B L DNHIE

NASA Contractor Report No.
Report No. 145298 ' : ATR-78(7640)-1

FAULT-TOLERANT SOFTWARE STUDY

Advanced Programs Division
THE AEROSPACE CORPORATION
El Segundo, California 90245

{ February 1978

Final Report

Prepared for

Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Hampton, Virginia 23365

Contract NAS1-14644

o

S

e ey o
- i

1. Regort No. 2. Government Accession No. 3. Recipient’s Catalog No.

ATR-78(7640)-1

4. Title and Subtitie 5. Report Date
1 February 1978
Fault-Tolerant Software for Aircraft Control Systems 6. Performing Organization Code
7. Author(s} 8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address

. 1. Contract or Grant No.
The Aerospace Corporation '

. \ 1-1464
El Segundo, California NAS 644
13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Final Report ‘
Qct 1966 - Qct 1977
NASA Langley Research Center 14. Sponsaring Agency Code
Hampton, Virginia
15. Suppiementary Notes -
16. Abstract This report addresses concepts for software to implement real-time aircraft

‘control systems on a centralized digital computer. A '"fault-tolerant' software structure
employing functionally redundant routines with concurrent error detection, and provisions
to switch from one routine to a functional alternate in the event of a detected fault,
after the recovery block structure conceived by Randell, et al, at the Computing
Laboratory, University of Newcastle-upon-Tyne, United Kingdom, is proposed for critical
control functions involving safety of flight and landing. A 'degraded" recovery block
concept, incorporating concurrent error detection with an abort return but no functional
alternate routine, is devised to allow collocation of critical and non-critical software
modules within the same control structure. The degraded recovery block reduces the
likelihood that failures in the non-critical modules will hang up the computer and thus
deny access to the critical functions. Control resides in the task scheduler of the
executive software, and, being a critical software module, it too is configured after the
recovery block with a primary and functionally alternate routine. To guard against
correlated failures, functionally alternate routines within a recovery block should be of
different design. Conceptually, this requirement is easily achieved in aircraft flight
controls through the use of either direct measurements, or variables derived from other
functions. The additional computer resources required to implement-the proposed software
structure for a representative set of aircraft control functions is discussed. It is
estimated that approximately 307 more memory space is requiréd to implement the total set
of control functions, compared to that required for non-fault-tolerant software, if only
the flight-critical functions are implemented in the full recovery block format. A
reliability model for the fault-tolerant software is described and parametric estimates
of failure rate are made for various assumptions regarding failure probabilities for the
thmare_modules.

17. Key Words (Suggesied by Authoris)) 18. Distribution Siatement

Fault—tolerant software

Reliable software

Digital aircraft control
Fault-tolerant computing

Recovery block structured software

19. Security Cassif. jof this report) 20. Security Ciassif. {of this page) 21. No. of Pages 22. Price’

For szle by the National Technical information Seivice, Springfield Virginia 22161

'~ NASA Contractor Aerospace Report No.
Report No. 145298 ATR-78(7640)-1

FAULT TOLERANT SOFTWARE STUDY (U)

Approved

G{ Wm. Anderson, Group Director
evelopment Group Directorate
Advanced Programs Division

-

ii

ACKNOWLEDGMENTS

The work reported here was performed by The Aerospace
Corporation under Contract NAS1-14644 with the NASA Langley
Research Center under the technical guidance of Mr. G. E.
Migneault. Many helpful suggestions for the conduct of this
study were received from him and from his colleagues S. Bavuso
and N. Murray.

The principal investigator on this study was Dr. Herbert
Hecht. Dr. V. B. Schneider designed the primary and alternate
scheduler and directed the simulation, which was implemented by
R. Noke and A. Sylvain.

Much valuable assistance was received from Ms. Bonnie
Cal%ender, Ms. Bonnie J. Schmidt and Ms. Phyllis Whobrey, in
the preparation of the illustrations and manuscript, and in the

typing of the final copy.

CONTENTS

ACKNOWLEDGMENTSI-....oo.....l.0.o...'.u.c..........-...no.o

o

lo INTRODUCTION-.o..oc.oo.o'.oou.oo..ouooooo.o.oooo.cooooo

2. CONCEPTS FOR FAULT TOLERANT SOFTWAREccoceccccscscs

3. FAULT TOLERANT SOFTWARE STRUCTURE FOR REAL-TIME

AIRCRAFT CoNTROL..I.....l‘...........Q...'.........l...

4. RESOURCE REQUIREMENTS FOR FAULT~-TOLERANT SOFTWARE......

5. FAULT-TOLERANT SCHEDULER AND FLIGHT-CONDITION MODULE...

6. RELIABILITY OF FAULT TOLERANT SOFTWARE ...cccceecoccccs

7. CONCLUSIONS

® © 0 2 € 9 5 S 9 0 5 00 0 0 0 S PG T OO OB S OSSOSO e S0 L e L e

REFERENCES ® © 0 0 0 90 0 8 6 S L0 0O PP T OO O L OO SN GO O H LS eSS s oo

APPENDIX A ~ FLOW OF PASCAL SCHEDULER..::ecoceocescososscecs

APPENDIXB-SCHEDULER SIMULATION ® ¢ 06 8 0 0 060 0506060000000 00 008000

GLOSSARY OF SOFTWARE HIERARCHY TERMS. ® & & ¢ & ¢ 5 & 6 9 S O s 0 DO S PP SO

iv

12
29

54
63
65
68
69

74

FIGURES

A Simple Recovery BloCK ...ccieeescecescscsassanssnns
A More Complex Recovery BloCK ..ccencacrcacscsasascese
Parallel Processes with Conversationscccceceess
Fault Tolerance for Application Modules
Internal Structure for Primary Application Module....
Structure for Fault-Tolerant Aircraft Control

SO WAL . ettt eesneeeacccscasossscssscscnssacsassssssss
Critical Function Backup R R R
Primary Scheduler cseesscsaccessesescseccssoes s
Alternate Schedulercicveeecee ceecceceasceseannns
Fault-Tolerant Schedulerc.cceecevececcccscccsnns
Major-Minor Cycle Schedulingceceeeeerececseccnss
Transition Model for an Application Routine..........
Scheduler Simulation LOGIiC .teeeeeececccacssnncsasssss
Simulation Trace Of FTS .icceeccccecesscosscassssccnss

Principal Sources of Messages in the Simulation

Trace....-.........-....-.......--.--.....-..........

11
15
21

26
28
42
44
47
49
55
70
72

73

TABLES

Analysis of Aircraft.Control Computational
Requirements...l.....................I...............

. Explanation of Criticality LevelS...eceeieeecceecnnnns

Impact of Fault Tolerant Provisions on Computation
Requirements.........Q...........l...‘.......‘.....'.

Comparison of Primary and Backup Schedule:}
Implementation..cceieieeerecenenescrececanacecscannas

Sensor Interaction for Flight Condition Module.......

Failure Probability of a Fault-Tolerant
Application Program...............l........‘..l......

Failure Probability of Fault-Tolerant Software
(Five Critical ProgramsS) cecececcsscesccscscssosscscasses

vi

31
33

35

43

53

60

61

Section 1

INTRODUCTION

This report summarizes the work performed at The
Aerospace Corporation on a study of fault-tolerant software
for the Langley Research Center, National Aeronautics and Space
Administration, under Contract NAS1-14644. The objective of
the study was to carry specific techniqueé for developing
software systems which are tolerant of faults - within the
software system as well as tolerant of faults within the
hardware system into which the software system is embedded -
closer to realization in real-time aircraft control systems.
Specific techniques studied were those proposed by Professor B.
Randell, et al, of the Computing Laboratory of the University
of Newcastle-upon-Tyne, United Kingdom (Ref. 1). Extensions of
Randell's concepts, to incorporate execution time as an
essential acceptance test, to provide for an abort réturn, and
to provide a "degraded" recovery block structure for
non-critical functions, were included in the application
studied uﬁder this contract. The functional and computation
requirements of the real-time aircraft control application,
which formed the frame of reference for this study, were those
estimates prepared by the Stanford Research Institute under
contract to NASA/Langley as part of a design study of a
fault-tolerant airborne digital computer to-be used as a
central computer in an advanced, high performance commercial

aircraft. (Ref. 2).

Automatic flight control concepts have evolved from
simple pilot-relief autopilots to include sophisticated
stability augmentation, gust and maneuver load alleviation,
flutter control, energy management, and attitude and
flight-path control from takeoff to touchdown. Although
military applications have inspired much of the development in
the past, commercial requirements for efficiency and economy,
particularly for fuel economy, are rapidly becoming a major
influence. 1In a recent paper (Ref. 3) it was noted that major
improvements in aircraft performance and reductions in aircraft
weight appear possible through combinations of currently
independent aircraft functions such as active airframe control,
propulsion control, landing loads control, and fuel
management. The authors stated, as examples, that the
integration of active landing gear and maneuver load control
systems can appreciably decrease wing structural stiffness
requirements and weight, and that automatic reconfiguration of
control system gains in the event of an engine failure can
allow sizeable reductions in required control surface areas.
The authors assert that extension of this approach to
fully-integrated, control-configured aircraft could provide up
to 15 percent fuel savings and structural weight reductions.
But, in conclusion, they observe that the integrity of the
flight control system will continue to be the key factor in the
acceptance of these concepts for operational application.

Federal Aviation Regulations (Ref. 4) state that
airplane systems and associated components, considered

2

separately and in relation to other systems, must be designed

so that:

(1)

(2)

The occurrence of any failure condition which would
prevent the continued safe flight and landing of the
aircraft, or which, in the event of loss of all
propulsive power, would preclude controlled flight to
an emergency landing, is extremely improbable, and

The occurrence of any other failure condition which
would significantly reduce the operational or
performance capability of the airplane is improbable.

