
A s -CR.-- ,cn/OJ0

UNCLASSIFIED

FINAL REPORT

NUMERICAL AERODYNAMIC SIMULATION FACILITY

PRELIMINARY'STUDY EXTENSION

February'1978

Distribution of this report is provided in the interest, of information
exchange. Responsibility for the contents resides
inthe autho r or organization that prepared, it.

(NASA-Cn--1521o7) HNERICAL AERODYNAMI1CN7-95

SIMULATION FACILITY. PRELInINARY STUDY
EXTENSION Final Report (Burroughs Corp.)
273 p HC A12/nF A01 CSCL 01A Unclas

G3/02 08629

Prepared under Contract No. NAS2'-9456by

'Burroughs Corporation

Paoli, Pa.

for

AMES RESEARCH' CENTER

NATIONAL AERONAUTICS AND' SPACE ADMINISTRATION

U'C.' 2 :,-

UNCLASSIFIED

UNCLASSIFIED

FINAL REPORT

NUMERICAL AERODYNAMIC SIMULATION FACILITY

PRELIMINARY STUDY EXTENSION

February 1978

Distribution of this report is provided in the interest of information

exchange. Responsibility for the contents resides

in the author or organization that prepared it.

Prepared under Contract No. NAS2-9456 by

Burroughs Corporation

Paoli, Pa.

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

UNCLASSIFIED

CONTENTS

Chapter/Paragraph 	 Page

1 INTRODUCTION AND SUMMARY 	 1-1
1.1 Introduction 	 1-1
1. 2 Functional Design 	 1-3
1.3 Software 	 1-4
1.4 Simulation 	 1-4
1.5 Reliability 	 1-5
1.6 Tradeoffs 	 1-5

2 FUNCTIONAL DESCRIPTION OF NSS HARDWARE 	 2-1
2. 1 Introduction 	 2-1
2. 2 Basic System Parameters 	 2-2
2. 3 Overview of Functional Description 	 2-5
2.4 Individual Blocks 	 2-10
2. 5 Instruction Set and Instruction Timing 	 2-43

3 SOFTWARE ISSUES 	 3-1
3. 1 Extended FORTRAN for the FMP 	 3-1
3. 2 Hand Compilation for SAM 	 3-16

4 SIMULATION 	 4-1
4.1 Simulation Goals 	 4-1
4. 2 Selection of Metrics 	 4-2
4. 3 Simulation Models 	 4-4
4.4 BOSS Simulator 	 46
4. 	5 Simulation Model for the Current Study 4-11

4Z204.6 	 Simulation Results

5 RELIABILITY 	 5-1
5.1 Introduction 	 5-1
5. 2 Availability Prediction 	 5-2
5. 3 Error Detection and Correction 	 5-1-7

11

C

Chapter/Paragraph

6

6.1
6. 2

6. 3

6.4
6. 5

6. 6

6. 7

6. 8

6. 9

6. 10

6. 11

6. 12

6. 13

6. 14

6.15
6. 16

6. 17

6. 18

6. 19

Appendix

A

B

CONTENTS (Cont'd)

Page

TRADEOFFS DELINEATED 6-1

Introduction 6-1

Language Definition 6-2

Matching the Compiler and the Instruction Set 6-2

Word Format 6-3

Instruction Formats 6-4

SECDED 6-4

Trustworthiness vs. Throughput 6-5

Parity within Processors 6-7

Instruction Fetching Mechanism 6-7

LOADEM and STOREM Block Fetching 6-9

Overlappable Extended Memory Access 6-10

Single Processor Memory 6-11

Processor Program Memory Size, Control

Unit Memory Size 6-12

Extended Memory Speed and Transposition

Network Speed 6-12

Control Unit Speed 6-13

Scalar Processor 6-14

Marginal Checking 6-18

Component Technologies 6-18

Expansibility 6-19

PRELIMINARY COMPILER ALGORITHMS FOR

SETTING THE TRANSPOSITION NETWORK A-I

SECDED RELIABILITY IMPROVEMENT MODELS B-I

SPARE PROCESSOR C-i

iii1

CHAPTER ONE

INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

Burroughs Corporation is pleased to present this report which is the result

,of work carried on under an extension to contract No. NAS2-9456, a preliminary

study for a Numerical Aerodynanitc Simulation Facility. The primary objective

of this extension is to produce an optimized functional design of key elements

of the candidate facility defined in the Final Report (1) of the basic contract.

This is accomplished by effort in the following tasks:

* 	 To further develop, optimize and describe the function description

of the custom hardware.

* 	 To delineate trade-off areas between performance, reliability,

availability, serviceability and programmability.

* 	 To develop metrics and models for validation of the candidate

systems performance.

o 	 To conduct a functional simulation of the system design.

* 	 To perform a reliability analysis .of the system design.

* 	 To develop the software specifications to include a user level high

level programming language, a correspondence between the pro­

gramming language and instruction set and outline the operation

system requirements.

1-1

The results of this effort are presented in five separate chapters:

Chapter 2. Functional Description includes a summary of the system

parameters, block diagrams, descriptions, of the major elements and

the instruction set with detailed timing.

Chapter 3. Software Issues describes the extensions and restrictions

on the FORTRAN language and compiler at the functional level a

discussion of converting statements in extended FORTRAN into machine

language and a statement regarding the operating system.

Chapter 4. Simulations presents the models, metrics and methodology

for conducting the simulation along with preliminary results.

Chapter 5. Reliability includes two sections. The first presents the

results of an availability analysis of the systems and the second present

further discussion of the error detection, correction and control to be

employed.

Chater 6. Trade-offs delineates and discusses a large number of

,design and operating factors for which reasonable alternatives exist.

While the information in this report is designed to stand alone, it is also considered

to be a supplement to the Final Report (Ref. 2) of the basic NAS2-9456 contract

where appropriate, reference is made to this report rather than to unnecessarily

repeat previously reported information.

In addition, it should be pointed out that certain terminology used in the previous

report have been revised. The new terms are:

. Flow Model Processor (FMP). This is the portion of the system

previously called the Navier-Stokes Solver (NSS). 1-2

" 	 Processor Data Memory (PDM) was previously called Processing

Element Memory (PEM)

* 	 Processor Program Memory (PPM) was previously called

Processing Element Program Memory (PEPM)

* 	 Execution Unit (EU), the logic portion of the array processor,

formerly called Processor Element (PE).

The 	following sections summarize the chapters in additional detail.

1. 2 FUNCTIONAL DESIGN

TheFMP is an array processor of 512 processors, a control unit, and 521

modules of extended memory, as described in Reference 1. The major addi­

tfons found in Chapter 2, to the description of reference 1, are, first, the

provision of SECDED, instead of parity-plus-retry, as the expected means of

error control in the processors' memory, second, the addition of four on-line

spare processors as definitely a part of the design (they are mentioned briefly

as a possibility in reference 1); third, significant revisions and additions to

the instruction set; fourth, the restriction of the extended memory instructions

to fetching 512 words (one per processor) per instruction, (the earlier description

had EM instructions fetching 512 X N words per instruction); and fifth, provision

for special hardware for computing any floating-point variables that are not

members of a vector.

Chapter 2 includes diagrams and figures of every element of the FMP.

1-3

1.3 SOFTWARD

The software chapter covers -the FORTRAN language, to a depth necessary to

cover simple test cases, discusses hand compiling, and is charged with the

task of reporting on progress in defining the operating system during this

contract extension. Three and only three extensions are visualized for the

initial FORTRAN language. First,, the DOALL construct declares to the compiler

that the iterations of a particular loop can be done in any sequence, or all in

parallel, without affecting the result; second, declarations of several types of

use of variables are used to allocate those variables among the different types

of memory; third, certain system library functions are required, because of the

parallel nature of the machine, that would not be required in serial FORTRAN.

None of these library functions are required for the initial benchmarks.

The operating system is extensively described in reference 1. The level of

detail in that document is such that the effort of the contract, extension was

spent more fruitfully on 'language definition, compiler considerations, and hand

compilation procedures. Thus, the operating system discussion in reference 1

still stands as the best description so far produced of the operating system of

the FMP. No attempt has been made to update that description for this report.

1. 4 SIMULATION

Chapter 4 discusses the separation of the simulation effort into two levels,

instruction and FMP level, and the system level. Metrics for each level are

discussed, and SUBROUTINE TURBDA has been selected as the metric for the

simulation done in this extensionis also given. The BOSS simulator, in which

our simulation is being done, is described briefly in chapter 4.

1-4

1. 5 RELIABILITY

A detailed computer model for the reliability of the FMP was run. The results

of this model bound the availability at 96 percent being the lower limit of

availability using pessimistic assumptions, and better than 99 percent

availability being achieved under the most optimistic assumptions. The use

of spare processors with operating system automatic restart (assumed success­

ful for some fraction of all attempts) produces a very significant improvement

over the model that has no spare processors.

The reliability section also includes a discussion of the use of SECDED in all

memory, of the process of "scrubbing" out the errors that spontaneously arise in

CCD storage (DBM), and. of other error control strategems that are used in

the FMP.

1.6 TRADEOFFS

Chapter 6 discusses tradeoffs in many areas. These include ease of program­

ming versus execution efficiency, where one wishes to have most of both,

word and instruction formats, error control methods versus their cost in

reduced throughput, several specific design issues, relative speeds of specific

blocks of the system, alternate methods of supplying the floating-point scalar

capability, and other topics, with a final section on the expansibility of both

the specific FMP, once built, and the expansibility of the design from which

it was built.

1-5

CHAPTER 2

FUNCTIONAL DESCRIPTION OF NSS HARDWARE

2.1 INTRODUCTION

This functional description is arranged in several successive

sections. First, a brief system description of the SAM that is

the baseline system- for FMP is given. Second, a brief list of

system parameters is provided. Third, the elements of the system

block diagram are each described in turn. Fourth, the instruction

set of the FMPis given, together with its timings.

In all of this, it has not been felt necessary to repeat material

that is found in the final report of contract NAS2-9456, except

very briefly to refresh the reader's recollection. It is pre­

sumed that the reader has first read that report.

No design should be considered to be necessarily final if further

investigation should show that the machine performs better with

the feature modified. Chapter 6, "Tradeoffs", is a discussion of

many of the features that will be studied in simulation during

phase 2 (time permitting), and which are therefore likely to be

modified in the direction of higher throughput if the baseline

system is found wanting.

This functional description is intended to provide the base for

the information input to a performance simulation of the SAM of

the FMP. Some of the information, such as error correction cap­

abilities, is included for completeness in spite of the fact that

it has no apparent involvement in a performance simulation.

2-1

2.2 BASIC SYSTEM PARAMETERS

Most of the basic system parameters were covered in some detail in

the final report Ref. 1. They are summarized here along with

additional information of specific interest.

2.2.1 Logic Family - ECL is the preferred logic family. Final

selection of circuits for implementation at this time would only

lock us into choices that will become obsolete by 1979-1980 when

the design is completed. We do not wish to preclude the use of

up-to-date technology in the actual design. If the final design

were being implemented at this time, Fairchild's 100K series would

be chosen, together with compatible memory circuits. The chip

count projected for 1979-1980 is the one assigned to the baseline

system. Confidence in this package count is supported in most

cases by the very similar chip count, of circuit types already

available in 1977 (usually ECL 100K), which are also given.

2.2.2 Clock Rate - The clock has been assigned a 40 ns period.

The instruction times, given below in terms of this clock period,

are compatible with the instruction times derived from a prelim­

inary processor design using ECL 100K.

2.2.3 Cabling Methods - The same flat belts used successfully in

prior projects in Burroughs for transmitting high-speed signals

with fast rise time and low crosstalk will be used for most of the

interunit cabels. Reference 1 discusses this choice.

2.2.4 Power - While a number of, comments on power were included

in reference 1, certain detailed information was not. These

details are provided in the following statements.

Switching regulators will be used for the sake of effi­

ciency. A net efficiency of 65% is expected from the total

power supply.

DBM is provided with whatever power is required to make it

nonvolatile against glitches and short power outages.

Since CCD is proposed for DBM, battery backup would be

highly desirable.

2-2

r- - -I

IP.S.
r- -- 1

I P.S.
EM BACKPLANE GND

512 PROCESSORS

" - CH LOAD EM
RT~gI=I

T.N.SNACKPLANE
LOADEM STOREM

P;S. M

I

S GROUNDLCNTN-­

•521

L . - . - - - -. --- - -

NOTs:1*. FM O~E

POWER. SPLLEDGRUDDOLVIOF

BOARD

TN-

CONTROL

CABLE

DMHOST

CONTROL B" RQUlT

DATA

r---

I P.S.

*L -_J

P.2-S,C.U.BACKPLANE OT
(AND D.C.)

-x -EART-H"-'--'-PS

NOTES:

' '' "' BACKPLANE AT SIGNAL GROUND
CHASSIS CONNECTION
SIGNAL GROUND CONNECTION
POWER SUPPLY LEADS GROUNDED ONLY VIAO

THE GROUNDING CONNECTIONS AT THE LOAD

Figure 2-1. Grounding

ORIG....I'AL "P!G-.-' 1
o 0RQJLT

pO T . r

2-3

* The ground return from backplane to power supply is never

used as part of the path that connects one backplane ground

to another backplane ground. Figure 2-1 shows the ground­

ing arrangements expected

* Total power for the FMPis estimated (very approximately)

at 250 kw, based on an average of 0.8w for each of the

200,000 circuit packages, and 65% efficiency in the power

supply. These are for the 1980 projected circuit counts.

* Every module has its signal ground tied to chassis so that'

there will be no floating grounds when the modules are

tested as stand-alone modules. In Figure 2-1 these ties

are shown as resistors.

A requirement on power supplies employed at NASA AMES is that they

must ride through the undervoltage transients produced by wind

tunnel motor startup, and not pass voltage spikes. In addition,

they should be reasonably respectful to the source. 3&queia ipwer

supply configurations-satisfy this requirement.

* Motor-generator set. Inertia enables an M-G set to ride

through large transients. The inefficiency of the M-G set

is multiplied into the inefficiency of the system power sup­

plies. The advantage of an M-G set is that it can be added

to a system after the fact, without impacting any existing

design.

Transformerless rectifiers, like the old AC-DC radio,

require a filter capacitor, which suppresses spikes, and if

large enough, will ride through undervoltage transisents.

The unregulated DC (about 280v) is distributed around the

equipment and used as input to individual switching

regulators. SCR rectifiers are to be avoided, since they

inject noise back into the line.

2-4

Battery back-up Uninterruptible Power Supply (UPS).

Of the three schemes, the transformerless rectifier is most

efficient, and takes the least space. It also has the advantage

that back-up batteries can be supplied to a selected subset of the

equipment (DBM, in this case). It is also easy to make the

rectification redundant. Three-phase full wave rectifiers are

actually six-phase for ripple characteristics. They often need no

chokes, and have wide conduction angles in the rectifier diodes.

2.2.5 Number of Processors - A key decision in the design of the

FMP is the choice of the number of processors to be implemented.

The design presented here is based on using the fastest processor

that is consistent with the speed of memory built of 16k-bit

static RAM chips. Projecting 100 ns speed for such chips, we

arrive at a 360 ns floating point multiply as being approximately

in balance. A faster processor would yield increased speed only

if the memory were changed to the faster 4k-bit chips, implying a

four-fold increase in the number of components in memory.

Reliability, even more than cost, tells us to keep the parts count

down, and therefore to design a system consistent with 16k-bit

memory chips. It takes about 512 processors, at these speeds, to

yield the desired billion floating point operands per second with

sufficient margin for inefficiencies.

2.3 OVERVIEW OF FUNCTIONAL DESCRIPTION

2.3.1 Block Diagram

Figure 2-2 (a slightly expanded copy of Figure 1-2 of the Ref. 1)

shows the array processor consisting mostly of 512 processors

attached by a switch, the Transposition Network, to 521 Extended

Memory modules which hold the main data base of theprogram. Used

ORIGINAL PAGE IS

OF POOR QUALIT

2-5

MEMORY 	 TO

FILE

1.2 X 108 BITS/SEC. 	 MEMORY

EM1 EMEM2
EXTENDEDMEMORY EM52 1

1.75 X 1011 BITS/SEC.

TRANSPOSITION NETWORK
(521/512 PATHS)

1.75 X 1011 BITS/SEC. PEAK

PROC. 1 PROC. 2 PROC. 512

~CONTROL TO/FROM
[E IUNIT HOST

DIAGNOSTIC 	 TO/FROM
ORIGINAL PAGE IS 	 CONTROLLER

HOSTOF IPOOR QUALITY

Figure 2-2. SAM Block Diagram

2-6

as a staging area for jobs not yet started, and as the output area

for jobs in process or completed, is Data Base Memory. A Control

Unit synchronizes the action and controls the transposition

network and the transfers in and out on both faces of the extended

memory. The controller for the Data Base Memory also accepts

requests from the host processor to transfer to and from the host

disk pack file system. The Data Base Memory controller resolves

access conflicts to and from data base memory. The Control Unit

resolves accesses to and from Extended Memory. There is also a

Diagnostic Controller used for maintenance and cold starts.

Each processor is self-contained, with integer and floating-point

arithmetic units, its own instruction decoder, its own program

memory, and its own data memory. In addition to the 512

processors, four processors are included as on line spares to help

achieve system availability requirements, The use of these

on-line spare processors is discussed in Chapter Five.

2.3.2 Instruction Streams

As described in Ref. 1, the FMP is controlled by two instruction,

streams, which are created in parallel by the compiler from a

single sequence of source statements. One instruction stream is

being executed in the control unit; the .other is being,executed by

all processors asynchronously of each other. Some statements in

the source code result in instructions in both instruction

streams. Examples are "CALL subroutine", or an arithmetic

statement using an EM variable., and therefore requiring a fetch to

all processors from the EM. Some of these joint instructions

require that the control unit and the processors synchronize

themselves. It has been observed that reference 1 does not seem

to be clear in explaining synchronization, nor in explicating the

means of accomplishing it. Therefore, the discussion digresses

here to a detailed discussion of the synchronization mechanism.

2_27

2.3.3 Synchronization.

The process of synchronization occurs within instructions. It

involves two signal lines which go from the control unit to all

processors, namely "CUready" and "go". "CUready" is a level, "Go"

is a pulse that arrives at all processors simultaneously. From

each processor there are two lines, "Enabled" is a copy of the

"enabled" flipflop that exists in each processor; "I got here" is

a signal, a level, which is raised during the execution of some

instructions.

To explain the process, consider the example of a LOADEM instruc­

tion fetching N words from EM. In the control unit, the LOADEM

causes the raising of the "CUready" line as soon as the TN

controls have been set to the proper value. In each processor

where "enabled" is true, "I got here" is raised as soon as the

processor starts executing the LOADEM instruction.

When any processor executing LOADEM sees "CUready" true, the

processor sends the address through the TN to the EM module that

is connected to this processor. The strobe accompanying the

address causes the loading of the address within the EM module.

An "all processors ready" signal, marking the time at which the

last enabled processor arrives at the LOADEM instruction is

created for the CU (The logic creating this signal is actually

contained within the fanout tree). Using En as the "enable" bit

of' the nth processor, and Hn as the "I got here" line of the nth

processor, the "all Processors ready" signal is given by the

formula

All-processors-ready = (1 OR El) AND (H2 OR E2) AND ...

AND (H512 OR E512)

There is also "any processor enabled", the OR of all the "enable"

bits.

2-8

When the CU sees "all processsors ready", the CU issues, after an

appropriate delay to let addresses be loaded, a series of N "read"

commands to the EM module and also issues, appropriately timed

with respect to the last such command, a "go" pulse to the

processors. In the processor, we load N words under control of

the N strobes coming from EM module through the TN. The "go"

signals the end of the instruction.

As a second example, consider the instruction WAIT. Here no

processor action timed to the "CUready" is required, so the CU

sends no "CUready". When the CU sees the "all processors ready"

signal formed from the "I got here"s and the "enable"s, it issues

a "go" to all processors, who have refrained from executing their

next instruction until the "go" is received.

When the processor has raised its "I got here" line, but before it

has received a "go" signal, it is said to be "vxaiting". The "I

got here" line is dropped upon receipt of the "go" pulse.

In addition to the above synchronization, the CU also has the

power to transmit commands. The commands are carried on a

4-bit-wide bus accompanied by a strobe line. Many of these

commands are used in the diagnostic programs. Ref. 1, p 4-27, has

a tentative list of operations called forth by these commands.

Some of these commands will be conditional on the "enable" bit of

the processor, some are unconditional independent of the enable

bit. The only such command that is used in user-generated FORTRAN

programs is the command that simultaneously loads the program

counter and sets the enable bit.

The control unit's command power is exerted over all processors at

once, not over individual processors. Processors that do not join

in some array-wide operation avoid it by a) jumping around the

operation, if it is local to each processor, b) executing certain

2-9

instructions (LOADEM, STOREM, SHIFTN) as noops conditional on the

last bit of an integer register in the processor, or c) executing

the STOP instruction, which turns off the "enable" bit until the

CU reaches some point in its instruction stream that turns it back

on.

There is also an interrupt line from processor to CU.

2.3.4 Starting a Run

During normal operation, all data and program for the next run

will be loaded into data base memory prior to the beginning of the

run. When the run starts, system software in the CU loads program

from data base memory to the memory of the control unit (via

extended memory). The initialization phase of the program then

transfers necessary data to extended memory, and transmits the

processors' program to them. These actions are automatically

inserted by the compiler and the linker. With data in place in

extended memory, and allocated space initialized to "invalid"q and

with code files in place in control unit and processors, user

execution starts.

2.3.5 EM? Hardware Summary

The Flow Model Processor therefore consists of

* one Control Unit (CU) with its own memory (CUM) with

optional scalar processor capability.

* 512 Processors, (plus 4 spares) each with its own

Processor Data Memory (PDM) and Processor Program Memory

(PPM)

* One Transposition Network

2-10

* 521 Extended Memory modules

* One Data Base Memory and Controller

* One Diagnostic Controller

All of the above is shown in Figure 2-2 except for the optional

scalar processor and the four spare processors. The scalar pro­

cessor is an ingredient of the design which was not needed in

order to successfully match the SAM to the aerodynamic flow

models. Since the scalar processor was not discussed in reference

1, further discussion thereon is found in Chapter 6.

2.4 INDIVIDUAL BLOCKS

Following is a brief description of each of the elements of the

FMPtogether with a formatted tabulation of pertinent features and

.a block diagram of each.

2.4.1 Description of Tables

For each element of the FMP, there is a table of characteristics

given. A very short narrative description gives the intended

function of the element in user programs. Source of control is

identified, and the storage capabilities, both capacity and speed,

are also given. Connectivity to other elements is broken down to

a rather detailed level, with each group of signals that has an

identifiably different function being so identified. In some.

cases, such as CU to processor, signals in the same belt are

identified as a different group in order to more clearly identify

their use.

2-11

The table also discusses the mode of error control built into the

design. Some mechanisms of error control were included in the

baseline system design in the final report. Some further

mechanisms of error control are proposed in Chapter 5. This

Section represents a particular state of the design, not the final

state.

Two chip counts are given. The 1979-1980 projected chip count is

the one projected for the baseline system. The second chip count,

using parts now existing in 1977, is given only for corroboration,

to indicate the reasonableness of that projection. It also

represents the chip count of the FMP if design were frozen now.

There are also in some cases estimates of the power drain. All

these are included only for interest. These are preliminary.

They have no direct bearing on the-performance evaluation

simulation.

"TBD" meahs "to be determined".

2.4.2 Processor The array of 512 processors is charged with the

task of executing the user computations in the program, namely the

floating-point operations on the problem variables.

The processor executes code -contained in its own program memory,

and accepts-commands from the control unit. Certain instructions

(see Table 2-13) are executed in synchronism with the control unit

(and hence, by implication, in synchronism with the entire array,

since the control unit expects cooperation from all processors.)

The actions of the processor are delineated by the instruction set

in the next section. Figure 2-3 shows pictorially the division of

the processor into and execution unit, a data memory, and a

ORIGINAL PAGE IS
or POOR QUALITY

2-12

F--i

PPM-
PROGRAM
MEMORY

o cu = w

(VIA FANOUT BOARDS) 00 a

COMMANDS I - -

SYNCHRONIZATION

II
pDATA PATH

DATA PATH I
ad I4­
_.SYNCHRONIZATION, I

INTERRUPT LINE

L

ORIGINAL PAGE IS

OF POOR QUALITY

PDM
DATA
MEMORY

[

C
=

0 w I

DATA &STROBE TO
TN
TEUN

I DATA & STROBE

PROCESSOR

Figure 2-3. Processor Block Diagram

2-13

program memory. Figure 2-4 is a block diagram of the logic part

of the processor, showing the independent integer and floating

point units, with separate register files for each. Figure 2-5 is

a diagram -of the instiuction fetching and overlap machinery, which

is explained at length below in connection with the timing of in­

struction execution. The logic portion of the processor has been

named the "execution unit." Table 2-1 provides data on the EU.

Connections to the processor come from the control unit and the

transposition network. A byte-wide (8-bit) data path is found

both from (BDCST) and to (HVST) the control unit. The

synchronization signals discussed previously also come from the

control unit. The 4-bit wide command path, and its strobe, also

come from the control unit. The data paths to (STOREM) and from

(LOADEM) the transposition network are each accompanied by a

strobe. In addition, each processor is connected to backplane

wiring that expresses its own number. Of the 129 processors in a

cabinet, any one may be the spare processor. Suppose processor

no. N is the spare processor. Then the backplane number for

processors 0 through N-i is correct, but the backplane number for

processors N1l through 128 must be shifted own by one, to N through

127, in order that the processors being used by the program be

consecutively numbered. Therefore, there is a one-bit signal

coming from the switching machinery which tells the processor

whether or not to subtract 1 from its hard-wired processor number

to correct for the location of the spare.

