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ELECTRONIC INSTABILITY AND CHANGE OF CRYSTALLINE PHASE
IN COMPOUNDS OF THE V381 TYPE AT LOW TEMPERATURE

J. Labbé and J. Friledel

PFaculty of Scilences, Solld State Physics,
91 QOrsay, France

Introduction

A martensitic transition of the cuble structure to the tet- /153%
raponal structure has been observed at low temperature in inter-
metallic superconductor compounds of the V3X (X=51, Ga,CeSn, ete.)
or Nb3Sn types [1-3]. This change in strueture occurs at a temper-
ature Ty, which 1s generally higher than the temperature Te of the
appearance of sunerconductivity,!

We propose to show here that this change in structure can
be explained by electronic instability of the cubie phase. Be-
8ldes, we wlll show the conditions, under which such an Insta-
bility favors, for the compounds under consideratlion, the ob-
served change in structure, rather than other changes in structure
which could be conceived.

The instabllity of the d band eiectrons of these compounds
is of the Jahn-Teller type. It is known that the Jahn-Teiler
effect 1s a crystal distortlon, which removes the degeneracy of
a partially occupiled, localized electron state. The simple case
of the compounds under gstudy permits analysls of two different
dJahn-Teller type effects, which can cccur for the extended slectron
states of a partially ozcupied band: uniform distortions, which
¢hange the lattlice symetry; periodic distortions, the wavelength
of which is generally connected with that of the Fermi electrons.
We shall show that, in every case, the energy obtalined by removal-
of the degeneracy increases only as the square of the distortion
for small values of 1t, contrary to the linsar effects observed
for the localized electron states. These ¢ffects artually are
highly analogous to those of the exchange potential on electrons
in maghetic metals. The distinction between the uniform ferro- .
magnetic couplings and the periodic antiferromagnetic couplings
or helices is found here. Lirewlse, the energy changes are of the
“second order in the magnetic moment. : - .

¥*Numbers in the margin indicate pagination in the foreipgn text.

- 'However, we note that superconductivity appears to have beén
observed in the cublc phase, due to the hysteresis of the marten-
sitiec transition. '



In the case of the compounds under conslderatinon, the d
band has a very slmple form in the stronpg bond approximatilon,
which permits a quantitatlve comparison of the stabillty of the
uniform and periodic modes of distortion. But, the essentlial
conclusions hardly depend on details of the model used, and they
would be preserved in a more refined narrow band model.

In thls artlcle, we confine ourselves to study of the unl-
form modes of distortion at zero temperature. In a second
article, we shall see what the c¢ffect of temperature on these
modes 1s. In & third article, we shall discuss the periodic modes
of distortion. We shall then be able to precilsely deflne the
d band filling conditions, in which the observed tetraponal
distortion 1s the most stable,

1, Uniform Modes of Distortion a’ Zero Temperature

1.1 @& Band Structure in Cubic Phase in Strong Bond
Approximation - '

At ordinary temperatures, the crystal structure of the
compounds under consideration 1s that of tunpgsten f. The X atoms
form a centered cuble lattic, and the transition atoms are dis-
tributed in rows, Independent of the hipgh density of atoms, which
are aligned along the three planes of the cube [100], [010] and
[001] (Fig, 1). We shall use a model which contains a system of
strong hond d bands and an s conduetion band., Since the atoms
in one row are much closer than the transition atoms of the other

/154

two rows, the d electrons of the atoms of each row can be dealt

wlth independently.
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Fig. 1. Crystal structure
of V3X; the X atoms are not
represented here; they ac-
tually ocecupy the apexes and
the center of the cubic unit
cell; the spheres represent
- vanadium atoms..

oo elels

In this linear model, the d
orbttals can be classified into
three groups, according to their

. direction with respect to the Oz

axls of the chaln under consider-.
ation, Thus, the following are -

distinguished:

_ A first band formed from
a d3z2_p? orbital by a strongly
overlapping atom,

A second band formed of

two orbitals per atom, the dygy and
_the dyx, with a slighter overlap;

A third band formed of
two orblitzils per atom, the dxy and
the dxz_yZ,.with a still siighter

" overlap.



For a band formed by a plven type of d orbital, the electran
enerpy varies sinusoidally with the wave vector k, directed aloeng
the chailn:

E(’f) ~ Eo ‘{“ 2v cos ka

with .
0= < fut| Vi — Vg >

Eg¢ 1s the energy of a state d of an 1solated utom; a 1s the
distance between two consequtive atoms of the chain; Vi is the
lattice potential of the chain ; Vp ls the atomic potentlal
centered on site n of the chainj ¥n 1s the d atomle orbiltal
centered on the same site, and we have used the ugual rough ap-
proximation, in which all the overlapping integrals except v
are dlsregarded,

The density of states for the type of d band under con-
sideration is deduced from the exprassion for E(k)

= P{ B Eq + Bu V3] Eq + B = B}V
with Ep=2v and where T is a normalization constant.

It 1s seen that the denuity of states theoretically hd°
infinite values at the band limits, Tn additicn, the width 2|Em|
of such a band is proportional to the intepgral of overlap v be-
tween two atomice functions d, centered on two consecutive sites
in the chain. Also, the wldeut band 1s that formed with the daxz_rz
orbitals and the narrowest band, that formed with the dxy and
dx2..y? orbitals., As a result, the density of states has the ap-
pearance shown in Fig, 2., It results from the superpocsition of
three types of d band, to which the contribution of the conduction
hand must be added.

. _ : Besldes, the measurements
ot} ﬂ* IZE ¢ whlch have been made of specific
: : : ' heat [4], susceptibility [5]

and Knight displacement [5],

as a fuanctior. of temperature,

indicate that the density of

states has very high values in

I the neighborhood of the Fermi
level, The Knight displacement,

. for example, varles extremely

rapidly with tenperature, be-
tween 0°K and 300°K. That ap-

pears verv ‘much to confirm the exlstence of a very high and narr-w

peak in the neighborhood of the Fermi level which 1s guite con-.

