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ABSTRACT

For Courant numbers larger than one and cell Reynolds num-

bers larger than two, oscillations and in soniJ cases instabili-

ties are typically found with implicit numerical solutions of

the fluid dynamics equations. This behavior has sometimes been

associated with the loss of diagonal dominance of the coeffi-

cient matrix. It is shown here that these problems can in fact

be related to the choice of the spatial differences, with the

resulting instability related to aliasing or non-linear interac-

tion. Appropriate "filtering" can reduce the intensity of these

oscillations and in some cases possibly eliminate the'instability.

These filtering procedures are equivalent to a weighted average

of conservation and non-conservation differencing. The entire

spectrum of filtered equations retains a three-point character

as well as second-order spatial accuracy. Burgers equation has

been considered as a model. Several filters are examined in de-

tail, and smooth solutions have been obtained for extremely large

cell Reynolds numbers.
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1. Introduction

Three-point finite-difference discretization has generally

been used to approximate the partial differential equations of

fluid mechanics. Explicit formulations are typically restricted

by the "linear" stability conditions

c = u6t/Axsl and Rc = uAx/vs2	 ,	 (1)

where c is the courant number; R c is ' the cell Reynolds number;

u is a reference velocity; At, Ax are the temporal and spatial

_	 increments, respectively.

Implicit central difference formulations designated by

(ICD) are linearly unconditionally stable; however, the diagonal

dominance of the tridiagonal inversion matrix is assured only

if conditions (1) are satisfied. If conditions (1) are violated,

J i.e., there is a loss of diagonal dominance, error growth is

possible and spurious oscillations are observed. (1) Recent-

ly a difference approximation, denoted by (KR), that insures

linear stability and still maintains diagonal dominance, even

when conditions (1) have been violated has been proposed. (2) For

linear systems, solutions have been obtained for c»1 and R   »2.

Unfortunately, it has been shown that the KR diagonally dominant

formulation also exhibits instabilities for the non-linear Bur-

gers equation, when conditions (1) are violated; moreover,.for

the same conditions, stable solutions are sometimes obtained with

the non-diagonally dominant central differences. (3) Therefore,

it may be concluded that non-linear instability (aliasing) and not

diagonal dominance is the primary reason for error growth when

conditions (1) are violated. This may explain the difficulties

ii	 1



for c>>1 that have been encountered with implicit Navier-Stokes

finite-difference solvers. (3) since, lack of diagonal dominance

leads to spurious oscillations (l) , for non-linear systems this

enhances the ali.asing effect.

Previous studies on non-linear instability by Phillips, (4)

Arakawa, (5) Piacsek and Williams (6) and others have been pre-

sented for explicit schemes; these, satisfy the CFL condition C.Q..

However, the lack of conservation of certain quadratic quantities

over the whole domain still leads to an aliasing error growth.

A smoothing procedure, or alternatively, proper spatial differ-

encing (filtering) can help to eliminate this instability. In

the past, first-order accurate upwind differencing has been used

extensively, as it has sufficient numerical viscosity to suppress

these instabilities. This corresponds to a severe filter. Other

schemes, most often used for hyperbolic systems, e.g., the MacCor-

mack scheme and variants of the Lax-Wendroff method, do not ap-

pear to encounter this problem. This is, perhaps, due to the

presence of , increased amounts of numerical viscosity, either in-

herent or added artificially to the finite.difference system.

In this paper, the Burgers equation is re-evaluated for both

the ICD and KR techniques. It is sown that (a) for the linear'

Burgers equation, with the procedure of reference (2), there is no

instability even if conditions (1) are grossly violated. This

confirms the linear analysis of reference (2) and the earlier re-

sults of reference (3). Error growth, with the ICD technique,

due to the loss of diagonal dominance, is possible , but it is shown

that this can be avoided in most cases for the linear Burgers

`I 1 1 	 .2



equation; (b) for the non-linear Burgers equation, it is shown

that instabilities can appear with the I ® and KR formulations,

even if the conditions (1) are not simultaneously violated.

