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FORWARD 

This document cons t i tu tes  t h e  f i n a l  report for t he  work accomplished 

between June 1975 and J u l -  1977 by Ionics,  Incorporated f o r  t h e  National 

Aeronautics and Space Administratxon, b w i s  Research Center, under Contract 

NAS-3-20108 e n t i t l e d  SYNTEESIS AND CHARACTGRIZATION QF IMPROVED ION 

SEfECTIVE SEMIPERMEABLE ANION E X m N Q %  -NES. 

D r .  Russell  B. Hodgdon provided overa l l  program management. The 

princi.pa1 inves t iga tor  was Samuel S. Alexander with major contr ibution frm 

W. W. :?site, C. H. Swenson, A. Scieszko and R. B. Hodgdon. 

Thanks a r e  due t o  Cindi Krawczyk f o r  her  patience in typing the  

f i n a l  repor t  manuscript and its many revisions. 



1.0 XNTRODUCTION AM, S- 

21;h objective of NAS 3-20108 was the dewelopcaent and evaluation of 

improved anion select ive membranes useful a s  e f f i c i en t  separators i n  a 

redax - w r  storage cell system being c c n s L ~ c t e d  a t  the  NASA U w i s  

Research Center, Cleveland. 

T)rs program was divided in to  three parts, (a) optimization of the  

selected candidate -ane systems, @) inti ss t iga t ion  of a l ternat ive 

n smbrane/polymar system, and ic 1 characterizaticaa of candidate membrane#. 

Tha majcr synthesis e f f o r t  was aimed a t  improving and optimizing a s  f a r  

as possible each candidate system with respect t o  three c r i t i c a l  membrane 

properties essen t ia l  for g o d  red= cell -performance, 

(1) high se lec t iv i ty ,  minimal t ransfer  of the  reactive metal 
cations (Contract t a rge t  - 10'~ equivalents ~ e + 3  per 
Faraday or l ess )  

(2 )  l aw  e l e c t r i c a l  r e s i s t i v i t y  (Contract target - 20 ohm-cm or 
less in l N E Z C l  a t  80%) 

(3) long term durabi l i ty  i n  redox environments (Contract t a rge t  - 
a t  l e a s t  1000 hours in  2M FeCl3 and 2M CrC13 a t  SOOC). 

Substantial  improvements were ma& in 5 candidate aernbrppe systems, 

the 103QZL, A3L, BZLDT, CDlL and CP4L. These were prepared by the bulk 

polymerization of l iquid monomers on synthetic fabr ic  backing. The 

c r i t i c a l  synthesis variables of cross-link density, monomer r a t i o ,  and 

solvent caapositiaa were examined over a wide range. A s i x th  system was 

included i n  the candidate group, the A3L-96, in a low porosity configura- 

t ion. 

In addition, e ight  a l ternat ive polymer systems were investigated, 

two of which, the C D U  and CP4L, attained candidate s ta tus ,  Three other 

a l ternat ives  showed potent ia l  but required fur ther  research and developnent. 

These were the VC-TP (aminated EVC fi lm) , CT and CTM systems. 

Each candidate system was optimized for  se lec t iv i ty .  In each case 

the optimum monomer formulations were ident i f ied which produced membranes 
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with a minim1 t r a n s f e r  r a t e  f o r  ~ e * ~ .  In  general ,  these  were formulations 

having the  minimum solvent  content which could y ie ld  physically s t a b l e  

arambranes. The bes t  membranes of the candidate group gave t r a n s f e r s  of 

- 8 1 0  m g  F ,  a range which approaches the  contract  t a r g e t  

-4 
t r a n s f e r  r a t e  of 10 equivalents  p r  Faraday. Analogous candidate membranes 

which were synthesized i n  the  previous cont rac t  period had yielded t r a n s f e r  

r a t e s  of 50-1000 x mg Fe/cnF. 

The spec i f i c  resistivities of t h e  optimized candidate r e s i n s  w e r e  

about 35-65 ohm-cm i n  1 N  HC1 a t  80'~. Improvement i n  the  absolute elec- 

t r i c  res is tance  of the membranes was demonstrated by reducing the  f i lm 

QD 
thickness below t h a t  of the  standard Dynel backed membranes (0.6 mm) . 
The membrane res is tance  was reduced by a f a c t o r  of about two t o  th ree  

by the  use of a va r i e ty  of l i g h t  weight f ab r i c s  a s  backing material .  

These included material  i n  modacrylic, , polypropylene and glass.  

The most successful  l i g h t  weight f ab r i c  was a woven modacrylic yielding 

2 
the  lowest r e s i s t i v i t y  (2n-~m ) and excel lent  durab i l i ty  in the  CP4L 

membrane system. This  f ab r i c ,  hcrwever, was compatible only in  the  more 

polar  monaner systems ( the CP4L and the  CDlL) .  Other materials  shmed 

variable r e su l t s .  Only t h e  membranes on the  standard Dynel woven and 

the above modacrylic have shown the  most consistence and r e l i a b l e  physical 

in teg r i ty  on manfacture; and long term durab i l i ty  on t e s t ing .  A f i lm 

thickness of about .lo--25 mm appears t o  be the  minimum feas ib le  range 

f o r  viable membrane manufactured by bulk polymerization and fabr i c  

saturat ion.  

Very low r e s i s t i v i t i e s  were measured i n  the  VC-TP system (aminated 

t h i n  commercial W C  f i lm) but  candidate s t a t u s  was not recommended because 

+3 
of excessive Fe permeability and IEC loss  a t  elevated temperature. 

The candidate ranking highest i n  overa l l  proper t ies  and performance 



was the  CP4L-A2 membrane, a copolymer of 4 vinylpyridine and vinylbenzyl- 

chloride.  The optimized CP4L-A2 membrane (on woven modacrylic ) w a s  a 

rugged, extremely durable f i lm 0.23 m in thickness w ~ t h  an area  resis- 

2 + 
t i v i t y  R; = 1.8 ohm- , and permeability, ' ~ e  = 4-8 x l ~ - ~ m ~  n/mE'. 

The t o t a l  IEC w a s  about 5 meq/dgr . (50% s t rong base) , t he  highest  in 

t h e  candidate group. The s t a b i l i t y  of a l l  c r i t i c a l  membrane proper t ies  

was exce l l en t  a f t e r  1000 hours i n  both Z! F&13 and ZM CrCl) a t  80°c. 

(Table 1) . 
The other  candidate membranes ranked b e l w  the  CP4L system because 

of one o r  more d e f i c i t s  and are l i s t e d  S e l ~ w  i n  t h e  descending order  of 

o v e r a l l  des i rab le  propert ies .  

The A3L-B7 membrane - a c3polymer of 2 vinylpyridine and d iv inyl -  

benzene ranked next iii o v e r a l l  des i rab le  proper t ies .  It was success- 

2 
f u l l y  manufactured on a production scale in 5.5 ft area shee t s  on Dyne1 

woven fabr i c .  The menbrane had exce l l en t  d u r a b i l i t y  i n  both e l e c t r o l y t e  

0 Soiutions a t  80 C and very low permeability t o  ~ e + ~ .  Subs tan t i a l  improve- 

ment i n  r e s i n  d u r a b i l i t y  w a s  obtained by t h e  use of DVB in place of 

ethylene g lycol  dimethacrylate, the  c ross  l i n k e r  used in the  earlier 

syntheses. The r e s i s t i v i t y  of the  A3L-B7, however, w a s  a t  t h e  high end 

of the  candidate range. Membrane samples on woven Teflon and o ther  l i g h t  

weight backings were made on a l a b  sca le  showing 50% or  more impravernent 

in area  r e s i s t i v i t y ,  but  were var iable  with respect  t o  f i l m  i n t e g r i t y .  

The 103QZL-B10 m&mbrane - a copolymer of MIB and VBC post  aminated 

with tr imethylamhe was o-ptimized f o r  s e l e c t i v i t y  qiving a t r a n s f e r  r a t e  

of 2 - 3 x l o g 3  mq h/@. The minimal absolute r e s i s t i v i t y  was obtained 

on Teflon backing which yielded a membrane f i lm 0.27 m i n  th ickness  

and a corresponding *crease of about 50% res i s t ance .  Resin d u r a b i l i t y  

was a x c e l l a ~ t  i n  FeCl a t  80°c bu t  n l y  fair in  C S 1 3  and 80%. showing 
3 

sme l o s s  of s e l e c t i v i t y  in the  l a t t e r  e l e c t r o l y t e .  A t  p resent ,  la rge  
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sca le  manufacture is feas ib le  only on woven Dynel. 

The CDlL-A5 and45H membranes a re  copolymers of VBC and dimethylamino- 

e t h y l  methacrylate (DMAEMA). The membranes have a high IEC of 4.5 meq/dgr 

C 2 
and a low r e s i s t i v i t y ,  RB,of 2.9 ohm-cm . 

- -----. 
The membrane, 0.11 m in t h i c h e s s ,  was successfully prepared in 

l ab  sca le  on l i g h t  weight modacrylic f a b r i c  which represented t h e  minimum 

f i b  gage and r e s i s t i v i t y  in  t h i s  system. Thin membrane d u r a b i l i t y  was 

u s e l l e n t  in FeC13 a t  8 0 ' ~  and i n  C r C l j  only a t  ambient temperature. The 

-3 
minimum t r a n s f e r  r a t e  was 4-8 x 10 mg Fe/mF. 

The 92LDT-B2 membrane,a copclymer of VBC and DVB post  aminated with 

diethylenetriamine (DETA) , showed extremely s t a b l e  r e s i n  proper t ies  in 

both e l e c t r o l y t e s  a t  8 0 ' ~  buy only fair t o  poor d u r a b i l i t y  f o r  t h e  mem- 

branes on woven Dynel and Teflon respectively.  This was a t t r i b u t e d  t o  

f a b r i c  damage of t h e  Dynel in manufacture and inadequate r e s i n  f i b e r  

adhesion f o r  the  Teflon. The minimum membrane gage obtained w a s  0.27 mm 

C on woven Teflon yie ld ing t h e  minimal r e s i s t i v i t y  f o r  this system R = 

2 -3 
4.1 ohm- . The optimized t r a n s f e r  r a t e  was 1 - 2 x 10 mg Fe/rnF. 

