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ABSTRACT

A graphical representatfon of éngular momentuﬁ is used to evaluate
relativistic matrix'e1ements between antisymmetrized states of many-
particle configurations having any number of open shells. The antisym-
metriied matrix element is expanded as a .sum of semisymmetrized matrix
elements, which can be evaluated expediently in terms of radial integrals
from easily constructed diagrams. The diagram representing a semisym-
metrized matrix element is composed of four diagram blocks, namely, the
bra block, the ket block, the spectator block, and the interaction block.
The first three blocks indicate the couplings of the two interacting con-
figurations while the last depends on the interaction and is ihe re-
placeable component. Interaction blocks fdr‘relatiVistic operators and
commonly used potentials are summarized in ready-to-use forms. A simple
step-by-step procedure is prescribed generai}y for calculating antisym-
metrized matrix elements of one- and two-particle operatérs. A modified
covariant 3-jm coefficient is also introduced along with ;;;Eain new
graphicé1'notations. Although we focus on jj-coupled states, which comes

. naturally in a relativistic formulation, the generaT'procedure holds in

any coupling ‘scheme,
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I. INTRODUCTION

A relativistic treatment including quantum-electrodynamic corrections
has become essential in many fields of atomic physics; this requires the ’
evaluation of matrix elements with considerable complexity. In particular,
the possibility of forming highly ionized heavy atoms and the study of
- their structure and of their collision and subséquent cascade procésses
necessitafe a complete treatment of couplings between several ‘open shells.
On the other Eand, the application of Wigner-Racah's idea in these problems
_with standard techniques of angular-momentum coupling becomes a tedious and
more often arduous task. The purpose of this work is to provide non-
specialists with a simple and powerful tool to express complicated matrix
elements in terms of radial integrals, suitable for numerical computation.

One of-the essential approximations in the quantum-mechaniéa] descrip-
tion of a many-particle system is the central field approximation. Orbitals
of the particles can thus be represented by angu]ar-moméntum eigenstates.
The coupling of angular-momentum eigenstates with irreducible tensor
operators depend only on the rotational -properties of the state§ and oper-
ators- involved. This fact leads naturally to the divisién of the calcula-
tion of a physical quantity into. two parts: One consist§ of dynamical
variables invafiant under rotations, and the other is a geometrical factor
depending on tﬁe rotafionai properties of the physical quantity. It is
the Wigner-Eckart theorem (Wigner, 1927; Eckart, 1930} which embodies this

notion. The geometrical factor is given by the Clebsch-Gordan coefficient

_(3150 called the Wigner or vector-coupling coefficient) or by a more sym-

metric quantity, the Wigner 3-j coefficient (Wigner, 1951; Edmonds, 1357).

Techniques for the solution of related algebraic problems for many-particle
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systems have been'develﬁped by Racah (1942a, 1942b, 1943). [Two other
equally applicable ap;roaches have been described in the works of Condon
and Shortley (]935) and Harter .and Patterson (1976), respectively, but
will not be discussed here.] However, the complicated algebraic manipuia-
tions hﬁve prevented nonspecialists from caré&ing out specific calcula-
tions.

Attempts to solve the complexity of angular-momentum couplings result -
in graphical methods. In the early stage, angular-momentum diagrams were
used only in a qualitative and descriptive way (see, e.g., Edmonds, 1957
and Judd, 1963). It was the achievement of Jucys, Levinson,_and Vanagas
(1962) that a graphical method was put on a quantitative basis so that
angu}ar-momen%um coupiings can be solved in an expedient and elegant manner
solely in termé of diagrams. The graphical method of Jucy; et al. starts
by assigning a graphical symbot to the Wigner 3-j coefficient and compcunds

the anguiar-momentum coupling to 3n-j symbols. An alternative method given

by Danos (1971) however focuses on the recoupling aspect and uses the 9-j.
recoupling as the central graphical element. The former has been particularly
effective in extending the range of application of Racah's techniques. The
graphical approach permits transformations on diagraﬁmatic expressions and
leads on to analytical results in a clear aﬁd simple manner. Besides its
utility as a calculational tool, the graphical method has the appealing
feature of revealing, at a glance, the structure of very ;omp]icated
couplings of anQu]ar momenta., In addition, we do gain in the graphical

form some phygica1 insight, similar to the visual ﬁnderstanding of physical
processes providéd by Feynman diagrams. In fact, because of the role which
the .graphical method plays in extracting the geometrical part of a Feynman

diagram (Bolotin, Levinson, and Tolmacher, 1964; Judd, 1967; ‘E1-Baz and



-Nahabetian, 1969), it becomes an indispensable supplement to the Feynman
diagrams, where a perturbed quantum mechanical system is studied graphically.

The graphical method has been developed subsequently by Jucys and
Bandzaitis (1967), Massot, El1~Baz, and Lafoucriere {1967), Brink and
Satchler (1968}, E1-Baz {1989), Bordarier (1970}, Briggs (1971}, El-Baz
and Castel {1971, 1972). E1-Baz and co-workers have in particular extended
the graphical method to treat spherical harmonics, jrreducible tensor
operators, and rotation matrices, The basic idea of E1-Baz and Castel (1972}
consists in reprasenting graphically the bra (covariant) and ket (contra-
variant) vectors familiar in the Dirac notations {Dirac, 1830). The
graphical representation of the (lebsh~Gordan coefficient thus becomes a
straightforward extension of the bra and ket diagrams. The graphical repre-
sentation of the Wigner 3~j coefficient, first introduced by Jucys et al.
(1962), has heen modified by E1-Baz (1969) to better represent its co-
~variant property, using -Wigner's covariant notation (Wigner, 1959). MUe
will adopt this idea of El-Baz with a modified phase factor to have a more
coherent correspondence between the Wigner 3-j coefficient and the Clebsch-
Gordan coefficient. _

A graphical treatment of antisysmetrization for the evaluation of anti-
symmetrized matrix elements has been given by Bordarier (1970} and Br{ggs
(1971). The Bordarier's treatment is general and encompasses many different
types of matrix elements, while Briggs gives a step-by-step procedure for
the evaiuation of matrix elements between antisymmetrized states with LS
coupling. An alternative treatment has been given by Huang and Starace
{1978} for a partiéuTar case. The procedure of Bordarier and Briggs is
however a Tittle intricate between purely graphical steps and manipulations
which are better to be performed analytically. For example, the antisym-

T === Adiffarent subshells may be carried cut



analytically wfth ease without resorting to a graphical phase rule. Fur-
thermore, the interaction diagram is obtained in the Briggs' prescription
by expanding the interaction operator in a complete set of particle or-
bitals, whereas a similar interaction diagram may be obtained by con-
sidering directly the m-scheme matrix element.

‘In this work, we will prescribe a simple step-by-step procedure for
evaluating antisymmetrized matrix elements for one- and two-particle oper-
ators; Although we focus on jj-coupled states, which comes naturally in
a relativistic formulation, the general procedure holds in any coupling
scheme. The underlying idea of the present approach is to express analyti-

cally the matrix element between antisymmetrized many-particle states in

terms of matrix elements between semisymmetrized many-particle states.

The semisymmetrized many-particle state is defined as the many-particle
state which is antisymmetric within each subshell but_is not antisymmetric
with respect to exchange of two particles from different subshells. Hence-
forth, the matrix e]emeﬁts between semisymmetrized many~particle states

are evaluated by a graphical procedure. The graphical procedure consists
of three major'steps: Firstly, we construct diagrams for the two in-

teracting semisymmetrized many-particle states and decouple active

particles from the other particles to be referred to as the spectator
particles. Here the active particles represent the typical particles
which actually participate in the interaction in a semisymmetrized matrix

element. Secondly, we insert the interaction block corresponding to the

interaction between active particles. The interaction blocks for commonly
used operators and potentials are summarized in ready-to-use forms in
Appendix B. Lastly, we evaluate the resultant diagram by transforming it

into basic diagrams representing 3n-j symbolis, whose analytical.values have



8

been tabulated extensively (Rotenberg et al., 1959; Jucys et al., 1962).
Thus the antisymmetrized matrix element is expressed as a sum of:weighted

radial integrals.

The graphical notation and transformation rules used in this work are

given in Sec. II. The covariant 3-jm coefficient is defined there. In

Sec. III an analytical procedure is outlined for evaluating the antisym-
metrized matrix element in terms of radial integrals. In Sec. IV we
describe in detail how the diagram representing the semisymmetrized matrix’
element can be constructed and. evaluated. In Sec. V we summarize the pro-
cedure of evaluating antisymmetrized matrix g]ements. A worked example 1is
given in Sec. VI. Appendix A is a glossary of definitions of terms used

in thiswork; in most cases they are identified in the texi-by italic
letters when they first appear. Graphica1 forms of commbnly used operators
and potentials are summarized in Appendix B. Appendix C gives the deriva-

tion of one of ;he'expansion formulias used in Appendix B.