This would again indicate that diagonal dominance is not respon-

sible for the resulting error growth; (c) for the non-linear

Burgers equation, if smoothing or filtering of the non-linear

term is applied with the method of reference (2) ' , there is ap-

parently no instability even if conditions'(1) are violated; in

addition, spurious oscillations are considerably diminished.

The magnitude of the oscillations associated with the lack of

diagonal dominance is closely related to the resulting non-linear

instability. When these high frequency oscillations are filtered,

even maintaining second-order accuracy, the aliasing effect is re-

duced. With a filtered ICD formulation, aliasing can also be con-

trolled; however, the shock may convect to the boundary of the

domain. This is true regardless of the boundary location. it

will be shown that this solution with the shock located at the

boundary is in fact an alternate solution of the ICD difference

equations. This non-uniqueness is due to the lack of.conservation
N

of £. u. over the domain, and occurs only when the cell Reynolds
J=1 3

number R = UAX>2.
C	 v

Finally, the linear as well as non-linear stability of the

ICD difference equations is evaluated around a given initial state:

This analysis confirms that filtering procedures reduce the magni-

tude of oscillations and have a positive influence on the non-linear

instability. Smoothing procedures of the type utilized by Shuman ()

and investigated in more detail by Shapiro ($) are not considered in

the present paper.	 ORIGINAL; PAGE IS
OF POOR QUAIM
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2. Analysis

Burgers equation describing a fixed shock wave is given as:

u  + (u-')ux = vuxx	(2)

The initial and boundary conditions are taken to be:

u(x,0) = 1	 for -5SX<O

u(0,0) = .5	 (3a)

u(x,0) = 0	 for 0 <xs5

and

u(x,t) = 1	 for x =-5
(3b)

u(x,t) = 0	 for x=5

The exact solution is given to a good approximation in the steady state
by

U = 2 C1-tanh 4v]
All the solutions discussed in the present paper are obtained with

51 equally spaced grid points; Ox = 0.2. Convergence was assumed

when differences in the values of u between 100 iterations were

szch that luk+100-uk I40-6'; k denotes the iteration number. Many

calculations were also run with more severe convergence conditions.

The results were unchanged.

Numerous calculations of the linear version of equation (2),

where the coefficient of the convective term is treated as a con-

stant, were obtained with both the implicit central differencing

(ICD) and the Khosla-Rubin (KR) scheme. The restrictions on cell

Reynolds number and Courant number, necessary for diagonal domi-

nance, were grossly violated. In every case a converged solution,

for both schemes, was obtained. For the same conditions, with the

non-linear Burgers equation, 10 iterations were performed at each

time step. For the KR scheme the calculations diverged. The solu-

4



tions approach a final converged solution to within 10
-g
 and then

exhibit a rapid divergence. For cell Reynolds numbers greater

than two the solutions obtained with c<l or for central differ-

ences in some cases with,c>l, exhi.b.t.the expected oscillatory

behavior. As the steady state is approached, aliasing effects

begin . to accumulate, and in most cases for c>1, R c>2, and even for

some where c<l, Rc>2, the solutions diverge for large times. In

some of these cases, where R c is slightly larger than 2, a solu-

tion with central differencing can sometimes be obtained, (e.g.,

v=1/24, or R,=2.4); the ICD scheme has a somewhat larger transient

numerical viscosity than does the KR formulation. The above des-

cription of linear convergence and non-linear divergence, with

equivalent values of c and Rc , indicates that it is probably not

the loss of diagonal dominance but the aliasing effect, which is

enhanced by spurious oscillations, that is the reason for error

growth.

In the following sections, we will show that the source of the

aliasing error lies in the form of spatial discretization. For

conventional non-conservation form, non-linear instability arises

with cell Reynolds numbers greater than two; this result is essen-

tiallr independent of the value of the Courant number. For explicit

schemes, this non-linear instability was first observed by Phil-

4ps. (4) One of the remedies he recommended to suppress such error

growth was the use of smoothing of the short wave length components.