The A3L-96 membrane - a copolymer of 2VP and ethylene glycol  dimeth- 

ac ry la te  (EGDM) had shown good d u r a b i l i t y  i n  the  previous program but 

only a t  ambient temperature. This membrane system was chosen a s  the  

s i x t h  candidate because of t h e  ease  of manufacture i n  a one s t e p  poly- 

merization, and po ten t i a l ly  low t r a n s f e r  r a t e .  

The alterr.ativesystemsVC-TP, CT, and CT?¶ were found promising but  

requiring more R & D t o  c rea te  viable films. 

The VC-TP membrane system - W C  f i lm aminated with tetraethylene- 

pentamine (TEPA) - showed promise because of i ts  r e l a t i v e l y  high poros i ty ,  

high conductivity, and physical  s t rength  a t  .050 .20 mm thickness. 



The CT polymer system - a copolymer of VBC and TEPA gave an unusually 

high I E C  i n  the region or' 6-7 meq/dgr. Higher cross linking was indicated 

fo r  the production of a s table  film structure.  

The CTM polymar system - a copolymer of VBC and N, N,  N' ,  N t  ta t ra-  

methylethyleriediamins (TNEDA) yielded a high IEC of 4.5 mealdgr which was 

over 90% i n  strong base capacity. Higher cross linking was a l so  indicated 

here t o  e f f ec t  a more s table  res in  structure. 

Characterization of the membranes was not completed, but suf f ic ien t  

data were cbtained t o  rank candidates in order of t h e i r  probable usefulness 

in  the redox system. The r e s i s t i v i t y  of the  optimized candidates over a 

w i d e  range of HC1 and NaCl concentrations was found t o  be a good measure 

+ 
of the candidate's re la t ive  effectiveness in excluding the cations H and 

+ 
Na , The most effect ive candizate membrane CD1L-AS and CP4L-A2 showed 

the l ea s t  r e s i s t i v i t y  change over the en t i r e  concentration ranqe. 

+ 
The t ransfer  r a t e ,  Pt,. was measured fo r  four candidate membranes - 

a s  a function of FeC1 concontration over a range of 0.5 to  4.0 N. The 3 

t ransfer  r a t e  was ccnstant or s l i gh t ly  increased in the  0.5 - 2.0 N span 

but increased sharply by a fac tor  of approximately three f o r  the more 

selective nembranes a t  4,ON FeC13. The t ransfer  r a t e  of t h e  most porous 

membranes of the se r ies ,  the 103QZL-B2, hcreased by a factor  cf 8. 

Polarization e f f ec t s  were indicated by the extremely low Fe trm-sfer 

r a t e s  in high porosity membranes on application of high current densit ies.  

+ 
The 103QZL21gS membrane gave a PFe of about 1-4 mg Fe/S a t  15-l20 ma/m 

2 

2 range and decreased by 5COI t o  9 x lo-) mg Fe/mF a t  480 rna/cm . L o w  

porosity selective candidate membranes showed l i t t l e  or  no variable 

t ransfer  e f fec t s  over the same range. 



2.0 -RAM: SYNTHESIS - CANDIDATE SYSTEMS 

In  Task I1 (NAS 3-20108) f ive  candidate membrane/polymer systems 

were invest igated with the  aim of optimizing the  c r i t i c a l  membrane 

proper t ies  of s e l e c t i v i t y ,  r e s i s t i v i t y ,  and durabi l i ty .  Three candi- 

da tes  were se lec ted  from the  previous cont rac t  e f f o r t ;  systems 103QZL, 

A3L, and B2LDT; and two membranes reached candidate s t a t u s  out of Task I 

of the  present cont rac t ,  systems C D U  and CP4L. A s i x t h  candidate was 

included, the  A3L-% membrane i n  a lcrw porosi ty configuraticm. 

The membranes were prepared using the  bulk polymerization method 

with monomer sa tura t ion  of the  f ab r i c  backing. A wide range of the  

major synthesis  var iables  were studied and re la t ed  t o  the  physical 

qua l i ty ,  i n t e g r i t y  of t h e  polymer f i lm and various electrochemical pro- 

p e r t i e s  of the  membrane, The major synthesis  var iables  were (1) cross- 

l i n k  densi ty (f  ) or  molar r a t i o  of the  co-monomers ( M R ) ;  and (2)  non- 
XL 

polymer solvent  f r ac t ion  (fNp). 

Each membrane system was op t iml~ed  a t  a sheet  thickness of 0.60 mm 

using wcven Dyne1 fabr i c  a s  the f i lm backing material  because of i ts super- 

io r  re--.in system canpa t ib i l i ty  and durabi l i ty .  Scale up t o  production s i z e  

2 
film,, 5.5 f t  ?;n area  per sheet ,  was judged t o  be feas ib le  f o r  a l l  the  

candidate systems and w a s  demcnstrated far two, the  103QZL-B2 and A3L-B7 

membranes. These membranes were manufactured on a production sca le ,  in 

good y ie ld  with uniform physical and chemical propert ies .  

Improvement i n  r e s i s t i v i t y  was achieved by reduction of t h e  mel..)rane 

t!!ickness through the  use of l i g h t  weight synthet ic  f ab r i c  backing. 

Membranes were produced on a lab  sca le  i n  the  0.12-0.25 mm thickness 

range and showed a corresponding, but not  l i n e a r  decrease i n  area  

r e s i s t i v i t y .  Manufacturing procedures C a r  fabr ica t ing  acceptable t h i n  

membranes on a large sca le  were not f u l l y  established.  Further investiga- 

t ion w i l l  be needed i n  t h i s  area. (Table 1) . 
7 



2.1 THE 103QZL SYSTEM 

The lo3QZL candidate membranes a r e  .?opolymers of vinylbenzylchloride 

(VBC) and divinylbenzene (DVB) post reacted with t r h t h y l a m i n e  (TMA) . 
The polymer network cons i s t s  of a vinylbackbone crossl inked by DVB and 

contains a pendant s trong base ion exchange group, benzyl t r imethyl-  

ammonium chloride (Figure l a )  . 
The  membraaes are prepared in a two s t e p  process ( a )  polymerization 

of the  f i lm and (b) amination t o  a f i x  the  quaternary ammonium chloride 

groups 

A series of 103QZL type membranes were prepared from d i f f e r e n t  form- 

u la t ions  representing a w i d e  range of monomer and non-polymerizable solvent  

compositions. The membrane 103QZL-B10 w a s  found t o  y i e l d  t h e  maximum 

s e l e c t i v i t y  i n  t h i s  series together with good physical  and chemical 

prop- ies  (Table 2) . The optimum m Toner fornula t ion,  d e s i p a t e d  a s  

B10, consisted of a nominal cross l ink densi ty ,  f 5 . 3 5 ,  and a non-polymer 

solvent  content ,  s.30. The cross l ink a ~ e n t  was DV9. 
%P 

The optimized membrane 103QZL-B10 a s  manufactured on woven Dynel 

backing was a s t rong f l e x i b l e  anion se lec t ive  membrane sheet  0.60 mm 

i n  thickness and had the  following ,properties: 

IEC = 2.24 meq/dgr 

H20 content = 25.4% 
C 

Area Res i s t iv i ty ,  R , i n  0.1N HC1 = 1C.6 A-cm 
1 

+ 
~ e + ~  t r a n s f e r ,  P = 2 - 3 x 1 0 ~ ~  mg Ene/mP 

Fe 

The 8-10 membrane on Dynel f a b r i c  -Jas proiuced i n  good y ie ld  i n  1 f t  
2 

2 sect ions  and could be manufactured i n  sheets  5.5 f t  in area (50 x 100 

The Dyne1 backed B10 showed excel lent  durab i l i ty  i n  2M FeCl a t  80'~. 
3 

The durab i l i ty  in 2M CrC13  w a s  expected t o  be s imi lar  t o  t h a t  obtained 

in the case of 103QTL-B2 nembranes. Loss of s e l e c t i v i t y  was measured 

a f t e r  100 hrs but remained e s s e n t i a l l y  constant  from the  200 hr. t o  the 

l C O O  hr .  ~ o i n t .  
8 



Th. B-10 mmbrane was a l so  prepared on a lab scale  on woven Teflon 

fabr ic  which reduced the  membrane th ickmss  t o  0.25 m resu l t ing  i n  a 

C 2 corresponding decrease in area r e s i s t i v i t y ,  R? = 5.5 A-cm . (Table 1) . 
The Teflon fabr ic  has not yet  proven t o  be a sa t i s fac tory  improvement 

m r  Dynel due t o  the prevalence of pinhole defects  in the Teflon backed 

mmbranes a s  manufactured. 

The modacrylic fabr ic  was not usable i n  the 103QZL system because 

of its p a r t i a l  so lub i l i ty  i n  the  hot monaner solution. None of the 

polypromlene nonowovens produced films of any useful  qual i ty .  

Further improvement in membrane r e s i s t i v i t y  requires creation of 

t h i n  continuous membrane films on l i gh t  weight fabr ics  or substra tes  

wtdch are  both chemically compatible with monomeric consti tuents and 

r e s i s t i ve  t o  the  redox environment. 

A summary of the experimental monomer formulations tes ted  is given 

i n  Table 2. The major synthesis variables were; (1) crosslink density 

(fn) and (2) non-polymr solvent content (f 1 .  
NP 

fxL has been defjned a s  the mole f ract ion of the  crosslink monomer 

based on the t o t a l  monaner present. 

EvaluatLan Summary - 103 QZL-~10 ~embrane 

-B-10 formulation optimum f o r  s e l ec t i v i t y  . 
-Large scale  manufacture feasible  on Dynel woven fabric.  

-Membrane on Dynel woven backing is rugged, f l ex ib le  and durable in 
redox environment a t  80°c. 

- fmprovement in r e s i s t i v i t y  achieved on lab scale by f i l m  gage 
reduction. 

-More R & D nee&d on backings and substra tes  in order t o  improve 
quali ty.  