- sistent with ocur unidimensional model. Indeed, it can be granted




that the Fermi level En 1o loecated near one of the peaks in

Fipg., 2. The three d electrons of nilobium or vanadium provide
only partial filling of the three d bands, less than half the
ten locatlions avallable per atom. With account taken of the
presence of the conductlon band and the electrons contributed Ly
the nontransitlion X atoms, 1L can be expected that the narrowest
band, for example, contains very few electrons, all located In
a region of a very high density of states.

All of the forepoing sald for a chain of atoms can be re-
peated for each of the three directlons 1n spacce. Actually,
there are three d band systems, each corresponding to one di-
rection 1n space. In the cubic phase, the distance a between
congecutive atoms of a sinpgle chain ju the same in the three
directlons, and the Lhre@ band systems are equivalent., There is
degeneracy.

Among the uniform modes of distortion which can be concelved,
the only interestling ones are those that modify the internal
structure of the chains, but not their arrangement relatlve to /155
each other. Actually, In our model of Independent linecar chalns
for the d bands, an increase in enerpy can only result in a modi-
ficatlon of the distance between the atoms 1In each chaln., Feor
example, a change in the spatial oricntation of the chalns with
respect to each other, and thus, a chanpge in the angles of the
unit cell of the Bravals lattlece would produce no decrease in
d electron energy, and it would, therefore, be opposed by the
actlon of the conductlon el@ctrons, which undoubtedly tends to
stabillize the cuble phase.

As a consequence, we now have to consider tetraponal or
orthorhombic¢ distortions as uniform modes of distortion, as a
result of which, the distance between the atoms of . sinugle
chain remains the same in two directions or, on the contrary,
becomesdifferent for all threc directlons.

1.2 Tetraponal Distortion at Zero Temperature

1.2.A Physical Information

. In the tetragonal phase, the distance between atoms becomes
a{l+e) in the [100] disection, for example, and a(l-e£/2) :n the
other directions, [010] and [0Cl], the conservation of volume
belng an experilmental fact. The cases e>0 and <0 Lorrespond to
different physical situations.

Let us first assume €>0. In chains parallel to the [100]
direction, the distance between atoms increases, the integrals of
overlap d decrease in absolute value and, therefore, the band
~width decreases and the bottoms of the bands are displaced towards.
-positive energies. In the [0103 and [001] directions, onh the '



contrary, the atoms come cloger topethey, the band width ln-
ereases, and the bottoms of the bands are displaced towards
nepative enerpgles. Mercover, these two diveetlons remuln equlv-
alent, and the depeneracy 1is only partially removed, Fip. 3
shows the new band structure which resultc. The electron distrl-
bution is medified, and the Fermi level underpoos o small diec-
placement; 1t maves from Ep to E'p. A variation in enerpy co-
eurs, and we diseugs the initial 1illing condition of the bands
in which 1t 1is negativ; and leads to inctabllity of the cuble
rhase. We shall show that this iInstabllity conditlon ocgurs In
the case of large values of the density of ctates at the Ferml
Level gp, l.e., when 1t 15 located very elo"ﬂ to one of the
uinrularitieu of Wip. 2, This cecurs when ohe of the three bande
dsxz-v2, dgz,yz OF dxa_y2, xy 15 almost full or almost empty. Be-
sldes, we have seen thaJ, experim@ntdllv, i very much appoars

to be located cloce to a peal,

o ' 1t will be very =apsy for
,m’ i &Md i , } J us to show that, te the oxtont
§ that we can disrerqard the dis-
placoment of the genter of the
band, the condition of incta-
N e bility 15 the same for two
Wcsiess.; 5o A ' ., symmetrieal positions of the
F o Ferml level wilth r«opéﬂt to
thig eenter (Fip, 4), 1l.e.,
far an almost full band and
for an almest empty band.

T

We note here that, In the neishborhood of a peak, the ea-
sential contributdon to the density of states comes only from tho
d band which ie nearly full or nearly empty. We shall see that,
to the extent thiat EF is located near such a peak, the approxi-
mation can be made of considering only this band in the calcula-
tions. To account for the ovher contributions, the band structure.
would have to be known more guantltatively, in particular, the
respective wildths of the different 4 bands, as well as the exact
positlion of the s band with respect to the d bands, Actually,
there can only be a very rough idea of it, and we shall hold to /156
the approximaticn indlecated.

Since distortion e is very slight or there i1s none, there
can be two situations of different natures. For example, let us
~take the case of a nearly empty band. For very low values of
€, the Fermi level E'y remains above the bottom of the [100] band,
and the separation cf the electron states of this band and of the |
[010]} and [001] bands 1is incomplete or occurs only in the neipghor-
hood of the bottom of the latter two. We shall show, then, that
the variation of energy is only of the second order, with respect
te €. We can consider thls situation to be characteristic of a
Jahn-Teller type effect on a band structure, On the other hand,
when € has larger values, 1t can occur that E'p becomes lower
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than the bottom of the [100] band (Fig. %), The separation of the
electron states 1s then complete, and we find that the variation
in enerpy becomes of flrst order, with respect to g, as would be
the cage for loealized states. For a nearly full band, similar
coneluglong are reached, by considering the holes.
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We now consider the case e<Q.
The dictance botwenen atonp decreaces
in the [1007 direction and, on the
other hand, increases in the other
two direetions, This time, the [100]
band beeomes wider, and the [010] and
the (0017 bands contract (Fip, 11).
For large values of e, these two bands
become empty (Fig. 6), We note that
there hag to be a larper distortion
to empty two bands (e<0), than te
cmpty only one (e»0}, and we shall
ser that the case €40 1s only favored
with really very low initial fillinpg.