Shuman devised a smoothing operator that is quite often used in

-numerical weather prediction calculations. Alternatively, modified

spatial differencing can suppress the high frequency modes. The fil-

tering procedure is applied-here. -Three different filters, including

ORIGINAL PAGE IS
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one due to Shuman will be investigated in conjunction with the IM

and KR schemes. The aliasing error growth can then be eliminated

so that a steady converged solution is obtained. First-order

temporal and second-order spatial accuracy of both the implicit

schemes undei: investigation are retained with all filters.

2.1 Smoothing and Filtering

in the present section, we will discuss a series of filters

that can be used to suppress the aliasing error growth. Only

three-paint second-order accurate filters are considered. These

are given by

_ uZ+l+u^-1+ku^
u  -	 2+k

It can be shown that these filters (4) correspond to a weighted

average of conservation and non-conservation difference equations.

The filters (4) are second-order accurate, with a truncation error

LX2uxx/(2+k). Several specific cases of interest are:

i) k = 0 is conservation form or a trapezoidal filter;

ii) k = m is non-conservation form (no filter);

iii) k = 2 is the Shuman filter;

iv) k = -1 is a special filter to be'discussed later.

In general, k can take on any value greater than negative two. How-

ever, the optimum choice is governed by the minimum amount of numer-

ical viscosity required to suppress the aliasing error growth. The

value k = -1 is significant, as will be shown in a later section;

for large flow Reynolds number with k = -1 the effective cell Rey-

(4)
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nolds number is always less than or equal to two.

It must be emphasized thr.t there is no general way of arriving

at an optimum value of k for any given problem. This can only be

obtained by numerical experimentation and some physical insight in-..,

to the flow characteristics. In addition, the degree of filter-

ing will depend upon the choice of the mesh. For example, for a

flat plate boundary layer governed by the Blasius equation, the

non-conservation form of the equations does not lead to stable

solutions for grid spacings larger than 2 rsee Appendix]. Also,

for non-uniform grids having large grid spacings in the outer por-

tion of the boundary layer the solutions exhibit oscillations and

are, in general, rather poor. The use of filtering eliminates

many of these problems. With a trapezoidal filter, converged

solutions can be obtained with a minimum of grid points within the

boundary layer. For non-uniform grids the oscillations in the

regions of large mesh size are also reduced or eliminated; however,

the second-order numerical viscosity introduced by the filter af-

fects the accuracy of the surface shear stress. This can be re-

duced by taking a smaller grid near the wall. For moderate uniform

grids the artificial viscosity always leads to a less accurate shear

stress as compared with the non-conservation solution. Therefore

for boundary layers,it would appear that different filters (k val-

ues) should be used near and far from the zurface.

Once again, it should be stressed that these filters are not

applied to smooth the solution after a given time step, but are used

to recast the nonlinear coefficient of the u  term in equation (2).

It is in this respect that the present investigation is different

from the work of Shuman (7) , and similar to that of the Arakawa(5)

7
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and William (6) schemes. In what follows, we will examine certain

of these filters for two finite-difference schemes, i,e., ICD and

KR.

2.1.1 Central Differencinq (ICD)

Implicit central differencing as is well-known ( ' ) is uncon-

ditionally stable. The . general form of the difference equations

with the filter (4) is as follows:

( n+1	 n+l	 n+1
n+1	 n At Iruj+1 + u j-1 +ku; 1_1 n+l	 n+l

uj 	 - uj - 2 
ILi`\	

2+k	 /JJ 2 (uj+l - uj-1)

(5)
+ VAt un+l _ 2u+1 + un+l

	

AX  ( 3 +1	 7	 ]-1)

In earlier studies, the smoothing character of the conservation

difference equations (k = 0) has been demonstrated by many inves-

tigators(1.3) and will not be repeated here. The resulting oscil-

lations or instability for R c>2 with non-conservation form

(k = m or no filter) are also well-documented.