In a draft FAA Advisory Circular (Ref. 5) it is explained that

(a)

(b)

extremely improbable refers to occurrences expected

with a mean frequency on the order of lx10_9 or

less per flight or flight hour, or occurrences so
unlikely to occur that they need not be considered.

improbable refers to occurrences which may be

expected with a mean frequency in the approximate
range of 1x107° to 1x1072 per flight or flight

hour, or occurrences not expected during the
operation of an individual airplane, but expected to
occur during the operational life of all airplanes of
a type.

These are by no means trivial requirements. As a

data point, the Air Force Space and Missile Systems

Organization is supporting development, for use in unmanned

spacecraft deployed in the late 1980's, of a fault tolerant

general purpose digital computer with an equivalent failure
probability on the order of 10-6 per hour. At the system
level to this failure probability must be added the equivalent
failure probability of the input/output devices (sensors and
actuators) and, of course, the software. Clearly, the
achievement of failure probabilities of approximately 10-9

per flight hour for flight-critical systems for the next
generation of aircraft is a major challenge; and perhaps just
as challenging is the problem of demonstrating that such a
failure rate has indeed been achieved once that point has been
reached.

The software fault tolerance techniques considered in
this study are similar in principle to those being applied to
achieve fault tolerance in computer hardware, i.e., standby or
"protective" redundancy, in the form of alternate hardware
modules accessible by switching, and concurrent error
detection. Provisions to permit rollback of the executing
software to an uncontaminated location to recover from a
failure are required in both instances. However, for hardware
fault tolerance, the backup modules are usually identical in
design to the primary module, but an identical copy of a
computer program can hardly be expected to be of much help in
recovering from a failure in the original. Therefore,
redundancy in fault-tolerant software requires programs that
are deliberately different from the original ones which they

are to backup. 1In the aircraft control context, alternate

sensors, and perhaps alternate "actuators", primarily available
to implement other functions, often can be employed to effect
end-to-end independence of the alternate module design and
hence lessen the probability that the backup fails under the
same conditions as the primary module.

The redundancy and error detection provisions
necessary for fault tolerance will of necessity invol§e
additional hardware costs (e.g., by requiring additional
memory) and performance penalties because more code has to be
processed for a given task. However, if the fault tolerance
provisions are incorporated only into those software modules
that implement flight-critical functions, as defined in the SRI
report (Ref. 2), the additional resources required to have
essential fault tolerant provisions can be minimized.

With this as background, a software structure
incorporating redundant fault-tolerant provisions for flight
critical applications modules, non-redundant modules with error
detection and flagging for non-critical functions, and a
redundant fault-tolerant task scheduler, has been defined. The
additional resources required to implement this structure as
contrasted to the computational requirements set forth by SRI
(Ref. 2) have been estimated. Employing a simplified
reliability model parametric estimates of the failure
probability of the resulting structure have been made using

assumed values for failure rates for the component modules.

Use is made of multiple-sensed control parameters for the
design of backup modules as opposed to multiple copies of the
same sensor type. The executive task scheduler includes an
alternate backup, and a flight condition module employing
multiple-sensed data is incorporated to effect acceptance
tests.

This report consists of one volume. A brief review
of the fault-tolerant software concepts proposed by Randell, et
al, follows this Introduction. Subsequent sections of the
report describe the adaptation of these concepts to the
aircraft control tasks, the resource requirements to implement
this proposed fault-tolerant software for real-time aircraft
control systems, the design of the fault tolerant scheduler and
flight condition module, and finally, the expected reliability
of the proposed structure under various assumed component
failure probabilities. The Appendices include the code,
written in PASCAL, for the scheduler and a description of the

simulation used to test the scheduler code.

Section 2

CONCEPTS FOR FAULT TOLERANT SOFTWARE

The basic conéepts for fault-tolerant software
investigated in this study are those set forth by Prof. B.
Randell, et al, of the Computing Laboratory, University of
Newcastle upon-Tyne, U.K. (Ref. 1). The following paragraphs
contain a synoptic review of those concepts to provide a frame
of reference for subsequent discussion of their adaptation to
real-time software for aircraft control systems. For a more
complete presentation of these concepts, refer to Reference 1
and the further references contained therein. Figures 1, 2 and
3 are taken from Reference 1.

Briefly, Randell, et al, conceive a computer program
to be structured of blocks, with the blocks consisting of
alternative sequences of operations, i.e., primary and one or
more alternates. Extra information is provided to the block to
permit a determination of completion and acceptability (i.e.,
an acceptance test) of the result of a sequence, with rollback
and transfer to an alternate sequence in the event of failure
to pass the acceptance test (e.g., by exceeding a time limit to
complete or by exceeding the expected range for non-local
variables). Randell, et al, refer to this single-entry,
single-exit software element as the "recovery block". Figure 1

is a schematic representation of the simple recovery block.

[A: ensure AT

by AP : begin ;
<program text>

end

else by {AQ : begin
<program text>

end

L else error

FIG. 1 A SIMPLE RECOVERY BLOCK

["A:ensure AT_
. . by AP:begin declare Y

<program text>

(B:ensure BT

by BP:begin declare U
<program text>

;
H

| end
else by [BQ:begin declare V A

<program text>

L end

else by [BR:begin declare W
<program text>

end

else error
<program text>
L end .
else by [AQ:begin declare 2
<program text>
[C:ensure CT

by . [CP: begin

b mont gt

<program text>
end
else by [CQ:begin
' <program text>
end
£lse error
[D:ensure DT
by DP:begin
<program text>
end

else error

FIG. 2 A MORE COMPLEX RECOVERY BLOCK

Alternate sequences within a recovery block may contain, nested
within themselves, further recovery blocks as shown in

Figure 2. Noting that all software faults result from design
errors, Randell, et al, require that the alternate sequences or
components be not merely copies but independent designs, so
that there exists a reasonable likelihood that at least one of
the alternates can cope with the circumstances causing the
primary component to fail.

The acceptance test is to ensure that the operations
performed by the recovery block satisfy the program that called
the block. Hence, the acceptance test is performed by
reference to the variables accessible to the recovery block
rather than variables local to the block. Local variables can
have no effect or significance after exit from the block; but,
more important, the alternate components within the block will
probably have different sets of local variables. The program
calling the block may be capable of proceeding with any of a
number of possible results from the operations and the
acceptance test must establish that the results lie within this
range of acceptaﬁility without regard for Which_alternate
generates them.

Before entering an alternate component the process
must be rolled back or restored to the state that existed

before entry of the primary component (or preceding alternate,

if one exists). Only non-local variables, and in particular
non-local variables that have been modified by the preceding
process, have to be reset to rollback to the entry state. To
effect this automatically and thus relieve the programmer of
the error-prone task of explicit preservation of restart
information, Randell, et al, employ what is termed a "recursive
cache” to save non-local variables, just before they are
modified. This is accomplished in real time by detecting
assignments to non-local variables, and in particular by
recognizing when an assignment to a non-local variable is the
first to have been made to that variable within the current
alternate. Related cache entries are discarded as recovery
blocks are successfully completed.

To provide for recoverability under circumstances
involving processes proceeding in parallel, which at the same
time become mutually dependent by virtue of their interactions,
Randell, et al, invoke a structure which is termed a
"conversation" (see Figure 3). A recovery block that spans two
or more processes is termed a conversation. The conversation
serves to restrict progress of interacting processes in the
interest of preserving recoverability by requiring all
processes in conversation to satisfy their respective
acceptance tests before any one of the processes may proceed.
It is possible for processes to enter a conversation at

differing times; but all of the processes must leave the

10

conversation together to ensure that none héve purged their
recovery or rollback data until all have passed their
acceptance tests. Finally, for multi-level systems with
virtual machine interfaces, Randell, et al, require that the
interfaces be arranged so the higher level need not furnish
support for control or error handling of é lower level - i;e.

levels are separated by "opaque virtual machine interfaces".

X Y z
A 1
[d
E \4
Gl H
Y A

FIG. 3 PARALLEL PROCESSES WITH CONVERSATIONS
(which provide recovery blocks for local
' communication) :

11

Section 3

FAULT-TOLERANT SOFTWARE STRUCTURE FOR REAL-TIME

AIRCRAFT CONTROL SYSTEMS

Given the basic structures described in the preceding
section, the following discussion indicates how they might be
organized to implement real-time aircraft control systems. It
has been assumed that the system application involves the
implementation of various closed-loop and open-loop functions
(e.g., stability augmentation, flutter control, area naﬁigation,
energy/cruise management, automatic landing, etc.) in a
centralized digital computer. The frequency with which these
functions will have to be serviced will vary widelyAfrom one
function to'another; and for any one function, will vary .
depending upon the conditibns df flight. However, it is
presumed that these servicing requirements can be predicted and
hence scheduled in time and for the anticipated flight
conditions. _Finally, here and in the rest of this report, it is
assumed that the host computer is a multi-processor or
multi-programming uniprocessor with a fault-tolerant
architecture and recovery provisions that mask hardware
failures.

Basic Software Structure

The simple control requirements (i.e., test and

alternate routing) of the recovery block and the applicability

12

of the same general control structure to all recovery blocks is
an important attribute of the fault tolerant concept that fits
ﬁicely into a multi-programming software structure. It permits
the control features to be incorporated in the executive
software, specifically in the task scheduler, rather than being
replicated in every application block. Hence, the control
structure can conceivably be tested so exhaustively that the
likelihood of failure of this element of the software can be
ruled out. With control of the recovery block resident in the
scheduler, task synchronization and prioritization is more
readily effected.

