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ABSTRACT
 

Recent advances in tuneable infrared lasers and in infrared
 

heterodyne spectroscopy enable sub-doppler spectroscopy of laboratory
 

gases and planetary atmospheres. In this paper, the principles of
 

spectral line formation and of techniques for retrieval of atmospheric
 

temperature- and constituent-profiles are discussed. Applications to
 

the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated
 

by results obtained with Fourier transform and infrared heterodyne 

spectrometers at resolving powers (?/Ax) of 1lO 4 and 1077. respectively, 

showing the high complementarity of spectroscopy at these two widely 

different resolving powers. The principles of heterodyne spectroscopy
 

are reviewed and its applications to atmospheric probing and to
 

laboratory spectroscopy are discussed. Direct absorption spectroscopy
 

with tuneable semiconductor lasers is discussed in terns of precision
 

frequency-and line strength-measurementsshowing that substantial
 

advances in laboratory infrared spectroscopy are at hand.
 

tInvited paper presented at the NATO Advanced Study Institute on "Vibrational
 
Intensities in Infrared and Raman Spectroscopy" Belgirate, Italy,
 
Sept0 1-10, 1977.
 



Introduction
 

Planetary atmospheres derive their principal external heat input
 

from the sun. They lose energy mainly by radiation at infrared wavelengths.
 

Infrared spectroscopy of planetary atmospheres deals with detection of
 

absorption and emission features from their respective constituents,
 

leading to determinations of local physico-chemical conditions. We
 

can estimate lower limits for the effective mean radiative temperatures
 

of the atmospheres by writing down relations for the heat input and
 

output and invoking equilibrium, thus
 

2 R2 )
F 

0 X(1xA) 

and 

a 2)=T4 (4rR2 ) 

where 

A is the albedo at wavelength X, 

Av is the mean -isual albedo, 

F is the solar flux at the planet's mean position,
 

R is the planetary radius,
 

a is Stefan-Boltzmann's constant,
 

and T e is the effective black-body temperature of the radiating region 

of the atmosphere. Eqn 2 neglects internal heat sources, and assumes
 

a sufficiently rapid rotation rate so that radiation takes place into
 

4-r steradians at the effective temperature, T . For planets having
 

partially (Earth and Mars) or wholly (Mercury) transparent atmospheres
 

in the infrared, some or all of the emergent radiation will come from the
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surface. Eqns 1) and 2) give a zeroth order expression for the effective
 

temperature
 

e L 43) 

Predicted and observed values of T are given in Table I for the majore 

planets. Note that the observed far-infrared brightness temperatures
 
exceed the predicted values of T for Jupiter, Saturn, and Neptune,
 

e 

showing that internal energy sources are significant for those planets.
 

Table I describes only the net energy budgets. More detailed
 

analyses reveal that each atmosphere exhibits characteristic variations
 

of kinetic temperature with altitude, the so-called vertical temperature
 

profile. In the absence of ionization, heating, ok dissociation of
 

atmospheric molecules, the temperature should decrease with altitude
 

according to the adiabatic lapse rate (k),
 

k =/- = g/cP 4) 

where g is the acceleration of gravity at the reference altitude and
 

cp is the specific heat at constant pressure for the principal atmospheric
 
2
 

gas . Adiabatic lapse rates for various planets are: Venus (io7
 

°K/km), Earth (9.8 °K/km), Mars (4.5 °K/km), and Jupiter (20 °K/km).
 

Typical temperature profiles3 are summarized in Fig. 1.
 

Heating (e.g. by absorption, ionization, and dissociation) causes
 

additional structure on the temperature profiles. Let us examine the
 

Earth's atmospheric temperature profile by way of illustration. Solar
 

visual radiation penetrates to the Earth's surface, which is heated and
 

which in turn heats the atmosphere. The temperature profile first decreases
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approximately adiabatically with altitude above the surface (I bar
 

level), but then increases in the region where solar ultraviolet light
 

(200-300 nm) dissociates 03, thus forming the stratosphere.
 

Above the stratopause, the temperature again lapses with altitude
 

until dissociation (X < 200 nm) and ionization .(x < 100 nm) of 02
 

and N2 inject heat into the kinetic energy distribution, forming
 

the exosphere. Note that while the mean exospheric kinetic temperature
 

approaches - 1000 0K, the gas is not in local thermodynamic equilibrium (LTE)
 

because the density has fallen below the level needed for collisional
 

excitation to dominate vibrational radiative decay. Thus atmospheric
 

sounding by infrared observations, which usually assumes LTE, is much more
 

complicated above a certain altitude. Microwave sounding remains simple (LTE
 

case) to higher altitudes owing to the generallV much longer times for
 

rotational relaxation.
 
3b-e
 

In the case of Mars, che temperature follows a similar profile,
 

except now the atmosphere is thin enough that solar ultraviolet penetrates to
 

the surface-(--6mbar leve-)-),-and-no--teinr-es-tr-ia-lmike-stratosphere­

is formed. The small temperature inversion illustrated at the 10-2 mbar 

3cregion is thought to be caused by thermal waves propagating upward
 

in response to the very large diurnal surface temperature variations.
 