In all the cases previocunly
concldered, we shall conslder that
the action of the conductlon electrens
and the nontransitien atoms tends to
stabllize the cuble phase. In cal-
enlation of the variation in energy
by distortion, we gshall account for
it by a term, which we shall write
1/2 A'g?, where A' 1s an essentially
pogltive coef'ficient, which we shall
conslder to be practically Iindependent
of temperature., We s5hall see In Part
IT thavu, at normal temperatures, A'/2
is the main contributlon to the medulus
of shear,?

To zalculate the contribution of
the d electrons to the wvariation in
energy hy distortion, we shall use the
fact that the width of a d band varies
roughly exponentially with the distance

" between nelphboring atoms in a sinple

chain., In fact, the principle contri-
butlon to the intepral of overlap’
comes from the reglion located at mid

" distance betwesen the n-1 and n sltes

under consideration., So that this

- ?p' is connected to the ripidity constants C'yyand C'y, by
3NA'=3/2(C"11 -C'12). C'i;and Ci2 are calculated here, for a
erystal volume containing 3N trahsition atoms; they actually



integral is, 1n the first aporoximation, proportional to e-aq,

q desipnating the coefficlent of Slater, whilch determines the
radial dependence of the ¥pn functions, It is deduced from this
that, if the inteprel of overlap 1s v in the cuble phase, in the
tetraponal phase, 1t becomes ve=ag€ in [100] direction and vel/2aqe
in the other two directions.

In appendix ¢, we show that, at 0°K, the third order terms of
€ do not cause any major modlficatlon of our results., Therefore,
we shall disregard them here, '

Finally, we shall calculate the sharp decrease in the density
of states at the Ferml level, which occurs in the tranpitlon from
the cubie structure to a tetraponal strueture with one or two
empty bands (large absolute values of ). This last point is
very lmportant in the interpretation of different experlimental
regsults.

1.2.B Case of Low Absolute Values of Disfortion e

As long as no band becomes emply, 1t is not neceasary to
distinguish the casese>0 and £<0. We shall calculate the energy
variation due to distortion, in the form of an expansion of g,
which 1s valid in a very small area centered on e=0,

There are three systems of parallel rows of transition
atoms. N 1z the number of transition atoms in one of these three
systemsa., The total number of transltion atoms In the crystal is
3N, In the cuble phase, n(E} is the contribution to the density
of states of a single transition atom of the d band. The total
density of d states in the cubiec phaaé 1s, then, 3Nn(E).

Likewise, in the tetrapgonal phase, ni{(E) is the contribution
of each of N transition atoms to the rows parallel to the [100]
direction, and ns{(E) is that of each of 2N atoms to the rows
parallel to the other two directions. The total density of d
states in the tetragonal phase 1s written Nn;(E) + 2Nn,(E).

As long as £ remains sufficlently small in absolute value, /157
electrons remain in each of the three band systems [100], [010]
and [001]. When we disrepard the transfers of electrons from
the 4 band to the s band, the new value E'p of the Fermi level
'1s obtalned by writing the conservation of the number of electrons

- in the d bands, or " >
' ' N f ny(E) dE
Py

’ L . E . . . . . . . :
+2Nf£rﬂz(l3} dE=3Nan(E)df'4 (1.1) )
Em:. e . . )

are only the contributions having the physlcal origin lndicated
in the total constants of ripldity Cii1and Ci2, which also con-
taln the contribution of the d eslectrons., : S



with
Em == Ew exp (= age) et Ly o= Eyoxp (% aq:)g

Likewige, the internal enerpy variation at zero temperature,
due to deformation, ls wrltten

‘& . T ':i '1' Al Al
dU = N j;m Eny(E) dE + 2N fk N Eng(E} dE (1.7)
Ey - 1
w— 3N [ T En(E) dE + 3N 5 A'ct,
j;._ ) 3

The modulus of shear A'/2 iz calculated per transition
atom.

As always In the Hartree approxlmation, the intepmrals of
(1.2) of the enerples of the states of one eleetron includes
twice the Coulomb interactlon enerpy of the electrons consildered
topether,  But, as we ghow in Appendix A, the terms of the lntra-
atomiec interaction exactly balance each other in the strong
bond approximation used here, The intepratomic interactlion terms
are comparable to the Integprals

< Yol Vi — Valgn >

disreparded above. Therefore, the error In dlsregarding the
Coulomb interactlons 1s nepgligible.

: "Funetions ni(E) and nz2 () are deduced from n(E) by double
affinity, one wilth respect fio the eneprpy axlc and tie other,
with respecet to the density of states axis, so that, with the
oripgin of the enerples at the center of the band, we have

m{E) = n(ls'.l) osp {age,

assuming
| Ey=L éxp {aqz) L (1:3)
ne(E) = n(lig) exp (———% nqs)
assuming

E, ..mlz‘exp(--*lgﬂ'ls)' | (1.4)
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_ " pRjervion
dU = N exp (-~ age) f priv Eyn(Ey) dE,
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k ElLespl—1/1
+ 2N oxp (,_f ﬂqc) ./;: P o n(ly) E,

L B 1 ...
—3N f’ En(E) aE: -+ 3N 3 A'et,
g . .