Error control within the processor consists of bounds checks,

reasonableness checks, and consistency checks, as listed in

Ref. 1. See Sections 6.7 and 6.8 for further checks that may be

implemented but at some cost in throughput.

For justification of the 1977 component count, see appendix E of

volume II of reference 1.

2-14

V
-I

I
TO/FROM
CU

TO/FROM
TN

PPM PDM
1
I

(8 BITS) (8 BITS)

IBDCST LOADEM
REST OF A IHVST STOREM
PROCESSOR- - - - - - - - - - - - - --­ _ I

ADDRESSES TN & CU
INTERFACE 4BYTE-SERIALIZER

EMADDRESSES

INSTRUCTIONS

ADDRESSES -- SECDED
CHECKER/
GENE RATOR

INTEGER ARITHMETIC
UNIT

INTEGER

EREGISTERS

49-BIT BUS

PNO
PREFETCH BACKPLANE
INSTRUCTION

2 INSTRUCTION/120 NS
MAX

48-BIT BUS
~TO INTEGER

TO/FROM CU INSTRUCTION FLOATING POINT FLOATING POINT
DECOD 101ARITHMETIC

DECODE INSTRUCTION UNIT
CU INSTR. SYNC DTHER

Figure 2-4. Internal Block Diagram of EU

C
I

TRIGGER TO PPM

I STAGING "

REIE START TIME, INT.

O START TIME, FL. OT

• L START TIME, M EM

"ISSUE" COMMAND SCOREBOARD

HOLDING
REG.
(FOR DELAYED
ISSUE)

INTEGER_UNTF.PT7NTMEMORY

INSTR.REG. INSTR.REG. CONTROLS

END TIME, CURRENTMEM. OP.

END TIME, CURRENT FL. PT. OP.

END TIME, CURRENT INT. OP.

TO DECODING

ORIGINAL PAGE 13 Figure 2-5. Instruction Fetching and Overlap

OF POOR QUALITY
2-16

TABLE 2-1

EXECUTION UNIT CHARACTERISTICS

UNIT: Execution Unit (EU) No. In System: 512 + 4 on-line spares

FUNCTIONAL CHARACTERISTICS
Function: This is the logic portion of the processor, all the processor except memoly.
It executes code that has been wi itten by the FMP FOR RAN compiler, including EM
address computations, index calculations and floating point operations.

Source of Control; During User Program: Program stored in PPM, sync's from the CU.

During System Startup and Diagnostics: Same plus CU commands

Storages; Capacity: 	16 16-bit integer registers
16 48-bit floating point registers
Other registers (see text)

Speed: Multiple accesses each 40 ns clock

Connectivity to Other Elements:

No.
Path To or From Sig Timing Primary Use

1 BDCST From CU 8 byte/20ns Receive global variables from CU
2 HVST To CU 8 byte/20ns Transmit result to CU (global)
3 LOADEM From TN 9 byte/20ns Receive data from EM
4 STOREM To TN 9 byte/20ns Transmit data to EM
5
6

CUinstr
sync

From CU
TO CU

4
4

TBD
edge

Primarily for diagnostics
Synchronization

7 sync From CU 4 edge Synchronization
8 PEno Wired to 9 D.C. level Processor's own number

backplane

RELIAB ILITY/REPAIRAB ILITY/TRUSTWORI INESS

Error Control Methods: TBD. Modulo 3 check on arithmetic is being evaluated. Error
cases are detected (see text).

Repair Methods: Replace and restart from restart point. On-line replacement (with manual
pull-and-replace at a later convenience of the repairman) is very feasible.

MTBF of Unit: See Chapter 5.
Degraded Modes Available: Programs can be compiled to use less than all the processors

available, thereby bypassing any failed processors. On-line switching of spare pro­
cessors.

PHYSICAL

Chip Count; 1980 Projection: 100 If use 1977 parts: 160 (100K ECL etc.)
(based on preliminary logic design using 100K)

Pysical Size: 1980: One large pc. sized module. 1977: Single removable module

Power Drain: 1980: 150 w 1977: 300 w

2-17

2.4.3 Processor Data Memory - The processor data memory (PDM)

contains work space for each processor. It is also used to hold

local copies of global information, to facilitate their being

fetched by the processor's program. It can be used to window data

from EM. Control is from the memory address register in the

processor. There are 16384 words of 55 bits, consisting of 48

bits data and 7 bits of single-error correcting, double-error­

detecting code. Data address, and control connections are solely

to the processor. 16k-bit static PAM chips are used. Figure 2-6

shows some of the logic in the processor associated with the port

into PDM. Table 2-2 describes major characteristics of the PDM.

See sections 6.6, 6.12 , 6.13 for discussion of tradeoffs in PDM

design.

2.4.4 Processor Program Memory. Processor Program Memory (PPM)

contains the code file from which the processor executes. It is

addressed directly by the program counter. Overlay comes from the

CU via the "broadcast" (BDCST) path. Except for the size of 8192

words, design is identical with that of PDM.

2.4.5 Control Unit (CU)

2.4.5.1 Basic Control Unit

The control unit, during user programs, is in charge of synchro­

nizing the array for those instructions that require a synchro­

nized array; it issues the "go" signal. It also handles those

portions of the address computation that must be issued from a

central point. The control unit executes the FMP-resident portion

of the system software. It has a single shared memory (CUM) for

both program and data.

2-18

FROM EU

/14BITS ADDRESS . D

INITIATE
STACK
(55 CHIPS)

TO/FROM
T.N. TN TO/FROM

(LOADEM,
SECDED
CHECKER/

STOREM) GENERATOR
PARALLEL
TO
BITE-SERIAL
CONVERSION

TO/FROM
CU

(BDCST,
HVST)

EU DATA BUS

Figure 2-6. PDM Logic

ORIGINAL PAGE IS
OF POOR QUMITY

2-19

TABLE 2-2
CHARACTERISTICS OF PROCESSOR DATA MEMORY

UNIT: Processor Data Memory (PDM) Nb. In System: 512 + 4 spares with spare processor

. (formerly processing element memory PEM)

FUNCTIONAL CHARACTERISTICS

Function: Stores temporary variables generated by the processor during computation.
Work space. Subroutine return information. Windows EM data.

Source of Control; During User Program: EU command lines
During System Startup and Diagnostics: Same

Storages; Capacity: 16,384 words.

Speed: 120 ns cycle

Connectivity to Other Elements:

No.

Path To or From Sig. Timing Primary Use

1
2
3

data
address
control

To/from
From EU
From EU

EU 55
16
2

static
static
edge or
static

Fetch and store data
Address
Command

RELIABILITY/REPAIRABILITY/TRUSTWOIRTHINESS

Error Control Methods: SECDED
Repair Method: Removed with entire processor. Not a separate entity.
MTBF of Unit: Dominated by control chips because of SECDED.
Degraded Modes Available: Programs compiled to less than 512 processors bypass failed

PDM's. Error correction allows program to continue, but with reduced reliability, in
single-bit failure cases. On-line switching of failed processors.

PHYSICAL

C(hip Count; 1980 Projection: 70 If use 1977 Parts: 250

(55 16k-bit mem + 15 control) (100K ECL, etc.) (220 4k-bit mem.

+ 30 control)

Physical Size; 1980: Part of processor assy. 1977: Part of processor assy.
Power Drain; 1980: 1977:

ORIGINAL 'AGB IS

OF pooR QUALIY

2-20

FROM EU

13BITS ADDRESS _t S~KD

INITIATE (55 CHIPS)

TO/FROM
SECDED
CHECKER/
GENERATOR

AND BYTE-SERIALIZER

TO INSTRUCTION REG.

Figure 2-7. PPM Logic

2-21

TABLE 2-3
PROCESSOR PROGRAM MEMORY CHARACTERISTICS

UNIT: Processor Program Memory (PPM) No. In System: 512 + 4 spares with

spare processor

FUNCTIONAL CHARACTERISTICS

Function: Contains program foL the processor. Is loaded using the BDCST path from
the CU.

Source of Control; During User Program: Processor's program counter.
During System Startup and Diagnostics: Same

Storages; Capacity: 8,192 words
Speed: 120 ns

Connectivity to Other Elements:

No.

Path To or From Sig. Timing Primary Use

1 program To/From EU 55 static Fetch and load program
2 address From EU 16 static Address

3 control From EU 2 edge or Corand

static

RELIABILITY/REPAIABILITY/TRUSTWORIHINESS

Error Control Methods: SECDED

Repair Method: Remove with entire processor. Not a separate entity.

MTBF of Unit: See Chapter 5

Degraded Modes Available: Program compiled to less than 512 processors bypass failed PM's.

Error correction allows program to continue at reduced reliability, in single bit

failure cases. On-line switching of failed processors.

PHYSICAL

Chip Count; 1980 Projection 43 If use 1977 parts: 140
.-(28 mem + 15 control) (100K ECL, etc.) (110 mem +

30 control)
Physical Size; 1980: Part of processor assy. 1977: Part of processor assy.
Power Drain; 1980: 1977:

2-22

The control unit can also be controlled by commands from the host

computer issued via the Diagnostic Controller (DC). This mode of

operation is supplied for the purpose of performing diangostics.

The control unit is at once the most complex, in terms of variety

of functions performed, and the most pedestrian, in terms of the

demands it makes on the logic designer, of all the units in the

FMP. Such hand analysis as has been done indicates that for the

aerodynamic flow problems, the control unit will most of the time

be waiting on the processors. One of the aims of the simulation

is to find out if this statement is really true, or whether an

investment in a faster control unit will pay off.

The frequency with which the CU executes system software upon

interrupt, in the middle of user executions, will affect the

required speed of the CU. The present plan is to so allocate the

tasks in the system that during normal executions no interrupts

either from host or resulting from FMP code are expected.

The host initiates file-system-to-DBM transfers using its copy of

the DBM allocation map and issuing I/O commands directly to the

DBM controller. No FMP-resident routine is involved in the

initiation or completion of these transfers. The DBM controller

resolves any potential conflict between these host transfers and a

CU-initiated DBM-EM transfer.

Figure 2-7 is the block diagram of a control unit built around a

single bus for transferring all data to and from memory, and using

this same bus for one of the register file outputs. Such a

structure defeats overlap but simplifies design. If simulation

were to show that a faster CU is needed, a faster CU would be

built.

2-23

cum
(MEMORY)

HOST/DC

COMMUNICATIONS 1ERROR

INETIUCION

INSTRUCTION

BUFFER

I/0OL
INSTRUCTION

PT.
INSTRUCTION

DECODE DECODE

TO/FROM
DT/OBM/TN FL. POINT

UNIT

OPTIONAL I FL POINT
REGISTERS

DETECTION

AND CORRECTION

TO EM VIA TN
UPPER BARREL

PARALLEL

CUCONVERTER

PROCESSORS'
DATA

cum
DATA

IINTEGER cum
INSTRUCTION CONTROL
DECODE

S
INTEGER

UNIT

LOGIC TO

FADDRESS
REGISTER

INTEGER
REGISTERS

ORIGINAL PAGE IS

Figure 2-8. CU Block Diagram Or POOR QUALITY 2-24

In addition to the portion shown in Figure 2-8, the control unit

also contains a section which resolves conflicts for EM between

the instructions of the NSS and the needs of the DBM controller.

The control unit has four semi-independent execution stations,

just as the processor has three. The degree to which the

execution of the independent sedtions is to be overlapped is a

subject for study during simulations in future work. Using the

two aerodynamic flow models as benchmarks tells us that no overlap

is required, therefore specifying an exact mechanism of overlap

has been deferred. The four units are:

* 	 Integer Unit

* 	Memory Control

* 	Floating Point Unit (optional, can be omitted if it is

determined that so called scalar processor capability is

not required for the contemplated applications. See

Section 6.5)

* 	Interface to host and DBM controller

Instruction timing is given in the next section, 2.5. Table 2-4

lists the features of the CU.

2.4.5.2 Scalar Processor

Floating point scalars are an item of concern in some applica­

tions. In the baseline system, an optional design feature to

handle floating-point scalars is a floating-point arithmetic

capability in the control unit. For a discussion of other options

for attaching scalar capability to the FMP, see section 6.16.

Scalar floating point capability is not be be confused with the

"scalar unit" found in some other designs. The addressing and

control functions of such a "scalar unit" are included in the

control unit here whether or not the floating-point option is

included.

2-25

TABLE 2-4

CONTROL UNIT CHARACTERISTICS

UNIT: Control Unit: (CU) No. In System: 1
1

FUNCTIONAL CHARACTERISTICS:

Function: Executes the non-array portion of the FMP program. Executes the FMP resident
portion of the system software.

Source of Control; During User Program: Program stream contained in Control Unit Memory
During System Startup and Diagnostics: Same plus conmands issued from Diagnostic

Controller

Storages; Capacity: Integer Register file, perhaps 16 words, exact number to be determined
by simulation. Floating point register file of 16 words.

Speed: Single-clock access to two registers per file. 40 ns clock.

Connectivity to Other Elements:

Path To or From Sig. Timing Primary Use

1 control To DBM Controller TBD TBD Control of DBM-EM transfers
2 return From DBM Controller TBD TED Completion, error, E1M conflict resolution
3 control TO E4 TED TBD Control of EM
4 return From EM TBD TBD Monitoring, errors, interrupt
5 control TO TN 13 TED Control of 9N
6 STORCU To TN 9 byte/20ns Data to be stored in EM
7 LOADCU From TN 9 byte/20ns Data fetched from EM to CU
8 command To Processor 4 TBD Diagnostic commands to the processor

9 sync TO Processor 4 edge Synchronization of array

10 sync From Processor 4 edge Synchronization of array

11 BDCST TO Processor 8 byte/20ns Broadcast data
12 HVST To Processor 8 byte/20ns Data (such as global max) to CU

RELIABILITY/REPAI RAB ILITY/TRUSTWORIFHINESS

Error Control Methods: TBD
Repair Method: TBD. Repair in place; F"P is down until CU repaired
MTBF of Unit: See Chapter 5
Degraded Modes Available: None.

PHYSICAL

Chip Count; 1980 Projection: 3,000 chips If use 1977 parts: 4,000 chips
(a oarse estimate) (100k ECL, etc.)

Physical Size: 1980 1977:

Power Drain: 1980 1977:

2-26

The FORTRAN language and compiler of chapter 3 makes no use of the

floating-point option in the CU, as there was no use for it in the

four codes used for benchmarking.

2.4.6 Control Unit Memory (CUM)

The control unit memory holds both program and data for the

control unit. It is addressible only from-the control unit, and

sends all data into the central data bus of the control unit.

The control unit memory is identical in electrical design and uses

the same 16k-bit RAM chips as the processor memories. Its size is

subject to verification via simulation. The size resulting from

considerations of the flow-model matching study is 32,768 words.

The control unit memory is initially loaded from DBM at the

beginning of each run using a routine which is itself resident in

CUM and executes on the CU. The routine transfers data and

program from DBM to CUM via EM.

Data on the control unit memory is found in Table 2-5.

2.4.7 Extended Memory Module

Extended memory (EM) is the "main" memory of the FMP, in that it

holds the data base for the program during program execution.

Temporary variables, or work space, can be held in either EM or

PDM, as appropriate to the problem. All I/O to and from the FMP

is to and from EM via DBM. Control of the EM is from two sources,

the first is instructions executed in the CU, the second is the

DBM controller which handles the DBM-EM transfers. In the

baseline system design, the DBM-EM rate is such that the CU can be

given first priority into EM without losing any of the DBM-EM

transfers, therefore, the CU instructions have priority in the EM.

2-27

TABLE 2-5

CHARACTERISTICS OF CONTROL UNIT MEMORY

UNIT: Control Unit Memory (CUM) No. In System: 1

FUNCTIONAL CHARACERISTICS

Function: Contains data local to the CU, and CU's program. Also contains processor

program as source for overlay during runs. Holds mailbox for host-FMP corfmunication.
Holds copy of DBM allocation map.

Source of Control; During User Program: CU
'During System Startup and Diagnostics: Same plus may be accessed by DC if CU not running

Storages; Capacity 32,768 words.

Speed: 120 ns cycle

Connectivity to Other Elements:

No.

Path To or From Sig. Timing Primary Use

1
2
3

data
address
command

To/from Cu
From CU
From CU

55
16
2

static
static
edge or
static

Fetch and
Address
Command

store data

RELIABILITY/REPAIRABILITY/TRUSTWOIHINESS

Error Control Methods: SECDED
Repair Method: FMP is down while CUM is down. Must replace failed modules for FMP to

recover.

MTBF of Unit: Dominated by control logic because of SECDED
Degraded Modes Available: Error correction allows program to continue at reduced

reliabilityj in single-bit failure cases.

PHYSICAL

Chip Count; 1980 Projection: 175 chips If use.1977 parts: 470
(110 mem + 15 control)
 (100 SCL, etc.) 440 mem + 30 control)

Physical Size; 1980: TBD 1977: TBD

Power Drain; 1980: 1977:

2-28

EM consists of 521 identical modules, which are accessed in

parallel. 521 is a prime number for the sake of allowing

efficient parallel fetching for all vectors of any length (with

the minor exception of any vectors that happen to have elements

spaced apart in memory by exactly 521).

From each EM module we need a transfer rate and access time

consistent with the most economical implementation. For the

baseline system, an implementation in 64k-bit dynamic RAM was

chosen, as being the most economical implementation available by

1980. The low chip count also enhances reliability. Projec­
tions say that a 64k-bit chip will have 250 ns cycle time by that

date. The 280 ns cycle time of the memory is compatible with the

140 ns per word transfer rate through the transposition network.

Each word carries single- error-correction-double-error-detection

code, which is generated at the source (DBM, CU, or processor) and

also checked there, so that transfer paths are covered by the same

error control as the contents of EM.

Having decided on a TN that is almost twice as fast as the EM

module, it would be possible to build the EM module in two

interlaced submodules, if it the streaming mode of fetching were

to see much use. Section 6.10 discusses the tradeoff between

implementing or not implementing this streaming mode of access.

The baseline system as described in this document avoids the com­
plexities of a design suitable for streaming, which includes among

other things, a capability of incrementing the address in the EM

module by nonunity increments. The chip count of table 2-6 does

not include any incrementer.

2-29

MEMORY

CHIPS
(64K WORDS
BY 55 BITS)

EM NO. (WIRED

DM ONE-WORD PARALLEL

BUFFER TO rTN

BYTE-SERIAL

MAR FOR PROC. I I
ORCU "- CONTROL

______I PROM CU
CONTROL FROM A

DBM CONTROLLER

Figure 2-9. EM Module

o' p2-0

2-30

TABLE 2-6

EM MODULE CHARACTERISTICS

UNIT: EM Module No. in System: 521

FUNCTIONAL CHARACTERISTICS

Function: Stores problem data base during program executions. Most nearly corresponds
to "core" of conventional processor.

Source of Control; During User Program: Receives commands from CU
During System Startup and Diagnostics: Same

Storages; Capacity: 65,536 words

Sped: Access time 200-250 ns, interlaced for 140 ns/word block transfer

Connectivity to Other Elements:

No.
Path TO or From Sig. Timing Primary Use

1 LOADEM
2 STORE4

To TN
From TN

9
9

byte/20ns
byte/20ns

Fetching data to processors and CU
Storing data from processors and CU

3 - To DBM 9 full word Results back to DBM
in 400 ns

4 --- From DBM 9 full word Initial data (and eventually, overlay)
in 400 ns from DBM

5 No From 10 D.C. level Module's own number
backplane

6 Control From CU TBD TBD Controls EM operations

RELIABILITY/REPAIRABILITY/TRUSTWORHINESS

Error Control Methods: SECDED (providing acceptable error rates are demonstrated)

Repair Method: Remove and replace

MTBF of Unit: Control dominates failure modes because of SECDED.

Degraded Modes Available: Data continues to be corrected even when there is one hard

error, allowing the current program to complete before repairs are undertaken.

PHYSICAL

Chip Count; 1980 Projection: 86 If use 1977 parts: 274

(55 memory + 30 control) (100K ECL, etc.) (224 mem. + 50 control)

Physical Size; 1980: One medium sized 1977:

p.c. board

Power Drain: 1980 1977:

ORIGINAL PAGE IS

OF pOOR QUALITY

2-31

Figure 2-8 shows the EM module, including two address registers, a

one-word buffer for DBM transfers, and an access path to the EM

modules own number, wired into the backplane. Table 2-6 gives the

data on the EM module.

2.4.8 Fanout Tree

A series of fanout boards is supplied to provide the CU to

processor connection. From CU to processor,s signals fan out to a

final 512 destinations. From the processors, the signals are

combined, so that, within the CU, a single result appears in

response to 512 signals emitted by the processors. For example,

the "all processors ready" signal becomes true at the clock that

the last enabled processor emits "I got here". Another such

signal is the 512-input OR of "enabled".

At the processor, some signals are wired per-processor directly to

the last level of fanout board; others are daisy-chained to eight

processors from a single signal pin on the last board. The fanout

boards are pin-limited. Simple buffers with one input pin and one

output pin per signal dominate the circuit count, so hex buffers,

easily available today, will not be improved upon by 1979-1980.

Data on the fanout tree is in Table 2-7. The figure demonstrating

the fanout tree is Figure 2-10.

2.4.9 Transposition Network

The transposition network allows the fully parallel, 512-wide,

fetching of sets of variables that are to be processed in

parallel. Up to 512 elements in one-dimensional vectors of any

type can be fetched at full speed in parallel. When DOALL loops

have two index variables, two-dimensional subsets of

multidimentional arrays can also be fetched in parallel. For

details, see Ref 1, and Chapter Three.

2-32

CU

4 COPIES OF 26 SIGNALS27

FIRST LEVEL 4 REQUIRED
NUMBER (CABINET LEVEL)

8 COPIES OF 28 SIGNALSFANOUT BOARD

32 REQUIREDSECOND LEVEL
FANOUT BOARD

25

4

EPE'S DAISY-CHAINED
PER BELT

512 REQUIRED

Figure 2-10. Fanout Tree

ORIGINAL PAGE IS

OF POOR QUALMTY
1 2-33

TABLE 2-7

FANOUT TREE CHARACTERISTICS

UNIT: Fanout Tree, CU to Processors No. In System: 1

FUNCTIONAL CHARACTERISTICS

Function: Provides fanout for signals from CU to the 512 processors; accepts signals from
. the 512 processors and combines them appropriately for the CU. Consists of 36 boards.

Source of Control; During User Program: 1b control; all passive logic.
During System Startup and Diagnostics: Same

Connectivity to Other Elements:

No.

Path To or From Sig. Timing Primary Use

1 command From CU 4 TBD Diagnostic
2 sync From CU .4 edge Synchronization of array
3 sync TO CU 4 edge Synchronization of array
4 BDCHT From CU- 8 byte/20ns Broadcast data
5 HVST To CU 8 byte/20ns Data to CU (such as global MAX)
6 command To proc. 8's 4(x 64) TBD Diagnostic
7 sync IT proc. 8's 4(x 64) edge Synchronization of array

8 sync From proc. 4(x 512) edge Synchronization of array

9 BDCST To proc. 8's 8(x 64) byte/20ns Broadcast data
10 HVST From proc. 8's 8(x 64) byte/20ns 512-input OR of data from processor to CU.

1st 8-way OR done on proc. wiring

RELIABILITY/REPAIEABILITY/TRUST ORTH RIESS

Error Control Methods: SECDED on broadcast and harvest data.

Repair Method: Remove and replace of defective boards.
MTBF of Unit: See Chapter 5.

Degraded Modes Available: None

PHYSICAL

Chip COunt; 1980 Projection: 2,000 chips If use 1977 parts: 2,000 chips

all small scale integration. Dominated by (100K ECL, etc.)
1,504 hex buffers.

Physical Size; 1980: 32 cards of 60-80 chips 1977: Same

each

Power Drain; 1980: 1.6 kw 1977: Same

O OROF p~OR Q'A4 2-34

2-34

The transposition network consists of 521 switchable data paths

from EM to processor, and another 521 data paths from processor to

EM. There are two 10-bit control registers, one for offset of the

starting element, and one for skip distance. Since there are two

sets of data paths, the first from processor to EM module, and the

second from EM-module to processor, the settings of the two paths

could be separately controlled. There is just one instruction

that would go faster if both paths are used simultaneously with

different settings, namely SHIFTN (see Table 2-10 and 2-11 for a

description). SHIFTN is used in functions that operate

"horizontally" across the parallelism of the array, such as global

sum, global maximum, or global product. SHIFTN would also be used

to implement a Fast Fourier transform on the FMP. In the aero

codes used as benchmarks, there is very little use of SHIFTN, so

there is no justification for having separate settings for the

first and second data paths,, and bidirectional data paths would

serve as well.

A three-bit command register enables the following commands:

1. Enable transfers between processor and EM. The presence

or absence of actual transfer is signified by the presence or

absence of a signal on the strobe line that accompanies each

byte-wide signal path.

2. Enable transfers between CU port and EM.

3. Enable transfers between the remaining eight paths and EM

(built into the design to allow these eight ports to service

the scalar processor).

4. Broadcast from selected EM module to all processors.

Table 2-8 gives the characteristics of the transposition network.

Figure 2-11 shows the barrel switches that implement it.

