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1.0 INTRODUCTION AND SUMMARY



The Orbiter Ku-band radar is presently being developed [2]



the hope is that the present design is "molded in concrete" as much as



possible. With that in mind, when problem areas arise in the radar



performance, the solutions recommended in this report are those which



involve minimum cost, minimum (essentially zero) design changes in



hardware, and little variation in software development.



The performance of the Ku-band radar is analyzed in detail in



[], and the performance is updated and summarized in sections 2.0 and



3.0 of this report. In so doing, two different radar design philosophies



are described, and the corresponding differences in losses are enumer­


ated. The resulting design margins are determined for both design



philosophies and for both the designated and nondesignated range modes



of operation. In some cases, the design margin is about zero, and in



other cases it is significantly less than zero (-4 to -5 dB). With



the point of view described above, the recommended solution is to allow



more scan time (2minutes as opposed to 1 minute) but at the present



scan rate. With no other changes in the present configuration, the



radar will meet design detection specifications for all design philo­


sophies at a range of 11.3 nautical miles.



In the tracking mode, the Ku-band radar meets specifications
 


satisfactorily at all ranges in the range and range rate tracking



loops. This iswith the assumption, however, that there is no signi­


ficant degradation due to angle tracking errors. As is shown in



sections 3.0 and 4.0, this is not the case. At short ranges, the angle



tracking loop and angle rate estimator are not reliable with the present



configuration The reason for this is primarily due to target glint



effects which can and do become significant when the target fills more



than 10% of the 3 dB beamwidth of the antenna pattern. In addition,



the monopulse difference patterns are unpredictable at short ranges.



In the next section, the recommended solution to this problem is



described. This solution is effective in all dimensions of the point



of view described above.
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1.1 	 Recommendation for Angle and Angle Rate Tracking


Problem at Close Ranges



A rough description of the suggested solution to the proximity



operations problem inthe angle tracking loop of the Ku-band radar is


presented. The approach centers around slaving the Ku-band antenna to



the TV camera during a portion of the approach phase inthe rendezvous



and docking of a target.



The situation with the present configuration isas follows:



There is a transition period during approach inwhich neither the



Ku-band radar nor the two TV systems individually provide all the



desired information at acceptable accuracies to carry out a rendezvous


and docking profile. Using the two TV systems and the Ku-band radar,



however, all of the necessary position and velocity information can be



satisfactorily obtained.



There ispresently a TV camera at each end of the Shuttle's



stowage bay. Each camera has an 8:1 zoom lens and ismounted on a pan


and tilt, thereby giving each camera two degrees of angular freedom.
 


Inaddition, each pan and each tilt isencoded into a video signal



using a Binary Gray Code of 11 bits. This corresponds to angular inter­


vals of 0.18 degrees. The accuracy off each shaft has been quoted as



0.3 degrees. These four encoded angular signals are readily available



at the pans and tilts. The operations interface (OI-MDM) does not



presently receive this angular information, and the information isnot



now being telemetered back to a ground station. However, these video


signals with the angular information can easily be sent to the 01-MDM



interface. This isshown as connecting lines (a) in Figure 1. Also,



both TV cameras can presently be simultaneously monitored by the
 


rendezvous operator on two adjacent CRTs.



The Ku-band presently "talks" to an MDM, as shown in Figure 1.



As described insections 3.0 and 4.0, the angle and angle rate accura­

cies of the radar become unacceptable at a larger range than do the



accuracies of range and range rate. When the radar provides no useful


angle and angle rate information, however, the antenna must clearly


be kept pointed toward the target inorder to provide accurate range



and range rate information.





TV Camera #1 TV Camera #2 

Pan and Tilt #1 Pan and Tilt #2 

u-Band Antenna IgleInforma 

Ku-Band Radar 

OI-MDM 

Shuttle Storage Box 

,d Figure 1. General Block Diagram for Slaving Ku-Band Antenna to Two TV Cameras at Short Ranges
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4 

The suggested solution would slave the Ku-band antenna to the


TV cameras, which are manually pointed toward the target. Both TV



cameras would be used, and a relatively simple software algorithm


would be developed to best use this information to direct the Ku-band


antenna toward the target. To accomplish this, a communication link



(cable) would have to be created so that the MDM and OI-MDM can "talk"



to each other. From a hardware implementation and cost point of view,


this appears to be the largest item and should be nominal compared to



all the other alternatives that have been examined (primarily the addi­

tion of a laser or lasers). These alternatives are described in section



5.0 of 	 this report.



Insummary, the suggested solution requires cable and software


development. Neither of these, however, appears to be extensive.



1.2 	 Ku-Band Radar Simulation



A model of the Ku-band radar has been developed and ispresented


insection 4.0 of this report The model isdescribed such that it is
 


directly programmable into a digital simulation. It can operate in "real



time" with a man in the loop and with arbitrary maneuvers in the orbital


geometry. Some minimal computation rate will be necessary, however, in


order to operate inreal time.



The model isgiven as a simulation modular package so that it



can be placed inany of the present Orbiter simulations at NASA JSC



with minor interfacing.



One of the purposes of the digital simulation of the Orbiter


Ku-band radar isto determine operating procedures when operating manu­

ally. This is particularly pressing with the present radar schedule



due to the Skylab trajectory f13].



The successful completion and operation of the proposed radar



simulation should add significant confidence to the concept that satel­


lites can indeed be tracked and docked and a complete rendezvous per­

formed. Some of the example performance computations are carried out



for the LDEF Satellite.
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2.0 TARGET ACQUISITION - PASSIVE TARGET



A significant part of the overall Droximity operation of the



Ku-band radar is the capability to detect and re-acquire the target at



all ranges less than 10 nmi. The acquisition capability of the present



configuration of the Ku-band radar is summarized in this section. The



development in Appendix A of [l] is used extensively.



There are several facts which are used as assumptions and taken



advantage of when assessing the acquisition capability of the Ku-band



radar. These assumptions are actually assets, in particular:



(a) The target size is known. Other properties are known, such



as shape, composition, and possibly even the average radar cross-section



(RCS) This provides preliminary information about expected target



strength at the time of acquisition.



(b) The target's angular rotation is small. This is a self­


evident requirement if a rendezvous and eventual placement into the



Shuttle payload bay is to be carried out.



(c) There exists no jamming. The passive targets will be truly



passive, and the active targets will be cooperative. No additional



signals of an interfering or jamming nature are anticipated.



(d) In almost all configurations, there exists no clutter. The



only possible exception iswhen the target is directly below the Shuttle



and the radar sees earth clutter. If clutter does present a problem,



various methods have been suggested to overcome it,including the appro­


priate rate of frequency hopping.



(e) One possible situation is AGC saturation in the detection



mode at close ranges. This is expected to be highly unlikely because



detection at close ranges invariably will be a reacquisition. Inthat



case, the TWT is either attenuated or removed so that the power level



will not cause AGC saturation during at least a portion of the short



range detection time.



The primary emphasis in the evaluation of the Ku-band radar during



acquisition is "how the radar performs." Comparison will be made to



the specification values, but no heavy emphasis is placed on it. In



those situations where the performance does not meet the specification



requirements, reasonable alternatives are proposed which will provide



satisfactory performance in all rendezvous profiles.
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2.1 Target Detection Processing Losses
 


The target detection processing losses as they are presently



estimated are summarized inTable 1. The losses anticipated by both



Hughes and Axiomatix are shown. The reasons for the agreements and


disagreements and the resulting philosophies in radar performance are



as follows:



The transmit loss is a hardware loss. It is presently estimated
 

at 3.7 dB by Hughes, and Axiomatix believes this is a realistic value.



The beam shape loss islisted as an average of 2 dB by Hughes



and 3.2 dB maximum by Axiomatix. The difference isseen by inspection



of Figure 2. If a target remained at boresight during its entire period


of illumination, the antenna beam shape loss would be zero. The target



location for maximum beam shape loss isalso shown inFigure 2. The



loss for this path is the one used by Axiomatix. Ifthe beam shape


loss isaveraged over the region indicated inFigure 2, the result is



approximately 2 dB when the scan overlap is15% to 30%. This average



isreasonably insensitive to the amount of overlap when the scan overlap



iswithin this region. For a detailed analytical description of beam



shape loss, see [4].



The pre-sum mismatch has been evaluated as 0.57 dB inAppendix A



of [1] for the parameters of the Ku-band radar. Hughes also uses this


value.



The constant F.A.P. loss has been set at 1.7 dB. This is an
 


approximation and isan area which deserves more study.



The doppler mismatch is a loss of signal gain due to the fact
 

that the doppler frequency isnot at the center of one of the filters



inthe DFT. The loss varies from 0 dB to 3.9 dB, with an average of



approximately 1.1 dB.



For an N point DFT, the filter transfer function isgiven by [1]:



sin (27TAfN T2) 
F(Af) = () 

N sin (2wAf 2.) 

where Af =	frequency difference from the center of the doppler filter
 

to the doppler frequency of the target
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Table 1. Summary of Target Detection Processing Losses



Hughes 
(average) 

(dB) 

Axiomatix 
(worst case) 

(dB) 

Transmit Loss 3.7 3.7 

Beam Shape Loss 2 (avg) 3.2 (max) 

Pre-Sum Mismatch 0.57 0.57 

Constant FAP 1.7 1.7 

Doppler Mismatch 1.1 (avg) 3.9 (max) 

Range Gate Straddle 
Designated Mode 
Undesignated Mode 

1.76 
Lstr =f(R) 

1.76 
Lstr =f(R) 

Processor Loss 1.25 1.25 

Totals Designated ModeUndesignated Mode 12.08
10.32 + Lstr 

16.08 
14.32 + Lstr 

Table 2. Doppler Mismatch Losses of DFT Filters 

N= 1 2 4 8 16 32 

Average Loss (dB) 0 -0.871 -1.055 -1.100 -1.111 -1.113 

Maximum Loss (dB) 0 -3.010 -3.698 -3.867 -3.908 -3.919 

ORIGINAL PAGE 1SIOF POOR QUALITY 



Region of Pattern Overlap



Edge of 3 dB Antenna Pattern



Region for Average Direction of Antenna Motion



Beam Shape Loss


Target Location for Maximum



_-_ Beam Shape Loss



Figure 2. Antenna Beam Shape Loss Description
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N = number of points inthe DFT


-
Tp = [PRF] 1 seconds.



The filters are placed (NT )-' Hz apart, so that the maximum 

p


value of Af Is (2NTp ) 1l , at which value maximum signal strength moves 

to the adjacent filter in the DFT. 

The value of IF(Af)I 2 at Af=O is 0 dB. The peak loss occurs at 
= ­Af (2N Tp) , which isgiven by



Maximum Loss = jF(Af)j 2 Af= N sin (T/2N) . (2) 

p2NTp



The average loss is evaluated from



Avg Loss = (NT) JF(Af) 12d(Af) = dx. (3) 
f Nsin (wx/(2N)) 

These doppler mismatch losses have been computed, and the results



are shown inTable 2 for various values of N. The present radar has



an N= 16 point DFT, which results in 1.11 dB average loss and 3.90 dB



maximum loss. These numbers are used for the doppler mismatch loss in



Table 1.



The range gate straddling loss [l, Appendix A] is 1.76 dB in the



range designate mode. This isa factor of 1.5 (1.76 indB), which arises



since the range gates during acquisition are 1.5 times wider than the



pulse width. Inthe undesignated mode, the range gate straddling loss



isa function of range and isplotted in Figure 3. This variation in



range is taken into account inevaluating detection performance.



At a PRF of approximately 3 kbps, the unambiguous range isapprox­


imately 27 nm. As the range gets close to multiples of 27 nmi, the SNR



must get arbitrarily large for detection to take place, due to eclipsing



of the received pulse by a new transmitted pulse. When the radar is



operating inthe cooperative mode with an active target, the unambiguous



range increases to 300 nmi. The SNR clearly isa problem at ranges much



above 10 nmi, and acquisition isnot expected to be reliable.



OR1GINL PAGE IS



OF POOR QUALU 



-

44 

i3 

2J01 

58 II14 17 20 23 26 
Undesignated Range, R (nmi)



Figure 3. Range Straddling Loss in Undesignated Mode of Detection
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The last loss that has been accounted for is a processor algorithm



loss Most of the algorithms are approximations to the ideal computation.



Although the loss is small in each algorithm, the cumulative effect of



all of these approximations is estimated to be approximately 1.25 dB.



The totals of the losses in Figure 3 are used in evaluating



radar detection performance in section 2.3. It is noted that the dif­


ference between the average losses and worst case losses is 4.0 dB. In



the next section, the differences in these losses and their implications
 


are discussed.



2.2 Radar Detection Performance Philosophy
 


The losses enumerated in the last section demonstrate two approaches



in establishing a radar detection performance philosophy. The differences



center around what is to be taken into account when averages are performed.