Then, E'p=Er and dUF are obtalned, in the form of expansions

By substituting (1.3) and (1.4) in (1.1) and (1.2), we

-~
ja

. 5)

(1.6)

of €. Caleulation easily shows that, as we foregaw in the introe
duetion, the coefflelents of the flrgt order terms of g are zero,

Confining ourselveg to geeond order terms, we £ind

(P Loaap Yo By 0'(£) 2

B
AU = 3N i % a2 q’ﬁ ¥ En(B) dE
. . m

--3' a* rj’ I} n{Ey) % A ! €3, B

The condition of Instabllity of thé cuble phase 1s obtalned
by writing the coefficlent of e? in (1.8) as nepative,.
flclent A' is popltive, as we Indicated above, the Intepral

[ " (k) dE
¥

1s always limited in absolute value. On the econtrary, the
term containing n(Ep), which 1is negative, can have a very larpe

absolute value under certain filling conditlons.

that n(Ep) has very larre values, when the d band under consid-
eration is almost empty or almost full, The essentlal contri-
bution to n(Er) then comes from this band alone. 'S
energy oripln has been selected as the center of the band, 1t
1s easlly seen that dU has the same value for two symmetriecal
posltions of the Ferml level, with respect to fhls center,

. Tne condition of instability can be, forpulated
the theoretical expression n(E)={4/®)(Eq®~ E*)-1/2

gimply, 1f .
is adopted

(1.7

(1.8)



for the density of staton,  The nopmalisation factop 4/1 oope
epponds to the capse where the d band under eonsdderatdion hng
twofald dggeneracy (Lhe dygs,dyy or dx?ay?, dxy bands). By taking /158
spin into aceount, there then apre foup olootpoh shtatos per atom
avallable to Lhir band, By asouming
"1‘ £ I':m LY 4\'|

(1.5) boeomns

v mon|- SO e 1.9)

Xp belng defined by Epslpg con Xp.

The number of electrons per transitlian atom loeated In the
d band undeor conoldovration is dv'iﬂnatvd Qe We hnave

n(}
Q = f :e(t.;ar..u-af dod Xy = .L.

Thus, the cuble phase is uhotable at zero tempepvature when

o wQ L 2at g8 B '
sin 7 < ..,,_;:.:i'mli. {(1.10)

The number of electrons @ can be deduced from the experimental
value of n(ErF) by |

.owQ A
B o = nmm]uu-:r) (1.11)

In the case uf a nearly umpty band, conditlion (1.10) 1HVlees

0< Q < s Arc sin 2a? q=IL1nI |

and, in the case of a nearly full band, 1t Involves

4 -~ E b Arc sin 20 LIE"‘J () < /.

We assume numerically, for example,
ﬂ=2A q':..-.lA"'l
- band width:E]Em1 = 2 eV and a modulus of shear A'/2=20 eV/atom.

10



In order of mapnituds, 1t 1o then found that 0<0<nN,1 for 4 nearly
empty band and 3.9<Q«<4 for a nearly full band, Therefors, 1t 1o
seen that the condltlon of instabllity of the cubie phaae 15 only
satisfled for low numbars of electrons or holen in the band,

When conditions (1.10) is satisfied, the encrpy dU producing
the distortion increases constantly with €, Thurefore, the cpyctal
1s deformed until at leagst one of the [100], {910] and {0017 bunds
beeomes empty or, on the other hand, becomer completely full, ac
the d band under conalderation initially 1o nearly empty or nearly
full. :

1e2.C Cnse of Larpe Pogitive Values of e,

We confine ourselves to examination of the cuse of an
initially nearly empty d band, Tn Appendix B, we ghow that, o
long as the displacement of the middle of the band 1o disregeeded,
the results obtalned are the came for n noarly full band,

For positive values of g, the [100]) band 1s the narrowest,
and 1t becomes empty at a value g% of r, such that Ep=Ep;. When
excte (Fip, 4), equatlions (1.1) and (1.2) are no lonrer valid,
and they have to be replaced by the equationg

kg . }:' i ¥
2} dE = 3N Ly dl
N f%' na(E) dE = BN ﬁ ) n(_ Vo

4y = 2N [ Eny(E) ai (1.10)
|11} ]
3. f " gL -+ 3N § A’ o
ST | (1.13)

which, from egquation (1.4), can be written

Eyeant—] aae) . i ex 3 Ey B dit (1.14)

Q.I;m .u(L’) sz. ..l;m "( ) | | . . o
_ : , | Ri""_%“"_’ I AN 1 - o . :
dU = AN exp (§ aqa) j;m Eyn(ly) dig (1.15)

~ 3N [ ¥ fn(E) dE 4 3N 3 A'ed
L VB s -

11



Thic time, E'pby and 47 apre no lonper infinitely small
with respeet to ¢, This corresponds to the physieal fact that,
when the [1006] band boeowes empty, a dilscoentinuity appears in
the olope of variation of E'p-Ep and that of 47 with ¢. Thus,
E'w hao to be found in the form

By Byt Bohye 3t

B 1o a constunt, which 1o determined by writinge (1.14) 1in the

zoepro order of £ and, Lheprefore, 14 1s the solutlon of the equation

Fytp x
2 n(E d,-_3 LT T
ﬁ; (Lg) dF, 1% () AL,

y and § likewlse ave determined Ly writing (1,14) in higher
orders of g, and 1t 1s found that
1 ., :
Yem g a0l + B) ot B = § atg(Er 4,

Actually, the absolute value of B 1o snall r!r)mpﬂr*mi t.a Ep,
as ean easlly be seen from equation (1.16), while allowing for
the faet that EpvEp. Therefore, practically, we have

Ey= Ly + 8 +§aqL,s +— atq® fip €*

dlif 1z derived from (1.1%) in & simllar manncer, and 1t iz found
that : :

o ‘
auﬂawtgfﬁﬂﬁmwymmwﬁ'ﬁumdn
o+ 7 (aqc + 7 a”q’ c")
fﬁy+ En(E) dls +,,A'=3z
Hlll

an expresslon which 1s only valld for e»>et,., The constant in
(1,18) bhas the same physical oripin as the term g in {(1.17).

Unlike (1.8), expression (1.18) contalns a first order term

of & which, besides, 1s negatlve, slnce enerpgy E is negative in
the (Ep, Ep+B) lnterVﬂl, with our choice of the enerpy arigin
in the venter of the band, Therefore, as we antilcipated in the

intreduction, when the [100] band is completely empty, the enerpy

bepins to vary much more rapidly with e.