2-35

FROM EM MODULES TO EM MODULES
(LOADEM LOADCU) (STOREM, STORCU)

521 x9
)

521 x9C

OFFSET 18 BARREL SWITCHES
- (9 UP. 9 DOWN)

FROM CONTROLS
'so (210-BIT

CU REGISTERS)

9 	 "CONNECTIVITY
- SCRAMBLED

520 x 9I 	 (SEE REF. 1)

S 18 BARREL SWITCHES

~(9 UP, 9 DOWN)
SKIP DISTANCE 520 WIDE

(TRANSLATED AS

PER REF. 1)

TO CU (LOADCU)

FROM CU (STORCU) 	 INVERSE OF
CONNECTIVITY

9 	 SCRAMBLE
(SEE REF. 1)

S521 xo9 =21x
TO PROC. FROM PROC.
(LOADEM) (STOREM)

Figure 2-11. Transposition Network

ORIGINAL P40 -IS
OF POOR QUALITY

2-36

TABLE 2-8

TRANSPOSITION NETWORIK CHARACTERISTICS

UNIT: Transposition Network (TN) No. In System: 1

FUNCTIONAL CHARACTERISTICS

Function: Provides 521 data paths for fetching in parallel from all EM modules to all
processors; provides 521 -data paths for storing in parallel from all processors to
512 EM modules. Provides path from any one EM module to all processors. Provides
data path to any EM module from CU, also path from any EM module to CU.

Source of Control; During User Program: Commands from CU.
During System Startup and Diagnostics: Same

Storages; Capacity: None. Command register 10 bits offset, 10 bits skip distance, about
3 bits of command.

Speed:

Connectivity to Other Elements:

No.
Path TO or From Sig. Timing Primary Use

1 LOAD7 To Processor 9(x 512) 20ns/byte Data to processor during LOADEM
2 STORM4 From Processor 9(x 512) byte/20ns EM addresses and STOREM data from proc.
3 LOADCU To CU 9 byte/20ns Data to CU during OADCU
4 STORCU From CU 9 byte/20ns Data and address from CU
5 -- To EM modules 9(x 521,) byte/20ns Data and address to EM modules
6 -- From ?I4 modules 9(x 521) byte/2Ons Data from -EM modules
7 control From CU 13 TED Reset controls
8 spare To TBD 9(x 8) byte/20ns Reserved for scalar processor
9 spare From TBD 9(x 8) byte/20ns Reserved for scalar processor

RELIABILITY/REPAIRABILITY/TRUSTWO INESS

Error Control Methods: SECDED applied to EM word passes through TN. Detects hard
failures, corrects transients.

Repair Method: TBD
MTBF of Unit! See chapter 5
Degraded Modes Available: Some portion of the TN can be bypassed by programs that are

compiled for a less-than full complement of processors. Most, however, cannot.

PHYSICAL

Chip Count; 1980 Projection: 10,980 If use 1977 parts: 17,270
(10,480 shifter chips + 500 control) (100K ECL, etc.) 16,770 F 100158 chips

+ 500 control)

Ehysical Size; 1980: About 200 boards 1977: Same

if 20(1 signals allowed per board. Is

pin limited.

Power Drain: 1980: 1977: 2-37

2.4.10 Data Base Memory (DBM)

Data Base Memory (DBM) is the window in the computational envelope

of the FMP. All jobs to be run on the FMP are staged into DBM

before running both program and data, all output from the FMP is

staged through the DBM. At some future time (but not with the

initial operating system) DBM could be used to back up EM for

those problems whose data base is larger than EM. Control of the

data base memory is from a DBM controller, which accepts commands

both from the CU for transfers between DBM and EM, and from the

host for transfers between DBM and the file system.

Many design options exist for the data base memory. Out of this

set of options one particular design was chosen for the baseline

system. This chosen design is a CCD memory built out of

256k-chips, which are projected to be available in the 1980

period. If data base memory were to be built before the

appearance of sufficiently economical CCD chips, one would use

some form of parallel-head rotating magnetic storage. The design

described here is based on the existence of 256k-bit CCD chips

each arranged in the form of 128 shift registers of 2,048 bits

each.

With a projected shift rate of 2.5 MHz in the CCD chips, a desired

transfer rate of 2.5 Mwd/s to and from EM, DBM is built 55 chips

wide, for parallel emission of 55-bit words, by 512 chips deep.

The natural block size with 2,048 bits in each shift register

delivering a block of 2,048 words, is adopted. There are 64k

blocks for a total of 134,217,728 words. Error correction is a

SECDED, probably the modified Hamming-plus-parity implemented by

Motorola's 10,163 chip.

2-38

Since the array of CCD chips is 512 x 55, the DBM is constructed

in a number of physical modules, say each one 64 x 55 chips. The

repair philosophy is to pull and replace individual modules, and

the degraded mode of operation would be to run with one or more

modules missing, and the operating system would have to know to

avoid assigning any data to that space.

There are several (probably four) block-sized buffers, which stand

between the CCD storage and the host interface, in order to reduce

the interference with DBM-EM transfers produced by simultaneous

DMB-host transfers. They can also serve as timing buffers to the

host's disk packs. See Fig. 2-12.

After the transfer of a block to or from the CCD store, the shift

registers rest at the starting position until shifting is required

by the refresh requirements, or until the CCD store is again

addressed, whichever occurs first. Therefore, whenever there are

several requests for transfer pending at once, or when they occur

with sufficient frequency, the access time is essentially zero to

the first word of the block. For transfers arriving at random

times, far enough apart in time so as not to interfere, the

average access time is given by:

Tav = (Tb2/Tr)

where Tb is the transfer time of a single block (0.82 ms) and Tr

is the time between refreshes. Tr will be in the specification of

the device, and is expected to lie between 1 ms and 10 ms. There­

fore, the average access time for random data at low usage, to the

first word of the block, has an upper bound which is expected to

lie between 0.67 ms and 0.067 ms. As traffic increases, the

access time is mostly due to interference between competing

accesses, while the contribution due to delay in the memory goes

to zero.

2-39

I-- 55 WIDE -- &

CCD
CHIP
ARRAY 	 512 CHIPS

DEEP

CHI. 1

2K WORD DATA REGISTER - EOR CORRECTION

BUFFER ____

2K WORDBUFFER 	 SEDD°FO
 IFO

TO

PARALLEL.HOSTBYTE-SERIAL
 TO EMSEDDCHECKWORD-- W,2K 	 LL--'-'P

BUFFER
 H

2K WORD
CH. 2 	 BUFFER

RESULT

SDESCRIPTOR 	 EM ACCESS REQUEST

TO/FROM 	 RESULTSHOTCONTROLLER 	 10 TO/FRDM
HOST 	 HOST-DBM CU

1/0 DESCRIPTORS NoBM-EM TRANSFERS

Figure 2-12. DBM Block Diagram

2-40

'TABLE. 2-9

DATA BASE MEMORY CHARACTERISTICS

UNIT: Data Base Memory (DBM) and its controller No. In System: 1

FUNCTIONAL CHARACTERISTICS

Function: In this memory, data is staged for FMP jobs not yet started, and results of FMP
jobs are output from the FMP. Almost all conmunication between FMP and host goes through
this memory, both data and program. CCD storage is postulated, although other options
are available, including disk pack. Resolves host-CU conflicts.

Source of Control; During User Program: DBM-4 transfers controlled from CU, DBM-host
transfers controlled from host.

During System Startup and Diagnostics: Same

Storages; Capacity: 134 x 106 words in blocks

Speed: 140 Mb/s (an easily adjustable parameter)

Connectivity to Other Elements:

Path TO or From Sig. Timing Primary Use

1 To/from EM '8+8 words/40 ns Loads EM at start of run, unloads results
2 -- To/from host TBD, 2 rate matches Loading DBM, unloading results

paths host file
min system

3 control From CU TBD TBD Receives control from CU for DBM-EM

transfers
4 result Tb CU TBD TBD -­

5 icontrol From host TBD TBD receives control from host for DBM­

file-system transfers
6 result TO host. TBD TBD Monitoring and error cases

RELIABILITY/REPARIABILITY/TRUSTWOIRHINESS

Error Control Methods: TBD. SECDED may be adequate, and will be used if so. "Scrubbing"

errors arising due to refresh will be needed in CCD memories.

Repair Method: TBD.
MTBF of Unit: Domniated by controls since SECDED on memory.
Degraded Modes Available: Error correction codes allow valid data to 'be fetched in spiteof errors in memory. Can operate with failed modules removed.

PHYSICAL

Chip Count; 1980 Projection: 29,160 If use 1977 parts:

(28,160 mem + l,000 control) (100K ECL, etc.) use disk pack

Physical Size: 1980: about 150 large boards 1977: eight disk pack drives
Power Drain; 1980: 1977:

ORIGINAL PAGE IS

OF poOR QUiA tL

1

2-41

As a background job, the DBM controller periodically initiates an

access for the purpose of reading the contents of a block and

rewriting that same block with all detectable errors corrected,

since errors are spontaneously created in CCD memories at a low

rate during the refresh operation. It has been conjectured that

these errors are caused by cosmic ray bombardment of the CCD

chips, discharging the little capacitors by temporarily ionizing

the oxide. The rate of periodically initiating access can

rationally be determined only after getting the vendor's speci­

fication on the number of refreshes per error. Preliminary

Fairchild data, if it continues to be true, indicates that one

should scrub through the entire DBM every seven minutes, or that

this background task should occur at one eighth the normal

bandwidth of the DBM. Therefore, this background access is

initiated every 6.55 ms. Only one error-scrubbing access will be

pending at a time, even if the delay in starting exceeds 6.55 ms.

They are not queued.

The DBM has a number of channels into the file system of the host.

The number is to be determined by simulation. Initial estimates

are that two channels provide more channel capacity than needed

for the aerodynamic flow models. At least two are needed for

reasons of reliability. Two are assumed for the baseline system

design.

No buffering is needed on the EM side beyond the one-word buffers

in each EM module. The CU will guarantee the acceptance by the EM

of a word coming from DBM is less than 400 ns. Likewise, when

transferring from EM to DBM, the EM module has its one-word buffer

loaded nominally 800 ns or more ahead of the DBM requirement, and

this time will not slip by more than 400 ns from interference with

array transfers.

2-42

DBM-EM transfers have priority in the EM controls: However, there

is little interference with CU-initiated EM transfers. For

example, when transferring from EM to DBM, one EM cycle loads 521

of the per-EM-module one-word buffers, and then waits for 208

microseconds before another EM cycle is required for the DBM

transfer path.

A design decision, to be made with the aid of simulation in phase

II, is whether the LOADEM and STOREM instructions should be

limited to 512 words per execution, or whether they should trans­

fer 512 x N words at a time. The description given above is

concordant with a design in which LOADEM and STOREM are 512-word

instructions, which are the only use made of LOADEM and STOREM in

the FORTRAN compiler described in Chapter Three. In Chapter Six

the implications of this choice are discussed at further length.

Use of DBM is as a staging area for jobs going into the FMP or

coming out of the FMP. The hardware design also permits its use

as a source for overlaying data and program into the FMP. It is

possible to transfer less than a full block, but not to start any

place other than the beginning of the block. A decision to make

heavy use of the overlay capability would result in reevaluating

the transfer rate between EM and DBM.

2.5 INSTRUCTION SET AND INSTRUCTION TIMING

This section lists the instruction set together with a list of

numbers giving the execution times of each.

2-43

2.5.1 Tables

There are three tables. Table 2-10 contains the instructions and

timing for the processor, of -which there are 512. Table 2-11

contains instructions and timing for the control unit of the

base-line system. Since no scalar unit is required for the

aerodynamic equations, scalar unit timings are not specifiable on

the basis of any known application. Rather arbitrarily, the

floating-point instructions of table 2-12 are given the same

timing as their processor counterparts. These instructions belong

to the option for processing floating-point scalars in the control

unit.

Instruction formats are easy to specify, and have been postponed

until more difficult issues are resolved. See section 6.5.

2.5.2 Instruction Execution -Timing

For the processor instructions there are three separate functional

units involved. Each instruction has a starting time in each of

the three- units and an ending time or does not use that unit. The

time of execution of each instruction is dependent on its time of

occupancy (if any) in each of the independent execution units,

namely: integer unit, floating point unit, and memory controls.

The timing. is described most easily with respect to the

instruction fetching process, which determines the starting time

of each successive instruction. A fourth function unit, to allow

EM fetches and stores to transpire in parallel with other

processing, is under consideration, but has- not been included in

this description.,

2-44

Entries in the table have the following significance:

"No. of clock periods" is the nuiber of clocks from when the

instruction normally issues to a functional unit, to the termi­

nation of the instruction. The instruction will always have been

decoded from out of the staging register for at least one clock

prior to this.

"Unit busy" is of the form n-m, where n is the number of the

latest clock that previous instruction is allowed to occupy this

unit, and m is the last clock that this current instruction

occupies this unit.

Some instructions merely stop the instruction fetching process for

a while, until the control unit restarts it. The clock times

given for these instructions represent the time from first

decoding such an instruction in the staging register, until the

start of decoding of the next instruction, under the most

favorable circumstances. These instructions are in tables 2-10

and 2-11, and are WAIT, STOP, and HELP.

2.5.3 Instruction Fetch Timing

Timing of the instruction fetching mechanisms can be seen with

respect to Figure 2-13. The next instruction is being held in a

staging register. Out of the staging register is decoded the

start times required for the functional units if this instruction

were to start at this clock, and the time it will occupy the

holding register. Out of the integer, the floating point, and the

2-45

SHSTAING

REGISTER
(FOR DELAYED
ISSUE)

INEENTFL. PT. UNIT MEMORY
INSTR.REG. INSTR.REG. CONTROLS

END TIME. CURRENT MEM. OP.

END TIME, CURRENT FL. PT. OP.

END TIME, CURRENT INT. OP.

TO DECODING

Figure 2-13. Instruction Fetching Mechanism
2-46

memory control functional unit is decoded the ending time

associated with the currently executing instruction. The

"scoreboard" compares all six times.
When all four comparisons

say the next instruction will not interfere with current

instructions, the instruction is transferred from the staging

register to the one or more functional unit instruction registers.

If delayed starts in other functional units are part of this

instruction, the instruction is passed to the holding register to

free the staging register for the next instruction.

The program counter always points to the next word in memory after

the staging register contents. Thus, normally the PPM will be

holding the next instruction word statically at its output lines.

Only when the staging register is unloaded in less than three

clocks (the PPM cycle) will the next word not appear.

A complexity is the existence of half-word and full-word

instructions. Empty halves of half-word instructions carry the

first half of the next instruction, so full-word instructions may

only have their first half present in the staging register. The

first half is sufficient to determine the timing. However, the

second half will contain any memory addresses, so when a fetch

from memory is involved, the second half must also be fetched

before the memory part of the operation can start.

In the baseline system, those instructions which contain a memory

address (either for data or as a branch address), or a literal,

are full-word 48-bit instructions. Others are 24 bits.

2-47

PEPM: CYCLE

PEPM. OUTPUT1,/

1 2, lt/3 1/2 OF 31

0/

/2 DF

5/6T6 NEo

STAGING REG.

HOLDING REG.

,--F1

Ist 1/2 OF 3

1/2OF 4

3

14 1 1/2OF 55

H
69 17/8 8 IEX T

FL. PT. UNITIF456T

MEMORY (PEML

CLOCK I ' I I I I I I I I I

3

I I I

45

I I I I I I I

!9

36

I I

Figure 2-14. Timing Diagram

t'3

-.3

Jumps take an extra three clocks before the first instruction on

the path branched-to can be started.

2.5.4 Example

For an example of how this works, take the sequence of instruc­

tions:

1. FETCH from memory to integer register

2. IADD reg. to reg.

3. FETCH from memory to floating point register

4. ADD from memory (,indexed by integer reg.) to fl. pt. reg.

5. ADD from mem. (indexed by integer reg.) to fl. pt. reg.

6. MUL from fl. pt. reg. -to fl. pt. reg.

7. IADD int. reg. to reg.

8. IADD int. reg. to reg.

9. STORE from fl. pt. reg. to mem. (indexed by int. reg.)

Figure 12-14 shows the timing diagram for this sequence, according

to the previous instructions. The instructions are given by

number in Figure 12-13. Each clock is 40 ns.

The entire sequence of nine instructions takes 36 clocks, or 1,440

ns. The sum of the "no. of clocks" column in the timing table,

for these same instructions is 40 clocks. Overlap between

functional units gained little in this example. It is expected to

gain more in iexamples which have a higher emphisis on computing ad­

dresses in the integer unit. In this present example, the timing

would have come out the same if the holding register had not been

there, if loading of the staging register were merely delayed.

Simulation may tell us that the holding register gains nothing;

that only the staging register is needed-. Simulation during phase

II will attempt to evaluate the gain given by,the complexities

here described. The final instruction fetching machinery will be

the result of a tradeoff between simplicity and throughput.

2-49

2.5.5 Control Unit Timing

In the absence of a completely detailed design of the control

unit, the internal structure and overlapping capabilities cannot

be visualized with certainty. No overlap mechanism in the control

unit is described in the table except for memory. Since there are

four semi-independent instruction execution units, these times are

pessimistic indeed. However, for aerodynamic flow problems used

as benchmarks, the pessimistic assumption is expected not to

matter. For aero flow problems, the interfering CU action will be

address calculations, which will be a solid swatch of instructions

all for the integer unit. Thus, we postpone designing the overlap

and look-ahead capabilities within the CU until simulation in

phase II tells us how much design effort we should spend on them.

It is assumed that memory fetches and stores will be overlapped.

Fetches can be initiated before the previous instruction is

started. Fetch and store are three clocks each. The fetch of the

next instruction must follow the store of this one, when fetch

follows store in the instruction sequence.

The diagnostic controller is not used during normal program

running. It is used only for diagnostics and for system initiali­

zation when power first comes on, or for reinitializing the FMP

system software.

Instruction fetching in the CU is overlapped with instruction

execution, but is out of the same CUM that holds the CU data. The

instruction execution unit will look ahead by an amount yet to be

determined.

2-50

The scalar processor is here implemented by adding floating-point

capability to the control unit and the entire repertoire of

floating point processor type instructions is added to the control

unit instruction set. See the discussion on "Scalar Processor",

in Chapter 6. These instructions are:

ADD, SUB, MUL, DIV, MAD, SSQ, ADDD, MULD, LT, LE, GT,

GE, NEG, EQ, NE, INFL, FIX, FLOAT, INFZ, SETFL, SETZ, PAK2,

ABS, UPF, and PENO (which yields either "0" or "512", to be

determined)

A scalar capability resident in the control unit may require a

faster control unit than the one described in the accompanying

timing tables. The degree of speedup of the design required is a

matter to be determined by simulation. Parallel operation of

semi-autonomous units (as seen in the processor) is one of the

ploys used to achieve increased speed, together with fast multiply

algorithms and other logic speedups. A method of achieving faster

CU memory operation also may be required. Several memory modules,

either interlaced or dedicated to concurrent and overlappable

functions, could be included in such a design. The times shown

here ignore these additional design options, since they will not

be needed for aero flow benchmarks.

2.5.6 Corresponding Times in Synchronizing Instructions

An additional detail is the relative timing of instructions that

must be synchronized between CU and processors. For these

instructions, execution will proceed when all enabled processors

and the CU have reached the instruction. For each instruction

there is a "CU lead time", TL. The timing rules are as follows:

2-51

The "go" pulse is emitted from the control unit a time Tc after

the start of the instruction, if the "All processors ready" signal

does not delay it. The "go" pulse is effective at the processors

no sooner than a time Tp after the start of the instruction in the

processor. Thus, if both CU and processor arrive at this

instruction at the correct time that both can execute it in the

minimum time, there will be an offset of (Tp - Tc) clocks between

these two initiations. For various cooperating pairs of synchro­

nizing instructions, Table 2-13 gives TL (=Tp - Tc).

Table 2-13 contains three columns. Column 1 is the CU name of the

instruction. Column 2 is the processor name of the matching

instruction. Column 3 is the CU lead time TL. Negative TL means

that the CU can arrive at the instruction -TL clocks after the

last processor without delaying the time of the instruction past

its last-processor start time. TL values tend to be negative

because the "same" clock pulse at the CU and the processors is

actually about 60 ns sooner at the ,CU. That is, TL=O implies that

the CU is 60 ns ahead of the processor.

2.5.7 Exceptional Cases

Within the processor, all fault cases result in an interrupt to

system software that is resident in the processor. It is possible

to handle some interrupts without interrupting the CU. Floating­

point out-of-range detection does not cause interrupts, but

results in setting the floating-point variables into "infinity" or

"infinitesimal". Any integer overflow causes an interrupt, on the

theory that most integer operations are address calculations and

overflow represents a faulty address. Attempting to insert a

number outside the range ±215-1 into a 16-bit integer register

causes an integer interrupt; likewise executing a FIXD (double­

length integer) on a number outside the range ±231-1 results in

interrupt. Any detection of error in the error-detection­

correction logic results in processor interrupt. When the error

is correctible, the interrupt'merely logs its occurrence and

returns to user processing.

2-52

TABLE 2-10

PROCESSOR INSTRUCTIONS

No. Unit Busy
Clock Flt'g Instr.

Description 	 Periods Int Point Men Length

ADD, SUB* 	 Floating point add/subtract. Result to
fl. pt. reg.

Case 1. Peg. + Reg. to Reg. 6 0-6 24
Case 2. Fag. + Lit. to Reg. 6 0-6 48
Case 3. Reg. + Mem. to Reg. 9 0-i 3-9 0-3 48

MUL* 	 Floating point multiply

Case 1. Peg. x Reg. to Reg. 9 0-9 24
Case 2. Peg. x Lit. to Reg. 9 0-9 48
Case 3. Reg. x Mee. to Reg. 12 0-1 3-12 0-3 48

DIV* 	 Floating point divide
Case 1. Reg./Reg. 44 0-44 24
Case 2. Peg./Lit. to Reg. 44 0-44 48
Case 3. Peg./Mem. to Reg. 47 0-1 3-47 0-3 48

DIVR 	 Same as DIV except the second operand
is divided by the 1st.
Case 1. 2d operand in reg. not implemented
Case 2. Lit./Reg. to Reg. 	 44 0-44 48

Case 3. Mem./Peg. to Reg. 	 47 0-1 3-47 0-3 48

MAD 	 Floating point add product of two operands
to third operand. Result to same regis­
ter in which third operand was found.
Case 1. eg. x Rag. + Reg. to Peg. 11 0-11 24
Case 2. Peg. x Lit. + Reg. to Reg. 11 0-11 48
Case 3. Reg. x Mem. + Reg. to Peg. 14 0-1 3-14 0-3 48

SSQ 	 Floating point sum of squares
2Case 1. Peg. 2 + peg. to Reg. 21 0-21 24

Case 2. Mem. 2 + Reg. 2 to Reg. 24 0-1 3-24 0-3 48

ADDD, SUBD 	 Floating point sun (or difference) of
two registers is kept in double length
form and kept in two successive fl. pt.
reg. The exponents of the two results
differ by at least 38. 13 0-13 24

MULD 	 Floating point multiply, with the full
double length result put into two suc­
cessive fl. pt. registers in the form
of two normalized flt. pt. words with
an exponent different of 36 or more.

Inputs are from registers 	 17 0-17 24

*If non-rounding versions of these instructions are supplied, the nexecution times will not
differ from those given for the rounding version.

2-53

TABLE 2-10 (cont.)

Description

No. Unit Busy
Clock Flt'g

Periods Int Point Mem
Instr.
Length

FLIT Transfer the 32-bit literal to
leading 32 bits of the fl. pt.

the
reg. 2 0-2 48

IADD, ISUB Integer add and subtract. Both input
operands are from integer registers,
result goes to a third register. One
input may be litera.
Case 1. Reg. ± Reg. or literal

Case 2. Reg. -+memory

1

4

0-1

0-4 0-3

24
(48 if lit.)

24

IADM, ISBM Same as IADD, ISUB, except the first
operand and result are double-length
(from concatenation of int. reg. with
next it. reg.)
Case 1. 2d operand int. reg.
Case 2. 2d operand lit.
Case 3. 2d operand from mem.(16 bits)

2
2
5

0-2
0-2
0-5 2-3 0-3

24
48
48

IADDD, ISBD Double-length integer add, oneoperand in
two successive registers, second from two
successive integer register, result to two
successive integer registers 2 0-4 24

IADDD, ISBD Second (32-bit) operand fro memory 5 0-5 0-3 48

IMUL Integer multiply
Case 1 reg. x reg. or literal

Case 2 reg. x memory

9

12

0-9

0-12 0-3

24
(48 if

48
lit)

IDIV' Integer divide. Register or literal
divided by register, result to register
Case 1 reg./reg. or literal

Case 2 reg./memory

16

19

0-16

0-19

24
(48 if lit)

0-3

IMED Multiply double-length integer in two
successive registers by single-length
integer, result to two successive
registers 17 0-17 24

(48 if lit)

IDVD Divide double length integer in one pair of
register by single length integer. Result
to single-length register 32 0-32 24

2-54

ID521

IMOD

ILIT

ILIT

IALIT

SB

IADDI,ISUBI

IMDD

ILT,ILE,IGT

IGE,IEQ,INE

SHF

LT, LE, GT,

GE, EQ, NE

TIX

AND,OR

TABLE 2-10 (cont.)

No.

Clock

Description Periods

Divide double length integer in register
by 521, leave result in double-length
register 13

Saved remainder instead of quotient
from IDIV 16

Transfer 16-bit literal to int. reg. 1

Transfer 32-bit literal to double-2
length integer register formed by the con­
catenation of two single-length int. reg. 2

Add the 32-bit literal to the designated
double-length int. reg. 2

Set least significant bit of integer
equal to the result of the proceding test
(excecuted prior to the actual jump) 1

Add (Subtract) 1 from content of int.reg. 1

Same as IDVD, except result is remainder
not quotient 32

Test first integer register against 2

second int. reg., if true, branch to
location in branch address field.