The "Hughes" approach is to average over all target positions and velo­


cities when carrying out an average. The "Axiomatix" approach is some­


what more pessimistic in that the average is carried out over thermal



noise, target scintillation effects, and other radar parameters. This



is done, however, for a target located at the worst possible velocity
 


and worst possible angular position.



We believe there ismerit to both approaches. Therefore, the



detection results to be subsequently presented are carried out under



both performance philosophies.



In the one case, the design philosophy is that



Average Pd = 0.99 (4)



for a 1 square meter target. In the latter case, the design philosophy



is



Average Pd 2 0.99 (5)



for a I square meter target for all target velocities and spatial



positions.



2.3 Radar Detection Performance



Based on the losses discussed in the previous sections, the



Ku-band radar detection performance is summarized. In Figures 4 and 5,



the target detection design margins are plotted versus range for both
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Figure 4. Target Detection Design Margin Versus Range for Worst


Case Losses in Table 1
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Figure 5. Target Detection Design Margins Versus Range for
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the designated range and nondesignated range modes of operation. Except



for the losses, all radar equation parameters are the same as used in



[, Appendix A]. InFigure 4, the worst case losses of Table 1 are


used. Also, a transmitted power of 50 watts isused, although the



present system configuration consists of a 60-watt TWT. This is



approximately a 0.8 dB improvement. For the range designation mode,


a design margin of 0 dB isobtained at approximately 9.3 nmi. For the



nondesignated range mode, it is about 7.5 nmi. The design margin for



the nondesignated range mode deteriorates as the range is reduced in


the interval of 8 to 11 nmi because inthis interval, the range gate



straddling loss is increasing faster than the factor R-4 inthe radar



equation. At 12 nmi, the design margin is-4.5 dB for the range desig­

nated mode and -5.1 dB for the nondesignated range mode.



InFigure 5,the design margin is shown versus range for the


average losses inTable 1. Inthis case, a 0 dB design margin is


obtained at approximately 11.7 nmi; at 12 nmi, the design margin


is greater than -1 dB.



The cumulative detection probability isplotted versus range for



the worst case and average losses in Figures 6 and 7, respectively.


Both M=1 and M= 2 scans are shown. Itis seen that the two-scan case


uniformly outperforms the single scan case for both the designated and


nondesignated range modes. Inthese computations, a transmitted power



of 60 watts was used.



Inspection of Figures 6 and 7 reveals that, depending on the
 

range, the cumulative detection probability for the designated range


can be both smaller and larger than that for the nondesignated case.


This isalso the case for the design margins in Figures 4 and 5. At



12 nmi, the cumulative detection probability isapproximately 75% for


two scans and approximately 50% for one scan This isthe case for both



the designated and nondesignated range modes.



Inorder to determine what can be gained by allowing more total


time to detect the target, the cumulative probability of detection was


determined for various scan times and at various ranges. InFigure 8,



the cumulative probability of detection versus total scan time is shown



for various ranges. In these computations, two scans were assumed so


that the scan rate varies with the total scan time. By allowing a slower
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scan rate, it is seen in Figure 8 that there is dramatic improvement in



the cumulative probability of detection. In particular, if the total



scan time is increased to 2 minutes, then the cumulative detection



probability at 12 nmi is 99% (the specification value). This is for



the worst case losses and a designated range mode.



Unfortunately, increasing the coherent detection time in this



manner by lowering the scan rate has major hardware implications. It



does provide the best improvement in performance, however.



The scan rate is held fixed at two scans per minute in Figure 9,



where the cumulative detection probability is plotted versus range.



In this case, the improvement in performance is not as dramatic as when



the scan rate is reduced. The gain is significant, however. At 11.3 nmi,



for example, by increasing the total scan time from 1 minute to 2 minutes,



the cumulative detection probability increases from 90% to 99%.



2.4 Alternatives and Recommendations



If the design philosophy of average losses is acceptable, then



the design margin at 12 nmi iswithin a few tenths of 0 dB with a 50-watt



TWT and approximately 0 dB with a 60-watt TWT.



If the design philosophy of worst case losses is preferred, the



design margin is between -4 dB and -5.2 dB. In this section, various
 


alternatives are listed, along with recommendations.



(a) Use a Slower Scan Rate. As described in the previous sec­


tion, this provides the maximum improvement in performance for a given



amount of increased time Since this alternative has major hardware



implications, it is not recommended.



(b) Increase Post-Detection Integration (PDI). This can be



accomplished by increasing the total number of RF frequencies used in



frequency diversity This also has moderate hardware implications and



istherefore also not recommended.



(c) Increase the Number of Scans at the Same Scan Rate As shown



above, there is significant improvement in performance by maintaining



the same scan rate and allowing the total search time to increase from



1 minute to 2 minutes. This increases the total number of scans from
 


2 to 4. This keeps the present radar configuration entirely intact and



thereby has virtually no hardware implications. For worst case losses,
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a 0 dB design margin isobtained at a range of 11.3 nm. We recommend
 

this alternative, and this recommended design point isshown in Figure 9.



(d) A final alternative which applies to the range designate


mode only is to narrow somewhat the two range gates during search. How



much they can be narrowed is a function of the anticipated range desig­

nate accuracy. We do not have a recommendation on this alternative.



Itcould be implemented in addition to the recommended third alternative


above. Ifone has any doubt about the range designate accuracy, however,



then this alternative does not appear satisfactory.
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3.0 	 POINT TARGET TRACKING



The tracking performance of a point target of the Ku-band radar



is presented. The performance isdescribed twofold. First, the effects



of thermal noise and target amplitude scintillation are given in sec­


tion 3 1. Insection 3 2, the tracking capability is given inthe pre­


sence of relative accelerations along and perpendicular to the LOS.



Emphasis isplaced on the recovery time after an acceleration.



3.1 	 Thermal Noise and Target Scintillation Effects on


Tracking Accuracies for Passive Point Targets



The purpose of this section isto present the numerical results



associated with the analysis carried out in [1] for the Ku-band radar



tracking accuracies due to thermal noise and target scintillation



effects for a passive point target. The target effects which become



a major concern at short ranges will be discussed in a subsequent sec­


tion. No attempt will be made at this point to perform any additional



analysis of the tracking loops.



The tracking accuracies of the four variables being tracked



(range, range rate, angle and angle rate) are presented as functions



of range and compared to the existing specifications [2]. It is to be



noted that there are two factors affecting the results:



(1) Thermal noise and target scintillation which become the



dominating factor at long ranges



(2) Quantization effects inthe Ku-band radar [l] which uses



4 bits of quantization, resulting in a signal-to-noise,ratio at the
 


output of the A/D converter equal to



(S+ (1+ 1 (0011(SNR)in (6)
SR + I+ (SNR)inj(0.0129 

where (SNR)in isthe signal-to-noise ratio at the input of the A/D con­


verter. The signal at the output of the A/D converter is presumed with



a resulting gain in signal-to-noise ratio equal to 16 (12.04 dB). Thus,



the resulting SNR used inthe calculations is



(SNR)dB ((SNR)out)dB + 12.04 dB. 	 (7)
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It is easy to see from (6)that, at high input signal-to-noise ratio



(close range), the resulting SNR saturates at



SNR = 18 9 + 12.04 = 30.94 dB,



which makes the quantization effect the major contributing factor to



the tracking accuracies. The combined effect of both factors istaken



into account inall subsequent calculations.



There are many parameters inthe various tracking loops that are


varied with the designated range. The parameters used inthese calcu­


lations are the latest available from Hughes Aircraft Company and are



summarized inTable 3.



3.1.1 Angle and Angle Rate Tracking Accuracies



The angle and angle rate tracking accuracies are presented together


because the angle rate estimation iscarried out inthe angle tracking



loop. The ratio of angle rate root-mean-squared (RMS) error a; to the



angle RMS error a isgiven as [I]-


Sd K sec-I (8)



a J K T2 +l 

where K is the equivalent angle loop gain and T is its time constant.


The variations of K and T with range are shown inTable 3. The angle



RMS error is given by



(Kr +I)T B



0 -_4 4pekm ax (N,SNR) , (9) 

where Ts = time per sample of the equivalent discrete time noise (x)


whose variance is xe



OB = 1.6* = 3 dB bandwidth of the Ku-band antenna


1m=I 

N = number of independent samples used to obtain axe (N 10 

for angle tracking) 
P8 and axe are functions of SNR and are discussed in detail in 

[1] and in the simulation section of this report.



Figures 10 and 11 illustrate the variations of 3a and 3a6 with



range. It is obvious that both the angle and the angle rate accuracies





Table 3. Summary of Tracking Loop Parameters (Passive Target)



Range (nmi) 

Parameter >9.5 9.5-3.8 3.8-1 9 1.9-0.95 0.95-0.42 0.42 Remarks 

dt 0.099 0.116 0 058 0.029 0.0144 0.00085 Duty factor 

TE (msec) 5.36 2.29 2.29 2.92 2.29 2.29 I/BF 

A (psec) 33.2 16.6 8.3 4.15 2.07 0.122 Pulse width 

a 0.0566 0.1132 0.2263 0.2263 0.4526 0.4803 

0.000884 0.00354 0.0283 0.0283 0.1132 0.1202 

B (Hz) 186 437 437 437 437 437 Doppler filter 

2 4 4 4 4 4Number of 
averaged samples 

Ts (msec) 107.2 45.9 45.9 45.9 45.9 45.9 

L 16.90 OG 
16.83 16.83 16.83 16.83 16.83 Angle and angle 

rate losses 

L •9.49 9 42 9.42 9.42 9.42 9.42 Range and range 
R,9 rate losses 

K 0.0288 0.0288 0.2221 0.5685 0.5685 0.5685 Angle loop gain 

CSAngle 
t (sec) 12 12 4.25 2.7 2.7 2.7 

1oop
time constant 

PRF (Hz) 2987 6970 6970 6970 6970 6970 
VO_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _N 
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meet the design specifications. The design margin in the angle rate



tracking, however, ismuch less than that for the angle. This isdue


to the fact that the loop filter inthe former has been widened to pro­


vide faster recovery from acceleration transients. Itis believed that


increasing the gain K slightly would improve the transient performance
 


of the loop while maintaining the random error within or very close to



the specifications.



3.1.2 Range Tracking Accuracies



The RMS of the range error aR (timing error) iscomputed using


the results of [2], namely,



r Ac +CBN (Ts)/2 GR(NSNR), 	 (10) 

where A = pulse width of the transmitted signal (see Table 3) 
c = velocity of light infree space 

BN = bandwidth of the range tracking loop which includes the 

a-0 tracker as a loop filter 

(2+6(1)BN =N8(I+4/SNR)112 4a
Ts



axR = RMS of the equivalent noise of the system due to thermal



noise


=
N = 	 number of independent samples used to obtain 0xR (N 20



for range tracking.



Figure 12 illustrates the variation of the RMS range error versus


range with the noise bandwidth as a parameter. The jump at 9.5 nmi is



due 	 mainly to the change in PRF at that range. It is observed that,



since the values of a and $ used at longer ranges correspond to BN= 1 Hz,


the 	 range RMS error due to thermal noise meets the specifications up



to 9.5 nmi. The specifications are illustrated inFigure 13 for



convenience



Figure 14 illustrates the variations of the range error at closer



ranges (R<6 nmi) with the latest values of a and as parameters. The



figure also shows the latest performance curve presented by Hughes for


comparison purposes. There are four points to observe.
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(1) The range tracking performance of a passive point target



due to thermal noise and target scintillation iswell below the speci­


fications, especially at close range.



(2) The flat portions of the curve at ranges R< 1 nmi are due



to quantization limiting effect.



(3) The difference between the Axiomatix and Hughes performance



curves is believed to be due to the automatic gain control (AGC) which



has not been taken into account inthe analysis.



(4) Although the accuracies at close range drop below 10 feet,



it is believed that 10 feet isthe best achievable accuracy because of



the sensitivity of the meters.



3.1.3 Range Rate Tracking Accuracy



The range rate RMS error due to thermal noise and target scintil­


lation has been found in [2] to be



{c BF  + 72 1/21 1/2 
(M2 (SNR
A (NI,SNR) (12)(I+T7F~A) ( ()a
 , 	 

where BF = doppler filter single-sided noise bandwidth



fc = RF carrier frequency. The middle RF frequency


fc =13.885 GHz inthe frequency diversity system is



used inthe computations.



m = number of samples being averaged to give a single



reading. m=2 for R>9.5 nmi and m=4 for R<9.5 nmi.



axk = RMS of the equivalent noise of the system due to thermal



noise.


=
N =	number of independent samples used to obtain axk (N 40



for range rate tracking).



The evaluation of a for various ranges is shown in Figures 15



and 16. Figure 15 illustrates the range rate errors at long ranges and



shows the effect of varying the number of averaged samples (m)at 9.5 nmi.



As isobvious from the figure, the range rate accuracies meet the speci­


fications for all ranges below the specified 10 nmi. The same thing is



true for Figure 16, which illustrates the variations of a at short



ranges.
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Inorder to avoid confusion, itshould be pointed out that the



numerical evaluations of the range rate accuracies in [1] were erroneous



and the numbers presented inFigures 15 and 16 represent the correct



calculations.