Mars' exospheric temperature3d is lower than Earth's because the
 
dominant molecular constituent is CO2 instead of N2 .
 

h
Venus3f - (also dominantly C02 ) shows about the same exospheric
 

temperature3g as Mars, however the surface temperature is 700 OK due to
 

the greenhouse effect. Cloud decks mantle the planet and we cannot see
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below them in the infrared. These examples demonstrate that considerable
 

contrast exists in planetary kinetic temperature profiles, which enables
 

us to use infrared spectroscopy to probe the temperature and abundance
 

profiles remotely.
 

Line Formation in Planetary Atmospheres
 

An external observer viewing a remote atmosphere from the top, 

at wavelength ?, will "see" into the medium to about one optical 

depth. The emergent thermal radiance at X will be given approximately 

by the Planck function for the temperature (T) of that region where the 

optical depth is about one. Since the optical depth depends strongly 

on X through the presence of spectral lines, the observer will "see" 

deeper into the atmosphere in regions of weak absorption, less deeply
 

in regions of strong absorption. Then if the temperature varies with
 

altitude,intensity contrast, i.e. spectral lines, will appear as a
 

function of X, and their intensity profiles may be analytically inverted
 

for extraction of the atmospheric temperature or abundance profiles. 

These considerations are made quantitative in the following way. 

Consider a thin slab of gas between Z and Z2 and calculate the 

upwelling radiance from it (Fig. 2). Neglecting cloud effects and 

multiple scattering, the emergent contribution from layer (L) will 

2 4be

dIL.= L(v,T) BL (v,T(P)) TL 5) 

where
 

EL (vT)= the emissivity of the layer,
 

BL (vT(P)) = the Planck function at temperature (T), 

O BOORlAL P1FisOF ?ooR QUaLfT 



=
SL the integrated transmittance from 

the layer to the observer 

- jfK dZ Kdu 
=
TL e -a 6
 

where 

K = the absorption coefficient (cm2 ) at 

frequency o, 

-n = the number density (cm 3 ) at height Z (cm): 

the column density (molecules/em )u = 

The total emergent intensity will be 

I'TOT (v) = E,(V) B 2(v,T8) TSv + E CL, (v,T) BjLv,T(P)) TL 7) 
L 

The first term on the right-hand-side represents the transmitted
 

surface contribution and the second term the summed contributions
 

from each layer of the atmosphere. Now
 

EL (,T) = I-TL(v T) KVdu
 

f--L-- 1. Then--eqn-7--can-be-wri-t-ten-

ITOT(v) Es(v) BS(\'Ts) TS() + s B (v,T(P)) dT 8) 

Eqn 8 expresses the emergent spectral intensity in terms of
 

physical parameters of the source (Ts,Es. T(Z), P(Z)). However, we
 

really hope to determine the source parameters from the observ~d
 

spectrum, i.e., given the observed intensity as a function of wave­

length, and the molecular line parameters, find the atmospheric
 

temperature profile and constituent profile by inversion of eqn 8.
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ORIGINAL PAGE 1S 
OF POOR QLTUIY 



For a gas which is uniformly mixed, the pressure is usually
 

taken from 

-Z/H kT 

P = P e , H =L, the scale height 9) 
0 	 mg 

and the problem reduces to finding T(Z). Alternately if T(Z) is known,
 

the partial pressure of a gas having sources and sinks (e.g. 03 on
 

Earth) may be determined as a function of altitude. Obviously, the
 

quality of the inverted profile is limited by considerations such as
 

the signal-to-noise ratio on ITOT (v), and the accuracy with which
 

molecular line or band parameters are known.
 

The absorption coefficient integrated over the line is given
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by
 

g exp (-(Ev+ 	 10)I' K dv=w=8T3V S UN E 	 lO)V
3hc g- NR
 

where S u is the quantum mechanical line strength, g is the degeneracy
 

of the lower state, N is the gas column density (molec/cm2) , QR, and
 

QV are the rotational and vibrational partition functions, and ER
 

and EV are the rotational and vibrational energies in the lower state.
 

The line strength is related to the transition dipole moment (p) and
 

the state wave functions by
 

11)
I<U IPu%1> 2 

The absorption coefficient at a given frequency is related to the
 

integrated absorption coefficient by the line shape factor b(PTv)
 

KV= b(PT,v) J KV dv 	 2 
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where 

b(P,T,v) dv = 1 by definition.
 

The exact form for b(P,Tv) depends on the physics occurring in the
 

medium 6. A convenient technique for evaluating b(P,T,v) is to divide
 

the line into a direct contribution near line center and a wing contribution.
 

