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Section 1

INTRODUCTION

This report summarizes the work performed at The

Aerospace Corporation on a study of fault-tolerant software

for the Langley Research Center, National Aeronautics and Space

Administration, under Contract NAS1-14644. The objective of

the study was to carry specific techniques for developing

software systems which are tolerant of faults - within the

software system as well as tolerant of faults within the

hardware system into which the software system is embedded -

closer to realization in real-time aircraft control systems.

Specific techniques studied were those proposed by Professor B.

Randell, et al, of the Computing Laboratory of the University

of Newcastle-upon-Tyne, United Kingdom (Ref. 1). Extensions of

Randell's concepts, to incorporate execution time as an

essential acceptance test, to provide for an abort return, and

to provide a "degraded" recovery block structure for

non-critical functions, were included in the application

studied under this contract. The functional and computation

requirements of the real-time aircraft control application,

which formed the frame of reference for this study, were those

estimates prepared by the Stanford Research Institute under

contract to NASA/Langley as part of a design study of a

fault-tolerant airborne digital computer to be used as a

central computer in an advanced, high performance commercial

aircraft. (Ref. 2).
1



Automatic flight control concepts have evolved from

simple pilot-relief autopilots to include sophisticated

stability augmentation, gust and maneuver load alleviation,

flutter control, energy management, and attitude and

flight-path control from takeoff to touchdown. Although

military applications have inspired much of the development in

the past, commercial requirements for efficiency and economy,

particularly for fuel economy, are rapidly becoming a major

influence. In a recent paper (Ref. 3) it was noted that major

improvements in aircraft performance and reductions in aircraft

weight appear possible through combinations of currently

independent aircraft functions such as active airframe control,

propulsion control, landing loads control, and fuel

management. The authors stated, as examples, that the

integration of active landing gear and maneuver load control

systems can appreciably decrease wing structural stiffness

requirements and weight, and that automatic reconfiguration of

control system gains in the event of an engine failure can

allow sizeable reductions in required control surface areas.

The authors assert that extension of this approach to

fully-integrated, control-configured aircraft could provide up

to 15 percent fuel savings and structural weight reductions.

But, in conclusion, they observe that the integrity of the

flight control system will continue to be the key factor in the

acceptance of these concepts for operational application.

Federal Aviation Regulations (Ref. 4) state that

airplane systems and associated components, considered

2



separately and in relation to other systems, must be designed

so that:

(1) The occurrence of any failure condition which would

prevent the continued safe flight and landing of the

aircraft, or which, in the event of loss of all

propulsive power, would preclude controlled flight to

an emergency landing, is extremely improbable, and

(2) The occurrence of any other failure condition which

would significantly reduce the operational or

performance capability of the airplane is improbable.

In a draft FAA Advisory Circular (Ref. 5) it is explained that

(a) extremely improbable refers to occurrences expected
_q

with a mean frequency on the order of 1x10 or

less per flight or flight hour, or occurrences so

unlikely to occur that they need not be considered.

(b) improbable refers to occurrences which may be

expected with a mean frequency in the approximate

range of IxlO"5 to IxlO"9 per flight or flight

hour, or occurrences not expected during the

operation of an individual airplane, but expected to

occur during the operational life of all airplanes of
a type.

These are by no means trivial requirements. As a

data point, the Air Force Space and Missile Systems

Organization is supporting development, for use in unmanned

spacecraft deployed in the late 1980's, of a fault tolerant



general purpose digital computer with an equivalent failure

probability on the order of 10-6 per hour. At the system

level to this failure probability must be added the equivalent

failure probability of the input/output devices (sensors and

actuators) and, of course, the software. Clearly, the

achievement of failure probabilities of approximately 10-9

per flight hour for flight-critical systems for the next

generation of aircraft is a major challenge; and perhaps just

as challenging is the problem of demonstrating that such a

failure rate has indeed been achieved once that point has been

reached.

The software fault tolerance techniques considered in

this study are similar in principle to those being applied to

achieve fault tolerance in computer hardware, i.e., standby or

"protective" redundancy, in the form of alternate hardware

modules accessible by switching, and concurrent error

detection. Provisions to permit rollback of the executing

software to an uncontaminated location to recover from a

failure are required in both instances. However, for hardware

fault tolerance, the backup modules are usually identical in

design to the primary module, but an identical copy of a

computer program can hardly be expected to be of much help in

recovering from a failure in the original. Therefore,

redundancy in fault-tolerant software requires programs that

are deliberately different from the original ones which they

are to backup. In the aircraft control context, alternate



sensors, and perhaps alternate "actuators", primarily available

to implement other functions, often can be employed to effect

end-to-end independence of the alternate module design and

hence lessen the probability that the backup fails under the

same conditions as the primary module.

The redundancy and error detection provisions

necessary for fault tolerance will of necessity involve

additional hardware costs (e.g., by requiring additional

memory) and performance penalties because more code has to be

processed for a given task. However, if the fault tolerance

provisions are incorporated only into those software modules

that implement flight-critical functions, as defined in the SRI

report (Ref. 2), the additional resources required to have

essential fault tolerant provisions can be minimized.

With this as background, a software structure

incorporating redundant fault-tolerant provisions for flight

critical applications modules, non-redundant modules with error

detection and flagging for non-critical functions, and a

redundant fault-tolerant task scheduler, has been defined. The

additional resources required to implement this structure as

contrasted to the computational requirements set forth by SRI

(Ref. 2) have been estimated. Employing a simplified

reliability model parametric estimates of the failure

probability of the resulting structure have been made using

assumed values for failure rates for the component modules.



Use is made of multiple-sensed control parameters for the

design of backup modules as opposed to multiple copies of the

same sensor type. The executive task scheduler includes an

alternate backup, and a flight condition module employing

multiple-sensed data is incorporated to effect acceptance

tests.

This report consists of one volume. A brief review

of the fault-tolerant software concepts proposed by Randell, et

al, follows this Introduction. Subsequent sections of the

report describe the adaptation of these concepts to the

aircraft control tasks, the resource requirements to implement

this proposed fault-tolerant software for real-time aircraft

control systems, the design of the fault tolerant scheduler and

flight condition module, and finally, the expected reliability

of the proposed structure under various assumed component

failure probabilities. The Appendices include the code,

written in PASCAL, for the scheduler and a description of the

simulation used to test the scheduler code.



Section 2

CONCEPTS FOR FAULT TOLERANT SOFTWARE

The basic concepts for fault-tolerant software

investigated in this study are those set forth by Prof. B.

Randell, et al, of the Computing Laboratory, University of

Newcastle upon-Tyne, U.K. (Ref. 1). The following paragraphs

contain a synoptic review of those concepts to provide a frame

of reference for subsequent discussion of their adaptation to

real-time software for aircraft control systems. For a more

complete presentation of these concepts, refer to Reference 1

and the further references contained therein. Figures 1, 2 and

3 are taken from Reference 1.

Briefly, Randell, et al, conceive a computer program

to be structured of blocks, with the blocks consisting of

alternative sequences of operations, i.e., primary and one or

more alternates. Extra information is provided to the block to

permit a determination of completion and acceptability (i.e.,

an acceptance test) of the result of a sequence, with rollback

and transfer to an alternate sequence in the event of failure

to pass the acceptance test (e.g., by exceeding a time limit to

complete or by exceeding the expected range for non-local

variables). Randell, et al, refer to this single-entry,

single-exit software element as the "recovery block". Figure 1

is a schematic representation of the simple recovery block.



