and the presence of

shearing in the convective flow /I V .
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