12

(1.14)

(1.17)
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(1.18)



Besldes, while the contributlon of the d electrone to the
e? term was very larpe in (1.8), 1t becomes neplipible in (1.18),
Actually, sinee band fillingm 1s very slipht, the inteprral

!
{ P () o
Em -
is very small in absolute value,?® compared with A'.

Therefore, in practlice, the followlng can be written

dU = 3N

2 pEptp by
7 Enlly dE -~ En(k) di
'j .I;f'm ( ./};m ( 1 . 19 )

Ept B )
+§ aqe f d En(E) dE +; A'e?

n

.

Expresslon (1.19) 1s at a minimum, for a value gty of g,
mlven by

RytB
L. N A T A (1.20)

et == e L
w 34’ £y

By taking the explicit form for n(E) already indicated, the
Polloving 1z obtained

Zp4 B Eg+0
: f En(E)JE = Iy f nE)dE .
e 8 K, _ (1.21)

. _
mﬂﬁrnﬂﬁdﬁ=:gEmQ by using (1.16).
“m .

i

| S~

We now ecalculate ety from (1.17), by writing that E'p=Ep;,
when ¢£=e*g. By being restricted to the first order of e, 1%t is
found that : o _ : B
Y Y
& = 3 a([lEm! ( 1.22 )

3To find out, 1t 1s enough to note that, in the flret approximation,
E can be taken out of the intepral and the following can be written

N [
B} = W bl I 14 £
Em_ 37: l'ﬂ'] ":-iT- 13131 .m‘—oi

8
oy using (1.16). But, from (1;10), we have

But gy 17

< valom

_ | @s AT

and, therefore, 1t is sufficient to verify that
. %u’_ q’ h[’n 4’.: A".'

which is very much the case with “he numerical values indicated
above, at the end of 1.2.B.




By assuming E=Fy cos X and E.=Ey cos X' in (1.,16), 2X'p=
3X'p 15 obtained, with

EF == Em ros a\'}’ et F' + B e Em LOH .\,ip,'

from which

Ly + B 'nm('(”*é:;rh'fmc’ss;() ' (1'23)

or finally,

A a3n@, 1.24)
< 3«:;‘"" 16 (

The following ig derived from (1.19), explieltly for the

anergy
AU = 31\*1.!}3'—' (2s .§—“§Q 3 gin "o) -
' - 350 (1.25)
——— - uu - -— '
-} o e sin b A 2‘

1.2.D Case of Larpe Negative Values of €

For negative values of €, the two depenerate bands [010] and
f001] are narrower than the [100] band, and they become empty
at a value €~, of e, such that E'p=Ep,., When e<e-, (Fip. 6),
it 1s found that » .
N f ny(l) 41 == BN f Y n(E) dE

ml “n

au ==-NIFEn,(E) dE (1.26)

— aN f " () 0B + 3N S aver ,
k . gae : (1,27)
which replace equations (1.12) and (1.13). Calculations completely

analogous to those in the case e<etq, result in

L v b D .3 Fa .
By = Fp + By — aqfiv = +5at g By ? ' (1.28)

wlth B, glven by

+6,
./‘E El)‘”l-'df W(E) dis R (1.29)
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or

1 pFp+hy Ey
dU=3N ] En{EYdL - En(E) dE
j ,d'/;"m (L) ¢ j;m n(F) ¢
i AL N TN
—gage [ En(h) b +§A;!

(e < 7).
Expression (1.30) iz at a minlmum with e=e=gt, with

g e e
g En(E)

I['

!.]pﬂi

e = — o0 ag ye mu ,

Here agaln, £”¢ 1s the solutlion of the equation Ety=Lm,,

which, written in the flrst order of e, gilven

2FF+B;-~E...

¢ Ty | ' aq,me

But, by assuming E=Ep cos X, E,=Ep cos X' s Ep=Eq cos Xy and

Ef+B,= En cos X'p the following is derlved from (1 29)

or,

Xy = 3Xr,
therefore,
Ey + @y= Ly cos 3Xy = B cl)si::—o

from which, filnally,

4 9
g = “5{:} 51113-3—78:-9
(1.30) leads to
| | Llll .I I' qr o
dU—'SN!1 ——Q-—-'%sm-fw)

—f'-g:—"-aqe sm—-—g + L A'e?

~
’_.I
foay
o

|

(1.31)

(1.32)

(1.33)

(1.34)

fl.35}

(1.36)



1.2.1 Different Cases of Band Fillling

We have seen that, in 1.2.B, the instabillity of the cubic
phase requires that the number of electrons or holes in the
band be small. We continue to restrlet ourselves here, to the
case of nearly empty bands and to that of that of nearly full
bands, deriving 1t by symmetry (Appendix B). Therefore, we
congider Q to he a small quantity, with reupect to which we will
be able to carry out expanslons..

First, we note that, from (1.21) and (1.32),

t;,,"r-‘--h'f‘.,cns?-g—(—-)z--?eﬁ, (1.37)
and that, likewlse, from (1.24) and (1.35),
:';::;-«-’nz‘;cns”g%zmm/u;‘" .. (1.38)

In other words, as could have been expected, ratios e™p/ety
and e-e¢/ete are practically independent of filling, at least,
when the latter remains low. But, of course, ratios e*n/ete and
a*m/a ¢ depend strongly on 1t.

On the other hand, by expansion of (L1.21), (1.24) and (l 25)
with respect to Q, the following are obtalned

a0 (et) = il —g T a%e7 0] | (1.39)
dU(Eu*)-""‘-m\fﬁ?;Qsz"Ewm‘+128a‘q-0t (1.40)

( 61):,1kewise, the following is derived from (1 32), (1.35) and
1.3

(e 3 P e g0 L B e e )
(Em. jzlelQ ..2 A"}rﬁqzqn | (1.41)
o =3 : . :
dU(e:)zsN—i"TiQ“ 3'Fm‘+ D) azqz()l o (1.42)

Thus, we see different possible'éases of tetragonal distortion

16



appear, which correspond to different filling values:

C;aie._é_i. Q < .,____ al H ]L‘l:J

(1.32) and (1.35) involve E~p<e~q.
(1.37) and (1.38) involve ety >2e*e.
(1.39) and (1.41) involve dU(e=p)<dU(ety).

