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ABSTRACT

For Courant numbers lérger thén.one and cell Reynolds num-
bers larger than two, oscillations and in son: cases instabili-
ties are typically found with implicit numerical solutions of
the fluid dynamics equations. This behavior has sometimes been
associated with the loss of diagonal dominance of the coeffi-
cient matrix. It is shown here that these problems can in fact
be related to the choice of the spétial differences, with the
resulting instability related to aliasing or non-~linear interac-
tion. Appropriate "filtering" can reduce the intensity of these
oscillations and in some cases possibly eliminate the instability.
These.filtering procedures are eguivalent to a weighted average
of conservation and non-conservation differencing. The entire
spectrum of filtered equations retaihs a tﬁree-point character
as well as Second—order spatial accuracy. Burgers equation has'
been considered as a model. Several filters are examined in de-
tail, and smooth solutions have been abtained for éxtremely large

cell Reynolds numbers.
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1. Introduction

Three-point finité—difference discretization has generally
been used to approximate the partial differential equations of
fluid mechaniecs. Explicit formulations are typically restricted
bylthe "linear" stébility conditions

c = uAt/Ax<l and R, = uAx/v<2 ' , (1)
where c is the Courant number; R, is' the cell Reynolds number;
u is a reference velocity; At, Ax are the temporal and spatial
increments, respectively.

Implicit central difference formulations designated by
(ICD) are linearly unconditionally stable; however, the diagonal
doﬁinance of the tridiagonal inversion matrix is assured only
if conditions (1) are satisfied. If conditions (1) are violated,

i,e., there is a loss of diagonal dominance, error growth is

(1)

possible and spurious oscillations are observed. Recent-

ly a difference approximation, denoted by (KR), that insures

linear stability and still maintains diagonal dominance, even

(2)

when conditions (1) have been violated has been prbposed. For

linear systems, solutions have been obtained for c>>1 and Rc>>2.'
Unfortunately, it has been shown that the KR diagonally dominant
formulation also exhibits instabilities for the non-linear Bur-

gers egquation, when conditions (1) are violated; moreover, for

the same conditions, stable solutions are sometimes obtained with-

the non-diagonally dominant central differences.(3) Therefore,

o
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it may be concluded that non-linear inséabiiigy (aliasigg) and not

) . ' X . . T :
3N diagonal dominance is the primary reason for error -growth when
1 o .
17 conditions (1) are violated. This may explain the difficulties
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4
for c>>1 that have been encountered with implicit Navier-Stckes

finite-difference solvérs.(B) Since, lack of diagonal dominance

(1)

leads to spurious oscillations , for non-linear systems this

enhances the aliasing effect.

"(4)

Previous studies on non-linear instability by Phillips,

(6)

Arakawa.(s) Piacsek and Williams and others have been pre-
sented for explicit schemes; these satisfy the CFL condition C<l.
However, the lack of conservation of certain guadratic guantities
over the whole domain still leads to an aliasing error growth.

A smoothing procedure, or alternatively, proper spatial differ-
encing (filtering) can help to eliminate this instability. In
the past, first-order accurate upwind differencing has been used
extensively, as it has sufficient numerical viscdsity to suppress
these instabilities., This corresponds to a severe filter. othér
schemes, most often used for hyperbolic systems, e.g., the MacCor-
mack scheme and variants of the Lax~-Wendroff method, QO not ap-
pear to encounter this problem. This is, perhaps, due to the
éresence of‘increaéed amounts of numerical viscosity, either in-
herent or added artificially to the finite difference system.

In this paper, the Burgers equation is re-evaluated for both
the ICD and KR techniques. It is sinwn that (é) for the linear’
Burger;,equation, with the procédﬁre of reference (2), there is no
instability even if conditions (1} are grossly violated. This
confirms the linear analysis of reference (2) and the earlier re-
sults of reference (3). Error grgwth, with the ICD technique,
due to the loss of diagonalﬁdominance{ is possible but it is shown

that this can be avoided in most cases for the linear Burgers
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equation; (b) for the non-linear Burgers equation, it is shown
that instabilities can appear with the ICD and KR formulations,
even 1f the conditions (1) are not simuitanegusly viclated.