II. GRAPHICAL NOTATION AND TRANSFORMATION RULES

He will first define the basiq coupling coefficient, i.e., the ]
covariant 3-jm coefficient, and its graphical represeniation in Sec. II.A.
Rules to combine 3-jm diagrams, whicﬁ amount to summations over magnetic
quantuﬁ numbers- m, and rules to transform the combined djagram will be
given in Sec. II.B. Section II.C surmarizes anélytical values of some
basic d%agrams. The graphical representation .of the Clebsch-Gordan co-
efficient and its transformation to the 3-jm diagram is described in -

Sec. 1I.D. These find uses in constructing configuration diagrams.
A. The Covariant 3-jm Coefficient

Wigner's 3-j symbol is defined by

ik 4 h-gam,
(25 2) = o s i

y M, -my

[j '?211

where'<j1m1jzm2|j3m3>-is the Clebsch-Gordan coefficient. We employ, however,

the covariant notation (Wigner, 1959) such that the covariant 3-jm coefficient

(or, simply, the 3-jm coefficient) which is covariant in the first two ine

dices and contravariant in the last index is defined- by

L] * ‘, ’ . 4 + - -
(ai Bme) o5t (a.. i. 4, )
ml ma 33 ) ml ’}na-ms ’

‘\av 3.5

- (2.2)
— (24350) RCERAD
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Note that this definition is different from Wigner's definition (Wigner,

Ja-m
1959) in that he used the phase factor (=) ° . This is also different

from the definition of E1-Baz and Castel (1972) in -that our contravariant
component is defined with the same phase as their covariant component.
This modification, however, does not change the graphical rules presented
“in their work. We also emphasize that this coefficient is called “the
covariant 3-jm coefficient" because of their cofariance properties and
m-dependence. Accordingly the name "3-j symbol" or "3-j coefficient"
will be reserved for the coefficienﬁ occurring in the hierarchy of 3n-j
coefficients, which‘have no m-dependence.

By our definition, the ordinary 3-j coefficient of Wigner is a fully
covariant 3-jm coefficient and is equivalent to the fully contravariant
3-jm coefficient

(m..mt 'm5) =(é, t, 313) |
d 3. 330 \m, my omy - (2.3)

-Note however that

ﬂ', 31 m,a —_ (_;35(%1' mz. 3:3 ) (2.4) |
m, m_ 33 ﬁj; ji. m, /.

Graphically we can present a covariant 3-jm coefficient as

hoh om
m, m, js (2.5)

The notational rules are as follows:
(i) Each vertex, indicated by a node, represents a 3-jm coefficient.
Each covariant component is denoted by a line with an ingoing doubTe-arrow,

and each contravariant component by a line with an outgoing single-arrow.
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(ii) The plus (minuﬁ) sign at the node means that:the angular momenta
are to be read counterclockwise (c1ockw1se) The change of the sign at'-the
node (313233) “introduces a phase factor (-) } , therefore, the sign at
the node may be suppressed if (31+32+33) is an even number. ‘

The magnetic quantum numher of each angular momentum Tine is usually
suppressed where no confusion may occur. Also, we note that the "current”
of magnetic quantum numbers is conserved at each node due to the selection

rule for magnetic quantum numbers of the covariant 3-jm coefficient; for

example, .
o ' 4™,
&, & mim, 4:3(m|+’m=).
= b — 5
Ty % /0 ~ (2.6)
im,

where we have the sum of the ingoing currents "ml“ + “mzé = the outgoing
current "m1 +'m2.“ '

The notational rules used to combine 3-jm diagrams are as follows:

(i) The summation, or in the tensorial terms “"contraction," over a
- pair of magnetic quantum numbers (one of which is always contravariant; and
the other covariant) is performed by joining the corresponding angular-
momentum Tines to form a 1inked single-arrowed line. -

(ii) The change in direction of a linked angular-momentum 1ine j
introduces a phase factor (—)23. As a result, we may suppress the arrow
of a Tinked angu]a}-momentum Tine j whenever.j is an integer.

Although we do not write the magnetic quantum number for a Tinked
angular-momentum Jine, the summation over the magnetic quantum number is

always implied. Nevertheless, in many cases because of the conservation
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of the "magnetic current," the summation implied by a Tinked .angular-

momentum line exists only formally. -

B. Transformation Rules for 3-jm Diagrams

There are only two fundamental transformation rules:
Rule I: .
4
2. = [« g |’
k (2.7)

&

. : — N -3
where a bar on the angular momentum k stands for a multiplication factor

(2k+1)%, and multiple bars for multiple factors. For example, K indicates

a factor (2k+1). Rule I follows from the graphical relation for 3-jm

coefficients,

T M
+
J\rrl
-
' ~- |
/\\
v
¥
.
B

which represents the orthogonality relation

E(zk-w)(fn 3, k)(m. m, m)= S gm o

m, m, m i ;
M ’d & R . 2T (2.9)

In (2.7) we use the blocks o and B to represent arbitrary diagrams. either

open or ciosed. By open or closed, we mean that the diagram either has or
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hasn't any free nonzero angular-momentum lines. For example, in the fol-

Towing diagram

4

]

o we w  a

the diagram block on the left is closed while the one on the right open.
Ke will use an encircled greek letter @ to indicate specifically a

closed diagram b]ocﬁ._

Rule II:

. ‘ 4, é/
® 1B - g. o @ \\il 1 .
g S ot

3 (2.10)

¥ .op.

Y

where the bar under the angular momentum j] denotes a muitipiication factor
(2j1+1)'%. Also we will use multiple bar;_%o‘indicate multiple factors.

Since derivation of this transformation rule is more {nvoived, we refer the
réader to the workﬁ of Jucys et al. (1962) and El1-Baz and .Castel (1972} for

its proof. Note that for a nuill block g, Rule II becomes

4m,

&m, o : (2.11)
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This transformation rule results from the rotational invariance. of the

»

diagram.,

From these two fundamental rules, we can easily derive besides others

the following additional useful rules:

2 (2.12)

fop-
>

(2.13)

Wu"'" iy Oe-

* (2.18) -

Wy

(2.15)

®
Yoo Yoo Y Yoo
“
[
=™
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The transformation rules I and Il and the rules derived from them
allow one to feafrange diagrams or to factor out basic diagrams whose
ana1ytica1 values have been tabulated. Some of those basic diagrams are

presented in the nextigubsection.

C. Analytical Yalues of Some Basic Diagrams

& &

I - (3—' m-l‘l 3.‘,_ mz) = gé' éz‘ gm' m, b (2.16)
l_/z , -

+ F= (23+1) (2.17)

.. ] /N v,
P = Sko(%'*‘l) (2§,+1) , (2.18)

= {haa], i i

o {1 G la-hl € 4 i 8D 0)

0 othermies 5
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§ &, 1,

£ & B9 agmlel
k K. R, (2.21)
§ & - =

S A4 11 ’
toA A, (2.22)

which is defined as the 3n-j symbol of the first kind. For-n-=1, 2,.3, it .

equals the ordinary 3n-j symbol within a phase factor. We also have the

3n-j symbol of the second kind

= L 4, - A 02
koko-oo k] )

(2123}
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Further discussion of these 3n-j symbols may be found in the works by Jucys
et al. (i962) and by E1-Baz and Castel (1972). We emphasize that it is the
topo]ogy of an angular-momentum diagram (i.e., how the various lines in it
are connected to each other) which determines its ana1yt1;a1 value. There-
fore by keeping the topology, we-can deform an angular-momentum diagram in
any way without changing its analytical value.

A very complete tabulation of C1ebsgh-Gordan coefficients can be found °

in Tables of the Clebsch-Gordan Coefficients, compiled. by the Institute of

Atomic Energy, Academica Sinica (1965). Extensive tabulation of the 3-jm
symbol and the 6-3 symbol may be found in the work by Rotenberg etvaI.
(1959). This reference also contains extensive references in the literature

on 3n-j symbo]s.-
D. The Clebsch-Gordan Coefficient

In constructing coupled angular-momentum states, where the Clebsch-
Gordan coefficient {to be referred to as the C-G coefficient) occurs
naturally, one finds that the graphical representation of the C-G coeffi-
cient is more expedient to.use. A graphical representation (E1-Baz, 1969)

of the C-G coéffjcient is given by

< }l ml 1:,7, mllds, m3> =

The natational rules to represent and to combine C-G coefficients are the
;amé as those for 3=jm ccoefficients. The op1y differgnce is that we use

an open circle (instead of a solid node as in the case of a 3-jm coefficient)}
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at the vertex to }epresent a C-G coefficient. Although transformation
rules for C-G diagrams have been given (E1 Baz, 1969; E1-Baz and Castel,
1971, 1972}, we will not present them here because we only use the graphical
representation of the C-G coefficient in constructing many-particle con-
figurations. fhe resulting C-G diagram will then be transformed into a
3-jm diagram by a simpie procedure.

To transform a C-G diagram into.a 3-jm diagram, we do the following:

(i) Add a bar, j, on the angular momentum j which is unique in its
variance character. The bar represents a multipiication factor (2j+1)%.