Since this is a time-shared operation, and timely
servicing of many aircraft control functioﬁs is a necessity to
meet accuracy and stability criteria, the time required to
execute each application sequence is considered to be an
essential acceptance test criteria for all blocks. In the
fault-tolerant software structure proposed here this is
accomplished by a watchdog timer, a special register that is
initialized with the allowable time for each routine and is
counted down by the computer clock. When the register that
contains the timer quantity shows a negative value, this
indicates that the allowable execution time has been exceeded,
or, in short, that a "time-out" has occurred. Because the

watchdog timer is used to monitor all application routines, the

13

instructions for implementing this function are part of the
scheduler. The allowable time is, of course, specific for each
routine.

Finally, to complete the basic structure, it is
proposed that it include a provision for an abort return. This
is to preserve the integrity of the rest of the software in the
event all alternates of a given sequence or module fail. The
abort return is equivalent to the ERROR declaration in the
recovery block (Figure 1). Call for an abort might cause the
executive to generate an "essential task list" to substitute
for the normal task schedule as a basis for proceeding. A
diagnostic routine could be invoked to determine the period of
suspension for the failed software module. If it is the first
failure for a given module, the suspension may be lifted
immediately upon a new call to the program. On the other hand,
if repeated failures have been observed, the module may be
suspended until a manual intervention or a change in the flight
condition has taken place.

Figure 4 is a schematic representation for the basic

structure discussed above.

14

e

(Csombusm)

- /[FORMAT CALLS\ -
‘N AND .
* _SET_TIMER_

1 ermary f
oCAL L

“}- PROCESS -

“SET FLAG A
AND TIMER

1 ALTERNATE

- CALL

-~ PROCESS

< TIME OUT ===

. \EXECUTIVE] .

ABORT
EXECUTIVE

NO

* ABORT

FIG. 4 FAULT TOLERANCE FOR APPLICATION MODULES

15

Exemplary Implementation

As'an example of the implementation of fault-tolerant
software, we take an Easf/West position routine in an aircraft
navigator. This routine computes present longitude of the
aircraft for display to the pilot and for automatic guidance of
the aircraft (by comparison with a desired position determined
from the flight plan).

The East/West position program is one of a number of
applications that can be called by the scheduler. The
scheduler formats two calls for each application (to the
primary and to the alternate routine), and these preferably
involve different calling parameters. The primary E/W position
is computed from the output of an inertially stabilized
accelerometer, and the calling parameter for the primary module
is the E/W velocity (E _VEL) read by the accelerometer (an
integrating accelerometer and a fixed time interval between
readings is assumed).. The backup module computes longitude
from airspeed and compass heading, and the calling parameters
are true airspeed (TAS), true heading (HDG), and a windlspeed
correction (E_WIND) that was computed by another module from
prior inertial information. After the calling data has been
loaded into the appropriate memory locations, the watchdog
timer is set, and the transfer to the primary module is made.

The process of the primary module is essentially

NEW_LONG = PREV_LONG + (E VEL/SCALE_FACT)
where the scale factor is a function of the accelerometer
calibration and of latitude.

NEW_LONG computed by the primary module is then
subjected to an acceptance test that includes a typical
threshold criterion:

NEW_LONG > PREV_LONG + (PREV_LONG -NEXT_ PREV_LONG) - K
and

NEW_LONG < PREV_LONG + (PREV_LONG - NEXT_PREV_LONG) + K
where K represents the threshold for the test. If this test is
passed, NEW_LONG is returned to the executive, and the timer is
reset.

If the test is not passed, or a time-out is
experienced, a call tb the backup module is immediately issued,
and the previously stored backup parameters are then utilized.
Also, flag A is set and the timer is reset. The backup module
computes

GRNDSP = E WIND + TAS * SIN (HDG)

NEW _LONG = PREV_LONG + (GRNDSP/SCALE_FACT2)
where a new scale factor is utilized. The resulting NEW_LONG
is subject "'to the previously stated acceptance test, although
in some applications a different value of K might be used to
allow for discontinuities due to changing from one program to
another. 1If the acceptance test is passed, NEW_LONG is passed

to the executive and inserted in the data base.

17

The remainder of the navigation program then executes
in a manner completely independent of difficulties encountered
in the E/W position routine. It is indeed essential for a
manageable control structure that one alternate program path is
not dependent on execution of alternate program paths for any
other application routines.

For monitoring purposes, the fact that the backup
module has been invoked is visible in the state of flag A.
This flag is also essential to prevent continued looping in
case a time-out is incurred during execution of the backup
module.

Independent Design for Alternate Components

To gain maximum benefit from the redundancy inherent
in the recovery block concept it is desirable that the primary
and the alternate routines be as independent of each other as
possible. Aircraft control systems offer many opportunities
for computing control inputs for a given function in several
ways, e.g., the vaw steering command may be computed from a
rate gyro signal or from a compass signal. This permits
independent specifications to be written for the two (or more)
routines that are utilized in a recovery block, provides
independent data sources, and greatly reduces the possibility

that both routines will fail at the same time.

18

Acceptance Tests

The acceptance test, which is an essential feature of
the recovery block, can for many aircraft control functions be
rather simply implemented by comparing present and previous
values of the computed quantity. Previous values would be
automatically available in the "recursive data cache". The
laws of physical continﬁity require that the difference between
successive results be small, and when the difference exceeds a

specified level this indicates failure.

Current avionics computers frequently have hardware
"traps for continuous monitoring of overflow or underflow, use
of illegal operation codes, and accessing unauthorized memory
areas. All of these provisions can be organized to detect
deviation of a computer program from expected performance.
They are currently utilized to halt or abort processsing, but
they can obviously be used as acceptance test inputs in the
fault-tolerant software structure. Hardware provisions for
those tests are therefore identified as computer architecture
features that enhance the capabilities of software fault
tolerance.

Many aircraft control functions require that results
of a computation not only be correct, but that they be supplied

in a timely manner so as to meet the accuracy and stability

19

criteria of the control system. For this reason it is
essehtial to include, as an acceptance test, a test for timing
of the program execution. In the fault-tolerant software
structure proposed here this is accomplished by a watchdog
timer, a speciai register* that is initialized with the
allowable time for each routine and is counted down by the
computer clock. Provision for a watchdog timer register,
preferably with hardware real-time clock decrement, is another
architecture feature that is desirable for software fault
tolerance.

Figure 5 shows more detail of a primary application
module. This expansion is intended to illustrate a number of
optional acceptance test implementations, consisting of a
serieé of separate tests for correctness of the call procedure,
input operations, and processing. Overflow, underflow, and
other hardware-implemented tests may also be incorporated.
Although the actual test structure is more complex than thét
shown in Figure 4, it has a single YES and a single NO exit and

is a logical replacement for the simpler structure.

*The watchdog timer function can also be implemented in
software, in which case a memory location is used instead of
the register. The execution time penalty may make this a less
desirable alternative.

20

PRIMARY CALL

CALL NO e TO ALTERNATE

%1 | NTEST § cau
YES '
"INPUT DATA |
o > OPTIONAL
NS e
i INPUT g
Y& 1 sackup pata | E
| |

- 1
PROCESS Lo e e :
oUTPUT \\NO i

TEST

RESET TIMER
NORMAL RETURN

FIG 5 INTERNAL STRUCTURE FOR PRIMARY
APPLICATION MODULE

21

The reason for the separation of the test blocks is
that certain error-prone operations (primarily transfers and
data inputs) should be checked at the earliest possible time,
both because the test can be more sensitive at that point and
to prevent contamination of other program quantities. These
tests sometimes are incorporated in the current practices for
very critical software projects and are termed "defensive
programming”. The significant feature of the fault-tolerant
software concept is that the error exit from all tests goes to
the alternate call, thus resulting in a simple and uniformly
applicable control structure.

A variant of this general rule is shown in the
optional backup data sequence in Figure 5. Use of this
structure may be desirable where the primary data input is
undependable or intermittent, and where a source of backup data
is readily available (e.g., primary input data from the
previous cycle). It should be observed that, here again, the
primary data test and backup data test can be collapsed into a
structure having a single YES and a single NO exit. The
resulting structure corresponds to a recovery block withiﬁ a
recovery block, as illustrated in Figure 2. If the backup data
sequence is not to be used, the NO exit from the first data
test will continue directly to the alternate call.

The purpose of the call test is to determine that the

correct module has been reached and that calling parameters

have been passed correctly. A suitable implementation is that
the executive, in formatting the call, creates a checksum over
the called address and the calling parameters. In the called
module itself are stored (in a different memory location) its
starting address and the locations where the callng parameters
are expected. Checksumming over these locations, and
comparison with the checksum received as part of the call,
concludes the call test. Where the computer hardware provides
extensive error-detection capability for memory access and
readout, the call test may not be required.

The data test can address correctness of transmission,
correctness of content, or both. To determine correctness of
transmission any one of a number of error-detecting codes can
be utilized, and some of these can be retained as an aid to
fault diagnosis (primarily hardware-oriented) in further
processing. Checksums over blocks of data are, of course, also
possible. To determine correctness of data content, the data
type can be checked, and increment tests can be performed.

The output test can employ the correctness features
mentioned above, or explore correlation between input and
output data. Where the application module serves as part of a
closed-loop control system, the special properties of such
systems (e.g., expected smoothness of control) should be
incorporated in the output test. Selective verification of

program assertions may also be employed in this test

23

(Ref. 6). If direct output to aircraft controls is to be
furnished by an application routine, then this should be
accomplished after successfully passing the output test and
before returning to the executive.

Degraded Recovery Block

The additional resources, both for software
development and computing hardware, to implement all functions
in the recovery block structure may not be warranted. 1In
practice, applications software is likely to consist of a mix
of single-string modules and recovery block modules. However,
to prevent hang-up of the entire computer due to faults in the
single-string modules, some partial fault tolerance provisions
are required even in the single-string modules. Thus, a
"degraded" recovery block structure without backup alternate
;outines is defined for those functions that are not so
critical as to warrant the redundancy provided by the full
recovery block. The degraded recovery block would employ the
watchdog timer and monitoring of hardware error flags as
acceptance test criteria. 1In the event of failure an abort
return would be called. 1In this way, results derived from, for
example, overflow conditions can be prevented from entering the
system, as well as infinite looping or other failures that
would absorb excessive computer time.