This would again indicate that diagonal dominance is not respon-
sible for the resulting error growth; (c) for the non-linear
Burgers equation, if smoothing or filtering of the non-linear
term is applied with the method of refefence (2), there is ap-
parently n6 instability even if conditions’ (1) are violated; in
anition, spurious oscillations are considerably diminished.

The magnitude of the oscillations associated with the lack of
diagonal dominance is closely related to the resulting non-linear
instability. When thesé high frequency oscillations are filtered,

even maintaining second-order accuracy, the aliasing effect is re-

duced., With a filtered ICD formulation, aliasing can also be con-
trolled; however, the shock may convect to the boundary of the
domain., This is true regardless of the 5oundary location. It
will be shown that this solution with the shock located at the
boundary is in fact an alternate solution of the ICD difference
equations, This non-uniqueness is due to the }ack of conservation

N
of ¥ u. over the domain, and occurs only when the cell Reynolds

j=1

nutibexr Rc = Eé§>2

Finally, the linear as well as n&p-linear stability of the
ICD difference equations is evaluated around a given initial state.
rhis analysis confirms that filtering procedures reduce the magni-
tude of oscillations and have a positive influence on the non-linear
instability. Smoothing procedures of the type utilized by Shuman(7)

and investigated in more detail by Shapiro(a) are not considered in

the present paper. ) ORIGINAL PAGE IS
' ' ) OF POOR QUALITY
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2. Analeié

Burgers equation describing a fixed shock wave is given as:

XX

u, + (u—-%)ux = yu . | | (2}
The initial and boundary conditions are taken to be:

u(x,0) =1 for -5=x<0
u(0,0) = .5 - : : (3a)
u(x,0) =0 for 0<xs=5
and
| uix,t) = 1 for x =-5
(3b)
ui{x,t) =0 for x=5
ghe exact solution is given to a good approximation in the steady state
” u = % [L-tanh %; . . .

All the solutions discussed in the present paper are obtained with
b1l equally spaced grid points; A&x = 0.2. Convergence was assumed
when differences in the values of u between 100 iterations were
saich that |uk+loo-uk!<10_6; k denotes the iteration number. Many
calculations were also run with more severe convergence conditions.
The results were unchanged.

Numerous calculations of the lineaxr version of equation (2),
where the coefficient of the convective term is treated as a con-
stant, were obtained with both the imblicit central differencing

(ICD) and the Khosla-Rubin (KR) scheme. The restrictions on cell

Réynolds number and Courant number, necessary for diagonal domi-
nance, were grossly violated. 1In every case a converged solution,
for both schemes, was obtained. For the same conditions, with the
'non—linear Burgers equation, 10 iterations were performed at each

time step. For the KR scheme the calculations diverged. The solu~

v
S
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8'and then

.l tions approach a ginal converged soluéiqn to within 10~
exhibit a rapid divergence, For cell Reynolds numbers greater
than two the solutions obtained with c<l or for central differ- .
ences in some cases with c>1, exhibit.the‘expected 6scillatory
behavio?. As the steady state is approached, aliasing effects
begin to accumulate, and in most cases for c>1,_Rc>2, and even for
some where c<i, Rc>2, the solutions diverge for large times, 1In
some of these cases, where R_ is slightly larger than 2, a solu~
tion with central differencing can sometimes be obtained, (e.g.,
v=1/24, or Rc=2.4); the ICD scheme has a somewhat larger transient
numerical viscosity than does the KR formulation., The above des-
cription of linear convergence and non-linear divergencg, with
equivalent values of ¢ and R, indicates that it is probably not
the loss of diagonal dominance but the aliasing effect, which is
enhanced by spurious oscillations, that is the reason for exror
growth. '

