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SUMMARY

An optimization procedure is developed based on the responses of a system
to continuous gust inputs. The procedure uses control law transfer functions
which have been partially determined by using the relaxed aerodynamic energy
approach. The optimization procedure yields a flutter suppression system which
minimizes control surface activity in a gust environment. The procedure is
applied to wing flutter of a drone aircraft to demonstrate a Ul-percent increase
in the basic wing flutter dynamic pressure. It is shown that a trailing-edge
control system suppresses the flutter instability over a wide range of subsonic
Mach numbers and flight altitudes. Results of this study confirm the effective-
ness of the relaxed energy approach.

INTRODUCTION

Flutter suppression systems which use active controls are known to be sensi-
tive to changes in flight conditions and vehicle configuration. This sensitiv-
ity implies that a control system designed for one flight condition may show
considerable degradation or even be unstable at other flight conditions (ref. 1).
The original aerodynamic energy concept (ref. 2) was developed to yield active
control systems which are both effective in suppressing flutter and insensitive
to changing flight conditions. Insensitivity to changing flight conditions was
achieved in reference 2 by imposing a sufficient but not necessary condition for
stability. Results of the original derivation effectively ruled out use of a
single trailing-edge control in favor of a combined leading-edge trailing-edge
control system. Applications of the original aerodynamic energy concept to
specific problems of flutter suppression (refs. 3 to 5) and gust alleviation
(ref. 5) demonstrated the effectiveness of a leading~- and trailing-edge control
system and also indicated the potential of a trailing-edge control system alone
to control the aeroelastic response.

Recently, a relaxed aerodynamic energy concept (ref. 6) has been developed
which abandons the sufficiency condition of reference 2 and yet insures the
insensitivity of the control system to changing flight conditions. The results
of reference 6 show that a trailing-edge control system alone may meet the
requirements of both stability and insensitivity.

The purpose of this paper is to describe results of applying the relaxed
aerodynamic energy concept to a specific example using a trailing-edge control
system for the suppression of symmetric flutter. Since the generalized control
laws in reference 6 include a number of "free parameters" (which must be deter-
mined for the dynamic characteristics of the specific system considered), a
method is developed in the present paper for determining the values of these
parameters. This method minimizes control surface response to atmospheric tur-
bulence by varying the values of the free parameters. The sensitivity of the
control system to changes in flight conditions is tested by introducing changes



in flight altitude and Mach number. The two transfer functiohs developed in
reference 6 are applied in this paper to determine their relative effectiveness.

ar,afT,i

SYMBOLS
control law gains
semi-chord length

vertical displacement at 30 percent of wing chord, positive in down
direction

vertical displacement at fuselage reference point, positive in down
direction

-\
reduced frequency, wb/V

Mach number

number of degrees of freedom of elastic system
dynamic pressure

polynomial in s

= iw

flight speed

coordinate axes

oscillatory angle of attack of wing, positive nose up

oscillatory angle of attack at fuselage reference point, positive
nose up

aerodynamic lag terms

control surface deflection, positive in down direction
damping coefficient

free parameter associated with damping in transfer function
fluid density

oscillatory frequency



Wn,T,i free parameter associated with frequency in transfer function
WR reference frequency

Matrices:

[A] complex aerodynamic matrix

[Aj] real aerodynamic matrix coefficients

[pj] real aerodynamic matrix coefficients

{Fé} aerodynamic gust force vector

[FJ] real coefficients of equations of motion

[x] structural stiffness matrix

M] generalized mass matrix

{@},{5} complex response vectors

] transfer function matrix

[U] matrix representing first-order equations of motion
<X> response vector of first-order equations of motion
Subscripts:

f flutter

max maximum

rms root-mean-square value

Dots over symbols denote derivatives with respect to time.

CONTROL LAWS

The control laws used in this work were derived by using the relaxed energy
method (ref. 6). The control laws are of the following general form:

h/b
§ = | T (1
Q

where |T| is a transfer function matrix of size 1 x 2 and where 6§, h, a,
and b are defined in sketch (a). (Arrows indicate positive displacements and
rotations.)