A: ensure AT

Jai

else by

AP : beein

•cprograra text>

end

AQ : begin

<program text>

end

else error

FIG. 1 A SIMPLE RECOVERY BLOCK

A : ensure AJL

else by

AP: begin declare T
<program text>

B: ensure BT
JJY.

else by

else by

~BP; begin declare U
<program

_ end
text>

"BQ; begin declare V
<program

end
text>

"BR: begin declare W
<program

end
else error
<program text>

end
'AQ:begin declare Z

<program text>
'C: ensure CT

by

else by
>

CP: begin
<program

end
"CQ: begin

<program
end

else error

[D: ensure DT
by_ [DP: begin

1 <program

L S3*
else error

end
else error

text^

text>

text>

text>

FIG. 2 A MORE COMPLEX RECOVERY BLOCK
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Alternate sequences within a recovery block may contain, nested

within themselves, further recovery blocks as shown in

Figure 2. Noting that all software faults result from design

errors, Randell, et al, require that the alternate sequences or

components be not merely copies but independent designs, so

that there exists a reasonable likelihood that at least one of

the alternates can cope with the circumstances causing the

primary component to fail.

The acceptance test is to ensure that the operations

performed by the recovery block satisfy the program that called

the block. Hence, the acceptance test is performed by

reference to the variables accessible to the recovery block

rather than variables local to the block. Local variables can

have no effect or significance after exit from the block; but,

more important, the alternate components within the block will

probably have different sets of local variables. The program

calling the block may be capable of proceeding with any of a

number of possible results from the operations and the

acceptance test must establish that the results lie within this

range of acceptability without regard for which alternate

generates them.

Before entering an alternate component the process

must be rolled back or restored to the state that existed

before entry of the primary component (or preceding alternate,



if one exists). Only non-local variables, and in particular

non-local variables that have been modified by the preceding

process, have to be reset to rollback to the entry state. To

effect this automatically and thus relieve the programmer of

the error-prone task of explicit preservation of restart

information, Randell, et al, employ what is termed a "recursive

cache" to save non-local variables, just before they are

modified. This is accomplished in real time by detecting

assignments to non-local variables, and in particular by

recognizing when an assignment to a non-local variable is the

first to have been made to that variable within the current

alternate. Related cache entries are discarded as recovery

blocks are successfully completed.

To provide for recoverability under circumstances

involving processes proceeding in parallel, which at the same

time become mutually dependent by virtue of their interactions,

Randell, et al, invoke a structure which is termed a

"conversation" (see Figure 3). A recovery block that spans two

or more processes is termed a conversation. The conversation

serves to restrict progress of interacting processes in the

interest of preserving recoverability by requiring all

processes in conversation to satisfy their respective

acceptance tests before any one of the processes may proceed.

It is possible for processes to enter a conversation at

differing times; but all of the processes must leave the

10



conversation together to ensure that none have purged their

recovery or rollback data until all have passed their

acceptance tests. Finally, for multi-level systems with

virtual machine interfaces, Randell, et al, require that the

interfaces be arranged so the higher level need not furnish

support for control or error handling of a lower level - i.e.

levels are separated by "opaque virtual machine interfaces".

FIG. 3 PARALLEL PROCESSES WITH CONVERSATIONS
(which provide recovery blocks for local
communication)

11



Section 3

FAULT-TOLERANT SOFTWARE STRUCTURE FOR REAL-TIME

AIRCRAFT CONTROL SYSTEMS

Given the basic structures described in the preceding

section, the following discussion indicates how they might be

organized to implement real-time aircraft control systems. It

has been assumed that the system application involves the

implementation of various closed-loop and open-loop functions

(e.g., stability augmentation, flutter control, area navigation,

energy/cruise management, automatic landing, etc.) in a

centralized digital computer. The frequency with which these

functions will have to be serviced will vary widely from one

function to another; and for any one function, will vary

depending upon the conditions of flight. However, it is

presumed that these servicing requirements can be predicted and

hence scheduled in time and for the anticipated flight

conditions. Finally, here and in the rest of this report, it is

assumed that the host computer is a multi-processor or

multi-programming uniprocessor with a fault-tolerant

architecture and recovery provisions that mask hardware

failures.

Basic Software Structure

The simple control requirements (i.e., test and

alternate routing) of the recovery block and the applicability

12



of the same general control structure to all recovery blocks is

an important attribute of the fault tolerant concept that fits

nicely into a multi-programming software structure. It permits

the control features to be incorporated in the executive

software, specifically in the task scheduler, rather than being

replicated in every application block. Hence, the control

structure can conceivably be tested so exhaustively that the

likelihood of failure of this element of the software can be

ruled out. With control of the recovery block resident in the

scheduler, task synchronization and prioritization is more

readily effected.

Since this is a time-shared operation, and timely

servicing of many aircraft control functions is a necessity to

meet accuracy and stability criteria, the time required to

execute each application sequence is considered to be an

essential acceptance test criteria for all blocks. In the

fault-tolerant software structure proposed here this is

accomplished by a watchdog timer, a special register that is

initialized with the allowable time for each routine and is

counted down by the computer clock. When the register that

contains the timer quantity shows a negative value, this

indicates that the allowable execution time has been exceeded,

or, in short, that a "time-out" has occurred. Because the

watchdog timer is used to monitor all application routines, the

13



instructions for implementing this function are part of the

scheduler. The allowable time is, of course, specific for each

routine.

Finally, to complete the basic structure, it is

proposed that it include a provision for an abort return. This

is to preserve the integrity of the rest of the software in the

event all alternates of a given sequence or module fail. The

abort return is equivalent to the ERROR declaration in the

recovery block (Figure 1). Call for an abort might cause the

executive to generate an "essential task list" to substitute

for the normal task schedule as a basis for proceeding. A

diagnostic routine could be invoked to determine the period of

suspension for the failed software module. If it is the first

failure for a given module, the suspension may be lifted

immediately upon a new call to the program. On the other hand,

if repeated failures have been observed, the module may be

suspended until a manual intervention or a change in the flight

condition has taken place.

Figure 4 is a schematic representation for the basic

structure discussed above.

14
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FIG. 4 FAULT TOLERANCE FOR APPLICATION MODULES
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Exemplary Implementation

As an example of the implementation of fault-tolerant

software, we take an East/West position routine in an aircraft

navigator. This routine computes present longitude of the

aircraft for display to the pilot and for automatic guidance of

the aircraft (by comparison with a desired position determined

from the flight plan).

The East/West position program is one of a number of

applications that can be called by the scheduler. The

scheduler formats two calls for each application (to the

primary and to the alternate routine), and these preferably

involve different calling parameters. The primary E/W position

is computed from the output of an inertially stabilized

accelerometer, and the calling parameter for the primary module

is the E/W velocity (E_VEL) read by the accelerometer (an

integrating accelerometer and a fixed time interval between

readings is assumed). The backup module computes longitude

from airspeed and compass heading, and the calling parameters

are true airspeed (TAS), true heading (HDG), and a wind speed

correction (E_WIND) that was computed by another module from

prior inertial information. After the calling data has been

loaded into the appropriate memory locations, the watchdog

timer is set, and the transfer to the primary module is made.