2 . 2  THE A3L SYSTEM 

The A3L membrane/polymer system- is a copolymer of 2 v inyl  pykidine 

(2VP) and DVB. The membranes are f onned i n  a one s t e p  Srocess by the  

polymerization of the  monomers and solvent on f a b r i c  by means of heat and 

an i n i t i a t o r .  The t e r t i a r y  cyc l i c  amino group is i n t r d u c e d  d i r e c t l y  

i n t o  the polymer s t ruc tu re  by the  2 VP monomer and no chemical post t r t a t -  

ment is  needed t o  ac t iva te  t h e  r e s in .  (Figure l b )  

A series of A3L membranes were prepared on l ab  sca le  with varying 

proportions of monomers and solvent  using w e n  Dyne1 f a b r i c  a s  backing 

material .  The optimized membrane i n  t h i s  group was the  A3L-B7 membrane 

+3 
yie ld ing the  lowest Fe t r a n s f e r  value together  with good physica l  and 

chemical proper t ies .  The A3L-B7 polymer was crossl inked with DVB. 

The optimum monomer formulation f o r  B-7 consisted of a c ross l ink  

dens i ty ,  fXL of .30 and a solvent  content ,  f>lp, of .25. (Table 4 )  

The A3L-B7 membrane was manufactured in production s i z e  sheets ,  

2 
5.5 f t  i n  area  a t  .60 mm thickness with uniform ~ h y s i c a l  and chemical 

propert ies .  Tlese were: 

IEC = 3.2-3.8 meq/dgr 

H 2 0  Content = 30.8-33.5% 

Area Res i s t iv i ty ,  R' i n  0.1N HC1 = 4.1-10.3 A-cn 
2 

?+ -3 
Fe Transfer ,  ' ~ e  = 1-2x10 mg Fe/mF 

A s  pred,cted, MTB monomer imparted super ior  chemical s t a b i l i t y  

(in W FeC13 and 2M C K 1 3  a t  80'~) t o  the A3L membrane/polymer 

system i n  con t ras t  t o  the A3L membranes of the  previous cont rac t  p r i o d  

which used ethylene g lycol  dimethacrylate (EGDM) a s  the  c ross l ink  agent. 

The optimized A3L-07 membrane showed exce l l en t  duraS i l i ty  i n  both FeC13 

and CrC13 solu t ions  a t  BOOC f o r  1000 hr exposure time. (Table 1 2 ) .  The 

A3L membranes containiag EGDM deterioratsc!  progressively under t h e  same 

conditions. 

It was demonstrated t h a t  the membrane area  r e s i s t i v i t y  cculd be 
10 



substantially improved by the use of l ight  weight: synthetic backings of 

substrates i n  place of the standard candidate backing, woven Dynel 

(Table 5) .  The choice of a backing material is limited by both its corn- 

patability with the resin system and its chemical resistance t o  the 

redox enviroment. A t  -is time, woven Dyne1 remains t h e  best a l l  around 

backing material for  the A3L system polymers. The fabrics which pro- 

duced coberetnt samples an lab scale were uomn Teflon and non-woven 

polypropylene. H c m v e r ,  the quality and durabil i ty on sand* were 

varilble and none acheived the  overall  reliabilit; .  of the  Dynel . 

Evaluation Sununary - A3tB7 Membrane 

-B7 formulation optimum for  selectivity.  

-Large scale manufacture successfully demonstrated on dyne1 woven 
fabric . 

W r a n e  is rugged, f lexible arrl has excellent durabil i ty in redox 
environment a t  80°c. 

-Resistivity inprovement by decrease in film/fabric thickness 
&mastrated on lab scale. 

-More R & D needed t o  improve film quali ty of th in  membranes. 



2.3 THE B2IJfi SYSZEM 

The B2LDT membrane c a p r i s e s  the  same bas ic  polymer s t ruc tu re  as 

t he  103QZL bu t  is aminated with diethylene triamine (DETA) t o  form mainly 

primary and secondary amino groups (Figure l c )  . 
The polymer f i lm is fonned i n  the  i d e n t i c a l  manner a s  the  103QZL by 

the  polymerization of VBC and MIB i n  solvent  on synthet ic  f a b r i c  backing 

by means of heat and an i n i t i a t o r .  

The optimum membrane i n  t h i s  system w a s  t h e  B2m-B2 which shoved the 

lowest Fe t r a n s f e r  value and acceptable physiczl and chemical propert ies  

(Table 6 ) .  

The base polymer f i lm has been manufactured successful ly ia la rge  

2 
s i z e  sheets  5.5 f t  i n  area on woven Dynel fabr ic .  The B2LDT-B2 polymer 

s t ruc tu re  and ion exchange groups showed excel lent  long range s t a b i l i t y  

0 
in both FeCl and CrCl so lu t ions  a t  80 C. (Table 12) 

3 3 

Haever ,  the  unsat isfactory durab i l i ty  r e s u l t s  reparted on t h e  

B2LDT-82 membranes were r e l a t ed  t o  the  f a i l u r e  of the supporting fabr ic ,  

I n  the  case of the  woven Dynel, the  f a b r i c  was damaged and weakened during 

the  amination process leading t o  fu r the r  physical de ter iora t ion  of the  

f i lm and t r a n s f e r  propert ies  during the  long ranqe durab i l i ty  test. 

The B2LDT-B2 on woven Teflon sh-d increased ~ e + ~  t r a n s f e r  and 

eventual  c ross  leakage i n  the  1000 h r  durab i l i ty  test indica t ing  insuf- 

f i c i e n t  r e s i n  f ibex bonding. 

Tihe proper t ies  of the  optimized B2LDT-B2 membrane on Dynel f a b r i c  were: 

IEC = 3.5 meq/dgr 

Water Content = 29.9% 

Area Resis t iv i ty .  R;, i n  0.19 HC1 - 8.7 A-cm 
2 

+ -3 
Fe t r a n s f e r ,  PFe = 1-2x10 mg Fe/mF 

Improvement i n  area  res is tance  by f i b e r  gage reduction was achieved 

2 on mmn Teflon (RC = 4.1 A-cm ) . Woven Mdacryl ic  proved unsuitable 
P 



because of its solubility i n  tha monomer solution. 

Thin film B2LDT-B2 membranes require further research and develop- 

mant on woven and non-wven support fabrics. 

-Selectivity optimized at  m e t  value or better for Pe transfer. 

-Large scale manufacture feasible m wown Dyne~l fabric, 

-Polymsr and exchanw groups show excellent stability in redox 
environment a t  80%- 

-Use and treatmemt of support fabric and substrates requires more 
R & D. 



2.4 TEIE CDlL SYSTEM 

The CDlL membrane is a copolymer of vinylbenzyl chloride (V9C) and 

dimethylaminoethyl methacrylate (DMAEMA) in w h i c h  the  cross l inks  a r e  

formed by the  condensation reaction of t h e  benrylchloride group of VBC 

and the t e r t i a r y  amino group of DMAEMA. (Pigum Id)  

The CDlL membrane can be prepared by e ither a one s t e p  or two step 

synthesis, 

(1) One Step Synthesis - The backing fabr ic  is f i r s t  saturated 
with ahaaogenous solut ion or' the monaners and an i n i t i a t o r  in solvent. 
The jernbrane sheet  is then formecr between g lass  p la tes  in a s ingle  heating 
operation by the simultaneous i n  s i t u  polymerization of the vinyl groups 
and condensation of the amino and vinyl Senzyl groups t o  farm qlnternary 
amaronium chloride sites. 

(2) Two Step Bvnthesis - VBC and DlWNA are f i r s t  reacted in H20 
t o  fonn a w a t e r  soluble condensation product, a quaternary ammonium 
chloride salt of VBC and DMAEMA. I n i t i a t o r  is dissolved and the  
membrane sheet  is fonned in a s e c a d  heatin? operation by tAhe -wlymeriza- 
tica of the v w l  qoups.  

The opthum membrane x l e c t i v i t y  in the CDlL system measured by 

+3 + 
minimal Fe t ransfer  (PPe) was most closely re la ted,  as in other systems, 

t o  the  ~ l v e n t  f ract ion (GP) used, The nemSranes CDlL A S ,  ASE, A6 and 

A6H yielded the minimal P+ value and w e r e  prepared with the lowest solvent 
Fe 

f ract ion i n  t he  series tested.  (Table 7)  

The menbranes C D L - A S  and ASH were selected. for candizate status 

Secause of t h e i r  a g a r a n t  lower r e s i s t i v i t y .  

The membrane thickness was reduced t o  9-11 tan from the  standard of 

0.60 am by the successful use of l i g h t  weight woven modacrylic. However, 

the apparent imprwement was only a 50% decrease or  less in area r e s i s t i v i t y  

$. This may 5e due t o  the more dense yarn construction of the  thinner 

cloth.  

Lab scale samples with good physical qual i ty  were -cre-pued on woven 

- Aacxylic using the  one s tep  synthesis. Scale up t o  production s i z e  -was 

not ateenptee. 

1 4  



The optimized CDlL-AS on modacrylic fabric had the following p ropr t i e s :  

IEC = 4.02 meq/dgr (-50% in strong base capacity) 

u20 Confent = 30.1% 
C 

Area Resistivity, RI, i n  0.1N HCl = 2.9 n-cm 
2 

Film Thickness = 0.11 am 
+ 

~ e + ~  transfer,  PFe = 7-8 .g h / E @  

ZDLL-A5 durability in PaCl a t  8 0 " ~  was excellent shaving l i t t l e  
3 

cc changa in any chemical or physical property of t b  film. Homver 

the CDlL-A5 resin deteriorated structurally and los t  IEC in the more 

a~gxessive redox envir-nt, 2M CrCl a t  80°c. A t  ambient temperature, 
3 

CxCI) had l i t t le  or no chemical or physical effect  on the membrane (CDlL- 

ACH fabric) aad on CDlL-A5 on modacrylic fabric. (Table 1 2 )  

E ~ a l  uation Summary - - CDU-A5 and A5H Membrane 

-Optimized for  selectivity.  

-Film thickness reduced t o  0.11 mm with about 50% improvement i n  
area resis t ivi ty .  

-Excellent durability in FeC13 at  80 '~  and CrC13 a t  ambient temp. 