Undisturbed position

>]
Sketch (a)

Sketch (a) represents the cross section of the center line of a streamwise strip
located along the wing defined by the inboard and outboard control surface edges.
The control surface has a 20 percent chord, and the wing displacement h is
measured at the 30-percent chord point. Two types of transfer function matrices
LT| were presented in reference 6: (1) localized damping type transfer func-
tion (LDTTF), and (2) damping type transfer function (DTTF). A brief presenta-
tion of these transfer functions is made together with a description of their
characteristics.

Localized Damping Type Transfer Function

The form of the localized damping type transfer function (LDTTF) is

2
[T] = (0 -1.86] + aTs ly  2.8] (2)
s + ZCT‘*’n,TS + wrz],T

where ar, gT, and wp T are positive free parameters. The matrix elements O,
-1.86, 4, and 2.8 were fixed by the relaxed energy method (ref. 6) for a
20-percent chord control and wing displacement measured at the 30-percent chord
point. These elements can be modified to account for displacement measured

at another point on the wing chord by applying a simple transformation matrix
(ref. 2).

It is shown in reference 6 that at controls the amount of aerodynamic
damping introduced by the control, Wn,T determines the frequency around which
the largest values of damping are introduced, and gy controls the distribution
of damping at frequencies around w = Wp, T- It is further shown (ref. 6) that
for frequencies w < Wn,T the LDTITF introduces into the aeroelastic system an
aerodynamic inertia type term which opposes aerodynamic stiffness and for
w > wy T aerodynamic stiffness is added. The form of the transfer function
given in equation (2) allows considerable versatility by using the free param-
eters to adjust the control law for a specific application.

To increase the versatility of this control concept, a modification is
introduced into equation (2) which permits the damping distribution to be
"peaked" at two values of frequency. This modification enables the aerodynamic
stiffness to be controlled in a region of frequencies which lie between the two
peaks. In addition, a wider frequency distribution of damping is available.



The resulting transfer function is

2
IT| = (0 -1.86] + aT, 18
s2 + 2CT,1wn,T’1s + w%,T’1
+ aT,ZS2

Iy 2.8} (3)
,T,2

where the subsecripts 1 and 2 refer to the values of the free parameters at the
first and second peak, respectively.

82 + 207 Jop,T,28 + W

Damping Type Transfer Function
The form of the damping type transfer function (DTTF) is given by
IT] @ |0 -1.86] + 2T%|4 3.2 (4)
WR

where .ap 1is a single free parameter which controls the amount of damping intro-
duced by the control surface and wgp is a reference frequency. As in the pre-
ceding case, the matrix elements 0, -1.86, U4, and 3.2 are fixed for a 20-percent
chord control and wing displacement measured at the 30 percent chord. In appli-
cation made in the present work, wgr 1is assigned the value of the basic wing

(no control) flutter frequency. (To avoid difficulties in the numerical solu-
tion of the equations of motion, the second term in equation (4) is modified to

the following form aTs< 50000 )LH 3.2]. The amplitude and phase angle
wr \s + 50000

changes due to the introduction of this first-order filter are negligible over
the range of frequencies considered in this paper.) The DTTF does not permit
the introduction of aerodynamic stiffness other than the -1.86a term and, fur-
thermore, may give rise to stability problems at high frequencies as indicated
in reference 6. Nevertheless, this transfer function is applied in the present
work to test its adequacy for preliminary design studies, where a small number
of variables are a considerable advantage.

OPTIMIZATION PROCEDURE
Basic Concept

In the design of an active flutter suppression system, stability is not
the sole objective. For example, a stable design which results in excessive
control surface activity in a turbulent atmosphere may be impractical. There-~
fore, a more rational approach is to design a system which provides stability
with minimum control surface activity (that is, minimum control surface rates
or deflections). Minimum control activity is accomplished by first assigning
initial values to the free parameters in either the LDTTF or DTTF transfer func-
tions that stabilize the system above the required flutter velocity margin. (In
unusual circumstances, the DTTF may be incapable of stabilizing the aeroelastic
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system.) Next, the free parameters are determined by minimizing the response
of the control surface to a gust input. This minimization does not result in
loss of stability since experience has shown that if the free parameters are
changed to reduce the stability of the system to the point where it is only
marginally stable, then the control surface activity in a gust environment
increases. In this manner, the gust becomes a driver in establishing the
closed-~-loop parameters while system stability is maintained.