If fall thru: 2

If branch, 4

Shift index register right end-around by
the number of places found in second

register 2

Test operand in first fl. pt. register for 2
compliance with condition with expressed 4
condition with request to 2nd reg. new
PCR address in address field

Test integer in one register against 2
integer in second register, increment by 4
content of third reg. Single length only.

Logic combination of one integer register
with another, result to a third 1

Unit Busy
Flt'g

Int Point Mem
Instr.
Length

0-13 24

0-16

0-1

24
(48 if lit:

48

0-2 48

0-2 48

0-1

0-1

24

24

0-32

0-2

24

48

0-2
0-4

48
48

0-2

2-4
0-2
0-4

24

48
fall-thru
if jump

0-2
0-4 0-2

48
fall-thru
if jump

0-1 24

2-55

TABLE 2-10 (cont.)

Description

No. Unit Busy
Clock Flt'g

Periods Int Point Mer
Instr.
Length

NOT Complement of one integer
result to a second

register,
1 0-1 24,

BIT If Nth bit of integer register is ONE, fall
through, else jump to address contained in
second index register. N is in register or
literal

2
4

0-2
0-4 2-4

24
(48 if lit)

fall-thru
if jump

JUMP Set program counter to value found in reg. 2 0-2 1-2 24

CALL Subroutine entry. Involves automatic hand­
ling of stack of return information, and
parameter passing

to be determined,
to thirty clocks

up
48

RETUIN Subroutine return. Stack cut-back to be determined,
to thirty clocks

up
24

INFY Test fl. pt. reg for equal to infinity 2

4 2-4

0-2

0-4

24
if fall-thr
if jump

INFL Test Fl. pt. reg. for infiritesimal 2

4 2-4

0-2

0-4

24
fall-thru
ifjump

POP Execute stack action of RETURI, but do
not change program counter setting to be determined 48

TOS Set stack pointer
in register

to new value, value found
1 0-1 24

FIX Convert operand found in fl. pt. reg
to integer. Result to integer register. 4 3-4 0-4 24-

FLOAT Current operand in int.
result to fl. pt. reg.

reg. to floating,
4 0-4 1-4 24

FIXD Convert operand found
to integer, result to
integer registers

in fl. pt. register
two successive

5 3-5 0-5 24

INFZ Convert operand
infinitesimal

in fl. pt. reg. to zero if
1 0-1 24

SETFL Set infintesimal control bit. Underflow
will thereafter create infinitesimals 1 0-1 24

2-56

TABLE 2-10 (cont.)

Description

No. Unit Busy
Clock Flt'g

Periods Int Point Mem
Instr.
Length

SETZ Reset infinitesimal control but, U'flow
will thereafter create zeroes 1 0-1 24

PAK2 Take two floating point registers, round
the value found in each to 24 bits length,
concatenate the result, store in memory.
'the original operands are saved as long
as the third register is distinct 9 6-7 0-6 6-9 48

PAKI Take two integer registers, move one to the
first half, and the other to the second
half of a 48-bit word which is then
stored in memory 2 0-2 1-4 1-4 48

PAKID Same, except that two pairs of integer reg­
isters hold 32-bit integers each, which are
truncated (off left end) to 24 bit integers
before packing 4 0-4 2-7 4-7 48-

PAKI3 Pack three 16-bit integer registers in a
single word which is then stored to memory 5 0-5 2-8 5-8 48

UPI Move the two 24-bit halves of a word
fetched from memory to the pairs of regis­
ters indicated by the two integer reg.
addresses 5 3-5 2-4 0-3 48

UPI3 move the three 16-bit fields of a word
fetched from memory to the three int.
registers addressed. Like PAK13, may be
used to keep an index value, its increment
and its limit packed into a single memory
word 6 3-6 2-5 0-3 48

UPF Move the 24-bit havles of a word fetched
from memory to the leading 24 bits of the
two fl. pt. registers addressed, with zero
fill 5 0-1 2-5 0-3 48

BDCST Broadcast. Receive byte serial word from
the CU and insert it into the processor.
Timing varies with the destination.
Case 1. Fl. Pt. register
Case 2. Single Int. register
Case 3. Double (pair of) Int. reg.
Case 4. PEM

7
8
9
9

7-8
7-9
7-9

4-7
4-7
4-8
4-7 6-9

24
24
24
48

HVST "Unbroadcast", send word to the control
unit. From fl. pt. register only. 7 4-7 24

2-57

TABLE 2-10 (cont.)

No. Unit Busy

Clock Flt'g

Description Periods Int Point Mem

FETCH Move literal or register to register

Case 1. Literal or fl. pt. reg. to

fl. pt. 1 0-1

Case 2. Literal or int. reg. to int.

reg. 1 0-1

Case 3. Lit. to fl. pt. or vice versa 1 0-1 0-1

Case 4. Memory to fl. pt. reg. 3 0-1 2-3 0-3

Case 5. Memory to int. reg. 3 0-3 0-3

All integers above are 16-bit integers.

For fetching to pairs of integer registers,

fetching double-length integers, times

are:

Case 6. Flt. pt. to double integer

reg's or vice versal 2 0-2 0-2

Case 7. Double int. to double int. 2 0-2

Case 8. Memory to double int. 4 0-4 0-3

STORE 	 Store from source to PDM

Case 1. Fl. pt. to memory 3 0-1 0-3 0-3

Case 2. 16-bit integer to memory 4 0-1 1-4 1-4

Case 3. Double length (32-bit) int. to mem 5 0-2 2-5 2-5

WAIT 	 Cease operations until CU emits "go".
Takes one clock (at the instruction fetch
unit), before transmitting the "I got
here" signal. Takes three clocks for "I

got here" to echo back from the CU as a

new setting for the program counter, takes

5 clocks after that for the first instruc­
tion to get decoded. Takes only 4 clocks

if PCR not changed. 9

ORIGINAL PAGE IS

STOP Sane as WAIT plus reset "enable". The 9 OF POOR QUALITY

clocks include the time to restart the

program after starting but do not include

any new setting of the program counter. 9

HELP 	 Same as STOP, plus sends interrupt to CU 9

PNO 	 Read processor no. from backplane into

integer register 1 0-1

If processor is above the swithced-out

spare, add 1 to the number. 2 0-2

Instr.

Length

24

(48 if lit)

24

(48 if lit)

24

48

48

24

24

48

48

48

48

24

24

24

24

24

In all of the following TN instructions, an option is that the execution may be

conditional on an additional integer register's last bit. Thus, participation of

a given processor in a LOAD4 or STOREM4 need not use the much slower mechanism of

executing STOP followed by a subsequent turn on.

2-58

TABLE 2-10 (cont.)

Description

No. Unit Busy
Clock Flt'g

Periods Int Point Mem
Instr.
Length

LOADEM Fetch 1 word from EM, address in pair
of int. registers, to fl. pt. register.
After first clock, test "ready" line

from CU before continuing to count clocks 13 0-13 12-13 24

LOADEMM Fetch N words from EM address in pair of
int. registers, to PEM. test "CU ready"
line as above. Memory cycles N times.
Memory address found in int. reg.
not in instruction (Note 1).

13+ 0-13
4N

(Note 1)

13-
13+
4N

24

STOREM Store 1 word from fl. pt. register to EM.
EM address in double int. register. 5 0-2 1-5 24

STOREMM Store N words from PE14
is in integer register

to EM. PEN
(Note 1)

address 5+4N 5-5+
4N

SHIFTN Transmit one word from fl. pt. register
out onto TN after testing "CTU ready"
line. After transmission, test for a
new turn-on of "CU ready", and receive
from the line. The time given includes
the 4 clocks the PE waits while the CU
sets the TN to a new setting. 12 0-12 24

EMNO Read EM module number into the processor.
Wait for "CU ready", then transmit to int.
register. Delays through the wire of the
PE-to-CU-to-EM-to-PE path are included 8 7-8 6-7 24

OFF Test bit of int. reg.,
reset "enable" bit

if ZERO, halt and
2 0-1 24

ABS Make sign bit of fl. pt reg. positive.
Case 1. Operand in fl. pt. reg.
Case 2. Operand from memory

1
3 0-1

0-1
2-3 0-3

24
48

NEG Change sign of fl. pt. reg. 1 0-1 24

Note 1: These EM instructions, with a streaming of N words per instruction are
included to assist in evaluating the tradeoff between allowing such an N-word
streaming of data, and restricting the EM instructions to 1 word each. A number
of advantages accrue to the limitation to N=l. All of these instructions are
implemented, but, in the baseline design here presented we have limited the
machine to N=I. A design option exists to implement other N up to some large
limit. See Chapter Six.

2-59

TABLE 2-11
CONTROL UNIT INSTRUCTIONS

Description

CADD, CSUB 	 Add, subtract integers within the CU
(32 bits)

Case 1. Literal or reg. to reg.

Case 2. Memory to register

CDV521 	 Integer div. of register by 521, result
to a second register

CMD521 	 Similar to CDV521 except that original
number MOD 521 is left in a third regis­
ter.

CDVMD521 	 Produces both quotient and remainder
for 521

CMD512 	 Save last 9 bits of one reg. in second reg.

CDVS2 	 Shift right 9 places end-off into 2nd reg.

CMUL 	 Multiply two operands together
Case 1. Literal or reg. by reg.

Case 2. Memory by register
N is the bit position of the most signi­
ficant ONE in the multiplier. Thus-, mul­
tiplying by small positive integers is fast.

CDIV 	 Divide register by register or literal

Divide register by memory
A preliminary shift, controlled by the
number of leading zeroes in divisor and

dividend, produces all or all but one of

the zeroes in the quotient before the N
successive subtractions.

CMOD 	 Save remainder from CDIV
Case 1. Divisor from register

Case 2. Divisor from memory

INT 	 Test bit n of interrupt register, reset it

MASK 	 Set/reset nth bit of mask register

No. t

CU Instr.
Clocks Memory Length

1 24
(48 if lit

1 Fetch 48

9 24

10 24

11 24

1 24

1 24

3+ N 24
(48 if lit.

3+ N Fetch 48

5+N 24
(48 if lit.

5+N Fetch 48

6+N 24
6+N Fetch 48

10 24

10 24

2-60

CIADI, CISBI

CSHFD

CSHF

CSHFN

TIOM

CFCH

CSTR

CTIX

TIOH

CT, CGE
CLS, CLE
CEQ, CNE

CCALL

CCALLS

CRET

CRETS

UBSCST

UBDCSTE

TABLE 2-11 (cont.)
No.
CU

Description Clocks

Add (subtract) from register 1

Shift reg. by the shift distance
(literal, or found in 2d reg.)
end-off 1

Shift end-around 1

Shift numeric. If a right shift, fill the
left with copies of the sign bit. If left,

the shifted-off bits must all equal the

retained sign bit, or integer overflow
is declared. 3

Transmit content of two or three registers
to DBM-EM controller 2

Fetch from CU memory to register 1

Store to CUM from register 1

Text index in register, and increment
Case 1. Fall-through 3

Case 2. Jump 7

Read or write 2 words into 48-bit host­
readable register, interrupt host 2

Test register against register
Case 1. Fall-through 3
Case 2. Jump 8

Enter subroutine, ignore processors 20

Enter subroutine, synch 23

Return from subroutine, ignore processors 30

Return from subroutine, synch 33

Unconditionally force the processor to

accept a stream of N words for PEM or 6+4N

PEPM with starting address in CU

register

Same except only enabled processors are
loaded 6+4N

ORIGINAL PAGE I8
OF POOR QUALITY

Instr.
Memory Length

24

24

24

24

Fetch 24

Fetch 48

Store 48

24

24

24

24

24

24

24

Fetch 48
during
inst.

Fetches 48

2-61

Description

TABLE 2-11 (c6nt.)
No.
CU

Clocks Memory
Instr.
Length

USETP Unconditionally force the content of CUM
into designated processor register. CUM
address is in instruction stream with
index option 4 Fetch 48

USETPO Same, plus turn on "enable" bit of the processor 4 Fetch

CHALTP 	 Halt PE's at end of next PE instruction,
Wait for all PE's to finish. Can restart

CSTOPP 	 Stop processors in second clock of this in­
struction. Cannot restart processors, un­
til reinitialized

LOADCU 	 Fetch to CUM from EM via TN. EM address
in CU register is DIV 521 to make
address-within-module, and MOD 521 to
form module no. (which sets the barrel
part of the TN). The DIV and MOD are
computationally expensive, therefore,
we stream N words. (Note 1)

STORCU 	 Store from CUM to EM. Address calcula-
tion like LOADCU. N words (Note 1)

LOADRCU 	 Same as LOADCU except the destination
is the register, rather than memory
pointed to by the register'

STORRCU 	 Same as STORCU except the data is taken
from the reg. rather than memory

CFETCH 	 Fetch from CUM to address indexable by
register

CSTORE 	 Store to CUM from register

CJUMP 	 Change PCR setting

LOADEM 	 Set TN to settings found in register (TOEM
for log 3 (skip-distance) is. in hardware).
Send "CU ready" bit to processor. When "all

4 	 24

3 	 24

26+ Series 48
4N of

(Note 1) Stores

26+ Series 48
4N of

(note 1) Fetches

23 	 48

23 	 48

1 Fetch 48

1 Store 48

1 24

ORIGINAL PAGE IS
OF POOR QUALITY

processors ready" comes back, send N successive
"read" commands to EM at 4 clock spacing.
(See Note 1) Includes TN setting for
broadcasting to all processors for one EM
module. 4+4N 24

STOREM Same, except "write" command sent to EM, 8 24

2-62

SHIFTN

EMNO

CGTS, CGES,
CLSS, CLES,
CEQS, 'SNES

CTIXS

CILIT

CLITT

CALIT

SETIN

LOOP

SYNCH

TABLE 2-11 (cont.)

Description

Set TN setting and send "CU ready".

When "all processors ready" comes back,

wait 1 clock, set TN to 2d setting,

and send "go".

Set TN setting and send "CU ready". Ten
"all processors ready" comes back, send
"read module no." to EM and "go" to pro­
cessor, appropriately timed.

Perform indicated test and wait for "all

processors ready". Then send command to

processors to load PCR to either first or

second address depending on the test result.

Also branch -inCU if.test succeeds.

Test index against liiit and wait for "all

processors ready". Then jam

16-bit literal to int. reg.

Transfer 32-bit literal to CU. reg.

Add 32-bit literal to CU reg.

Set TN controls. No synchronization or

processor interaction occurs

Wait till "all processors ready". If

any are .enabled issue "go". If none

are enabled, jam processor PCR to new

setting found in address field. Used for

synchronized execution of loops whose loop

control is in a processor variable, and may

be data dependent per processor.

Wait for "all processors ready". Issue

"golf

No.
CU Instr.

Clocks Memory Length

8 24

6 24

6 24

1 24

2 48

2 48

4 24

2 24

2 24

2-63

TABLE 2-11 (cont.)
No.
CU 	 Instr.

Description 	 Clocks Memory Length

BDCST 	 Wait for "all processors ready", then trans­
mit byte-serial word and "go".

Case i. Word comes from CU register 5 24

Case 2. Word comes- from CUM 5 Fetch 48

HVST 	 Wait for "all processors ready" then trans­
mit "go", receive 48-bit word (If PE is

transmitting an integer, later bytes may

be empty except for the check bits) 	 9 24

CAND, COR 	 Logic combination of two CU words, result
to register.

Case 1. Both operands in registers or lit. 2 24

Case 2. One operand from CUM 2 Fetch 48

CNOT 	 Bit complement of CU register 2 24

CIMP 	 A and not B. Logic

Case 1. Both operands register or literal 2 24

Case 2. One operand' from CUM 2 Fetch 48

MOVE 	 Register-to-register move 1 24

CBIT,CBITS 	 Jump if any bit of register, ANDed with 2nd

register or literal is QN 6 24

Note 1: These EM instructions, with a streaming of N words per instruction are included
-to assist in evaluating the tradeoff between allowing such an N-word streaming of data, and
restricting the EM instructions to 1 word each. A number of advantages accure to the
limitation to Nel. All of these instructions are implemented, but, in the baseline
design here presented we have limited the machine to N=l. A design option exists to

implement other N up to some large limit. See Chapter Six.

2-64

TABLE 2-12

FLOATING POINT SCALAR INSTRUCTIONS

Description Clocks Memory Instr. Length

ADD, SUB Case 1. Reg. or lit. + reg. to reg.
Case 2. Reg. + mem. to reg.

6
6 Fetch

24 (48
48

if lit.)

MUL Case 1. Reg. x reg. or lit. to reg.
Case 2. Peg. x mem. to reg.

9
9 Fetch

24 (48 if lit.)
48

DIV Case 1. Reg. or reg;/lit to reg.
Case 2. Reg./mem. to reg.

44
44 Fetch

24 (48 if lit.)
48

DIVR same as DIV with operands reversed,
Case 2 only. 44 Fetch 48

MAD Case 1. Reg. x reg. or
reg.

lit. + reg. to
11 24 (48 if lit)

SSQ Case 1. Reg. 2 + Reg. 2 to reg.
Case 2. Mem.2 + reg.2 to reg.

21
21 Fetch

24
48

ADDD Floating point double length addition 13 24

MULD Floating point double length multiply
capability (single length inputs) 17 24

LT, LE, GT,
GE, EQ, NE,
INFY, INFL

Tests on floating point registers 2
4

48 if fall thru
if jump

*FIX, FLOAT *Convert data type 4 24

INFX Convert infinitesimal to zero 1 24

SETFL, SETZ Set response
or zero

to underflow to infintesimal
1 24

PAK2 Pack two
word.

truncated fl. pt. words in mem.
6 Store 48

UPF Unpack two truncated fl. pt. words 2 Fetch 48

PENd Load CU register with predetermined lit.
Supplied only to permit symetry with
processors' code stream.

1 24

ABS Take absolute value,
Case I./ reg./
Case 2./mem./

1
I Fetch

24
48

NEG Change Sign 1 24

2-65

TABLE 2-13

OFFSET TIMES OF PROCESSOR-CU SYNCHRONIZED INSTRUCTIONS

CU INSTRUCTION OR ACTION PROCESSOR INSTRUCTION TL

Interrupt HELP -3
LOADEM LOADEM 1

STOREM STOREM 1

SHIFTN SHIFTN 3

EMNO EMNO 1

BDCAST BDCAST -3

HVST HVST -3

SYNC WAIT -3

CGTS, OGES, CLSS WAIT -3

CLES, CEQS, CNES,

CTIXS, CJUMPS

CBITS

CCALLS STOP or WAIT -3

CRETS STOP or WAIT -3

LOOP WAIT -3

2-66

Ref. 1. Burroughs Corporation, "Final Report, Numerical Aero­

dynamic Simulation Facility, Preliminary Study", Dec. 1977.

2-67

CHAPTER 3

SOFTWARE ISSUES

3.1 EXTENDED FORTRAN FOR THE FMP

3.1.1 INTRODUCTION

This chapter describes the extensions and restrictions on the FMP

FORTRAN language and compiler at the functional level. The

overall functional view of this piece of software is stated below,

and is sketched in Figure 3-1.

1. NSS FORTRAN will be as compatible with ANSI FORTRAN

(X3J3/90) and B7800 FORTRAN as the architecture permits.

Differences from these standards will be indicated in this

document and in detail in the later detailed design

specification.

2. 	The compilation process will be performed on the B7800

front end and will produce code to be executed on the FMP

system.

3. FMP FORTRAN will have array operations designed to allow

the explicit expression of parallel operations available with

the architecture.

4. The compiler will be designed in a modular fashion with

an internal representation between components which is

identical so that addition modules can be added if desired.'

The components as envisioned at this time are:

a. 	A parser

b. 	A preliminary optimizer which performs standard serial

optimization techniques.

c. 	A secondary optimizer which may reorder code to obtain

maximum overlap of functional units.

3-1

___ ___

SOURCE PARSER

FILEI

OPTIMIZER

ONE

6PTIMIZER

TWO

ORIGINAL PAGE Is
GENRATOR
 G T OF POOR QUALIT

FOOTDA FM

GENERATOR CD

I-------------

FMP Compiler Components
Figure 3-1.

3-2

d. 	A code generator

e. 	A source regenerator which will regenerate serial

FORTRAN as a method of enhancing portability and

providing the user with a programming tool during the

early phases of using the machine.

3.1.2 Functional Objectives of Language Development

In the development of the FMP language and the FMP compiler the­

following goals were set which are listed below:

1. 	Allow the user to access features of the machine in a

simple straight forward manner.

2. 	Add a small number of extensions which are general in

nature rather than a host of specific cases.

3. 	As much as is possible keep both the syntax and semantics

of the extensions isolated from those employed in serial

FORTRAN constructs.

4. 	Provide easily understood and recognizable constructs

which yields programs which the user can understand and

recognize without translation back to serial constructs.

3.1.3 Major Extensions to FORTRAN

There are only two primary extensions to the ANSI FORTRAN. All

other additions and restrictions to the language follow from these

primary extensions. The two consist of a modification to the

normal set of non-executable specification statements and the

addition of a parallel construct.

ORIGINAL PAGE IS

OF POOR QUA 4ITX

3-3

The modifications in the specification statements are made to

allow the user to control the memory allocation to maximize

efficient utilization of the machine. These memory resident

specifications allow the user to explicity control the allocation

of his data among the Control Unit Memory (CUM), the Extended

Memory (EM), and Processor Memory (PM). The second construct is a

parallel construct put in the language to aid the user in

obtaining a simple way in which to express the parallel aspects of

his problem. With both constructs equivalences can be made to

ANSI FORTRAN so that a serial FORTRAN can be regenerated.

3.1.4 Specification Statements

The modifications to FORTRAN will permit the following

specifications:

1. DIMENSION

2. EXTENDED

3. LOCAL

4. GLOBAL

For the present the following statements will be disallowed:

1. EQUIVALENCE

2. COMMON (Blank or named)

3.1.4.1 The DIMENSION statement retains its ANSI FORTRAN meaning!

The DIMENSION statement is used to specify the sumbolic names and

dimension specifications (extents) of arrays.

3.1.4.2 The EXTENDED specification statement declares that the

variables specified in the statement are resident in the Extended

Memory. The form of declaration is:

3-4

EXTENDED /cb/ nlist (, /cb/ nlist)

or

EXTENDED nlist

where cb is an extended block name

nlist is a list of variable names or array declarators. Only one

appearance of a symbolic name as a variable name or array

declarator is permitted in all such a-symbolic name as a variable

name or array declarator is permitted in all suchlists in a

program unit. The ellipses represent repetition.

This construct is similar to blank COMMON in the sense that execu­

tion of a RETURN or END statement never causes these quantities to

become undefined-. (See Specification FORTRAN X3J3/90 page 8-3)

3.1.4.3 The LOCAL specification statement declares that the

variables specified in the statement are resident in Processor

Memory. The form of the declaration is:

LOCAL /cb/ nlist (, /cb/,nlist)

or

LOCAL nlist

where cb and nlist are defined as above.

This construct is similar to named COMMON in FORTRAN in the sense

that execution of a RETURN or END may cause the quantities to be

undefined. Note however that execution of a RETURN or END within

a subprogram will not cause entries to become undetermined in a

LOCAL block that appears in the subprogram and appears in at least

one other program unit that is referencing it either directly or

indirectly. (See Specification FORTRAN X3J3/90 page 15-15)

3.1.4.4 The GLOBAL specification statement declares that vari­

ables specified in the statement are controlled by the Control

Unit and are broadcast automatically to the Processor Memory on

Program initiation or if they modified during the execution of a

program. The form of the declaration is:

GLOBAL /cb/ nlist (, /cb/ nlist)

or

GLOBAL nlist

where cb and nlist are defined as above.

3.1.5 The Parallel Construct

The executable DOALL construct is a control statement provided to

permit concurrent execution of-segments of a program.

The DOALL statement is used in conjunction with a terminal

statement ENDDO to form together a loop called the DOALL loop.

The form of these two statements is

DOALL, I=Il, 12 (,13) (;J=Jl, J2 (,J3)) (;K=KI, K2 (;K3))

ENDDO

I is the name of an integer variable. II, 12, 13 are each

integers.

3.1.5.1 Range of a DOALL loop. The range of a DOALL loop

consists of all executable statements that appear following the

DOALL statement including the terminal ENDDO statement.

No additional DOALL statements may occur within the range of a

DOALL.

If a DO statement appears within the range of a DOALL statement it

must be fully contained within the range of the DOALL statement.

If a arithmetic or logical IF statement occurs within a DOALL

statement, it may not transfer control out of the range of the

DOALL statement. Transfer into the range of a DOALL is

prohibited.

3.1.5.2 Active and inactive DOALL-loops. A DOALL loop is either

active or inactive. Initially inactive, a DOALL becomes active

only when its DOALL statement is executed.

Once active, the DOALL-loop becomes inactive only when the

iteration count (3.1.5.4) for each of its increment parameters

becomes zero.

Execution of a FUNCTION reference or a CALL statement that appears

in the range of a DOALL statement does not cause the DOALL to

become inactive. Note specification of an alternative return

specifier outside the range of the DOALL is disallowed.

3.1.5.3 Incrementation Parameters. Specified in the DOALL

statement are at least one set of parameters which are to control

the execution of the statements within the range of the DOALL

loop. These are called the incrementation parameter set and there

may be a total of three sets of them. Each parameter set consists

of three (four) integers known as the DOALL variable, the initial

parameter, the terminal parameter, and (the increment parameter).