- The variations of dU with € are presented in Fig. 7a. The
stable state (a; 1n the figure) corresponds to €=e-p<0. The
erystal unit cell i1s shortened in the [100] direction, and it
1s lengthened in the other two directions. ALl the electrons
are in a single [100] band (Fig. 6), and the degeneracy l1s conm-
pletely removed.

Case B: Lm 8 J
31:,“’ I I<Q< azq“l'l':'l

Condition (1.10) 1s agaln satisfled, and the instability
remaing at e=0. But, e-p>e~s with, however, etp<etp. Also
state e=e~y no longer has a physical medniny, while state €= £+_
still has one., Besldes, (1.39) and (1.42) involve dU(ety)<dl
(e~a). The variations of dU with e are presented in Fig, Tb.

The stable state (b in the fipgure) corresponds to e= etp>0.  The
erystal unit ecell is lengthened in the [100] direection, and 1t
is shortened in the other two directions. The twe [010] and
[001] bands contaln all the electrons (Fig. 5), but remain
identlical. A twofold depeneracy remalins,

Case C:
—_—— Bm 4 E
Eeﬁa’ 9' '<Q<' .‘,a’_SIA’“I

Again, e“p>e—¢ and ete<ety.

On the other hand, condition (1.10) is no lonpger satisfled,

but AdU(etpy)<0. The cuble state (e=0) 1s metastable, and the
stable state 1s the tetragonal, with e=etp>0 (state ¢ of Fig.
7c¢}. It has the same crystal structure as in Case B, with the
"£100] band empty and a twofold degeneracy of the band.

~ Case D:

48 2 2 ,Eml [} 2]Eml
51:‘ A’ <e < 37':“ S

17
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;-

dy

T S M T A g i i

'd..

[ 2]

The only difference from Casc
7 is that, this time, dU(etpm)>0
and the stable state iz cubie (e=0).
The tetraponal state, with e=etp,
now is metastable (state d; in

Pip, 7d).
e E:
ase 39 , .lEm]
gmt <0

g0, etm>ete and state e=ety, loses

all physical meaning, in turn.
Only the cuble phase exlsts, as
Fip. Te shows.

1.3 Total Density of States
at Fermi Level in Different Possible
Phases

We now compare the values of the
density of states at the Ferml level
at zero temperature, which 1t 1s
expected to find in the different
structures found below. We specify
that, in all cases, we are interested
in the density of states calceulated
for the entlre crystal, 1.e., for
3N transition atoms,

1, TIf the cubic phase were

stable at =mero temperature, the

three systems of rows, each containing

"N transition atoms, would make their

contrlbutions, and the total density
of states would be

NolEy) = 3Nn(Ex) A 43}.

recalling that n(Ep) is the contri-
bution to the density of states of
a single transitlon atom, and the
following can be written

4

N(Ep) T:iLm‘ 8in ‘\;.- '

2. If the stable phase is the
fetragonal, with >0, only two systems



of rows of transition atomp make contrlbutions, and 1t 1s found
that '

Nep (163) = SNny(Ep) - (1. 4)
but, . /165
' U
") = T X
with

Eop = E, exp (% aqc) ¢t Xy = g Xy

or, roughly,

o2
ny{Ly) >~ 3 (1 - ; aqc) n(Ey)
from which, -

4 1 ' (1.45)
= (1 bare) ey

l1.e., the density of states at the Ferml level In the tetrapgonal
phaze, with ¢»0, 15 practically equal to 4/9 of 1ts value in the

cublic phage. This appears to be conflrmed by eleetron specifice
heat measurements at very low temperature.

We stress here the fact that an experimental measurement
does not allow a distinetion to be made Dbetween the contri-
bution of atoms in differcnt systems of rows and that an experi-
mental value indlecated per transition atom has to be multipliled
by 3N, before belng compared with Nu.(Ls).

3. If the stable phase 1s the tetraponal with e<0, only
one system of fransition atom rows makes a contribution, and
we have

N (Fg) = Nny(kp) | S (1.5)

where
4

omlle) =y
this time, with -

e

By = E, exp {— age) et Xj = I3X'F,
and, therefore,

ny(Ey :-'_-13 (1 + age) ::(Ep)

19



from which, N
| N{Ey) = 0 {1+ aqge) n(Ly)

| i
o .1, (1 + age) Ne(Ex)s (1.47)

1.4 Orthorhombic Distortion at Zero Temperature

Finally, we show that the preceding selutlons are all
stable, with respect to an orthorhombic distortion which
makes the three famllies of chaing of atoms dissimilar. We
consider the varioug ecases in the precedinp discusslon in turn,

Qase A: We first conslder state a; of Fig. 8a, where only
the [100] band contalng electrons. We gshow that thls state 1ig
stable, with respect to orthorhombic distortion. After such a
distortion, the [010] and [001] axes are ne longer equivalent
and the three sides o the unlt cell become:

al + ) in the [100] direction
LI AN |
“( ”‘5“2) in the [010] directlon

) .

a(i-«;-}o-—) in the [001] direction

There then are three distinet
bands wrepresented in PFig. 9.
3ince only the [100] band con-
talns electrons, 1t 1s clear
that the contribution of the d
electrons to the internal enerpgy
does not depend on parameter €',
at least, as long as 1t remalns
sufficiently small for no electrons
to penetrate the [001] band. Then
only the conduction electrons In-
terfere, the action of which is
expressed in dU by a term, which
can be written o

{ [ : ' - 'j ' 2
:";(( ll—_.("lﬂ) 5’2"—"31\’611 g ,

It is seen that this term
1s essentlally positive., Therefore,

Fig. 8._

20



the stable ptate coprregponds well
to e'=0,
Do) {io0]