Target Function

A target function is defined in terms of control surface activity to allow
optimization of the free parameters. Control surface activity is determined by
introducing the control law into a continuous gust response analysis. The
response of the control surface to atmospheric turbulence is calculated by a
method similar to that described in reference 7. The target function is then
defined as either the root-mean-square (rms) control deflection or the rms con-
trol surface rate per unit rms gust input based on a Von Karmdn gust spectrum.

Optimization Steps
The basic steps required for optimization are

(1) Select a control law type (LDTTF or DITF) and assign initial values to
the free parameters that stabilize the aeroelastic system at the desired flight
velocity and Mach number.

(2) Calculate the rms control surface activity per unit rms gust input for
the control law by using a continuous gust response analysis.

(3) Determine the values of the free parameters which result in minimum
control activity.

Selection of the initial values of the free parameters is not as arbitrary as it
may appear. This point is discussed in subsequent sections dealing with appli-
cation of the optimization procedure.

Once the type of control law is selected and the free parameters are
assigned initial values which stabilize the system at a particular flight con-
dition, the optimized control law is determined solely on the basis of a gust
response analysis rather than-on flutter considerations. The implications of
this process are (a) reduced computational time, since there is no need to solve
large eigenvalue problems associated with the flutter calculations; and (b) sim-
plicity, since it is not necessary to follow discrete eigenvalue branches asso-~
ciated with each response mode.

Optimization Algorithm

The algorithm used for optimization is a variation of Stewart's adaptation
of the Davidon-Fletcher-Powell method (refs. 8 and 9). The variation introduced
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permits the values of the free parameters to be constrained without using pen-
alty functions and with excellent convergence characteristies. Penalty func-
tions are avoided by restricting the step direction in the independent variables
to be tangent to a constraint boundary when (a) the boundary has been reached
and (b) the unconstrained direction to a step results in constraint violation.

APPLICATION

The optimization procedure is applied to a specific example to demonstrate
the procedure and to assess the effectiveness of the two transfer functions
described earlier.

System Description

A flight program has been initiated by the National Aeronautics and Space
Administration to study active control concepts using remotely piloted vehicles
equipped with specially designed research wings (ref. 10). The optimization
procedure is applied to the case of symmetrical wing flutter for this drone
vehicle. A three-view drawing of the flight-vehicle—research-wing combination
is shown in figure 1. Guided by results obtained during previous applications
of the aerodynamic energy method (ref. 5), a control surface is placed as near
to the tip of each wing as is structurally possible. Each control surface has
a width of 20 percent of the local wing chord and a length of approximately
12 percent of the wing semispan.

To avoid difficulties introduced by rigid body degrees of freedom, an
extended version of the control laws (ref. 5) is used in the present work.
The extended version is essentially the same form as that given by equation (1)
except that h/b and o are replaced by (h - hp)/b and @ - a., respec-
tively. These terms represent the "relative" displacement and twist of the
wing with respect to a rigid fuselage. The quantities h, h,, o, and apn
are measured at the locations indicated in figure 2.

Objectives

The following objectives were set for the active control system:

(1) The drone should be able to fly at M = 0.9 with a value of Qpay
which is 44 percent above the basic wing (no control) flutter dynamic pressure
with minimum control activity.