3-7

3.1.5.4 Referencing the DOALL variable within the DOALL loop.

References to the DOALL variable, I, (J) or (K) within the

DOALL-loop is permitted for the following references:

1. 	Any reference to array subscripts for arrays declared to

be in Extended Memory, however, the DOALL variable may

not reference outside the declared array.

2. 	Any reference to the value of the DOALL variable within

an expression of an IF statement if control is not trans­

ferred beyond the range.

3. 	The DOALL variable may be used in the evaluation of an

assignment statement, however, not to form forbidden

array reference.

The utilization of the DOALL variable is specifically prohibited

for the following:

1. 	Any reference to array subscripts for variables declared

to be LOCAL or which appear in a DIMENSION statement

either explicitly or implicitly.

2. 	The DOALL variable may not be reassigned within the range

of the DOALL-loop except by the DOALL statement.

3. 	Transfer of control into the range of a DOALL-loop is

prohibited.

3.1.5.5 Execution of the DOALL construct. The effect of execut­

ing a DO-ALL-loop construct is to execute all body statements,

those following after the DOALL statement and preceding the ENDDO

statement, in a serial fashion for those determined incrementation

parameters set in the DOALL statement. The initial parameter M1

the terminal parameter M2 , and the incrementation parameter M3 are

determined for each incrementation set, Il, 12, 13. This deter­

mines the allowable values of the DOALL variables I(J and K) equal

to NJ.

3-8

The DOALL variable I with its NI allowed values is paired with the

first allowed variable of J. Next the DOALL variable of I with

its N, allowed values is paired with the second allowed variable

of J. This continues until all possible combinations occur. The

total number of combinations is:

NI for a single DOALL-loop incrementation set

NJ * Nj for a double DOALL-loop incrementation set

N1 * Nj * NK for a triple DOALL-loop incrementation set

Hence the body statements are executed in serial fashion for each

given set of DOALL variables allowed, either I, I & J, or I, J, &

K in a strictly parallel sense.

3.1.6 Subroutines & Procedures as Program Subunits (to be resolved

in Phase II)

3.1.7 Other Constructs

3.1.7.1 ASSIGN Statement. The ASSIGN statement has been dropped

as a possible candidate for a FMP extension. It was found that

the access to Extended Memory could be handled by simple compiler

algorithms through the EXTENDED declaration. It was found that in

complex control structures the programmer was more likely to make

mistakes and cause ARRAY bound errors than if the compiler was to

perform all the necessary accessing. Some details of this will be

shown in later examples. (See 3.2.2.2 discussion and Fig. 3.4).

3.1.7.2 I/O. All I/O for NSS FORTRAN must be performed on vari­

ables assigned to Extended or Control Unit Memory. If variables

in Processor Memory are referenced in an I/O statement a

syntactical error will result.

3-9

3.1.8 Examples of Constructs in FMP FORTRAN

3.1.8.1 VALID Triply Nested DOALL-Loop

EXTENDED Q(100, 100, 100), S(100, 100, 100)

DOALL, I = 2, 99; J = 2, 99; K = 2, 99

RR = 1.0/Q(I, J+1, K-i)

R1 = Q(I+1, J, K) - Q(II, J, K)

R2 = Q(I, J, K+) - Q(I, J, K-i)

S(I, J, K) = RR * R1 * R2

ENDDO;

2. INVALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)

DIMENSION RI(100), R2 (100)

DOALL, I = 2, 99; J = 2, 99; K = 2, 99

RR = 1.0/Q(I, J+l, K-i)

RI(I) = Q (I+l, J, K) - Q(I-1, J, K)

R 2 (I) = Q(I, J, K+l) - Q(I, J, K-i)

S(I, J, K) = RR * R1 (I-1) * R2 (I+1)

ENDDO;

This construct is invalid because the arrays R1 and R2 declared in

the DIMENSION statement are referenced by the DOALL variable I.

If it is necessary to so reference the arrays R1 and R2 arrays the

doubly nested DOALL construct should be used (See 3.1,8.2).

3-10

3. VALID

EXTENDED 0(100, 100, 100), S(100, 100, 100)

DOALL, I = 25, 50, 2; J = 1, 99; K = 2, 100

RR = 1.0/Q(I, J+l, K-i)

IF (I. GT. 30 GO TO 1

2

R1 = Q(I+1, J, K) - Q(I-1, J, K)

S(I, J, K) = RR * R1

GO TO 2

R1 = Q(I-1, J, K) - Q(I+1, J, K)

S(I, J, K) = RR * R1

CONTINUE

ENDDO;

4.. INVALID

EXTENDED Q(100, 100, 100), S(I00, 100, 100)

DOALL, I = 25, 50, 2; J = 1, 99; K = 2, 100

RR = 1.0/Q(I, J+l, K-i)

IF (I. GT. 30) GO TO 1

R1 = Q(I+I, J, K) - Q(I-1, J, K)

S(I, J, K) = RR * R1

1

ENDDO;

CONTINUE

3-11

This DOALL-loop construct is invalid because it transfers control

out of the range of the DOALL.

5. INVALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)

DIMENSION R1 (100), R2 (100)

GLOBAL JL, KL

DOALL J=2, JL; K=2, KL

R1 (I) = 6.7

If (J 30) GO TO 3

If (K 30) GO TO 4

DO 1 I = 2, 99

RR = 1.0/Q(I, J, K)

GO TO 5

3 RR = 1.0/Q(I, J-1, K)

GO TO 5

4 RR= 1.0/Q(I, J, K-i)

5 RI(I) = Q(I+1, J, K) - Q(I-1, J, K)

R2 (I) = Q(I, J, K+1) - Q(I, J, K-1)

S(I, J, K) = RR * RI(I-1) * R2 (I+I)

1 CONTINUE

ENDDO;

ANSI FORTRAN specifically prohibits transfer of control from

outside a DO-loop to into the body statements of a DO-loop.

3-12

3.1,.8.2 Doubly Nested Loops

1. VALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)

DIMENSION R1 (100), R2(100)

DOALL, J=2, 99; K=2, 99

RI(I)=6.7

DO 1 I=2,99

RR=1.0/Q(I, J+l, K-1)

RI(I) = Q(I+1, J, K) - Q(I-1, J, K)

R2 (I) = (, J, K+I)

S(I, J, K) = RR * RI(I-1) * R2 (I+I)

1 CONTINUE

ENDDO; This is the correct syntax for handling the

problem in Example 2. (3.1.8.1)

2. VALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)

DIMENSION R1(100), R2 (100)

GLOBAL JL, KL

DOALL, J=2, JL; K=2, KL

R1(I)=6.7

DO 1 I = 2, 99

If (J.GT.30) GO TO 3

If (K.LT.30) GO TO 4

RR=1.0/Q(I, J, K)

GO TO 5

3
RR=I.0/Q(J, J-l, K)

GO TO 5

3-13

4
RR 	1.0/Q(I, J, K-I)

5 	RI(I) = Q(I+I, J, K) - Q(I-1, J, K)

R2 (I) = Q(I, J, K+1) - Q(I, J, K-i)

S(I, J, K) = RR * RI(I-1) * R 2 (I+1)

1
CONTINUE

ENDDO;

3.1.8.3 Use of the LOCAL Construct

1. VALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)

LOCAL RI(100, R2 (100), "CONST

GLOBAL JL, JK)

DOALL, J=1,JL; K=IKL

R(1)=6.0

R(100)=10.0

DO 1 I = 2, 99

RR=1.0/Q(I, J, K)

RI(I) = Q(I+1, J, K) - Q(I-1, J, K)

R2 (I) = Q(I, J, K+l) - Q(I, J, K-i)

CALL TEST (I)

S(I, J, K) = RR * R(I-1) * R2 (I+I) * CONST

1 CONTINUE

ENDDO;

SUBROUTINE TEST(I)

LOCAL R1(100), R2(100), CONST

IF (R1(I). GT. R2(I)) CONST=R(I)

RETURN

END

3-14

2. INVALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)
LOCAL RI(100), R2 (100)

GLOBAL JL, JK

DOALL, J=1,JL; K=1,KL

R(1) = 6.0

R(100) = 10.0

DO I I = 2, 99

RR=I.0/Q(I, J, K)

RI(I) = Q(I+I, J, K) - Q(I-1, J, K)

R2 (I) = Q(I, J, K+L) - Q(I, J, K-1)

CALL TEST(I)

S(I,J,K) = RR*Rl(I-I)*R2(I+I)*CONST

1 CONTINUE

ENDDO;

Using the identical SUBROUTINE TEST above would cause an undefined

reference to CONST because the LOCAL declaration does not contain.

the variable CONST. Naturally, TEST could have been defined with

two parameters I and CONST. which would have been valid.

3-15,

3.2 HAND COMPILATION FOR SAM

3.2.1 Overview

The 	methodology of hand compilation for the SAM will be described

through a series of examples each of which will be transformed in

a series of stages from original FORTRAN to ASSEMBLER CODE.

References will be made to Appendbx (A) which discusses

preliminary compiler alogrithms for setting the transposition

network.

In each example the following code steps will be taken:

1. 	Or.iginal NASA-AMES FORTRAN

2. 	Extended FORTRAN for SAM

3. 	Compiler output including code reorganization (written in

a Pseudo FORTRAN

4. 	Compile output showing Transposition Network and Memory

Module computations (again in a pseudo FORTRAN or META

ASSEMBLER)

5. 	ASSEMBLER CODE

The example chosen from the Explicit Code was the SUBROUTINE

TURBDA because it demonstrates the ability of SAM to operate in a

concurrent manner and provides a vehicle for demonstrating the com­

piler's ability to handle control statements through a "mimicking"

technique and also provides an example of why it is felt that an

ASSIGN statement could cause programmer error. The second example

is the major LOOPS of the SUBROUTINE STEP including the subroutine

calls and the called SUBROUTINES BTRI and XXM. One loop (DO 20)

will be discussed in detail while the other two (DO 30) and (DO

40) will show the differences in the transposition network

settings ahd the memory module accesses for the different memory

accessing. (DO30 & D040 discussion to be supplied later).

3-16

3.2.2 SUBROUTINE TURBDA

3.2.2,.1 Original Code and SAM Extended FORTRAN

In Figure 3-2 the original NASA-AMES version of the SUBROUTINE is

shown. The FMP Extended FORTRAN as written by the programmer is

given in Figure 3.3. In both cases the common declarations were

modified slightly to remove extraneous variables from this

specific example. As you will note, the programmer wrote a two

dimensional DOALL-loop with a serial inner DO loop. Because there

is no data depending on I it could have been written as a three

dimensional DOALL.

3.2.2.2 Preliminary Code Analysis

Figure 3-4 shows the preliminary compiler code analysis. Within

the DO 1 loop the compiler determines what array elements stored

in Extended Memory must be fetched through the Transposition

Network. For agiven I, J, K, EI(I, J, K) must be fetched.

However, only for J=l must the element EI(I, J+l, K) and for K=1

must the element EI(I, J, K+1). The compiler will be capable of

recognizing these accesses to extended memory and will "mimic" the

branch structure. It also will be able with this mirroring of the

otiginal structure be able to access only the requisite elements

and prohibit out of bounds access of the array even if those

elements are not subsequently used. This protection is even more

critically necessary when accesses occur in the negative sense

rather than the positive one as in this example.

3-17

SUBROUTINE TURBDA

COMMON/A12/ RHOW(31,31,31),E(31,31,31),EI(31,31,31)

COMMON/A5/ IL,JL,KL,CV

COMMON/A6/ RMUL(31,31,31)

cvi- i./cv

DO 1 K=I,KL

DO 1 J=I,JL

DO 1 I=I,IL

TEMP=ABS(EI(I,,J,K))*CVI

IF(K.EQ.1) TEMP=.5*ABS(EI(I,J,1)+EI(I,J,2))*CV

IF(J.EQ.1) TEMP=.5*ABS(EI(I,I,K)+EI(I,2,K))*CV

RMUL(I,J,K)=2.207E-08*SQRT(TEMP**3)/TEMP+198.6)

1 CONTINUE

RETURN

END

Figure 3-2. Original NASA-AMES FORTRAN

SUBROUTINE TURBDA

EXTENDED/A12/ RHOW(31,31,31),E(31,31,31),E(31,31,31)

GLOBAL/A5/ IL,JL,KL,CV

EXTENDED/A6/ RMUL(31,31,31)

Cv1=1./CV

DOALL, J=1,JL;K=I,KL

DO 1 1=1,IL

TEMP=ABS(EI(I,J,K))*CV1

IF(K.EQ.1) TEMP=.5*ABS(EI(I,J,1)+EI(I,J,2))*CVI

I

IF(J.EQ.1) TEMP=.5*ABS(EI(I,1,K)EI(I,2,K))*CV

RMUL(I,J,K)=2.270E-08*SQRT(TEMP**3)/TEMP+198.6)

1 CONTINUE

ENDDO;

RETURN

END

Figure 3-3. Extended FORTRAN for SAM

3-18

SUBROUTINE TURBDA

EXTENDED EI(31,31,31),RMUL(31,31,31)

GLOBAL CV,JL,KL,IL

DOALL, J=I,JL;K=I,KL

CVI = 1.0/CV

DO 1 I=I,IL

El -EI(I,J,K)

FOR(J,NEQ.l) null fetch next line

E2 =EI(I,J+I,K)

FOR(K.NEQ.l) null fetch next line

E3 =EI(I,J,K+)

IF(J.EQ.l) GO TO 3

IF(K.EQ.1) Go TO 2

TEMP=ABS(El)*CVl

GO TO 4

2 TEMP= 0.5*ABS(El+E3)*CVl

GO TO 4

3 TEMP=0.5*ABS(El + E2)*CVI

4 RMUL(I,J,K) - 2.270E-08*SQRT(TEMP*3)-/(TEMP I98.6)

1 CONTINUE

ENDDO

RETURN

END

Note: The expression "Null fetch next line" implies that the

transposition network will be set to fetch all the elements for

EI(I,J+I,K) for given I. However only those for which J=1 will in

fact be passed from Extended Memory to the Processors.

Figure 3-4. Compiler Code Analysis

3-19

As one can see in this example all processors for which J3l & K3l

all execute TEMP=ABS(El*CVl. All processors for which J=l

(including K=l) compute TEMP=0..5* ABS(E1+E2)*CV1. All processors

for which K=l and J=l form TEMP=0.5*ABS(El+E3)* CVI. These three

cases occur for a given I concurrently.

3.2.2.3 Computer Programmatic Transformations Including

Transposition Network Calculations

Figure 3-5 shows the Control Unit and Processor Element code

streams in a FORTRAN like language or META ASSEMBLER. The

compiler recognizing the two dimensional DOALL on J,K, which are

the second and third indices of Extended arrays EI and RMUL and

calculates the number of cycles to be performed (the DO 10 loop)

i.e. 	NMAX = (ISECONDSIZE*THIRDSIZE + Nprocessors-l)

Nprocessors

= (31*31 + 512-1) = 2

512

Similiarly the compiler recognizes that ISKIP=IFIRSTSIZE=31. Note

that all accesses to EI and RMUL are of type 1 as described in

Appendix A.

3-20

CU INSTRUCTIONS 	 PE INSTRUCTIONS

ENTER TURBDA 	 1 ENTER LRBDA

2 CVI=I.0/CV

DO 10 N=1,2 	 3 DO 10 N=1,2

IVV=512*N-512 	 4 IVV=512*N-512

5 IV= IVV+PENO

6 KMI=IV/31

7 K = KMI+l

8 J = IV-KMI*31 l

=
IN IVV*31 9 IN= IV*31

IA0I=IBSET+IN 10 IA01= IBSEI+IN

IA02=IA01+31 11 IA02- IAfI+31

IA03=IAO+961 12 IA03=IAO+961

IA04=IBSRM+IN 13 IA04= IBSRM+IN

DO 1 I=l, IL 14 DO 1 I=1,IL

II=I-i 15 II=I-i

OFFSETI=MOD(IA l+II,521) 16 MADDl= (IA0+II)/521

17 SYNCH

18 FOR (J.NE.l) MODE=O

OFFSET2=MOD(IA0I+II,521) 	 19 MADD2= (IA02+II)/521

20 SYNCH

21 FOR (K.NE.l) MODE=0

OFFSET3=MOD(IA03+II,521) 	 22 MADD3= (IA03+II)/521

23 SYNCH

24 IF (J.GT,JL) GO TO 8

25 IF (K.GT,KL) GO-TO 8

26 IF (J.EQ.l) GO TO 2

27 IF (K.EQ.l) GO TO 3

28 TEMP=ABS(El)*CV1

29 GO TO 4

30 2 TEMP=0.5*ABS(El+E3)*CV1

31 GO TO 4

32 3 TEMP=0.5(ABS(EI+E2)*CVI

33 4 R=2.27OE-08*TEMP

34 *SQRT(TEMP)/(TEMP+198.6)

OFFSET4=MOD(IA04+II,521) 35 MADD4=(IA04+II)/521

36 8 CONTINUE

37 SYNCH

1 CONTINUE 38 1 CONTINUE

10 CONTINUE 39 10 CONTINUE

EXIT 	 40 EXIT

Note: The Expression Mode 90 is merely a device used to imply that for those

values of the variable not equal to 1 fetches through the Transposition

Network do not occur.

Figure 3-5. Compiler Output with Transposition Calculations

ORIGINAL PAGE L9
OF POOR QUALIM

3-21

On entering the subroutine (line 1) of Figure 3.5 each processing

element calculates Vl (line 2). Loop 10 is then initiated which

represents the number of times the array must be cycled as

mentioned above (line 3). Next IVV is calculated which repre­

sents the number of processors that have been utilized to that

cycle number. Obviously the compiler does not perform 512*N-512

but rather start from zero and increment by 512, however, FORTRAN

usage was utilized here. The processing elements then perform a

number of calculations (line 4 - line 8). IV=IVV+IPENO represents

the address in J,K space that each processing element has. From

that number its J and K value is determined (line 7 and line 8).

KMl (line 6) which represents the K value minus 1 which is used in

the J calculation is calculated separately.

Lines 10 thru 13 represent address calcuations. For the control

unit one is calculating the address of the array element which is

to.go into processing element 0 for each transposition network

setting, i.e. THE OFFSET. The processing element it is performing

and address calculation on the specific array element. This is

why line 9 has different determinations for IN. Lines 10 thru 13

are address calculations for EI(I,J,K) (line 10) EI(I,J+I,K) (line

11), EI(I,J,K+l) (line 12) and RMUL(I,J,K) (line 13). Note line

10 and 13 start from the base address IBSET of EI and IBSRM of

RMUL. The CU instructions are computing the address calculation

for the array element which is to go to processor =0 while the

processors are calculating the address of the array element to go

to Processor = IPENO.

3-22

Note all these index computations are performed only for the outer

loop. They do not occur for the inner DOlI=l,IL loop (line 14).

Next the I index is decremented by 1 .(line 15), again a FORTRAN

antifact, which would not occur in the ASSEMBLER code but this is

FORTRAN. The memory module address, MADDI (line 16) is computed

in the processing element while the offset, IFSETl (line 16) is

computed by the mod function in the control unit. The array and

the control unit now SYNCHRONIZE. In a similar fashion in the

offset and memory module address are calculated for each of the

next two array access and synchronized accordingly (lines 18 thru

28). Note that for (J.NE.l) (line 18) a mode bit is set which

turns off the array fetch. Similarily for (K.NE.l) (line 21).

The next step the compiler takes is to skip computations for those

values of J between JL+l and 31, the value declared for the array

in the EXTENDED declaration (line 24). This is the way the

preliminary compiler is going to handle the one dimensional vector

length/declared extent problem at this juncture. Alternative

algorithm are known; however teaching the algorithms and

subsequent hand compilation would require Burroughs more effort

than the possible machine performance degradation, that might occur

during simulation.. For (K.GT.KL) a similar branch, is performed

(line 25). Note that 8 CONTINUE must be above the next

synchronization point. Next the branches for sections'of code

which will be computed 'for (J.EQ.l), ((K.EQ.l). AND (J.NEQ.l))

and for ail other J and K values less than JL and KL. (lines 26

thru 32) All processors except those that have J or K values

greater than JL or KL then process lines (33,34). The OFFSET

calculation for RMUL is then made in the Control Unit and the

Memory Module address in the processors (line 35). Synchroni­

zation occurs and the transfer of RMUL (I,J,K) from Processor to

Extended Memory occurs. Lines 14 to 37 are looped until IL is

reached and then the second cycle, line 3 to 38 are executed

before the subroutine is EXITed.

3-23

Earlier it was mentioned that this piece of code could have been

executed as a three dimensional DOALL loop. As can now be seen,

this would probably not be advantageous in terms of performance

for two reasons. First, due to the branches on J and K (lines 24

thru 27) each processor would have to perform the index cal­

culations of lines 6, 7, and 8 for all I values if one did a 3-D

DOALL-loop. Second, since IL< 31 one only needs to execute this

loop with the preliminary compiler IL times with a 2-D DOALL-loop.

In a 3-D DOALL loops I would have to be computed and a branch

similar to lines 24 and 25 would also have to be made. At this

time this appears less efficient in highly branched code and where

the array fit is good - i.e., on cycle 1, all 512 processors are

utilized while in cycle 2, 88% of the processors are utilized. If

the array size were instead EI(25,25,25) then 100% would be used

on cycle 1 while only 113 or 22% would be used on cycle 2. With a

3-D DOALL one would have 31 cycles of which 30 would be 100% busy

and 1 cycle of 50% busy. In that case the additional indexing com­

putations would be masked in the total execution time.

3.2.2.4 Assembler Code for TURBDA

This code is shown in Figures 3-6 and 3-7.

3-24

L
1000 IDENT
1001 CODESEG

102 ENT
I003 START CILIT

150 CILIT
1005 L3 CTiM
100 (SN
1002 MULL
1008 (FETCH

1009 FILIT
ICG LiL (TX
1011 CIADDL

1012 'IADDP

1013 NOD521
1014 (ILIT
1(15 LOADEN
1016 CIADDL

1017 CIADOR

1018 NOD521

I019 LOADEMC

1020 CIADDL

1021 cIADP
1022 MOD521
103 LOADEIC
lo2s CIADDL

1025 CIRDDP

1 6 NOD51
102? STOPEN
1(28 JUMP
1029 LI JUMP
1030 LLt RETURN
1631 END

CUI'IMPLICIT 'rTLPFDA

START
cp1.0
CR2,1
CRI.C2.LL

CPS.CPI- 9
CP6.CR3, 3 1
rRe.IL
cP7.1
LU?.P LI
CI9.CP...IESEII
CPS.CP7.CP?

CR9
0RI.31
CP9.CRIO
(P9GRCR6. ISEI2
CR-.CP?.(P9
CR9
GR9,(RPI(
CP9,CP6 ,ISEI3
CRP9.CR?.CR
CR9
C F,RIO
CR9,(R6.ISRJI
CR9,CP.CP9
CR?

CP9.CRIO
L1

L3

Figure 3-6. Handcompiled Control Unit Code

Subroutine TURBDA

3-25

http:CRP9.CR?.CR
http:CPS.CP7.CP
http:CRI.C2.LL

L
1006
1616

1020

1030 STRPT

10+0

IC50

I1CA C

I070 L3

10ff

190
1160

1110

1120

1130
I Il4C

1150

116,0

1170

11,(

1193 LI"

1200

1 105
1210

12 0
1230

IA3

ILto

1256

1260

1270

1 56
1;90 LIGO

3IRD6

1305

131r

1013

1730

13 CEO

135 ­
,1360 L26

1376

1375
1376

13$0

1390

POO

1405

I10

1 20
1430

I140

1450

I±60
14701490

IIIDEHT
CODESEG

ElIT

FLIT

FDIL

ILIT

ILIT

ITIX

SHFL

PErHO
]InDD

IDIWL

ISTOPE

I'ILILL
IILIE.,

ISTORE

MULL

IFETCH

ILIT

ITIN

IRDM

IRDO
10521

LOAOEN
IRDON

IRDO

10521

IT

IFETCH

lEO

ILIT

LOADEIC

RDD

105 1

ILI

IFETCH

ILIT

LOROEI'IC

IFETCH

IFETCH
ISUIL

IGT

IFETCH

IFETCH

ISUBL

IGT

lEO

lEO

FFETCH

ABS

FIL
FSTOPE

dUHiP

PE,'IIPLICIT TUFREIA

STRRT

FPII.1

FPRIFF1C01

IP2.1

IF'I,6

IF1I.IR2,Lr

IR3,IR2,-9

IR"

IP4,IF3,IR4

IR5,IR4,31

IR5.UMI

IP6.1R5.31
IP6, IR4 ,1IR:

IR6,JHI

IP 6 .IP . 3 1
IPSIL

1R.71

IR7.IP,LI

IRS,1R6,IBSEII

IPSIF'81R7
IRS

IRe.E1
IPS.IR6.IBSEI2

IP6,IR$,IR7

IRS

IpIO.I

IF'I I .JII

PIII.O.LICO

1P10.0
IP8E2,IRIO

IRS.IR6.IRSEI3

IFSIP8,IRX

IRI

IRI0.1-

IRI I.11411

L20C

IRI1,

IR.E3,IRIO

IRI 61,1

IP12.J1Il

IF1..JL
IRI13,R3,1

IRI2,I1JLU0

IPISkHI

IPI4.KL

IRI4,IF.I4,I

L8CIPI
,LC

I,'hUL0

IPI3,6,L2F

FP2,EI

FP2

FP2,FPI .FP2
FP2,TEMF
L L7C,

Figure 3-7. Handcompiled Execution Unit Code
Subroutine TURBDA

VALORIt 3-26

jOF .

http:IP6.1R5.31

3.2.3 SUBROUTINE STEP (LOOP DO 20)

The next portion of code to be examined is STEP (loop DO 20) which

includes CALLS to BTRI and XXM. A number of Figures have been

made of the code and they are listed below with a brief

description.