Scheduler and Flight Condition Module

The overall design of the fault-tolerant software

24

must also provide for a scheduler and for a flight-condition
module. The scheduler ensures that tasks are accessed in a
proper sequence and that all tasks assigned to a specific time
period are properly executed. The requirement to access
certain tasks depends on flight condition (e.g., automatic
landing tasks need not be serviced during the cruise mode) and,
therefore, a module that determines flight condition must also
be provided. Flight condition is also an essential input in
determining acceptance test criteria such as allowable surface
deflection, and limits on rates of climb and descent, etc.
Both the scheduler and the flight-condition module are
essential for the operation of the overall software system and
must therefore be treated as flight-critical functions and
coded as recovery blocks.

Fault-Tolerant Aircraft Control Software

From these considerations an overall structure for
fault-tolerant aircraft control software emerges that is shown
in Figure 6. The scheduler, flight—cohdition module, and those
flight-critical (criticality category 1) applications listed in
Table 1, Section 4, will need to be structured as recovery
blocks with at least one alternate program. Software for all
other functions can be structured as degraded recovery blocks
with just a primary program (the originally intended one) and
minimal acceptance tests that detect overrun of the watchdog

timer or violation of some of the computer hardware-monitored

25

SCHEDULER

PRIMARY | ALTERNATE

—] [
[1l
FLIGHT CONDITION FAULT-TOLERANT NON-FAULT-

MODULE ' ~ APPLICATIONS TOLERANT

!y APPLICATIONS

| PRIMARY | ALTERNATE PRIMARY | ALTERNATE

FUNCTIONS , ALL OTHER FUNCTIONS
Attitude Control and (See Table 1, Section 4)

' Stability Augmentation

; Flutter Control

Automatic Landing
Attitude Director Indicator

System Monitoring
Management”

Life Support Monitoring
Management*

Engine Systems Control®

*Implemé'nted in a fault-tolerant structure if determined to be
flight-critical (See Table 1, Section 4, and Reference 2)

FIG. 6 STRUCTURE FOR FAULT-TOLERANT AIRCRAFT
‘ CONTROL SOFTWARE

26

constraints. Upon failure of the acceptance test the program

is simply not executed and a warning message is displayed to

the crew.

Critical Function Backup

Conceptually, an additional reliability improvement
can be obtained by backing up the fault-tolerant computer and
software for the critical aircraft control functions with a
separate simplex computer executing the simplest possible
coding of the required software. A block diagram of such an
arrangement is shown in Figure 7. Switching to the simplex
computer brings entirely different software into play and
removes any unexpected hardware-software interactions that may
have contributed to failure of the fault-tolerant software.
Because the entire computing environment is being changed the

probability of correlated failures is very small.

27

FAULT-TOLERANT
‘ COMPUTER
FAULT-TOLERANT)
'SOFTWARE _, NON-CRITICAL
SYSTEM FUNCTIONS
(all functions) | '
R CRITICAL
| FUNCTIONS
|
S IMPLEX |
COMPUTER ,
~ CRITICAL |
FUNCTION o
SOFTWARE PILOT
"FIG. 7 CRITICAL FUNCTION BACKUP
| o
1

28

Section 4

RESOURCE REQUIREMENTS FOR FAULT-TOLERANT SOFTWARE

The fault-tolerance provisions described in the
preceding section involve the expenditure of additional
resources over and above those normally required for both the.
software development and the operation of an airborne
computer. The most obvious penalty compared to conventional
software is that two routines have to be coded and stored where
previously only a single one was required. Further, an
acceptance test has to be added for each recovery block, and
this involves additional code that has to be developed, stored,
and executed. If the entire aircraft control software were to
be coded as recovery blocks the development budget would have
to be more thén doubled. Moreover, memory requirements for the
computer on which this software is to execute would be
increased by a like factor, and execution time would be
increased due to the running of the acceptance tests every time
a recovery module is exited. Since the computers on wﬁich this
software is expected to execute employ redundant implementation
of memory and processors, it was assumed that gross expansion
of the memory and processing requirements to accommodatg the
_entire software in the form of recovery blocks would not be
acceptable. Therefore, it was decided to restrict the recovery
block format to those modules that are assumed to be critical

to safe flight and landing of the aircraft. The

29

classification of aircraft control software by function,
criticality, and computer resource requirements as prepared by
Stanford Research Institute (Ref. 2) was used as a reference to
determine which functions to implement in this manner.
Essential data from the SRI reference (contained in
their Tables 2 and 3) are, with minor editing, reproduced in
Table 1. An explanation of the criticality levels assigned by
Stanford Research Institute (SRI) is shown in Table 2. Only
functions at criticality level 1 or 2 were considered forv
implementation in the full recovery block treatment outlined in
the preceding séction. Moreover, some deletions seem possible
even from that restricted set of functions. For example, the
inertial navigation function (No. 8) has functional backup
through Functions 9 or 10, except for over-ocean flight.
Furthermore, assuming successful development of the NAVSTAR
Global Positioning System, it seems that complete backup for
inertial navigation will be available in the post-1980 time
frame. Under these assumptions, complete fault-tolerant
software treatment for this function might not be necessary.
Because of the uncertainty in the criticality of several of the
support systems it was concluded that it would be premature to

make a firm decision on their treatment with regard to

_fault-tolerant software. For the engine control system a major

portion of the code is believed to be concerned with economy of

operation and only a rather minor part is truly critical

30

!

€0 0¢S i UoriedtunuuIod yep hwm_uczokm\g«#\ 02 m
8°7 087 i -- uoTiBaTUNWIIoON ejyep (jeul vHCC jjeadary 61 |
[0Ge + 2OUBPLOA®R UOISI{0D) gt '
|
DLV fuorzediunwiwio)d
. 019 _v
- 002 t ‘Buryarns Bor-jydiy ‘Butung srjRwoIMy L1
9L 0FY t Lerdsip 3¥aL 91 |
821 063 t Lerdsip sorydern ST __
9g 09¢ + apnie ‘paadsaty P10
0t 0st + A..::OLCOV rIiep qr_umc. passadoid’ [} ‘
i 07 ¥ {a3(1) urwies]) uorjruLquoD [ewnidQ AR
011 t BIRP ATV o8
(edawo “INA
- 00F N spdpinuu) vonedtaey oTPERE 3JBUIINY ot}
LT . 052 i JING/FOA 6 |
S ¢l 0012 A Terizauy 8
- Sl ¥ (*210 ‘uorioa1ds apow) Jostaladng Lo
SUOTIOUN] PAIRIAY] PUR UOIIRITABN 'I1Y
7
805 . . Db T I0)BIIHUT 10J02aTP 2pNITlje dTUod3daq 9 w
- 0S1 + [oajuon yred judy ae i S .
0°22 0l 1 i . Suipuer srirw oy !
a‘g Gt G 10 ¢ Jodluod pROL J9ANAUBW JSTT 2ATIDY [_
9°L2 0L 1 1017U0D 123IN]] 9ATIDY z !
{uorzruawdne !
66 : SHYT i A31qeis Yatm) (oaquod apnimge 1ensig T
[013u0D Yied IYIid pue SpnITNY
B !
(0as/sdp aat1E12Y) (spiom) L31eonta) uonidrinsaq .oZ,_
ibey *jboy a8e1018 uorjoun g
Burwiiy, uorIdnI3sul T

SINIWNIYINCHIY TYNOILVINAWOD TOYILNOD 1AVIDYEIV IO me%A/wZ&«.

] AI1dVL

!

|
|
|
)
f
[l

31

_
:
V

2 ®duU2I2y9Y ut ¢ pue g sd[qel wodj pajdisoxy

g*21e . S0€91 . TV1ioLl
_ _
S°L¥ 00¢€T 2011 uorjeaado pue [0I1ju0d swaIshks aurduy 52 W
Juswadeurw '
S0 006 ¥ 03 1 pue Surlojtuow waisLs jaoddns sy yz !
§°0 006 LACEN juswaSeuew pue Surrojruow walsAg Y
9°g 0081 . 14 Suraojtuow juswnajsug zz |
9°0 099 G wislsAs vjep pajei8aur 3JRIDITY 12 !

SWIa3IsAG 31 oam“sm

(995/8dQ aa13812Y) (spiom) Ajrred13tan uonpdransaq ‘ON |
ibay *3bay a8r1031g : uorjoun g
Sutwiry, uor}donaIsuy ,

'
[E—
!

(penuT3u0d) SINIWIAHINOTYE TVNOILVIAINOD TOMINOD/LAVIDYIV A0 SISATVNV

i
b
'

1 ATdVL

32

TABLE 2

EXPLANATION OF CRITICALITY LEVELS

Criticality
Level Effect of Failure
1 Immediately affects

safety of flight

May affect safety of
flight at a future
time

Change in mission
required to avoid
safety degradation

Imposes substantial
operational penalties

Produces economic loss
only

33

Example

Stability augmentation
for inherently
unstable aircraft

Altitude or airspeed
display

Gust alleviation
failure requiring
airspeed limitation

Navigation or communi-
cation failure '

Failure of engine trim
control

to safety; therefore, this system too has been deleted from the
critical functions as far as estimating the requirements for
fault-tolerant software is concerned.

To estimate the storage and timing requirements for
the fault-tolerant software, it was assuméd that the backup
program in each recovery block would have the same number of
instructions as the primary program identified by SRI and that
acceptance tests will require 15 percent of the instructions of
a primary program. It was also assumed that all less critical
applications would be coded as "degraded" recovery blocks. 1In
addition to the regular code this will require three
instructions for setting up the watchdog timer and monitoring
of hardware error flags. Instructions required by acceptance
tests will have to be executed every time a module is called,
but instructions for backup programs will not ordinarily have
to be executed and thus will not affect the timing requirement.

