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ABSTRACT

The use of composite materials for a variety of practical structural

applications is presented and the need for an accelerated characteriza-

tion procedure is assessed. A new experimental and analytical method

is presented which allows the prediction of long-term properties from

short-term tests. Some preliminary experimental results are presented.
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INTRODUCTION

Polymer matrix fiber reinforced materials have enormous potential

for use in a wide variety of structural applications including auto-

mobiles, sporting equipment, airplanes, etc.	 In -f= act, graphite/epoxy

tennis rackets, skis, and golf club shafts are already widely used.	 In

an effort to reduce weight and conserve fuel, modern automobiles contain

many parts manufactured from plastics and chopped and continuous glass

polyester composites. Missiles and aircraft also currently use graphite/

epoxy and many other types of laminated composites.

Probably the largest single inhibiter to even greater usage of

polymer based composites is the current high cost. However, it is

likely that prices will be substantially reduced in the future due to

increased usage, new manufacturing developments and as increased fuel

conservation measures demand strong but lightweight materials °or

structural applications.

In addition to cost, technical reasons exist which inhibit the

ready acceptance of polymer-based composites for structural applications

in automobiles, airplanes, etc. One such factor is the current lack of

understanding of the mechanical behavior of polymer based laminates

under long-term environmental exposure. It is well known that the

epoxy resins which are now often used as the polymer matrix component

exhibit viscoelastic or time effects which are significantly affected

by exposure to both temperature and humidity. Epoxies soften as

temperatures are increased with resulting loss of both moduli and

strength [1-4].	 In addition; they absorb moisture and swell giving

y ^
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rise to residual stresses [5-8].

Obviously, polymer based composite laminates will be similarly

affected by moisture and temperature under certain circumstances. Fiber-

dominated composites are not likely to suffer large reductions of either

moduli or strength in the fiber direction.	 In other directions,

properties will be affected by losses of both strength and modulus.

Perhaps more importantly, drastic interply e ffects will occur. That

is, delaminations due to internal residual stresses caused by both

temperature and humidity are likely to occur together with a general

loss of interply shear transfer capacity.

Because of these effects of environment, there is concern that

time-dependent properties such as creep, relaxation, delayed failures,

creep ruptures, etc., may be important long-term design considerations

for the temperature and moisture levels anticipated in current structural

applications. Further, it would be extremely desirable to be able to

measure these effects with short-term laboratory tests rather than

perform long-term prototype studies. It would also be desirable to be

able to predict these effects with analytical techniques for either

short or long-term situations. As a result, it is clear that there is

an urgent need for accelerated characterization techniques for laminates

similar to those used for other structural materials.

The purpose of the current research was to investigate the effect

of temperature on graphite/epoxy laminates and to explore ways and

means of their accelerated characterization--both experimentally and

analytically which would compliment previous efforts related to

fracture [9-19].
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BACKGROUND

As mentioned above, the purpose of the current effort was to

study and measure the thermomechanical viscoelastic response of

graphite/epoxy laminates and in so doing to develop methods for the

accelerated characterization of moduli and strengths and/or lifetimes

of a structural component. That such viscoelastic effects are important

has been previously demonstrated [19]. This result is reproduced and

shown in Figure 1 which indicates that a delayed viscoelastic fracture

process was observed for a graphite/epoxy [±45'] 
4s 

tensile specimen con-

taining a circular hole. That is, a creep to failure response occurred

for individual plies and the laminate eventually fractured (separated)

even though the applied laminate tensile load was relaxing in a fixed

grip situation. Obviously, should the same phenomena occur in proto-

type structure, unsafe premature failures would occur.

To be able to predict the lifetime of a structure under known

loadings requires either long-term testing or a model upon which long-

term results can be predicted from short-term tests. Obviously, long-

term testing equivalent to the duration of the lifetime of a structure

is undesirable. The alternative is to develop analytical or experimental

models which carp be successfully used for extrapolation. For metals

and polymers a variety of techniques are available such as, linear

elastic stress analysis, empirical extrapolative equations such as

the Larson-Miller parameter method, Minor's rule and frequency in-

dependence, and time-temperature superposition principle, etc.

i
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Two procedures have been proposed for the purpose of making such

lifetime or viscoelastic predictions of composite materials. These

are the "wear out model" proposed by Halpin, -t al. [20] and a non-

linear viscoelastic technique proposed by Lou and Shapery [21]. The

former is a method based upon statistical reliability concepts and the

premise that all materials contain inherent flaws which grow to

critical sizes under various conditions of stress, strain, time,

temperature, etc. The method employs viscoelastic shift type parameters

together with a power law crack growth model to make accelerated pre-

dictions of strength. The method requires a thorough knowledge of

statistical methods and significant test programs for each structural

component in order to obtain an adequate sample size.