Figure 3-8 The oiiginal NASA-AMES FORTRAN Of Subroutine

STEP.

Figure 3-9 SAM Extended FORTRAN for Subroutine STEP

Figure 3-10 A comparison file of Figures 3-8 and 3-9 showing

R(Replacements), I(Insertions) - (Deletions)

Figure 3-11 Preliminary Compiler Code Reorganization for

S6broutine STEP

Figure 3-12 A comparison of the Figures 3-9 and 3-12

Figure 3-13 Compiler programatic transformations including

Transposition Network Settings for Control Unit

Subroutine STEP

Figure 3-14 Same as above for Processor - Subroutine STEP

Figure 3-15 Implicit/Steppiece NSS3CU Assembler Code

Figure 3-16 Implicit/Steppiece NSS3PE Assembler.Code

Additionally the SUBROUTINES BTRI and XXM are examined. The

related Figures are:

Figure 3-17 Original NASA-AMES Code for Subroutine BTRI

Figure 3-18 SAM Extended FORTRAN for Subroutine BTRI

Figure 3-19 Comparison of Figures 3-17 and 3-18

Figure 3-20 Original NASA-AMES Code for Subroutine XXM

Figure 3-21 A modified version of XxMl which will produce

improved performance on the CDC7600 and SAM

Figure 3-22 SAM Extended FORTRAN for SUBROUTINE xxMI

Figure 3-23 Comparison of Figures 3-21 and 3-22

ORIGINAL PAGE IS
OF POOR QUALITY rCEbNG PAGE SLANO 3-28

18410). SUBROUTINE ST P

154200" C3MMON/BASE/N/AXJMAX,(AXLAX,JM, KM, LFDTGAIA.GA- ISMUFS4ACH
184300 1 ,OXIOY1,OZIND,N2,'V(5).FD(-) -HDALO,GD.UEGA.HDX,HJY,HCZ
11 4400 2 ,RM, CNBRP I, ITR,IrNVISC. LAM1NNPINTI,INT2.INy,
154500154500 COMMON/GEO/NBI,NB?,RFR)NT RM X AXRXAX, DXCDRAD.
184600 COMMON/READIIREAO ,I WRIr .NG RI

134700 COMM ON/V IS /RE,P, rMUE. K
184900 CDM4ON/VARS/Q(T20,6,30)

184900 COMMON/VARO/S(720,5,30)

185000 COION/VARI/X(72030),I (720,30),Z(720,3')

185100 COMMON /VAR3/P(120,30),XX(60,4),YY(60,4),ZZ(6'4)

185200 C LEVEL 2,0,S,X,y,Z

18530 COXMON/COUNT/NCNCI

155400 COMMON/BfTRID/A(60,5 5). 8(61.5.)C(60,5,5).0c63., s).r(6 0 .c)
1855 00 C
155600 C
18820') C
188309 R4 = SMU
188400 C8 = 1.+2.*RM
188500 GAM2 = 2.-GAMMA
.188600 0D 20 L = 2,LM

188703 DO 20 K = 2,KP
188500 C
188902 C***FILTRX
139000 C
159100 KL = (LMI)*NO+K

159209 JA=2

119309 JB=JMAX-1

1R9400 CALL XXM(K,L,I.JMAX)

189500 D0 12 J=,JMAX

199603 RI =XXCJ,1)*HX

189700 R2 =XX(J,2)*H0x

189100 R3 =XXCJ,3)*HDX

15990 R4 =XX(J,4).HDX

19000 C

19010 Ct*.**.*ANATR X
190 0^D
1R= l8/Q(CL,lRJ)

190400 U = O(KL,2,J)*RR

1'050l V = Q(KL,3,J)*RQ
19060S1 W = Q(KL,4,J)*RP
19070' UU = U*RI+V*R?+W*Q3
190300 UT = U*2+V**2+**2

190900 CI = GAMI*UT*.5
191009 C' = Q(KL,5,J)-RR*GAM4
191100 C3=C2-CI

191203 C4=R4+UU

1?1303 CS=GAMI*U

19140s C6=GAMI*V
19150' CT=GAMI*V,

19160) D(J,1=,I) = R4
19-1700 D(J,1,2) = R1
191801 D(J,1,3) = R2

191909 D(J,1,3) = R3

192000 0(J,1,5) = 0.

I32100 OCJ,2,1) R*.1-U-UU
192200 D(J,2,2) = C4+RI*GAM*J

192301 D(J,2,3) = -RI*C6+R?*U

192400 D(J,2,4) =- RI*CT+R3*U

192500 DCJ,2,5) = RI*GAMI

192600 D(J,3,1) = R2*CI-V*UU

192700 0(J, 3,2) = RI*V-R2*C5

,192800 D(J, 3,3) = C4+R2"GAM2*I
192900 D(J,3,4) = -R2*CT+R3*V
193000 0(J,3,5) = R2*GAMt

193100 D(J,4,1) = R3*CI-0*UU
193200 DCJ,4,2) = Rl*-R3*C5
193300
 DCJ,4,3) = RZ2W-R3tC6
193400
 D(J,4,4) = C4+R3*GA42*4
193500 0cJ,4,5) = R3*GAMI

Figure 3-8. Original Piece of Subroutine STEP

3-29

http:OXIOY1,OZIND,N2,'V(5).FD
http:LFDTGAIA.GA

O(J;;j = j-C?+2..*.C1.3kUU 13P88 DJ 3-­
193800 D(J,5,3) = R2*CS-C6*UU
19 900 OIJ, 5,4) = R3-C3-CT*UU

194000 D(J,5,5) = R4+GAMMA-UU

194100 C
194200 C*****END OF AMATRX
194300 C

Dk4400 12 CONTINUE

194500 D0 25 J=JAJB

19460n RJ = 1./QCKL,6,J)
194700 RMJ=RM*RJ

194803 RR = RMJQ(IL,6,J-)

194900 RF = RMJ*Q(KL,,+J1)
1 9 5000 00 23 N=l,5

45100 AIJN,1I = -O(J-1,N,l)
195200 ACJ,N,2) -D(J-1,N,2)

19530) A(J,N,3) = -(J-1,N,3)

195400 A(J,N,4) = -(J-1,N,4)

195500 A(J,N,5) = -D(J-1,N,5)

195600 BCJN,1) = 0.0

195700 B(JN,2) = 0.0

195800 B(JN,3) = 0.0

195900 5(J,N,4) 0."

196000 B(JN,5) 0.0
1961DA CIJ,N-I] = (J¢I,N,I)

'196200 C(JN,2) = D(J+1,I,2).
196300 C(J,N,35) = O(J+IN, 3)
196400 C(J,N,4) = D(J+1,N,4)
196500 C(JN,5) = D(J+1,N,5)
196601 A(J,NN) = A(J,N,N)-RR

96703 8(JN,N) = C8

96800 C(JN,N) = C(J,N,N)-RF

19690C 23 F(JN)=S(KL.N,J)

197000 25 CONTINUE

197100 C
197200 C.****END OF FILTRX
197300 C
197400 C
"197500 C S MUST BE ZERO ON B.C.

197600 C

1977,03 CALL STRI: 2,JM)

197803 00 21 J = 2,JN

197900 S(KL,IJ) = F(J,1)

19B00" S(KL,2,J) = F(J,2;

195100 S(KL,3,J) = F(J,3)

198203 S(KL,4,J) = F(J,4)

19830n 21 S(KL,5,J) = F(J,5)
198403 20 CONTINUE
21860. RE TURN
218700 END

Fligure 3-8. Original Piece of Subroutine STEP (Cont)"

3-30

http:j-C?+2..*.C1

15410) SUBtOUTINE STrP

184200 GLOBAL/BASE/NHAX, JMAX(PAX.LPAAX,JM, KM,LPGAMMApqAmISRUFSP-CH
154300 1 ,DX1,DY1,DZ1,NOND02,zV(5),FD() HD,ALPGOOMEGA ,HX ,4YPOZ
184400 2, RM, CNBR ,P I, INV ISC, LA44 N,NP
184509 GLDBAL/GED/NB1NB2,RFR]NT,RMAXXRXMAX,DRAD.DXC
184600 GLOBAL/READ / IRE AO, IWRIt, NGRI
184700 GLOAL/V IS /RE,' R,RMUE, I K
154800 EXTENDE)/VAR S/0 (720,.S1, 6)
184903 EXTENDED/VAROIS(T20,30. 5)
11500 EXTENOED/VARIIX(720.30),Y(72C.30),Z(720,3))
15100 LOCAL/VAR3/P(120,30),X (60 ,4),YY(60,4),.ZZ(6% 4)

185200 C LEVEL 2•Q•S.X.Y,Z

185300 Cl NT ROL/CD UN T/NC,NCIDr

185400 LOCALIBTRID/A(60,55),3(63,sS5),C(60,5,5),0(60,5,5).F(6',5)

185500 C

185600 C

188200 C

188300 R4 = S4U

188400 C8 = 1.,2.RM

188500 GAM2 = 2.-GAMmA

188600 DoAL L,K=Z, KM;L= 2, LM

188900 C

188900 C***FILTRX

189000 C

159100 KL = (L-1)'ND+K

159200
18930i
159400 INCLUDE XXMI(K,L' ,JMA)

189509 DO 12 J:1,JMAX

189501 QI=Q(KL,JI)

159502 Q2=Q(KL,J,2)

189-503 03=Q CKL,J, 3)

159504 Q4=0Q(KL,J,4)

189535 05=0(KLJ,5)

189600 RI =XX(J,1)tHDX
159700 R? =XX(J,2)*HDX

189500 R3 =XX(J,3)*HDX

159900 R4 =XX(J,4)*HDX

190003 C
190100 C*t*****AMATRX

190200 C

190300 RR= 1./1

190400 U = Q2*PR

190500 V = Q3*RR

190600 W = Q4tRR
190700 UU = U*RItV*R?+W*Q3
19-0500 UT = U**2 V**2+I*2

190900 C1 = GAMI*UT*.5

191000 C2 = 05*RR*GAm4A

191100 C3=C2-CI
191200 C4=R4.UU

)190 CS=GAMI*U

191400 C6=GAMI'V

191500 C?=GAHI*W
19160 DCJ.1,1) = R4

191700 DCJ,,12) = R1
191800 D(J,1,3) R2

191900 D(J,1,4) = R3

192000 D(J,1,5) = 0.

192100 D(J,2,1) = RI*C1-U*UU

.192200 D(J,2,2) = C4+R1*GAM2*J

192300 D(J.2,3) = -Rt*C6,R2*U
192400 D(J,2,4) = -RItC?+R3.U

192500 0(J,2,5) = RI*GAMI

192600 D(J.3,1) = R2"C1-V*UU

192700 D(J,3,21 = RI"V-R2*C5

192800 0(J.3,3) = C4+R2*GAM2*

192900 D(J,3,4) = "R2*CTR3*V

193000 D(J,3,5) = R2-GAMI
193100 0(J,4.1) = R3.,C1-W*UU

Figure 3-9. Identical Piece of Subroutine STEP in SAM
Extended FORTRAN

ORIGINAL PAGE IS
flP 1flfl1 nTTATTrV 3-31

http:C4=R4.UU
http:EXTENOED/VARIIX(720.30

0019300011
00193400
00193500
00103600

00193700
0019390')
00193900

00194009
0014 4100
00194202

00194300

00194400
00194500
00i94501
00V4502
00194503
00194504
00194505
00194506
00194510

00194511
0014512

00194600

00194700
00194800

00194900
00194901
00194902
00194903
00194904

00194905

00195000
00195100
0019520'0
03195300
0014540
00195500
00195600
00195703
00195800
00195900
00146000

00196100
00196200

00196300

00196400

00196500
00196600

00196700
00196800

00196903
00196901

00196902
00196903

00196904

00196905

00197009

00197100
00197200
00197300

0019740')
00197500
00197601
0019 7703
00147800
00197900
0019 800)
00198100
00198200
0089301
0,198311
001953-2
00148303

00198304

0019 535
00198316
00198400
0021860)

00218700

Figure 3-9.

B(J,4, RR ,-RB0(J;4, = WR3.'

O(J.4,4) = C4*R3*GAM2*W

DJ,4.5) = R3*GAMI

D(J,5,1) = (-2+2.CI)-UU

D(J.5,2) = R1*C3-C5*UU

D(J,5,3) = RZ ..3-C6*UU

O(J,5,4) R*C3-C*UU

O(J,5,5) = R4+GAMA*UU

C

C******ENO OF AMATRX

C

12 CONTINUE
D 25 J=2,JMAX-1

IF (J.GT.2) GO TO 777

06=Q(KL,J,6)
QTM=Q(KLJ-1,6)

GO TO 778
777 QM = RX

06= Rf

778 Q6P=0(KL,J+1,6)

RX = 06
RY = 06P

RJ l./05

RNJ=RM*RJ

RR = RMJ*06M

RF = RMJ*06?

S1 = S(KL,J,1}
S2 = SCKLJ,2)

53 = SCL,J,3)
$4 = S(KLJ,4)
S5 = S(KL,J,5)

09 23 N=1,5
A(J,NI) = -D(J-1,N,1)

ACJ,N,2) = -D(J-1,N,2)

A(JN,3) = -O(J-1,N,3)

At J,N,4) = -D(J-1,N,4)
A(JN,5) -D(J-1,N,5)
B(J,N,1) = 0.0
B(JN, 2) = 0.0

B(J,N,3) = 0.0

B(J,N,4) s 0.0
B(J,N,5) = 0.0
CCJNI) = DCJ+INI)
C(JN,2) = O4J+1,lN,2)

C(J,N,3) = D(J+I,N,3)

C(JN,4) = D(J+I,N,4)

CCJN,5) = D(J ,N,)

A(JN,N) = A(J,N,K)-RP

B(JN,N) = C8
CCJNN) = CCJNN)-RF

23 CONTINUE

F(J,1) = SI

F(J,2) = 52

FCJ,3) = $3

F(J.4) = S4

F(J.5) = S5

25 CONTINUE

C
C.*.**END OF FILTRX

C

C

C S MUST BE ZERO ON B.C.

C

CALL BTRIfZ.JM)
00 21 J = 2,JM
SI = F(J,1)

'S2 = F(J,2) QTJAL,'
3 = F(J,3) OF POO1YS4 = F(J,4)
S5 = F(J,5)

S(KL,J,I) = SI

S(KL,J,2) = 52

S(KL,J,3) = S3

S(KLJ,4) = 54

S(KLJ,5) = S5

21 CONTINUE

ENOO;ENOO0

RETURN

END

Identical Piece of Subroutine STEP in SAM
Extended FORTRAN (Cont)

3-32

http:BTRIfZ.JM

3.2.3.1 Sam Extended FORTRAN for SUBROUTINE STEP (LOOP DO 20).

Figure 3-10 shows the changes made in the original NASA-AMES

program to produce SAM Extended FORTRAN. As can be seen, the

greatest number of changes occur in the declarations. Only the

named COMMON blocks, VARS, VAR0, and VARI need to be put in

Extended Memory. Note for simplicity in accessing the last two

extents on the S and Q matrices were inteichanged.

The Named Common Blocks VAR3 and BTRID are put in LOCAL Memory.

It should be noted that in another portion of the program,

SUBROUTINE METOUT, the arrays XX, YY, and ZZ are written out after

the subroutine calls. This would not be permitted and an

additional copy to Extended Memory Arrays, say XXI, YYl, and ZZ1

would be needed. Also, the P array is used in a variety of ways

including an EQUIVALENCE statement in other portions of the code.

However, for this specific portion of the code the P array is not

accessed in any way and so for convenience was left in LOCAL for

the example. Copies of all data in GLOBAL memory are assumed to

be in Processor Memory.

The only other changes to the program were the replacement of the

DO 20 loops with the two dimensional DOALL loop (and ENDDO

statement) and the replacement of the CALL statement in line

189700 to an INCLUDE since the PROCEDURE XXMI has Extended Memory

References. (Further discussion of this will be supplied later.)

ORIGINAL PAGE is
OF POOR QUALITY

3-33

1 R V0420

2 R 184400

3 R 18450)

4 R 184600

5 R 184703
6 R 18480)
7 P 184900
8 P 13500)
9 R 185101

I0 R 135303
11 R 185401
12 R 138600
13 - 1!8701
14 R 18940)

15 R 198401

Figure 3-10.

LJ 'AX K 5.SUAC?GLOBAL/BSENIAX t MAX.LNAXJM.r 'L 4.5AM4 vAGA P I l. S

2, RNCNBRPIIqVISC,LAhMINNP XR X A X D R A X
2 F R O N T M A X
 4 -.-
GLOBAL IGEO/N3,NR ,

;LOBAL IREADIf1 EAD. IbRT, h5RT

GLOBAL/VIS/REPPRRME,RK

EXTENDED/VARS' C(723,30,6)

EXTENDED/VAROf S1(720,30,5) " Z (7 2 0

EXTE OED/VARI'X(?20,30),Y 720 30). 31)

LOCALIVAR3/P(i20,30),XX(61.,4),YY(60,4),ZZ(6),4)

CONTROL/CDUNT'NCNC1,DT

LOCAL/BTRID/At 5 B(65.5)8(655),C(6C,5,5) E(6)5.5),F(60,5)

DOALL, =2,KM;-.=2,LM

INCLUDE XXM1C(,L,1,JMAX)

ENDD9;END'O

Comparison of Original and SAM Extended
FORTRAN - Subroutine STEP

3-34

3.2.3.2 Preliminary Code Analysis and Code Reorganization for

STEP.

Figure 3-11 shows the preliminary code reorganization that would be

performed by the compiler. The DO loop variablesin line 19450$

have been modified so that they now read DO 25 J=2, JMAX-l. This

was done so that the initial and terminal values are composed of

literals or Global variables that would exist both in Processor

and 	Central Memory.

The 	code only accesses the arrays Q and S from Extended Memory.

The 	accessing of the Q array is shown in lines 189501-189505 and

in lines 194501-194510. The notation for this data movement from

Extended Memory to Processor Memory is with the FORTRAN statement

Ql=Q(KL, J, 1). (This notation is used for clarity and is not

meant to be an implied ASSIGN statement.) The accessing of Q(KL,

J-l, 6) is only necessary of J=2 for the other values exist in

Processor Memory, hence, the IF test and branch at line 194501.

Since the DO 25 loop exists in both the Processor and Control Unit

Code the execution pattern is:

1. 	Set J=2

2. 	Synch for fetch-Q(KL, 2, 6)

2. 	Synch for fetch Q(KL, 1, 6)

3. 	Synch for .fetch Q(KL, 3, 6)

4. 	Set J=3

5. 	Synch for fetch Q(KL, 4, 6) (2 and 3 already in Processor

Memory)

6. 	Set J=4

7. 	Synch for fetch Q(KL, 5, 6) (3 and 4 already in Processor

Memory)

3-35

INPLICIT/STEPPIECENSSI (12/127TI)

184100 SUBROUTINE STEP

184200 GLO8ALfBASEtNAX.JMAXKAXLHAX,JM.KNPLM.GAMAIGAI.SMUFSACH

184300 1 .Xl1DYl0Z1.N0.NDZFV(5).FD(5),HD.ALPGDOEGANOX.HDY.HDZ

184400 2.R?'CNBR,P!INVI SCLAHIN.NP

184500 GLOBALIGEON81,N82.RFRONT RMAXXRXNAXpDADDXC

184600 GLOBALIREAOIIREAD.IIRITNGRI

184700 GLOBALIVISIRE.PR.RNUERK

154800 EXTENDED VARS/Q(TZO,30.6)

184900 EXTENDED/VARO/S(F2O,30.5)

185000 EXTENDED/VARI/X(TZO,3OY(720,30),Z(720. 30)
185100 LOCALIVAR3P(120S3OXX60,),YY(60,4),ZZ(60,4)
185200 C LEVEL 2?0.S.XtY,Z
185300 CONTROL/COUNT/NC.NCI.DT
185400 LCALIBTRID/A(60,5.5).8(60,5,5).C(6.5p5).DC60,5.5),F(60,5)
18550 C
185600 C
188200 C
188300 RM = SHU

188400 C8 = 1.t2o*RM
188500 GAKZ = 2.-GMMA

188600 DOALLPK=ZPKM;L=ZLM

188803 C

188900 C***FILTRX

189000 C

189100 KL = (L-1)*N+K
189200

189300

189400 INCLUDE XXNICKL.I.JNAX)

189500 00 12 J=1,JAX
189501 O1 9(KL,J.1)

189522 92=Q(KL.J,)

189533 93=Q(KL,.3)

189504 04=Q(KL.JA)

189535 Q5=Q(KL.J.5)

189600 Ri =XX(J,1)*HDX

189T00 R2 =XX(J.2)*HDX
189800 R3 =XX(4J3)*HDX

189900 R4 =XX(J,4).HDX

190000 C

190100 C***-***AMATRX

190200 C

190300 RR= 1.101

190400 U = 02*RR
190501 V = Q3*RR

190600 W = Q4*RR

193700 U = U*RI*V*R2+W*R3

190800 UT = U**2.V**2*W**2

190900 CI = G&MI-UT*.5

191000 C2 = Q5*RR*GAMMA

191100 C3=CZ-C1

191200 C4=R4*UU

191300 C5=GAKI*U
191400 C6=GAfII*V

19150 CT=GAMI*. ORIGINAL PAGE IS
191603 D(J,l1) = R4

191700 0(J,1.2) = R1 OF POOR QUALITY
191800 D(JL,3) = RZ

191900 0(J,1,4) = R3

192000 0(J,1.5) = 0.

192100 D(J2.1) = RI*CI-U*UU
192200 O(J,2.2) = C4'RI*GAM2*U

192300 D(J.23) = "R1*C6R2*U

192400 D(J,?,4) = "RI*CT*R3*U

192500 =J,2,5)RIGANI
=

192600 i(J3:1R2-CI-VUU
=
19ZTO0 D(J3.2) = RI*V-RZ*C5

192800 0(JP3.3) = C4*R2*GANZV

192900 0(J,3.4) = -R2*CTtR3*V

193000 D(J,3,5) = RZ*GANI

193100 D(J,4I) = R3*CL-W*UU

193200 0(J,4,2) = RI*W-R3*C5

193300 0(J,4,3) = R2-W-R3*C6

193400 0(J,4,41 = C4*R3*GAPLZ*W193500 D(CJ4,5) = R3-GAMI

193600 D(J.5,1) = C-C2*2.*C1)*UU

193700 D(J,5,2) = RI*C3-C5*UU

193800 D(J.5,3) = RZ*C3-C6*UU

193900 0(J.5.4) = RI*C3-C7*UU

Figure 3-11. Preliminary Compiler Code Reorganization
Subroutine STEP

3-36

http:04=Q(KL.JA
http:CONTROL/COUNT/NC.NCI.DT
http:SCLAHIN.NP

194000 0(J5,5) = R4+GAMNA*UU
194100 C
194200 C******END OF ARATRX
194300 C

194400 12 CONTINUE

194500 Do 25 J=zJHAX'l

194501 IF (J.GT.2) GO T0 7??

194502 06=G(KLJ,5)

194503 8 61=0(KLJ1,6

1

194534 80 TO 778

194505 77T 06N = RX

194506 06= RY

194510 778 06P=Q(KLJtI,6)
194511 RX = 06
94512 RY = Q6P

194600 RJ = 1.Q6
194700 RMJ=RN*RJ

194802 RR = RNJ*0SM

194900 RF = RJ*QP

194931 S1 = S(KLJ.I)

194902 S2 = SCKL.J.2)

194903 S3 = SCKL.J,3)
194904 54 = S(KL.J,4)

194905 55 = S(KL.J.5)
195000 DO 23 N=1.5
195100 A(JN.1) = -D(J-1.N.1"

195200 A(J,N,2) = -0CJ-1.N.2)
195300 A(J.N.3) = -DCJ-1lN.3)

195400 A(JN.4) = -D(J-IN,4)
195500 A(JN,5) = -D(J-1.N.5)

195600 B(J.N,1) = 0.2

195700 B(J.N.Z) = 0.2
195800 8(JN,3) = 0.:
195900 B(J.N.4) = 0.0

196000 8(JN,5) = 0°9

196100 C(J.N,I) = D(4J1,N!,)
196200 C(J.N.2) = D(J+IN.2)
196300 C(J.N.3) = 0(J1,N,3)
196400 C(J.N,4) = D(J+1.N.4)
196500 C(J.N,5) = 0(J+I.N,5)

196600 A(JN.N) = A(J.NN)-RR

196700 8(JN.N) = CS
196800 C(JNN) = C(J.NN)-RF
198900 Z3 CONTINUE

196931 F(J.1) = Si
19693Z F(J.2) = S2

1969)3 F(J,3) = S3

196934 F(J,4) = 54
196935 F(J,5) = S5

197000 25 CONTINUE

197100 C
197200 :*****END OF FILTRX

197300 C

197400 C

197500 C S MUST BE ZERO ON B.C.

197600 C

197700 CALL BTRI(Z4JM)

197800 DO 21 3 = 2.4J

197900 SI = F(J.1)
198000 S2 = FCJZ)
198100 53 = F(3,3)
198200 54 = F(J,4)196300 S5 = 'F(J,51

ORIGINAL PAGE IS 198301 S(KL,J,l) = S
198332 S(KL,J,2) = S2

OF POOR QUA y1933 198304 S(KL,J,3)$(KLJ,h) 	= S3=S4

198335 S(KLJ,5) = S5
198400 ENDDO;ENDDO
218600 RETURN
218700 END

Figure 3-11. Preliminary Compiler Code Reorganization
Subroutine STEP (Cont)

3-37

In SUBROUTINE TURBDA branches on the DOALL variable were

demonstrated. This example demonstrates branching capability in

fetching on inner nested DO loop variables.