The direct contribution is calculated from a Voigt profile (mixed Doppler
 

and Lorentz broadening) and the wing profile is calculated from a
 

Lorentzian. Thus near line center the line shape function is,
 

e_t 

1 2 1/2 

_ _ 

b(P,T,v) = 7( / 
TT 
j 

y + 
e(x-t)22 , 13) 

O- TT 

where
 

y= l (Zn 2)1/2,
n'D 14) 

x (v-v0 (Zn 2)1/2, 

C D
 

and aL and aD are the half-widths at half maximum for Lorentz-and
 

Doppler-broadened lines.
 

O = 3.58 x lO- 7 v(T/M)1/2 Hz. 15) 

The wing line shape function is calculated from
 

0)2
b(PTv) (-vL + 16) 

where
 

0 

where T0 and P0 are the reference temperature and pressure for which 

a was measured and m , 1/2. In this formalism, k is symmetric about v and 

therefore it does not apply when pressure induced shifts or line shape
 

asymmetries are important. The successful inversion of
 

eqn 8 is dependent on adequate knowledge of the molecular line
 

parameters. 8
 



A considerably simpler calculation results when atmospheric
 

radiance contributions can be neglected, as is the case for solar
 

absorption measurements of telluric lines. In zhis case Ts >> TA and
 

(for weak and moderately '.ronglines) the relation of observed and synthetic
 

transmittances 4 _volves only the Ist term on the RHS of eqn 9.
 

Applications to Planetary Atmospheres
 

Presuming that accurate line strengths, temperature profiles, and
 

molecular constants exist, the expected transmittance can easily be
 

calculated line by-line. The most comprehensive applications of this
 

procedure have been carried out in pursuit of Fourier
 

transform spectroscopy (FTS) or grating spectroscopy of the planets, where
 

a very broad frequency range is measured with spectral resolution 
-1 -1 

1 cm to , 0.1 cm . An example is given in Fig 3 where the measured 

Venusian spectrum is compared with the calculated synthetic spectrum
 

from 750 - 1000 cm I for a model which includes lines of CO2 and a
 

a Agreement between the observed and synthetic transmittances
H2S04 haze.7

is impressive. The spectral resolution is sufficient to resolve the 

bands into individual ro-vibrational lines, but it is not sufficient to 

resolve the intensity profiles of individual lines. Thus inversion 

can only be carried out for very strong bands, e.g. in 

the Q-branch of CO2 at 791 cm and the 667 cm 2 fundamental. 

An entirely new class of physical information lb ontained when 

lines are measured at sub-doppler resolution. Townes and his co-workers8 
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first observed lines of the lO.6 tm bands of C02 on Venus with an infrared
 

heterodyne spectrometer (IHS)and discovered that although the effective
 

continuum temperature in this region is -230K (see Fig. 3), the center
 

of the lines contained an emission feature which came up to 300 K
 

brightness temperature. The kinetic width of the feature corresponded
 

to a temperature of - 180 K indicating that some non-thermal pump was
 

operating. They invoked absorption of solar radiation in v3 3v3 ...
 

with optical trapping and subsequent cascade in the v3-2v2 band to
 

explain the non-thermal emission. Observations made by our group
 

indicate that for some lines the central emission peak consists of a
 

combination of thermally radiant and non-thermally radiant contributions
 

(Fig. 4). Inversion of the thermally radiant portion, using the techniques
 

described earlier, indicates a mesospheric temperature inversion3h in
 

the 10 2 to 10 4 mbar region (see also fig. 1).
 

Precise measurements of the doppler shifts of these narrow 

features have been used by Betz et al 9 a to derive wind velocities 

in the high altitude regions (80 kn) where these lines are formed. 

The derived values are- 10 m/sec retrograde, much smaller than 

the, 100 m/sec velocities derived for lower altitudes from Pepsios 

measurements by Traub and Carleton, and independently from the 

ultraviolet cloud motion studies of Mariner 10.1 Recent measurements 

on 13C1602 lines, formed deeper in the Cytherean atmosphere, are 

in good agreement with the Pepsios results.
9b 

FTS provides broad simultaneous wavelength coverage at moderate
 

spectral resolving power while !IHS provides narrow simultaneous wavelength
 

coverage at very high resolving power. As illustrated by the Cytherean results,
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FTS and IES are complementary techniques which together can provide
 

a very complete picture of the spectroscopy and physics involved.
 

The complementarity of PTS and IRS is further illustrated by
 

observations of Mars. The atmosphere of Mars consists of C02, N2 ,
 

Ar, various isotopic variants and other trace species (Table II).
 

The Mariner 9 spacecraft carried an FTS into orbit about the planet
 

1
 
in 1971 and infrared spectra were measured from 2000 - 200 cm­

-1
 
at - 2 cm resolution over a period of many months. An average
 

of 1747 spectra is compared with the synthetic spectrum~b in Fig 5. 

Bands .of CO2 , 20, and silicates 
12 

are evident in the spectra. Maguire has derived upper limits for 

minor constituents from these data (Table II). While the 3 - 22 

(lo.6m) bands are barely visible on this plot scale, a heterodyne 

spectrum of the P14 line shows remarkably deep and narrow lines with 

a non-thermal emission spike at line center (Betz et al8 , Fig. 6). 