{(2) The stability of the system must be maintained by using fixed values

for the free parameters with no substantial increase in control act1V1ty for
values of M £ 0.9 and q £ qpgx-



Mathematical Model

Equations of motion.- The n equations

(0152 + 1 (oV2) [A] + ()& = {Fg) (5)

represent the equations of motion. All matrices in equation (5) are of order

n x (n + r) (that is, n structural modes + r controls). Two rigid-body

modes and seven symmetric elastic modes are used in the present analysis. The
seven elastic modes cover a frequency range of 9.9 to 128 Hz. Modes, frequen-~
cies, and generalized masses were determined from a finite-element NASTRAN
model. Unsteady aerodynamic forces for the wing, horizontal tail, and control
surfaces were computed for different values of Mach number and reduced frequency
by using a doublet lattice aerodynamic computer program. The frequency plane
aerodynamics from doublet lattice aerodynamics are then used to obtain an s
plane approximation as described in the appendix. (See also ref. 11.)

Flutter solution.- Equation (5), with {Fd} = 0, can be reduced to the
following series of first-order equations (see appendix for details)

s{(x} = [UXx} (6)

where the matrix [U] is a function of LTy, M, V, and dynamic pressure (.
For a given Mach number, the flight velocity V varies somewhat because of the
change of speed of sound with altitude. As an illustration, the speed of sound
varies by about 7.6 percent in the altitude range between 0 and 6000 m. If the
speed of sound is determined for a mid-range point (for example, 3000 m), varia-
tions in the speed of sound within the 0- to 6000-m range are within *3.8 per-
cent. Therefore, by choosing a value for M, the value of V follows (when

the speed of sound is considered to be fixed at the mid-range value) and a study
can be made of the variations of the eigenvalues of equation (6) with the
dynamic pressure q for a given Mach number and transfer function |T]. The
variation in q 1is equivalent to changes in altitude with Mach number constant.
Results are presented as root locus plots where q 1is varied over a wide range

of values.

Gust solutions.- Equation (5) allows a direct evaluation of the control
activity per unit gust velocity. The power spectral density (PSD)} values of
control activity per unit rms gust velocity are determined by using the Von
Kirmén gust spectrum, with a turbulence scale of 762 m. Values (rms) of con-
trol activity are evaluated from the PSD distributions.

RESULTS AND DISCUSSION

Results for symmetric flutter of the basic wing (no controls) at various
Mach numbers are presented first. These results form the basis for assessing
improvements introduced by the active control system. The closed-loop results
for each of the two transfer functions studied are presented and discussed
separately. A comparative discussion regarding the results obtained by both
transfer functions is also made.
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Basic Wing Flutter

Root locus plots for M = 0.9, 0.7, and 0.5 are given in figures 3 to 5.
Root loeci for each mode are indicated in the figures. Arrows on the loci indi-
cate increasing dynamic pressure. The value of q at flutter (qe) is indicated
in each figure. A classical flutter behavior is apparent at all three Mach num-
bers since the frequencies of modes 1 and 2 tend to coalesce with increasing
dynamic pressure as mode 1 crosses into the unstable region at M = 0.9 and 0.7
and mode 2 crosses at M = 0.5. Flutter dynamic pressures are given in table I.

Localized Damping Type Transfer Function (LDTTF)

Initialization of free parameters.- By using equation (3), the initial val-
ues of the free parameters in the LDTTF were chosen to place one of the peaks
introduced by the transfer function at a frequency above the basic wing flutter
frequency and the other at a frequency below it. The flutter frequency at
M =z 0.9 is approximately 100 rad/s. The design point for the optimization
study was selected to be a Ul-percent increase in flutter dynamic pressure
(Qmax = 34.66 kPa) at M = 0.9. The following values were assigned to the free
parameters in equation (3):

Wp,T,1 = 80 rad/s
Wy, 7,2 = 120 rad/s
gr,1 = 0.5

Zr,2 = 0.5

ar,1 = 1.0

ar,2 = 1.0

These initial values of atp did not stabilize the system, and the values of
ar were increased to

aT’1 = ar,2 = 2.0
which resulted in a stable system up to Qqp.y.