In the following sections, we wiil show that the source of the

aliasing error iies in the form of spatial discretization. ¥For
conventional non-conservation form, non-linear instability arises

with cell Reynolds numbers greater than two; this result is essen~

tially independent of the value of the Courant number. For explicit

schemes, this non-linear instability was first observed by Phil-

1ipé.F4) One of the remedies he recommended to suppress such error
growth was the use of smoothing of the shoft wave length components,
Shuman devised a smoothing operator that is quite often used in

-numerical weather prediction calculations. Alternatively, modified

1 ' spatial differencing can suppress the high frequency modes. The fil-

tering procedure is applied-here. Three different filters, including

o

: | . -  ORIGINAL PAGE IS
: 5 OF POOR QUALITY

AR

S — . . et P R SR S Sy e - A SR Rkttt



S IINRC T s BT

one due to Shuman will be investigated in conjunction with the ICD
and KR schemes., The aliasing error growth can then be eliminated
so that a steady converged solution is obtained. First-order
temporal and second-order spatial accuracy of both the imblicit

schemes under investigation are retained with all filters.

2.1 Smoothing and Filtering

In the present section, we will discuss a series of filters
that can be used to suppress the aliasing error growth. Only
three-point second-order accurate filters are considered. These

are given by
: _ Ej+l+uj~1+kuj (a)
. 27k |

It can be shown that these filters (4) correspond to a weighted
average of conservation and non-conservation difference equations,

The filters (4) are second-order accurate, with a truncation error

szuxx/(2+k)' Several specific cases of interest are:
i) k = 0 is conservation form or a trapezoidal filter;
ii) k = «» is non-conservation form (no filter):
iii) k = 2 is the Shuman filter:
iv) %k = -1 is a special filter to be discussed later.

In general, k can take on any value greater than negative two. How-
ever, the optimum choice is governed by the minimum amount of numexr-
ical viscosity reguired to suppress the aliasing error growth. Thé
walde k = -1 is significant, as will be shown in a later section;

for large flow Reynolds nunber with k = -1 the effective cell Rey-

S g T g T



' nolds number is always less than or equal to two.
It must be emphaslzed that there is no general way of arriving

" at an optimum value of k for any given problem. This can only be
obtained by numerical experimentation and some physical insight in- ..
to the flow characteristics. In addition, the degree of filter~
ing will depend upon the choice of the mesh. For example, for a

' flat plate boundary layer governed by the Blasius equation, the
non~conservation form of the equations does not lead to stable
solutions for grid spacings larger than 2 [see Appendix]. Also,
for non-uniform grids having large grid spacings in the outer por-

tion of the boundary layer the solutions exhibit oscillations and

are, in general, rather poor. The use of filtering eliminates
many of these problems. With a trapezoidal filter, converged
solutions can be obtained with a minimum of grid points within the
boundary layer. For non-uniform grids the oscillatlions in the

regions of large mesh size are also reduced or eliminated; however,

the second-order numerical viscosity introduced by the filter af-
fects the accuracy of the surface shear stress. This can be re-
duced by taking a smaller grid near the wall. For moderate uniform
grids the artificial viscosiéy always leads to a less accurate shear
stress as compared with the non-conservation solution. Thefefore_
for boundary layers, it would appear that different filters (k val-
ues) should be used near and fér from the surface.,

Once again, it should be stressed that these filters are not
applied to smooth the solution after a given time step, but are used
to recast the nonlinear coefficient of the u, term in equation (2).
It is in this respect that'the present investigation is different

" from the work of éhuman(7), and simiiar to that of the Arakawa(s)




and William(e) schemes. In what follows, we will examine certain

of these filters for two finite-difference schemes, i,e., ICD and

KR,

2.1.1 Central Differencing (Icﬁ)

(1)

Implicit central differencing as is well-known is uncon-

ditionally stable. The general form of the difference equations

‘with the filter (4) is as follows:

, n+l n+l n+l
n+l _ n _ At [(uj+l +ouyy ks )Hl._](unﬂ. n+1

ugt o= ug - oh TR 711~ YY)
At 1 1 1 ()
\*) n+ n-+ n+

In earlier studies, the smoothing character of the conservation
difference equations {k = 0) has been demonstrated by many inves-
tigators (1.3} and will not be repeéted here, The resulting oscil-
lations or instability for R >2 with non~conservation form
(k = o or no filter) are also well-documented.