[o10) In the case when e' 1o gufl-
Plielently larre for electrons to
penetrate the [001]} band, there

are two partlially cccupled bands,
a physieal situation, whleh has to /163
‘be consildered ap a distortion of
' 4 atate such as a2, whlle ox-
Fipg. 9 Fig. 10 changing the roles of the [100]

and [010] axes, rather than of
atate a,,

Therefore, we now conslder an orthorhomble digtorticn of
state ap In Fig. 8a. For €'=0, the two bands {010} and [001]
are ldentlcal, and they contaln all the d band electrons under
consideration (Flg. 5). Fore#0, these two bands differ, and
the sltuatlion represented by Pig. 10 oceurs, A caleulation,
completely similar to tha% we carried out for (1.8), plves the
varlatlion of encrgy as a function of e', of state a,

W =N ’ 5 man:":gn,w) dE | (1.48)
-—--l%u’q’ﬁ? uy{Ey) -}-%A"t"
or) T | |
dU=3N‘--§1%li‘%lr+~ 1! (1.49)
with. | | | | ..

. 3, 30
Np=jXe=rg—

The condition of instability of state ap 1s wrltten

' 37’0 at 2|P'“I
sin
8 r.'

or, by expanding the sine,

s |L...l A '.(j..'r'O)
Q 32 (I A’ g

But, precisely this condition 1% sabisfied in Case 4. There-
fore, state a, 1ls unstable with respec% to orthorhomble distortion.

21



I, then, the hipher order
0l 00 g terms of €' are dlsreparded, the
[o0) onﬂ (i00] 010 distortion continues, until the
f001] band beeomes empty in turn,
and 1t falls Into the case already
seen, of orthorhombie distortlon
af a state puch ag a,, but In the
[010] direction, Therefore, state

' 1 e " 4y Pinally results, oince it ls
Fig. 11 Fe. 12 stable, with respeet to crthorhomble
distortion.

By reasoning, completely analopous Lo that of Appendix €,
it can be seen that the hilpher ourder terms of €' can only have
slipht effects, and nothing but the possible exiotence of a
metastable state In the ortharhomble phase can be expected.

Finally, we show that state a; In Fip. 8z ls wstable,
In thls state, there are clectrons in the three bands, as
indicated 1n Fig, 11. After orthorhomble distortion, the filling
state of the three bandsg is that Indicated by Fle. 12, The
variation of Internal energy of state as 1z pmiven by

uUEQN’-—a’qf En(li) dF

{(1.51)
_...-}2 atq? Eﬁn(Eg)_ +i—izi'!t'
or
a? ‘I Em' i '
tlU-3N’ " Swsin Xy | l‘ o (1.52)

axpressions which only differ Ffrom expresslons (1.48) and (1.49)
by the presence of n(Ep) instead of n2(E'r) and of X'p instead of
Xr. Thus, 1t 1s seen that the condlition of instability of state =
as colneldes with condition (1.10) of instabllity of the cuble
phase, which certainly 1s satisfied 1n Case A. If, there apaln,
small effects due to the €'? terms are disreparded, it 1is seen
that the distortion continues, until the [010] band becomes
completely empty. State a; belng unstable, the distortion apaln
continues, untll a second band [001] becomes empty in turn, and
1t finally results 1in state ai.

In conclusion, in Case A, the stable state 1s tetragonal,
with a negative wvalue of g, N S
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Case B:  In thio enve, condition (1.50) 1o no lonper saticfioed,
and otate b; in Mg, 8b 15 stable, Besldes, we note that 14 in
stable, even with respoet to nrthnrhﬂmbiv drtortion of amplitudn
£', sufficlently lavpe for all the clectyronn to be 1n a sinple
band., Then, actually, 1t repults in a type by otate, which 1o not
praecisely ptable In Caje B, OState by 1o unstable, as was otate
az in Case A, Therefore, o disteortlon of this state oeeurs,
which emptles one band, nnd 3t thoen peturne to state by,

Therefore, in Cage B, the stable state 1o tetraronal,
wlth 4 posltive value of v,

Case G:  The utable state 1u obate ey In Fly, Te, and 1t io /164
tetragonal, wlth a pooitive value of &, Thw cuble state 1o metn-
stable, with respeet o any distortion, e,s', which, in thia case,
actually involves n pmuitivw varzqtlun af 1hﬂ internal eheprgy

zqual to
t ‘i ;},,:_."" Cayi
lll! I A l ' it '! ./,-M ,.H‘l" I,

Losare 1 . wE
o k) A LLE '
‘,.uql,‘u T )( | )

Lase D:  The cuble ctate is stable, and tetraponal state d
1:1 Pif? {0 iu mt}tﬂnh lhlt‘

(1.53)

Case Er The ocuble stage 15 stable.

1.5 Conelu 1on

In the conclusions of seetlions l,2. Eauui].ﬂ our band model
predicts that the cuble phase 1s stable at 0°K, unless one of
the d gubbands is almest empty or almost full., In the latter
case, the distortion 1s tetraronal. More precisely, If @ 13 the
number of electrons per transition atom in the nearly empty d
subband (or the number of positive holes in the nearly full d
IMUbband),

| 6k
at : . () <t :’ “fl" oy _li’

a e<0 tetraponal distortlien is expected (one family of chains
denger than the other two)
(i t 1] . . A h
at - l;:‘-*;u‘-'q" Illl (s - i u® 1[9 “" (
a £>0 distortion 1s expected (two familiea of chains denser
than the third).