The process of the primary module is essentially

16



NEW_LONG = PREV_LONG + (E_VEL/SCALE_FACT)

where the scale factor is a function of the accelerometer

calibration and of latitude.

NEW_LONG computed by the primary module is then

subjected to an acceptance test that includes a typical

threshold criterion:

NEW_LONG > PREV_LONG + (PREV_LONG -NEXT_PREV_LONG) - K

and

NEW_LONG< PREV_LONG + (PREV_LONG - NEXT_PREV_LONG) + K

where K represents the threshold for the test. If this test is

passed, NEW_LONG is returned to the executive, and the timer is

reset.

If the test is not passed, or a time-out is

experienced, a call to the backup module is immediately issued,

and the previously stored backup parameters are then utilized.

Also, flag A is set and the timer is reset. The backup module

computes

GRNDSP = E_WIND + TAS * SIN (HDG)

NEW_LONG = PREV_LONG + (GRNDSP/SCALE_FACT2)

where a new scale factor is utilized. The resulting NEW_LONG

is subject "to the previously stated acceptance test, although

in some applications a different value of K might be used to

allow for discontinuities due to changing from one program to

another. If the acceptance test is passed, NEW_LONG is passed

to the executive and inserted in the data base.

17



The remainder of the navigation program then executes

in a manner completely independent of difficulties encountered

in the E/W position routine. It is indeed essential for a

manageable control structure that one alternate program path is

not dependent on execution of alternate program paths for any

other application routines.

For monitoring purposes, the fact that the backup

module has been invoked is visible in the state of flag A.

This flag is also essential to prevent continued looping in

case a time-out is incurred during execution of the backup

module.

Independent Design for Alternate Components

To gain maximum benefit from the redundancy inherent

in the recovery block concept it is desirable that the primary

and the alternate routines be as independent of each other as

possible. Aircraft control systems offer many opportunities

for computing control inputs for a given function in several

ways, e.g., the yaw steering command may be computed from a

rate gyro signal or from a compass signal. This permits

independent specifications to be written for the two (or more)

routines that are utilized in a recovery block, provides

independent data sources, and greatly reduces the possibility

that both routines will fail at the same time.

18



Acceptance Tests

The acceptance test, which is an essential feature of

the recovery block, can for many aircraft control functions be

rather simply implemented by comparing present and previous

values of the computed quantity. Previous values would be

automatically available in the "recursive data cache". The

laws of physical continuity require that the difference between

successive results be small, and when the difference exceeds a

specified level this indicates failure.

Current avionics computers frequently have hardware

traps for continuous monitoring of overflow or underflow, use

of illegal operation codes, and accessing unauthorized memory

areas. All of these provisions can be organized to detect

deviation of a computer program from expected performance.

They are currently utilized to halt or abort processsing, but

they can obviously be used as acceptance test inputs in the

fault-tolerant software structure. Hardware provisions for

those tests are therefore identified as computer architecture

features that enhance the capabilities of software fault

tolerance.

Many aircraft control functions require that results

of a computation not only be correct, but that they be supplied

in a timely manner so as to meet the accuracy and stability

19



criteria of the control system. For this reason it is

essential to include, as an acceptance test, a test for timing

of the program execution. In the fault-tolerant software

structure proposed here this is accomplished by a watchdog
*

timer, a special register that is initialized with the

allowable time for each routine and is counted down by the

computer clock. Provision for a watchdog timer register,

preferably with hardware real-time clock decrement, is another

architecture feature that is desirable for software fault

tolerance.

Figure 5 shows more detail of a primary application

module. This expansion is intended to illustrate a number of

optional acceptance test implementations, consisting of a

series of separate tests for correctness of the call procedure,

input operations, and processing. Overflow, underflow, and

other hardware-implemented tests may also be incorporated.

Although the actual test structure is more complex than that

shown in Figure 4, it has a single YES and a single NO exit and

is a logical replacement for the simpler structure.

The watchdog timer function can also be implemented in
software, in which case a memory location is used instead of
the register. The execution time penalty may make this a less
desirable alternative.

20
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FIG. 5 INTERNAL STRUCTURE FOR PRIMARY
APPLICATION MODULE
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The reason for the separation of the test blocks is

that certain error-prone operations (primarily transfers and

data inputs) should be checked at the earliest possible time,

both because the test can be more sensitive at that point and

to prevent contamination of other program quantities. These

tests sometimes are incorporated in the current practices for

very critical software projects and are termed "defensive

programming". The significant feature of the fault-tolerant

software concept is that the error exit from all tests goes to

the alternate call, thus resulting in a simple and uniformly

applicable control structure.

A variant of this general rule is shown in the

optional backup data sequence in Figure 5. Use of this

structure may be desirable where the primary data input is

undependable or intermittent, and where a source of backup data

is readily available (e.g., primary input data from the

previous cycle). It should be observed that, here again, the

primary data test and backup data test can be collapsed into a

structure having a single YES and a single NO exit. The

resulting structure corresponds to a recovery block within a

recovery block, as illustrated in Figure 2. If the backup data

sequence is not to be used, the NO exit from the first data

test will continue directly to the alternate call.

The purpose of the call test is to determine that the

correct module has been reached and that calling parameters



have been passed correctly. A suitable implementation is that

the executive, in formatting the call/ creates a checksum over

the called address and the calling parameters. In the called

module itself are stored (in a different memory location) its

starting address and the locations where the callng parameters

are expected. Checksumming over these locations, and

comparison with the checksum received as part of the call,

concludes the call test. Where the computer hardware provides

extensive error-detection capability for memory access and

readout, the call test may not be required.

The data test can address correctness of transmission,

correctness of content, or both. To determine correctness of

transmission any one of a number of error-detecting codes can

be utilized, and some of these can be retained as an aid to

fault diagnosis (primarily hardware-oriented) in further

processing. Checksums over blocks of data are, of course, also

possible. To determine correctness of data content, the data

type can be checked, and increment tests can be performed.

The output test can employ the correctness features

mentioned above, or explore correlation between input and

output data. Where the application module serves as part of a

closed-loop control system, the special properties of such

systems (e.g., expected smoothness of control) should be

incorporated in the output test. Selective verification of

program assertions may also be employed in this test

23



(Ref. 6). If direct output to aircraft controls is to be

furnished by an application routine, then this should be

accomplished after successfully passing the output test and

before returning to the executive.

Degraded Recovery Block

The additional resources, both for software

development and computing hardware, to implement all functions

in the recovery block structure may not be warranted. In

practice, applications software is likely to consist of a mix

of single-string modules and recovery block modules. However,

to prevent hang-up of the entire computer due to faults in the

single-string modules, some partial fault tolerance provisions

are required even in the single-string modules. Thus, a

"degraded" recovery block structure without backup alternate

routines is defined for those functions that are not so

critical as to warrant the redundancy provided by the full

recovery block. The degraded recovery block would employ the

watchdog timer and monitoring of hardware error flags as

acceptance test criteria. In the event of failure an abort

return would be called. In this way, results derived from, for

example, overflow conditions can be prevented from entering the

system, as well as infinite looping or other failures that

would absorb excessive computer time.