Numeriéal solutions of (5) have been obtained for k = =, 0,
é, see Table l. A typical example is given by the conditions
At = 6.0 and v = 1/96, This corresponds to a COuraﬁt number of
15 and a cell Reynolds number of 9.6. The non-conservation equa-
tions do not lead to any solution. Although a converged solution
is obtained for k = O,Zy the shock wave is found to convect to the
upstream boundary for these conditions. It will be shown that the
finite difference equations «5)with kX = O), in fact, has two solu-
tions and that one is consistent with this convective behavior.
Since the filter ﬁ4)is simply a linear combination of conservation

and non-conservation equations, we will investigate the possible non-

_ uniqueness for these forms of the governing equation (5). These are,

ORIGINAL PAGE I8
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2 2

s du- u. -1 . -U..

A, J+r 9=l G+l G-l 1 o1 .

; 3t + 5 5 R (uj+l 2uj+uj_l) '

i (conservation) (6a)
A and

-_'; L]

3 du, '

< _._J_ - - = n::"-. -

] go t (U (Mg muy ) =R (g -2ugbug )

| : .

¢ (non~consexrvation) (6b)

s

D o

where t is redefined as t/248% and R = Lx The governing equation

P N A T R TR T T

& 24"
! . ‘ L + o y .
(2) satisfies the conservation law §€ ([hdx) = 0. The discrete

-

forms of Burgers equation (6a) and (6b) should also satisfy this

oy s

copservation property. Summing over all grid points, we find

N u,+ =1

a_ / = _ 2 N-1 7 2

fe Gy = - P e

(conservation)
and
N
g,.._ i = ;]---" 2"’ .
ge (2 U5 = o (5o R Amepmugy) ’

-----

(non~-conservation)

" -

It can be seen that unless the symmetry condition is strictly en-

forced, i.e, u2+uN_l=1, the ﬁossihility of a "spurious" unsymmetric

golution, for which ugruN_lvz/R = 0, gxists for the conservation
form (6a). The‘solutioﬁ for which the wave convects to the boundary,
in fact, satisfies this latter condition. It has been found, on the
other hand, that with a small At (Courant number <1) the symmetric '
solution is usually recovered. In the next section, it will be
shown that for R=2 the symmepric solution is unigue. For R>2, the

non-symmetric solution also exists and is also stable. For non-

_L‘ - e - . c e e e e g TN L e T - L SR ok . Y
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conservation form (6b), only the symmetric solution is possible.

2.1:2"ﬁR Scheme

This scheme, as introduced in Reference 2, is diagonally
dominant and unconditionally stable for all R and retains second-
order spatial and temporal accuracy of the convective derivative.

/

It is given by

n+tl_n At , n+l n-i-l n+l At okl n
. = - - S— — — m— - —!" »
ugttsug - g (g T=%) (u 1) - oYy %) Dy .
vAt n+l
+ —5 D, ’ (73)
Ax?
and , .
ntl_n _ At , n+l nt+l o+l ﬂn+1
uj "uj A}C (uj 2) (uj+l ) -+ 2Ax ( 55) D
(7b)
+ vA; Dq+l ,
axc 4 '
for uj<% .
n n o

where Dj = uj+l . 3 -1

For the KR formulation, the fllters are only used to modify the
,non ~-linear coefficient of D:J as shown in (7); the implicit portlon
of the convectlve term is always given by an upwind dlfferenc1ng
form. The resulting equations are second-order accurate in Ax.
Unlike the ICD results, for v = %E and At = 6.0, both the
trapezoidal and Shuman filters do lead to converged solutions des-
cribing a thin symmetfic shock. The results are shown in table 1.
although the convergence condition is satisfied, there is some indi-
cation of a creeping motion of the shock wave. After 3000 time
steps this movement was still less than the prescribed tolerance.