As shown in Table 3, it is estimated that the use of
full recovery blocks for the reduced set of functions and of
degraded recovery blocks for the remaining functions will
require an increase in the storage requirements of
approximately 30 percent, but the impact on program execution
speed is estimated to be negligible. These estimates may be
~unduly pessimistic because some of the reasonableness tests ' _

incorporated in the formal acceptance test of a recovery block

34

€0 £°0 €56 065 4
g2 82 €82 0872 -
S8 $'8 €56 065 ¥

- - €02 002 4
9L 9L £%9 0¥F9 ¥
821 821 €68 068 ¥
9°¢ 9 £9¢ 09¢ ¥
011 0°11 €s¥ 0S¥ F
A A €62 052 ¥

- - €Tt ot 14

- - ¢0¥ " o0% ¥
Lt Lt . £62 052 F
Gl g'el €012 0012 2

- - 8L Sl 4
0°9¢ 8°0¢ $281 06L I

- - €St 051 ¥
0°92 022 2¢L1 05L 1
9°§ 9°g g¥ G¥ g I0¢
0°2¢ 9°Le 891 0L 1
02t 6°6 152% Sb81 1

oI yned _[euisizQ 101 30 [euldlI0 AEd1IID
(555/8d0 2A17E(oH) (SpIom)
juwdwdaInbay Suwituny | jusweainbay a8eaog

uoljeEdlunuLoD eIep Jte/puncid/ Iy 62
uotjeost

SuntuuIod ejep (feulajul) 3jeIdIly 61

3JUBPlOA® UODISIIOD 81

DLV ‘uoljedlunuwIuioc)

*219 ‘Fuiyniims

da1=1y8117 ‘Suluny syewogny VA |
Aepdsip yxa] : 91
Aeidsip soydean .61
spniye ‘pasdsity I I
(91noaua) eyep 1ydi[y pessedolyg €1

(1231y ,_
uBtU{Ed]) uoijeuiquios (ewydo 21
elEp Ily R

(e8awo ‘N °1drinu)

uoyediaeu O1pEI 23RUIIIY 01
AWA/¥0A . b
renrauy -8
(*232 ‘uondayas spow) iosiazadng L

suo1jdung pajeiay] pue uoliefiaeN eedvy

10jedtipul

I0309211p 9PN DTUOIIDA[T

lo13uo0d yjed 1y3tyy I19Y3Q

Sulpue| s1jRlUOINY

]0IJU0D PBO] I9ANSUBLE ISt 3A130Y

[OIJUOD XI33IN|] 2A1DY
(uoyejuswdne Ajipiqess

Uitam) 1013ucd anpip® jentfug I

[SNECATRS N Te TRt e]

1013060 (3ed B PUE spmify

uondiiosa(~oN

_ uooun g

B TR

SINFWIYINDITY NOILVINJWNOD NO SNOISIAO¥Yd INVIHTOL-LTINVI JO Hoﬂmzw

¢ dATdVL

35

2°822 §°212 88802
S LY S'Ly €0¢et
S'0 S0 €06
] S°0 . £06
970 9°s €081
9°0 9°0 €99 -

§0¢e91

00¢l

006
006
0081
059

i
I
“
7 ®7U9I97ay Ul ¢ Pue 7 sajqe] 293§
: ,

uoijexado
pue [oIjuod swajshs aurduy

juawe §euewr pue
Suirojiuowr wa}shs jxoddans ajig
juswefeuew pue Fuirojluowr walsg
fulr0jIUOW JUIUINIFSUT

wn <

|
,_

e
*

i

TV 1OL

S¢

$?
) €2
! 22
i 12

wajsks ejep pajer8ajut jyerdaly

uondiiossg

101 3ned [euiduiQ

101 3ned (edidiip
sk

(355/8d0 2anE[PY) (spIom)
juswarinbay Surwry, juswralinbay aldeaolg

LESYTEIEIEIS)

€ FTIAVL

swa1sAg 3r0ddng
1

'

I .o.Z

pououn g

36

may be included anyway as a defensive programming technique for
any critical software program. Also, because the alternate
program segments of the recovery block frequently make use of
sensor data that have to be processed in any case, the code
length for these may not in all cases be quite as long as the
primary segment;

In addition to the application functions defined in
Tables 1 and 3, the overall design of the fault-tolerant
software must also provide for a scheduler and for a
flight-condition module. The impact of these additional
fﬁnctions on storage and timing requirements should be quite
small. 1It is éstimated that the scheduler and flight-condition
module together may comprise 200 primary instructions; the
iteration rate for the scheduler is assumed to be five per

second, and that for the flight-condition module one per second.

37

Section 5

A FAULT-TOLERANT SCHEDULER AND FLIGHT CONDITION MODULE

The scheduler is a very essential component of the
overall fault-tolerant software system. The scheduler ensures
that tasks are accessed in a proper sequence and that all tasks
assigned to a specific time period are properly executed. The
requirement to access certain tasks depends on flight condition
(e.g., automatic landing tasks need not be serviced during the
cruise mode) and, therefore, a module that determines flight
condition must also be provided. Flight condition is also an
essential input for acceptance tests sﬁch as determining
allowable surface deflection, and limits on rates of climb and
descent, etc. Both the scheduler and the flight-condition
module are essential for the operation of the overall software
system and must therefore be treated as critical items and
coded as recovery blocks.

For some tasks, all data requiréd for the computation
may be available within the computer or can be accessed from
peripherals whenever necessary. These tasks can always be
executed in a fixed order. There are, however, other
applications in which instruments furnish outputs at irregular
freguencies or in which communications are necessarily
asynchronous, e.g., the ground communica££6h;-£é;; (;unétioﬂgri
19 and 20 in Table 1). To service these applications it is

necessary that a data buffer be set up (either in the computer

38

memory or in the peripheral éevice), and that a "data-ready
flag" (a logical quantity) be set "true" whenever new data are
furnished and set "false" whenever the data have been read.

Also, because the time taken to complete certain tasks
(particularly those involving asynchronous communications)
cannot always be predicted, it may be necessary to assign
priorities to certain routines in order to make sure that they
are carried out at least as often as is required to maintain
safe control of the aircraft. Thus, to be able to service the
general spectrum of aircraft control tasks the scheduler must
be capable of coping with asynchronous data transfer and to
recognize various task priorities.

The design of the primary routine for the
fault-tolerant scheduler was therefore governed by the
following requirements:

1. There must exist the ability to transfer data from
peripheral devices without action of the scheduler or
of application modules.

2, The transfer of such data will include the setting of
a ready flag and accessing by the computer of these
data will be accompanied by resetting of the ready
flag.

3. _No process wi l}; be interrupted during its operation.

4. The scheduler will give control to the highest

priority process that has a current ready flag.

39

The principal fault-tolerance provisions that must be

incorporated in the primary scheduler routine are
1. It must detect if an application module does not
return within a prescribed interval (the watchdog
timer function described.in Section 3), and
2. It must recognize when it hangs up (it must perform
its own acceptance test).

The key to the scheduler design is to organize
aircraft control tasks on a cyclical basis, with the major
cycle being perhaps on the order of 0.5 to 1 second. The major
cycle is identified as the interval during which each task
should be serviced at least once. The end of a major cycle is
identified by a clock pulse derived from computer hardware (and
itself considered fault tolerant in the present context). If
the scheduler has operated correctly each process should then
have been accessed at least once, and this action can be made
visible by incorporating "serviced flags" at the beginning of
each task. Right after the occurrence of the major clock pulse
these flags are interrogated, and the appearance of a
non-serviced state indicates a fault in the primary scheduler
routine. If they are all in the serviced state, however, they
are reset to the non-serviced state, and the new major cycle
servicing begins. - .. . _ . _

The requirements discussed so far have been in-

corporated in the primary scheduler design shown in Figure 8.

RESET
FLAGS AND
MAJOR CYCLE
TIMER

SELECT
NEXT
PROCESS

SET UP FOR
PRIMARY &
ALTERNATE
PROCESSES

TGO MUCH YES *
TIME IN ALTERNATE
SELECTION SCHEDULER

PRIMARY *
PROCESS ALTERNATE
PROCESS

ACCEPTANCE
TESTS
PASSED

NO

JESTS
PASSED

YES YES

ACCEPTANCE

MAJOR
CYCLE TIME
up

ALL #
FUNCTIONS ALTERNATE
SERVICED SCHEDULER

FI

41

b L et o 50 L P B b e e ST

ABORT
EXECUTIVE

G. 8 PRIMARY SCHEDULER

Because the most likely place at which the scheduler could
malfunction is in the selection of the next task, a separate
test based on time in selection has also been incorporated in
the design. If too much time is spent in selection, the
alternate scheduler is accessed. This feature is optional. A
PASCAL version of this scheduler is contained in Appendix 2.

The functional implementation for the backup
scheduler is deliberately kept as different as possible from
the primary one. An example of how this can be accomplished is
shown in Table 4, where the implementation of the scheduler
functions in the primary and backup schedulers are compared. A
flow chart of the alternate scheduler that embodies these
functions is shown in Figure 9.