Optimization results.- For the first application of the optimization pro-
cedure, the free parameters were constrained within the following ranges:

25 < (mn,T,1’wn,T,2) < 200



0.25 £ (Cr,1,87,2) £ 1.0

(S (at, 1,ar,2) $5.0

At an early stage in the optimization studies, it became apparent that control

surface rates were more critical from the point of view of design, and the tar-
get function was formulated in terms of minimizing control surface rates. The

optimization procedure resulted in the following values of the control law:

» (h - hp)/b)
§ =10 -1.86) + 3.1s > s 2.8] 7
s2 + 2(0.78)(25)s + (25)2 a - ap

In the application of equation (3), only one peak was needed to meet system
requirements. This situation may not be the case in general, however, and for
other applications more than one set of free parameters may be needed. By using
equation (7), the minimized control surface rate and the resulting displacement
at the design point were

§ - 2299/s
m/s

§ = 4.66°
m/s

The form of equation (7) indicates that minimum control rates are obtained by
a single "peak" (that is, ar,2 = 0) at a relatively low frequency (w = 25 rad/s).
This low frequency results in significant aerodynamic stiffness being added
around the basic wing flutter frequency.

Stability calculations using the control law defined by equation (7) showed
that the system exhibited the required margin in dynamic pressure; however, once
the control surface activity was evaluated over a range of dynamic pressures at
both M =0.9 and M = 0.7, it was apparent that the maximum control surface
activity did not occur at the design point (qpay = 34.66 kPa). The variation
of rms control surface activity is given in figure 6. Control surface rates
increase as both Mach number and dynamic pressure are reduced. The peak value
of control surface rate is around 370°/§/h/s at M= 0.7 and q = 22.8 kPa.
This deterioration is a consequence of attempting to stabilize the system with
too much reliance on aerodynamic stiffness. When Mach number or flight density
p are reduced, the aerodynamic forces which induce aerodynamic stiffness are
also reduced and this reduction results in an increase of control surface
activity.

This adverse control activity can be interpreted in terms of the relaxed
energy approach. It is shown in reference 6 that with respect to flutter sta-
bility, the active control system is insensitive to changing flight conditions
if, over a range of reduced frequency k, the following conditions are
maintained:
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|imin| = Near maximum value &

Amax >> |Aminl

where imin and imax are the smallest and the largest aerodynamic eigen-
values, respectively, derived from the two-dimensional model adopted in refer-
ence 6. Figure T shows a typical variation of Xmln and Ama as a fune-
tion of 1/k and various values of rp (from ref. 6) for M = 0.9 with
kn,T = 0.2 (where kn,T = wn’Tb/V).

The relaxed energy conditions for insensitivity (eq. (8)) are satisfied
around the region of the Apsy peak which occurs at 1/k = 1/kny T = 5.
An inspection of equation (7) shows that when the optimized value of Wn, T
(1/kn 7 ~ 35) is much smaller than the basic wing flutter frequency (1/kf ~ 10),
the relaxed energy requirements (eq. (8)) are not satisfied in the critical flut-
ter region of the basic wing. This situation may result in a decrease in sta-
bility at off-design points which leads to increased control surface activity.
To avoid this situation, wp T, ;3 should be constrained to be nearer the basic
wing flutter frequency. It 1is "seen in figure 7 that the range of frequencies
over which equation (8) is satisfied is dependent on the value of gzp. If gp
is constrained to be 20.5 and if xmax is not permitted below half its peak
value, for a given g7, the following new approximate constraints on Wn,T can
be obtained:

0.65w¢ < Wn,T,i < 1.45wp (9)

where ws 1is the basic wing flutter frequency. Obviously, there is some arbi-
trariness in setting up these constraints and they may be varied if necessary.
However, they do indicate that wp 7 i must be constrained if it is desired to
reduce sensitivity to changing fllghé conditions.