-Large scale manufacture feasible using woven Dynel. 

-atenti - - for th in  film ma.?.?ufacture . 



/ I  2.5 THE CP4L SYSTEM 
. I  * 

! 
i The CP4L membrane is a copolymer of 4 vinylpyridine (4VP) and vinyl- 

! 

benzyl chloride(VBC1. The resin s t ruc tu re  consis ts  of a vinyl  backbone 

crosslinked by quaternary ammonium segments formed by the condensation 

reaction of the  benzyl chlaride part of VBC and t h e  pyridine amino group 

(Figure la) . The membrane sheet  is formed in a one s t e p  synthesis  s imi la r  

t o  t h e  procedure described in sect ion 2.4, 

The CP4L-A2 and A3 membranes have ranked highest of the  candidate 

grmp in the overa l l  s ign i f i can t  physical and chemical properties. 

(Tables 1 and 8 ) .  The system produced the  highest IEC, 4.5-5.0 meq/dgr, 

the  lowest areas r e s i s t i v i t y ,  R;, 1.8 r a n 2  and a la trans fe r .  I n  

addit ion,  the CP4L-A2 showed excel lent  s t r u c t u r a l  and exchange group 

s t a b i l i t y  in both FeC13 aud C K 1  a t  80'~. Lab sca le  membranes havt been 
3 

produced on woven Dyne1 and on woven modacrylic, 

The optimized CP4EA2 membrane on modacrylic f a b r i c  had t h e  follow- 

ing propert ies : 

IEC = 5.30 meq/dgr (about 55% in s t r m g  base capacity) 

Water Content = 31.8% 
C 

Area Resis t iv i ty ,  R p ,  i n  0.W HC1 = 1.8 A-cm 
2 

+ 
~ e + ~  t rans fe r ,  P = 4-8x10-3 mg Fe/mF' 

The superior r e s i s t i v i t y  and good s e l e c t i v i t y  of the  CP4L42 membrane 

f : ' : 
r e l a t e s  to  the unusually high ion exchange ca-oacity achieved by the  4VP 

monaner. The f ixed ion charge densi ty or intersti t ial  molality, In, of 

the  res in  was 11.4 mew g H20. The highest IM obtained i n  the  previous 

contract  period was 7.5 mq/g H20 ( T e l e  10, NASA CR-134931). The 

. . 
i n t e r s t i t i a l  molality is defined as the  meq of exchange ca-pacity per 

gram of resin water content. 

The effect iveness of cat ion exclusion was demonstrated by the  small 

change obsenred i n  CP4L-A2 area r e s i s t i v i t y  over the range of 0.1 t o  6.ON 

HC1 i n  the external  solut ion and indicated t h a t  the CP4L membrane experiencd 

16 



+ 
less H intrusion than the  other candidate resins. (Table 1 4 )  

Lab scale manufacture of the CP4L was d i r ec t  and easy. Urge scale 

manufacture of the CP4L appears t o  be possible. 

Although the modacrylic fabr ic  produced excellent membrane films 

it w a s  chemicaly sensit ive t o  the CP4L monomers resul t ing i n  some fabr ic  

shrinkage and thickening of the  end product film t o  0.25 m. 

Evaluation S u m a r y  CP4bA2 Membrane 

-Optimized select ivi ty .  

- m o v e d  r e s i s t i v i t y  by reducing f i l m  gage t o  0.25 mn. 

-Has highest IEC and lowest area r e s i s t i v i t y  of candidate group. 

-Excellent durabi l i ty  in both FeClj and CrCl a t  80°c. 3 

-Viable manufacture on lab scale and potent ia l  for large scale pro- 
duction. 



2.6 A3L-97 m N E  

Tile A3L-% polymer is composed of 2 vinyl pyridine crosslinkad by 

athyleneglycol dimethyacrylate. (Figure I f )  . It w a s  selected as  the 

sixth candidate because of its anticipated ease of manufacture in  a one 

s e p  polymeriratirn process and potentially la ~ e + ~  t ransfer  rate.  The 

i n i t i a l  t r i a l  using Teflon fabr ic  as backing w a s  not successful. However, 

we expect t o  furnish samples of an optimized version on both Dyne1 and a 

t h in  synthetic fabric. 

-Durable membrane in redox environment a t  ambient temperat-. 

-Potential ease of manufacture in one step polymerization. 



3.0 ALTERNATIVE MEMBRANE SYSTEMS 

Under Task I (NAS 3-20108) we proposed t o  screen a t  l e a s t  e i g h t  

a l t e rna t ive  membrane/polymer systems and s e l e c t  from t h i s  number those 

which showed good po ten t i a l  for improvement i n  s e l e c t i v i t y  and e l e c t r i c a l  

r e s i s t i v i t y  i n  addit ion t o  ease of manufacture and durab i l i ty  i n  the  redox 

environment. The method of f i lm manufacture in most of the  above systems 

was bulk polymerization of the  monaners on synthet ic  f ab r i c  using heat 

and f r e e  r ad ica l  i n i t i a t o r s .  In  one system the membrane was formed by 

the  amination of a commercial WC film. (Table 9) 

Wo a l t e rna t ive  membrane systems were advanced t o  candidate s t a tus .  

(1) The CDlL system - a copolymer of vinylbenzylchloride 
(VBC) and dimethlaminoethy lmethacrylate (DMAEMA) 

(2)  The CP4L system - a copolymer of VBC and 4 - v i n y l ~ r i d i n e  
(4VP) 

The remaining proposed a l t e r n a t i v e  membrane systems were explored 

and evaluated. Four systems have shown fi lm manufactur 9 v i a b i l i t y  

and promising physical and chemical propert ies .  These were: 

(1) The CT system - a copolymer of VBC and te t rae thylene  pentarnine 
(=PA) 

(2) The CTM system - a copolymer of VBC and N, N, N1, N 1  tetramethyl 
ethy lane diamine (TMEDA) 

(3) The VC1-TP system - PVC f i lm aminated with TEPA. 

Three systems were re jec ted  because of i n a b i l i t y  t o  manufacture 

f i lms using t h e  current  bulk polymerization technology. These are :  

(1) The CE system - a copolymer of VBC and ethylenediamine GDA) 

(2)  The CD system - a copolymer ~f VBC and diethylene triamine (DETA) 

(3 The CX system - a copolymer of 4VP and Q&' xylenedichloride 
( X X )  

(4) The SEM system - a copolymer of ethylene glycol  dimethacrylate 
(EDGM) and su l f  oethy 1 methacry l a t e  (SEMI 



THE CT SYSTEM 

In  this case, vinylbenvyl chloride NBC) is ussd with polyalkyl- 

polyamine (TEPA) providing both the  needed crosslink segment. (Figure 

2a) The CT res in  is prepared by a two s tep  process in which the active 

ingredients VBC and TEPA are reacted t o  form an aminovinyl intermediate. 

The intermediate is then palymerized by heat and i n i t i a t o r  on synthetic 

fabr ic  . 
The i n i t i a l  membrane samples showed unusually high levels of weak 

base IEC i n  the range of 6-7 meq/dgr. Hcrwever, the high H20 content of 

the membrane and severe res in  erosion in acid indicated a weakly cross- 

linked polymer structure. 

The application of higher cure temperatures and an increase i n  VBC 

did not suff ic ient ly  improve the res in  s t a b i l i t y  for membranes prepared 

by saturation of woven fabrics. However, th in  films of the  CT res in  

bonded t o  non-woven substrates showed improved durabil i ty i n  acid 

solution, an e f f ec t  which may be due t o  the greater c o n t ~ u o u s  physical 

support provided by the mat f ibers.  The best  non-woven backing i n  t h i s  

regard was a polypropylene mat. 

Evaluation Summary - CT System 

-Highest IEC attained in program. 

-Canponents have high react ivi ty .  

-Shows potent ia l  f o r  th in  film manufacture on porous substrate. 



3.2 THE CTM SYSmM 

A crosslinked structuce is produced by the  condensation of the  benzyl- 

I rl chloride group of VBC with both ends of the  t e r t i a r y  diamine, N ,  N,  N', N 1  

1 tetramethylethy lens diamine (TMEDA 1 . This f o m s  quarternary exchange 

1 [I s i t e s  a t  the  cross  l ink  segment. (Figure 2b) 

The CTM membrane was prepared in a one s t e p  process. The moncxners 

were mixed together  i n  a solvent containing i n i t i a t o r .  Hard, w e l l  cured 

films were produced when the  monomer solu t ion  was rapidly polymerized. 

Gradual heating tended t o  produce undercured films. However, even the  w e l l  

cured membranes tended t o  erode and leak a f t e r  severa l  days standing i n  

ac id  environment. 

The C'lM polymer system gave IEC values i n  t h e  4-5 meq/dgr range 

h i c h  cons i s t id  of over 90% i n  strong base capacity. 

Evaluation Summary - CTM System 

-One s t e p  polymerization with very reac t ive  monome: >.  

-High IEC which is predominantly (90%) strong base capacity. 

-Potential  f o r  t h i n  f i lm manufacture. 



3.4 THE SEM SYSTEM 

The SEt4 membrane/polyrner system iepresenta the  sole cation select ive  

mnbrane proposed i n  the current px,?grm. The SI%M res in  is z copolymer of 

sulfoethyl methacrylate (SEM) and tha crc.sslinker ethylene glycol dimath- 

0 acrylate (EGDM) . (Figure 2g) 

The trial samples a s  prem-ed on woven Dyael k.ad good integr i ty  

2 and area r e s i s t i v i t y  in  0.1N HCl, R' = 13.0 ohm-cm . The IEC and 

H 0 content was 2.3 meq/dgr and 3e% respectively. 
2 

(1 !he SEM system, h m v e r ,  was rejected from further consideration 

because of leakage f a i l u r e  during tes t ing  fo r  Fe t ransfer  i n  2M FeC1 

solution. A l l  samples behaved similarly although the or iginal  films were 

. ! apparently f ree  of holes or cracks by inspection and tes t ing  with dye. l i 
Evaluation SUnutIary - S E M  

-SEM membrane system not suitable because of res in  fa i lu re  i n  redox 
solution. 