Scheduler and Flight Condition Module

The overall design of the fault-tolerant software
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must also provide for a scheduler and for a flight-condition

module. The scheduler ensures that tasks are accessed in a

proper sequence and that all tasks assigned to a specific time

period are properly executed. The requirement to access

certain tasks depends on flight condition (e.g., automatic

landing tasks need not be serviced during the cruise mode) and,

therefore, a module that determines flight condition must also

be provided. Flight condition is also an essential input in

determining acceptance test criteria such as allowable surface

deflection, and limits on rates of climb and descent, etc.

Both the scheduler and the flight-condition module are

essential for the operation of the overall software system and

must therefore be treated as flight-critical functions and

coded as recovery blocks.

Fault-Tolerant Aircraft Control Software

From these considerations an overall structure for

fault-tolerant aircraft control software emerges that is shown

in Figure 6. The scheduler, flight-condition module, and those

flight-critical (criticality category 1) applications listed in

Table 1, Section 4, will need to be structured as recovery

blocks with at least one alternate program. Software for all

other functions can be structured as degraded recovery blocks

with just a primary program (the originally intended one) and

minimal acceptance tests that detect overrun of the watchdog

timer or violation of some of the computer hardware-monitored
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FLIGHT CONDITION
MODULE '

PRIMARY ALTERNATE

SCHEDULER

PRIMARY ALTERNATE

FAULT-TOLERANT
APPLICATIONS

PRIMARY ALTERNATE

FUNCTIONS
Attitude Control and
Stability Augmentation

Flutter Control

. Automatic Landing

Attitude Director Indicator

System Monitoring
Management*

Life Support Monitoring
Management*

Engine Systems Control*

NON-FAULT-
TOLERANT

APPLICATIONS

ALL OTHER FUNCTIONS
(See Table 1, Section 4)

Implemented in a fault-tolerant structure if determined to be
flight-critical (See Table 1, Section 4, and Reference 2)

FIG. 6 STRUCTURE FOR FAULT-TOLERANT AIRCRAFT
CONTROL SOFTWARE
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constraints. Upon failure of the acceptance test the program

is simply not executed and a warning message is displayed to

the crew.

Critical Function Backup

Conceptually, an additional reliability improvement

can be obtained by backing up the fault-tolerant computer and

software for the critical aircraft control functions with a

separate simplex computer executing the simplest possible

coding of the required software. A block diagram of such an

arrangement is shown in Figure 7. Switching to the simplex

computer brings entirely different software into play and

removes any unexpected hardware-software interactions that may

have contributed to failure of the fault-tolerant software.

Because the entire computing environment is being changed the

probability of correlated failures is very small.
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FAULT-TOLERANT
COMPUTER

FAULT-TOLERANT
SOFTWARE

SYSTEM
(all functions)

i »

SIMPLEX
COMPUTER

CRITICAL
FUNCTION
SOFTWARE

NON-CRITICAL
FUNCTIONS

I
PILOT

CRITICAL
FUNCTIONS

r
FIG. 7 CRITICAL FUNCTION BACKUP
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Section 4

RESOURCE REQUIREMENTS FOR FAULT-TOLERANT SOFTWARE

The fault-tolerance provisions described in the

preceding section involve the expenditure of additional

resources over and above those normally required for both the

software development and the operation of an airborne

computer. The most obvious penalty compared to conventional

software is that two routines have to be coded and stored where

previously only a single one was required. Further, an

acceptance test has to be added for each recovery block, and

this involves additional code that has to be developed, stored,

and executed. If the entire aircraft control software were to

be coded as recovery blocks the development budget would have

to be more than doubled. Moreover, memory requirements for the

computer on which this software is to execute would be

increased by a like factor, and execution time would be

increased due to the running of the acceptance tests every time

a recovery module is exited. Since the computers on which this

software is expected to execute employ redundant implementation

of memory and processors, it was assumed that gross expansion

of the memory and processing requirements to accommodate the

entire software in the form of recovery blocks would not be

acceptable. Therefore, it was decided to restrict the recovery

block format to those modules that are assumed to be critical

to safe flight and landing of the aircraft. The
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classification of aircraft control software by function,

criticality, and computer resource requirements as prepared by

Stanford Research Institute (Ref. 2) was used as a reference to

determine which functions to implement in this manner.

Essential data from the SRI reference (contained in

their Tables 2 and 3) are, with minor editing, reproduced in

Table 1. An explanation of the criticality levels assigned by

Stanford Research Institute (SRI) is shown in Table 2. Only

functions at criticality level 1 or 2 were considered for

implementation in the full recovery block treatment outlined in

the preceding section. Moreover, some deletions seem possible

even from that restricted set of functions. For example, the

inertial navigation function (No. 8) has functional backup

through Functions 9 or 10, except for over-ocean flight.

Furthermore, assuming successful development of the NAVSTAR

Global Positioning System, it seems that complete backup for

inertial navigation will be available in the post-1980 time

frame. Under these assumptions, complete fault-tolerant

software treatment for this function might not be necessary.

Because of the uncertainty in the criticality of several of the

support systems it was concluded that it would be premature to

make a firm decision on their treatment with regard to

fault-tolerant .software- .For the _engine control system a majoj:

portion of the code is believed to be concerned with economy of

operation and only a rather minor part is truly critical
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TABLE Z

EXPLANATION OF CRITICALITY LEVELS

Criticality
Level Effect of Failure

Immediately affects
safety of flight

May affect safety of
flight at a future
time

Change in mission
required to avoid
safety degradation

Imposes substantial
operational penalties

Produces economic loss
only

Example

Stability augmentation
for inherently
unstable aircraft

Altitude or airspeed
display

Gust alleviation
failure requiring
airspeed limitation

Navigation or communi-
cation failure

Failure of engine trim
control
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to safety; therefore, this system too has been deleted from the

critical functions as far as estimating the requirements for

fault-tolerant software is concerned.

To estimate the storage and timing requirements for

the fault-tolerant software, it was assumed that the backup

program in each recovery block would have the same number of

instructions as the primary program identified by SRI and that

acceptance tests will require 15 percent of the instructions of

a primary program. It was also assumed that all less critical

applications would be coded as "degraded" recovery blocks. In

addition to the regular code this will require three

instructions for setting up the watchdog timer and monitoring

of hardware error flags. Instructions required by acceptance

tests will have to be executed every time a module is called,

but instructions for backup programs will not ordinarily have

to be executed and thus will not affect the timing requirement.

As shown in Table 3, it is estimated that the use of

full recovery blocks for the reduced set of functions and of

degraded recovery blocks for the remaining functions will

require an increase in the storage requirements of

approximately 30 percent, but the impact on program execution

speed is estimated to be negligible. These estimates may be

unduly pessimistic because_some_ of the reaspnablejiess tests/ ___

incorporated in the formal acceptance test of a recovery block
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may be included anyway as a defensive programming technique for

any critical software program. Also, because the alternate

program segments of the recovery block frequently make use of

sensor data that have to be processed in any case, the code

length for these may not in all cases be quite as long as the

primary segment.