Inversion of the 15pim C02 (v, allowed extraction2 ) band in the IRIS spectra 


of temperature profiles from the surface to 50 km. Temperature fields
 

were measured for nearly the entire planet, from which global winds were
 

determined~b .
 

Principles of Heterodyne Spectroscopy
 

The techniques and advantages of interferometric spectrometers
 

are widely understood, but infrared heterodyne spectroscopy is relatively
 

It is an extremely powerful tool worthy of some detailed discussion.
new. 


The concepts and much of the instrumentation are borrowed from radio
 

astronomy where heterodyning has been used for decades.
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Infrared heterodyne detection is achieved by allowing radiation
 

from a coherent local oscillator (field, E0 eiWot) and from a source
 

(field, E eig)st) to illuminate a non-linear detector (photo-mixer).
 

Classically, the total local field is
 

E = E° e ot + Es ei S 18)
 

and the electrical signal output is
 

E* E = E E 4-2E E Cos (wo - t "19) 

where the cross-term is the instantaneous IF heterodyne signal, and
 

w0 -is = wIF 20) 

is the intermediate frequency. The relation between the source spectrum 

and the IF spectrum is shown in Fig. 7. 

For a given local oscillator frequency, a range of source frequencies
 

in the upper and lower detector sidebands will be efficiently mixed and 

will give corresponding IF signals. The upper limit to this range of 

IF frequencies is set by the frequency roll-off of the detector/pre­

amplifier response. For the best HgCdTe detectors, this can be in 

excess &f-1.5 GH~T.1-3-Th-e-idebands are f5lde-t-the IF anc so a 

given rf filter contains contributions from both-upper and lower 

sidebands (Fig. 7). The slope of the continuum is greatly exaggerated 

in Fig. 7; at these high resolving powers the continuum is essentially 

flat. A multiplex advantage is obtained by simultaneously sampling 

the IF range with a set of consecutive rf filters (so-called filter 

bank) as described later. The source spectrum is measured simultaneously 

over some frequency range (r 1000 MHz) by the filter bank. Tuning the
 

rf local oscillator positions the filter bank with respect to the zero
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of IF. Spectral scanning over ranges wider than the detector bandwidth
 

requires a tuneable infrared local oscillator.
 

If the IF is passed through a radio frequency filter of bandwidth
 

B (Hz), then passed through a second square law detector and time­

averaged for time T (see), the noise equivalent spectral intensity in
 

the shot-noise limit will be given by
 

NEF = A photons 21)

Hz
see
VTT-


where A is the total degradation factor due to system losses. The
 

various losses are discussed in detail elsewhere.14,15 Careful
 

attention to details of the optical and electronic design can result
 

The system discussed in this paper ­in A < 25 at the present time. 


has a measured A = 27.
 

Molecules in local thermodynamic equilibrium (LTE) cannot radiate
 

intensities (photons/sec Hz) greater than the Planck function for that
 

temperature, corresponding to the optically thick case. Absorption
 

lines are normally measured against some continuum black- or grey-body
 

emitter such as the sun (telluric lines), planetary surface (e.g. Mars,
 

Fig. 5) , atmospheric continuum (e.g. Venus, Fig. 3). or laboratory black­

body source ( gas cell measurements). Thus, for both absorption and 

emission, detection of the Planck function provides a good measure of 

the practical usefulness of heterodyne detection. The spectral radiance 

(photons/see Hz cmP sr) of a black-body is given by 

2 -ghqtons 22) 
2 hvT2 

x (eh kT1) sec Hz cm sr 

The etendue of heterodyne receivers has been discussed in detail
 

16
 
by Siegman who showed that
 

A23) 
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the so-called antenna theorem. A is the effective aperture and £A
 e A 

is the beam solid angle defined as in usual antenna theory. The
 

principal advantage of using telescopic optics is thus to decrease the
 

field-of-view-, i.e., for viewing spatially small sourrce regions, and
 

heterodyne receivers are usually matched to the diffraction limited
 

field-of-view. According to egn's 22 and 23, the spectral intensity
 

(F) collected in the heterodyne field-of-view is
 

2 photons 24)

hv-iT see Hz
 e -1 

This spectral intensity is shown in Fig. 8 for various black-body source 

temperatures. The limit, S/N = 3, is shown for experimental parameters 

AT = 27, B = 25 MHz, and T = 400 sec and indicates the range of 

temperatures for which heterodyne spectroscopy is sufficiently sensitive 

to measure atmospheric lines at sub-doppler resolutions with reasonable 

integration times. 