THE VC-TP SYSTEM 

The VC-TP membrane system was the sole system prcposed in the current 

program which was not produced by bulk polymerization of l i5uid monomers. 

The VC-TP membranes were prepared by the amination of t h i n  commercial 

pcll}~vinylchlori& ( W C )  film using tetraetnylene pantaxnine (TE PA) . The 

s t ructure  consists of W C  chains and pendant polyalkyl polyamiae groups 

sane of which may crosslink t!!e EVC chains. The anion exchcnge qroups are 

secondary and primary mines.  (Figure 2c) 

Tables 10 and 11 summarize t h e  physical and chemical prcpezti 

the experimental '.T-TP membranes produced in the  program. A variet. 

conmnercial W C  films were tes ted  canprising film thickness of -025 imn 

(1 m i l )  t o  0.20 ma (8 m i l )  and with a p las t ic izer  range of 7 t o  30%. 

As produced, the membranes tended t o  show lw se l ec t iv i ty  (excessive 

+ 3 
Fe transfer). With post treatment of the membranes in FeCl solution 

3 

and i n  a i q t h e  se lec t iv i ty  was improved but w i t h  resul tant  loss  in IEC 

and conductivLty. None of t h e  usable film samples prodused in  the current 

program were recommended for t es t ing  a t  the NASA Lewis Center because of 

the re la t ively high ~ e + ~  t ransfer  ra te .  

Advantages of the VC-TP membrane -re its film gage (0.025-.20m) 

resul t ing in very low r e s i s t i v i t i e s  and good film strength and integr i ty .  

It tended t o  embrit t le somewhat with prolonged heating. 

Evaluation S m a r y  - VC-TP Membranes - 
-Membrane as currently produced not sui table  for  redox application. 

-Potential a s  conductive thin substrate for  application of candidate 
polymer film. 



3.5 THE CE, CD, AND CX SYSTEMS 

The following polymer systems were found hworkable f o r  d i r e c t  and easy 

manufacture of useful  homocjeneous anion membrane f i lms,  These were the: 

(1) CE System - copolymer of vinylbenzylchloride (VBC) and ethylene- 
diamine (Figurn 2d) . 

(2) CD Syatem - copolymar of VBC and diethylene triamine (DETA) 
(Figure .2e) . 

(3) CX System - copolymer of 4 vinylpyridine (4VP) and CX, C X 1  
d i c h l o r o - v  ylene . (Figure 2c) 

Successful film manufacture using the  bulk polymerization method 

required t h a t  the  monomer-solvent cons t i tuents  of the  system be miscible 

and capable of s t a b l e  homoqenous monaner so lu t ions  f o r  f ab r i c  impregnaticm 

p r i o r  t o  polymerization and ~ u r i n g .  

The jomponents of t h e  a, CD and CX systems were general ly incom- 

pat ib le  in a wide var ie ty  of polar and no~r-polar solvents ,  separa t i r -  

i n t o  2 or  3 phase solu t ions  o r  producing insoluble p r e c i p i t a t e s  dur i r~g 

the  mixing stage. 

xu- 

6 



4.0 DURABILITY OF CANOIOATE m R A N E S  

The anion selective membranes s tudies  in t h i s  program w e r e  caaposites 

of a variety of experimental ion-exchange resins and synthetic fabrics. 

bmg tenn useful f-mctianing of these membranes as cell separators in a 

redo# system requires that the resin st ructure ,  f i x  a:.:r'r,rgo groups, and 

the supportive fabr ic  have adequate long term s t a b i l i t y  and chemical 

resistance t o  the redarc cell solutions. 

The durabi l i ty  of the candidate membranes was tested by t h e  immer- 

sion of 3ledrane samples (3" in diameter) in W FeCl /1N K1 and in 
3 

W Lxl ./IN )PC1 solutions maintained at  80°c for a period of 1000 hours, 
3 

A t  intervals of lOC,250,500, m d  1000 hours membrane samples were removed 

for  inspectian and analysis of chemical and physical properties. 

Each membrane sample was characterized as follcws: 

(a) V i s a 1  inspection for c'--rious gross changes such a s  res in  erosin 
surface cracks, color, and f l ex ib i l i t y ,  

(b) Nan staining dye test for leak defects 

( c )  B u r s t  strength or Mullen B u r s t  Tester--this data is essent ia l ly  
a measure sf the fabric dcrabi l i ty  as polyelectrolyte membranes 
.~ve l i t t l e  o r  r?o s e l f  supportive strength 

(d) I on exchange capacity (nC) 

(e) Water content 

( f )  Resis t iv i ty  in 0.B HC1 

(g) *+3 t ransfer  rate 

A summary af the  durabi l i ty  test . resul ts  is given in Table 12. 

The CWEA2 membrane car woven modacrylic fabr ic  ranked highest in a l l  

around durabil i ty.  .rhe CP4L-A2 s h m d  l i t t le  or  no s ignif icant  change in 

the  essen t ia l  functional and structizral membrane properties i n  both FeC13 

0 
d CrCL3 test solations a t  80 C. Sole a l te ra t ion  was the resin color 

which changed frcm a transparent colorles-; appearance t o  a dark opaque 

color but with no apparant cStriraent t a  41y measurable chemical o r  

physical property. 

The A3L-B7 membrane on woven Dyne1 had similar good durabi l i ty  



i n  a l l  functional properties in both redox envirorrments but showed some 

film stiffness ar britt leness by 100 hours which produced 3 small loss on 

film burst strength (15%) . 
The lO4ZL and C D U  systems exhibited good durability in FW13 but 

showed a substantial loss of selectivity aad an increase in water content 

i n  C; 1 a t  80°c. both effects  indicated s- structural deterioration 
3 

or opening up of the poly~ar net-wzrk, T)re CDlL resin which is crass- 

linked by a quaternary a s ~ a d u m  chloride shoved a marked decrease in 

s t r a g  base IEC a& a corresparrding rise in weak base IEC, an effect  

caused by spl i t t ing  of the carbon-nitrogen exchange groups. The major 

&tericuation effects  in  the 103QZL and CDlL membranes occured in the f i r s t  

100 hour period of solution contact and little significant change in 

functional properties was measured thereafter fraa the 200 hour t o  th 

1000 hour mark, The CDlL membranes experienced no embrittleuent of stiffen- 

ing and consequently showed no loss in burst strength (fabric strength) in 

ei ther  solution. A t  ambient temperature the CDlL shcrwed excellent dur- 

b i l i t y  i n  the CrC13 test solutiw. 

The durability data collected oa the BZLDT-B2 was m h  5. TIME B2LDT-B2 

resin exhibited excellent structural and ion exchange group s tabi l i ty  

in FeKl and CrC13 a t  the elevated temperature, The observed membrane 
3 

deterioration was due to  fabric failure. The l aw  burst strength of the 

meabrane containing woven Dynel was the resul t  of damage t o  the backing 

durhg the amination step. The B 2 m - B 2  membrane a woven Teflon, showed 

progressive increase in transfer leading eventually t o  seven leaka-. 

The membrane fafiuce in t h i s  case was most likely related t o  inadequate? 

resin bonding t o  the Teflon yarn. The most successful and durable candidate 

polymer fabric cotpposite films have been an Dynel and modacrylic backing 

materials. 



Membrane e l ec t r i ca l  resistance is direct ly  related t o  the thickrress 

of the functional resin film. Major improvement or decrease in membrane 

resistance can be achieved for  a particular optimized candidate polymer 

only by a substantial  reduction in  the resin film thickness. 

Haaoqenous ion exdmnge resins are by themselves too f rag i le  t o  

yield a useful unbmken ctx~tinuous sheet of reasonable size without t h s  

aid of a supportive substrate usually a fabric. The candidate membranes 

optimized for  select ivi ty  were manufactured tm woven -1, a fabric 

with excellent res in  caapat ibi l i ty  and chemical durabil i ty but yielding 

finished me- sheets 0.55 - 0.65 nun (25 m i l )  in thickness and area 

2 
r e s i s t i v i t i e s ,  Itc, in the i-10 ohm- range. 

For the purpose of reducing nembrane thickness, about 25 thin  gage 

woven and non-woven fabrics w e r e  screened a s  backing material for membranes. 

These included modacrylic, Teflon , wlypropy lene and glass. 

In t h e  bulk polymerizatian methoc? of membrane manufacture the backing 

fabric is saturated by the  l iquid monomer c-ge whose subsequent -wly- 

merization creates a resin-fabric ccanposite sheet. The sheet thinAcness 

is Jetermined by the fabric gage. In practice the finished membrane 

is usually samewhat thicker than the backing fabr ic  due t o  swelling and 

penetration of the f ibers  by the  monamers and -solvent. A suitable fabr ic  

for  membrane support m u s t  be chemically compatible, bond w e l l  w i t h  the 

resin and have physical and chemical s t ab i l i t y  in the manufacturing process. 

fn addition, the  support fabric must be thermally and chemically stable 

0 
in the redcx environment up t o  80 C. 

'Re woven and n m  woven fabrics considered in the test program 

yielded membrane f i h s  i n  the thickness range of 0.10 t o  -50 m. T!E 



corresponding r e s i s t i v i t y  (absolute) showed a t  best only a 2 t o  3 fold 

improvement over the standard Dyllel candidate membrane prinari ly due t o  

the varying density of yarn or f iber  construction of the backing mterials, 

A major l imitation i n  t h in  supported ion exchange films i s  tha t  s:all 

defects which can be ignored i n  thicker f i l n s  become exaggerated in th in  

films and can produce randan pin-hole leaks. Consequently, th in  res in  

films tend t o  require more densely cmstructed supports fo r  strength and 

film continuity, which i n  turn tends t o  increase the overall  meabrane 

specif ic  res i s t iv i ty .  

The compatibil i t ies and st-ilities of the backings tes ted were 

variable. Woven modac-~lic gave good resu l t s  in the CDlL and CP4L can- 

didate systems, It experienced yarn shrinkage when iuunersed i n  the CP41 

manomers producing a thicker gage film than anticipated, however, la5 

scale  samples of the CP4L-A2 an modacrylic had excellent physical and 

chemical properties. The modacrylic fabr ic  w a s  not suitable for  t h e  more 

non-polar c d i d a t e  polymer systems 103QZL, A3L am5 B2LDT because of pa r t i a l  

solubi l i ty  i,? the mancuners. 