Shapery's technique employs a single integral non-linear visco-

elastic stress train characterization equation based upon a modified

superposition principle (MSP) of the Boltzman type. He uses creep and

creep recovery tests to determine the necessary parameters at a single

elevated temperature but at different stress leveis. Shift factors

are developed for the octahedral shear stress at various stress levels

and for various fiber angles for the unidirectional glass/epoxy

materials investigated. Master curves are developed for the non-linear

creep compliance. The method is developed only for unidirectional

laminates and is not necessarily applicable to other loading conditions,

e.g., relaxation.

We have decided to take a different approach from the above two

methods. Our efforts are being based upon the time-temperature super-

position principle and the widely used lamination theory for composite
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materials.

In recent years the concept of the time-temperature superposition

principle has been extended for the case of elastomers to include

failure or fracture processes as well as the familiar moduli master

curve concept [112,23]. In fact, Landel speaks of a stress-strain-time-

temperature response surface. He argues rather convincingly that one

need not determine the entire surface, but merely a portion of the sur-

face. That is, by finding a trace of the surface, the remain-*ng por-

tions can be found. Whether -imilar reasoning can be used for composites,

or even glassy polymers, remains to be seen. Lohr did show that the

time-temperature superposition prin^iple could be used for the yield

strength of certain glassy polymers and that the shift function for

strength was similar to that for modulus [24].

ACCELERATED CHARACTERIZATION PLAN

The procedures we are usirg for accelerated characterization and

lifetime predictions are outlined in Figs. 2 and 3. As shown in Fig.

2, our plan is to determine the modulus master curve for unidirectional

G/E laminates from short-term (15 min.) tensile creep tests from room

temperature (20° C) to about 30° C above the Tg (180° C). This is to

be accomplished for various fiber angles from 0° to 90° with respect to

the load direction. From this series of tests shift functions vs.

temperature and fiber angle are to be determined as indicated in

Fig. 2b. Next, the assumption of linear viscoelasticity will be evoked

and the lamina tensile and shear strength master curve will be obtained.

That is, the strength master curve will be assumed to have the same
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character as the modulus master curve. initia l values of stren q 0 will

be needed to quantify the strength scale -ind will be taken fro;;c

previous work [18].

Probably the most important aspect of the plan will be the genera-

tion of a shift function equation or relation of the 'WLF type as shown

in Fig. 2d, which will be valid for the particular compossitE investi-

gated; i.e., T300/934.	 If such is possible, then the remaining portion

of the plan shown in Fig. 3 should follow and be reasonably accurate.

The procedure shown in Fig. 2 involves substantially more testing

than that desirable for the usual design process. In other words, it

ald be desirable to base design on a minimum number of tests and

probably only on those necessary for ordinary quality control. We en-

vision the final accelerated design process as illustrated by the flow

chart shown in Fig. 3. The first step in the process for any particular

laminate would be to determine the modulus and strength design variables.

Next, sufficient testing would be accomplished to produce a [90°] lamina

master curve and to establish the necessary parameters for the shift

function relation for that particular composite. With the shift function

equation; master curves for moduli and strengths would be constructed.

These master curves would be used as input to an incremental compLIta-

tional procedure using standard stress analysis lamination theory.

With the procedure outlined accelerated predictions of properties

and lifetimes could be made for arbitrary laminates. Our intent is to

make such calculations for matrix dominated laminates such as [±a] s,

[90 0 /± 6/90 0 ] s , etc. Fiber dominated laminates will need similar calcu-

lations only for such situations as fiber matrix delaminations as these

r



7

laminates in general do not display normal time or rate dependent

properties [15].

Once the laminate predictions are made, a testing program will

obviously need to be instituted to verify those predictions.