When the backup scheduler is invoked it is intended
that servicing of all non-critical functions be deferred.
Because all functions then remaining are critical, it is not
necessary to have a priority structure and a fixed order of

service can be implemented. The processes identified as

criticality level 1 or 2 in Table 1 do not depend on
asynchronous data transfer and, for this reason, it is also
believéd that the data-ready test can be avoided in the backup
scheduler. At the end of each major loop the primary scheduler
_checks for servicing of all processes in order to make a

decision whether to resume its own scheduling or to transfer

42

TABLE 4

COMPARISON OF PRIMARY AND BACKUP
SCHEDULER IMPLEMENTATION

Function A Primary Backup

Processes scheduled All ' Critical only
Order of service Priority with data- Fixed
ready test
End of major loop Checks for service Transfer to its
f all processes start "
.Transfer to other For test only Periodically

43

——— - .~

SET
CRITICAL
ONLY FLAG

RESET
BACKUP
CYCLE
COUNTER

RESET
MAJOR
CYCLE

COUNTER

SELECT
NEXT
CRITICAL
PROCESS

SETUP FOR
PRIMARY &
ALTERNATE
PROCESSES

*

PRIMARY
PROCESS

1

*

ALTERNATE
PROCESS

NO

YES

*

ABORT

EXECUTIVE {.

CYCLE TIME
up

BACKUP
CYCLES
EXCEEDED

YES Y| pRIMARY
| scHebuiEr

FIG. 9 ALTERNATE SCHEDULER _

44

to the alternate scheduler. Such a decision is not appropriate
for the backup routine, and it simply transfers to its own
start at the end of every major cycle.

Because the primary scheduler represents thoroughly
checked out software that has been performing adequately until
just prior to the transfer to the backup, it is presumed that
the transfer was most probably due to the occurrence of an
unusual event that is not likely to be of a permanent nature.
Because the operation of the backup scheduler exposes the
aircraft to a less satisfactory environment (servicing of
non-critical processes has been suspended) it is desirable to
attempt periodic transfers back to the primary scheduler to
restore normal operation. Thus, the backup scheduler will
periodically transfer to the primary module, and only upon
unsatisfactory operation of a major cycle on the primary
scheduler will the operation of the backup scheduler then be

resumed. The suspension of service to non-critical functions

~_will have to be signaled to the crew. It may also be desirable

to permit manual switching to the backup executive in case of
unsatisfactory operation of the aircraft control system that
goes somehow undetected by the acceptance tests.

The total fault-tolerant scheduling system then
consists of the primary and the alternate scheduler connected

as shown in Figure 10. Operation commences in the primary

45

PRIMARY »
SCHEDULER

APPLICATION
SELECTION
(prioritized)

EXECUTE
NEXT
PROCESS

MAJOR
CYCLE TIME

PROCESSES
EXECUTED

FI1qG,

10

.
ABORT
EXECUTIVE

ALTERNATE
SCHEDULER

ALTERNATE
SCHEDULER /

APPLICATION
SELECTION
(fixed)

EXECUTE
NEXT
CRITICAL

PROCESS

MAJOR
CYCLE TIME

CYCLES
EXCEEDED

FAULT-TOLERANT SCHEDULERS

46

%

ABORT
EXECUTIVE

PRIMARY
SCHEDULER

scheduler mode and it will remain in that mode unless one of
the following two events occurs: an individual process does
not execute, or all processes are not executed within a major
cycle time.

That an individual process does not execute means the
routine did not pass the acceptance test within the allowed
time. This event results in the abort return indicated in
Figure 4. The event that all processes have not been executed
within a major cycle has already been discussed as the
principal accéptance test for the operation of the primary
scheduler. 1If this test is not passed there is, therefore, a
need to invoke the alternate scheduler.

The operation of the alternate scheduler follows that
described previously until the predetermined number of backup
cycles are exceeded, and then automatic switchback to the
primary scheduler will take piace.

The fault-tolerant scheduler outlined here provides

protection against hangup due to failure in any application

module (through the watchdog timer), hangup due to failures in
the primary scheduler (by monitoring for execution of all
processes at major cycle time), and against correlated failures
of primary and alternate schedulers by an independent

specification and implementation technique. The system was

47

described here in operation against a priority-oriented task
list. It is, however, quite flexible, and its operation
against a major-minor-cycle-oriented task list will now be
discussed with reference to Figure 11.

The frequency with which the various automatic
control processes aboard an aircraft need to be serviced by the
computer varies considerably; For this reason a common
procedure for structuring the servicing is to divide the
processes into a hierarchy of major and minor timing cycles, as
illustrated in Figure 11, where a major cycle is divided into
two intermediate cycles which, in turn, are divided into two
minor cycle segments. The number of layers (here major,
intermediate, minor) and the number of lower layer cycles
represented by an upper layer (here given as two) can, of
course, vary quite a bit. All tasks need Eo be serviced once
during the cycle to whicﬁ they are assigned, i.e., once per
major, intermediate, or minor cycle. One way of accomplishing

_ _ ___this is by the _allocation_shown _in Figure 11. At _the __

beginning of each minor cycle, e.g., between events 0 and 1, 2
and 3, 5 and 6, and 7 and 8, the minor cycle tasks are
serviced. In the remainder of the minor cycle time, e.g.,
between events 1 and 2, 3 and 4, 6 and 7, and 8 and 9, the

. .. _ _ intermediate cycle. tasks are accomplished, and if any time is
left over in the minor cycle, e.g., between events 4 and 5, and

9 and 10, then the major cycle tasks are addressed. The

48

ONITAAIHOS ATOAD YONIW-YOLVIN 1T "DI

TIDAD HOrVW

1 : B |
— “ _
¢ JTOAD ALVIAIWHIALNI T 310A0 31VIAIWYILNI
= “ .
— f
? J10AD w_oz_E_ € J10A0 YONIW ¢ 310AD N_o_n/_:z‘ T 310A0 ¥ONIW
- “ “ — —
| | _
_ | | | _ | | | | |
01 - 6 -8 L 9 G 1 ¢ VA 0

"SON IN3A3

49

_intermediate cycle (e.g., at event 5). At the beginning of

program must be designed so that all major cycle tasks can be
accomplished under the worst condition within one major cycle,
and the process can be repeated over again. As shown in Figure
11, there is indeed idle time between event 10 and the end of
the major cycle.

The scheduling required in Figure 11 can be handled
by the primary scheduler in the following manner. All minor
cycle tasks are assigned priority 1, intermediate cycle tasks
priority 2, and major cycle tasks priority 3, with priority l‘
being the highest. Data-ready flags are set "true" for all
tasks at the beginning of the major cycle. (The scheduling
shown in Figure 11 inherently assumes that tasks can call
data.) Data-ready flags for the minor cycle tasks will be set
false upon execution of these tasks and can then be set true
again at the beginning of each minor cycle, e.g., at events 2,
5, and 7 in Figure 11. Similarly, the data-ready flags for
intermediate tasks can be reset at the beginning of the
each new cycle (minor, intermediate, and major) a signal
transition is assumed to occur in the computer hardware, and
this transition can then be selected to reset the flag

registers as outlined above. The scheduling of the same tasks

by the backup scheduler would require preparation of a task

list that interleaves critical minor, intermediate, and major

cycle tasks with, if necessary, some wait times in between

50

to assure proper operation. The critical tasks should occupy
only a fraction of the major cycle, so there is no danger of an
overlap situation (insufficient time to finish all required
processes).

The flight condition module is a function closely
associated with the scheduler. It is assumed that flight
conditions are sensed §rimarily in terms of horizontal and
vertical velocities, e.g., cruise condition is identified with
having reached a specified airspeed. It is also assumed that
there are at least two completely independent sensor systems
for horizontal velocity, e.g. inertial and air data, and three
for vertical velocity, e.g. inertial, air data, and radar; and
that each sensing system is itself sufficiently reliable (or
redundant) that the sensor systems will furnish a valid input
to the flight condition module through algorithms not
specifically considered here.

Because several significant uses of flight condition

————— —information_involve aerodynamic

c effects (e.g., limitations on

control surface travel), it appeared natural to select true
airspeed (an output of the air data computer) as the input to
the primary routine and velocity information from the inertial
navigatioh system as an input to the alternate routine. For
=~ -~ - - - operation in proximity to the ground (i.e., initial climb,
descent, and ground operation), altitude and rate-of-climb

information derived from radar altimeter data are used as

51

inputs to the primary routine, and are derived from air data
signals for inputs to the alternate routine.

An example of the resulting signal selection is shown
in Table 5. Alphanumeric symbols represent velocity and
altitude points for transition from one flight condition to
another. Numerical values for these transitions can be
tailored to the specific mission (e.g., takeoff weight, runway

altitude, and temperature at origin or destination).

a

52

(umop = sdery) v

(FsY pue ¢sy uaamiaq
poaoads [ejuoziioy
10jedtaeU [BL}IDUT)

(romodquuiid >
a11r0aYy]) v (utdlew
F o peads jeonaaa
rojediaru [B13I9U])

7284 pue sy uaamjiaq
paads 1ejuoziioy
I03e31ABU [BTIIDUT

18y 5> poads (eiuoziioy
103ed1ARU [RIIIDUT

159 L
asoueydadoy

*(ana3 2q ISNW SUOTIIPUOD yjoq) ,pue,, (ed1dof mw:mmwuawh Vv [oquuAs

IsA >
paoads at1e (BO1II9A
1aindwod e1ep JIy

75y
< poaads jerjucziaOy
1ojefiaeu JenLAU]

25®} pue .ﬁ.mm; uaamiaq
poads ate snajl
19indwiod eiep 11y

I[s®e) > paads Ja1e anuag
Janduwrod ejep A1y

pasn ered ndug

2s®)
> poads ate anay
Jaindwoo eijep a1y

(1amodqurtd >
at0ayl) v(utBaew F
= Ui Jo ajed
aanduwod eyep aly)

(2e > apnitj[e aeped)
v (passaadiuod jou
sogio aead duipuer)

passardwod
soalo 1esd Julpuery

NN
soueidadoy

|
_

1 >

aYyl :JIILON
)
,.
To?oau:o”.umw_u > .
ap0yd) v (0 > paads .
1221124 depey) juadsa(g
* |
_ i
7se) < paads aie snay !
som¢hiuod eyep ity sstnan
_ o
| (temodqurrpd !
* < ?[1304y3)
| V(g < poads '
[edon194a aepey) quriD
|
_‘m_u:ﬁ.:m aepey punoIn
|
posn eyeq ndur posusg
uoiIpuc)

2UTIN0Y UOTIIPUOY) IYSI[J 23RUIDIY

sumnoy uol3puo) IS J AlBUWIg

FTNTOW NOILIANOD LHODITA YOI ZOH,H.O<.MH,LZH YOSNJS

§ U1dVL

53

Section 6

RELIABILITY OF FAULT TOLERANT SOFTWARE

The purpose of fault-tolerant software is to enhance
the reliability over that obtainable from thoroughly
checked-out single-string software. This section addresses
modeling of fault-tolerant software such that the reliability
improvement can be conceptually demonstrated and, given
suitable input parameters, numerically assessed. It would be
desirable to supply parameters for this model and then to use
it to guide the development of the fault-tolerant software.
There are at present no authoritative estimates‘of the
reliability of real-time operational software and none at all
for the residual failure probability after fault tolerance (the
probability of undetected or correlated failures). A
ﬁarametric approach is therefore taken in which a wide range of
software failure probabilities and of the residual failure
probabilities is input to the model.