In addition to the application functions defined in

Tables 1 and 3, the overall design of the fault-tolerant

software must also provide for a scheduler and for a

flight-condition module. The impact of these additional

functions on storage and timing requirements should be quite

small. It is estimated that the scheduler and flight-condition

module together may comprise 200 primary instructions; the

iteration rate for the scheduler is assumed to be five per

second, and that for the flight-condition module one per second.
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Section 5

A FAULT-TOLERANT SCHEDULER AND FLIGHT CONDITION MODULE

The scheduler is a very essential component of the

overall fault-tolerant software system. The scheduler ensures

that tasks are accessed in a proper sequence and that all tasks

assigned to a specific time period are properly executed. The

requirement to access certain tasks depends on flight condition

(e.g., automatic landing tasks need not be serviced during the

cruise mode) and, therefore, a module that determines flight

condition must also be provided. Flight condition is also an

essential input for acceptance tests such as determining

allowable surface deflection, and limits on rates of climb and

descent, etc. Both the scheduler and the flight-condition

module are essential for the operation of the overall software

system and must therefore be treated as critical items and

coded as recovery blocks.

For some tasks, all data required for the computation

may be available within the computer or can be accessed from

peripherals whenever necessary. These tasks can always be

executed in a fixed order. There are., however, other

applications in which instruments furnish outputs at irregular

frequencies or in which communications are necessarily

asynchronous, e.g., the ground communications task (Functions

19 and 20 in Table 1). To service these applications it is

necessary that a data buffer be set up (either in the computer

38



memory or in the peripheral device), and that a "data-ready

flag" (a logical quantity) be set "true" whenever new data are

furnished and set "false" whenever the data have been read.

Also, because the time taken to complete certain tasks

(particularly those involving asynchronous communications)

cannot always be predicted, it may be necessary to assign

priorities to certain routines in order to make sure that they

are carried out at least as often as is required to maintain

safe control of the aircraft. Thus, to be able to service the

general spectrum of aircraft control tasks the scheduler must

be capable of coping with asynchronous data transfer and to

recognize various task priorities.

The design of the primary routine for the

fault-tolerant scheduler was therefore governed by the

following requirements:

1. There must exist the ability to transfer data from

peripheral devices without action of the scheduler or

of application modules.

2. The transfer of such data will include the setting of

a ready flag and accessing by the computer of these

data will be accompanied by resetting of the ready

flag.

3. No procejsŝ  will be interrupted during its

4. The scheduler will give control to the highest

priority process that has a current ready flag.
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The principal fault-tolerance provisions that must be

incorporated in the primary scheduler routine are

1. It must detect if an application module does not

return within a prescribed interval (the watchdog

timer function described in Section 3), and

2. It must recognize when it hangs up (it must perform

its own acceptance test).

The key to the scheduler design is to organize

aircraft control tasks on a cyclical basis, with the major

cycle being perhaps on the order of 0.5 to 1 second. The major

cycle is identified as the interval during which each task

should be serviced at least once. The end of a major cycle is

identified by a clock pulse derived from computer hardware (and

itself considered fault tolerant in the present context). If

the scheduler has operated correctly each process should then

have been accessed at least once, and this action can be made

visible by incorporating "serviced flags" at the beginning of

each task. Right after the occurrence of the major clock pulse

these flags are interrogated, and the appearance of a

non-serviced state indicates a fault in the primary scheduler

routine. If they are all in the serviced state, however, they

are reset to the non-serviced state, and the new major cycle

servicing begins. - -~ _.

The requirements discussed so far have been in-

corporated in the primary scheduler design shown in Figure 8.
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Because the most likely place at which the scheduler could

malfunction is in the selection of the next task, a separate

test based on time in selection has also been incorporated in

the design. If too much time is spent in selection, the

alternate scheduler is accessed. This feature is optional. A

PASCAL version of this scheduler is contained in Appendix 2.

The functional implementation for the backup

scheduler is deliberately kept as different as possible from

the primary one. An example of how this can be accomplished is

shown in Table 4, where the implementation of the scheduler

functions in the primary and backup schedulers are compared. A

flow chart of the alternate scheduler that embodies these

functions is shown in Figure 9.

When the backup scheduler is invoked it is intended

that servicing of all non-critical functions be deferred.

Because all functions then remaining are critical, it is not

necessary to have a priority structure and a fixed order of

The processes identified as

criticality level 1 or 2 in Table 1 do not depend on

asynchronous data transfer and, for this reason, it is also

believed that the data-ready test can be avoided in the backup

scheduler. At the end of each major loop the primary scheduler

checks for servicing of all processes in order to make a

decision whether to resume its own scheduling or to transfer
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TABLE 4

COMPARISON OF PRIMARY AND BACKUP
SCHEDULER IMPLEMENTATION

Function Primary Backup

Processes scheduled

Order of service

End of major loop

Transfer to other

All

Priority with data-
ready test

Checks for service
of all processes

For test only

Critical only

Fixed

Transfer to its
start

Periodically
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to the alternate scheduler. Such a decision is not appropriate

for the backup routine, and it simply transfers to its own

start at the end of every major cycle.

Because the primary scheduler represents thoroughly

checked out software that has been performing adequately until

just prior to the transfer to the backup, it is presumed that

the transfer was most probably due to the occurrence of an

unusual event that is not likely to be of a permanent nature.

Because the operation of the backup scheduler exposes the

aircraft to a less satisfactory environment (servicing of

non-critical processes has been suspended) it is desirable to

attempt periodic transfers back to the primary scheduler to

restore normal operation. Thus, the backup scheduler will

periodically transfer to the primary module, and only upon

unsatisfactory operation of a major cycle on the primary

scheduler will the operation of the backup scheduler then be

resumed. The suspension of service to non-critical functions

will have to be signaled to the crew. It may also be desirable

to permit manual switching to the backup executive in case of

unsatisfactory operation of the aircraft control system that

goes somehow undetected by the acceptance tests.

The total fault-tolerant scheduling system then

consists of the primary and the alternate scheduler connected

as shown in Figure 10. Operation commences in the primary
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scheduler mode and it will remain in that mode unless one of

the following two events occurs: an individual process does

not execute, or all processes are not executed within a major

cycle time.

That an individual process does not execute means the

routine did not pass the acceptance test within the allowed

time. This event results in the abort return indicated in

Figure 4. The event that all processes have not been executed

within a major cycle has already been discussed as the

principal acceptance test for the operation of the primary

scheduler. If this test is not passed there is, therefore, a

need to invoke the alternate scheduler.

The operation of the alternate scheduler follows that

described previously until the predetermined number of backup

cycles are exceeded, and then automatic switchback to the

primary scheduler will take place.

The fault-tolerant scheduler outlined here provides

prpt_ec.tAO_n__agaJ._nst_ hangup j3ue _to J:_ailure_in any application

module (through the watchdog timer), hangup due to failures in

the primary scheduler (by monitoring for execution of all

processes at major cycle time), and against correlated failures

of primary and alternate schedulers by an independent

specif icatioji and ̂implementation technique. The system was
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described here in operation against a priority-oriented task

list. It is, however, quite flexible, and its operation

against a major-minor-cycle-oriented task list will now be

discussed with reference to Figure 11.