(i) The second (third) angular momentum k, couﬁting from J in the
direction indicated by the.sign of the open circle, introduces a phase'
factor (-)2k if j is contravariant (covariant). We write a circle around
the arrow of the angular-momentum 1ine k to indicate this phase factor.

When the angular-momentum Tine k is joined to another angular-momentum 1ine:
2k

to form a closed 1ine, the circle representing the phase factor (-}
simply changes the direction of the closed angular-momentum iine k.

(ii1) FiNT the opén circle at-the vertex into a solid node and change
the sign at the node.-

Note the special case

4,

(2.25)

A

with the sign at the node unchanged. Similarly we have the equivalence
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%

<

™ !
- We will find frequent uses of these simple relations.in constructing many-

particle configurations.
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III. ANALYTICAL EXPANSION OF ANTISYMMETRIZED MATRIX ELEMENTS

The method of evaluating matrix elements between antisymmetrized many-

particle states is outlined analytically in this section. The part of the

manipulation which can be performed more-expediently by a graphical proce-
dure is presented again in detail with graphical representation in the next
section. _
- In the Dirac-Fock or Dirac-Fock-Slater description of a many-particle

system, & configuration is specified by the number of equiva]ent‘particles

- occupying each subshell. In general, there are‘Na particles in-the subshell
jé’ Nb particles in the subshef1 jb, « » » s N, particles in the subshell
jA, etc. Accordingly this configuration is denoted by

AL

- b 2

For reference purpose, we éay order the subshells in a certain sequence
(e.g., ]S%, 25%, ép%, etc, for atomic subshells) and refer them By suc-
cessive values of the index A.

We consider states of the many-particle system_in which each subshell
of equivalent particles ié in a definite state with total subshell angular
mémenta Ja’ Jb’ . e s JA, etc. Within a subshelil jl, %f:there are several
states with the same total subshell angular momentum J,, there will be an

additional quantum number o, which is required tdvspegify a subshell state

A
uniquely. This coupling scheme is indicated by

+ Na, . N . « N
(.1’~ )0(‘\3‘% (g’bb)‘(bjb h e (3,7"‘)0(7\3-* e
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A1l the total subshell angular momenta (Ja Jy oo vy e ) are then
coupled successively to form a grand total angular momentum J of the whole

many-particle system. Aﬁtef antisymmetrization, such a state is denoted by

N N N '
‘L(}i&)%&(}fh)“ﬁs e (I, Tyt ) °<J'M> ,
- (3.1)

where o stands symbolically for the coupling scheme of total subshell an-

gular momenta,

We will first express the matrix element.between antisymmetrized many-

particle states (3.1) as a sum of matrix elements between semisymmetrized

many-particie states. As mentioned in Sec. I, the semisymmetrized many-
particie state is defined as the many-partic]e-state which is antisymmetric
within each subshell but is not ant{symmetric with respect to exchange of
two particles from different subshells.. Each semisymnetrized matrix element

is then expanded in terms of jm-scheme matrix elements. After the evalua-

tion of jm-scheme matrix elements, we thus obtain the expansion of the
antisymmetrized matrix element in terms of reduced matrix elements, i.e.,

weighted radial integrals.

A. Expansion of ‘Antisymmetrized Matrix Elements in Terms of Semisymmetrized

Matrix Elements

We consider matrix elements of one-particle operators and two-particle
operators in turn,

One-particle QOperator -

He define the one-particle operator by

VoL v . |
- i c : (3.2)

L=y
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From the general consideration of de-SﬁaIit and Talmi (1963} and of Fano

{1965), we can easily deduce the result

<Vm> <[(a,_ ) o :ra.'“(? )u: Tb...jdjml

l[(g’a,) (?} )°<I- ]o‘.]"l"l>
=2 <Vm2b |

Mz

(3.3)

where the summation is over all nonvanishing subshell pairs (a, b) with

each pair counted once, and <V(1) >ab is defined as

<Vm> ‘ JW< %(a)oa;erU l%(b)f* J M>

ab
(3. 4)

with

ZN

ab  a.aii ‘ . (3.5)

Here <q{a)adM| and [q'{b)a'd'M'> are semisymmetrized many-particle states
with definite particle distributions specified by q{a)} and d}(b), respec-
tively. Explicitly q(a) and q'(b} denote the particle distributions in

which the Nth particle (i.e., the active particle} is in subshells a and

b, respectively, while all the other particles (i.e., the spectator

ggrtic1es) assume ?he same distribution in both states. HWe emphasize.
that how the spectator particles are distributed among subshells 1is

immaterial so long as they keep the same distribution in both states.
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Two-particie Operator

He define the two-parfic]e operator by

ZU

< %3
L } (3.6)

Aiso from the general consideration of de-Shalit and Talmi (1963) and of

Fano (1965), we can deduce the result
N ) N . .
o) . a . Vy RS
(v >-—=—<[<:fr AT (4 (40 7,
_ _ <4 N,
[[(?:3"%.& '_-'(é LN
'N':L ! ’ ry, /
(g, D=, :ri--- L7 ™ >

Z; << (1);ixbldd: , | | | F3.7)

ab,cd

ta»

where the summation is over all distinct nonvanishing pairs with a < b and

C < d, and <V(2)> d is defined as

ab,c
?a.bcdl

(VY = N e

b, coL

-(1- g)(l S;)<%(axb)c(j‘m' » I>Nl?f(o(¢)o(’]_rm,>}

with

(3.8)

N - +Y{N -G
E;b°d- Az A*F g ) A= c+i A ad).
' (3.9)
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Here «{ab)adM| denotes a semisymmetrized many-particle state with the
(N-1)th and Nth particles (the active particles in subshells a and _
b, respectively. The distribution q'(cd).and q'(dc)} are defined similarly
to q{ab). Again we emphasize that all of them have the same spectator-

particle distribution.

B. Expansion of Semisymmetrized Matrix Elements in Terms of jm-Schame

Matrix Elements

To evaluate matrix elements between semisymmetrized many-particle
states we need to single out those particles which actually participate
in the interaction, i.e., the Nth particle and the (N-1)th and Nth par-
ticles in (2.4) and (2.8), respectively. This may be accomplished by
fractional parentage e#pansions of the subshell states invo]vﬁng active
particles. wifh coefficients of fract%ona] pareﬁtage (to be referred to
as c.%.p.) as expansion coefficients, the semisymmetrized many-particle
state can thereby be expressed by a linear combination of parent states.
Each of thése parent states can then be decoup]e& into a pfaaabt of two
parts: One contains active particles, and the other contains spectator
particies. These expansions and decoupiings enable us to express a
semisymmetrized matrix element in terms of jm-scheme matrix elements.

We consider the cases for one-particle operators and for two-particle

operators in turn: -

One-particle operator

To evaluate the semisymmetrized matrix element in (3.4} we first

decouple the semisymmetrized many-particle states as

_‘<%("0°‘3’”| =12 C (p;x7m)< P %@K@,
. , .

(3.10)
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and

lfg'(b)qj’m’)m 2, Clp's o«'j’m')l’r"; %'(b)} 6> .
PR A _
(3.11)

Here <p;q(a)] and [p';q*(b)> denote symbolically the uncoupled subshell
states of the spectator particles, i.e.,_ the first (N-1) particles; <a

and {b>, or exp1icit1y-<jama] and [jbmb>, are the orbitals of the-active
particle, i;e., the Nth particle. The expansion coefficient Ca(p;aJM) or
Cb(p';u'J'M“) stands symbolically for the product of a c.f.p. and all the.
3-jm -coefficients needed in the uncoupling, aﬁd the summation index p or

p' for-the summation over the c.f.p. and magnetic quantum numbers. Explicit
examples will be given in Sec. IV.B when we consider the graphical proce-
dure. By using (3.10) and {(3.11), we can write the semisymmetrized matrix

element in (3.4) as

<%.(’o~)t=(-:i‘l‘j.|UI'v [ AGES EX I

=2 C o ugmC, (p5x Tmd(p; gl g el | >
P . (3.12)

Here the matrix element <psa{a)|p';q'(b)> represents a product of overlap
integrals and is 1n&ependeﬁt of the interaction. The matrix element.

<a|vN]h>, called the jm-scheme matrix element, depends on the interaction

and will be evaluated in the next subsection. Interested readers may refer

to (4.15) for the graphical representation of (3.12).
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Two-particle operator

We decouple the semisymmetrized many- particle states in (3.8) and

obtain -

<? (ab)«j‘m, = % Cab (PS"(TM)\/'P? 3.(&6)!< a b ,

!