Finally the fetching and storing of the array S is shown in lines

194901-194905 and 19830-1-198305. Because of the notation chosen,

i.e., Si = S(KL, J, i) the statements were removed from the DO

LOOP (23) on N. This is not a requirement. An array, say SS with

subscripts could have been declared~with a simple DIMENSION

statement.

Figure 3-12 shows the lines of code that have been replaced (R),

inserted (I), or deleted (-).

3.2.3.3 Programmatic Transformations by the Compiler and

Transposition Network Calculations for STEP Portion

Figure 3-13 and 3-14 shows explicitly the address calculations for

setting the Transposition Network Offset (3-13) and the Memory

Module address (3-14) for each access from Extended Memory.

Considering the Control Unit Code first in a line by line basis:

188600 Hidden loop N has 2 cycles

188601 Calculation of # of PE's used to that cycle

188601 Address of Q(IVV+I,,I) in memory which is in PE#=S.

i.e., on cycle 1 the address of Q(l,l,1) is equal to

the base address of Q in memory. On cycle 2 the

address of Q(513,1,1) is the base address of Q plus

512.

188602 Address of Q(IVV+l,1,2) is 42,600 greater than

Q(IVV+I,1,I)

188603 - 188639 Similar other calculations for S and Q

3-38

1 R 18920)

2 R 189300

3 I 189501 Q1=Q(KLJ1)
4 I 189502 Q2=(Ktj,2)
5 I 189503 03=0(KLJ,3)
6 I 199504 94=Q(KL.J,4)
7 I 189505 05=0(KL,J,5)
a R 190301 RR= 1./01
9 R 190400 U = Q?-RR

10 R 19050) V = Q3"R:

11 R 190600 W = 04*R

12 R 191001 C2 = Q5RR*GMA

13 R 19450) DO 25 J=IJMA-1

14 I 194501 IF (J.GT.2) G3 TO 777

15 I 194502 Q6=9(KLJ.6)

16 I 194503 06M=Q(KL,J-1,)
17 I 194504 30 TO 7T8
18 1 194505 777 26K = RX
19 1 194506 06= RY
20 I 194510 778 06P=Q(fL,J+1I,
21 1 194511 RX = 06
22 I 194512 RY =6P
23 R 194600 RJ = I./06
?4 R 194800 RR = R$J*O6M
25 R 194900 RF = 'YJ*Q6P
26 I 194901 S1 = S(KLJI)
27 I 194902 S2 = S(KL,J,!)
28 I 194903 S3 = S(KL,J,)
29 I 194904 54 = S(KL,Ji)
30 I 194905 S5 = SKL.J.i
31 R 196901 23 CONTINUE
32 I 1-96901 F(J,1) = SI
33 I 1969a2 F(J,2) = S2

34 I 196903 F(J,3) = S3

35 1 196904 FfJ,4) = 54
36 I 196905 F(J,5I = S5
37 R 197900 S1 = F(J.1)
38 R 198C03 S2 = F(J,2)
39 R 198100 S3 = F(J,3)

40 R 198200 54 = F(J,4)
41 R 198300 S5 = F'(J,5)
42 I 198301 S1 KL,J,I) = St
43 1 198302 S(KL,J,2) = S?
44 I 198303 S(KL,J,3) = 'S3
45 1 198304 SCKLJ,4) = U

46 1 198305 S(KLJ,5) = S)

47 I 198306 21 CONTINUE

Figure 3-12. Comparison of SAM Extended FORTRAN and Compiler
Reorganized Code - Subroutine STEP

3-39

00194001 C THE COMPILER WILL HAVE DET ERMINED
00184002 C OF THE HIDDEN LOOP
00154003 C
00184004
00184005
00134006
00184007

C
C
C
C

IE. NHIDDEN = (720/ND*LMAX+N-1)/N =

ALS(THAT ISKIP=I

00184100 SUBROUTINE ST-P

THE NU'43ER OF CY'LES

2 CYCLES

00134200
00184300
00194400
00184500
00184600
00154700
00184800

GLOBAL/BASE/NMAX,JMAX.(MAXLPAX, Jf'KM,LVGAMP.,3;4ISMLFS AC
1 .DX1,DY1,DZ1,NDND2,7V(5),FO(5)r4O,ALPGD. OMEGCHDX,fCYHCZ
2,RMCNER.PIINVISC.LAMIN,NP
GLOBAL/GEONBI,NB?.RFR)NTRAX.XR.XNAXDRAD.OXC
GLOBAL/REAO/IREADIWRI .NGRI
GLOBAL/VIS/REPR,RMUEIK
EXTENDED/VARSI(T20,30,6)

00194900
00185000
001i5100
00125200
00155300

EXTENDE0/VAROIS(720,30,5)
EXTENDED/VARIIX(720,30),Y(TC,30).Z(? 0,30)
LOCAL/VAR3/P(120,30),XC(63,4),YY(60,4),ZZ(6 ,4)
LEVEL 2,QSXYZ
CONTORL/CnIUNTINC,NC1,Or

00185400 LOCAL/BTRIOIA(6O5,5)d3 (£0,5.5),C(6O,5 5).D(60. 55),r(6%,5)
00185500
00135600

C
C

00188200 C
-001M8300
00185400
00188500
00158600
00188601

03 20 N=1,2
IVV=512*N-512

00188630
00188631

11OQ1=IBS1 + IVY
IAOO0=IAOQI + 42600

00188632 IAOQ3=IAOQ2 + 42600
00138633 IA004=IAOQ3 + 42600
00188634
00188635,

IAOQ6=IAOQ5
IAOSI=IBSSI

+ 42600
+ IVY

00188636 IAOS2=IAOS1 + 42600
00188637 IAOS3=IA052 + 42600
00138632 IAOS4=IAOS3 + 42600
00188639 IAOSS=IAOS4 + 42600
0018S640 IAOXM =
00188641 IAOXP =
00188642 IAOXNN=
"00188641 IAOXPN=
00158644 * IAOYM =
.00188645 IAOYP =
00188646 IAOYIN=
00188647 IAOYPN=

00188646 IAOZM =
00188649 IAOZP =
00188650 IAOZHN=

00188651 IAOZPN=

00188900 C

00185900 C.*.FILTRX

00189000

00199100

00139200 C

00189300

IBSX +IVV'1

IBSX + IVV + I
IBSX *IVV-ND
IBSX *IVV+ND,
IBSY +1IVV-I
IBSY + IVY + 1
IBSY +IVY-ND

ISSY +IVV+NO

IBSZ +IVV-1

I8SZ + IVY * I
IBSZ IVV-NC

IBSZ *IVV*ND

00139404 KL = (L-I)*ND+K

001S9405 00 10 J = 1JMAX

00169406 JJ= CJ-1)*T20

00159407 IFSETO6 = OD((IAOO6JJ),521

00189408 SYNCH

00189409 IFSETYN = xOD((IAOXM+Ji).521)

00139410 SYNCH

00189411 IFSETXP = MOD((IAOXPJJ),521)

00189412 SYNCH

00189413 IFSETXMN= MOD(CIAOXMN JJ),S21)

00129414 SYNCH

00139415 IFSETXPN= MOD((IAOXPN *JJ),521)

00189416 SYNCH

Figure 3-13. Control Unit Code for SAM - Subroutine STEP
(META Assembler)

3-40

189417

159418

189419

189420

159421

189422

.9423

.189424

139425

199426

189427

139428

189429

159430

139431

159432

189450

189451

159453

139454

189455

189457

139458

159459

159460

139461

189500

189501

13950'

159503

159504

189505

139506

169537

159505

169509

199510

1%9600

189700

13990'

190000

140100

1Q 0 00
19 030)

.19 0400

Jq 0500

19 0600
19 0 00
190300

191000

191100

191200

19 1300

191400

191500

191600

191?00
191600

191900

192000

192100

'192200
192300

192400

192500

192600

192700

192300

192900

193000

193100

193201

19 330)

.19 3400

19 3500

193600

1 370)

193800

193901

19 4000

194100

IFSETfM = MCD((IAOY.*JJ }),521)
SYNCH

IFSETYP = MOO(CIAOYP+JJ),521)
SYNCH

IFSETYMHN= MOD(UIAOYMN iJJ),521)

SYNCH

IFSETYPN= MOD((IAVYPN F JJ) .521)
SYNCH

IFSETZM = MOD(CIAOZM+JJ),521)
SYNCH

IFSETZP = MOD((IAOZP+JJ).52!)
SYNCH

"IFSETZMN= NOD((IAOZHN IJJ),521)

SYNCH

IFSETZPN= MODa(IAOZPN IJJ)521)

SYNCH

10 CONTINUE

03 12 J=1,JMA-X
JJC(J-1)*720

IFSETQI = MOC(CIAO01+JJ).521)

SYNCH

IFSET02 = MOD((IA0Q2+JJ), 521)

SYNCH
IFSETQ3 = OD((IA0Q3+JJ),52)

SYNCH
IFSETO4 = MOD((IAOQ4.JJ),5Z1)

SYNCH
IFSETQ5 = MOD((IAOQS.JJ),521)

-Figure 3-13. Control Unit Code for SAM - Subroutine STEP
(ILETA Assembler) (Cont)

3-41

94 SO 12 CONTINUEDO 25 J=2, JMAX-1J1 450C
94501 Jd= (J-I).720

194503 IF(J.GT.2) Go TO 77'
1Q4520 IFSETQ6 = MO0(CIAOQ6+JJ),-5" I)
194521 SYNCH

1945?3 IFSET16M MOO((IAOQ6+JJ-720),5?1)
194524 SYNCH

194525 GO TO 778
194526 777 CONTINUE
194527 778 IFSE TQ6P =MOD(CI IAO0 +JJ +720),52)

194528 SYNCH

194529 IFSETS1 = MOD((IAOS1+JJ1.,52119 4530 SYNCH194531 IFSETS2 = OD((IAOSZ+JJ),521I

194532 SYNCH
19 4533 IFSETS3 = MOD((1AOS3 JJ).521)
194534 SYNCH
194535 IFSETS4 = .MOD((IAOS4+JJ),521)
194536 SYNCH
194537 IFSETS5 = MOD((IA0SS+JJ),S521)
194538

194600

194700

19 4500
194900

195000

195100

195200

195300

195400

195500

195600

195700

195800

195900
196000

196100

196200

196300

196400

196500

196600

196700 ORIGINAd PAGE'1
196300 O n,-001 QUALM
196900 OF R
196901

196902

196903

196904

147000 25 CONTINUE

197100 C
197200 C*...*END OF FILTRX
17300 C
197400 C

197500 C S MUST BE ZERO ON B.C.
197600 C

1?7700 CALL BTR I(2,JN)
197800 00 21 J=2,JM

197801 JJ= (J-1)*720
197900
198000
198100
198200
198300
193301 IFSETS1 = NOC(CIAOS1JJ),521)
198302 SYNCH
198303 IFSETS2 = NOD((I'AOS2+JJ),521
198304 SYNCH
198305 IFSETS3 = MO(CIAOS3+JJ),521)
198306 SYNCH

198307 IFSETS4 = NOD((IAOS4.JJ),521)
198308 SYNCH
198309 IFSETS5 = MOO(CIAOSS+JJ).521)
198310 21 CONTINIF

198400 20 CONTINUE
218600 RETURN
218700 END

Figure 3-13. Control Unit Code for SAM - Subroutine STEP
(META Assembler) (Cont)

3-42

184001 C THE COMPILER NILL HAVE DETERMINED THE NUM3ER OF CY'LES
134002 C OF THE HIDDEN LOOP
134003 C
184004 C IE. NHIODEN = (720/ND*IUX+N-1)/F = CYCLES
184005 C
184006 C ALS THAT ISKIP=l
154007 C
194008 C
184009 C ***** NOTE ALL SYNCHS IN THE PE CIDE ARE KIT TH­

.18401c PROVISO THAT THY Do KOT FETCH FOR K.LT. ,OR
0134011 C K.GT. NM OR L.LT. , R L.GT.LM
,184012 C
184013 C IE SYNCH SHOULD BE REPLACED WITm AN EXPRESSICN
184014 C
164315 SYNCH WITH MODE:O FOR K.LT., K.ST.KML.LT.',L. T.LM
114016 NOTE THE IF BRAI CHES IN EACi DO LOOP AFTE' THI
184017 C SYNCH CODE
134100 SUBROUTINE ST'P
184200 GLOBAL-BASE/NNAX,.RAX, 'PAX,LPAX,JR, M,LYGAMO ,GA. ,SMU-FSW CH
184300 1 .DXI,DY1,DZ1,ND,NO2,V(5),FD(5),HD,ALP,GD,CPEGA,HLXH.Y,"Z
194400 2,RM,CNBR,PI,INVISC,LA[N,NP

"

184500 GLOBAL/GEO/NB1,NBRFRINT,R$AX,XRAMAX,DRADCXC
154600 GLOBAL/READ/IREAD,IRITN3R
184700 GLOBAL/VIS/RE.PR,RMUEaK
154500 EXTENDED/VARSIQ(72O,3),6)
164900 EKTENDED/VARO/S(720,30,5)
135000 EXTENDED/VAR1/X(T20,30),YT2C30),Z(720,3)
185100 LOCAL/VAR3/P(1ZO,30),X((6),,4,YY(60.4),ZZ(61,4)
155200 C LEVEL 2,Q,S,X,Y,Z
185300 CONTROL,C3UNTNCO, C1,Or
185400 LOCAL/BTRID/A(h0,5,5),3(6,5,5),C(60,5,5),D(6Z,5,5),FC6h,5)
185500 C
185600 C
185200 C
188300 RM = SMU
188400- C8 = Io+2°*RP
185500 GAM2 = 2.-GAMMA
18 86"0 0 20 N=1,2
158601 IVV=512*N-512
188602 IV = IVV + IPND
188603 LM1 = IV/ND
188604" L = LMI + 1
188605 K$1 = IV-LMI*ND
188606 K = KMI + 1
188607 IAOO1=IBSO1 + IV
158608 I&0QZ=IAOQ1 * 42600
188609 IAOO3-IAOQZ 4 42600
188610 IAOQ4=IAOQ3 + 42600
188611 IA006=IAOQ5 + 42600
188612 IAOS1=IBSS1 + IV
188613 IAOS2zIAOS1 * 4Z600
188614 IAOS3=IAOS2 + 42600
188615 IAOS4-IAOS3 * 42600
188616 IAOS5=IAOS4 + 42600
188617 IAOXM = IBSX +IV-1
188618 IAOXP = IBSX V IV 1
188619 IAOXMN= IBSX +IV-NO
188620 IAOXPN= ISSX +IV+ND

,138621 IAOYM = ISY +IV-1
188622 IAOYP - IBSY * IV + 1
188623 IAOYHN= IBSY +IV-KD
158624 IAOYPN= ISY +IV+ND
158625 IAOZN = ISSZ *IV-I
188626 IAOZP = IBSZ + IV + 1
18862' IAOZMN= 18SZ IV-ND

PAGE ISaTL 18868 IAOZPN= IBSZ +IV KD188800' C

O oOROF 00'TJM ' 188900 C.**FILTRXl19000 C
169100 NL = (L-1)NDK

Figure 3-14. Processor Code for SAM - Subroutine STEP
(META Assembler)

3-43

=

19330 D(J,4,3), =

9 58V0J,

192600

192700

192500

192900

193000

193103

193200

J F,4)3
()K ,5

D(J3,1)
0J(,3,2)
D(J.3,3)

D(J,3,4)

D(J,3,5)

OXSJ,4, 1)

D(J,4,2)

193400 D(J,4,4)

193500 0(J,4,5)

193600 D(J,5,1)

19370 D(J,5,2)

193300 D(J.5,3)

193900 0(J,5.4)

194000 0fJ.5,5)

19 4100 C

19400 C******ENO OF

194301 C

194400 12 CONTINUE

-RI-C7,R3.U
-) R.GAM

= R2-It-V-UU
RIV-R?*C5

C4+R2*GAM2"l

=R2-CTR3-V

=

=
=

=
=

=
=

RZ*GAMI

R3*I-W*UU

R1-W-R3*C5

R2*W-R3*C6

C4+R3-GAH2-4

R3*GAHI

(-C2+2.*CI)tUU

RI*C3-CSUU

R2Z*3-C6*UU

R3*C3-C7*UJ

R4+GAMA*UJ

AMATRX

194500 D0 25 J=2,JMAX-1

194501 JJ= (J-1)-720

194502 IF (J.GT.2) GO TO 777
194512 KADDQ6 = (IAOg6+JJ)15? 1
194513 SYNCH

194514 MADOQM = (IA006+JJ-72))/521
194515 SYNCH

194516 G TO 778

104517 7?7 QM =RX

194518 G6 = RY
194521 778 MADDQ6'P =(IAOQ6+JJ+72O)/521
194522 SYNCH
194523 MADOSI = (IAOSI+JJ)/53L
194524 SYNCH
194525 MADDS2 = (IAOS2+JJ)/521
194526 SYNCH
194527 MADOS3 = : IA033+JJ)/52t
194528 SYNCH
194529 MADDS4 = t IAOS4+JJ)/5[
194530 SYNCH
194531 MADOS5 = IAOSS+JJ)/51
19453? IF (K.LT.2).OR. (i.GT. m), 0

194538 RX=06
194539 RY = 6'
194540 RJ = Q(KL,6.,J)
194600 RJ = 1./05
194700 RMJ=RN.RJ
19'4800 RR = RHJ*Ot6

194900 RF = RMJ*26P

195000 00 23 N=1,5

196700 B(JNN) = C8
1960, C(J,NN) = CCJNN)-RF
196900 23 CONTINUE
196901 F(J,1) = SI
196902 F(J,2) = S2
196903 F(J,3) = S3
196904 -(J,4) = 54
196905 F(J,5) = S5
197000 '5 CONTINUE

197100 C

197200 C****ENO OF FILTRX
197300 C

= -D(J-1,N,1)
= -D(J-1,N.2)
= -D(J-1,N.3)

= -0(J-1,N.4)

= -0(J-1,N.5)

= 0.0

= 0.0
= 0.0
= 0.0

= 0.0
= D(J+1,NI)

= D(J+,N,2)
= D(J+I,N,3)
a D(J+I,4)
= D(J+IN,5)

= A(JN,N)-RR

q.(L.LT. 2). iR.(L.GT.LMY) 0 T025

195100

195200

19530)

195400

195500

195600

195700

195300

195900

196000

196100

196200

196300

196400

196500

196600

A(J,N,.1)

A(J,N,2)

A(J,N,3)

A(J,N.4)

A(J,N,5)

8(J,N.1)

B(J,N,2)

B(J,N,3)

B(J,N,4)

B(J,N,5)

C(J,N,1)

C(J,N,2)

C(J,N,3)

C(J,N,4)

C(J,N,5)

A(J,NN)

Figure 3-14. Processor Code for SAM - Subroutine STEP
(META Assembler) (Cont)

3-44

http:RMJ=RN.RJ

119405
1194n 6
189407'

D1 10 J = IpJ.MAX
JJ= (JI)-?20
MADDQ6 = (TA006*JJ)/5? 1

189408
189409
15941f

SYNCH

SYNCH
MADDXH = (IAOXM JJ)/5? 1

lq9411
199412 SYNCH

MADDXP = (IAOXP+JJ)/5? I

139413 HADDXHN= ttIAOXN *JJ)f521
189414 SYNCH
19415
189416
189417
159415

SYNCH

SYNCH

MADDXPN=

MADDYM =

I IAOXPN +JJ)'521

CIAOYM+JJ)/5
?1

189419
1 9420
159421

SYNCH
IADDYP =

MADDYHN=

(IAOYP+JJ)/5?1

(IAOYMN +JJ)f'21
139422 'SYNCH
189473
1394?4 SYNCH

MADOYPN= IAOYPN +JJ)f521

18945
159426
139427
189428

SYNCH

SYNCH

MADOZM

HADDZP

=

=

CIAOZM+JJ)/5?1

I IAOZP+JJ)/5 - 1

18949 MADODZMN= CIAOZMN +JJ)' 521
139431 SYNCH
1-9431
18943? SYNCH

HADDZPN= CIAOZPN *JJ)f521

189433
189450
189451
15945?
11945'
199454
139455
189456
139457
18945
189459
189460

IF((K.LT. 2).OR.(K.1GT.(4).OR.(L.LT.2).fR(L." 1.L'
RJ = O(KLe6,J)
XK = (XP-XM)*DYZ
YK = CIP-YM)*OY?
ZK = CZP-ZH)*DY?
XL (X0 N-XNN)WDZ_
YL = (PN-YNN)*DZ2
ZL = (ZPN-ZMN)*DZ?
X.X(J,1) = (YK*ZL-ZK-YL)*RJ
XX(J,2) = (ZKtXL-XK*ZL)*RJ
XX(J,3) = CXK*YL-YK*XL)*RJ
XX(J,4) = -OEGAt(ZCKL J)*XX(J,2)-Y(KL.J)*XY(JC'))

G3 TO 10

189461 10 CONTINUE
119500
189501

DO 12 J=1,JMAX
JJ=J-1

199532 MAODD1 = CIAOQ1+JJ)/5- 1
13950 SYNCH
119504
139505
189506

SYNCH
M4DD92

1AOOQ3

=

=

CIAOQ*2JJ)/5-1

C IAOO3+JJ)/5? 1
119507
159508

SYNCH
HADDQ4 = (IAO4+JJ)/5? 1

"139509
139510
189550
159600
159700
189300
189900
190000

SYNCH

C

MA0005 = (I'A005+JJ)/5? I
IF((K.LE.2).0R.('.GT. M).O

RI =XX(J,1*HDX
R2 =XXCJZ)HDX
R3 =XX(J,3)*H X
R4 =XX(J,4)*HDX

.(L.LE.?).JR.(L.GT.LMI A0 TO 12

190100 C****..*AATRX
19'0200 C
190300 RR= 1.101
190400 U = 02*RR
190500
190600

V
0

- 03*RR
= 04*RR

190700 UU = U*RI+V*R2+W*R3
190300 UT = U**2+V*2+W.**2
190900 C1 = GAMI*UT*.5
191000 C2 = 05*RR*GAH4A
191100 C3=C2-C1
191200 C4=R4+UU
191300 CS=GAMI*U
191400 C6=GAMI*V
191500
191600
191T00
-191800
191900
142000
192100

CT=GAMI*W
l(J,1,1) =

DJ',1,2) =
DCJ,1,3) =
DCJ,1,4) =
D(J.5,) =
DCJ,2,1) =

R4
R1
R2
R3
0.
R1*C1-U*UU

Figure 3-14. Processor Code for SAM - Subroutine STEP
(META Assembler) (Cont)

3-45

9 5 o S MUST BE ZERO ON P.r.

19 76 0 IFC(K.LE.2).OR.(K. GT.KMLOR.(L.LE.2).OR.(L.GT. LM) GO T0666
1977 0 CALL STRI: 2, JM)
197809 666 DO 21 J = 2,Jm
19790D) Si = FrJ,1)
198000 S2 = FtJ,2)
198100 S3 = F(J,3)
198200 S4 = F(J,4)
198301 S5 - F(J,5)
198301 HADOSI = I IAOSI+JJ)/521
198302 SYNCH

198303 MADDS? = I IAOSZ J.J)/521
198304 SYNCH
198305 MADDS3 = C IAOS3+JJ)J52
198306 SYNCH
198307 HADDS4 = (IAOS4+JJ)/521
198308 SYNCH
198309 MADDS5 = I IAOS5+JJ)/52
198311 21 CONTINUE
19840 20 CONTINUE
218600 RETURN
218700 END

Figure 3-14. Processor Code for SAM - Subroutine STEP
(META Assembler) (Cont)

ORIGINAL PAGE IS
OF POOR QUALITY

3-46

http:L.LE.2).OR.(L.GT

188640 	 Since the PROCEDURE XXM1 has been INCLUDED it is

necesary to perform address calculations for the X,

Y, Z arrays. In a similar fashion IAOXM represents

the address of X(KL-l,J) or rather X(01) on cycle 1

and x(511,1) on cycle 2. It appears that at this

juncture that one is accessing outside of array

bounds. Note that in the original FORTRAN (Figure

3-6) the L and K loops go from 2 to LM and KM

respectively while the hidden N loop of this Figure

does not indicate this. Line 189433 of Figure 3-12

is an IF branch meant to indicate that the code will

not be executed. In fact a transposition network

calculation will be made for PE#=0 on an address one

less than the base address in order to calculate the

OFFSET. However, because of the K,L calculations

done in the PE code those specific accesses are not

performed. i.e., for this case those PE's whose K or

L value is less than 2 or greater than KM or LM will

not perform the computation.

188641-18850 Similar computations for X(KL+ND,J) etc. with J

always set equal to 1.

189405 First inner J loop which has been included from

procedure XXMI.

189407-189432 Synchronizations and OFFSET computations by

MOD (Address,521)

189500-19440 DO 12 loop with attended accesses of Q matrix

values 1-5.

3-47

194500-197000 DO 25 loop with the fetches to Q(KL,J,6),

Q(KL,J=l,6) and Q(KL,J+1),6). For simplicity

additional computations were not made in the N loop

initiation to specify an OAOQ6P(plus) + IAOQ6M(minus)

equivalent to the J+l and J-1 but rather left the

addition and subtraction to be done in the MOD function

expressions of line 194527 and 194523. This would infact

be inefficient as it would be performed for each J.

The IF branch spanning 194503-194527 has been

explained in 3.2.3.2.