Numerical solutions of (5) have been obtained for k = 	 0,

2, see Table 1. A typical example is given by the conditions

At = 6.0 and v = 1/96. This corresponds to a Courant number of

15 and a cell Reynolds number of 9.6. The non-conservation equa-

tions do not lead to any solution. Although a converged solution

is obtained for k = 0,2, the shock wave is found to convect to the

upstream boundary for these conditions, it will be shown that the

finite difference equations ((5)with k = 0), in fact, has two solu-

tions and that one is consistent with this convective behavior.

Since the filter (4)is simply a linear combination of conservation

and non-conservation equations, we will investigate the possible non-

uniqueness for these forms of the governing equation (5). These are,

ORIGINAL PAGE Is
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.„T

du.	 u2	 2	 u.	 u. -1 = R (u :+u-2d + 
uj+1 2-u j-1 _ J+lz J . +1 u j-1J	 J	 )

	

(conservation)	 (6a)
and

du.	 '
d̀ t + ( uj_^) (ui+l-uj-1)	 R (uj+l-2uj+uj-1)

	

(non-conservation)	 (6b)

Where t is redefined as t/2Ax and R = 	 The governing equation
V

(2) s,atisfies the conservation law dt (fudx) = 0. The discrete
—w

forms of Burgers equation (6a) and (6b) should also satisfy this

conservation property. Summing over all grid points, we find

d N	 92+uN-1_i 
Lu 2

j=1 J	 2 UN-l_R

and

	

	
(conservation)

N

dt (J=3uj)	 - ( 2 R) (1-u 2 UNQ l)

(non-conservation)

It can be seen that unless the symmetry condition is strictly en-

forced, i.e. u2+uN_1=1, the possibility of a "spurious" unsymmetric

solution, for which .u2-uN-1-2/R 0, exists for the conservation

form (6a). The solution for which the wave convects to the boundary,

in fact, satisfies this latter condition. It has been found, on the

other hand, that with a small At (Courant number <1) the symmetric

solution is usually recovered. In the next section, it will be

shown that for Rs2 the symmetric solution is unique. For R>2, the

non-symmetric solution also exists and is also stable. For non-

9
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conservation form (6b),only the symmetric solution is possible.

2.1.2 KR Scheme

This scheme, as introduced in Reference 2, is diagonally

dominant and unconditionally stable for all R and retains second-

order spatial and temporal accuracy of the convective derivative.

it is given by

n+1 n	 At n+1	 n+l n+l	 At .^n+1 	 nuj =uj -	 (uj -Z) ( uj -uj-1 ) - zax(uj -z) Dj

+ vv At Dn+1
AX  3	 (7a)

for ujA
and

n+1 n	 At n+l	 n+1 n+l	 ^t ri+n+1	 nuj =uj -	 (uj -i) (uj+1-uj ) + 226x (uj -^z) Dj

VAt n+1	 (7b)

6x

for uj ^,	 .

where D^ = u^+l- 2u j+ u^-1

For the KR formulation, the filters are only used to modify thie

,non-linear coefficient of D^ as shown in (7); the implicit portion

of the convective term is always given by an upwind differencing

form. The resulting equations are second-order accurate in Ax.

Unlike the ICD results, for v = 96 and At = 6.0, both the

trapezoidal and Shuman .filters do lead to converged solutions des-

cribing a thin symmetric shock. The results are shown in table 1.

Although the convergence condition is satisfied, there is some indi-

cation of a creeping motion of the shock wave. After 3000 time

steps this movement was still less than the prescribed tolerance.