(3.13)

and

Ig"(cd)a('ff",l"}'—' Z Ccd (F’;o&}’m')lb;’ %'(ca()> , ¢ 45 _
- P (3.14)
Here.<p;q(ab)l and <p';q'(qd)] stand symbolically fonithe uncoupied subshell
states of the spectator particles, i.e., the first‘(N-Z) particles; -
<ab| and |cd>, or explicitly <jama jbmb| and ]jcmc jqng>» for the active
particles, i.e., the (N-1)th and Nth particles; Cab(p;aJM) and C_,(p';a'd'M*)
for the expansion coefficients which are‘products of c.f.ﬁ. and 3-jm coeffi-‘
cients; p and p' for all the summation indices involved. Explicit examples.
will be given in-Sec. IV.B. ‘Note that here a‘éqd b (a1sb c and d) may
represent eithgr equivalent or nonequivalent orbitals. -
Bv means of -the expansians (3.13) and (3.14) we. obtain -the fﬁrst semi-
~ svimetrized métrix element. (the direct term) in (3.8) as

' <‘§(ab)°<m|1{,_, lg’(ad)uér’m’>

,N, .
5 %Ecd)) ‘

{3.15)

= ,,Z,; C, (py=7m) G, CosTMY (B 5 3(ab)

« {ab ]-1{:_4-” led
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Heré the matrix element <p;q{ab)|p*;q"(cd)> represents a product of overiap
integréls, and ¢ab|vN_1,N|cd> is a ﬁm—scheme matrix element. The second
semisymmetrized matrix element (the exchange term) in (3.8) can be expanded
similarly as (3.15) in terms of jm-scheme matrix elements. Interested

readers may refer-to (4.16) for.the graphical representation of (3,15).

C. Jjm-Scheme Matrix Elements

In the last subsection, we have shown how a semisymmetrized matrix
element can be expended as a sum of products of two parts: One is the
interaction-independent part involving the coupling coefficients, and the
other is thé-interaction-depén&ent part represented by a jm-scheme
- matrix elemgnt. The im-scheme matrix eTemgnts fén the cases -of one-
particle operators and two-particle operators are given by <a|VN[b>
and‘<ab|vN_1,NLcd>, respectively. For specific operators, these matrix
elements can be evaluated analytically in terms of radial iptegrals. The
results for commonly used opérdtors_and potentia]s‘are presented in
’ Aépendix B along with tﬁeir graphical forms.

In general, any operator can be written as a sum of products of
irreducible tensor operators. Hence in this subsection for a general
purpose, we consider N and VN_],N to be irreducib?g tensor operators.

The results are given in terms of reduced matrix elements as follows.

One-particle operator

Assume the one-particle operator iy to be an irreducible tensor

operator of degree jJ,
: VN =‘ 'ij(N) ° ’ (3.15)
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By applying the Wigner-Eckart theorem (Wigner, 1927; Eckart, 1930} we

obtain the jm-scheme matrix element in (3.32) as

G =<l Tyl
— 3. m o, ><? IIT(‘”II&> (3.17)

rn“, 3— 4- ‘

Here we denote the angular momentum coupling by a covariant 3-jm coeff1c1ent
and <J IIT(J)llJ > is the reduced matrix element which is usually expr3551b1e
as a sum of weighted radial integrals for a specific case., It is of
interest to note that the bra (covariant) state <jamaf cofresponds to the
covariant component in the 3-jm coefficient; and the contravariant operator
Tim and the ket (contravariant) state [dym,> correspond fo the two contra-
variant compoﬁents. No extra phase or weight factor, besides the reduced
matrix element, is carried by (3.17), and the rotational properties of the
matrix element is clearly indicated by the 3-jm coefficient.

To emphasize the fact that the jm;scheme matrix element is separated
into a geomefriq part and a dynamical part; we rewrite (3.17) as

(al Y, |8y = Gyeas 0 X, (s b))

(3.18)

The geometric factor Gj(a;b),'which corresponds to a coupling diagram in .

the graphical representation and will be called the interaction graph; is

defined in this simple case as

G.(asb) = é;"""w.\ ™o (3.19)
F <M'm & ¢ )

The interaction strength Xj(a;b) is defined accordingly as

Xiasky =<4, 1 T2, (5.20)
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Two-particle operator

For the case of a two-particle operator, we. consider an irreducible
tensor of degree j which is the tensorial product of two irreducible tensor

- operators acting on two different particies, i.e.,

=T v-1,mM= 3 <} m, §.m fg’m>T}m(N-l)T 2

N={| , N am -
My (3.21)

As before, by applying the Wigner-Eckart theorem we can obtain the jm-scheme

matrix element in (3.15) as

<0\b| ~|~lCd> < a.g’b b, ‘(N",-"/)‘

= Gj-(ab" C.fl) X&;J‘;_(ab ; C.C{) .

Feme &y h14_>>

(3.22}
Here the geometric factor Gj(ab;cd) is given by
G (abscd)= (13—+i) Z(g‘ # e mm}’) Fy s ) )
m m }b a‘l} m‘l mb 3-?. '&-A
(3.23)
and the interaction strength by
(b e =Ca T 3 (e, T &) .
T ‘ <a. ” c.‘_ b”T : I v\- (3.24)

D. Expansion of Antisymmetrized Matrix Elements in Terms of Reduced

Matrix Elements

In Sec. III.A we expanded the matrix element between antisymmetrized

-many-particle states as a sum of semisymmetrized matrix elements. In Sec.
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" III.B we obtained the semisymmetrized matrix element in terms of jm-scheme
matrix elements, which were later evaluated in Sec. III.C. Here we summarize

the results.

dne-partic]e gperator

For V(]) -‘1 3 J.m(i), the antisymmetrized matrix element (3.3) has

been evaluated as )
Yy . : ; Tib‘ r
{agmlv |o<1M>=-Z (=) (N N D

(3.25)

 (232) X, (a b)

where the coupling coeff1c1ent D (a b) is g1ven by
:D (a L) “‘Z C ('P a(;-m)C, ('p & T )<’f’ %Ca)'? Etb)>

| (las b)Y, S
.X CT;- (a8 ~ (3.26)

Two-particle operator

For V(z) z TJm(13) with T (13) defined in (3.21), we can summarize
i<j
the results for the ant1symmetr1zed matrix element (3.7) as

D1 - Faie Vo '
<de,V()I°(]'M/>=MZ‘CdC—_) b 4[{\/&0\/,9“&5)1\/@(!\/4—&4)} LS

{(H—SM Q‘,_d] .‘D (b U’)X ;. (abscd)

.(3.27}

—('7 ga\,)j(l'_ ge_d)D'm(al”Edc)XJ; &_ (QL ;O{C)}
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Here the coupling coefficient_Djm(ab;cd)~is defined as
_.Da-_m(ab;coi)z 2, €. (Ps %T™M) C., (1M Xps 3 @b P ¢ '(co{)>
i '
'xG;J-_ (abscd), : (3.28)

with Djm(ab;dc) similarly defined.. The-interaction strength X jé(ab;cd)
1
‘has been given in (3.24), and Xj j (ab3dc) is given by a similar expression
192 : ,

: with ¢ and d interchanged.
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IV. GRAPHICAL EVALUATION OF SEMISYMMETRIZED MATRIX ELEMENTS

Evaluation of the coupling coefficients Djm(a;b) and Djm(ab;ed), given
in (3.26) and {3.28), respectively, is a formidable task. Although for
mény cases they may be evaluated numerically (Grant, 1973; 197éT by using
a digital computer, these coupling coefficients in general have to be ob-
tained ana1yt{cal1y for each particular case, esﬁecial1y for the analytical
- study of a matrix element. In this seétion we will show how to obtain an
analytical expression of an antisymmetrized many-particie matrix element
from easily constructed diagrams.

In Sec. IV.A the graphical procedure of constructing semisynmetrized
many-particle states is ii]ustrated by an examp]e. Section IV.E describes
how to decouple Qraphica]iy particles from an antisymmetrized subishell

state. The bra and ket diagram biocks are also defined there. In Sec. IV.C

the jm-scheme matrix element is considered. Its graphical representation is

defined as the interaction block. Specific diagrams are given for the cases

considered analytically in Sec. III.C. Other interaction diagrams for
commonly used operators and potentials are presented in Appendix B. In

Sec. IV.D the spectator block is defined. Evaluation of the joined diagram,

called the recoupling diagram, is described in Sec., IV,E.
A. Construction of Semisymmetrized Many-Particle States

The construction of diagrams for semisymmetrized many-particle states ca
easily bg carried out in the C-G representation. The procedure is best °
demonstrated by working with an example. |

Constder a configuration having open sheils a, b, ¢, d, and closed
shells A, etc; R “A particular coupling scheﬁe of the open shells is rep-

resented by
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1009, (934094 1M

where Ja’ Jb; Jc’ Jd are the total angular momenta of respectivé subshells,
and the parentheses specify the sequence of the éouplings. These couplings

can be given analytically by

10(3,3)9,, (934034 10M>

=z I(a Jb)dab ab” ! 999 eqMeq” IapMapdcdteq | M
MM '
ab cd

) é z:M M M M IJaMa>]Jbe>IJcMc>[Jde>‘
abed ab '

X <3 MM 1M o< M e Mg g 1 (4.1)

which corresponds to the graphical representation

T

A

«)

I
¥4 8
f...[

n
b8

BRRE T

\%

<

R 1]
nL..
A

(4.2a)
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or simply,

(4.2b)

A1l the closed shells are represented symbolically by

:]-A=0,

> .