The infinite time behavior was not considered. For explicit schemes,

this problem is virtually undetectable, as the Courant numbers are

-
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limited by the CFL stability condition. The allowable At is much

smaller than that considered here and therefore examination of

. the large time history would require an extraordinary number of

]

time steps. _ ' .
2.2 Non~linear and Linear Stability

In the present section, we examine the staﬁility o% the
ICD finite difference equivalent of equation (2) about a given
initial state. Since the soufce‘of aliasing error lies in the
spatial discretization, Ehe problem will be examined for a semi-
discrete system. The underlying idea is that if the spatial dif-
ferencing leads to a temporal amplification, then there should
not be any time discretization that can eliminate this instabil-
ity. For example, it will be shown, though not rigorously, that
for non~conservative form and central differencing, the solution
of equation (2) grows exponentially if the cell Reynolds number
is greater than two. The stability will be examined for éentral—
differencing for both non-conservative énd conservative forms..
The effects of other types of filters will also be indicated.

2.2.1 Non~Conservation Form

With central differencing, equation (2) becomes

= L - . |
§417%5-1) = R (B 29ytyn) 5 (8)

T is a non-dimensional time. As it is difficult to find a closed

du,
—l s
g + (pj 3). (u

form solution cf equation (8) for arbitrary 5j, only a few simple
cases will be examined for.smgll numbers of grid points N.

gi!'N = 3: Since there are only three points, and from the boundary
conditions we require u, = l‘and u, = 0, then tﬁe equation for u,

becomes

du2 .
gy T Wy - ) =

A

(1-2u,) . | (9

11
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The solution of equation (9) is

2 2
(2 -1)t (& -1)t
pzmuz(O)eR +!s(1-eR_ y (10)

where u2(0) is the initial value of uz(t). Clearly the solution
diverges for R»2. However, if u2(0) = %, as in the present case,
Equation (10) leads to u, =% for all t. However, in this case,

. there is a éancellation‘of two growing terms, and therefore the
numerical solution can still be amplified by roundoff errors.
This is seen to be the‘case for forward time marching in (9). IEf

we use an explicit method, we obtain

n+l_n 2At

‘ At .2
u2 —u2(1+At ~ R + 5 (R -1) ) . (Ll)

Clearly any small error will grow if the coefficient of ug is
greater than unity. Thus, stability is possible only if R<2.
For an implicit scheme with the convective coefficient (uj-%)

treated expiicitly, then (9) becomes,

N+l 2 -1) 1+At  n
u = + u . (12)
2 " el 1425E 12 |

Once again, the Neuman stability condition requires R<2 for a
stable solution. If, we treat (uz—%) implicitly, the solution
converges for almost all At and R. However, such a scheme is

inconsistent with the differential equation (9).

jii) N = 5: In this case, uy = 1 and Uy = 0.
du
2 1 ]
dt + (uz";ﬁ) (u3-1) = 'ﬁ' (u3"2u2+1) ’
du3 ' i
T+ (uB—%) (u4—u2).== ﬁ-(u4~2u3+u2) ' (13)
du, '
4 1
gT U3 (W9 = § (ugm2uy)

12 . -

e
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. 4
A closed form solution of equation (13) is possible, if we assume

the shock to be symmetric about u3=%. Thus, we get

u2+u4 = 1 and
du '
3
et (B k) uy == -k, . (14a)
du, i
1 .
For G oy =ggeE ‘ (24p)

Integration of Equation (l4a) gives

2 3 2

. @y - - -me

u, =uy(0) e X 7w Br e R ) . (15)
e .

Once again the solution grows with time, unless R<4. From the
two cases considered, it appears that if the mid-point symmetry is

: - not fixed the solution will diverge for R»2 while a converged

 symmetric solution may be possible for 2<R<4 if the mid-point
value'u3=% is fixed. The non-conservative calculations of Refer-
ence (3) confirm the validity of this iﬁequality for the cases,
considered,

2.2.2 Conservation Form

A similar procedure can be carried out for the conservative

difference form of Burgers eguation.

(i) N = 3: 1In this basg, the governing system reduces to

du, o,

ar tr%2 7R

Integration gives

e

u (1) =% + (u, (0)-%) exp (~27/R) . (16a)
Significantly, this éystém leads to a steady éonverged state with

uz(T) = % for all R.