Teflon yie:cied films with good physical appearance for the 103QZL, 

32IDT and A3L systems but the problem of adequate resin-fabric bonding 

was not solved. The membrane yields were improved (lower incidence of 

randan pinholes) by longer residence time of the fabr ic  i n  the l iquid 

mnaners . 
The Teflon fabr ic ,  however, ranked considerably below the Dyne1 

and modacrylic i n  terms of uniformity and r e l i a b i l i t y  2f the membrane 

films. The A3L system membrane on Teflon in par t icular ,  developed 

severe leakageon standing in acid environment for  several weeks, 

although a s  manufactured it exhibited reasonable film integr i ty .  

The 103Qz~-all) on Teflon showed f r a g i l i t y  and tendency t o  develop 

leakage on test ing.  
2 8 



Non-wven polypropylene mats shovhd sane promise in the A3L systems, 

but behaved very poorly in the 103QZL system. 

'RFO special substrate materials, PVC I= sheet and mlt blow poly- 

propylene wettable mat indicated good bonding for the A3L system and for 

the m o r e  polar resh systams such as the CDLL. 

Glass rreaves produced film with excallent physical appearance on 

manufacture, hauever, glass fibers (E-grade) had very poor durability 

in acid, Astroglass, a high temperature resistance grade, and also glass 

with protective coathgs  or f inish nay be more satisfactory. 



6.0 MEMBRANE T(ES1STIVITY I N  N a C l  AND IiCl SOLUTIONS 

The r e s i s t i v i t y  of t h e  candidate membranes was measured a s  a 

function of concentration i n  I321 an? N a C l  so lu t ions  a t  25 '~  using the  

l iqu id  junction method. (NASA CR-134931 APPENDIX 111) The measurements 

were taken over a range of 0.1 t o  6.0 N in HC1 and 0.1 t o  5.0 N i n  NaC1. 

The NaCl so lu t ion  was a c i d i i i e d  t o  0.01N in HC1 i n  order  t o  maintain 

the electrical conductivity of the  weak base amino groups. The e lec t ro-  

l y t e s  we re  c i r cu la ted  t h e m s t a t e d  a t  25 + 0.2Oc. The r e s u l t s  are - 
smmarized i n  Tables 13 and 14 and Figures 3,4,5, & 6. 

Ion se lec t ive  membranes a r e  e l e c t r i c a l l y  conductive by v i r t u e  of 

t h e  f ixed ionized sites in the r e s i n  matrix which permits movement, as 

in e l e c t r o l y t e  so lu t ions ,  of the  mobile counterion. 

Ion exchange r e s i n s  a l s o  adsorb varying amounts of e l e c t r o l y t e  

(Donnan di f fus ion)  depending on the  physical  and chemical proper t ies  

of the  r e s in ,  and the  nature and composition of the  e-xternal e l ec t ro ly te .  

The membrane r e s i s t i v i t y  as measured in solu t ion  represents  addit iv6 

mobi l i t ies  of t h e  resin counter ions (~l-) and any adsorbed e l e c t r o l y t e s  

(El or  NaC1). 

E lec t ro ly te  exclusion is general ly favored by a high ion  exchange 

capacity,  a high in te rna l  f ixed charge densi ty,  and law r e s i n  porosity. 

E lec t ro ly te  exclusion is a l s o  favored in d i l u t e  ccmcentrations, low 

valance of the  counterions, and high valence of the  co-ions i n  the  

external solut ion.  The most se lec t ive  membranes are those which a r e  

e f fec t ive  in excluding e lec t ro ly te  a t  high cmcentra t ion .  

As expected, the membrane r e s i s t i v i t y  declined a s  the  concentration 

of AC1 increased producing g rea te r  e l e c t r o l y t e  d i f fus ion i n t o  the res in .  

The membrane with the  highest  porosi ty,  the  103QZL-B2 showed t h e  g r e a t e s t  



drop in  res i s t iv i ty .  Less resistance change occurred for those nrembranes 

having be t te r  se lect ivi ty  and thus greater effectiveness in excluding 

cations. These were the CDlGASH10, AS-3 and the CWL-A2-2 membranes. 

One measure of tb aembranes effectiveness in  excluding the cation, H+, 

was indicated by the r a t i o  o f R  a t  0.1N HC1 t o  R a t  6.ON HCl.  

The smallest change in the r a t i o  R ( 0 . m  (6.0) was shown by the 

candidates CDU-AS and CP1L-A2. These membranes have the highest IEC or  

ion charge density of the  candidate group and should nave high select ivi ty  

t o  anion t ransfer  in strong acid solutions. 

The membrane r e s i s t i v i t i e s  in NaCl solution (acidified) showed a 

smaller decline than in HC1 but were ranked in the same order of ion 

exclusion effectiveness. The candidate membranes were be t te r  able t o  

+ 
prevent the intrusion of N a  because of its lower niobility . The CT4L 

membrane showed a higher resistance a t  5,ON NaCl than a t  0.1 N NaCl. 

This unexpected hc rease  may be due t o  an osmotic loss  of H 0 £ran the 
2 

res in  a t  the high external s a l t  concentration. 

A t  d i lu te  e lectrolyte  concentration (0.10 N) the membrane r e s l s t i v i t i e s  

were approximately the  same in e i ther  NaCl or  HC1 for  each particular 

candidate. This resistance value represents closely the basic r e s i s t i v i ty  1 

of the res in  in  the ~ 1 -  farm as there is minimal contribution t o  the resin 

conductance by the adsorbed electrolyte.  The more selective membranes, 

CDlL and CP4L, show a re la t ively f l a t  conductivity respmse t o  

increased electrolyte  concentration indicating tha t  very l i t t l e  e lectrolyte  

is being adsorbed by the resin. 

Tables 15 and 16 canpare specific resistance of the candidate membranes 

and the e lectrolyte  solutions. The CDlL ASH-10 and CP4L-A2 membrane s h w  

a specif ic  resistance very close t o  tha t  of 0.10 N NaC1. The data indicates 

tha t  a s  membrane select ivi ty  approaches 100% effectiveness, the specif ic  

31 



res is tance  of the  membrane ( a t  equal IEC values) w i l l  tend t o  increase 

because of the  mare e f f i c i e n t  exclusion of e l e c t r o l y t e  pa r t i cu la r ly  the  

ac id ic  species. Further improvement in membrane s e l e c t i v i t y  w i l l  tend 

t o  increase the  spec i f i c  r e s i s t i v i t y .  Thus major reduction i n  absolute 

membrane res is tance  without s e l e c t i v i t y  l o s s  w i l l  require a proportic;-.al 

reduction i n  mambrane f i lm thickness t o  counter balance the  increase i n  

r e s i s t i v i t y .  

The area r e s i s t i v i t i e s  of the  t h i n  film versions in each candidate 

system was reduced by a fac to r  of 2 t o  3. 



7.0 l?eM'l'RAN~FE~ AS A FVNCTIC. OF FtC13 CONCENTRATION 

+ 
The Fe+3 t ransfer  rate, PFe, was  measured f o r  several  andi id ate 

membranes, the 103QZL-B2 and the CP4L-A2 a t  four di f ferent  FeC13 concen- 

tratians; 0.5, 1.0, 2.0, and 4.0 N acidif ied 1 N  i n  HCl. m o  other 

candidates, the 103QZL-B10 and the CDlL-A5H-10 were tes ted a t  0.5 

and 2.0 an6 4.0 N. 

The w u n t  of ~ e + ~  t ransfe r  per unit  of e l e c t r i c  current was a 

measure of the  membranes functional se lec t iv i ty  o r  efficiency under 

dynamic redax c e l l  conditions. The test simulated a redox FeC13 half 

cell st a current density CD = 60 ma/cm2, in the charging mode (polari ty) 

of cell operation, A detailed description of the test procedure and 

apparatus is presented in NASA CR 134931 (page 38, and Appendix IV). 

The t ransfer  rate, remained approximately constant fo r  a l l  

membranes i n  the e lectrolyte  range of 0.5 t o  2.ON, but increased 

substantial ly a t  the 4.0 N level ,  The 103QZL-B2, the membrane with the 

highest porosity, showed an pet3 t ransfer  rate of 127-233 x mg 

Fe/mF a t  4,ON FeC13 an e ight  fold %crease from a base l i ne  of 

18-30 x loo3 mg Fe/mP. 

The most e f f i c i en t  membranes i n  the candidate se r ies ,  the CP4L-A2, 

and CD1L-AS shwed only a three fold increase a t  4,ON FeCl 3 

A sumnary of the data is given i n  Table 17. 



8.0 ~ e + ~  TRANSFER AS A FUNCTION GF CURRENT DENISTY 

The v a r i a b i l i t y  of ~e~~ t r a n s f e r  w a s  measured as a function of 

I 1 :  current  densi ty f o r  three  membranes. 

(1) the 103cZL-219S, a standard production membrane ( Ionics ,  Inc.) 
with a high porosity r e l a t i v e  t o  the  optimized candidate systems 

(2) A3L-A5 - low ~ r o s i t y  candidate 

(3) A3L-A6 - low porosi ty candidate 

The var ia t ion  i n  current  densi ty w a s  15 t o  480 ma/cm2 f o r  the  

lO3QZL-219s and 60 t o  240 ha/cm2 f o r  the  A3L-A5 and A6. The r e s u l t s  ;re 

summarized i n  Table 18. W e  found t h a t  the  ~ e + ~  t r a n s f e r  (or  loss )  was 

grea t ly  diminshed above a CD.120 ma/m2 f o r  the  m o r e  porous membrane, 

+ 
lO3QZL-I3219S. A t  CD=480 t h e  PFe w a s  7-13 r mg Pe/W a 500 fo ld  

reduction from the  high Fe loss  of about 1-4 mg Fe/mF a t  the  lower current  

densi ty values. (Figure 7) 

The more se lec t ive  and l e s s  porous membranes A3L-AS, A6 showed l i t t l e  

o r  no changs ,n ~ e + ~  t r a n s f e r  with increase i n  the  current  densi ty.  