Hence the semisymmetrized many-particle state has the graphical represen-

tation

| BT T (T Td Tea y TM ) -
T o

I
I

(4.3}
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where a denotes symbolically the coupling scheme of the open shells.
From the abéve exampie we can generalize the following graphical pro-

cedure for constructing the semisymmetrized bra and ket states:

(i) Rep}esent the grand total angular momentum by. a line.

(i1) Draw two branches from the grand total angular momentum and
a sﬁa]] circle at the vertex., The two angular-momentum lines added'repre~
sent the two angular-momenta which are coupled to form the grand total an-
gular momentum. Write a sign, + or -, at the vertex to indicate the order
of coupling.

(ii1) Repeat step (ii), starting from the new angular-momentum lines,
until all subshells containing "active particles are decoupied.

(iv) Add angular-momentum lines for closed shells.

(v} Mark appropriate arrows on the angular-momentum lines.

It is more convenient to construct bra (covariant} states from left to
right and ket (contravariant) states from right to left. The so-constructed
configuration diagrams are to be transformed into diagrams in the 3-jm

representation by using the procedure given in Sec. II.D.
B. Decoupling of Active Particies; Bra Block and Ket Block

As stated in Sec. III.B, we can single out active pértic]es from a
subshell by a fractional parentage expansion. We consider two cases'in

turn.

One-particie coefficient of fractional parentage

To single out one particle from a subshell we use a one-particie frac-

‘tional parentage expansion, i.e.,



3

I(j"’)uﬂ> =7 E(ﬂl”")o(lj-lé_]ag-]
. %7, “
x| (3" D3, T

=L [(é“")“-T.é-[‘dI) KT M, qm|TM)
%7, . |

M, . .
| GM e Ml En )

Here. to indicate more clearly the coupling, we use the abbreviated

notation

(3™ hHx d|eg )= &".t"(d..anéfl} F4T] )

for the c.f.p. defined by Racah (1943).
The last expression in (4.4) gives the explicit form of (3.11) in the
particular case of one subshell. This decoupiing can be represented by -

the diagram

GMydy (37«7, +
> =

l(et ’Moca‘i. (4' 6)
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where the c.f.p. [(j"'l)aldljlad] and the summation over it are implied by

the square [J at the vertex (J] j J). The ket block is defined as the por-

tion of the diagram indicated in (4.6); a bra block is similarly defined in

‘the case of a covariant state.

Two-particle coefficient of fractional parentage

To single out two particles from a subshell we use a two-particle

fractional parentage expansion, i.e.,

|(}"),<TM >_=}: '((4”"1)&,_3'2 (47 [«7)

®,7, 7

|G, GD T M)
=% (Ui T, () 77 7]

%, 7T,

ML
m

X {gm g [T )M M Tm )

’

IxXH

’

" X l‘(;‘,“")«a:,_mz>ls"m >lam>

(4.7),

where we have used the abbreviated notation

(&3 7] ]= [ e a0 7] i e
' (4.8]
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to represent the éwo-particle c.f.p. The last expression of {4.7) gives
the explicit example for separating two equivalent electrons from a sub-
:shell, which was given symbolically in (3.14).

The graphical representation of {4.7) is given by

(#™ar T, (37T,
—>— = |} - >

\F’L{

Wil

-+ (9]

Ket Lok
(4.9)

where the two-particle c.f.p. [(j"'z)azdz(jzlJ‘[aJ] and the summation over
it are denoted by the double squares at the vertex (JZJ'J), The ket block
is defined as indicated in (4.9); a bra block is defined in the case of

a2 covariant state.

Tables of c.f.p. may be found in the works of Edmonds and Flowers (1952)
de Shalit and Talmi (1963), and Sivcev et al. (1974). .

C. Interaction Block

An interaction block refers to the diagram bBblock representing <a|vN|5> i

the case of a one-particle operator and <ab|vN_] N|i:d> in the case of a two-
- 3
particle operator. These jm-scheme matrix elements have been given anajyti-

cally for general cases in Sec. II1I.C. Besides a dynamical multiplication
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factor, the interaction strength, the jm-scheme matrix elements depend

only on the rotational properties of the interaction and states invoived.
We present here the interaction blocks for the general operators worked
out in Sec, III.C. Specific examples will be given in Appendix B. Again

we consider two cases in turn:

One-particle operator

An elementary interaction is represented by an irreducible tensor
operator ij of degree j. Its jm-scheme matrix element was given in (3.18)
and has the graphical representation

Loy, L) =

(4.10)

where the coupling coefficient Gj(a;b) is represented by the coupling diagran
and the interaction strength Xd(a;b) is denoted by the cfoss X" at the verte
(ja ki jb). More complicated interactions can be expressed as a linear com-

bination of this elementary interaction.

Two-particle operator

We assume the elementary two-particle interaction to be the ifreducib]e
tensor operator ij(N-1, N} defined in (3.21). Hence from (3.22) we obtain

the graphical representation
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Y
— LN N
<0~.bll)!;-"” |r-d.> — VFA el 7
) ' é‘JL —
&
.—)r:——%——-
..j¥ -
&2.
>> S
, i

(4.17)

Here the c¢ross "X“ at the vertex (j1 J jzj denotes the ‘interaction strength

X (abscd); the bar on the angular momentum J represents the multiplication

factor (2j+T)%.

D. Spectator Block

A spectator block refgrs to the diagram b16ck representing the scalar
'product of subshé]i'states or groﬁps of subshell sﬁateé wh{ch do. not parfici-
pate in the interaction considered in the semisymﬁetrized métrix é]ement. It
examples were given as <p;q{a)|p';q'(b)> in (3;12) and <p;q(ab)|p*;q*(cd)>

in k3.15). As mentioned in Sec. III.A,'the spectator particles‘have the
same distribution among subshells in both the bra and ket states. This fact
implies that the scalar product of the composite states can be written as a
product of overlap integrals for all subshells. Graphicél]y, we represent

spectator blocks as follows.
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(i) <piq{a){p*;q'(b)>

2

S

&4 T i D‘a :rg'
o

! !

0(5375 1 D(bl be
= 2 4 > 2
’ Fi -

d} 3-;\ i d}kTA
>> i s

(4.12)

where @31%1 and apqJpy @re parent states of subshelTs a and b after the
active part?cle being decoup}eq out;-aAJA and aiJi denote symbolically all
the other subshell states or groups of subshell states. 'From {2.16) we know
that (4.12) represent a product of Kronecker deltas for the states involved,

provided we -use the same orthonormal set of particie orbitals in both the -

bra and ket states.

(i1) <psq(ab)|p';q'{cd)>

I
Y
3%

rard i ra

oLy T, oLy T
N AN
Y

- (4.13)
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- where the notations are defined similarly as in the case {i). Another

example is given by

<psq D] 5 2 (ed> >

4 ?
Re Yo, Xer Te
F e T rd
 — 2 ’ >
; o(é EI;L | 5(4:.:41
FJ »
d.)‘ T)‘ u’\ 3-?\
>>—p—>

(4.14)

where “aZJaZ is the state of suﬁshel] a after two active particles Being
decoupled out by a two-particle frﬁctionaﬁ'parentage-expansion.

The graphicai rule imp1iea by (4.12), (4.13), and {4.14} is that we
simply join together the corresponding {(covariant-contravariant) angular-
momentum lines in the bra and ket blocks. Note however that this simple
graphical ru1e’does not apply when partic]e:orbita]s in the bra state are
not orthonﬁrma] to those in the ket state. In such cases we need an extra -
factor which is the product of all the overlap integrals of the spectator

particles of the bra and ket states.
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E. Evaluation of Recoupling Diagrams

In Sec, IV.A we demonstrated how to construct diagrams for semisymmetriz
many-particle states, and a simple graphical procedure was given. In Sec.
IV.B we showed how to separate graphically active.partic1es from a subshell.
There, the part‘of the configuratjon diagram involving expansion coefficients
and angular-momentum couplings constituted the Era block -or the ket biock in
the case of a‘covariant state or contravariant state, respectively. In Sec.
IV.C and IV.D, we defined the interaction bleck and the spectator block;
their typical diagrams were given. Here we summarize the resuits by the

~ symbolic diagrams:
(i) <q(a)aJM| VN[ g'(b)a'd'M*>

Spectofor block

<Pl ,
‘D(m?a.l N;{'u
= . .._».-}._y- P hea e >
j. . . db:rb _-.u'_'_ 2 I 23 .. . “;’\?.b‘; F I j-,
eVl I DAY Chki) SUSN
b f o ma R 31‘_P |
_ ‘ [o12T _ %3 ,
fna ok ' TraL ot Alock
RLIAI

Taternckon hQ0b£L._

(4.158)
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(i1} <q(ab)c>quVl]vN_.l ,qut (cd]a'J'M'; -

Specjk:i‘-ru Moe,ﬂ;

» ab e alt
Hayda ‘_<T;)f( njlt’% (UD>
> e
D(b|>3-| . N
A
e BRI i ¢
:r' P { +
oot - ot Sl g T
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»

#
... o(,::r;

Cably  led). L

e Mok ke AT Aloch. .