3 2 Effects of Point Target Accelerations 

3.2.1 Introduction 

This section investigates the performance of the Ku-band radar 

system inthe tracking mode when a constant acceleration takes place.



Two extreme cases can be distinguished. The first will be referred to



as radial acceleration, which isachieved by firing retro rockets in



the direction of the line-of-sight (LOS). This causes the range to vary



as a quadratic function of time rather than a linear function of time,



which occurs inthe case of a constant approaching velocity (range rate).



The second case will be referred to as tangential acceleration, which



isan acceleration ina direction perpendicular to the LOS, causing a



quadratic variation in the target angle being tracked. Since both the



azimuth and the elevation angles are tracked similarly [l], this section



will not distinguish between the two angles. The radial and tangential



acceleration cases are illustrated inFigure 17.



The analysis of the tracking loops inthe presence of accelera­


tion isperformed inthis section for a deterministic input. This is



a realistic assumption for the range of interest, namely, close range



when the signal-to-noise ratio ishigh. It is believed that the tran­


sient behavior of the tracking loops with noisy inputs can only be



determined via simulation of these loops, which isdiscussed inSection



4.0 of this report.



3.2.2 Radial Accelerations



A constant radial acceleration, as shown inFigure 17, causes the



range to change as a quadratic function of time without affecting the



angle measurements. The range tracking loop isdiscussed in [1] and is



shown in Figure 18 for the deterministic case of interest (SNR co implies



p= 1 and no noise). The parameters inthe figure are:
 


T = actual time delay between transmission and reception of a


given pulse. For a passive target at range R,T=2R/c,


where c is the velocity of light infree space.



ORIGUNAL pAGE 1S 
or P'OOR QUALWT 
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Figure 18. Deterministic Range Tracking Loop



T loop estimate of the actual delay T.


AT = T-T = the timing error.
 


Ts = computation time per sample = 107.2 msec when R> 9.5 nmi


= 45 	 9 msec when R< 9.5 nmi.


aa = 	 a-S tracker parameters which vary with the designated range 
as shown inTable 4. 

Table 	 4. a-0 Tracker Parameters



Range (nmn)



<0.42 <0.95 <3 8 <9.5 <13.2



0.4809 0.4526 0.2263 0.1132 0.0566



0.1202 0.1132 0.0283 0.00354 0.000884



Simple derivation results in



s2 ORIGINAL PAGE IS 
AT(s) -s2+8( T s+( A- T(s) , OF POOR QUALI Y 

s) s i 

which, when converted to range measurements, yields


2
s
 

AR(s) = s 6 R(s), 	 (13)2 +a ,s+ 
 

Ts
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where R(s) = Laplace transform of the actual range R(t)


AR(s) = Laplace transform of the range error AR(t)
 


a' and 8' are defined as a' -8a a' A688and 

T
T

s s 

Since the actual acceleration (A) is a rocket burn for a period



of time T, it can be represented as



a(t) = AEu(t) -u(t-T)J , (14) 

where u(t) isthe unit step function. Taking the Laplace transform of



(14) and using the fact that the acceleration isthe second derivative



of range, the range transform can be written as [3]:



R(s) = (1-e5T) (15)

S



which, when substituted in (14), results in:



-
AR(s) - A(I- e sT ) (16) 
s S2+a's+ IV 

The denominator has a positive discriminant for all the values of a and 

8 listed inTable 4 and hence can be factored as s(s+ al)(s+a2), where 

=L z(a- $ 2 /2a 

al T s 

a2 4- (a+ $ 2 / 

Taking the inverse Laplace transform of (16) yields



AR(t) A[( 2 + a2e-alt ale-a2t)
l~a2 aa 2 (al - a'2 )
 


-
- -a2(t T)1
/ + a2e al(t -T)- a1 e 
- + (a... u(t-T) (17)ala2 aa 2 (a1­ a2 )
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Figure 19 illustrates the values of AR as a function of time at


= 
 a range of 10 nmi with an acceleration A= 0 Ig (g 32 ft/sec2) and a



burn time T= 10 sec, while Figure 20 shows the variations of AR for



A=O.Ig and T=l0 sec at a range of 2 nm. Itcan be easily seen that


the error due to O.lg acceleration iswell below the la specifications



for the range error (la= 40 ft and 100 ft at 2 nmi and 10 nmi, respec­


tively). Since it is believed that the value of the acceleration (A)



will actually be of the same order of magnitude as 0.lg or less, no


problems are anticipated intracking radial accelerations during target
 


approach.



3.2.3 Tangential Acceleration



While itwas shown that the radial acceleration affects the range



measurements, the tangential acceleration has a direct effect on the
 


angle and angle rate measurements. The deterministic angle and angle


rate tracking loop [l] is shown in Figure 21. Inthe figure,



OT = actual target angle



OA = antenna angle



A = 0T -eA = angular error 

6T = estimate of the angle rate



K = effective loop gain 

T = time constant



K and T are given in [4] as a function of range and are listed 

inTable 5. 

Table 5. Angle Tracking Loop Parameters



Range (nmi)



<1.9 1.9-3 8 >3 8



K 0 5685 0.2221 0.0288



T 2.7 4 25 12





38



10.o 

a 	= .Ig 
T 	 = 10 sec


= 0. 566


= 0.00177


110­

l.0 	 ORnGINAL PAGE IS 
G I
PWR QUALMI 

0 1


0 5 10 15 20 25


Time (sec)



Figure 19. Range Error Due to Constant Acceleration Lasting T Seconds 
(R = 10 nmr) 



39



0.1­

- R=2 nmi; ,0.2263; B=0.0283 

R= 1000 ft; a=0.4809; B= 0.1202 

a= 0.1 g 

T= 10 sec 

0.01 

5 10 15 20 25

Time (sec)


Figure 20. Range Error Due to Constant Acceleration Lasting T Seconds 
(R = 2 nmn) 

0 



40



OT A A 

Figure 21. Deterministic Angle Tracking Loop



Using Figure 21, itcan be written that 

2 

A(s) = s 
s2+K(sT+l) ) 

(18a) 

OT(S) = Ks OT(S). (18b)s2 +K(sT+l) 

However, assuming that the retro rockets will cause a constant tangen­


tial acceleration A for T sec, the target angle transform can be written



as



(19)
a(s - A[1( 1 eT),
T Rs2 Is



where the range R is assumed much larger than the tangential displace­


ment that takes place in T sec.



Combining (18) and (19) and taking the inverse Laplace transform



yields the following results for the angle error and the angle rate



error.



ORGINAOF POOR PAGE ISQUALT11 
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-
A1 a2 e-al t a, e-a2t. 


- a -- ; t<T 


Aa(t) Raa 2 (a1 -a2 ) _ (20) 

A -alt1 _alT) _a -a2t1 ea2TtRala 2 (a - a2 ) F2 ( - e a1 e a2 ; t T 

KA R a-a2 (al _ ad)+ a2a -e -alt) aa ­1 1-e-~)]_­ Rt 

I 122 a2 

t<T 
(21) 

AKt) -a -a t a2T a alT a1T 

AK T( 1 a2T a2 ­
a1 a2 (al a2 al-a 2 ) + -e (l-e ) e (le 

A tLT 

where 

a1 = -(KT-K2r2-4K) 

a2 = }(K 4Kf T2 .+ 

As isthe case inthe range tracking loop, the system is slightly over­

damped for all values of K and T given inTable 5. (The discriminant



of the denominator of (18) is positive.)


Figure 22 illustrates the behavior of the angle error for a burn



time T= 10 sec and an acceleration A=O.lg for various ranges, while


Figure 23 illustrates the angle error at a range R=1000 ft for a


number of burn times. Comparing the obtained results with the angle


random error specifications, itcan easily be seen that the error due


to acceleration isalways less than 3s and is less than la for all the


cases considered except for ranges less than 1000 ft and burn times


larger than 2 sec. Inthe latter two cases, the recovery time, which


can be defined as the time required after the burn to reside below


the specifications (1a), is equal to 4 sec. Since the actual magnitudes
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a Parameter
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of acceleration are believed to be inthe range of 0.lg or less, the



angle errors due to tangential accelerations are not believed to con­


stitute a major problem for angle tracking.
 


Similar to the angle error variations, the angle rate error vari­


ations are illustrated in Figures 24 and 25 for the same parameters as



used in Figures 22 and 23, respectively. It is evident that the angle


rate errors due to acceleration exceed the 3a angle rate specifications



for all cases studied. For the close range of 1000 ft, the recovery



times to reside within la of the angle rate specifications are 8, 8.75,


9.25 and 9.30 sec for burn times of 1,2, 5 and 10 sec, respectively.



All of these recovery times exceed the desired 2 sec recovery time.



Inorder to reduce the angle rate acceleration errors to the desired
 

levels, the equivalent noise bandwidth of the angle tracking loop has



to be widened considerably, which would result in an appreciable



increase in the angle and angle rate errors due to thermal noise. It


isbelieved that, short of major design changes, any attempt to reduce



the angle rate recovery times to within the desired value of 2 sec is



unrealistic. It is therefore recommended that no design changes be



considered due to the fact that angle rate estimation does not meet



specification values within 2 sec after a burn.


Responses from other values of accelerations for any of the



cases inthis section can be obtained simply by scaling the desired



value with respect to that shown on the appropriate figure. This is


due to the fact that, at high values of SNR and the small accelerations



considered, the systems are nearly linear. The same scaling cannot be


carried out inthe time dimension, however.
 


3.2 4 Angular Acceleration Testing



One of the radar testing procedures proposed by NASA isto fly


a target (airplane) at an altitude R in a circular path of radius r



and an angular velocity of w radians/sec, as shown in Figure 26.


The angular acceleration being tracked by the radar isthen­


2 
eT(t) R cos Wt . (22) 
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R = 10 nmi; fn = 0.027 Hz; 2T 

R = 2 nmi; fn = 0.075 Hz; 2r 

R = 1000 ft; fn 0.12 Hz; 2T 
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Figure 24. Angle Rate Error Due to Acceleration With Range as a Parameter
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Figure 25. Angle Rate Error Due to Acceleration With Burn Time as a Parameter 
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R



Figure 26. Radar Angle Tracking Testing



The Laplace transform of the angle being tracked can be simply shown



to be [3]:



2 
eT(s) r2 23)



Rs (s2+2)



Substituting (23) in (18) results in



2 
A (s) r s(24a) 

R(s2+w)s 2 +)K+ s +2)) 
and 

= r 2 K 2b
r2K 
T(s) R(s +K(ts+l)) (24b) 

Taking the inverse Laplace transform of (24a), and after considerable


algebraic manipulation, the angle and angle rate errors are found to



be



ER() + 22 2w2 (t+
R +W +02)22w2 
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The first two terms represent the transient behavior; hence, they can


be dropped inthe steady-state response calculations, which results in



W2
A st) - r ((y2 2-1/2 (2 2)-1/2 cos (Wt+i), (25) 

where 

V I+ tan )- tan1I (W) 

I [ T~ K2T24K] 

As expected, the steady-state response is a sinusoidal function of time,


as isthe input with a different amplitude and phase shift.



The steady state of the angle rate response can be derived simi­


larly, yielding



C( Y6- 2+ 2 + y ) 2*A(t) = 2-K) cos (Wt+4), (26)ess z + 2)(W2 +y2) 

where



= tan-' Lw(+y) + tan-' (-)- tan-I i)L6 - W2 _K_ ) 

Equations (25) and (26) provide the required expressions for the theor­

etical evaluation of the angle and angle rate performance in the proposed


testing and thus establish the basis for comparing the experimental



results with the theoretical analysis.
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4.0 	 SIMULATION AT SHORT RANGE



The results of the previous sections, target effects and other



effects are combined in this section to develop an overall model of



the Ku-band radar at short ranges (less than a few thousand feet). The



extension of the model to longer ranges does not involve extensive modi­


fication. This model isdeveloped so that itcan be programmed directly



into a digital computer simulation.


There are various simulations at NASA JSC of the Orbiter and, in



particular, of the proximity and docking operations. Some have a man in



the loop and others do not. Some operate real-time and others do not.



The simulation model presented here isdeveloped so that it is essen­

tially modular. That is,with minor interfacing, the simulation model



can be used in any of the simulations presently operating at NASA JSC.


The simulation model will interface with the existing simulations



as shown in Figure 27. The existing Orbiter simulatfons continuously


provide a "trajectory information vector" to the radar simulation.



Among the components of the trajectory information vector, T(t), are



R(t) Range along LOS 

R(t) Velocity along LOS 

R(t) Acceleration along LOS 

OAZ(t) Azimuth angle 

OAZ(t) Azimuth angular rate 

T(t) oOAZ(t) Azimuth angular acceleration (27) 

eEL(t) Elevation angle 

QEL(t) Elevation angular rate 

"6ELt) Elevation angular acceleration 

LR(t) Effective target length along LOS 

Le(t) 	 Effective target length perpendicular


to LOS
 


The components of T(t) in (27) are not intended to be complete.