The infinite time behavior was not considered. For explicit schemes,

this problem is virtually undetectable, as the Courant numbers are

10	 O .,GIDIAL QAGE IS
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limited by the CFL stability condition. The allowable At is much

smaller than that considered here and therefore examination of

the large time history would require an extraordinary number of

time steps.
2:2 Non-linear and Linear Stability

In the present section, we examine the stability of the

Icb finite difference equivalent of equation (2) about a given

initial state. Since the source of aliasing error lies in the

spatial discretization; the problem will be examined for a semi-

discrete system. The underlying idea is that if the spatial dif-

ferencing leads to a temporal amplification, then there should

not be any time discretization that can eliminate this instabil-

ity. For example, it will be shown, though not rigorously, that

for non-conservative form and central differencing, the solution

of equation (2) grows exponentially if the cell Reynolds number

is greater than two. The stability will be examined for central-

differencing for both non-conservative and conservative forms..

The effects of other types of filters will also be indicated.

2.2.1 Non-conservation Form

With central differencing, equation (2) becomes

du.
dT +
dT

T is a non-dii

form solution

cases will be

(uj -i). (uj+l-uj-1)

nensional time. As

cf equation (8) fc
examined for small

= R (uj+l-2uj+uj-1 )	 (8)

it is difficult to find a closed

r arbitrary j, only a few simple

numbers of grid points N.

(i) N = 3: Since there are only three points, and from the boundary

	

conditions we require ul = 1 and u	 th	 ti f3 = 0, then e equation or u2

becomes

du

	

dT2 - (u2 - z) = R (1-2u2)	 (9)

11



The solution of equation (9) is

_(2 -1)t	 -(R -1)t
u 2 = u2 (0) e	 + ^ (1 -e	 )	 ,	 (10)

where u 2 (0) is the initial value of u 2 (t). Clearly the solution

diverges for R>2. However, if u 2 (0) =,'h, as in.the present case,

Equation (10) leads to u 2 ='k for all t. However, in this case,

there is a cancellation of two growing terms, and therefore the

numerical solution can still be amplified by roundoff errors.

This is seen to be the case for forward time marching in (9). If

we use an explicit method, we obtain

un+l=un (l+ At 22 At + At (? -1) )	 •	 (11)2	 2	 R	 2 R

Clearly any small error will grow if the coefficient of u2 is

greater than unity. Thus, stability is possible only if R<2.

For an implicit scheme with the convective coefficient (uj-'h)

treated explicitly, then (9) becomes,

un+l = (R -1)	 + l+At u 	 (12)
2	 2(1+2Wit) 

1+R
4t 2

Once again, the Neuman stability condition requires R<2 for a

stable solution. if, we treat (u 2-12 ) implicitly, the solution

converges for almost all At and R. However, such a scheme is

inconsistent with the differential equation (9).

(ii) N = 5; in this case, ul = 1 and u5 = 0.

du 
2at + (u2-h) (u3-1) = R (u3-2u2+1)

du
dt3 + (u3-.k) (u4-u2 ).= R (u4-2u3+u2 )	 (13)

duo	 1
dt - u3 (u4-Z).= R (u3-2u4)

12



A closed form solution of equation ( 13) is possible, if we assume

the shock to be symmetric about u 3=z. Thus, we get

u2+u4 = 1 and

a + R - ) u2 	 2R - a	 (14a)

du

dt4 + (R -i) u4 - 2R - °	 (14b)

Integration of Equation (14a) gives

- (R-^i) t 2R - a	 - (R -^z) t
u2 = u2 ( 0) e	 + 2R -' (1-e	 )	 (15)e

Once again the solution grows with time, unless R<4. From the

two cases considered, it appears that if the mid=point symmetry is

not fixed the solution will diverge for R>2 while a converged

symmetric solution may be possible for 242<4 if the mid-point

value u3=h is fixed. The non-conservative calculations of Refer-

ence (3) confirm the validity of this inequality for the cases,

considered.

F 2.2,2 Conservation Form

A similar procedure can be carried out for the conservative

difference form of Burgers equation.

(i) N = 3: In this 'case, the governing system reduces to

du
UT + R u2 R

Integration gives

u2 (T)	 + (u2 ( 0 )-Z) exp (- 2 T/R)	 (16a)

Significantly, this system leads to ' a steady converged state with

U2 (T) = z for all R.