(4.16)
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After extracting the interaction strength, c.f.p., and summations over them i

{4.15) or (4.16), we are in general left with a pure angular-momentum-

coupling diagram, i.e.,

¥

v

fé

 (4.17)

Here the double-lines stand symbolically for all angular-momentum 1ines

connecting two diagram blocks. By using the transformation rule (2.14), we

obtain
T o+ T 7 2
X X o .
. >1 B |7
y g
Y 2N

(4.18)

The first factor in (4.18) represents a 3-jm coefficient, which is to be

expected by applying directly the Wigner-Eckart theorem to the semisyrmetirizec

matrix element. The second factor in (4.18) is a recoupling diagram repre-

senting analytically a recoupling coefficient. By using transformation
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rules given in Sec. I11.B, we can éxpress the recoupling diagram in terms
of products of 3n-j diagrams whose analytical values have been tabulated
extensively (Rotenberg et al., 1959; Jucys et al., 1962).

The most expedient way to factor graphically a recoupling diagram
into 3n-j diagrams depends, of course, on the particular diagram in
question. A simple rule is to look first for diagram blocks separable on

one angular-momentum 1ine and then on two and three angular-momentum 1ines.
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V. SUMMARIZED PROCEDURE FOR EVALUATING ANTISYMMETRIZED MATRIX ELEMENTS

In this section the results of Sec. III and IV wiil be summarized in
the form of a step-by-step procedure by which matrix elements of operators
or potentials between .antisymmetrized many-particle states can be evaluated.

- The prescription i5 given as follows.

(i) Follow (3.3) and (3.4) for one-particle operators, or-{3.7) and
(3.8) for two-particle operators to express the antisymmetrized matrix

element as a sum of semisymmetrized matrix elements.

(i) For each semisymmetrized matrix element, -construct graphically
semisymmetrized many-particle states: |
(a) Begin with the grand total angular momentum and the two
' angﬁ?ar momenta coupled to it. Here we use the bra state

to illustrate the procedure:

(5.1}
(b) Repeat step (a) starting from J1 and J, until a11 active
'subshells are decoupled. Closed shells are then added
separately, The resultant diagram is given schematically

as’
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1 %

T

T

T 7
N — s
To

-—,—-
_;'\

(5.2}

Note that in constructing semisymmetrized many-particle states those sub-
-shells which neither involve coupling with other subshells nor contain
active particles may be ignored,

The ket state is-constructed similarly.

{iii) Deéoup1e active particles from respective subshells by making

use of the'fractiona1.parentage expansions (4.6) or (4.9), e.g.,

' C N2
T“_ . ( 3":{’. )°<5\.2 J-a.z
T =
| D( ®
‘ AT

(5.3)

(iv) Repeét steps (i1) and (ii1) for the ket state.

{v} Insert the interaction block between Tines representing active
particles, and connect the corresponding spectator-particle lines in the bra
and ket states. Here the interaction strength in the interaction block can

_ be obtained analytically. A summary of the interaction strengths for various



439

commonly used operators and potentials is given in Appendix B.

(vi} Transform the C-G representation of the bra and ket states into

the 3-jm representation by using the transformation procedure presented 1in

Sec. II.D.

(vii) Transcribe analytical expressions from symbols representing the
interaction strength, the c.f.p.'s and the summations association with them.
The rest of the diagram represents a standard recoupling diagram which may
be reduced to an analytical expression. The transformation rules to reduce
an arbitrary recoupling diagram to tabu]ateq 3n-j coefficients is given in

Sec. II.B.

(viii) Repeat steps (ii)-(vii) for other non-vanishing subshell pairs,
as indicated in step (i). The final expression of the antisymmetrized matrix
element is thus ohtained by summarizing all the analytical expressions re-

suited in step (vii).
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VI. EXAMPLE

We illustrate the graphical procedure by an example:

Consider the C-AB;D Auger traqsition (Auger, 1925; Bambynek et al., 1972
in a rare gas ion, where C denotes the initial vacancy in subshell C, and the
final state is characterized by one vacancy in eacﬁ of %ubshe11s A and B
plus an outgoing electron D, This is one of the de-excitation processes of
an atom with an inner-shell vacancy, in which the transition energy from
filling the inner-shell vacancy by an outer-shell electron is carried off by
the ejection of another outer-shell electron. The transition probability am-

plitu&e'is given in the ‘Dirac~Fock formﬁ1atipn by'(Huang, 1978a)

. Y « My - h“
I{(C_ABED)_—_<[J; (}: )a(KIm(a’-: )X, T, (&, )“CTQJ’KIMI

¥ -—nt: ’ s -n 14 , . t’ ’ s, K ’
w3 vcél’:];(ﬂ; )“a-fa(}:”)*b%(&: )¥e Je 34]04 T M >

£<j.
(6.1])
with

LW,

{ - - “

= (X, %) |

L3 rtJ' ¢ J r‘:J.
SCTRAAICIENZ

T T Wi (6.2)

where the bra state is the initial state and the ket state is the final state
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with j q the angular momentum of the continuum electron. Here all the other
closed shells are denoted symbolically by JA. To focus on the essential

feature, we assume that the same orthonormal set of single-particle orbitals
is used for both the final and initial states. By applying the step-by-step
procedure in Sec. V, we evaluate the antisymmetrized matrix element (6.1) as

follows.

Step (i): There is only one nonvanishing subshell pair, i.e.,

T(wsv) (% v,

“3 ab,cd
(6.3}
with
Na=2‘ja+.I : ; N$=2ja
N = 23, + 1 NG = 25,
Nc=2jc N'= 235 +1
Nd = 0 Né = 1 s (6.4)
and
B\bc,o!. z (N_g )+Z (/\/ g’/\d)
A=Aty AxcH
= (even mumber)—| + (even nwmber ) ~2
. (6.*3‘)

= odel Mw
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Hence from (3.8)‘we can rewrite (6.3) as-
. ) . A
Tf(C‘AB;D>f —E(13a+')(23'b+')(13c+’)] *

X&%(ab)wm Vi e T™

- (a&(ab)o(:rmf\/ % (dc)d T >}

(6.6}

The coupling schemes, indicated implicitly by « and «' for the initial
and final states, respectively, have not been specified yet. The inftial
state is composed of closed shells with & vacancy in one of them.and there-
fore has no term structure. The final state consists of two vacancies and
one continuum e1ectron. ‘We consider the coup]ing scheme such that the two
almost filled subshe11s A and B are first coup]ed to form an ion core spec1-
fied by the total anguTar momentum J ab* The core state 1s then coupled to
the continuum orbital D. This coupling scheme of the flnal state is given

explicitly as
<[99 )0, 343M] . . (6.7)

Now we proceed to evaluate the semisymmetrized matrix elements in (6.6) with

the coupling scheme (6.7) for the final state.
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Direct matrix-element

For the first term in the cu%]y brackets in (6.6), we obtain the

following.

Stép (ii)-(v): Because those subshells JA which neither involve -
.coupling with other subshells nor contain active particles can be ignored,

we obtain

T =4

(6.8)
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Here the interaction strength, denoted by the cross "X" in the interaction
block, of the potential (6.2) can easily be locked up in Appendix B. Note
that all the c.f.p. in the diagram (6.8) are trivially unity although we

retain the c.f.p. symbols to illustrate the decoupiings. Also we have made

use of the simple relations (2.25) and (2.26) in decoupling closed shelis.

Step (vi): The 3-jm representation of (6.8) is given as

o ¥+ 3"‘\ + 3.':. ol oe

— 5. Sy >l

qﬁé'wr
-+
aSe

(6.9)

Step (vii): We use the transformation rule (2.11) to join the nonzero

free angular-momentum 1ines jc and J,

o+

—_—

Yo
b+
rf't‘-
I
Q

o\
o
ol
4\
S
o

(6.10}
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By applying the transformation rule (2.12) to the zero angular-momentum

lines in (6.10), we obtain the simpie diagram

—¢ 5 wX (Gabeddar +1)"
T, Mme ¢ & =

. . . 2 "/z

{(2 3'&"")(2 a'b+i)(23'c+l) J

R R N :m,}

(6.11)
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Exchange matrix element

For the second term in the curly brackets in (6.6), we proceed as

follows.