The radar simulation assumes these components are available when necessary.





Radar Operator Control



Trajectory


Information- Nose System


Generators Constants
Vector 
 

- 1-I 
Orbiter I Simulation Error 

Simulation of Vector 

Orbital T(t) 'Ku-Band 
Radar
Geometry 
 

E(t)
I 

I I 
iiIControl I~t 

ksstinx Simulation Observables



mFigure 
 27. General Block Diagram of Orbital Simulation and the Simulation of
the Ku-Band Radar t 
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Other necessary inputs to the radar simulation are internal system



constants, e.g., PRF, pulse width, and a set of mutually independent



random noise generators. Both uniform and Gaussian random noise gener­


ators will be needed.



The radar simulation will output an error vector, each component



of which will represent a tracking or an estimation error. Each of



these errors will be the result of several error contributors. The



effect of each contribution will also be available. The error vector



is sent back to the existing simulator when some or all of the error



components are added to the components of T(t). The measured or observed



variables are then given by



6(t) = T(t) + E(t). 	 (28)



Inthe 	 succeeding parts of this section, the necessary components



of the 	 radar simulation are detailed. Finally, the overall description



isexamined again at the conclusion of this section.



4.1 	 Simulation of Thermal Noise and Target Scintillation Effects



Inorder to simulate the errors due to thermal noise and target



scintillation on a digital computer, discrete models for the tracking



loop operations must be developed. Inthe Ku-band radar, there are



two primary closed tracking loops to track range and angle. The range



rate istracked via an open loop, and the angle rate is estimated inthe



angle tracking loop [1].



4.1.1 	 Tracking Error Simulation Due to Thermal Noise and Target


Scintillation inRange, Angle, and Angle Rate Tracking



The range tracking loop isshown inFigure 28, while the angle



tracking loop isshown inFigure 29. All the parameters are defined



in [1, 	 Appendices E and F] and will not be repeated here.


Inthe 	 range tracking loop, the closed loop transfer function



between the noise input nx and the estimated time of signal arrival



(range) t isgiven by [1, Appendix F].



H' (s+0'/(a' Ts)) (29) 
HR(s) = 2+'s+B'/T 
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T



Figure 28. Range Tracking Loop Block Diagram [1, Appendix F]



a


n-4p km nx



A



Figure 29. Angle Tracking Loop Block Diagram Showing Angle Rate


Estimator [1, Appendix D]
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where a' and s'are related to the a-0 tracker parameters via the equa­

tions: 

8 R


T

s



A 8 PR8 
T

s



T isthe time per sample of the Gaussian random noise n by the D/A

S 
 x 2 

converter whose mean iszero and whose variance isequal to xR [1].


This variance is a function of the signal-to-noise ratio and the number


of independent samples (N)being post-integrated. For range tracking,



N= 20.



Similarly, for the angle tracking loop, the closed loop transfer



function between the input noise n, and the angle estimate A i
isgiven



by [I, Appendix D]



HO(s) K(Ts+ 1) (30)s2+ K(rs+ I)'



whereas the associated transfer function for the angle rate is [1,



Appendix D]:



H;(s) Z Ks (31) 
s +K(TS+ l) 

where K isthe equivalent loop gain and T isa time constant defined



in [1].


The noise n. is Gaussian random noise with zero mean and variance



equal to



a km axe (32) 

The Theevariance a2 as isthe case inthe range tracking loop, is a func­, 
 

tion of the signal-to-noise ratio and the number of independent samples



(N)being post-integrated. For angle tracking, N=l0.


It is evident from (29) through (31) that the three transfer



functions can be parameterized using the general formula
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a4(s+a3)


(33)
H(s) = (s-+-al)(s+a 2) 

This is possible since for all the parameters under consideration the



denominators of the transfer functions have positive discriminants. 

The latest values of a, $, T, and K are summarized in Table 6, while 

the parameters al, a2, a3, and a4 are defined for the three cases in 

Table 7. It is noted that a1 , a2, a3, and a4 are all positive numbers 

and that a1 > a2. 

4.1.2 Stochastic Process Modeling



The continuous stochastic process modeling of the continuous



tracking loops can now be obtained as shown in Figure 30. The equations



describing the processes are



Xl(t) = -a2 xl(t) - (a,-a 3) x2(t)+ a4 u(t) 

x2(t) = -a1 x2(t) + a4 u(t)



which can be written in a matrix form as



R(t) = AX(t) + Bu(t), (34) 

where



A [x(), [a 2 -( a31[ B .x(t)t] _a ] a4



a4 x2 (t) s+ a3 x1(t)



u(t) s+a I s+ a
2



Figure 30. Continuous Stochastic Model
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Parameter 

Table 6. Tracking Loop Parameters 

<0.42 0.42-0 95 

Range (nmi) 

0.95-1.9 1.9-3.8 3.8-9.5 >9 5 

0.4809 0.4526 0.2263 0.2263 0.1132 0.0566 

0.1202 0.1132 0.0283 0.0283 0.00354 0.000884 

K (rad)2 0.5685 0.5685 0.5685 0.2221 0.0288 0.0288 

(sec) 2.7 2.7 2.7 4.25 12 12 

Ts (msec) 45.9 45.9 45.9 45 9 45.9 107.2 

Table 7. General Transfer Function Parameters 

H(s) 
a4(s +a3) 

- (s+al)(s+a 2) 

Loop 

Range 

Rg'+ J' 

a, 

2 - 4,/T 

2 

s a'- j12 

a2 

- 4'/T, 

2 

a3 

B 
UT 

a4 

at 

' 

Angle Kt +Kt2T 
2 

2 _4 Kt--KT2 

2 
_4 1 

T 
KT 

0Angle Rate KT +0K2T 2 _4 KT -KK 2 4 
2 2 
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In (34), the parameter being tracked is xl(t) [R, e or 
2
gj. Also, 

u(t) is white Gaussian noise with zero mean and a variance au equal to 
2 2U

axR for the range tracking loop and equal to 0ne for the angle (angle



rate) tracking loop.



The discrete time model of (34) can be written as



X(k+l) = C X(k) + D u(k) . (35) 

In Appendix A of this report and in [5], matrices C and D are given by



C = eAT (36) 

F _ D[Eu(k)u'(k)]D' = auj e- BB' e dx , (37) 

where T is the computer update time.



There are numerous methods for finding eAT [5-7]. One simple



approach is


=eAT T-I{[sI -A]-I} , (38) 

where T-I is the inverse Laplace transform. Performing (38) yields



C = eAT e e - eal (39) 

where



a3 - a1 - (40) 
aI - a2 

To calculate D and the covariance matrix of u(k), namely, [E(u(k) u'(k))],



the following integration has to be performed



a x(aa ~ e - e r e]L 

F0= (a4 ud2 T -alx il' a2 x -alx x dxf 0e -a] 1 1 e- a - e-aIN e- a l1 

which reduces to
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(a 4 x(a4U)2 
 

-a 2T + 	 -(a+a2)T{ 	 (+Sj 2 (l+s)(l-e ' ) 

2a al +a2 ) (1+e)(1-e-(al+a2)T E(le-2a T 2 
 

2 -2aIT 	 a, +a2 2aI


+ 2a, 

-2 f	 	)
-(1+e)(l-e (al+a2)T sdl-e		 1- e-2alT



a, + a2 2al 	 2a1



(41)



Since A is in Jordan canonical form [7-8] and thus cannot be diagonalized,



or since xI(t) and x2(t) are not independent, u(k) is a two-dimensional



discrete process which implies that two Gaussian random generators are



needed to realize this discrete process.



Assuming that the variance of u(k) isgiven by



E[u(k) u'(k)] =[ .2 

which implies that the two components of u(k) are independent and


expressing the matrix D as



[11 d12]



0= 	 d21 d22]


then



d2lU12+d 12 a2 d d 2 2 
t E(u(k) u'(k)) DI = d1 dl ll +22d12"2 1 

d 	 d 2d 2 22Ld 2 
d	 O~+ 22 ' j11 d21 01 d22 d12 a2 d21 2 

(42)
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Equating (41) and (42) results inthree equations to be solved



for the entries of D and E(u(k) u'(k)). However, since there are six



unknowns involved, three have to be chosen arbitrarily without violating


2


the physical nature of the processes. Setting a1i=I, d 1 l,d22=0,



and solving for the remaining entries results in:



-2aIT
I 

d = 2a1-/F21 -(al+a 2 )T 2aT2


(l-e 1 '2a_2alT( 

2aI 2/2 a1 +a2 

2 a, +a -2alT (a4a)2 (44)

1-e



2a
1



and



- (a l + a2 )T ) + E2(le­d2 = l-.e2T )(I+6) 2e(l+)(l-e 2alT](a 4 _ 22. 
12 2a2 -~ a +a2 +d a 4 au) 2j(
 

(45)



A diagram of the discrete time model isshown in Figure 31, which results



from (35) with d1l=1, d22 0, and 2=1.



It is emphasized that, in order to simulate the thermal noise



and amplitude scintillation effects for the range and angle tracking



loops, two independent Gaussian noise generators are needed



4.1.3 Software Implementation



The actual implementation requires a software equivalent of



Figure 31, where {a,, i 1,4} can be calculated for a given range using



Tables 6 and 7. The parameters d21, d12 , and a2 are calculated using


and 2
, however, a2
(43) through (45). Inorder to compute d21, 
 d12,


(the variance of the input noise inthe continuous model) has to be cal­

2



culated. As stated previously, au isgiven by
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Figure 31. Diagram 	 of Discrete Time Model for Range and Angle Tracking Loops
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02R for range tracking



2 = (46)



/'B 2 U2for angle and angle rate tracking 

where a2 and 2 have been calculated in [1] and are shown in Figure 32


xe 'xR



as a function of signal-to-noise ratio (SNR) which isobtained from the


2
radar equation. Figure 32 also shows a which isthe variance of the



input noise inrange rate tracking, which will be discussed next. SNR


isdefined as the signal-to-noise ratio at the output of the doppler



filters, SNRA Pavg r/(NOBF). For the Ku-band radar antenna, BB = 1.60



and km = 1. The only two additional parameters needed are the normalized


correlation coefficients which are given as



(47a)
= 14 
SNR 

for range, and



Pe = (47b)


I+-


SNR



for angle and angle rate.



4.1.4 	 Tracking Errors Simulation Due to Thermal Noise and


Target Scintillation in Range Rate Tracking



The simulation of the thermal noise and target scintillation


errors intracking range rate issimpler than the previous cases, due


to the fact that range rate tracking isdone via an open loop, where



m successive readings are averaged to give the desired range rate esti­

mate [1, Appendix GJ. This isaccomplished via a sliding window with


m=2 for R> 9.5 nmi and m=4 for R<9.5 nmi. Contrary to range tracking,


the range rate estimate isnot used to continuously update the locations


of the 32 existing doppler filters but rather to select the doppler



filter closest to the range rate reading [l]. To carry out the range


rate simulation process, it isfirst necessary to compute the signal­

to-noise ratio via the radar equation and then to compute the normal­


ized correlation coefficient which is given by [l, Appendix G]:
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1 (48)



SNR


2 

The variance uA which is shown in Figure 32 is then computed,



and the range rate mean square error per sample (a /s) is found using



the following relation derived in [1, Appendix GI:



/sc) x (49)



where BF is the doppler filter single-sided noise bandwidth, c is the



velocity of light in free space, and fc is the Ku-band RF frequency used.



A white Gaussian noise generator is used with zero mean and a variance



given by (49) to generate the required samples, and a sliding window



averaging of the last m samples is used to give the range rate error,



as illustrated in Figure 33.



The simulated errors in range, range rate, angle and angle rate
 


tracking due to thermal noise and target scintillation are combined with



the other types of error in each case of interest to produce the overall



simulated tracking error.



4.2 Radar Simulation of Relative Accelerations



The responses of the various Ku-band radar tracking loops to



accelerations orthogonal to and along the line-of-sight (LOS) have been



analytically developed in section 3.2 of this report. The results of



numerical computation are also presented in section 3.2. In this sec­


tion, we present digital simulation models which allow for arbitrary



accelerations. When simulated real time, this allows for evaluating



acceleration effects when a human operator is in the loop.