Some provision for wavelength tuning is needed in order to do 

spectroseopy-._ContinuQusly-t urveaeble-lsers are mQt desireable-since 

a particular molecular line can then be preselected for study on the 

basis of line strength, spectral purity, and minimum dependence on 

rotational temperature, and the line can be optimally positioned in the 

filter bank. In addition, a tuneable infrared laser and a single channel 

receiver can be used as a tuneable spectrometer directly. This has 

the advantage of reducing sideband overlap problems but the multiplex 

advantage is lost. Grating tuned gas lasers enable selected wavelength 

intervals to be measured and, if care is exercised in choosing the 
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laser transition, remote sensing of some molecules having lines within
 

2 GHz of the laser transition is possible. Semiconductor diode
 

lasers appear to exhibit considerable promise for use as local oscillators,
 

17 18
 
but so far have only been used in two cases for field measurements. ,
 

Their output wavelength can be composition tuned to a particular spectral
 

region and then fine-tuned by current, heat sink temperature, or magnetic
 

field variation.1 9 Representative tuning ranges are illustrated in
 

Fig. 9 (after Ref. 19), however sufficient power for local oscillator use
 

is available only over a much more restricted range.
 

The optical and electronic design characteristics of the Goddard Space
 

Flight Center CO2 laser heterodyne spectrometer14 are illustrated in Fig.
 

10. Two modes of operation are shown - the remote sensing and the
 

laboratory mode. In the remote sensing mode, signal (S) from a telescope
 

is chopped against a reference (R, a calibrated black body, cold source,
 

or sky) with a bow tie mirror chopper. The load chopper is used only
 

for calibration and for atmospheric observation. For astronomical ob­

servations (planets, stars, nebulae) the sky chopper is used to switch
 

the beam 1 arc minute off the source every other half cycle. The
 

chopping frequency is 23 Hz. The signal beam is combined with a
 

matched CO2 laser local oscillator beam at the IR beamsplitter and
 

then both beams are focused onto a HgCdTe photomixer with a telescope­

matching lens. The IF difference frequencies are amplified and fed into
 

the spectral line receiver where integration and synchronous detection
 

take place. For astronomical viewing, visible - IR beamsplitters at
 

the telescope output and at the IR detector permit visual guiding and
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alignment using crossline reticles and eye-pieces. The laboratory
 

mode of operation is utilized for fundamental measurements of line­

center frequencies, line-shape parameters, and line strengths. In
 

this case, the signal beam views a suitable reference while the radia­

tion from a black body source is focussed through a sample gas cell
 

(NH3 in Fig 10), superimposing absorption lines on the continuum.
 

The remaining optical paths and operation of the system are identical
 

to the remote sensing mode and an absorption line can be observed
 

(see Fig 11). Line center frequencies for 11 lines of NH3 (v2 )
 

in close overlap with C02 laser transitions have been measured in this
 
202
 

way (Table III) and used to improve the accuracy of the inversion splitting
 

constants for the v2 = 1 level.2 1 As we-shall see, these accurate line
 

frequencies also enabled a search for Jovian auroral emissions in the
 

v2 -band.
 

Laboratory Absorption Spectroscopy with Tuneable Semi-conductoz
 

Lasers
 

While absolute line strengths, line shapes, and line broadening
 

parameters may be measured with a heterodyne spectrometer, it is often
 

more convenient to use a tuneable laser as an active source for direct
 

absorption experiments. Two principal problems exist in using tuneable
 

lasers for intensity, line shape, and line frequency measurements.
 

The first relates to intensity measurements. The precision with which
 

line intensities may be measured is about 1:104, however the accuracy
 

of quantum mechanical line strengths is limited by the accuracy with which the
 

gas column density is known. The cell length may be known to very
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high precision, in which case the absolute pressure measurement
 

limits the accuracy of absolute experimental line strengths. Relative
 

line strengths can be measured directly to 1:10 without knowledge of the
 

column density, and such precision intensity measurements on fully-resolved
 

lines will be a major advance in infrared spectroscopy. The second
 

problem in direct absorption measurements is that of frequency calibration,
 

for which heterodyning provides a very accurate measure of line frequencies.
 

Accuracies of + 1 MHz are routinely possible, and accuracies of + 100 kz
 

are feasible using Lamb-dip stabilization.
 

A laboratory system utilizing heterodyne frequency calibration is
 

illustrated in Fig. 12. In principle, both the CO2 laser and the diode
 

laser could be separately Lamb-dip stabilized, but in practice the diodes
 

available so far do not have sufficient power to saturate the transitioh
 

in the experimental gas. The tuning range of a single diode laser used
 

in our laboratory is indicated in Fig. 13. Frequency stabilization to
 

.
,5MHz is achieved by temperature control22 and vibration isolation23
 

Spectroscopic studies of C302, CF2 CZ2,NH3, and H2 02 are presently underway
 

-
in our lab. An example of a Q-region (923 cm 1 ) of CF2 C 2 is shown in
 

Fig. 14. The etalon transmission fringes below give a first order calibration
 

good to , 30 MHz (_ 10 3 cm-1). In the past few years, many papers
 

have been published of high resolution spectra using TDL's, but
 

relatively few have deduced molecular constants from the data. A list
 

of reduced spectra is given in Table IV.
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Further Applications to Planetary Spectroscopy 

With this background in the experimental aspects of heterodyne 

spectroscopy, let us examine further applications to planetary atmospheres. 