Step (ii)~-(v):

(6.12)

| =
aa.l\ EEL '
- X é, .
i |
b + %

. 4 "';ﬁ & \r‘ R
C - l <
& T & o - (6.13)
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Step (vii):

T Mm,
;i %J\
—0——7-———b—~—>-—‘—$-——
g - 3_ + ¥ 0

|
oM

?)?c

g;f?c’g;fl Z?, ><g'—(ab) dC)(ZU;b“f‘I)_
&

‘ : \ -y 3T, |
X[(23;+l)(23—;+?)(22;+02] lé(_)c 3& jb{‘ | j&b .
% & 37

u-Qe -

(6.14}
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Step (viii): By subsiituting (6.11) and (6.14} into (6.3), we obtain
the antisymmetrized matrix element (the transition amplitude) for the

C-AB3D Auger transition in a singly ionized closed-shell atom,

a'c, MM S~ 24 4+ i
ita~ T, . 4.3, Top 4 4, T
(- "X (dbed) b -X.(ab;o\c.){ S ek
d Fe ¥y ¢ Fd F. &
{6.15])

~ Here we have used- the fact that ja, jb? jc, and jd are all half-integers to

simplify the phase factor.



59

ACKNOHL EDGMENT

.This work is supported in part b& the U. S. Anﬁ; Research Office
{Grant DAHC04-75-G-0021) and by the National Aeronautics and Space
Administration (Grant Nﬁé 38-003-036) during the author's. stay at the
University of Oregon. The author would also likg to thank

Professor Anthony F. Starace for invaluable comments.



60

APPENDIX A: - GLOSSARY OF TERMS

Clebsch-Gordan coefficient, Wigner coefficient

Alternative names for the vector-coupling coefficient.

Wigner 3-j coefficient or symbol

The symmetrized vector-coupling coefficient defined by Wigner (1951},

Covariant 3-jm coefficient or symbol
The vector-coupling coefficient defined in (2.2) in the covariant

notation (wigner, 1959).

3n-j coefficient or -symbol
The 3-j symbéT is defined as the triangular delta in (2.19). The
6-J and 9-j symbols have their usual meanings while the 12-j symbols
and so on are not unique (Edmonds, 1957; Jucys et al., 1962; El-Baz

and Castel, 1972).

3n-j coefficient or symbol of the first and second kind
The‘symmetriéed recoupling coefficient defined by Levinson and
Vanagas (i957). Their definitions are given in (2.22). and (2.23).
(Jucys et al., 1962; El-Baz and Castel, 1972). .

Subshell

A collection of particle states having the same quantum numbers n,

f, and j (orn and k). (See, e.qg., Grant, 1970.)

Configuration
A configuration is specified by the number of equivalent particles

-occupying each subshell and can be denotgd by the aggregate {NA}.
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Antisymmetrized many-particle state
The antisymmetrized state of a configuration. In this work, we mean
exclusively the antisymmetrized jj-coupled state in which éhch subshell
of equivéTent particles is in a definite total subshell angular-
momentum s;ate and the whole many-particle system is in a definite

grand total angular-momentum state.

Antisymmetrized matrix element

The matrix element between antisymmetrized many-particie states.

Semisymmetrized many-particlie state
The many-particle state which. is antisymmetric within each subshell
but is not‘antjsymmetric with respect to‘exchange of two particles

from different subshells.

Semisymmetrized‘matrix element

The matrix element between semisymmetrized-many-particle states.

Active particles
Those particles which actually participate in the interaction in a

semisymmetrized matrix element.

Spectator particles
- Those particies which, as opposed to active particles, do not par-

ticipate in the interaction in a semisymmetrized matrix element.

Jm~scheme matrix .element

The . matrix element between uncoupied Dirac single-particle orbitais.

Interaction graph

. The geometric part of the jm-scheme matrix element of an interaction,

which-depends only on the tensorial properties of the interaction.
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Interaction strength
The dynamical part of the jm-scheme matrix element of an interaction.
It can be expressed in terms of reduced matrix elements of tensor

operators involved in the interaction.

Bra and ket blocks

The diagram -blocks representing the angular-momentum coupiing of the

bra and ket states, respectively, of the man&-partic]e system.

Interaction block

The diagram block representing the jm-scheme matrix element of an
interaction, .including the interaction graph and the interaction

strength,

Spectator block ‘
The diagraﬁ block representing the scalar product of uncoupled

spectator-particle states.

Recoupling diagram

The graphical representation of a recoupling coefficient.
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APPENDIX B: GRAPHICAL FORMS OF OPERATORS AND POTENTIALS

In this appendix we will consider the jm-scheme matrix elements of one-

and two-particie operators, i.e.,
Q) 3 + o)
= r
<“'IV “’) So\ U, v Uy K : (B.1)

and

L) + + ()
—( 43 3
{ab| Vv |c0\> ____jq r;Jd r U&co Ub(z) Y, U, Uo{(z) >
' , ' o (B.2)
and their graphical representations; The Dirac orbitals in (B.1) and (B.2)

are assumed to have the form

! . _'_._._( L G-ﬂK(t'J‘(le) ’ -
nKm r Fa (1) LT
.- : (8.3}
where the radial functions Gnic and FnK are the large and small compenents,

respectively, the Q. are normalized two-component Dirac spinors. Here the
orbitals are completely specified by the quantum numbers n, «, and m, which
have their usual meanings (see, e.g., Grant, 1970). We will evaluate (B.1)
and (B.2)} in terms of radial integrals for various operators and potentials.

We first define various functions, notations, and coefficiénts and

present a few useful formulas.
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(i) Different combinations of radial wavefunctions:

Wop(r) = 6 (r) Gy(r) + F (r) F (r)

Y p(r) = 6,(r) 6. (r) - F (r) F (r) ,

-

Vab(f) = G, (r) Fp(r) + F (r) Gy(r)

Uy (r) = G, (1) Fy(r) = F (r) 6,(r) ,

' ey - #)
Paplr) = Ugplr) + =5V (r)
' CRER
Qup(r) = -U, (r) + __3_377__'Vab(rl . . (B.4)

(ii) Various radial functions:

' 4 A+|
Ef (nr) = r, // r 5
(B.5)

where r<(r>) is the smaller (larger) of r and Foe

jﬂ(r,rz)=dw§£(wQ)£2(wg)) -

where jz‘and hz are the spherical Bessel and Hankel functions, respectively.

Ux(m) =0 (r, *rl){'R-Q-H( rra) —'R£-$ r n)]
(B.7)

with e(ry - r,) the Heaviside step function -

{ Z 30,
B(z)=
o 240,
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. L . ) -
A=) 0§ ACIALNTIO N T
r_f-f . (. .
! - . ) ro<r. .
w':.,..-?'fl r' J:((wrl)'glg.ﬂ(wr:’»)) ! 2
2. - .
(B.8)
rl’-j o : .
rr)= 2 _ L ; .

¢ o
--—F—a—z(wr,)*g}‘l (wr), ML

t

(8.9)
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(i11) The following n_o'tatibns are used to denote integrals:

| ({(r)}———fah-f(r)’,

- Lvern

oo ‘
<?%_(l-';) RJ'_U', l";>>z‘ ::'Tr(f&g;,?b )fdg'ab(rz) Ré( r}f}_) ,

2vén. .

CREIREDQI) =0 44T, 440
‘ e

: o
X 5; 4;7_5 o!rl’,zc(r:)@(f‘. YQQM(‘Z} ]
0

Odq

SAGICRID RS (RPN

[#]

e S
xfd;j ar; BC( r.)RJ(r,r;_) Q,M(f‘z) ,
- 0 " .

where the parity selection function is defined as . _
. - (~| .for- 'Qq+j_+9£ Ryzmn
O -{-91» /_Qa +&.- -+ 'QL Od.‘( .
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(iv) Define the coefficients

o "%

(B.10)

d;(;z;b>=(— [(zhﬂ)(z&bﬂﬂ (a; + %, ,

C (ab;cd)= (_ [(:.3. +!)(2‘}b+|)(23. +1) (21 +{)]

% a—:»(_)(:l- 3'3'4
hoo kN o

(B.11)

_ 1.;+l b,
Cém(a\_-,b) ‘ ) C(& b)(m&} g.,,) (B.12)

(v)

I (Kam Km,,) Jamo Y.

Katma Im ‘ Kbmb

=T(2340C, (@:8) o O
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(vi) The vector-spherical-harmonics expansion of U; a Uh;

+ a

U<><U

(B.14)

where

¢ = '"'(paé‘ljb)[}/(u.-!-l)] ?%(f’) 9
Fa-1)

Ay

b=~ A [Tt ek Ve D
i - | -

¢&( +|) ‘ (? ?zh) {(3"“)/(2&-?!)1 Q L)

(B.15)

This was first ﬁerived by Mann and Johnson (1971), and we have verified it
independently. Since no derivatfoﬂ has previously been given for this ex-
tremely useful formula, we present its derivation in Appéndix C. Many of

the techniques of the vector-spherical-harmonics expansion may be found in

various books (Rose, 1957; Edmonds, 1957; Akhiezer and Berestetskii, 1965).
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-
(vii) The vector-spherical-harmonics expansion-of B(1),

B o=y, {43, 1V )%, U, @] 7,0 1) fus

is given as (Huang, 1978a)

Bw=iL ¢, (0P, 3,

44m é grm (B.16)

where

By ~Lilegnr1*Caig, P )

-1y

KRV W

...(?_ﬂ)ig +(‘2.3+|))d T de (r, >>

¥

i

"

1

_[(3+!)/(23+|>3] <[3+Dga+|&5"l ;

(a-{-l) | even -
K [aa'-l +(2&+!>’ta' ] '?5.4'>:2.