4.2.1 Closed Loop Transfer Functions



In the absence of noise, the range tracking loop is shown in



Figure 34. Using this figure, the closed loop transfer function between



the range R and the range error is (in the complex frequency domain):



AR(s) = 2+ 8 s 8] R(s) (50) 

S 



BF G(O,%a(per sample)) 

Compute Compute Compute
 WnSlidng
R Compute SNR I Pt cr/sWindow 1,AftN 

SNR p kRs Average 

Gaussian


Noise



Generator



G(O,)



& gure 33. Simulation- Range Rate-Thermal Noise and Amplitude Scintillation Errors
c33 



Figure 34. Range Tracking Loop Without Noise [l, Appendix F]
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In terms of acceleration along the LOS, (50) becomes



AR(s) = 2+ 8 + s) 	 (51) 

We therefore define the transfer function between acceleration along



the LOS and range error as



HR(s) A 1 	 (52)


+T1-. s + _-2 

S 

For the angle tracking loop, in the absence of noise, the block



diagram reduces to that in Figure 35. The relationship between the



target angle 6T and the angle error AG is



2


bo(s) = 2 + K((s+ S) 	 (53) 

which, interms of the angular acceleration, becomes



A(s) [2+ Ks+ eT(s). 	 (54)



The closed-loop transfer function between angular error and angular



acceleration (J_ 	 LOS) isdefined as



H8(s) s~2 + K(Ts+l) 	 (55)



Finally, also from Figure 35 for angle rate, the relationship between



the angle rate estimate 6T and the angle rate eT is



6T(s) 2 Ks aT(s) 2 K T(S) (56)


s2 + K(ST+1) S + K(ST+1)



In terms of the error of the angular rate estimate, A6 6 - el' and 

angular acceleration, the relationship is 

As) 2 s+ KT 6 	 (57)
-

s + K(st+l) 	 ORIGINAI PAGEIS


OF POOR QUALJTY





ST 

Figure 35. Angle Tracking Loop with Angle Rate Estimation Without Noise 

[1, Appndix D
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from which we define the transfer function relation angular acceleration


and angle rate estimate error as



s+KT 

H6(s) - 2 + K(58) 
s + K(S-r+I) 

For acceleration, the three transfer functions of primary interest


are given in (52), (55), and (58). We note that HR(s) and HK(s) are


of the form



Hi(s) = (s+a(s+a2) (59a)



and H(s) is of the form



H s + a3 (59b)
2(s) = (s+a1)(s+ a2)



The discriminants of the transfer functions are shown inTable 8,


where it isobserved that a1 and a2 are real and positive inall 
cases.


Digital simulation algorithms will therefore be developed for Hi(s) and


H2(s)in (59) under the assumption that a,>0 Also note that a,>a2


inall cases.



Table 8. Discriminants for Acceleration Transfer Functions



Range Angle Angle Rate



a1 T(i+ 2-/) [KT+ K 2K [Kr+ -K4K] 

a2 T-s (a - a2s/2) [KT - JK2tr4K] [KT- _K2T24K] 

a3
 Kr
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4.2.2 	 Digital Simulation Algorithms for Acceleration 

The inverse Laplace transforms of Hi(s) and H2(s)are 

hl(t) = (al] a2Eexp (-a2t) - exp (-alt)] (60a) 

h2(t) = (ai1 a)[(a3 - a2) exp (-a2t)-(a3 - a1 ) exp (-alt)J. (60b) 

The z-transform of hIt), i=1,2, is given by [9-10]: 

H (z) X hh.(nT) z-n, i=1,2 . (61)n=O 

For i= 1, after some algebraic simplification, the z-transform


can be written in closed form as



H(Z) 	 = (a1 2 ) La -la2T- e-a 1 T) ](.a 	

ja2)Z 	
2 e-1(a(+ae2)T 
 / - e 
 a2T) 
 (62) 

For i=2, the closed form of the z-transform is



e - a2T-1 (1 -alT) 

H2 (z) = z2(e_ (a2 +a)T±) z-l(e-alT+ + 1 (63) 

It is observed that HI(z) and H2(z)are of the same form,



namely,



H(z) A0 1 -2 	 (64) 
z 1 + 	B2 z 2-
1 + B1 

This transform can be realized in several ways Assume the input


sequence is x(n) and the output sequence is y(n), as shown in Figure



36. In the z-transform domain



A0 + Al 	 z- I 

y(z) 	 = H(z) X(z) = + 1 2 xCz) , (65) 
±Bz2
1 +B Iz +
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x(n) H(-) y(n)



Figure 36. General Block Diagram of Digital Simulation


for Acceleration



-
where, for causal filters, z1 represents a time delay of T seconds,



T being the computer update time. Inthe time domain,
 


y(n) = - (B1 y(n-l) + B2 y(n-2)) + Aox(n) + A1 x(n-l). (66) 

Three different realizations of this type of transfer function



are shown in Figures 37 through 39. In Figure 37, the direct recursive



realization isshown. The constants are those of H(z) in (64). The



Canonic Realization is shown inFigure 38, where the constants are also



those in (64). Inboth of these realizations, there is a severe accu­


racy limitation on the constants {At} and {B1}. As an alternative,



the Parallel Canonic Realization isshown in Figure 39. This reali­


zation implements the representation



H(z) z + (67)



which is a partial fraction expansion of H(z) in (64). This implemen­


tation isrecommended since the accuracy on 1Y and {g,} inthe Parallel



Canonic Realization isnot nearly as severe as the accuracies in the



other two candidate realizations.
 


Inthis section, the similarities of the digital algorithms for



simulating the effects of acceleration orthogonal to and along the LOS



have been presented. The closed loop transfer functions between accel­


eration and the corresponding tracking error are given for all tracking



loops inthe Ku-band radar. Finally, specific implementation realiza­

tions are considered, and the recommended one is specified.
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n Z-1 A +1 Yn 

Figure 37. Direct Recursive Realization



+ + 

Figure 38. Canonic Realization
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Figure 39. Parallel Canonic Realization
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4.3 Range Rate Logarithmic Discriminant Error Simulation



Inorder to simulate the range rate logarithmic discriminant



error, it isimportant to examine the nature of the problem. The range



rate isestimated during track by using a set of 32 doppler filters



and a log discriminant generator. The mean of the output of the log



discriminant generator [E(z)] was found in [I, Appendix G] to be:



c (s2 +4


N2 sn2 [L (1- i SNR 

E(z) = ln 32 (68)Cos' 7 

2 si1n 2 [--LcI +2 )] SNRN4
 

where SNR 
 Pavg 	 r = signal-to-noise ratio at the output of the doppler

NO BF filter bank



AAfd 
=- =ratio of the doppler offset from the center of two
 
BF 	 adjacent filters to the one-sided noise bandwidth



of the filters (BF)


= 
 N : number of pulses being added coherently (N 16).



The value of BF isgiven by [2]:



/186 Hz 	 R >.9.5 nm 

F437 	 Hz 
 R < 9.5 nmi



Figure 40 illustrates the variation of E(z) as a function of 4 with SNR



as a parameter. Since the SNR is not known, a given value of E(z) does



not result ina single value for because the mapping isnot one-to-one,



which gives rise to the range rate logarithmic discriminant error. In



any implementation, a given one-to-one mapping has to be established.



The error can then be found as a function of the signal-to-noise ratio.



The maximum error found inthe expected range of operating signal-to­


noise 	ratios can then be used as a bound for this error. Two methods



will 	 be presented here. The first is being implemented by Hughes Air­


craft 	 Corporation, and the second is included as an alternative. The



simulation has two parts: The first isto find the value of Afd given



a certain range rate vd, and the second is to find the error using a



given 	 method of implementation.
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4.3 1 Finding the Doppler Offset Afd



Since the doppler filters remain fixed in the tracking mode with



a spacing of (BF/2) Hz apart, the doppler reading isobtained using the



filter whose center frequency isclosest to the actual doppler. The



two adjacent filter readings are used as inputs to the logarithmic dis­


criminant. Figure 41 illustrates the location of the 32 filters. The



number between two adjacent dotted lines represents the filter which is



used for doppler measurement when the actual doppler lies between the



two lines. To obtain the doppler offset Afd' we assume that the velocity



(range rate) R is positive; the actual doppler isthen equal to



f 2R f (69) 
d = cc 

where fc isthe RF frequency and c is the velocity of light in free



space. For R in ft/sec,



f 2(13.885)18 R = 28.2 R (Hz) A9.83569 x108 OIG]IAL PAGE IS 
or pO9R Q1JAL"Y 

We select the filter n to be such that



(2n-l) BF (2n+l) BF 
2 f d < F n=1,32. (70)2~ 2 

If n, is the particular n satisfying (70), then



Afd = - fd (71) 

This value of Afd is used to calculate =Afd/BF There are several



points to observe:


(1) is a positive number which isless than 1/4.



(2) The absolute value used in (71) isdue to the symmetry
 


of the problem.



(3) For negative range rates, the absolute value of the



velocity is used inthe calculations resulting inthe number n1.



Since the filters are arranged in a circular configuration, the filter
 


(32-n l) is used instead of n, to obtain Afd in (71).



(4) The filter numbers 32 and 0 represent the same filter.





R (nmi) 

PRF (Hz) 

BF (Hz) 

>9.5 

2987 

186 

<9.5 

6970 

437 

N = 0 1\30 

/Filter Number-­

31 32 

fcC 

I 
iI 

8 F/2 

II 
I I 

I 

fc+ fPRF 

Figure 41. Doppler Filter Configuration in Track Mode 

01 



76



4.3.2 	 Methods for Finding the Error



Assuming that a one-to-one mapping between E(z) and exists,



then for a given reading E(z), a value cI can be found using that



mapping. The range rate logarithmic discriminant error then becomes



2
ARLD = ( - l)BF/ 28 . ft/sec. 	 (72) 

Finding I depends on the particular mapping. Two such mappings are



considered.



(1) HAC Mapping



This isthe actual mapping being implemented by Hughes.
S 

=
straight line with a slope equal to that of E(z) at c= 0 with SNR


is used to obtain ¢I" This is the straight line mapping as shown in



Figure 40 The slope (m)of the line can be found from (68) to be



1m 	 (73)
Tcot 	 (M 

The resulting range rate logarithmic discriminant error isshown in



Figure 42 along with HAC values for comparison purposes.



(2) Infinite Signal-to-Noise Ratio Mapping



Since the ranges of primary interest are close ranges,



E(z) at SNR=- can be used as a reference (mapping). The value of Cl


can be found from (68) by equating SNR to infinity, resulting in



1 F2eE( z)/2
 

,= 2f L+ eE(z)lj(4 

The actual error at a given SNR can be found using (72). More



accurate methods can be suggested to minimize the range rate log dis­


criminant error. All of these methods, however, require major design



modifications, which are neither warranted nor recommended at this



stage.
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4.4 	 Simulation of Target Effects



Models are given in this section to take into account the fact



that a true radar target is not a point target. Various models have


been prepared in the past, but the simplest and possibly the most effec­


tive are those described by Barton [11-12]. Variations of those models


are described and recommended for the Ku-band radar simulation. The



target effects on each of the tracking loops are considered individually.



Ineach case, an analog computer model isgiven which involves broad­


band noise being passed through a first-order filter. The model using



a digital recursive algorithm ispresented inAppendix A of this report


and applies directly to each case presented here.



4.4.1 	 Target Effects on Range Errors
 


A block diagram of the analog model which represents target



effects on range errors isgiven in Figure 43. The output ART(t) is


the range error induced by the target, causing time scintillation of



the transmitted pulse. The total power or, equivalently, the standard


deviation of this error isapproximated as



'ART ar Lr 	 (75)



where the units of aART are the same as Lr (feet or meters) and ar is



a proportionality constant inthe range



0.2 : 	ar 0.5 . 	 (76)



This says that the standard deviation of range errors due to target


effects is20% to 50% of Lr, where Lr isthe effective target dimen­

sion along the LOS. This is a value which must be approximated and



can also be time varying.



nr(t) 	 AnoMdlo 
 ARTt R



Figure 43 Analog Model of Target Effects on Range Errors
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A simple and satisfactory model of the target (ina plane) is



a rectangle with minimum dimension Lmin and maximum dimension Lmax*



We assume the target isrotating inthe plane created by the LOS by



an amount dr radians/sec. Then the effective target distances along



and perpendicular to the LOS are


Lr(t) = L0 [1 + y COS (Wrt)] (77a)



and



Lx(t) = L0 [I + y sin (wtrt)] (77b)



respectively, where



L0 Lmax + Lmin (78a)
0 2



and



A Lmax - Lmin
Lma
= L:Lx + Lmi (78b)n



Inthis model (shown in Figure 44), it is assumed that the rota­


tion is small compared to the reciprocal of the tracking loop bandwidths.