The frequency with which the various automatic

control processes aboard an aircraft need to be serviced by the

computer varies considerably. For this reason a common

procedure for structuring the servicing is to divide the

processes into a hierarchy of major and minor timing cycles, as

illustrated in Figure 11, where a major cycle is divided into

two intermediate cycles which, in turn, are divided into two

minor cycle segments. The number of layers (here major,

intermediate, minor) and the number of lower layer cycles

represented by an upper layer (here given as two) can, of

course, vary quite a bit. All tasks need to be serviced once

during the cycle to which they are assigned, i.e., once per

major, intermediate, or minor cycle. One way of accomplishing

_ t h 1 .s._ i s_by__t he _allo.c.a.t ion__sho_wn _i.n_F_ig.ure_ll_. At _the'

beginning of each minor cycle, e.g., between events 0 and 1, 2

and 3, 5 and 6, and 7 and 8, the minor cycle tasks are

serviced. In the remainder of the minor cycle time, e.g.,

between events 1 and 2, 3 and 4, 6 and 7, and 8 and 9, the

-intermediate_cycle. tasks, .ate .accomplished.,.. and_.if. any time. is.

left over in the minor cycle, e.g., between events 4 and 5, and

9 and 10, then the major cycle tasks are addressed. The
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Î B̂

^̂ •M

•̂•1

•••i

m^m

^ *̂m

—

.̂ J
CVI

LU

O

o
LU
H—
_
Ci
LU

^
i i I
h—

— ^ m _

i — 1

LU

O

O

LU

O
LU

LU
h-

_

0
1— 1

p
Q
W
E
O
en
W

u
LU >-i

0 "
^^™ 0^
0 O

O §

<C pcj
^ O

1-1

•̂̂ -H

O

PH

49



program must be designed so that all major cycle tasks can be

accomplished under the worst condition within one major cycle,

and the process can be repeated over again. As shown in Figure

11, there is indeed idle time between event 10 and the end of

the major cycle.

The scheduling required in Figure 11 can be handled

by the primary scheduler in the following manner. All minor

cycle tasks are assigned priority 1, intermediate cycle tasks

priority 2, and major cycle tasks priority 3, with priority 1

being the highest. Data-ready flags are set "true" for all

tasks at the beginning of the major cycle. (The scheduling

shown in Figure 11 inherently assumes that tasks can call

data.) Data-ready flags for the minor cycle tasks will be set

false upon execution of these tasks and can then be set true

again at the beginning of each minor cycle, e.g., at events 2,

5, and 7 in Figure 11. Similarly, the data-ready flags for

intermediate tasks can be reset at the beginning of the

intermediate_jcycl_e_ (e_.ĝ , at_ event_.5)_. _At thê  begjuiiiing jDf

each new cycle (minor, intermediate, and major) a signal

transition is assumed to occur in the computer hardware, and

this transition can then be selected to reset the flag

registers as outlined above. The scheduling of the same tasks

by the backup scheduler would require preparation of a task

list that interleaves critical minor, intermediate, and major

cycle tasks with, if necessary, some wait times in between
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to assure proper operation. The critical tasks should occupy

only a fraction of the major cycle, so there is no danger of an

overlap situation (insufficient time to finish all required

processes).

The flight condition module is a function closely

associated with the scheduler. It is assumed that flight

conditions are sensed primarily in terms of horizontal and

vertical velocities, e.g., cruise condition is identified with

having reached a specified airspeed. It is also assumed that

there are at least two completely independent sensor systems

for horizontal velocity, e.g. inertial and air data, and three

for vertical velocity, e.g. inertial, air data, and radar; and

that each sensing system is itself sufficiently reliable (or

redundant) that the sensor systems will furnish a valid input

to the flight condition module through algorithms not

specifically considered here.

Because several significant uses of flight condition

-information—involve- aer_o.dynamic_ Affects ^e^g^,_ J-iroi tat ions on

control surface travel), it appeared natural to select true

airspeed (an output of the air data computer) as the input to

the primary routine and velocity information from the inertial

navigation system as an input to the alternate routine. For

operation -in.-proximity, .to the ground (i.e., initial climb,

descent, and ground operation), altitude and rate-of-climb

information derived from radar altimeter data are used as
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inputs to the primary routine, and are derived from air data

signals for inputs to the alternate routine.

An example of the resulting signal selection is shown

in Table 5. Alphanumeric symbols represent velocity and

altitude points for transition from one flight condition to

another. Numerical values for these transitions can be

tailored to the specific mission (e.g., takeoff weight, runway

altitude, and temperature at origin or destination).
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Section 6

RELIABILITY OF FAULT TOLERANT SOFTWARE

The purpose of fault-tolerant software is to enhance

the reliability over that obtainable from thoroughly

checked-out single-string software. This section addresses

modeling of fault-tolerant software such that the reliability

improvement can be conceptually demonstrated and, given

suitable input parameters, numerically assessed. It would be

desirable to supply parameters for this model and then to use

it to guide the development of the fault-tolerant software.

There are at present no authoritative estimates of the

reliability of real-time operational software and none at all

for the residual failure probability after fault tolerance (the

probability of undetected or correlated failures). A

parametric approach is therefore taken in which a wide range of

software failure probabilities and of the residual failure

probabilities is input to the model.

The transition model shown in Figure 12 has been

devised to be representative of the failure processes that can

be expected in typical real-time software applications.

Starting at state 1, when the primary software module executes

correctly, the allowed transitions during some arbitrary

interval* are the following:

For the numerical results to be derived from this diagram
to be valid, it is required that the probability of more
than one transition to state 4 during the selected time
interval (failure) be negligibly small.
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Primary software continues to execute correctly (path
1,1).

Primary software fails and the failure is detected (path
1,2).

Primary software fails and the failure is not detected
(path 1,4).

In the first case, the process will definitely not cause system

failure during the selected interval, and in the third case it

definitely will cause system failure. For the case when

failure is detected, it has been found convenient to show

transition to a pseudostate 2, from which an immediate further

transition to either state 3 or state 4 will result. The

transition to state 3 represents the case where the backup

routine performs satisfactorily for at least one pass of the

application program (i.e., the acceptance test is

satisfactorily completed). The transition 2,4 represents the

case where a failure has been detected, but where the backup

routine does not satisfactorily complete the acceptance test.

It is assumed that the probability that this will occur due to

independent failures in the primary and backup routines is

extremely low, but correlated failures, e.g., those due to

environmental effects or unforeseen hardware/software

interactions, can by no means be ruled out. The transition 2,4

therefore models the event of correlated failure in the primary

and backup routines.
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If the failure of the primary routine is of a

transient nature and if the backup routine has performed

satisfactorily, the executive will cause reversion to the

primary routine upon the next call to the application module,

as modeled by transition 3,1. If the failure of the primary

routine is of a more permanent nature, diagnostics may reverse

the roles of primary and secondary modules and calls to this

application will immediately bring the backup routine into

operation. Note that all of this is conditioned on the backup

routine having performed satisfactorily at least once after

failure of the primary one. Any further failure of the backup

routine would therefore be an independent failure. The

probability of that event, while the primary routine is still

not yielding satisfactory performance, must be considered quite

low. For this reason it is assumed that, once the transition

2,3 has taken place (backup routine performed satisfactorily)

it will remain in that state or revert back to the primary

routine (.tr ans.i t ip_n_3_, JL)_._ The trans it ip_n _3,4^. canno t_ _be

completely ruled out, but the probability of this event will be

several orders of magnitude less than that of the other

transitions once state 3 has been reached. Therefore the arc

has been shown dashed, and the probability of this transition

is negleated in the _f pi lowing discussion.

In this model the most significant events leading to

failure of an application routine are seen to the be the
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inability to detect failure of the primary routine (transition

1,4) and, given that primary failure has been detected/ the

correlated failure of the backup routine (transition 2,4).