As sethfdhrir mdasurecmentrs--f-Thl2A1,ricolaraI5AY-tJio lines 

can be carried out at much higher signal-to-noise ratio than self­

emission studies due to the higher source brightness. Observed (FTS) and 

synthetic transmittances of some telluric lines are shown in Fig. 15.
7a 

The model in this case incluaed a line by-line calculation for a multiple
 

layered atmosphere consisting of C02,03, 20,N20, and C 4 . Heterodyne 

measurements of the atmospheric R8 line of CO2 near lO.3nn are shown 

in Fig. 16. 24 The measured line profile was inverted22 using the 

known temperature profile and resulted in an altitude profile for 0O2 

which is uniformly mixed to , 50 kIm at a volume mixing ratio of 

,3 x 10-4 , in good agreement with independent results. The returned 

altitude profile was then used to model the R8 atmospheric line, with
 
24 

the results shown in Fig. 16. Similar modelling has been carried out
 

to determine the accuracy with which vertical profiles of 03 can be
 

retrieved from heterodyne measurements, with the results shown in
 

Fig. 17. An interesting criterion is the minimum
 

detectable mixing ratio for trace constituents in the earth's
 

stratosphere. The minimum detectable column density (optically thin
 

case) is given by
 

- (NEF) HeUr v u
min k B (T ) umin in T2 

where q is the mixing ratio, and UT is the total gas column density
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along the path. Taking B = 5 MHz T = 1000 see, and A = 30, with a 

20 km path length, k 50 for S -1 cm-1 (cm atm)-l , we have for the 
v
 

minimum detectable mixing ratio (qmin)
 

x 102lO 26)
 

This detection limit is compared with the abundances of some stratospheric
 

minor constituents in Fig. 18. The detection limit may be lowered by
 

20 if nearly horizontal viewing paths are used.
 

Turning finally to the planet Jupiter, those molecules known to
 

exist in the Jovian atmosphere are listed in Table II. Because of the
 

low atmospheric temperatures, heterodyne detection of atmospheric
 

thermal lines is difficult. However, Jupiter is known to have extensive
 

radiation belts and shows extensive decametric radio activity, modulated
 

somehow by one of its moons, lo. Precipitating electrons
 

should give rise to non-thermalNH3 auroral emissions if
 

sufficiently energetic (- 1 Mev) electrons
 

penetrate to levels where NH3 exists in copious quantities. A search
 

for non-thermal NH3 emission was rewarded by clear evidence for
 
• . 25
 

detection of auroral emissions (Fig. 19). The evidence is strong:
 

(1) two transitions of NH3 were detected, (2)the excitation temperature
 

is much greater than the kinetic temperature, (3)the emission is
 

seen only from the polar regions, (4) tuning the rf oscillator shifts
 

the line, (5) the lines were detected at the correct doppler shifted
 

frequencies. Evidence for detection of microwave emission of CH4 in
 

coincidence with decametric activity was also recently reported by Fox
 
6
 

and Jennings.2
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Suimary 

Fourier transform spectroscopy and infrared heterodyne spectroscopy
 

are highly complementary tools for remotely probing planetary atmospheres.
 

Because the spectral resolving powers are widely different, the two techniques
 

probe different altitude regions of the atmosphere and together can provide
 

a more complete determination of the physics and chemistry. The use of
 

CO2-based heterodyne spectrometers for sub-doppler planetary spectroscopy has
 

already provided insights into an additional class of physical phenomena.
 

Tuneable infrared local oscillators will enable the full power of heterodyne
 

spectroscopy to be applied to these problems. Tuneable semiconductor 

lasers have made absorption spectroscopy at a spectral resolution of 

104 cm 1a routine laboratory tool.Infrared spectroscopy is thus moving 

into new domains, offering the opportunity for substantially- eliminating 

experimental uncertainty in line positions with a concomitant increase
 

in accuracy of absolute intensities and of molecular constants.
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Table I
 

EFFECTIVE TEMPERATUI,{U
 

Mean Distance Local Sol 9 r 
fro sun Flux 00 Effective Temperature (K) 

Planet (10 km) erg cm2s-1 Albedo Predictedd Observed Ref 

Mercury 57.9 9.08 0 .056a 525e h Ig
 

Venus 108.2 2.59 0.72a 238 24o+8 ad
 

Earth 149.6 1.36 0.30b 254.5 254.3 lb
 

6a  
Mars 227.9 .59 0.1 228 _228f Id
 

Jupiter 778.3 .050 0.45c 105 127+3 id
 

Saturn 1427.o .015 0o6!c 71 85+2 1d
 

Uranus 2869.6 .0037 0.350 68-57g 58+2 le
 

Neptune 4496.6 .0015 0.35c 45 55.5+2.3 If
 

Pluto 5900 .00087 0 .145a 42
 

a) 	Ref la.
 

b) 	Ref l.
 

c) Ref. lb and references cited therein.
 