In lieu of the somewhat arbitrary nature of the constraint on w, 7 i the
system was reoptimized at the design point (M = 0.9; qpax = 34.66 kPa} for the

. following ranges:

(1) 70 % Wn,T,i < 150
(3) 50 ¢ Wn,T,i < 150

During these optimizations, the remaining free parameters were constrained as
follows:

0.5<zr.4 £ 1.0

0 ar,i < 5.0

A

The results of these calculations along with the range 25 £ ®Wn,T,i < 200
are given in table I in terms of closed-loop flutter dynamic pressures and max-
imum control surface rates and displacements. (Control surface rates and dis-

11



placements given in table I are maximum values at a given Mach number and may
not occur at the same dynamic pressure as the design point.) As indicated in
table I, the maximum control activity (which occurs at M = 0.7 for Wn,T = 25)
is substantlally reduced by roughly the same amount for each of the reoptlm;zed
results. For illustrative purposes, the results for 60 =‘”n,T,1 < 150 are
discussed.

When the system was reoptimized at the design point M = 0.9 and
Qmax = 34.66 kPa, the following results were obtained:

> (h - hp)/b
§ =0 -1.86] + 5.0s |y 2.8] (10)
s2 + 2(0.95)60s + (60)2 a-ap

Control surface rates and displacements at the design point were

§ = 253.29/s
m/s

§ = 3.8°

m/s

The PSD of control surface rates and displacements are given in figure 8.
The control law defined by equation (10) was introduced into the flutter calcu-~
lations and checked at Mach numbers of 0.9, 0.7, and 0.5. Closed-loop root
locus plots are given in figures 9 to 11. At M = 0.9, the closed-loop value
of qp is 42.49 kPa. The value of qf increases as the Mach number is
reduced; qp = 50.03 kPa at M = 0.7, and qp = 58.41 kPa at M= 0.5. At
all three Mach numbers, the quantity qf is well above the design point
dynamic pressure of 34.66 kPa.

The variation of rms control activity with dynamic pressure q (for
q s Qmax) at M = 0.9, 0.7, and 0.5 1is given in figure 12. Control surface
rates and deflections are maximum at the design point and decrease with q at
all Mach numbers. A comparison of these results with figure 6 and table I
indicates that even though the closed-loop flutter dynamic pressure for
wn,T = 25 rps 1is greater than that for wn,T = 60 rps, the maximum control
surface rates and displacements have been significantly reduced.

Damping Type Transfer Function (DTTF)

The DTTF contains only one free parameter a7 which controls the amount of
damping introduced by the control system. This free parameter does not allow
damping forces to be placed within a specified range of frequencies or the addi-
tion of aerodynamic stiffness terms. Application is made to test the adequacy
of this transfer function for preliminary type investigations, where a small
number of variables are of considerable advantage.

Initialization of free parameters.- At M = 0.9 and Qmax = 3%.66 kPa,
the value of at was set equal to 2 and the value of wgp was set to 100, which

12



is the approximate basic wing flutter frequency. For the optimization, the gain
ar was constrained within the following range:

0§3T<5

Optimization results.- The results obtained for the control system at
M@ 0.9 and qpux = 34.66 kPa are

§ = 241.19/s
m/s

The control law is

(h = hp)/b

§ =]0 -1.86 28 V|4 .2 i1
1 1+ (B 32 . o (1)

The power spectral densities of both control surface rates and displacements are
given in figure 13. These distributions are similar to those obtained by using
the LDTTF.

The control law defined by equation (11) was introduced into the flutter
calculations and checked at Mach numbers of 0.9, 0.7, and 0.5. Closed-loop
root locus plots are given in figures 14 to 16. At M = 0.9, the closed-loop
value of qf = U43.67 kPa. The value of qf increases as the Mach number is
reduced and yields qp = 51.23 kPa at M = 0.7 and no flutter at M = 0.5 up
to q = 59.85 kPa. At all Mach numbers, qf is well above the design point
dynamic pressure of 34.66 kPa.

The variation of rms control activity with dynamic pressure q (for
a S Qpax) at M = 0.9, 0.7, and 0.5 is given in figure 17. Control surface
rates and displacements decrease with q at all Mach numbers in much the same
manner as the LDTTF case.