The transition model shown in Flgure 12 has been

devised to be representative of the failure processes that can
be expected in typical real-time software applications.
Starting at state 1, when the primary software module executes
correctly, the allowed transitions during some arbitrary

interval* are the following:

* For the numerical results to be derived from this diagram

to be valid, it is required that the probability of more
than one trans1tlon to state 4 dQuring the selected time
interval (failure) be negligibly small.

54

INILNOY NOILVOITddV NV 904 TAAOW NOILISNVYL

AVIO dNMXdvE .

NTV4 INILNOY
NO1LYJ11ddV -

(v'2) vizn) ALy =4
TNTIV4 40 LNIA3

21 ‘DI

AVIO TUYMLAO0S
AYVYWId

(3103130 [NV

_
|
_
_
|
*
|
!
!

_
!
|
!
|
‘
,
|
|
|
,
|

55

Primary software continues to execute correctly (path
l,l) L

Primary software fails and the failure is detected (path
1,2).

Primary software fails and the failure is not detected
(path 1,4).

In the first case, the process will definitely not cause system
failure during the selected interval, and in the third case it
definitely will cause system failure. For the case when
failure is detected, it has been found convenient to show
transition to a pseudostate 2, from which an immediate further
transition to either state 3 or state 4 will result. The
transition to state 3 represents the case where the backup
routine performs satisfactorily for at least one pass of the
application program (i.e., the acceptance test is
satisfactorily completed). The transition 2,4 represents the
case where a failure has been detected, but where the backup
‘routine does not satisfactorily complete the acceptance test.
It is assumed that the probability that this will occur due to
independent failures in the primary and backup routines_is
extremely low, but correlated failures, e.g., those due to
environmental effects or unforeseen hardware/software
interactions, can by no means be ruled out. The transition 2,4
therefore models the event of correlated failure in the primary

and backup routines.

56

If the failure of the primary routine is of a
transient nature and if the backup routine has performed
satisfactorily, the executive will cause reversion to the
primary routine upon the next call to the application module,
as modeled by transition 3,1. If the failure of the primary
routine is of a more permanent nature, diagnostics may reverse
the roles of primary and secondary modules and calls to this
application will immediately bring the backup routine into
operation. Note that all of this is conditioned on the backup
routine having performed satisfactorily at least once after
failure of the primary one. Any further failure of the backup
routine would therefore be an independent failure. The
probability of that event, while the primary routine is still
not yielding satisfactory performance, must be considered quite
low. For this reason it is assumed that, once the transition
2,3 has taken place (backup routine performed satisfactorily)
it will remain in that state or revert back to the primary

~———— routine (transition 3,1). The transition 3,4 cannot be ===~
completely ruled out, but the probability of this event will be

several orders of magnitude less than that of the other

transitions once state 3 has been reached. Therefore the arc

has been shown dashed, and the probability of this transition

. is neglected in the following discussidn,

In this model the most significant events leading to

failure of an application routine are seen to the be the

57

inability to detect failure of the primary routine (transition
1,4) and, given that primary failure has been detected, the
correlated failure of the backup routine (transition 2,4).
Subject to previously stated conditions, the probability of

failure of an application can therefore be expressed as

Fo = P(L,4) + P(1,2) x P(2,4)

A significant deviation from the usual hardware model
has thus been established. Probability of failure for
redundant hardware elements is modeled by considering failures
independent with probability of failure to detect rarely
considered in elementary models. For fault-tolerant software,
on the other hand, these failure processes (dependency and
inability to detect) are seen to be the governing ones.
Arbitrarily labeled "residual failure probabilities", they may
be represented as an element in series with the independent

failure probabilities of the associated application models.

However, if our previous assumption is correct that application

program failure due to independent failure modes of the primary
and backup routines is orders of magnitude less likely than
that due to the residual failure modes, then a simplified model

consisting entirely of a series arrangement of the residual

failure probabilities may be constructed.’

58

Using this model, and arbitrarily assumed values for
the residual failure probabilities to predict the corresponding
fault-tolerant application program failure probability, a set
of figures such as those shown in Table 6 results. These
figures are then propagated in Table 7 to a segment of critical
software consisting of five programs (e.g., a fault-tolerant
scheduler and four fault-tolerant application programs).

Conceptually, an additional reliability improvement
can be obtained by backing up the fault-tolerant computer and
software for the critical aircraft control functions with a
separate simplex computer executing the simplest possible
coding of the required software. A block diagram of such an
arrangement was shown in Figure 7. Switching to the simplex
computer brings entirely different software into play and
removes any unexpected hardware-software interactions that may
have contributed to failure of the fault-tolerant software.
Because the entire computing environment is being changed the

————————_probability of correlated- failures_is_very small. However, the
probability. that software failures will go undetected can no
longer be ignored.

Additional research is required to establish the
failure probability of representative primary software, and the
- - —probability.of undetected_or _correlated failure in a_recovery _
block, in order to make these models useful. In the meantime,

the design of fault-tolerant software can proceed on the basis

59

TABLE 6

FAILURE PROBABILITY OF A FAULT-TOLERANT
APPLICATION PROGRAM

Primary Failure Probability/Flight

Probability of

10-3 10-4 10-5 10-6
Undetected Correlated
Error . Failure Failure Probability/Flight
.0.05000 0.10000 1.45E-4 1.45E-5 1.45E-6 1.45g-7
0.05000 0.05000 9.75E-5 9.75E-6 9.75E-7 9.75E-~-8
‘ 0.01000 0.02000 2.98E-5 2.98E-6 2.98E-7 2.98E-8
§ 0.00100 0.00100 2.00E-6 ~2.00E-7 2.00E-8 2.00E-9
0.00010 - 0.00010 " 2.00E-7 2.00E-8 2.00E-9 2.00E-10
0.00001 ' 0.00001 2.00E-8 2.00E-9 2.00E-10 2;00E411

60

TABLE 7

FAILURE PROBABILITY OF FAULT-TOLERANT SOFTWARE
(FIVE CRITICAL PROGRAMS)

Primary Failure Probability/Flight

Probability of

1073 1074 1073 1076
Undetected Correlated .

Error Failure Failure Probability/Flight
0.05000 0.10000 7.25E-4 7.25E=-5 7.25E-6 7.25E-7
0.05000 0.05000 4.87E-4 4.87E-5 4.87E-6 4.87E-7
0.01000 0.02000 1.49E-4 1.49E-5 1.49E-6 | 1.49E-7
0.00100 0.00100 9.99E-6 9.99E-7. 9.99E-8 9.99E-9
0.00010 0.00010 1.00E-6 1.00E-7 1.00E-8 1.00E-9
0.00001 0.00001 1.00E-7 1.00E-8 1.00E-9 1.00E-10

61

"of taking every possible advantage of multiple sensing of flight
parameters and events in order to provide high coverage for the
detection of software failures and for reducing the probability

of correlated failures.

62

Section 7

CONCLUSIONS

The recovery block structure as a general
implementation of software fault tolerance appears to be
suitable to serve specific critical aircraft control
functions. The recovery block consists of a primary routine
(partial or entire application program), one or more alternate
routines, and an acceptance test. If the result of either the
primary or of the alternate routine passes the acceptance test,
a regular output is delivered to the aircraft control systenm,
and normal operation is maintained. If neither result passes
the aéceptance test, an abort return is issued that mobilizes
other system resources to resolve the difficulty.

Because significant development resources and
computer hardware (e.g. memory space and throughput) cost is

involved if all application functions were to be implemented in

--———-—-—— —the--recovery-block-structure,-the-concept -of a degraded____
recovery block has been introduced for non-critical
applications. The_degraded recovery block employs an
acceptance test that includes the wétchdog timer, and any error
monitoring signals that are provided in the computer hardware.

- - -~ - - 1t does not incorporate an -alternate-routine as in the full
reco§ery block; instead it calls for an abort return to signal

the crew to take corrective action while the computer proceeds

63

with higher priority tasks. The degraded recovery block
permits the mixing of unprotected (i.e. without alternates)
single-string non-critical software modules with modules using
the recovery block structure, by insuring that failure of the
non-critical software will not deny access to the essential
application modules. It is estimated that flight control
software incorporating recovery blocks for critical
applications and degraded recovery blocks for all others will
only require about 30 percent more storage than non-fault-
tolerant software serving the same functions. The execution
time penalty for use of fault-tolerant software is estimated to
be less than 10 percent. On this basis it is asserted that
fault-tolerant software for critical aircraft control functions
can be implemented at reasonable expenditure of resources.