In the T1imit Q + 0, we have
—A
BO)"“*"‘VJdBF U (1)0< Ud(’-) ‘ v_zr;L

and the radial function ¢32 in (B.17) becomes
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. . e 2V n
= M& a _ 3“ff r
’*{;.(3.70 PR R qu( )>
Qlja‘a' =0
4+l ' 4 N
_ %/ 3+ (ry-—=1. (r,,>
"Pﬂ‘(&"H) ( +!) <23 +3 %,ﬂ& Q) 1, JPhd o
(Q.TS)

One-particie COperator

We will present the jm-scheme matrix elements of the operator f(rl,

iK-¥

By a-p, a, ¥, and e e in turn.

h’(alfcolis) Seke Svm, W ”‘cr>>

da 3

= ———>— >
(R.19)

where the interaction strength, denoted by the cross "X" in (B.14}, is

X(ﬂ b) gﬁAQL <W 'F“"> - (®.20)

Note that & = §; . 6 .
KaKb Jadp galb
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» - -
4
<a|\(-‘>l b> - e k N

(8.21)

where

Lo Ly

X (a;b)= g < de.b> * . (B.22)

(ii1) The matrix element of &P may be obtained by making use of

. the formula

<0\[T2-$l5>= ‘5<Q’§'?l"°l> : (:B.23)

with the understanding that [b'> denotes the Dirac orbital with the

substitutions

G () — Gy =(~—+ 2y G, (0

F, (0 — F A= (;‘r - lf_" ) R (f) (B.24)

for ‘the radial parts of the orhital |b>. By using the expansion (B.14) and

the formula

d0.
" (B.25)

A L ¢ ¢
. 50‘-&!’" Y&,ﬂm - JLL"I\' g /Ql mo b
we can easily obtain the result

el Fey=C L KUy

(B.26)
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This agrees with the result obtained using other methods (see, e.g., Rose,

1957;: Grant, 1970). Hence the graphical representation is

‘ Y g-o\ q‘L;'
<0\|52- 7l by = —>—f—
l N (8.27)_
with the interacfion strength .
\ b)) = ) .
X (a5b) gw., U, > -

>

(iv) By using the expansion (B.14) and the formula (B.13), we obtain

— 3‘ i m
Calxlsy=("* D IACHIRCHY
'Mk mb-‘m& ab .
(8.29]
where the radial integral is
- A 2ven
Y= 1 & '
Ii(a’ b) = ¢ My, < ?a.ln >
(B.30).

Here éq is the spherical unit vector (Edmonds, 1957). Therefore its

‘graphical representation is

1 . (.31}
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with the interaction strength

X ey =C (as0) L (asb)

(B.32)

(v) For <alr|b> we obtain the same interaction diagram as (B.31) with
the radial integral given by

. A .y.vem.
Il(&;b)= - e

Mp—mg < w&br > )

(B.33)

JRE TS N
(vi) For <alz eﬂz'r|b> we use the expansion {B.14) and the familiar
Rayleigh expansion of a plane wave,

iRer N
€ AWFZ ¢ aztkr)z Y (P Y, (k> .

=g g (B.34)
The rest of the calculation is straightforward, and the result is
‘ - e X
<a..,o<g ,L>-_-—_}: Ggp(&;[))xa'f(a;é) .

#L
%

Here the interaction .graph is

(B.35)

t . .
G.P(G;L)=(:j+|)/z Ia 3 mb (’”b me £ 4
a ‘ ,"0. 'hb*‘Ma, 35 h"a'h‘l % %)
’3} 3 S 2b
= 3— | 3
£ +

4 ' (B.36)
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and the interaction strength is

A AN ~ ,
asby= e C.{a;b){4w) ¢ (k) =
X am= qGemantty b | on,
(B.37)
with Dj£ g%ven as.
]) - 4k 3-3-; :> 3 ,e = a-—, 9

4R

(_3‘ ) Ié( K&+Kb)< Vau ql.a‘so‘lal‘ k=3

:_. LWk . aven '
- EL,, dpa1 >, - R=g+1

(B.38)

Two-particle Operator

We will deal only with rotational invariant interactions, which are
generally linear combinations of zero-rank tensors obtained by contracting
tensors of the same rank. The matrix element of these interactions can be

calculated with the result (Huang, 1971, 1978a, and 1978h)

L vy =T G, (b5 )X (b ed)
4
(B.39)

where the interaction graph is
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G, (absed) = fo 3 meN( L g meme )

WMa Me-iMg de My 9;{ 2

. éa
== > = v b
é
> >
O (8.40)
and the interaction strength is
)(J(&b;c.al-) = (’,J. (abscdd 1‘5 (absed). (8.41)

Here Ij(ab;cd) is defined in terms of raﬁia] integrals, depending on the

specific form‘ofvv(r12). We summarize the results for various potentials:

(i) Coulomb potential: 1
"2

' . _ ‘Rven ,
Ia.(al,,cd) =< wa\cf{.?a' WL4 > . (B.42)

iwr
o 12

(i1) Covariant photon interaction: (1 - @y.a,) —x—
172 T2
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' _ven
Ié.(ab; cd) “'“.(23'.?- t )< wac. @} Wbﬁf >
. odd
24+

- Cl- ga)(Kkﬂ-Kﬁ)(k‘B;Kd)a:(é-u) <\{\<_ 8'4 V»bd>

_ . wen . NEM.
+3<%, %é‘-l?sq> +(3’+')<QM géﬂ de> .

(B.43) |

This is obtained by using the expansion (B.14) and the formula
A

- r on . - r
4, At f-n Yw(r‘) YM (ra) Tépm(r‘) Y&%m'( ) .

_ 44+R4+m+|
( ) g&&, g‘QQ’ mi=m’ {2/\_ ’ (B.44)

(iii) Transverse photon interaction:
‘ Lwr LW,

JEEN e 12 A e e < -
b(dz'dz-)#_?_;—“-f(o(u.vg)(K;‘v_,)[ w‘riz ].

_ ' 2 g+ A
I& (absed)y=—(I~ %o)( REW G Kq);{ca:-!-:) < \'éc.%;‘ Vo)

H(KKOK Y8 B <V 950, 000> )

e L2ven oven
+3‘L3‘+I)[<P‘{L)dj,&m> +<Qm_té?bd> —] ' -

(B.45}
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This is obtained by making use of the expansions (B.14) and (B.16) and the

orthogonality relation

da r) = .
g YE ¢ Y ga'é’ g.t{' S“*nm
(B.46}
(iv) Breit interaction:
. l -  .a v ! 2_)(01 r,
- 20, [(O‘"‘xz)-f_ ( t_z ) j ’
- Iz

which represents the transverse photon interaction in the 1imit w - O.

T.(abscdy=~ (-
b edy=-(1-C. (k. +z)(s<b+f<d>g(a+|)

+ 2 T 2uen
: 27+ 237+ <FMPQ'_,.? >

[ evan
T SRRy Gy

2ven

{ KVen
—f-;(Q%UJ(lz) g > —}——-<P L GDR D>

(B.47)
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(v) Operator gikgé, which is proportional to the leading imaginary

part of the transverse photon interaction.

even

Ié (ab ed) = = gq'| < —Pac>

2vien,
< ?54 > * (B.48)
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APPENDIX C: VECTOR-SPHERICAL-HARMONICS EXPANSION OF U+ a Ui

From the properties of the two-component Dirac épinor @ 0 We can easily

prove that
- A )
o - r nkm R—Km >
T Lo, = (XD Qy, >

g U(FxLy @, = (kK+1D 2
(€.1)

Hence three useful formulas may be derived, i.e.,

Wa, ‘k(,”‘l;

S >a - Ry I K
dn 'QK& \ra"m = - 3'(KL my - Ka ’"4‘) ’

+ — ' . = ¥ . . ‘—‘ ;
Sdn.QK&m.O'ﬂ_hm L Ya,h = - (/Q*Kb)-zg-( K, Kam

fo\fz.()_hm -k.a, b L{FXL) ‘r

= Kok L (Kmy, Km, )

{(€.2)
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where Ij(xbmb, xama), etc., are defined in (B.13). To obtain the vector-

s

spherical-harmonics expansion of U: a Ub’ To€4,

+ = A |
. A = (e I~ :
Vo U, %n Cd?*n( )T‘ﬂ"‘ o (c.3)

we simply evaluate the expansion coefficient as

Fa = AL
ngh(l') “'“‘S""“ U, * U, Ya-h, (). (c.)

By using the formulars (C.2) and noting the relations

b

A A e A o
= (24+1) GAR —(j+1) L (rx L] Y.
4 (-1 m ‘ Z: J K ( ;] V/'J’n ?

;—L ' . . “é""“.
145 m L a+l-)] - Ta‘"“? ,

and

we can performs the angular integration of (C.4). The expansion (B.14) of

U; 4 Ub is thus obtained.
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