Comparison of Results

The optimization procedure operated in a satisfactory manner for all control
systems considered in this work. For all control systems, the value of dynamic
pressure at flutter (qe) was much larger than the design value qp,y. Further-
more, no flutter instabilities developed with either changes in Mach number or
dynamic pressure and no signs of instability were observed in the higher modes.
To provide a comparative assessment of the various control systems, the numeri-
cal results are listed in table I. Since all control systems provided the
required increase in flutter dynamic pressure, the effectiveness of each control
system is judged on the basis of minimum control surface activity over a wide
range of dynamic pressure and Mach number. It can be seen from table I that for
those systems which use the LDTTF, the most effective are those that constrain
Wp, T within the limits expressed by equation (9). Even though all three of
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these systems are satisfactory, it appears that the system which constrains
Wn,T to 60 2 Wn, T < 150 is slightly better over the dynamic pressure

and Mach number range studied. The control system which used the DTTF is shown
to be the most effective for this application. (The DTTF may, however, present
some stability problems for other applications at very high frequencies as
described in ref. 6.)

The results presented in table I show that the LDTTF with wp 7 = 25
resulted in the largest closed-loop flutter dynamic pressures. However, since
the design objective is to fly to qpyx with minimum control activity, the
value of gy has no value in itself as a measure of overall system performance.
From the standpoint of maximum control activity, the LDTTF with w, 7 @225 is
the least acceptable system (at M=0.7, &§ = 4.460/5/3, § = 372.6°/s/h/s).
These results indicate that minimizing control activity in lieu of maximizing
Qs 1is a rational approach to control system design.

Finally, the complete optimization process for the LDTTF with six free
parameters used about the same amount of computer time as a flutter calculation
at a single Mach number since it is not necessary to solve large eigenvalue prob-
lems. This fact leads to a substantial reduction in computation time for the
control synthesis since there is no need to determine the flutter speed as a
function of feedback control law.

SUGGESTED DESIGN PROCEDURE

The following design procedure is suggested for determining the free param-
eters associated with the LDTTF and DTTF.

(1) Once the initial values of the free parameters are determined, minimize
the control activity by optimizing the free parmeters to the highest value of
q and the highest subsonic Mach number.

. < . < .
o5 < (2; fogstraln wn,T,i to lie between 0.65wf T wp,T,i S 1. 450p;

(3) Determine the control surface activity over a range of flight condi-
tions. If considerable increase in control activity is observed, repeat step (1)
with a narrowed range for Wn,T,i If no increase is observed, a widening of
the wp,T,i range may be attempted

(4) Check system stability over a range of flight conditions.

The design procedure using the DTTF consists of steps (1) and (4) only.

CONCLUSIONS
An optimization procedure has been developed which uses control surface

response to a continuous gust in the synthesis of control laws for active flut-
ter suppression. The procedure has been applied to the case of symmetric wing
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flutter of a drone aircraft. Some important conclusions of this study are as
follows: :

1. The minimization of control surface response to continuous gust inputs
as a driver in control law synthesis is found to be effective.

2. A design procedure has been formulated which permits control surface
activity to be minimized over a wide range of flight conditions.

3. The application to symmetric flutter of a drone aircraft yields control
laws that suppress flutter over a wide range of altitude and Mach number by
-using a trailing-edge control.

4, The results confirm the effectiveness of the relaxed aerodynamic energy
method. ‘

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 5, 1978
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APPENDIX

FORMULATION OF EQUATIONS OF MOTION FOR FLUTTER ANALYSIS

WITH ACTIVE CONTROLS

Let the n equations

<[M]52 + % pV2[A] + [K]){a} =0 (a1)

represent the equations of motion of n structural modes with r activated
controls where [M] represents the mass matrix; [A], the complex aerodynamic
matrix; [K], the stiffness matrix; @, the density of the surrounding fluid;
V, the velocity of the fluid; and a}, the response vector. All the matrices
in equation (A1) are of size n x (n * r), that is, n structural modes + r
active controls. The response vector gﬁ can be expressed in terms of n
structural responses and r control deflections, that is,

(@) = {1} (A2)

Equation (A1) can therefore be written as

q

([MS D Mg|s? + % ov2[ag | o] + [Ks KC]) = 0 (A3)
dc

where subscript s denotes a structural quantity and ¢, a control gquantity.
Assume now a control law of the form