13	 ORIGINAL PAGE IS
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N = 5: The governing Equations are

du	 u (u -•1)

dT2 + 3 
2 __._. - 

g (u3 '2 u2+1)

du	 u +u -1

dT3 + (u4-u2) 42 
2	

R (u4-2u3+u2)

du 	 u3(u3-1) 	 1
dT	 2	 R

Two steady-state solutions

u2+u4=1 and u4_u2

The symmetric solution cha

The non-symmetric solution

(u3-2u4)

are possible,

2/R

racterized by u2+u4=1 is stable for all R.

is given by:

u3 = 1+,/1-4 (4/r,2_1)

2
1+2u3+4/R

U =	 4	 (16b)

1+2u 3-4/R
u4 =	 4

This solution exists only for R>2.5. in order to investigate the

stability properties, we perturb about (16b) and look for the solu-

tions of the type, exp ( %T). This leads to the following dispersion

relation

= R2 ±	 . -' ( 2u0-1) 2/4
e	 Re

Since a always has a negative real part, the solution (16b), in

the steady state, is stable for Rz2.5. It should be pointed out

that the solution with enforced symmetry (i.e., u3=z) is stable for
all cell Reynolds numbers. This has been numerically tested for

V = 10-5 or R=105 . The resulting solution has oscillations but is

14



stable. These oscillations can be eliminated or reduced in

amplitude by applying the filters of the type discussed pre-

viously,

2.2.3 Optimal Filtering.

We recall that the different filters are defined by

U =_ui+l+ui-1+kui2+k	 (17)

for k = 0, we recover the trapezoidal filter or conservation

form; for k	 non-conservation form is recovered; k = 2 cor-

responds to the Shuman filter and k = -1 is a noteworthy case.

The finite-difference form of Burgers equation (2) with the

filter (17) is a weighted average of non-conservation and con-

servation equations and is given as

dui	 uj+l+uj- 1+ku^ 	 _ 1
dT +	 2+k	 -^ (uj+l-uj -1) R ^uj+1-2uj+uj-1^

(18)

We shall examine the case where N = 3 in order to obtain an opti-

mum k value for (18). For N = 3, ( 18) becomes

du	 l+ku
dT2 - ( 2+k2 - ') = R (1-2u2)

so that

U2 (T) _	 + Cu2 (0) -k] exp ( 2+k - R)T	 (19)

For large R, k>0 has a_destabilizing 'influence _ and ks0 has a

stabilizing effect. We recall that the filtering introduces
Ax u

an artificial viscosity 	 2(2+k), when - 2 .<k<0. For k <--2, the

sign of this viscosity changes and consequently the filter is no

longer useful. From the previous analysis of non-conservation or

conservation solutions, it is known that oscillatory behavior oc-

curs when R>2. These oscillations can be eliminated by reducing

15



the grid size and therefore the local value of R. The filter (17)

?	 can also accomplish this without grid reduction. For large

R(»2) a minimum amount of filtering is required in order to ob-

tain smooth solutions. The degree of filtering, as characterized

by the value of k, should be such that the changes in u j are con-

fined to only one grid point. This amounts to incorporating arti-

ficial viscosity such that the cell Reynolds number based on the

"effective viscosity" does not exceed 2, the optimum choice for k

can be seen by comparing (19) with (16a) such that Reff ° 2 or

1 = l+k
R 2+k

This relation has also been obtained by Cheng and Shubin (9) from

different considerations. Results for several filters are pre-

sented in the following section.