Subject to previously stated conditions, the probability of

failure of an application can therefore be expressed as

FA = P(l,4) + P(l,2) x P(2,4)

A significant deviation from the usual hardware model

has thus been established. Probability of failure for

redundant hardware elements is modeled by considering failures

independent with probability of failure to detect rarely

considered in elementary models. For fault-tolerant software,

on the other hand, these failure processes (dependency and

inability to detect) are seen to be the governing ones.

Arbitrarily labeled "residual failure probabilities", they may

be represented as an element in series with the independent

failure probabilities of the associated application models.

However, if our previous assumption is correct that~appTica~tic:ir

program failure due to independent failure modes of the primary

and backup routines is orders of magnitude less likely than

that due to the residual failure modes, then a simplified model

consisting entirely of a series arrangement of the residual

failure probabilities may be constructed.
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Using this model, and arbitrarily assumed values for

the residual failure probabilities to predict the corresponding

fault-tolerant application program failure probability, a set

of figures such as those shown in Table 6 results. These

figures are then propagated in Table 7 to a segment of critical

software consisting of five programs (e.g., a fault-tolerant

scheduler and four fault-tolerant application programs).

Conceptually, an additional reliability improvement

can be obtained by backing up the fault-tolerant computer and

software for the critical aircraft control functions with a

separate simplex computer executing the simplest possible

coding of the required software. A block diagram of such an

arrangement was shown in Figure 7. Switching to the simplex

computer brings entirely different software into play and

removes any unexpected hardware-software interactions that may

have contributed to failure of the fault-tolerant software.

Because the entire computing environment is being changed the

-probability—of- correlated- f ailures_is__ver_y_smal.l. However ,_ _th_e^

probability that software failures will go undetected can no

longer be ignored.

Additional research is required to establish the

failure probability of representative primary software, and the

probability of undetected_or correlated failure _in a_recovery

block, in order to make these models useful. In the meantime,

the design of fault-tolerant software can proceed on the basis
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TABLE 6

FAILURE PROBABILITY OF A FAULT-TOLERANT
APPLICATION PROGRAM

Probability of
Primary Failure Probability/Flight

10-3 io-4 io-5 10-6
Undetected

Error

0.05000

0.05000

0.01000

0.00100

0.00010

Correlated
Failure

0.10000

0.05000

0.02000

0.00100

0.00010

Failure Probability/Flight

1.45E-4

9.75E-5

2.98E-5

2.00E-6

2.00E-7

1.45E-5

9.75E-6

2.98E-6

2.00E-7

2.00E-8

1.45E-6

9.75E-7

2.98E-7

2.00E-8

2.00E-9

1.45E-7

9.75E-8

2.98E-8

2.00E-9

2.00E-10

0.00001 0.00001 2.00E-8 2.00E-9 2.00E-10 2.00E-11

60



TABLE 7

FAILURE PROBABILITY OF FAULT-TOLERANT SOFTWARE
(FIVE CRITICAL PROGRAMS)

Probability of

Undetected Correlated
Error Failure

0.05000

0.05000

0.01000

0.00100

0.00010

0.00001

0.10000

0.05000

0.02000

0.00100

0.00010

0.00001

Primary Failure Probability/Flight

10~3 10~4 10~5 10~6 .

Failure Probability/Flight

7.25E-4

4.87E-4

1.49E-4

9.99E-6

l.OOE-6

l.OOE-7

7.25E-5

4.87E-5

1.49E-5

9.99E-7

l.OOE-7

l.OOE-8

7.25E-6

4.87E-6

1.49E-6

9.99E-8

l.OOE-8

l.OOE-9

7.25E-7

4.87E-7

1.49E-7

9.99E-9

l.OOE-9

l.OOE-10
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of taking every possible advantage of multiple sensing of flight

parameters and events in order to provide high coverage for the

detection of software failures and for reducing the probability

of correlated failures.
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Section 7

CONCLUSIONS

The recovery block structure as a general

implementation of software fault tolerance appears to be

suitable to serve specific critical aircraft control

functions. The recovery block consists of a primary routine

(partial or entire application program), one or more alternate

routines, and an acceptance test. If the result of either the

primary or of the alternate routine passes the acceptance test,

a regular output is delivered to the aircraft control system,

and normal operation is maintained. If neither result passes

the acceptance test, an abort return is issued that mobilizes

other system resources to resolve the difficulty.

Because significant development resources and

computer hardware (e.g. memory space and throughput) cost is

involved if all application functions were to be implemented in

-the -recovery—block - str-ueture,—the- concept -of—a. degraded

recovery block has been introduced for non-critical

applications. The degraded recovery block employs an

acceptance test that includes the watchdog timer, and any error

monitoring signals that are provided in the computer hardware.

It does not incorporate an alternate routine as in the -full

recovery block; instead it calls for an abort return to signal

the crew to take corrective action while the computer proceeds
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with higher priority tasks. The degraded recovery block

permits the mixing of unprotected (i.e. without alternates)

single-string non-critical software modules with modules using

the recovery block structure, by insuring that failure of the

non-critical software will not deny access to the essential

application modules. It is estimated that flight control

software incorporating recovery blocks for critical

applications and degraded recovery blocks for all others will

only require about 30 percent more storage than non-fault-

tolerant software serving the same functions. The execution

time penalty for use of fault-tolerant software is estimated to

be less than 10 percent. On this basis it is asserted that

fault-tolerant software for critical aircraft control functions

can be implemented at reasonable expenditure of resources.

The stringent reliability required for real-time

aircraft control functions involving safety of flight demand

that any potential single failure mode be eliminated.

-Conv.entional_single=S-tr_ing_sof tware__ser^vicing _cr it.ical

functions represents a potential single failure mode, and this

difficulty can be overcome by the use of fault-tolerant

software concepts. The advantages of fault-tolerant software

described here, and the rather modest additional resources

required for Lts use, appear ample^arguments to proceed with

further development and application of this concept.
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Since servicing frequency varies widely among the

various aircraft control functions and timely execution is

essential for all functions in a time-shared multi-task system

a fault-tolerant scheduler is ah essential and critical

component of fault-tolerant software in such a system. The

conceptual design of such a scheduler has been described.

An elementary reliability model is described largely

to serve as a stimulus and guide for both the acquisition of

software reliability data and for the development of a test and

validation methodology for fault-tolerant software for the

aircraft control application. The need for a considerable data

acquisition effort is obvious.

The need for early and intensive development of a

test and validation methodology for software to be used as part

of a fault-tolerant aircraft control system stems partly from

the requirements for demonstrating high reliability of the

primary and alternate routines separately, and partly from the

-need _for—measurement._of__the_ pr_obabilLty__of_unde_teate_d_and

correlated failures. An approach to planning of these tests

needs to be worked out at an early date lest this become the

pacing item in the overall effort to develop an

aircraft-control concept suitable for energy-efficient

-transport. The task _ of .demonstrating, the .achievement of...
_q

failure rates of the order of 1x10 per flight hour is not

trivial, and perhaps here again fault tolerant hardware

techniques can be adapted (Ref. 7).
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APPENDIX A

FLOW OF PASCAL SCHEDULER

Set timer = maxtime

DO FOR i = 1 TO # of tasks

Set already. executed j = 0

Set loop sentinel = 0

Inc-rement loop, sentinel

DO FOR i = 1 TO # of tasks

Select task j

o with highest pr ior i ty ( shor tes t in terval to execution)

o sensor inputs all ready for next access .by task j

UNTIL, (task j is selected) V (loop, sent inel > t imeout)

~~ - — sentinel > timeout • ~~

THEN ' ~-~— __^___^ ^ ~~ ELSE

EXECUTE

alternate
scheduler

•— ~^

T

UNTIL timer •£. 0

Save t imer in t

Set t imer = t imed j

Set a l ready . executed j = 1

EXECUTE task j

""•~~^_^ t imer < t imed j ^ — •""

HEN ^~^~--~^^ ^_- — ELSE

Reset timer
EXECUTE
alternate j

Restore t imer from t

— — —_^__^^ All tasks ^
______^ a lready, executed ^ "

THEN -____^^ ^ ~ ELSE

- - - - - - - . . . . . .