-2 K 4 -1
= 	 erg cm sec
d) 	Eqn. 3, a 5.67 x 10 5 


e) 	Calculated assuming reradiation from one hemisphere only, because of
 
Mercury's unusually slow rotation and lack of atmosphere. Mercury's
 
orbital eccentricity is very large, leading to commensurate variations in Te*
 

f) 	Mar&'large orbital eccentricity causes a significant variation in effective
 
temperature over an orbital period. The observed temperatures satisfy
 
Te 282EV/2, where R is the Mars-Sun distance in A.U. and 1 A.U. is
 
the mean Earth-Sun distance.
 

g) 	Uranust rotation axis lies nearly in the ecliptic plane, therefore the
 
effective reradiating surface may vary from only one hemisphere to a
 
full sphere as the planet moves 900 along its orbit.
 

h) 	Far infrared observations show general agreement with predictions, but
 
the measured effective temperatures vary greatly since the ground-based
 
observer never sees the full sunlit hemisphere. Infrared measurements
 
on the Mariner 10 spacecraft .showed thesurface temperature to be
 
-OOK at local midnight (Ref lg).
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Table II 

Atmospheric Composition of the Planets
 

Venus 

CO2 (dominant, -1OR%) 
Ref. 2 7 

CO HCt, HF, H20 

Ref. 7aH2 so4 

Mars 

002 95%, N2 2.6%, Ar i.6%, o2 0.15% 

Ref. 3b, 2813002 12C160180, 120171060 


3
14o 

_r Kr, Xe, N14lt15, ,r /jAr Ref. 27 

CO
H20 


03 (uv detection)
 

Upper Limits for:
 

Ref. 312
C,2CH'26C4N"N2N3P3S2os 


H2S NO 

Earth 

N2 78.1%, 02 20.9%, Ar 0.9, 

Ref. 3aC02 '03 ,S02 'H02 CH4 N2 0 2 0 

NH3 CO4 02 HCt,5C=0fl, F12,... 

Jupiter 

H2 (vis), He (inferred) 

N3'CH4 ?Ref. 29 

C2 H2, C2 H6,H 20, lCH 3 , 13CH4 GeH4,CoHCND 3 lPH 
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TABLE III 

Line Center Frequencies of Selected v2 NH3 Transitions
 

NH3 

TRANSITION 


aR(1,2) 


sQ(2,2) 


aQ(2,2) 


sP(4,3) 


sQ(5 ,4) 


aQ(5,3) 


aQ(6,4) 


aQ(6,6) 

sQ(14,13) 


2sQ(l,1) 


2sQ(6,3) 


PREVIOUS RESULTSa 


cm-l 

971.882014±0o0001 

967.73859±0.o0001 


931.3336±O.001 


887.8782±0.005 


966.26931±0.0001 


932.99243±o0.ooo 


932.6343-0o005 


927o3234±o.ooi 


954.5822±0.005 

949.4462±0.005 


938.7282±0.005 


HETERODYNE RESULTSa
 

c-1 

973.88224±0.00007
 

967°73841i±0.00007
 

931.3334210.00012
 

887.87683:0.00012
 

966.26935±0.00012
 

932.99226±o.000 2 

932.63582±0.00030
 

927.32323±0.00012
 

954.57840±0.00034
 

949.44732±0.00007
 

938.72850±0.00015
 

a) See ref 20 and references cited therein
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Table IV
 

MOLECULAR BAND ANALYSES
 

USING TUNBLE DIODE LASERS
 

Molecule Band Frequency Reference
 

" 
C302 V2 + V7 830 cm 30
 

C302 )2,v4 7 1580 
 31
 

ClO V1 850 32
 

CH3F \3 1050 33
 

NH3 V2 1000 34
 

SF6 v3 950 35
 

SO2 vi 150 36
 

UF6 (v3 ),osO4(v3 )C 2 H6(V9, and CH4(v4) - Preliminary Analysis only, 

see ref. 37. 
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LIST OF FIGURES
 

Fig. 1 Representative kinetic temperature profiles for Venus Earth, Mars, 

and Jupiter. 

Fig. 2 

Fig. 3 

Formation of spectral lines in a multi-layered atmosphere. 

7[a
Thermal emission spectrum of Venus after Kunde et al . The 

spectrum was measured with a Fourier transform spectrometer 
-1 -i 

at 0.2 cm resolution. A broad absorption near 900 cm 

is attributed to H2so4 haze and all lines are due to 

various bands of CO2 . A computed synthetic spectrum is shown 

Fig. 4 

displaced by 20 OK for clarity. The line marked R8 is shown in 
Fig. 4 at higher resolution. 
Intensity profile of the Venusian R8 line of CO2 in the 10.4im 

band. The spectrum was measured with an infrared heterodyne 

spectrometer at 0.00016 cm -1 resolution. The brightness 

temperature at line center is , 310 OK and the symmetric 

Fig. 5 

structure near line center is thought to originate in two 

physically distant processes as discussed in the text. 