PRELIMINARY RESULTS

Some of our preliminary findings are shown in Figs. 4-9. The

thermal expansion measurements shown in Fig. 4 have established the

dry glass-transition temperature of To = 180' C for our T300/934 G/E

laminate. The same results have indicated a smaller secondary transi-

tion of Tg s = 60' C. In addition to these results, considerable effort

was expended to determine the effect of thermal and mechanical cycling.

We have learned that neither substantially alters the mechanical proper-

ties. Thus, no mechanical conditioning need be accomplished as Shapery

found was necessary for glass-epoxy materials [21]. Further we

established that repeated use of the sane specimen could be made thus

avoiding the additional tedium of adequate statistical sampling.

Figs. 5 and 6, respectively, show the unreduced one-minute

reciprocal of compliance (modulus) vs. temperature results and the

reduced 15-minute reciprocal of compliance (modulus) vs. time results

for temperatures from T = 20' C to T = 210' C for our [90'] 8s laminate.

In each case, the results are as expected and are quite similar to the

results one would obtain for a neat epoxy resin [ 1,2]. Superposed on

Fig. 6 is a portion of creep reciprocal of compliance (modulus) master

curve for To = Tg = 180' C. The entire master curve for To = 180' C

is shown in Fig. 7 for the [90'] 8, material. Az may be seen, the curve



8

stretches over about 22 decades of log time. Portions of the curve were

obtained by extrapolating creep reciprocal of compliance vs. temperature

data such as that shown in Fig. 5 and by using a polynomial representa-

tion of the data obtained with a computer program. This was necessary

due to the small variations of properties at low temperature levels and

was necessary in order to see the clfect of the second order Tg.

Figure 8 shows the shift functions necessary to obtain a smooth

master curve for 
S
—K . As may be observed, the shift functions above

Tg are approximated reasonably well by a WLF type equation although the

constants are not the same as those used by Williams, Landel and Ferry

and some deviations are noted.

Other master curves were generated fur tensile specimens whose

fibers were at an angle with respect to the load direction. Using an

additional master curve for 6 = 10°, the fact that no time or temperature

effects were found for 9 = 0° (fiber dominated direction) and the visco-

elastic analogue to the orthotropic transformation equation, the master

curve for art arbitrary off-axis tensile specimen was predicted. These

predicted results are shown in Fig. 9 for a specimen whose fiber to

load angle was 6 = 30°. Also shown is the master curve generated from

short term test. As may be observed, the predicted master curve and

experimentally determined master curve are in close agreement.

Twenty-five hour creep tests were performed or. all geometries to

verify both the process of using master curves as obtained from short-

term (15 min.) tests and the analytical prediction procedures di'scussed

above. These results are shown superimposed on the master curves given

in Figs. 5 and 9. 	 In the former, obviously discrepancies between the
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short- and long-term results are obvious. On the other hand, close

agreement between short-term, long-term and predicted results occurred

for the latter case. It is felt that the deviations encountered are

primarily due to the normally encountered statistical variations in

the properties of composite materials and not due to the methods used.

SUMMARY AND CONCLUSIONS

A new method which allows the prediction of long-term properties

of composite materials from short-term (15 min.) laboratory test results

has been presented. Conceptually, the procedure outlined could be

Used for all types of laminates throu g h modification of the standardly

used lamination theory methods.

Experimental data his been presented which illustrate the nature

of the viscoelastic process in graphite/epoxy material;. A delayed

viscoelastic fracture was demonstrated to occur in a [ ,_45°] 4s laminate.

Further, the time and temperature resoonse of a matrix dominated uni-

directional [90°] 8s laminate has been presented. It has been shown

that master curves from short-term tests of [90°] $s and [30 0 1 8s can be

used to generate long-term master curves and t0at reasonable correlation

can be obtained between the two results. Further, it has been shown

that analytical predictions from short-term results can be successfully

used to predict long-term (25-hour) results.

Fron, the results presented herein, we have shown that the master

curves and shift functions in Fig. 2 needed for our new accelerated

characterization procedure outlined in Fig. 3 can be obtained and can

be used with reasonable accuracy. Thus, we have shown that the



di

10

procedures of Fig. 3 for the long-term predictions of laminate proper-

ties, including strengths, is viable. Additional efforts are continuing

to predict and measure the response of laminates over prolonged time

periods, i.e., several weeks to several months.
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