The stringent reliability required for real-time
aircraft control functions involving safety of flight demand

that any potential single failure mode be eliminated.

. _Conventional single-string software_servicing critical
functions represents a potential single failure mode, and this
difficulty can be overcome by the use of fault-tolerant
software concepts. The advantages of fault-tolerant software
described here, and the rather modest additional resources

.. required for its use, appear ample_arguments to proceed with

further development and application of this concept.

64

- transport. . The task of demonstrating. the achievement of .

Since servicing frequency varies widely among the
various aircraft control functions and timely execution is
essential for all functions in a time-shared multi-task system
a fault-tolerant scheduler is an essential and critical
component of fault-tolerant software in such a system. The
conceptual design of such a scheduler has been described.

An elementary rgliability model is described largely
to serve as a stimulus and guide for both the acquisition of
software reliability data and for the development of a test and
validation methodology for fault-tolerant software for the
aircraft control application. The need for a considerable data
acquisition effort is obvious.

The need for early and intensive development of a
test and validation methodology for software to be used as part
of a fault-tolerant aircraft control system stems partly from
the requirements for demonstrating high reliability of the
primary and alternate rodtines separately, and partly from the

_need for measurement of the probability of undetected and
correlated failures. An approach to planning of these tests
needs to be worked out at ah early date lest this become the
pacing itém in the overall effort to develop an
aircraft-control conéept suitable for energy-efficient

failure rates of the order of lxlo"9

per flight hour is not
trivial, and perhaps here again fault tolerant hardware

techniques can be adapted (Ref. 7).

65

REFERENCES

Brian Randell, "System Structure for Software Fault

Tolerance," Proceedings 1975 International Conference on

Reliable Software, ACM, New York, NY (1975), p. 437.

Ratner,R. S.; Shapiro, E. B.; Zeidler, H. M.; Wahlstrom, S.

E.; Clark, C. B.; and Goldberg, J.: Design of a

Fault-Tolerant Airborne Digital Computer - Vol. II -

Computational Requirements and Technology, NASA CR-132253,

(1973).
Peter R. Kurzhals and Richard Deloach, "Integrity in Flight

Control Systems," Proceedings of the AIAA Second Digital

Avionics Systems Conference, Los Angeles, CA (1977).

Federal Aviation Regqulation (FAR) 25, Subpart F, Para.

25.1309, Department of Transportation, Washington, DC (1976).

System Design Analysis, Federal Aviation Administration Draft

Advisory Circular, AFS-130, issued by Department of

Transportation, Washingtoni DC (1977).

L. G. Stucki and G. L. Foshee, "New Assertion Concepts for

Self-Metric Software Validation," Proceedings 1975

International Conference on Reliable Software, IEEE Cat. No.

75CH0940-7CSR, New York, NY (1975), pp. 59-71.

66

7. H. Hecht, Reliability Testing of the Fault Tolerant

Spacecraft Computer, SAMSO-TR-74-259. The Aerospace

Corporation, El Segundo, CA (1974).

67

APPENDIX A

FLOW OF PASCAL SCHEDULER

e e -

Set timer = maxtime

DO FOR i=1 TO # of tasks

Set already. executedj = 0

Set loop sentinel = 0

Increment loop. sentinel

DO FOR i=1 TO {# of tasks

Select task j
o with highest priority (shortest interval to execution)

o sensor inputs all ready for next access by task j

UNTIL (task j is selected) V (loop. sentinel >timeout)

sentinel > timeout

THEN o ELSE

Save timer in t

EXECUTE Set timer = timed j

alternate

scheduler Set already. exccuted j = 1

EXECUTE task j

timer <timedj

THEN , ELSE

Reset timer
"EXECUTE

. _} ___alternate j

Restore timer from t

' . UNTIL timer < 0

All tasks
alrcady. executed

THEN ‘ ELSE

. . EXRECUTE
- 1‘ E . B . - - e .o Y. . _ _ alternate
: scheduler =

ALWAYS

o NOTE:

he tim_gr also generates a hardware interrupt when decremented to zero.

LY

PR -

68

APPENDIX B

SCHEDULER SIMULATION

The simulation of the Fault-Tolerant Scheduler (FTS)
was carried out on a CDC 7600 computer.

The system of programs consists of the Scheduler,
Timerinterrupt, Alternatescheduler, Execute, and the test
programs, Driver, Simerrors, and Set-readyflags. A top-level
flow chart of the system is shown in Figure B-1l. Scheduler
contains both operational and test code. Timerinterrupt
contains only operational code. Alternatescheduler has not
been implemented. Alternatescheduler is to be called by
Scheduler and Timerinterrupt to resume computation whenever
either detects a catastrophic error. Execute is a program in
name only; it has not been defined. It is included because it
is called by Scheduler. The test program, Simerrors, will be
used in its place.

_ Driver is used to initiate and control the duration

of the test run. Driver starts the run by calling Scheduler.
Upon being called, Scheduler attempts to select a task to be
executed. If a task is not selected within a given time
period, Scheduler calls Alternatescheduler. Scheduler will be

. _ .called again or the run will be terminated by Driver according
to the value of run control parameters. If successful,

Scheduler will call Execute which will in turn call Simerrors.

69

. RESET "'SERVICED" FLAGS
! AND SIMULATED MAJOR

v CYCLE TIMER (CTIMER)

[pec RENENT CTIMER"]

MAJOR
CYCLE
INTERRUPT

NO

YES

‘, NEXT PROCESS AT
. g HIGHEST PRIORITY

DATA

READY?
(Simulated Using
Random Number
Generator)*

T00
MUCH
TIME IN
SELECTION
LoOP?

o RESET WATCHDOG TIMER
————— | EXECUTE_SELECTED. PROCESS*)__ _ _ _
_ SET "SERVICED" FLAG -

OF PROCESS

TO ALTERNATE
YES) SCHEDULER

HARDWARE FAULT?
{Simulated Using

*CODE INSERTED FOR SIMULATION PURPOSES

FIG. B-1{ SCHEDULER SIMULATION LOGIC

70

Based on run parameters, Simerrors will simulate a normal or
abnormal execution of the task; the latter to be detected
either by Scheduler or Timerinterrupt. If the execution was
normal, Scheduler attempts to select another task and the above
process is repeated. If'the execution was abnormal, an error
message 1is output and the Alternatescheduler is called.*
Scheduler will be recalled or the run terminated based on
run-control parameters. |

Setreadyflags sets flags to identify which tasks are
to be executed. This function is normally done by the sensor
when there is data to be processed. The task will be selected
based on the state of the ready flag and the priority of the
task.

A random number generator is used to determine when
an error is to occur and which task should be executed.

Figure B-2 contains the execution trace printed .
during a simulation runvbf the FTS. The simulation
demonstrated that the scheduler and timer interrupt code

executes, and that the sof;ware acceptance tests successfully

detect timer failures. The simulation also provided insight
into operation of the major cycle timer and the selection loop
acceptance test, allowing us to vary the frequency which the
alternate scheduler is called from these two points. Figure
B-3 indicates those points in the simulation from which trace

messages are written.

*Note: In fulf implementation, alternate processess would be
invoked at this point instead of the Alternate-
scheduler. Since no processes exist in this
simulation, this call is substituted.

71

TIMER IN EXECUTE IS 20 J IS 9.
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN. EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER 1IN EXECUTE IS 20

. TIMER IN EXECUTE IS 20

. TIMER IN EXECUTE IS 20

i TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20
TIMER IN EXECUTE IS 20 _
RNG = 9.9965317416198F-001 '
TASKS STILL LEFT TO DO AFTER TIMEQUT ;I = 1 LOOPS = 2

- TIMER FROM ALTSCH IS O :

| ALL TASKS COMPLETED AT LEAST ONCE; SCHEDULER LOOPS = 1
| IS 22 '

€ € Gt Cot €t €t €t €t €t €t €t € €t Gt € € € € € € C
by
w
(o]

FIG. B-2 SIMULATION TRACEOF FTS ™ 7 =~~~ === ——— =~

72

 (MAJOR CYCLE thERRUPD' |

ALL ' :
NO ALTERNATE

PRIMARY PROCESSES
SCHEDULER SERVICED? SCHEDULER
ALL TASKS COMPLETED AT LEAST ONCE: ! |
- *
SCHEDULER LOOPS = XXX; " TASKS STILL LEFT TO DO AFTER TIMEOUT:

[= XX; LOOPS = XXX;*

(' EXECUTE)
TIMER IN EXECUTE 13 XX

J 1S XX*

PROCESS
TOO LONG
IN EXECUTION?

WATCHDOG TIMER lNTERRUPT)

HARDWARE
FAULT?*

(. remry)

*SIMULATED USING RANDOM NUMBER GENERATOR

U

FIG. B-3 PRINCIPAL SOURCES OF MESSAGES iN THE
SIMULATION TRACE

73

o L Y Yt s

GLOSSARY OF SOFTWARE HIERARCHY TERMS

The following explains terms that are used with more
specialized meanings than in the general literature.

Application Program (or sometimes just Application) is a

software segment that completely services aﬁ aircraft
control function, e.g., attitude control program.

Process is a subdivision of an application program that yields a
defined result (and is in the structure used here expected
to execute without interruption), e.g., filtered attitude
rate computation.

Recovery block is the basic structure for providing fault

tolerance in a computer program. A recovery block consists
of a primary routine and one or more alternate (or backup
routines) and an acceptance test. The operation of a

recovery block is explained in Section 2.

Degraded recovery block is one in which the alternate routine
consists of a void return to the scheduler. (If the

primary routine does not yield a result that passes the

acceptance test, the function supported by the recovery
block is not serviced.)

Routine is the application code (excluding acceptance test) for
one alternate within a recovery block. A routine yields a
result that can be subjected to an acceptance test. A

routine consists of one or more processes.