3. Results

Numerical solutions using various filters were obtained for a

variety of Courant and cell Reynolds numbers. These do confirm

the stability analysis of the previous section. For example, for

large cell Reynolds number and Courant number, a converged solution

for conservation form is obtained by enforcing the symmetry condi-

tion. This solution exhibits oscillations, characteristic of large

cell Reynolds number, flows. Without enforced synanetry, the shock

may convect to the boundary. This corresponds to the second solu-

tion discussed previously. In 'the cases considered here, symmetric

solutions are usually found for Courant numbers less than one. In

these cases a completely symmetric solution is not achieved. The

shock continues to move with an extremely small velocity. However,

within a prescribed tolerance, the solution can be considered to be

URIGINAL PAGE IS
16	 OF POOR QUALMI
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converged. Calculations for a variety of cell Reynolds numbers

ranging from 2.4 to 50,000 and various filters characterized

by -lsJcsl, were carried out by Taverna and Busch. () For a

given cell Reynolds number., an optimum filter was defined by

a inimimum error. condition. Velocity (u) profiles with and with-

out filters are shown on figure (1). The optimum values as a

function of R (figure (2)) are also reprodu ged from reference

(10). It should be noted that with an appropriate filter, oscil-

lations characteristic'of.large cell Reynolds numbers can be

eliminated; formally, second order accuracy is still  maintained.

For R--, we note that k optimum - -1.

4, Summary

1. Diagonal dominance problems associated with ICD methods

can be eliminated by the KR scheme. Calculations with a linear

Burgers equation confirm the analysis of reference 2.

2. Stability problems arising in calculations with locally

large cell Reynolds numbers are found only for non-linear equations

and are clue to the form of spatial differencing of the convective

terms. This instability and associated oscillations can be elimin-

ated by appropriate filtering.

3. A non-uniqueness of the conservation form of the differ-

ence equations is described. The second (non-physical) solution is

encountered numerically only for large Courant numbers and R>2.

4. Finally the results of 1-3 have been confirmed by numerical

experimentation as well as some approximate stability analysis.

5. The present analysis has been confined to the stationary

solution of Burgers equation, although some results for boundary

, layers are given in the Appendix. For more general equations, the

`^	 17



nature of the optimum filter may vary from that obtained here.

18
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Appendix

Blasius Equation

The flat plate boundary layer in.similarity variables is

governed by

U11 + fu l = 0
(non-conservation form)

f  = u

or

U^ + (fu) ^ -u2 = 0	 (conservation form)

The finite-difference form using weighted averaging with h = 0^

is given by

ui+1-2u^+u ,-1	f +1+kf.	
kf.+f^-1	 -u.2

h2	 + 2(l+k)h uj+l 2 ( J+k)1 uj-1 l+k = 0

(A.1)

clearly k = 0 and k = m lead to the conservation and non-conserva-

tion forms. In order to examine the effect of filtering, the

truncation error of equation (A.1) is investigated. Taylor series

expansion about the jth grid point lead to

2	 2_ 2	 iv

(1+ 3(1+k) ) u + (f+ h u I ) u, 6 [fu" + 2 ]	 (A.2)
2(1+k)

The second-order accuracy of the numerical scheme is retained. The

additional truncation error arising out of weighted averaging is

shown as coefficients of the convective as well as diffusive terms.

It may be seen that the convective and diffusive modification can

be made small near the surface by taking a fine grid. However, near

the edge of the boundary layer, where large h values can lead to a

deterioration of the solution resulting in oscillations, the numeri-

cal viscosity of the filter can be quite large and thus the oscilla-

tions are suppressed. The effect of filtering is. thereLfore to in-

19



corporate damping where it is needed the most. The filtering ef-

fect is largest for -14c<0 for these equations. In the present

context of filtering, conservation form provides a significant

amount of artificial viscosity, so that solutions with large mesh

sizes are possible. For example, a converged solution with h = 6

(the boundary layer thickness is about 3.5) can be obtained; non-

conservation solutions are no longer possible when h>2. This

artificial viscosity provides a thickening of the boundary-layer

and consequently a reduction of the wall shear. Smaller grids

near the wall surface are required to eliminate this accuracy

problem. Optimally, it would appear that non-conservation form

should be used near the surface and conservation form in the outer

portion of the boundary layer.

filter.

This corresponds to a variable

I
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