+3 
The extreme reduction i n  Fe t r a n s f e r  observed in the 103QZL-219s 

a t  high CD values could r e s u l t  f r an  a polar iza t ian  e f f e c t  a t  t h e  membrane 

solut ion in ter face .  The high e l e c t r i c  current  demand could produce 

+3 
depletion of Fe in  the  i n t e r f a c i a l  solut ion film and make it less 

avai lable  f o r  t ransfer .  Replenishment of the  depleted film by d i f fus ion 

+ 
of e l ec t ro ly tes  from the solu t ion  bulk would favor the  more mobile H 

ion which is present i n  high concentration. 



The nembrane t y p s  103QZL-8-2P and A3L-37P, developed for NASA L e w i s  

under contrac t  number NAS3-20108, were prepared i n  s i z e s  20" x 42" and in 

q u a n t i t i e s  of six membranes each. 

We s t a t i s t i c a l l y  obtairzed samples from these  small production runs 

by se lec t ing ,  a t  random, th ree  membranes from each, cu t t ing  a n a l y t i c a l  

samples from each of the  three (Labeled membranes A ,  B, and C f o r  each 

membrane type) a s  follows: 

For each membrane type (i.e., 103QZL-B2P o r  A3L-372) the re  were developed 

a t o t a l  of 15 t y p i c a l  samples, a small number (n) t o  be sure but  s t i l l  an 

e f f e c t i v e  sample var ia t ion  t o  p l o t  3 sigma (3  ) production capab i l i ty .  

The four most important parameters (or  proper t ies)  t o  be considered 

when planning membrane product ion capab i l i ty  axe : 

(1) Ion Exchanqe Capacity, a measure in mil l iequivalent  of dry 
r e s i n  of the  exchangable r e s i n  counter (exchangable) ion. 

(2)  Thickness i n  mil l imeters .  

(3) Water content on a slet medrane bas i s .  

(4)  Res i s t iv i ty  - measured in ohm-en2 through the  plane of t h e  membrane. 



I n  the case of the  103QZL-B2P and A3L-B7P membranes, only : 5 samples 

each f o r  a pa r t i cu la r  property have been made avai lable  dae t o  very 

l imited production. These have been 1;ied in Tables 19,  20, and 21. 

I n  the s t a t i s t i c a l  analyses of the  small l o t s  of the  two specia l  

membranes, wa can see from Table 22 t h a t  our capabi l i ty  f o r  manufacturing 

these new experimental rembranes i n  a g o d  t i g h t  speci f ica t ion  range is 

good. While t h i s  evaluat ion is based upon a very small sampling, it is 

unlikely,  based on past  experience, t h a t  the range w i l l  increase much more than 

a f a c t o r  of two when a la rge  number of samples of similar material  have 

been prepared. 



0 The CP4L-A2 membrane, a copolymer of 4 vinylpyridine and vinylbenzyl 
chloride,  ranked highest in overa l l  propert ies  of s e l e c t i v i t y ,  +3 
r e s i s t i v i t y ,  and durab i l i ty ,  The optimized proper t ies  were; Fe 
t r ans fe r  ratem4-8 mg Fe/mF, Res i s t iv i ty ,  ~ ~ 1 1 . 8  ohm-cm2 a t  0.23 mrn 
f i lm thickness, and supsr ior  durabi1;ty ifi FeC1 and C r C l )  a t  

3 

0 The optimized versions of the  ~ t h e r  candidate membranes were ranked 
i n  the  following order; A3L-B7, 103QZL-B10, CDlL-A5, b2LDT-B2. Their 
optimized ~ e + ~  t rans fe r  rat  s were in the  range of 1-8 mg Fe/mF, and 
~,et the  contract  t a r g e t  Feif t r a n s f e r  r a t e  of -2 mg Fe/mF. 

0 The use of t h i n  woven and non-woven synthet ic  f ab r i c s  a s  backing 
materials  demonstrated a 2 t o  3 fo ld  improvement i n  membrane 
e l e c t r i c a l  res is tance  by reducing the funct i  ma1 film gage t o  about 
. lo t o  .30 m range. Several experimental f ab r i c s  showed promise 
a s  backings o r  subs t ra tes ,  however, none a t t a ined  the excel lent  
durabi l i ty  and use r e l i a b i l i t y  of t h e  standard heavy gage woven 
Llynel (f l lm gaget0.6 mm) . 

0 The CP4L-A2, A3L-B7 and B2LDT-B2 candidate ~o lymers  showed excel lent  
s t a b i l i t y  of resin s t ruc tu re  and ion exchange groups i n  FeC13 and 
C r C l  a t  80°c. (1000 h r .  t e s t )  

3 

0 The CDlL-A5 a.,d 103QZL-B10 membranes gave good durab i l i ty  i n  FeC13 
a t  80°c and i n  C r C l  a t  ambient temperature. 

3 

O A t  l e a s t  three a l t e rna t ive  membrane/polymer systems showed promise 
f o r  future developnent because c r f  low r e s i s t i v i t y  and/or high ion 
exchanse capaci t ies .  These were ?!I, CT,  CTM, and VC-TP systems. 

2 
0 Large sca le  manufacturing capabi l i ty  (5.5 f t  per membrane) was 

successfully demonstrated fo r  two candidate membrane systems, the 
A3L-B7 and the  103QZL-B2 on Dyne1 woven backing 183. 

0 ~ e + ~  t r ans fe r  r a t e s  of canhidate membranes were not  sens i t ive  t o  
var ia t ions  i n  FeC13 concentration i n  the  0.5 t o  2.0 M range but 
increased subs tant ia l ly  a t  4.OM FeCl 3 ' 

0 Variations i n  current  density i n  the  60 t o  480 ma/cm2 range did not 
e f f e c t  the ~ 2 ' ~  t r a n s f e r  r a t e s  i n  low porosity and high s e l e c t i v i t y  
nenbranes. A large decrease i n  the  t r a n s f e r  r a t e  was &served in  the  
more porous msmbrme 133QZL-219s above 120 ma/cm2. 



11.0 RECOMENDATIONS FOR FURTHER WORK 

1. Attempt major reduction ia absolute membrane r e s i s t i v i t y  by crea t ion  

of t h i n  candidate r e s i n  fiLv on sul  t a b l e  backing o r  substrate.  

2. Invest igate methods of appl ica t ion  of t h i n  film onto various avai lable  

synthet ic  subs t ra te  materials. 

The subs t ra t e s  would include - 
a. non-woven mats i n  polypropylene, polyethylene, Teflon, 

and carbon; 

b. porous o r  macro-reticular ion exchange membranes an* 
films. 

3. In tes t iga te  a l t e rna t ive  polymer systems. 

a. heterogenous solvent c a s t  films ( ion exchange resin 
and binder) 

b. systen~s with fEC 
CT-copclymer VBC and TEPA 
CTM-copolymer VCB and TMEDA 
with emphasis upon the  react ion of VLC with non s t e r i -  
c a l l y  hindered polyamine s . 

4. Evaluate above t h i n  f i lm and a l t e rna t ive  sys5ems f o r  - i.ty, 

r e s i s t i v i t y ,  and durabi l i ty .  

5. Reduce cat ion t r a n s f e r  i n  optimized candidate me.nSranes t o  v i r t u a l  

zero l eve l  by crea t ion  of high densi ty surface film. 



A B S T R A C T  

Experimental anion permselective membranes were  ia,proved and charac- 

terized fo r  use as stparators in a chemical redox power storage ce 11 

being &-loped at the NASA Lewis Research Center. The goal of m i n h ~ l  

ion transfer rpt achieved for each candidate .ambrane system. Minimal 

membrane r e s i s t i v i t y  -9 demanstrated by reduzticm of film thickness 

using synthetic backing materials but usefulness of thin membranes was 

l in i ted  by the scarcity of compatible fabrics. The m o s t  durable and 

useful backing fabrics uere mcdacrylics. One membrane, a copolymer of 

4 vinylpyridine and viny lbenzylchloride was outstanding in overall  

electrockmica1 and physical properties. Long term (10C2 !u) ~lembrane 

cheatical and thermal durabil i ty in redax e n v * m t  was s h m  by three 

candidate polymers and two nembranes. The remainder had cood CIurability 

a t  ambient temperature. Manufacturing capabil i ty was demonstrated for 

large scale production of membrane shrets  5.5 f t 2  in area far  two candidate 

systeas . 



Def init ian - Units 

pJ Resistivity by liquid junction nethd ohm-cm 

4 M resistance by liquid junction ustthod 0hr-o2 

f C  Resistivity by cmtact p r c h  a t h d  ob-cm 

G Area resistance by contact probe method o h m e  
2 

+ 
p~ 

Srmeaticn factor for Fe in the charging mode lag Ekf- 

a9 millifaraday 
3 

96.5 x 10 Ira-sec 

IEC Ion exchange capacity meq,'dry gram resin 

I, Interstit ial  molality -9 H20 
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T A B L E  1 3 .  