This iscertainly the case with any target for which there isexpected



rendezvous and docking. As a result, Lr(t) and Lx(t) need not be updated



every T sec (computer update time) and could be updated every 10 T to
 


20 T.



The time constant Tr of the target along the LOS inFigure 43



isgiven by



r S 4u '(79)
4 (r Lr 

where X isthe wavelength. Ifthe target's relative rotation with 
respect to the LOS isidentically zero, then this time constant goes 

to infinity, and the range error due to target effects is a constant 

bias error. For this time constant and the standard deviation in (75), 

the one-sided power spectral density (PSD), Wr , of the broadband noise 

nr(t) isgiven by 



Lmax 

Target Lmi Ln( 

L Ct) 

rx 

Radar - OS 
Antenna 

L(t) 

OO;A;Figure 44. Description of Rotating Target Dimensions 

Y,6 
P0 

0O 
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a r (units of distance)2 sec. (80) 
Wr W 

A block diagram of the computations necessary for this simula­


tion of target effects in range isshown inFigure 45 The stochastic



differential equation for ART(t) is



GA) ART(t)+GLART(t) = r RTr. fr(t) (81) 

To convert this to a discrete time digital simulation, follow the pro­


cedure at the endof Appendix A of this report. InFigure 45, the



factor 1/0--accounts for the improvement on the target effect errors



which results from frequency diversity.
 


4.4.2 Target Effects on Range Rate Errors



A block diagram of the model of target effects on range rate
 


errors is shown in Figure 46. The standard deviation of the error is



approximated by



2 a Lx r 
= vxr Hz, (82) 

where av is a proportionality constant which, for most targets, is



within the interval



0 4
0.2 < a v . . (83)



Interms of range rate, the standard deviation is



av = avLx wr (units of distance)/sec . (84) 

The time constant of the target effects on range rate, v' is
 


approximately equal to



L sec, (85)



where Wr isthe same rotation rate of the previous section inrad/sec.



If 20, there are no target effects on range rate.
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PSD = 1 WOd= r I//5 

W0 = One-sided PSD CART =aL 
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Figure 45. Simulation of Target Effects in Range 
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nv(t) 1 TAR(t)


Figure 46. Analog Model of Target Effects on Range Rate Errors



For the standard deviation given in (84) and the time constant



in (85), the one-sided PSD of the noise nvCt) is



Wv = a2 L Aw (units of distance)2/sec. (86) 

The block diagram which depicts the computation necessary to



simulate the target effects on range rate is given in Figure 47. The



effect of frequency diversity (afactor of 5 improvement invariance)



isalso shown.



The stochastic differential equation for ARTt) is


d(At) = ART(t) +(-) n,(t), (87) 

which can be simulated digitally via Appendix A.



An example calculation of the standard deviation is:



Example: av = 0.35



Lx = 30 ft



W r = 2 deg/sec



a dI = 0.37 ft/sec (without frequency diversity) 
T = 0.17 ft/sec (with frequency diversity) 


Note that the target effects on both range and range rate are



independent of the true range. Itwill be seen that this isnot the



case with the angle and angle rate estimates.



4.4.3 Target Effects on the Angle Tracking Loop



The target effects on the angle tracking loop are similar to



those of range and range rate presented above with the exception that



the effect depends on the range to the target. The block diagram is



shown inFigure 48. The standard deviation of the angle error due to





Target Rotation (rad/sec) 	 COMPUTE



V 4 rLx 
Target Length L LOS 
 

Range Rate


Target Effects



GaussianAT(t ) Frequency


Generator s1- versit



PSD = 1 W v x r 	 1/ 

Example. 	 a. = 0.35 L 

Lx 
 = 30 ft AR av Lx r 

W r 	 = 2 deg/sec



=
A 0.37 	 ft/sec (0.17 ft/sec with frequency diversity) 

S 	 Figure 47. Simulation- Target Effects in Range Rate 

jo 0 



Target Rotation (rad/sec) 

x 

Target Length ILOS 

a0 

4wa Lx 

Gaussian Noise 
Ge ner at or 

PSD = 1 we 

a 2 

R_a 

R a 

n (t) 
s1 

0rad 

--X­ -­t 

Frequency 

Diversity
I/iW 

Figure 48. Angle Errors Due to Target Effectsm 

Target Effects 

on Angle Error 

Co 



86



target effects isapproximated by



aeLx



a - R radians, (88) 

where the proportionally constant a is also in the range
 


0.2 < a0 0.4 (89) 

and Lx and R are in the same units. The time constant T of the analog



model is equal to



4 L sec, 
 (90)


Ta x



where ta (inrad/sec) is angular rotation in the plane perpendicular



to the LOS. The corresponding PSD, W., of the broadband noise n0(t) is
 


a Lx A


We sec (91)



The necessary computations are shown in Figure 48. The stochastic



differential equation for AO(t) is



d A e(t) = 1-f fl 
dt (_r) AO(t) + k-) n0(t) ,(92) 

which is simulated, as are the others, via Appendix A.



The standard deviation in (88) is plotted in Figure 49 for cases



that are expected on the Orbiter. It is seen that the target effects



can be expected to cause the angle error to be over the specificatio6



value at relatively large ranges For the values chosen, the range at



which the antenna field of view is 10% and 100% filled is indicated on



Figure 49 using the computation described in Figure 50.



The results indicate that reliable angle tracking information
 


cannot be expected at ranges above several thousand feet when Lx = 60 ft.



A rule of thumb is that, when the antenna beam is filled by more than



10%, angle tracking difficulties should be expected. Inthe case of the



Orbiter, however, this percentage can be increased somewhat because of



the slow rotation rates that are anticipated. The solution to this prob­


lem is described in the introduction of this report.
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4.4.4 Target Effects on Angle Rate Estimation



The angle rate error caused by target effects is best estimated



from the development in [1, Appendix D], wherein the rates of the
 


standard deviations are given by



c 2 fn 
_ 4 (sec (93) 

4 c-42 + I 

where fn = natural frequency of the angle tracking loop



= damping factor of the angle tracking loop.



This can also be written as



[ 2irfn 

n(2-)2 ( Trf )2+ 1 

where T is the time constant of the angle tracking loop. For R<1.9 nmi, 

the present system parameters [2] are 

2r = 5.4 sec 

f = 0 12 Hz, (95) 

for which the term in brackets in (94) isequal to 0.332 (sec)-I.
 


Since the angle rate estimate is derived directly from the angle



tracking loop (see [, Appendix D] or section 4.1 of this report), the
 


target effects for angle rate will have the same power and time con­


stants as employed for the angle tracking loop. Angle rate errors can
 


be determined directly from angle errors as shown inFigure 51.


Sample computations of the angle rate error are shown in Figure



52, where it is noted that the specification value on standard deviation



is not attained below several thousand feet for most target sizes.



An alternative solution to this difficulty has been proposed and



isdescribed inthe introduction of this report.



4.5 Overall Description of Ku-Band Radar Simulation



Inthe previous parts of this section, the necessary components
 


of the Ku-band radar simulation were presented. Inthis section, the



components are assembled and certain additional errors are taken into



account.
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4.5.1 Range Error Simulation



The range error simulation block diagram is given in Figure 53.



The target effects, thermal noise and amplitude scintillation errors,
 


and acceleration errors have been previously diagrammed. The component



bias is a range error which results from time delay variations of the
 


RF signal through the various components in the front end of the radar.



These variations are due to temperature, aging, and the like. The



maximum value of these components [2] has been estimated as



L = I±28'I max for R<2500'



L = I±77'1 max for R>2500'. (96)



The variation is very slow. Therefore, we propose to model the component
 


bias as a random variable, either Gaussian or uniform. In the Gaussian



case, set 3a= L, with L given in (96). In the uniform case, the proba­


bility density function extends from (-L,L), and the variance is



a= L/,3-. 

A second additional error component of range error is due to



data staleness. Using the update times of the computer involved with



the Ku-band radar, a stochastic model can be developed similar to those



used in the target effects simulation. A simpler alternative is to
 


periodically use a sample of a Gaussian noise generator whose 3a value



is equal to 1/2 the maximum data staleness value and whose mean has



the same value. This is depicted in Figure 54, where M corresponds to



the maximum data staleness time.



A sample computation of range errors in the proximity operations
 


region is shown in Table 9. It is seen that, at short ranges, the com­


ponent bias and target effects constitute the major part of the range



error. The acceleration effects are small, and the effects of data
 


staleness were not taken into account in the computations of Table 9.



4 5.2 Range Rate Error Simulation



A general block diagram of the range rate error simulation is



shown in Figure 55. All contributions to the range rate error have



been presented in the previous sections A sample computation is shown



inTable 10. The maximum range rate error due to the logarithmic dis­


criminant error would occur only at lower signal-to-noise ratios. At
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Table 9. 	 Typical Case of Proximity Operations Range Errors



1. Thermal Noise 	 a 0.1 ft 

2. Target Effects 	 a 	 arLr ft



3. 	 Component Bias a = 28/3 ft (Gaussian) 

= 28/v ft (Uniform) 

4. Error from Acceleration R Small



5. Data Staleness 	 Gaussian Random Variable



Example: 	 ar = 0.3 atotal = 18.4 ft (Gaussian



Lr = 30 ft = 25.3 ft (Uniform)



Table 10. Proximity Operations Range Rate Errors



1. Thermal Noise 	 a 	 < 0.1 ft/sec 

2. Target Effects (Example in a 0.17 ft/sec 
Section 4 5.2) 

3. Ln Discriminant Error Max 0.4 ft/sec



4. Acceleration Effects Negligible



atotal 0.5 ft/sec
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Figure 55. Range Rate Error Simulation





96



close ranges, the SNR will be quite high, so that the logarithmic dis­

criminant error will be much less than the maximum indicated inTable


10. Inthe absence of significant target rotation, the Ku-band radar


can be expected to provide satisfactory range rate data down to a few


hundred feet.



4.5.3 Angle and Angle Rate Error Simulation



The general block diagram of the angle and angle rate error simu­

lation appears inFigure 56. All contributions to these errors have


been discussed inprevious sections. The primary contribution at close


ranges isthe target effects, plots of which are presented insection



4.4.4.



4.5.4 Additional Comments



The acceleration effects and thermal noise effects took into


account the transfer function of the Ku-band radar. When the target


effects were taken into account, the effects of the transfer function


were not included. This would need to be done ifthe power spectral


density of the target effects were wider than those of the radar track­

ing loop. Since the target rotation isexpected to be very small, the


bandwidth of the signal will not be more than 0.1 Hz or-less. There­

fore, target effect errors will be direct errors, and radar filtering


will not alter them.



As a final remark, it should be noted that no range gates are


used at close range (R<0.42 nmi). Instead of the straddling loss,


there isa substantial signal loss due to the two-pole Butterworth


filter when the range isshort and the pulse width is 0.122 psec. The


response to such a pulse is shown in Figure 57. Since only one sample


per pulse istaken at short ranges, the maximum possible power loss is


found to be 6.5 dB. This loss should be included in the radar equation


when computing the signal-to-noise ratio which isto be used in the


simulation computations.
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Figure 56. Angle and Angle Rate Error Simulation
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5.0 ELECTRO-OPTICAL DOCKING TECHNIQUES
 


This section describes the results of a preliminary tradeoff



analysis conducted to identify viable electro-optical (EO) docking



techniques to supplement the Ku-band radar at short ranges from



approximately 1000 ft down to 25 ft.



Section 5.1 presents an analysis of the geometrical relations



involved in the co-planar case, including an error-sensitivity analysis,



while Section 5.2 contains a description of the various EO system con­


cepts considered for both cooperative and noncooperative satellites.



The primary device for implementation of these techniques is the



laser. Further study and analysis of the proposed methods are needed



to confirm the tentative conclusions given here.



5.1 Analysis of Ranging Techniques



In this section, the geometrical relationships used to compute



the "perpendicular range" from the baseline of the docking station



(Orbiter/Shuttle) to the satellite (target) are developed. Two basic



methods are defined- (1)triangulation (angle measurement) and (2)



range-only measurements. Possible combinations of these are also



noted. Various electro-optical concepts utilizing these techniques



are described in Section 5.2.



5.1.1 Triangulation



The triangulation method requires two angle trackers situated



at the extreme ends of the Shuttle baseline (to maximize range measure­


ment accuracy). If the distance between them is accurately known and



the appropriate line-of-sight (LOS) angles to the satellite are measured



by the trackers, the perpendicular distance from the baseline to the



satellite can be determined by trigonometry When the tracker angles



are measured in a coordinate system that isfixed with respect to the



Shuttle, the "range triangle" will not, in general, lie in the reference



plane Although general, three-dimensional relationships would be



employed in the real docking system (i.e., they would be programmed



into the docking computer), only the much simpler co-planar case will



be considered here, since itsuffices for preliminary analysis.
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The co-planar case is illustrated in Figure 58, where a and b


are legs of the triangle, k is the base (baseline), and the angles fI


and 2 are measured from the normal to the baseline (i e., from the


y-axis) as shown. The dashed line R is the perpendicular distance to



the satellite and uniquely defines its range from the station.



By straightforward trigonometry, it can be shown that



k cos I Cos 2



which involves the two variables *, and 02 in addition to the constant



Y. To avoid unnecessary complexity, we restrict further consideration



to 	 the special case when the satellite is equidistant from the two


= 0'
trackers and approaches along the perpendicular R. Then, I= 02
 

and


@
R ~2 ~2 


R ktCos
 - k)Cos 4 
sin 2 2 sin cos 4



R(4) D0 cot 4, 	 (97)



where D-/ 2. Equation (97) is seen to be correct by inspection of


Figure 59. The notation R(O) signifies that R is a function of the



measured variable q.