With moderate values of these parameters (a, interatomic

- dlstance equals 2A; g, the Slatey functlon parameter = 1 A-!
|Em|, he half widih of the d subband = 1 eV; A'/2, the moduluu
of shear of the conduction electrons. = 20 eV/aLom, these Limiting
values of Q are on the order of a few tens of d electrons (or
‘holeg) per aton. :
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Appendix A,

The tetal enerpy of the d band undep aonplderation 1o, in
the Hartree approximatlon

ke

K '
"-‘lhl\" ' }d lf' ‘j‘ !
ki)

H B 1] .. - - ! * . '
s f !i"'k r."‘f. ;“'A"l’iiz Vor r 1141 d}} r
T8N 1NN .h".

where E(k) 18 the enerpy of one d electron.
oy (r)=fpp(r-na)elkna 1g the Bloeh funetlon of a d eleetron,
V{p-p!) 16 the 1nteractioh potential between two electrono.
With limltatlon to the intepmrals uf overlap between clooe

nelpghbors, it is found that

; . ot
- L b ],1], LA ) ]_f
s -

\' ; / Tm“l' f'!a‘,lt'; 1”‘ l"; d:l r |[“ P"
l

f ”/ {n L e r . l“*llﬂ ) (.qu"

were pa(r)=|y(r-na)|? is the d electron density centered on site
n and were Q 1s the number of electrons In the band., The first
term In the braces Ls an intraatomlc term and, thus, iIndependent
of the interatomic distance, i.e., of €,

The second term 1s an iInteratomie term, which depends on the
interstomlie dlstance and, therefore, on dlstortion €., Actually,
‘thls sevond term can be set down in the form

) %&Wi/ymrmr?lﬁr~'r”tkrﬂﬁur‘;u'

Tt 15 then seen that 1t is comparablp in order of magnitude
to Lhe matrix element _

e ';’ui | .I: " l‘nf.ﬂ’-’n -

which we have disregarded, in disregarding the displacement of
the mlddle of the band.

”Aggendix'B:
When 1t 1s no 1onger'in1tially neérly empty bands, but; on

the other hand, nearly full bandswhich have to be dealt with, 1t
‘is convenilent to conslder the -Ep symmetri of the Fermi level,
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with regpecet to the centor of the band celected as the enerpy
oripgin (Fip, h,B8). Coupervation of the number of eleetrons in
the band invelves that of the number of holes, This 1o oqual

to
Y LR . ‘ aa ok : .
HAY j’; il sbl s N f "n(!‘“‘ df

"lll

by utilization of the fact that n(k) is a pslr functlon,

On the other hand, the eontributiion of the d eleetrons to

the internal enerpy 1o wrltien

-

T PEEEEN AN [ fododl DN v il dis
y bt o
1 ) m -

by utilizationof the fact that En(E) 1o & nonpalr funetion,

It 1s then seen that the results obtained with nearly empty
bands are preserved, on condition of replacing Ep and E'p every-
where by -Ep and -g'y, respectively, and of deslgnating @ the
number per transition atom, no lonper of electrons, but of haolen

~in the band.

Appendix C

We propose to show that naching essential is modifled in the /165
conclusions of the discussion, 1f the third order terms of & are
taken into account, EIxpressions (1.7) and (1.8) then become

: s I no . ' . . "" v: L N
e Eyoogatrke )l " I" ) { .
Ty

| (€.1)
' ‘ } c‘.- I',- ‘ . : i+ "-'
- L " f!' ,I ‘ ! -”.y ’:'Cf‘ |1 ! I'z;‘ 1”{ E I e
(llf. KA lfl"'f / lm ‘)
| :
»v,l-u-q o B TL PO ,J‘i'g;.:
- (C.2)
N T R o O
! -L\ e L'I i {'; "h‘ II‘.
* yy | q_f":',,, n }.l
b o g g o 1l
.31_:':" r"‘]'l' .t.g { [‘.F | :; H i zh,

Coafficlent B’ repre sents the anharmonic portion of the
effect of the conduction electrons, and it can be roughly esti-
mated from the equation of state of Grunelsen. It is found %o

“be on the order of magnitude of -6A'(B'<0),
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The followinp is derived from (C,1)

T ‘.!\" ’m;s,,.fejl;‘,_, ! (e
e (¢.3)

e b i f',.. 1 i
1.1\’. % “‘l r:;[;'gcﬂ'

Since f1lling Q 1s low, B' 1in front of the 1/0° term in
the coefficient of €® can be dilsreparded and the following can
be written

- (I
4 - 4N | 2“:2 'i':; ”93{ | | (C.H)
with
A g N
we )
and A. 42 !,Il
It e ot Ay o r.
08 el
In Lhe case where R AT coefficlent A is

nepative and, from (C.4), au ha a minimum at e=g,, with

. ot R PN 4 . ““”[ ' .
il i SR q‘ﬁ!f‘.l,.-:‘ (“ R r-, 2 A ) - | . (C ¥ 5)
and the value of this minimum 15
} o o= 1'.’! {-].‘-1 . . “ ]
, Lr - X :: R L. a 'm C . (
di'ic, | \. G4 g 1, (r.) .rp’- . ) - (. 7)

Of eourse, the state e=¢, has no physlical existence, and
it is only a minimum, when g-p<e=p<0, i.e., if

" i i s U {
o | I . W -in

N I ¢ BT N LR LB *

SER | : RN L

This limits us to Cases A and B of our dilscusslon, for which
variations of dU with g£do not quite have the behavior Indlcated
by Filps. 7a and 7b but, rather, that indicated by Pigs. 8a and 8b.
But, the 1mportant fact 1s that dU(Eg) is on the order of magni-
tude of Q , whereas dU{(e-p) or dU(e*p) are on the order of magni-
tude of Q°, with a small Q, Therefore, dU(g,) has a very low
absolute value, compared te dU(e~p) in Case 4 or dU(ety) in Case
B, The lowest energy state remains the state wlthe=e™y 1In Case A
and the state with g=etp in Case B, At zero temperature, the
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third order terms of &, therefore, only have a secondapry effect.
Meanwhile, we note that 1t must be taken Into account, 1P contin-
ulty of dU 1s to be ensured at points e=e=, and e=ctg,
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