13 ORIGINAL PAGE IS
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"N = 5: The governing equations are

du u3(u3~l)

2 = & (u =
ar + 5 = R (u3 2u2+1) f
du. u,+u,~1
3 4" 2 — _ 1 -
‘qr‘+ (u4~u2) 3 = R (u4 2u3+u2) '
du4 ) u3(u3—l) _1 (.20
dr 2 R 3 4 . ’

Two steady-state solutions are possible,
u,+u,=l and u,-~u, = 2/R .
The symmetric solution characterized by u2+u4=l is stable for all R.

The non-symmetric solution is given by:

- . 2.1
2
1+2u3+4/R :
u, = yy ' (16b)
l+2u3—4/R
u —

4= T : .

This solution exists only for R>2.5. In order to investigate the
stability properties, we perturb about (16b) and lodck for the solu-
‘tibns of the type, exp (Ar). This leads to the following dispersion

relatiocn

_ -2 o0 .2
Ve «/f'i- (203-1)%/4
2

Since A always has a negative real part, the solution (16b), in
the steady state, is stable for R22.5. It should be pointed out
that the solution with enforced symmetry (i.e., ug=%) is stable for
all cell Reynolds numbers. This has been numerically tested for
5

v =10~ or R=105. The resulting solution has oscillations but is

14 _ .

U U U i e . e e



stable. These oscillations can be eliminated or reduced in
amplitude by applying the filters of the type discussed pre-
viously.

2.2, 3 Optimal Filtering

We recall that the different filters are defined by

~ +ku,,
J J+124% = - ¢ (17)

for k = 0, we recover the trapezoidal filter or conservation

!.'2

form; for k = ®, non-conservation form is recovered; kK = 2 cor=-
responds to the Shuman filter and k = -1 is a noteworthy Ease.
The finite-difference form of Burgers equation (2) with the
filter (17) is a weighted average of non-conservation and con-
servation equations and is given as

du k
2 e 0 Bl o = L -
ar * I 24k - %] (u3+1 uj—l)_ R [ﬁj+l 2u3+u3 lj

(18)

We shall examine the case where N = 3 in order to obtain an opti-

-

mum k value for (18). For N = 3, (18) becomes

du,, l+ku,
g - (Gme - W =R (-2
so that _ |
u, () =% + [u,(0) -%] exp (2+k %)r - (19)

Por large R, k>0 has a destabilizing 'influence and k=<0 has a

stabilizing effect, We recall that the filtering introduces
Axu
an artificial viscosity ~ 573?%)’ when -2<k<0, For k<2, the

sign of this viscosity changes and consequently the filter is no
longer useful. From the previous analysis of non-~conservation or
conservation solutions, it is known that oscillatory behavior oc-

curs when R>2., These oscillations can be eliminated by reducing

15



the grid size and therefore the loecal value of R. The filter (17)
can also accomplish this without grid reduction., For large
_R(>>2) a minimum amount of filtering is requlred in order to ob-
tain smooth solutions. The degree of fllterlng, as characterlzed
by the value of k, should be such that the changes in uj are con-
fined to only one grid point. This amounts to incorporating arti-
ficial viscosity such that the cell Reynolds number based on the
"effective viscosity” does not exceed 2; the optimum choice for k
can be seen by comparing (19) with (l6a) such that Reff = 2 or

1 _ Lk
R~ 2+k

. . . ' . {9
This relation has also been obtained by Cheng anc Shubln( ) from
different considerations. Results for several filters are pre-
sented in the following section.