Error Analysis for R



We are interested in the accuracy of the R determination in terms



of the uncertainties in the measurements of 4 and D. To this end, con­


sider the variations 6R and 6RD resulting from independent variations



in 4 and D (or t), respectively. Thus, from (97) and Figure 59,



R = 	 -Dcsc2 	 D)D6
 
2 s2n 
 

2+D2



and 
6RD = cot 4 6D 

= a . 
D 2 D 
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If a@ and SD are regarded as independent random variables, then



the rms variation in R is
 


2 + (SR) 2
 = a(6RO)
6Rrms 


6Rms = D 4(R 2 + D2 ) 2 (6)2 + R2 (6Z12) 2 . (98) 

Hence, it follows that



D2(6R) 2 - RZ(so)
D2(-RR


R2 + D2 (99) 

Thus, 6i(rad) is the angle accuracy required to achieve a range pre­


cision (R)rms =1 ft at the range R.



Equation (99) is plotted as a function of R in Figure 60 for


0=30 ft (Z=60 ft), O= ft, and 6R = These
0.1 0.5, 1, and 2 ft. 


values are typical of those anticipated on the Orbiter. Since the



range precision (SRrms) is held fixed, the allowable angle error 6



decreases as the range increases and goes to zero at a range Rm

,



where from (99),



A D(SR)rms


6D



When R>% m , the range error exceeds (R)rm s even for 65= 0.



In practice, however, the allowable range error increases with



the range and has its minimum value at minimum range. Taking the mini­


mum range to be 25 ft, Figure 60 shows that the required angular preci­


sion to ensure (6R)rms values of 0.5, 1, and 2 ft at this distance is



9.8, 19 7, and 39 3 milliradians, respectively All of these values
 


are achievable with closed-loop trackers, and at least the larger two



are also compatible with manual trackers. Ifthese 6 values are held



fixed (as in a real system), then the range error increases with R as



shown in Figure 61. Although the error is quite large beyond 100 ft



or so, it should be tolerable at such distances, provided the satellite



is not closing too rapidly. Also, these values can be reduced by
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further restricting the angle error tolerance 6 , particularly if closed­

loop trackers are employed. 

Error Analysis for A 

The corresponding formulas for range rate R and range rate error 

6R follow in similar fashion after taking the time derivative of (97): 

R = D cot 

R( ,)= -D csc2 5 (=0). (100)



In this case, variations in A can arise from variations in the measure­


ment of @, , or D. Hence, from (100) and Figure 59:



2
= -2D csc (-cot csc ) i & = - 2(-D csc c)cot06 

= 2 R(R/D) 6 

(SR)5 = -D csc
2 0
 

D2
R2 + 


- - 0 0q 

(6R)D = - 2 6D 

= k(6D/D) 

so 


02
(Rrms /DA;, , <6Ri' 6)
"~=+ +(6ko,)2,,=~~ 

=J 2R/D)2o(602 + (6D/oijA2+ (Rt 2)(6;)2 (101) 

and



- 2 d(6)s - [2R/o)2(60)2 + (S./o)2]k2 (102) 

5.2 Direct Rangefinder (No Angle Measurement)



This method employs two independent rangefinders to measure the



legs a and b of the range triangle. If the baseline z is also known,
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the perpendicular range to the satellite can be determined. Although



no angle measurements are used, an automatic system would require closed­


loop angle trackers to point the lasers continuously at the satellite.



These trackers could also provide an independent and redundant range



determination based on the triangular method (section 5.1). However,



ifthe lasers are pointed manually, no trackers are needed.


The desired expression for range R in terms of a, b,and z is



easily deduced (inthe co-planar case) from the geometry of Figure 58.



By the law of cosines,



=­
cos 

2 at 

and



R2 
= 2 - (acos


R = al1 a2(103)


ja 
132 b2

(a 2 + 

Inthe special case when a=B, a=b,
 


a Pa(-) ,R = = a-D 2 (104a) 

where D 4Z/2.



Error Analysis



Squaring (104a) gives



R = a2 - D2. (104b) 

Hence,



R (6R)a = a6a 

R 6R)D = -D6D, 

so 

(6R)rm s J(6Ra)2 + (SRD)2 = kla2 (a)2 + D2(6D)2 (105) 
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and 


a _ a R2(R)2-R2 (6 R)2 D2 (6)2 , (106) 

where 6a isthe rangefinder precision required to ensure a perpendicular



range accuracy of (aR)rms ft at range R,for specified 6D.



The angle error can be similarly found to be equal to



(60)rm s( D)2 + (D/a)
2 (6a) 2



s R
R



If D is known without error, then the rms angle error can be written



as


D 6a
 


C68)rms 
 R fR2+D2



5.3 Description of Electro-Optical Concepts



Inthis section, various electro-optical concepts for implement­


ing the ranging techniques of section 5.2 are described, and recommended



concepts are selected for cooperative and noncooperative satellites.



All of the concepts considered derive the necessary geometrical infor­


mation by measuring the distance or angular position of a fixed refer­


ence point on the approaching satellite by means of two EO sensors



positioned at either the same or opposite ends of the platform baseline.



The satellite reference point may be either self-luminous (beacon con­


cept) or illuminated by a laser (or lasers) located on the platform



(laser/retro or laser spot tracker concepts).


Purely passive concepts such as tracking the satellite by solar
 


illumination or thermal (black-body) radiation have not been examined



indetail because the former istoo variable and unreliable while the



latter presents a radiation signature that istoo weak and spatially


diffuse for accurate terminal guidance, particularly inthe presence



of strong celestial or earth backgrounds
 


The sensors considered are all designed to operate over a


limited field of view. While some are nulling devices, some means



must be employed to steer the sensors continuously This is because
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the angular position of the reference point changes during satellite



approach. The same capability is required for the lasers, which pro­


duce an inherently narrow beam that must be kept continuously on the
 


illuminated reference point in order to ensure an accurate range or



angle measurement.



The necessary steering capability can be provided by one or both



of the following methods: (1)manual steering of either one or two



television systems fitted with viewing reticles and electrically slaved



to the sensors and/or lasers, and (2)automatic steering by means of



closed-loop trackers. The first method is essentially an open-loop



approach which is limited by the achievable tracking precision of a



human operator. Since suitable TVs are already available, this is an



attractive possibility, provided the tracking jitter is not excessive.



The second method can provide much better tracking precision



than manual tracking (a particularly important advantage with the tri­


angulation technique). However, it is more complex since it requires



a complete closed-loop servo control system, and it does not provide



automatic acquisition unless a special acquisition mode is designed



into it. (A hybrid approach, combining manual TV acquisition with



handover to closed-loop tracking, is also a very practical solution



to this particular problem.)



Several types of two-axis tracking sensors can be considered for



closed-loop trackers. Among these are silicon quadrant or continuous­


position sensing detectors (for visible and near-IR wavelengths) and



moving-reticle type star trackers using a photomultiplier tube. All of



these sense the displacement of an optical image of a point source rela­


tive to two orthogonal axes (e.g., azimuth and elevatTon) and thereby



measure the angular position of the satellite reference point with



respect to the instantaneous line of sight (LOS). The resulting ,'error



signal can be used to command a closed-loop servo system. Shaft angle



encoders would be needed to measure the net LOS rotation relative to



coordinate axes fixed in the docking platform, as required for the tri­


angulation technique



Although closed-loop TV tracking is technically feasible, it has



been excluded from detailed consideration because of its complexity anct



cost relative to other methods. It should be noted, however, that TV
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trackers are especially vulnerable to image blooming and tube failure



resulting from excessive image brightness such as might occur due to a



strong sunglint off the satellite.



5.3.1 Cooperative Satellites
 


A cooperative satellite is defined to be one that carries with



it one of the active or passive components of a complete docking system.
 


For the EO system considered here, this component may be either a beacon



or a retro-reflector array. The beacon may be activated either from



on-board the satellite or remotely, by a signal transmitted from the



docking platform. (Inthe latter case, it would be regarded as a



transponder.) Pulsed operation is preferable to a CW mode, both to



conserve average power and to aid in background discrimination. If a



retro array is used, a suitable laser or other high intensity illumina­


tion source must be made available on the platform.



Both the beacon and the reflector array provide a tracking/



ranging reference point that has a fixed location on the satellite,



contributing to more stable tracking than can be achieved by tracking



a laser-illuminated spot on the skin of the satellite. This tracking



reference is also generally much brighter than the illuminated skin and



therefore produces higher signal-to-noise ratios in the tracker.



Beacon



The beacon concept utilizes ranging by the triangulation method.



It was shown in section 5.1 that this method is capable of achieving



sufficient range precision at minimum range, using closed-loop trackers



of ordinary accuracy. (The adequacy of manual TV tracking is less



certain, but this technique may also be viable.) If the precision



achievable beyond the minimum range is also deemed acceptable (see



Figure 61), then the beacon is the preferred concept for cooperative



satellites because (1)no active sources are needed on the docking



station; (2)manual acquisition via TV is easily implemented by slaving



the tracking sensors to the TV line-of-sight (the sensor's field of



view must be large enough to accommodate LOS differences due to parallax);



(3)problems associated with pointing of a laser illuminator or range­


finder are avoided; and (4)the beacon provides a strong, reliable signal



exhibiting less fluctuation than is present with other methods.
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The primary drawback of a beacon for a cooperative satellite



isthat itconsumes some spacecraft power. Italso requires timely


maintenance to ensure that itoperates reliably at the time of docking.
 


The following two types of beacons are viable candidates:



(a) Xenon Aircraft Beacon (Recommended Concept). The Xe beacon



isrecommended over other alternatives subject to the proviso that


excessive spectral filtering isnot needed to contend with sunglint



background. Ifsuch filtering should be found necessary (through later



analysis) and results in unacceptable signal loss, then the Gallium



Arsenide beacon described below would be favored instead, because of


its intrinsically narrowband output.



Aside from the question of the filtering required, if any, the



Xenon beacon is a highly attractive concept for cooperative satellites



because of its wide beam, visibility, TV-compatible output spectrum,



and because it is a standard catalog item requiring only minimal inter­


facing design. A small, pulsed beacon drawing a few watts of average



power should be sufficient for docking control out to a range of at



least 1000 ft. Itmay be advisable to include a simple reflector to



confine the beam to the forward hemisphere, thereby increasing the



intensity relative to the isotropic mode.



(b) Gallium Arsenide (GaAs) Beacon. This device consists of a



close-packed array of GaAs laser diodes with an associated pulse and


simple optics to project the beam. Arrays and pulsers are commercially



available Uncoded GaAs diodes emit at a wavelength of about 0.9 pm



(900 nm) in the near-infrared, unless special doping isused to shift



the output to a shorter wavelength. Aluminum-doped GaAs (GaAlAs) diodes



emitting at wavelengths of 0.8 pm or less can be obtained from at least



one commercial vendor at the cost of somewhat reduced peak power per


diode. This expedient may be necessary to make the beacon visible to



the TV for tracking and/or acquisition. Even so, a TV with an extended­


red response may be required.


The raw output beam from a GaAs diode array tends toward a conical



shape having a full-angle divergence on the order of 30 degrees at the



50% intensity points. By the use of a simple optical mixer or "scrambler,"



the output can be made highly uniform, and it isthen particularly well





suited for a wide-angle beacon, with little or no additional optics.



The requisite intensity isachieved by employing a sufficient number


of diodes inthe array. Since the individual diodes are typically only



a few mils wide in the longer face dimension, the overall size of the



array is quite small, and it is relatively lightweight.



Cooled GaAs arrays offer substantially higher average power and



efficiency and also emit at a slightly shorter wavelength. However,



for the present application, these advantages are more than offset by


the additional complexity and maintenance requirements of the associated


cryogenics. Hence, an uncooled array isrecommended unless further



analysis shows that adequate intensity cannot be achieved without



cooling.*


Incomparison to the Xenon beacon, the GaAs beacon offers the



advantage of an intrinsically narrow output spectrum (helpful for back­


ground discrimination), compact design (ifcryogenic cooling isnot



required), potentially lower power consumption (depending on the array



size and beamwidth employed), and possibly longer service-free intervals.



On the other hand, the GaAs beacon is power-limited to a relatively



narrow beam and hence imposes some constraints on satellite orientation,



and its infrared output ispoorly matched to the spectral response of


the TV. Further analysis will be needed to make a definitive choice



between these alternatives.
 


Laser/Retro



This concept utilizes a retro-reflector array on the satellite
 


and one or two lasers on the docking platform. Several types of reflec­


tors may be considered. Ifthe array iscomprised of individual corner­

cube reflectors, the return beam will be highly directional and will



only be visible to a sensor co-located with the laser. Other devices



for enhancing the laser return include glass-bead type reflectors and



reflective tape, which tend to be somewhat less directional than corner­


cube reflectors. A fairly broad return beam isnecessary if a tracking



sensor isto be located at the opposite end of the baseline from the laser.