P.IEMBRANE RESISTIVITY AS A FLTCTICX4 OF HC1 CONCENTR4TICeJ 

Yethod of *as.- Liquid  J u n c t i o n  

C e l l  Cross  S e c t i o n a l  Area - 1.36cm 
2 

>leas. Frequency - 1000 HZ 
0 

Temp = 25 C 

>emt?rane 

103QZL-B2 

103QZL-El@ 

l 0 3 ~ 2 ~ - a l 9  

A3L-87 

A3L-37 

A3L-B7 

A3L-87 

B2LDT-B2 

B2LDT-a2 

CDlL-A5H-10 

CDlL-A, - 3 

C?4L-A2 

Bi lm 
T h i c k ~ e s s  

~-A) 

3.63 

3.60 

5.27 

0.60 

G.27 

0 1 

0.25 

0.60 

0.27 

0.60 

0.11 

0.23 

S o l u t i c n  Resis tance (ohms) 

t 

Sacking Fabric 

*el 

Dyne1 

Tef lon  

Dyne1 

Tef lon  

Polypropylene 

Polypropylene 

Dyne1 183 

Tef lon  

Dyne1 

Modacrylic 

M d a c r y l i c  

E.0 1 0 . M . 2  

Res i s tance  I 
Fiatio 

R0.1fi6.0 

6.4 

4.7 

4.8 

4 7 

4.6 

--- 
--- 

3.4 

3.1 

2.3 

2.4 

1.5 

+rea R e s i s t i v i t  Y 
0.1N 

13.1 

15.4 

6.81 

15.4 

8.50 

11 .?$ 

9.04 

12.0 

6.53 

6.80 

3.75 

2.39 

2.10 

R~ , 1B 
3 . 5 s  

6.eC 

3.6 

4.24 

10.0  

5 

---- 
---- 
10.1  

5.17 

5.75 

3.00 

2.50 

1 . 6 8  1.37 

HC: 
1 

4.17 

6.40 

2.63 

6.45 

3.75 

3 -17 

3-66 

7.72 

4.13 

3.19 

2.50 

2.15 

(,c-m ) 
2.09 

3.03 

4.16 

1.55 

5.28 

2.23 

---- 
---- 
6.43 

3.33 

3.79 

2.15 

1.80 

6 . 3  

2.06 

3.26 

1.43 

3.26 

1.35 

---- 
---- 

3.54 

2.03 

2.96 

1.58 

1 .61  



>sthod of Xeasuriii  Liquid Jmct ion  

C e l l  Cross Sectional A r e a  = 1 . 3 6 1 ~ 1  2 

Xeas. Zrequency - 1 0 ~ 0  .YZ 

Temp = 25O: 

+ 
-+sistznco j 

-=ti=, 
XC.1~5I5.0 -, 

2.2 

1.9 

llerrbrane 

103~zt-a2 

ro3~zt-a~o 

A 3L-a 7 

a2m-az  

CDLL-ASH-10 

CDE-As-3 

CP4L-A2 

i i ,Area .Sesistivitv 
Thic:kness I xu , 1X YaCl :r-c=l 2 ! 

m 1 3.1 1 0.5 1 1.0 1 2 - 3  1 5 . ~ .  

0.60 

0 . 6 3  

1.2.3 

16.2 

0.60 

1 

5-64 

6-61 

11.5 

4 .  

15.9 

S o l u t i o n  3es istance 9.92 
(ohns 

13.4 

9.28 

12.3 

2 .6E  

8.37 

0.60 

0.60 

0.11 

0.23 

7.39 

10.5 

10.6 

1.8 

9.36 

5.90 

3.60 

3.17 

5.41 

12.5 

1.4 

1.05 

1.09 

0.63 

3 . E 4  

13.3 

10.2 

6.26 

3.44 

2.77 

9.06 

5.59 

3.34 

2.60 

11.3 

6.2~ 

3.57 

2.18 

11.2 

6.66 

3.64 

2.58 



T A B L E  15. 

SFECIFIC RESISTANCE OF CANDIDATE MWBFlANE IN El 

Membrrvre 
(Electrolyte ) 

Specif ic  Resist ivityf  a t  25O~ (A-cm) 
a t  Electrolyte Concentrat ion 

0 2  - 0.SN - 1 .ON - 2 .ON - 6 .ON 

Measurement by l iquid junction method a t  2s0c 

HC1 Conductivity Data - International Crit ical  Tables Vol. VI, 1929 



T A B L E  1 6 .  

S  WCIFIC RESISTANCE 3F CANDIDATE MENBRANES TN K s C 1  

Spec i f i c  ~ e s i s t i v i t ~  ,? a t  2 5 ' ~  (n-cm) 
Membrane a t  E l ec t ro ly t e  Concen t r a t im  

!Elec t ro ly te )  0.1N - 0.5N - 1 .ON - 2.ON - 5 .C)N - 

NaCl so lu t ions  a c i d i f i e d  t o  0.01N i n  BC1 t o  a c t i v a t e  weak base 
amines . 

0 
Measurement by l i q u i d  Jcnc t ion  method a t  25 C. 

13aCl Conductivity Data - Robinson R. A. and Stokes RII, E l e c t r o l y t e  
Solu t ions ,  2nd ed, 1959 p.466 

-and In t e rna t iona l  C r i t i c a l  Tables,  Vol. VI-1929 



All FeCl S o l u t i c n s  1.0K in  .YCl 
3 

C*=rent Censity - 6Oma/m 2 

r 

Yenbrme 

lO3QZL-a2 

1 03QZL-310 

CDLL ASH-10 

CP4L-A2-2 

I 

F i l s  I - -3 
?e Transfer ?_ ;zqFe/?nr' x 10 ) 1 

3i c..ze s s : e I 
4 . 3 9 B e C 1 ,  ' - 

127-233 

24-60 

12 

11-20 

13 

1 

(m) 113 .51PeC1 ,  - 

1 

0.60 

0 .EL1 

0.60  

0 . 2 3  

0.11 

1 2 1 C  - 

18-30 

3-4 

3 

3-4 

- 

18-29 

- 

- 

6-3 

- 

' 17-29 

7-15 

5-8 

4-8 

5-2 



T A B L E  1 8 .  

T e s t  E l e c t r o l y t e  - 2M F'e C13/lNHCl 
Temp. Ambient - E l e c t r o l y t e  Flow = 1.5cm/sec 

Current Density 
~ e + ~  Transfer. P+ (mg~e/u@~-~) far Membr-r ~e ' 

(ma/-2 ) 103QZL-21% A3L-AS A3L-A6 

1 5  4 . 1 - 5 . 3 ~ l O  
3 -- - 
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T A B L E  2c' .  

PROPERTIES - SAl4-S FRW PRODUCTION S C A B  MEMBRANE 

No. Manufactured - 6 

Size of Membrane Sheet - 20" x 42" 

103QZL-B2P MEMBRANE 

LI abrane Sample 
Burst 

psi 
Thickness 

(m) 0..01 NaCl  



T A B L E  

PROWEYPIES - W m S  E'RCM HZCDUCTION SCALE MPIBRANES 

No. Manufactured -10 

Size  ,f Membrane Sheet 2OU x 42" 

Burst Thickness ltC 0.1MECL ZEC 
tprl) (mu) n-cm2 !!!qGE Mmbranc Sample 
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Figure 1. Polymer Structure - Candidate Anion Hembranas 

a, 103QZL - - divinylbenzene, vinylbenzylchloridecopolymr . _-. aminated with 
trimethy lamine 

b, L L  - divinylbenzene, 2-vinylpyridine copolymer 

- divinylbenzene, vinylbenzylchloride copolymer aminated with 
diethylene trizmine 

G H  -CH-CE12'C.H+, 
12 I 



Figure 1. Polymer S t ruc tu re  - Candidate Anion Membranes (Cont .) 

C D I L  - viny lbenzy l ch lo r ide  , - 
CH, > 

f CH- CH - CH2 .- CZ .In 

0 ' = O  
CH2 2 
CH: 

dimethylaminoethylmethyacrylate 

c l !  
FH3 

-Quaternary S i t e  
N - CH3 
I 

CH? 

CH2 ! 

0 
C=o 

T e r t i a r y  S i t e  I 
W H  - CIIPn 

e. CP4L - VBC and 2 o r  4 v iny l  pyridine copolymer - 

copolymer 

A3L-96 - 2-vinylpyridine and e thy lene  glycoldirnethacrylate copolymer 
f r  -- 

CH 
3 



Figure 2. POLYXER STRZICTW - ALTERNATIVE SYSTEMS 

a. CT - - viny lbenzy lchloride and tetraethy lenepentamine (TE PA 1 copolymer 

CTX - vinylbenzylchloride and N ,  N ,  N' , N' tetramethylethylenediamine b. - 
(TMEDA) c o p o l y ~ r  ' 

f9"2+* 

YH3 
CFI 
I 3  

N - C R  CB N - 
bi 2 2 *  

3 CH3 

K - T P  - polyvinylchloride film aminated with tetraethylenepentamine (TEP.3) 
C 9  - 



Figure 2 .  (Cont .) POLYMER STRljCTURE - ALTERNATIVE SYSTEMS 

d . CE - - viny lbenzy lchloride-ett.ylenediamine (EDA copolymer 

e . CD - - vinylbenzyl chloride and diethylenetriamine (DETA) copolymer 

fCH-CH2+h2 
I 

f. CX - 4-vinyl pyridine (4-VP) and a am dichloro pxy lene  copolymer - 



Figure 2. (cont .) POLYmR SPRlXlTURE - ALTEIINATIVE SYSTEMS 

g.  S z  - sulfoethylmethacrylate and ethyleneglycoldimethyacrylate copolymer 
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Fi lm Gage-0.6Cllrrm 

Film Gage-O.6Omm 

Film Gage-0.27mn 

1 
T 3 

Membrane R s s i s t i v i t y ,  Rc, as a function of H C l  Concentration a t  2 5 ' ~  
I 

103QZL-B2 Membrane 

-Dyne1 Backing 
i ! 
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F I G U R E  4. 

I J 0 

I 
Membrane Res i s t iv i ty ,  R?, as a Function of hCL Concentration at  25 C 

i 
! A3L-B7 Nembrane 

C Dyne1 Backing Film Gage-0.60mm 

A Teflon Backint Film Gage-O.27mm 

/7 Polypropylene Backing - Fi lm Gage-O.25mm 

HC1 Concentration rN) 
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HC1 Concentration (N) 



J 
Membrane Resis t iv i ty ,  R , a s  a Function of HC1 Concentration a t  2 5 ' ~  I 

i 
CDU-A5 Membrane I 

0 Dyne1 Backing Film Gage-O.6Omm I I 

A Modacrylic Backing Film Gage-O.llmm i 

ORIGINAL PAGE IS 
POQR QU- 

I- \ CP4L-A2 
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A Modacrylic Backing 
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3 
CLXFtEbiT DENSITY (ma,'cm") 

I ! + 
? t g u e  7 Fe Transfer ( 2  ! in Anion Selective Membranes a s  a Function of Current Density 

Fe 
Membranes: 0 103QZL-21%; fl ' A3L-AS, A3L-A6 
Test soln. 2M .1eCl3/1Y E l ,  C e l l !  po lar i ty  - charge m&e 
Test soln. Flav = 1 . 5  cml'sec. 
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