3. Results

Numerical solutions using various filters were obtained for a
variety of Courant and cell Reynolds numbers. These do confirm
the stability analysis of the previous section. For example, for
large cell Reynolds nunber and Courant number, a converged‘solution
for conservation form is cobtained by enforcing the symmetry condi-
tion. This solution exhibits oscillations, characteristic of large
cell Reynolds number, flows. Without gnforced symmetry, the shock
may convect to fhe bounaary. This corresponds to the second solu-
tion discussed previously. In the cases considered here, symmetric
solutions are usually found for Courant numbers less than one, In
these cases a completely symmetric solution is not achieved. The
shock continﬁes to move with an extremely small velocity. However,

within a prescribed tolerance, the solution can be considered to be

- ORIGINAL PAGE IS
16 OF POOR QUALITY]
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by -ls=k=l, were carried out by Taverna and Busch.

converged. Calculations for a variety of cell Reyndlds numbers
ranging from 2.4 to 50,000 and various filters characterized
(10) For a
given cell Reynolds numbexr, an optimum f£iltex was definea by

a mimimum error condition. Velocity (u) profiles with and with-

out filters are shown on figure (l). The optimum values as a

function of R (figure (2)) are also reproduqed from reference

(10) . It should be noted that with an appropriate filter, oscil-
lations characteristic’'of large cell Reynolds numbers can be
eliminated; formally, second order accuracy is sti 1l maintained.

For R-=, we note that k optimum -~ -1l.

4, Summary

1. Diagonal dominance problems associated with ICD methods
can be eliminated by the KR scheme. Calculations with a linear
Burgers equation confirm the analysis of reference 2.

2. Stability problems arising in calculations with locally

large cell Reynolds numbers are found only for non-linear equations

and are due to the form of spatial differencing of the convective

terms. This instability and associated oscillations can be elimin-

ated by appropriate filtering,

3. A non-unigueness of the conservation form of the differ-

ence equations is described. The second (non-physical) solution is

encountered numerically only for large Courant numbers and R>2.

4. Finally the results of 1-~3 have been confirmed by numerical

experimentation as well as some approximate stability analysis.
5. The present analysis has been confined to the stationary

solution of Burgers equation, although some results for boundary

 layers are given in the Appendix. For more general eguations, the
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nature of the optimum filter may vary from that obtained here.
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Appendix

Blasius Egquation

The flat plate boundary layer in.similarity variables is

governed by

uﬂﬂ + fun‘= 0
(non-conservation form)

fﬂ =1
or :
uﬂn-+ (fu).n -u2 = 0 {conservation form)
The finite-difference form using weighted averaging with h = AT
is given by
’ 2
s =2t +k £, kL. +E, -1,
Uiy 2u3+u3—l . f§+1 k iy _ -1 o u -0
h2 2(1+k)h g+1 2(L+k)L =1 14k
(a.1)

clearly kX = 0 and k¥ = = lead to the conservation and non-conserva-
tion forms. In order to examine the effect of filtering, the
truncation error of equation (A.l) is investigated., Taylor series

expansion about the jth grid point lead to

. -2h2 ' 2 e " iv
(1+ g?lﬁk‘)’“m'* £+ W8y u =+ 1 (aa2)

T(T+k) 1 6
The second-order accuracy of the numerical scheme is retained. The
additional‘truncation error arising out of weighted averaging is
shown as coefficients of the convectiye as well as diffusive terms,
It may Be seen that the convective and diffusive médification can
be made small near the surface by taking a fine grid., However, near
the edge of the boundary laver, where large h values can lead to a
deterioration of the solution resulting in oscillations, the numeri-
cal viécoéity of the filter can be quite'large apd.thus the oscilla-~

tions are suppressed. The effect of filtering is therefore to in~

19
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corporate daﬁping where it is needed the most. The filtering ef-
fect is largest for -1<k<0 for these equations. In the present
-context of filtering, conservation form provides‘a significant
amount of artificial viscosity., so that solutions with large mesh
sizes are possible, For example, a converged solution with h = 6

(the boundary layer thickness is about 3.5) can be obtained; non-

_conservatioh solutions are no longer possible when h>»2. This
artificial viscosity provides ﬁ thickening of the boundary-~layer
and consequently a reduction of the wall shear. Smaller grids
near the wall surface are required to eliminate this accuracy
problem, - Optimally, it would appear that non-conservation form
should be used near the surface and conservation form in the outer
portion of the boundary layer. This corresponds to a variable

filter.
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