Radiative cooling to space may be an effective alternative to


cryogenic cooling and should be considered.
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Because of their narrow beams, the lasers must be pointed con­


tinuously at the retro as the satellite closes inrange. Steering can



be accomplished by either of two methods. First, the beam divergence



may be increased sufficiently (using external optics) to permit manual


TV steering, provided that a sufficient SNR can be maintained with the



broadened beam. Alternately, a closed-loop tracker (or trackers) can



be employed. Inthis case, the beam(s) must be nutated or conically
 


scanned about its axis to generate a tracking signal, while its diver­

gence must be compatible with the tracking accuracy, jitter and lag of



the tracker, to ensure that the beam does not drift off the retro.



With either open-loop or closed-loop tracking, acquisition can



be achieved by manually pointing with a wide beam, using radar data to



define the uncertainty volume. Acquisition will be signaled by the
 


appearance of a bright spot on the TV monitor. The beam divergence can



then be reduced, ifdesired, to improve the SR for closed-loop tracking.



The laser/retro concept can be implemented inseveral ways, the



principal ones being the following:


(a) One laser illuminator/rangefinder, one angle tracker. In



this method, a CW-modulated laser serves as both a rangefinder trans­


mitter, with a co-located receiver, and as an illuminator for an angle



tracker, also co-located with the transmitter. This hybrid system
 


measures the length and angle of one side of the range triangle and



hence represents a combination of the rangefinding and triangulation



techniques.


(b) Two laser rangefinders. This range-only approach measures



the lengths of the two legs of the triangle, as described insection 5.2.



Ifcorner-cube retros are used, the two return beams will be isolated


from each other inangle (each laser/sensor "sees" a different retro­


reflector of the array) and lasers of the same wavelength can be employed.



Otherwise, different wavelengths and spectral filters should be used


to prevent possible mutual interference from overlapping beams. By



the addition of one or two angle trackers, as in (a), the system can



provide a redundant or backup determination of range by triangulation.


(c) Two laser illuminators/trackers. This variation uses the



lasers only as illuminators for their associated angle trackers, and


perpendicular range isobtained by triangulation. Two illuminators
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are needed only if corner-cube or other highly directional retro reflec­


tors are used on the satellite.



The laser/retro concept shares most of the virtues of the beacon,



with the additional advantage that the satellite is required to carry



only a passive device that consumes no power. Of course, this simply



transfers the active device to the docking platform. Another signifi­


cant advantage is that an illuminator or rangefinder laser can also be



used for tracking/ranging noncooperative satellites, as described in



the following section, whereas beacon systems cannot.



The major disadvantages of the laser/retro concept are the poten­


tial difficulty in acquiring the retro with a laser and the possible



requirement for a closed-loop laser pointing and tracking system, which



would substantially increase the complexity and cost relative to the
 


beacon system.
 


Searchlight/Retro



This concept envisions high-intensity, noncoherent, broad-beam



sources on the platform to floodlight the entire satellite as it



approaches. Little or no steering of the sources would be required.



The retro-reflectors would appear as relatively bright points against



a lesser background of random glints and diffuse reflection from the



skin of the satellite. By properly thresholding the tracking sensors,



it should be possible to discriminate against this background Inother



respects, the concept is identical to the two-laser illuminator/tracker
 


method described above.



Possible sources include the Xenon and GaAs beacons discussed



earlier, situated on the platform rather than on the satellite. The



major uncertainty concerns the source power necessary to provide a



sufficient retro-return at maximum range. Otherwise, the concept is



an attractive one, since steering requirements are minimal.



5.3.2 Noncooperative Satellites
 


As noted earlier, passive tracking methods based on solar reflec­


tion or thermal emission from the satellite do not appear to be viable



candidates for this application. Consequently, only active EO concepts



using lasers (or possibly other high intensity sources) on the docking
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platform need to be considered for noncooperative satellites. Further­


more, the requirement for a well-defined tracking point excludes broad­


beam sources that would floodlight the satellite, since the multiple



glints produced would only confuse a tracking sensor. Thus, the only



viable approaches for passive satellites are those involving lasers
 


on the station, since they are capable of illuminating a small spot at



ranges of 1000 ft or more.



The options available with lasers are basically similar to those



for the laser/retro concept, as described above, except that the beams
 


are reflected from the skin of the satellite instead of from a retro­


reflector assembly. However, certain important differences should be



noted.



First, since no retro is involved, the reference point must be



designated by the operator during acquisition. This point should be



selected to minimize the changes of drifting off the target, i.e., it



should lie within the main body of the satellite and not on one of its



extremities. Ifmanual tracking is employed, some experimentation may



be necessary to determine an optimum spot size- a small spot maximizes



the brightness and defines the best reference point, but a larger spot



(wider beam) is less sensitive to pointing jitter.



A second difference is that skin tracking permits a single laser



illuminator to be used with two tracking sensors, since the spot is



visible from different positions (this is not possible with a retro).



On the other hand, this same property makes it necessary to use separate



wavelengths if the two-laser rangefinder method is employed.



Finally, reflection from the satellite skin provides a much



weaker and more variable intensity than that possible with a retro.



Hence,the tracker SNR will be lower and tracking or ranging may be



degraded unless more powerful lasers are used.



Although several implementations of skin tracking and ranging



appear viable, a particularly attractive method is to use a single laser



illuminator/rangefinder with a co-located rangefinder-tracker receiver



and a second separate tracker at the opposite end of the baseline. This



system would provide a redundant range determination by triangulation



(two trackers) and by ranging and tracking (hybrid).
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APPENDIX A



MODELING A CONTINUOUS STOCHASTIC PROCESS


BY A DISCRETE TIME STOCHASTIC PROCESS



In this appendix, we determine precisely how a continuous random



process is modeled by a discrete time process. The discrete time pro­


cess can then be directly programmed on a digital computer. The primary
 


interest here is in linear systems, so we restrict attention to a vector



valued linear system. As a specific example, a scalar first-order con­


stant coefficient linear system is modeled.



Consider the k-dimensional continuous time vector random process



x(t), which is modeled by [A-i]:



i(t) = At)L(t) + B(t)u(t) , (A-i) 

where At) is a kxk matrix, B(t) is a kxr dimensional matrix, and u(t)



is an r-dimensional vector white noise process with zero mean and



covariance matrix:



E[u(t I ) u'(t 2 )] = Q(tl) 6(t2 -tl) , (A-2) 

where 6 represents the Dirac delta function and (' represents the



transpose vector.



We wish to model the continuous system by the discrete time



linear system



.(k+l) = A(k) x(k) + B(k) u(k) , (A-3) 

where the dimensionality of the matrices and vectors in (A-3) is



identical to those in (A-I). By modeling, we explicitly mean that


the first- and second-order statistics of x(k) will be identical to



those of x(t) at the time t= kT, where T is the sampling period of the



discrete time process The time T can also be interpreted as the update



time of the digital computer, whether this be a real-time or an off-line



modeling process.



In our model, we will make use of the state transition matrix [A-2],



±(t), which is the solution of the differential equation
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=(t N_t) (t)



t(0) = I_. (A-4) 

In the special case where A(t) is a constant, i.e , A(t) = A, then 

1(t) = exp (At), t 0. 

Continuous System Model



Equation (A-I) is a continuous linear first-order differential
 


equation and has the explicit solution
 


±o 1 (A-5)x(t) '(t) ( + _-(T) T)(T ) d , t > 0 

where x(C) isthe initial value of x(t) at t= 0. At time kT, the con­


tinuous system in (A-5) can be written as



x(t) = 0(kT) x() + JkT 1(T) (r)U(T) dT, (A-6)
o



and at time (k+l)T, it becomes 

((k+l)T) = !((k+l)T) j(O) + T (T)B(T)u(T) dT 

+ fk+l)T1 (T) I))B) 
 

-!((k+l)T) f l (kT) x ( kT) + fkT+l) (D) Cr) uC) dTj 

(A-7)


Therefore, for the continuous time system, we have that


x((k+l)T) : ±((k+l)T) D-1(kT)x(kT) + ((kl)T) (k+I)T I)B(T) u(T) dT 
kT



(A-8) 
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from which the expected value isgiven by



E[(k+)T] = ((k+l)T) I (kT) E[ x(kT)] (A-9) 

and the covariance matrix at time (k+l)T is


cov[ x(k+l )T) = d((k+l )T3 j (T)n BI r) ('r)J' dr( IB1(T) 4-I((k+l)T)
 

- ~kT ­

(A-10)



Discrete System Model 

Similar expressions are obtained for the discrete time model via 

(A-3). In particular, the mean is given by 

E[x(k+l)] = A(k) E[x(k)] (A-Il) 

and the covariance matrix is 

cov[2(k+l)] = B(k)E[((k'()]B'(k) (A-12) 

Equating Discrete and Continuous Time Models



In order for the first moment of the discrete time model to be



equal to that of the continuous model requires that E[x(k+l)J in (A-Il)



be equal to E x(k+l)T] in (A-9) for all k. This is the case when



A(k) = ±((k+l)T) '1 (kT). (A-13) 

The second-order statistics become equal when cov [x(k+l)] in (A-12)



is equal to cov[x((k+l)T)] in (A-10) for all k. This provides the



requirement that



8(k) E[u(k) u'(k)] B'(k) 

T)T (T) [ (A-14)= ±((k+l)T) k+l 1 (T) (T)(T) I' 1 (T)]' dT s'((k+l)T) 

These results are applied to specific one-dimensional cases which



are used throughout the radar simulation.



Example 1. Consider the one-dimensional version of (A-I) where



the coefficients are constants. Therefore,
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A(t) : A 

B(t) = B 

and 

D(t) = exp (At) (A-15) 

Also, let the correlation function of u(t) be Q(T) = (N0/2)6(T),



where N0 is the one-sided power spectral density of the white Gaussian



source noise in watts/Hertz.



Then, from (A-13),



A(k) = exp [A(k+l)T] exp (-AkT)



so that



A(k) = exp (AT), (A-16) 

which is a constant depending only on the parameters A in (A-14) and



the computer update time T.



Similarly, from (A-14),



B2(k)E [u2(k)] = exp [2A(k+l)T] I T exp (-AT) B2(N0/2) exp (-AT) dT



(A-17)



which reduces to



2

NoB
 

22
B2(k)E[u(k)] = _-exp (2AT) [I -exp (-2AT)] (A-18a)

4A



or, equivalently,



22 NoB 2 

B2(k) E [u 2(k)] - exp (AT) sinh (AT) , (A-18b)
2A 

In a stable system, A in (A-14) will be less than zero. Then, 

when T-*o, 
22 NoB 2 

B2(k) E[u2(k)] = , (A-19) 
41AI



which from (A-12) can be seen to also be the variance of x(k+l), i.e.,
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lim E[(x(k+l)) 2 ]  = N0B2 /(41A I ) . (A-20) 
T cn 

By letting T)- in the continuous time representation in (A-6),



the same result is obtained.



Exam le 2. Consider the case of white noise through a first­


order Butterworth (RC) filter, as shown in Figure A-I.



nt 1 x(t)
n(t) 
 
t



Figure A-i. White Noise Through a First-Order Filter



The white noise has one-sided PSD of N0 watts/Hz and the filter



time constant Is T. The differential equation for the filter in



Figure A-1 is



x(t) = (-I/'r)x(t) + (I/T) n(t) (A-21) 

where when compared to (A-14) and (A-i), it is seen that 

A = -I/T 

B = I/T. (A-22) 

From (A-16), the constant A(k) in the discrete time model is 

A(k) = exp (-T/A) (A-23) 

and, from (A-18) 

B2(k) E [u 2(k)] = NO(1/17) exp (-T/t) sinh (-T/T) . (A-24) 

In (A-24), either B(k) or E[u 2(k) can be chosen arbitrarily. If we 

elect to set 

B(k) = 1, (A-25) 

then 



- - -
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E[u2(k)] = exp (-T/t) sinh (T/r). (A-26)



A block diagram of the model isshown inFigure A-2. The output



of the random noise generator (RNG) is a Gaussian random variable with



zero mean and unit variance. The sample of u(k) is obtained by scaling



this random variable by the standard deviation of u(k). The resulting



sequence of random variables {x(k)} will have first- and second-order



statistics which are identical to those of x(t) in Figure A-1 at times



t = kT



As the sampling time approaches infinity (T-),A(k)+O, which



implies that the samples are independent as is logically anticipated.



Also, (A-la) shows that the variance of any sample is equal to N0/4t.



This is also anticipated because it represents the steady-state vari­


ance at the output of an RC filter whose time constant is T. (The two­

=
sided noise bandwidth of an RC filter Bi /21).



RNG u(k) x(k+l) 

exP (T/T) T sec Delay ­


~~A(k) x(k) 

Figure A-2. Diagram of Discrete Time Model for First-Order


Stochastic Process
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