{qc} = [T]{q} (Al)

where [T] is a r x n matrix representing the transfer functions of the con-
trol law. Substitution of equation (AY4) into equation (A3) yields

{([Ms] + [Mg] [ﬂ)sz * 0_\27_2([1;3] + [Ag] [T]) . ([ks] + [kl [T])} @ =0 (85)

Typically, the elements of the aerodynamic matrices Ag and A, are available
as functions of the reduced frequency k and the Mach number M whereas the
transfer function matrix is a function of s, normally expressed in terms of
rational polynomials in s. Let the matrix [T] be expressed by

T] = 1 _JT Ab
(1] Q(s) N] (46)

where Q(s) is a scalar polynomial representing the common denominator of all
the Tjj terms and where [TN] is a matrix involving the resulting numerators
(as a function of s).

16



APPENDIX

The variation with s of the aerodynamic matrix [As ' Ac] can be
approximated by the following representation:

y
4] = [ag] + [a1] (%)s + [Azl(%)zsz + Z; _v__[DﬂSY (AT)
J=1 8+ =93

where all the matrix coefficients and the <vy; values are constants. (See

ref. 11.) Substitution of equations (A6) ang (A7) into equation (A5) and multi-
plication of the resulting equation by Q(s) yields a matrix polynomial expres-
tion with s of form

<[F0] + [Fﬂs + [Fz]sz I [Fm]sm){q} =0 (A8)

where the matrix coefficients Fs are functions of M, V, and dynamic pres-
sure q. Equation (A8) can be reguced to the following canonical form for eigen-
value solution

s(x} = [I{x} (49)

where [U] is of size (m x n) x (m x n) defined by

[-F&'Fn-1] [-Fa'¥n-2] - .. [-Fa'Fy] [-FEJFOJ~
W] - (1] 0 C. . 0 0 1o
0 (1] ... 0 0
o 0 c. . [1] o |

and {X} is given by

1 @)

w2 (3

{x} = ¢ N (A11)
s {@

GG
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TABLE I.- SUMMARY OF NUMERICAL RESULTS

LDTTF DTTF
Mach |Basic .g %nﬁg % 0.% %"tg % 150 5%.% %n,% % 5 =,§T§ ? 0 °T =5
number |wing
= 5.0; ar > , 1.2 5.0; app=0 ar,1 = 5.63; ar @ 3.1; , ap = 5
= 705 Cr,1 ,1 =605 Tp g =0.95\wy 1,1 =50; Zr, @25 gr,q1®m
Flutter q, kPa
0.9 (24.07 41.66 42,49 43.33 45.49 43.67
T 127417 h9.32 50.03 51.23 53.87 51.23
.5 129.69 57.93 58.11 59.13 >59.85 >59.85
Maximum srms; deg/s/m/s
0.9 261.7 253.2 245.0 255.5 241 .1
T 253.9 250.6 266.3 372.6 239.1
5 187.6 200.1 201, eeae- 183.4
Maximum 8.pq; deg/m/s
0.9 3.74 3.80 3.77 4.66 3.80
T 3.05 3.15 3.21 4,46 3.12
5 1.84 1.97 2.03 —— 1.87

6L

%3 limited up to sea-level values (17.69 kPa).
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Figure 1.- Three-view drawing of drone research vehicle.

dimensions are in meters.
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Figure U4.- Root locus plot at M = 0.7. No control. Arrows indicate
increasing dynamic pressure.
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Figure 5.- Root locus plot at M = 0.5. No control. Arrows indicate

increasing dynamic pressure.
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at various Mach numbers, using LDITF.
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Figure 11.- Root locus plot of reoptimized trailing-edge control system at
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increasing dynamic pressure.
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Figure 14.- Root locus plot of optimized trailing-edge control system at

M = 0.9 by using DTTF.

Arrows indicate increasing dynamic pressure.
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Figure 15.- Root locus plot of optimized trailing-edge control system at
M = 0.7 by using DITF. Arrows indicate increasing dynamic pressure.
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