Average of 1747 FTS spectra of Mars taken by the IRIS experi­

ment on the Mariner 9 Mars orbiting spacecraft (Hanel et alb). 

Fig. 6 

The synthetic spectrum is displaced for clarity. 

Infrared heterodyne measurement of the P(14) line of CO2 in the 

10.4jim band (after Betz et al8). The solid curve is the 

synthetic profile expected for an atmosphere having 4.8 mbar 

surface pressure and a 2 °K/Ew lapse rate. The non-thermal 

peak at line center is attributed to solar pumping in the near 

infrared8 . 
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Fig. 7 The relation between the source and intermediate frequency 

spectra in heterodyne detection. Hypothetical absorption 

or emission lines are shown superimposed on a thermal continuum 

with greatly exaggerated slope. At these resolving powers 

(X/AX 107 ) the continuum has essentially constant intensity. 

Signals in The upper and lower sideband are folded with respect 

to the local oscillator faequency and their sum is detected. 

The width of an individual filter is indicated by B. 

Fig. 8 The spectral intensities of black-body sources which fill the 

etendue (AD- X2) of a heterodyne receiver are shown as a 

function of wavelength. The intensities shown include both 

modes of polarization. The sensitivity limit for S/N = 3 

is shown for a present generation C2 system (9-11gm). Diode 

laser local oscillators should enable extension to the entire 

wavelength range shown here. 

Fig. 9 Compositions of various semiconductor diode lasers and the 

wavelength ranges over which lasing has been achieved (solid 

bars, after Melngailis and Mooradian1 9 ). Dashed bars indicate 

the expected extension of lasing action. 

Fig. 10 Optical and electronic block diagram of the GSFC CO2 laser 

heterodyne spectrometer. The reference black body provides 

intensity calibration and a bright background source for 

measuring absorption lines in gas cells. Either of two choppers 

is used, depending on the observational mode. Principles of 

operation are discussed inthe text. 
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Fig. 11 An example of a fully resolved molecular line profile
 

(NH3 SQ(5,4) measured with the system shown in Fig. 10.
 

The line is measured on the left at 5 MHz resolution and
 

on the right at 50 MIz resolution. Calibration is achieved
 

by dividing the measured spectrum by one taken with an empty
 

gas cell.
 

Fig. 12 Schematic of a tuneable semiconductor diode laser absorption
 

spectrometer. The diode laser is cooled by a closed-cycle
 

helium refrigerator, and a single spectral mode is selected
 

by a grating. Etalon fringes are superimposed for rough frequeny
 

calibration, and precise frequency calibration is achieved by
 

heterodyning against a lamb-dip stabilized CO2 laser.
 

Fig. 13 	 The tuning range of one semiconductor laser in frequency­

current-temperature space. The extreme versatility of this
 

widely tuneable device is indicated by the various gases having
 

fundamental bands within the tuning range. 

Fig. 14 	An example of semi-conductor laser absorption spectra measured
 

with the system shown in Fig. /2. The etalon fringes are
 

shown in the lowest trace, the absorption spectrum of CF2C42
 

in the middle trace, and the incident laser intensity in the
 

top trace (after Jennings, private communication).
 

Fig. 15 Solar absorption spectrum of the terrestrial atmosphere
 

measured with an FTS instrument (Kunde et al7a). The synthetic
 

spectrum is displaced for clarity.
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Fig. 16 Intensity profile of a terrestrial line (Rd of C0%) measured
 

with the heterodyne spectrometer shown in Fig. 10. The
 

profile reveals pressure broadened wings and a high attitude
 

doppler core. Inversion of the observed line shape allowed
 

extraction of the volume mixing ratio for 02 up to
 

50 Km .
 

Fig. 17 Results of synthetic profile analysis for retrieval of
 

altitude profiles of 03 A line profile was calculated
 

from the assumed altitude profile (solid line), and was then
 

inverted to recover the altitude profile shown by the broken
 
21j
 

line. The initial guess used- in the inversion process is
 

indicated.
 

Fig. 18 Detection limit for terrestrial atmospheric species by heterodyne
 

spectroscopy in the solar absorption mode, compared
 

with modelled volume mixing ratio profiles for some important trace
 

species. Assumptions are given in the text. -Frt-Y i iiprov-emi-f-­

20 in sensitivity is gained by observing at nearly horizontal paths
 

Fig. 19 Detection of non-thermal NH3 aR(l,l) emission from the
 

north polar region of Jupiter.2 3 The expected line position
 

after correcting for planetary doppler shifts is indicated
 

by the arrow. The rf local oscillator was tuned between the
 

two spectra by 100 MHz, and the NH3 line shifted accordingly.
 

The two filter banks did not overlap at this time.
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Fig. 15. 
 Schematic of~laboratory tuneable diode laser absorption spectrometer
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