ALWAYS

EX KCU TE
nl torn . - i tc
scln-ihilcr - - - - .

i

timer also generates a hardware interrupt when decremented to zero.
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APPENDIX B

SCHEDULER SIMULATION

The simulation of the Fault-Tolerant Scheduler (FTS)

was carried out on a CDC 7600 computer.

The system of programs consists of the Scheduler,

Timerinterrupt, Alternatescheduler, Execute, and the test

programs, Driver, Simerrors, and Set-readyflags. A top-level

flow chart of the system is shown in Figure B-l. Scheduler

contains both operational and test code. Timerinterrupt

contains only operational code. Alternatescheduler has not

been implemented. Alternatescheduler is to be called by

Scheduler and Timerinterrupt to resume computation whenever

either detects a catastrophic error. Execute is a program in

name only; it has not been defined. It is included because it

is called by Scheduler. The test program, Simerrors, will be

used in its place.

Driver is used to initiate _ajid control the^ duration

of the test run. Driver starts the run by calling Scheduler.

Upon being called, Scheduler attempts to select a task to be

executed. If a task is not selected within a given time

period, Scheduler calls Alternatescheduler. Scheduler will be

.called again or the_run_will be_ terminated by Driver according

to the value of run control parameters. If successful,

Scheduler will call Execute which will in turn call Simerrors.
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RESET "SERVICED" FLAGS
AND SIMULATED MAJOR

CYCLE TIMER (CTIMER)

MAJOR
*. CYCLE

INTERRUPT

DECREMENT CTIMER*

NEXT PROCESS AT

HIGHEST PRIORITY

DATA
READY?

(Simulated Using
Random Number

Generator)

TOO
MUCH

TIME IN
SELECTION

LOOP?

RESET WATCHDOG TIMER
EXECUTE-SELECTED. PROCESS*

SET "SERVICED" FLAG
OF PROCESS

ATCHD
TIMER

HARDWARE FAULT?
(Simulated Using
Random Number

Generator)

TO ALTERNATE
SCHEDULER

*CODE INSERTED FOR SIMULATION PURPOSES

FIG. B-l SCHEDULER SIMULATION LOGIC
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Based on run parameters, Simerrors will simulate a normal or

abnormal execution of the task; the latter to be detected

either by Scheduler or Timerinterrupt. If the execution was

normal, Scheduler attempts to select another task and the above

process is repeated. If the execution was abnormal, an error
*

message is output and the Alternatescheduler is called.

Scheduler will be recalled or the run terminated based on

run-control parameters.

Setreadyflags sets flags to identify which tasks are

to be executed. This function is normally done by the sensor

when there is data to be processed. The task will be selected

based on the state of the ready flag and the priority of the

task.

A random number generator is used to determine when

an error is to occur and which task should be executed.

Figure B-2 contains the execution trace printed

during a simulation run of the FTS. The simulation

demonstrated that the scheduler and timer interrupt code

executes, and that the software acceptance tests successfully

detect timer failures. The simulation also provided insight

into operation of the major cycle timer and the selection loop

acceptance test, allowing us to vary the frequency which the

alternate scheduler is called from these two points. Figure

B-3 indicates those points in the simulation from which trace

messages are written.

*Note: In full implementation, alternate processess would be
invoked at this point instead of the Alternate-
scheduler. Since no processes exist in this
simulation, this call is substituted.
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ALL TASKS COMPLETED AT LEAST ONCE; SCHEDULER LOOPS =
TIMER IN EXECUTE IS 20 J IS 9
TIMER IN EXECUTE IS 20 J IS 22
TIMER IN EXECUTE IS 20 J IS 3
TIMER IN EXECUTE IS 20 J IS 9
TIMER IN EXECUTE IS 20 J IS 9
TIMER IN EXECUTE IS 20 J IS 20
TIMER IN EXECUTE IS 20 J IS 8
TIMER IN EXECUTE IS 20 J IS 13
TIMER IN EXECUTE IS 20 J IS 10
TIMER IN EXECUTE IS 20 J IS 22
TIMER IN EXECUTE IS 20 J IS 5
TIMER IN EXECUTE IS 20 J IS 8
TIMER IN EXECUTE IS 20 J IS 13
TIMER IN EXECUTE IS 20 J IS 22
TIMER IN EXECUTE IS 20 J IS 18
TIMER IN EXECUTE IS 20 J IS 20
TIMER IN EXECUTE IS 20 J IS 5
TIMER IN EXECUTE IS 20 J IS 23
TIMER IN EXECUTE IS 20 J IS 9
TIMER IN EXECUTE IS 20 J IS 21
TIMER IN EXECUTE IS 20 J IS 19
TIMER IN EXECUTE IS 20 J IS 2
RNG = 9.9965317416198F-001
TASKS STILL LEFT TO DO AFTER TIMEOUT ;I = 1 LOOPS
TIMER FROM ALTSCH IS 0

FIG. B-2 smUUATION~TRACE~OF-FTS-
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MAJOR CYCLE INTERRUPT")

I PRIMARY
: SCHEDULER

ALL
PROCESSES\ NO
SERVICED?

ALTERNATE
SCHEDULER

; ALL TASKS COMPLETED AT LEAST ONCE;
SCHEDULER LOOPS = XXX;* TASKS smL ^py T0 D0 AFTER TIMEOUT;

I = XX; LOOPS = XXX;*

TIMER = XXX

PROCESS
TOO LONG

IN EXECUTION?

TIMER IN EXECUTE 13 XX
J IS XX*

(^WATCHDOG TIMER INTERRUPT^

'SIMULATED USING RANDOM NUMBER GENERATOR

FIG. B-3 PRINCIPAL SOURCES OF MESSAGES IN THE
SIMULATION TRACE
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GLOSSARY OF SOFTWARE HIERARCHY TERMS

The following explains terms that are used with more

specialized meanings than in the general literature.

Application Program (or sometimes just Application) is a

software segment that completely services an aircraft

control function, e.g., attitude control program.

Process is a subdivision of an application program that yields a

defined result (and is in the structure used here expected

to execute without interruption), e.g., filtered attitude

rate computation.

Recovery block is the basic structure for providing fault

tolerance in a computer program. A recovery block consists

of a primary routine and one or more alternate (or backup

routines) and an acceptance test. The operation of a

recovery block is explained in Section 2.

Degraded recovery block is one in which the alternate routine

consists of a void return to the scheduler. (If the

primary routine does not yield a result that passes the

acceptance test, the function supported by the recovery

block is not serviced.)

Routine is the application code (excluding acceptance test) for

one alternate within a recovery block. A routine yields a

result that can be subjected to an acceptance test. A

routine consists of one or more processes.
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