197800-198310 DO 21 loop

198400 End of DO 20 loop - The cycle loop

In an early analogous manner the Processor Element Code is

generated. In this case however each processor performs a

calculation to determine relative address as a function of cycle

and PE#.

188602 Calculation of relative address

188604 Calculation of L value

188606 Calculation of K value

188607-188628 Calculation of array addresses in Extended

Memory

189405-189461 DO 10 loop included from XXMI procedure. Note

as the J index increases the array address increases

by 720. Also line 189433 indicates the "non­

computation" for undesirable K and L values

189500-194400 DO 12 loop

194500-197000 DO 25 loop

197700 	 CALL BTRI a SUBROUTINE in the normal FORTRAN sense.

Its modification into SAM Extended FORTRAN is shown

in Figure 3-21 to be few indeed. (Abranch around

BTRI should be explicitly shown similar to line

189433)

197800-198311 DO 21 loop

198400 	 End of N loop for number of cycles

3-48

3.2.3.4 Assembler Code for STEP

To be supplied in Phase II

3.2.3.5 Subroutine BTRI - SAM Extended FORTRAN

As can be seen in Figure 3-19 the comparision of the original

FORTRAN (Figure 3-17) and the SAM Extended FORTRAN (Figure 3-18)

only one change had to be made in the code. This was the LOCAL

declaration for Named COMMON/BTRID/. Since no extended variables

are fetched or stored in this piece of code it runs entirely

internal to the processor as written.

3.2.3.6 SUBROUTINE XXM and XXMl.

It was noted in examining the IMPLICIT code that the majority of

calls to the SUBROUTINE XXM occurred in loops whose initial and

terminal members precluded taking the branches which occurred in

this code. (Lines 245800, 245900, 247500, and 247600.) Since

this reduces the performance of the whole code on both the CDC7600

and on SAM the code was modified into two SUBROUTINES. One, XXM,

to be used when the calling loop had initial and terminal values

and XXMl for those calling loops in which K never equal to 1 or

KMAX and L never equal to 1 or LMAX. See Figures 3-20 and 3-21.

Figure 3-22 shows XXMI written in SAM Extended FORTRAN and 3-23

shows the differences.

Since this code was brought into STEP via the INCLUDE statement,

further discussion is not necessary.

ow peoR QIJMf-49

3-49

42300 SUBROUTINE RTRI(ILA. IUt)

-4230 n LOCAL/BTRID/A (605,5),3 (6) 5,5).C(S 0,5 5),D(60, 5,5), F (67.5)

'42400 DIMENSION H(5.5)

42500 REAL L11,L21,L22,L 31.L52,L33,L41,L42,L43,L44,L5I5L52,L53,L54,L55
'42600 IL=ILA

42700 IU=IUA

42901 IS=IL+

4290. IE=IU-1

43001 C INSERT LUDEC

43100 L1=I./B(IL,1,1)

43203 L2I=B(IL.2, I)
43300 Ul2=B(IL,1,2)*Lll

43400 L22=1./(BIL,2,2)-L21*)12)
-43500 U13=B(IL,.,3)*LlI
43603 U14 = B(IL,l,4)*LlI
43700 U15=B(IL,1,5)Lll
,43q03 L31=B(IL,3,I)
,43900 L32=8(IL,3,2)-L31*UI2
144000 U23=(B(IL,2,3)-L21*UI3)*L22
144100 L33=Z./(BIL,3,3)-U13*.31-U23*L32)
'44200 U?4=(B(CL,2,4)-L21*U14)-L?2
44300 U25=(B(IL,2,5)-L21*U15)*L22
44401 L41=BIL,4,1)
44509 L42=9(IL,4,2)-L41*U12

44600 L43=B(IL.4,!)-L41*UI3-_42*U23

4470n U34=8(IL,3.4)-L31U14-L32*U24)*L33

44800 L44=1./c B IL,4.4)-U14*.41-U24*L42-U34*LA3)
4490 n US=(B(IL,3,5)-L31*U1i"L3*U25)*L3S
45000 L51=B(IL,5,l)
45103 L52=B(IL,5,2)-L51'UI2
45200 L53=B(IL,5, 3)-L51*UI 3-L52U?2
45309 L54=B(IL,5,4)-L51*U14-.52*U24-L53*U34
45400 U45=C9(IL,4,5)-L41*U15"L4?U25-L43*U35) -L44
45503 L55= 1./(B IL-5,)*L51-J 15"L52*U25L53*U 35.-54*U 5)
45600 C COMPUTE LITTLE R S
45700 DI=LII*F(IL,1)

45900 02=L22-(F1IL,2)-L2I*OI)

4590.1 D3=L33*(F(IL,3)-L3I-DIL32*D2)
4600C D4=L44*(FIIL,4)-L41*DIL4?.*2-L43*33)

4610) DS=L55*(FIL,5)-L51*01-L5?*32-L53*O3-L54*3)

46200 C COMPUTE BIG R S

46300 F(IL,5)=D5

46400 F(IL,4)=D4-U45*D5

46500 F(IL,3)=D3-U34*F(IL.4)- U35-D5

46600 F(IL,2,)=D2-U23*F(IL,3)U24*F(IL,4)-U25*05
46701 F(IL,1)=O1-U12*F(IL,2)-UI3*F(rL,3)-U14*F(IL,4)-,J'5*D5
46800 C COMPUTE C PRIME FCR FTIST R0
46900 DO 12 M=1,5
47000 01=L11*C(IL,I,)

47ro0) D2zL22*(CEIL,2, M)-L21*] I,

47209 03=L33-(CIL,3,M)-L31*)I-L32-D2)

47309 D4=L44*(C(IL,4,M)-L41*)1-L4*12-L43*D3)

47400 95=L55-(Cf IL,5.H)-L51) 1-L52*DZ-L53*D3-L54941

47500 B(IL,5,M)=95

47600 8(IL,4.M)=D4-U45fD5

47700 B(IL,3,M) = D-U34*8(1.,4,M)-U35*D5

47800 B(IL,2,M) = D2-U23*B(IL,3.M)-U4*(IL,4,i)O-U5*05

47909 12 (IL,1,1M) = D-UI2-(I.,2,M)-UI3*B(IL,3,f-U14*9(!L,4,M)-UI5C5

48000 00 13 I=IS,IE

48100 C COMPUTE B PRIME*BIGR

4200 DO 14 N=1,5

48300 14 F(I,N)=F(I,N)-A(I,NI).F(I-1,1)-A(I,N,2]*F(I-,2)-A(I,N,3)*F(I-1,

43400 *)-A(I,N,4)*F(I-1,4)-A[[,N,5).F(I-1,5)

48500 C COMPUTE 2 PRIME

48600 DO 11 N=1,5

48700 00 11 M=1,5

48800 11 H N M = C , ,) AI NI * C *,,M -(,,) B II B M -(, ,)
48900 *B(I-I,3,M)-A(I,N,4)*B(1-1,4,P)-A(I,t,,5)-B(I*1IS M)

49000 C INSERT LUDEC AGAIN

49100 L11=1./H(1,i1)

Figure 3-17. Original FORTRAN - Subroutine BTRI

3-50

49 0

49400 L22=1./(Hr2,2)-L21*UI2)
49500 U13=HC1,3)*Ll I
49600 UI4=H(1.4)*L11
49T00 U15=H(1,5)*Lll
49500 L31=H(3,1)
49900 L32=R(3.2)-L31*UI2
50000 U,3=(H(2,3)-L21*U13)*L!2

501O0 L33=1./,H3,3)-UI3*L31"U23*L!2)
50200 U24=(H(2,4)-L21*UI4)*L?2
50300 U25=(H(2,5)-L21-UI5)*L?2
50400 L41=H(4, 1)
50500 L42=H(4,2) -L41*UI2
50600 L43=H(4,3)-L41.U13-L42'U?3
50700 U34=(H(3,4)-L31.UI4-L3?*U24)*L33

50800 L44=1./(H 4,4)-U14*L41U24*L42"U34*L4')
,5090) U35=(H(3.5)-L31*U15-L3?.U25).L5
51000 L51=H(5,1)

51100 L52=H(5,2)-L51-U12

51200 L53=H(5,3)L51*U1 5L52kU23
51300 L54=H(5,4)-L51*U14-L52U24-L53*U34
51409 U45= (H(4,5)-L41*Ul5-L4? *U25-L43*U35)*L4
51500 L55=1./(H(5,5)-L51*UI"L52.U25-L53U35-L54U,45)
51600 C COMPUTE LITTLE RIS

51700 DO=LI1*F(I,I)

'51800 OZ=L2Z*(FCI,Z)L21*D1)
51900 03=L33*(FrI,3)-L31*I-. 32-D2)
52000 04=L44-(F I,4)-L41*D1-42D2-L43*D)

52100 D=L55*(FI1,5)-L51*01-.52*2-L53*D3-L54*D4)

.52200 C COMPUTE BIG RIS

52300 F(1,5)=05

52400 F(1,4)=04-U45-D5

5250-1 F(I.3)=D-U34F(I,4)-US5*D5

52600 F(I,2)=02-U23*F(1,3)-U?4-F(T,4)-U'5*05

5270(F(1,.1=D1-U12*F(1,2)-UI3F(I,3)-U14*F(I,4)-I15*95

52500 C COMPUTE C PRIMES

52900 00 15 M=1,5

53000 DI=L11*C(I,I,M)

53100 D2=L22*(C(I,2,M)-L21*:)

53200 D3=L33*(CI1,3,M)-L31.91-L32.D2)
15330) D4=L44*(CC 1,4,M)-L41*3I-L42-C-L43*D3)
153400 D5=L55*(C I.,5,1-L51*01-L52*C2"L53D3-L54*,)
53500 B(,5,M)=05

15360 P B(I,4,M)=D4-U45*fD

53700 B(I.3,M) = 03-U34*8(IiM)-U35-95
53s0n B(I.2,M) = 02-OJ23*8(I,3,M)-U24.8(I.4,M)-?5*05

53900 15 B(I,1,M) = 01U12*B(IH)-U3*8(I,3,M)-L14B(I,4,M)-UIS*D5

54000 13 CONTINUE

54100 I=IU

54200 C COMPUTE B PRIME*3IG R FOR LAST ROW

54300 DO 17 N=1,5

,54400 17 F(1,N)=r(IN)A(I,N,1)kFC,-,1)A(1,N.2).F(I-,2)A(I.N.3)*

154500 * F(I-1,3)-A(I,N,4)*F(I'I,4)-(I,N.5)*F(1-1,9)

54600 C COMPUTE B PRIME

54700 DO 18 N=1,5

'54800 00 15 M=1,5

54900 18 H(NN)=B(INet)-A(I.N.1).(II,1,x)-Ac,N2).acr-l,2,u)-Arr.N,3).

55000 *B(11.3.H)-A(I,4)*8(11,4v)A(I,N,5}*BtI-1,5,)

,55100 C INSERT LUDEC AGAIN

.55200 LlI=I./H(1,1)

,55300 L21=H(2,1)

155400 U12=H(1,2)*L1I

155500 L22=1./(H8,2.2)-L21*UIZ)

155600 UI=H(1,3)*Ll1

-55T00 U14=H(1,4)*L11

55800 U15=H(1,5)*Lll

55900 L31=H(3,1)

'56000 L32=H(3,2)-L31*U12

'56100 .UZ3=(H(2,3)-L.Z1-LJ13)*L?2 ORIGINAL PAGE IS
56200 L33=1./(F3,3)-U13*L31-U23*L!Z)
56300 U24=(H(2,4)-L21*UI4)*L!2 OF POOR QUALY
56400 U25=(H(2,5)-L21*U15)*L?2

56500 L41=H(4,1)

96600 L42=H(4,2)-L41*U12

56700 L43=H(4,3)-L41tU13-L42.U23

56809) U34 (K(3,4)LfllU14-L3?.U24) L33

56900 L44=I.f(H'4,4)-U14*L41I'U24L42-U34*L4 i
57000 U35=(H(3,5)-L31*UI5-L3?*U25)*L33

57100 L51=R(5,1)

57200 L52=H(5,2)-L51*UI

Figure 3-17. Original FORTRAN - Subroutine BTRI (Cont)

3-51

http:D3=L33*(CI1,3,M)-L31.91-L32.D2
http:U35=(H(3.5)-L31*U15-L3?.U25).L5

57300 53=H ,3)"L5*U 3- -'U'3
57400 154=H(.4)-5*U4-2U4-L3*U34
57503 U45 (H(4H5)- 41-UI5- *U25-43*U35)*L41
57600 L5 =1./(HC 5)-L51*U5"-L5 U5-L53- U35-L54-U45)

57700 C COMPUTE LITTLF RIS

57900 01=LI*F(II)

58900 D2=L22*(F[I,2)-LZ1*01)
58000 D3=L33*(F(I,3)-L31*D1-.32*0')

58400 04=L44*(F(I,4)-L41*D-_42*DZ-L43*D3)
58300 D5=L55*(F[I,5)-L51*Dl-52*02-L53*03-L54 *Q)
5530 C COMPUTE BIG RIS
58400 F(o5)=D5
5850) F(I,4)=D4-U45*D5
58600 F(I.3)=O3-U34*F(I.4)-U35*f5
58700 F(I,2)=D2-U23*F(I,3)-U4F(I,4)-U?5*05

58500 FcI,1)=Di-UI2*F(I,2)-Ut3*F(I,3)-U14*F(rI.4)-UI5*5
58900 I=IU
5900 20 I1I-1
59100 DO 19 N=1,559Z00 19 F (I,N})=F(I,N)-F (I + ,1),8(I,N ,1) -F(I + ,2) -B(I N ,?)-F 1 1 3) 5(1 N 3
59300 *)-F(It1,4)*B(I,N,4)-F[I*1,5)*B(IA,5)
59400 IF (I.GT.IL)GOTO2O

59500 RETURN

59600 END

Figure 3-17. Original FORTRAN - Subroutine BTRI (Cont)

3-52

42200
42300

SUBROUTINE BTRI(ILA, IU)
COMMON/STRID/AI60,5,5),0B(,5,5),C(-0,5,50,0(60,5,5).F(60,5)

42400
42500

DIMENSION H(5,5)
REAL LlIL21.L2'131,LS 2,L33,L41,L42,L43,L44,L5IL52,L53,L54 L55

42600 IL=ILA
42700 IU=IUA
42800 IS=IL1
42900 IE=IU-1
43000
43100
4320043300
43400
43500

C INSERT LUDEC
111=1./8(IL,1.l
L21=B(IL,2,I)UI2=B(IL,1,2)*Lll
L22=./(B1IL,2,2)-L21*J12)
U13=B(IL 1,3)*LI1

43600
43700
43601
4390
44000
44100
44200
44300
44400
44500
.44600
44T00
,44800
.44900
45000
45100
45200
45300
45400
4550)

U14 = BIL,1,4)IL
U15=B(IL,1,5) LI
L31=8(IL.3,1)
L32=B(IL,3,2)-L31*UI2
U23=(B(IL,2,3)-L21U3)*L22
L33=1./(B IL,3,3)-U13L31-U23*L32)
U?4=(B(IL, 2,4)-L21-UI4)*L22
U25=(B(IL,2,5)-L21*U5)*L22
L41=(IL,4,1)
L42=B(IL,4,2)-L41*UI2
L43=BIL,4,3)-L41*U13--42*U?!
U34=(B(IL,3,4)-L31.U14-L2*U24)*L3
L44=1./(B IL,4,4)-U14*41-UZ4*L42-U34*L43)
U35= C(IL ,3,5-L3 1*U15- L 32*U25)*L 33
L51=B(IL,5,1)
L52=B(IL,,2)-LSI*UI2
L53=B(IL,5,3)-L51.UI3-_52*U? I
L54=8(IL,5,4)-L51*U14-2*UZ4-L53*U34
U45=IB(IL,4,5)-L41*UI5"L4*U25-L43*U35)*L44
L55=1./(B IL,5,5)-L51JI5-L52*U25-L53.U35-L54*U.5)

45600 C COMPUTE LITTLE R S
45700
Y.5800
45900
46000
46100

Dl=L11*F(ILl)
D2=L22.(FIL,2)-L2I.D)
03=L3*(FIL,3)-L31*D1L3?*O2)
04=L44*(F(IL4)-L41*D1-L42*D2-L43-DI)

D9=L55*(FIIL,5)-L51*DlPLS2*D0-L53*3-L54*0.)
46200 C COMPUTE BIG R S
46300
46400
46500
46600
46700
46800 C

F(IL,5)=05
F(IL,4)=D4-U45*D5
F(IL.3)=D3-U34*F(IL,4)-U35*D5
F(IL,2)=D0-U23*F(IL,3)-U24*F(IL,4)-U25.05
F(IL,I)=DI-UIZF(IL,2)-U13tF(1L,3)-UI4*F(IL,4)-'5*05
COMPUTE C PRIME FOR FIRSI ROh

46900
47000
47100
47200
4T300
47400

DO 12 M=1,5
Ol=L11*C(IL,I,M)
02=L22*(CEIL,2,B)-L21*)I)
D3=L33*(CrIL,3.B4-L31*)1-L32*0?)
D4=L44*(CIL,4, M)-L41* 11-L42*D2-L43*D3)
05=L55*(CCIL,5, 4)-L51*)I-L52*D2-L53*03-L54*D4)

47500
47600

B(IL,5,M)=05
B(1L.4M)=D4-U45*O5

41700
47800
4T900 1,2

B(IL,3,M)
B(IL,2,M)
B(1L,I,)

=
=
=

03-U34*B(IL,4,M)-U35*O5
D2-U23*1(I.,3,M)-U24S(IL,4,P)-5*5
DI- U2*3(IL. 2,M)-U13-E(IL. ,$P)-UI4*9(L,4, ')-UI5 5

48000
40100 C

DO 13 I=IS,IE
COMPUTE B PRIME*BIGR

48200
48300
4840n
48500

14

C

00 14 N=1,5
V(IN)=F(I.N)-A(IN,)fF(I-,1)-A(I.N.2)*FI-,)-A(,N,3)*('-I,

*)-A(I,N,4)*F(I-1,4I-AC[,N,5)*F(I-1,5)
COMPUTE B 'RIME

48600
4870
48800
48900
49000

11

C

00 11 N=1,5
00 11 M-1,5
HCNMB(I,N,N)-AI,N,L)*8C1.1.IP)-AIIN,2).3Ct-1,2,M)-A(I,$.3).

*(I1,3,X)A(I,N,4)*BC['1.4,I)A(I.N,5)*B(I-1,5,M
INSERT LWEC AGAIN

49100 Ll=.IH(1.I)

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI

3-53

49200 L)1=H(2,1)

49300' U12=H(1p2)-L11

49400 L22=1./(H[2,2)-L21*UI2)

49500 Ul3=H(1,3)*L11

4960- U14=H(1,4)*Lll

4970" UIS=H(1,5)*L11

49800 L31=H(3. 1)
49900 L32= HE3.2)-L31*UI2

50000 U?3=(H(2,3)-L21'*U13)*t?2

- 50100 L33=1./C H 3, 3)U13*L 31 U23*L !2)
50200 U24=(H(2,4)-L21*UI4).LU2
50300 U25=(H'(2.5)-L21-U!5,)-L?2

50400 L,41=14(4,1)

50500 'L42H(42)-L41-U12

50600 L43=H(4,3)-L41*U13-L42*U23

SOTO0 U34=(HC3 .4)-L31*U14-L3?*U24)*L33

50600 L4=1./1H(E 44)-U14*L4I"U24AL42-U34*L4 1
50900 U35=(H(3.5)-L31.U15-L3?*U25)*L33

51000 LS1=H(5,1)

511001 L52:H(5,Z)-L51*U12

51200 L53=H(5,3)-L51-UI3-L52-U23
Sf1300 L54= M 5.4) -L51*U14-L52* U24'-L53*U34

51400 U45=(H(4,5)-L41*U15-L4?-U25-L43*U35)*L44

51500 L55=1./(H 5,5)-L51.UI5L52*U'25-L53*U35-L54*U45)

51600' C COMPUTE rLITTLE RIS

51700 DI=LII*F(t,1)

51800 D=L22*(F,2)-L21.DI)

51900 'D3L33*tf I, 3)-L31*Dlt 32*D2)

52000 04=L44*(F:I.4)-L41*nD-.42*D2-L43.03)

52100 05=L55*(FEI,5-LSI*D1-.52*D2-L53*D3-L54*0D)

52200 C COMPUTE, BIG RIS

52300 F(I,5)=D5

52400 (I,4W=D4-U45*05
52500 F(I.,3)=!3-U34*F(I,4)-U;5*D5

52600 F(I,2)=02-U23*F(1,3)-IJ?4*F(I,4)-U25*D5

52700 F(I,1)=OI-U12*F(I,2)-Ut3FCI,3)-U14FEI,4)-1515

52500 C COMPUTE C PRIMES

52900 DO 15 M=1,5

53000 0IL11*C(I,-1,M)

53100 02=L22*(CEI',2,M)-L21*0V)

53?00 U3=L33*(CI1,3,M)-L31*31-L32*C?)

3300 D4=L44(C I,4,M]-L41*91-L42*C2-L43*D3)

53403 D5=L55*(C(I,55,)-L51*91-L52*C2'L53*D3-L54*T)'
53500 BCI5,M)=05

53600 B(1,4.M)=D4-U45*D

5"3700 BI,3,M) = 03-U34*(I,.,M)-U!5*D5

53800 B(1.,2,M) = 02-J23*8('13,M)-U24i3(I,4,M)-U5*O5

53900 15) =1-U12*B(I,?,M)-U13*9(1,-3,M) 14 *(I-,4 ,)-15*D 5
=(1,1,
54001 13 CONTINUE

54100 I=IU

54200 C COMPUTE B PRIME*8IG R FOR LAST ROn

54300 DO 17 N=1,5

54400 17 FCI,'N)=F(1,N)-A(I N,I)*F(1-1)-A(IN,?)?F(I-,2)-A(1,N, 1)

54500 * (I-1,3)-A(I,N,4,)*F(I- V,4)-ACI,N,5)*F(I-1,5)

54600 C COMPUTE E PRIME

54700 DO 18 N=1,5

54800. DO 18 M=1,5
54900 18 HCN,M)=B(I,N,M).A(I,N,1)*B(I1.1.M)-ACI,N.2).S(!-1,,M)-A(1,N,3)
55000 *B(I-1,3,M)-A(IN,4")iB(-I,4,'-ACI,N,5)*8(T-,5,4
55100 C INSERT LUDEC AGAIN

55200 L1V1'l./H(l.,)

55300 L21=H(2,1)
55400 U2=M(C1,2)*LI1
55500' L22=1./(HC2,2)-L21*UI)
55600 U13=H(1,3)*LIl

55700 U14=H(1,4)*L11

55800 U15=H(IC5)'L1

55900 L31=H(3,1)

56000 L32=H(3,2)-L31*U12

G61O0 U23=(H 2,3)-L2*U13)*L?2

56200 L33=1./(H(3-,3)-UI3*L31-U23*Lf?)
56300 U24=(H(2,4)-L21*UI4)*L?2

56400 U25=(H(2,5)-L21.UI5)*L?2

56500 L41=H(4,t)

'56600 L42=H(4,2)-L41*UZ

567 00 L43=H(4,3)-L41*U13-L42 U23
56800 U34=(H(3,4)-L31*U14-L3Q*U24)*L33
56900 L44=1./(Hf4,4)-UI*L41"U24L42-U34*L43)

57000 U35=(H(3.5)-L31.Ul5-L3A*U25*LS3

57100 L51=H(5,1)

57200 L52=H(5.2)-L51*U12

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI (Cont)

ORIGIN A ?P LGr Is

OFpooRT

http:04=L44*(F:I.4)-L41*nD-.42*D2-L43.03
http:D=L22*(F,2)-L21.DI

[4=H(, 4) 1 .U 4- ,U24 -L 53*US4

57500 U45= (H(4 5)-L41 *U15-L4- *U25-L4 * U35)*L4.

57600 L55=1. /(H' 5.5)-L5 I* U15" L52*U25-L5 3-U 35-L54*1k 5)

57700 C COMPUTE LITTLE RIS

57800 DI,=L11-F(I,1)

73007400 L3=H(;,3):-HL3-fl U23

57900 D2=L22*(F I,2)-L21*D1)

5800.C D3=L33*(FCI,3)-L3I*D-. 32*02)

58100 D4=L44*(FtI4)-L41*01-.42*O2L43*Di)

15B00 05=L55*(F1 I,5)-L51*01-.52.O2-L53*O3-L54*04)
56300 C COMPUTE BIG RIS

58400 F(I,5)=05
58500 F(I,4)=D4-U45*)5

58600 F(1,3)=D3-U!4F(1,4)-U35*05
58700 F(I,2)=D2-U23*F(I,3)-U.4F(I4)-U5*D5
.58800 F(I.1)=D1-UI2*F(I.2)-U[3*F(I.3)-U14*F(I,4)-U15*95

58900 I=IU

59000 20 1=1-1
59100 DO 19 N=1,5
59200 19 F(I,N)=F(IN)-FCI+1,1)'B(I,NI)-F(I+1. ?)*B(T1,,?)-P(I+13)*E(I. N
59300 *)-F(I+l,4)*B(I,N,4)-F:I1,5)*q(IN,5)
59400 IF (I.GT.IL)GOTO2"
59500 RETURN
5960') END

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI (Cont)

1 R 42300 LOCAL/8TR 10/ AC(0,5,5),1(60,5,5), C(6 ',55) D(6O) 5 ,5) F (6' 5)

Figure 3-19. Comparison of Original FORTRAN and SAM Extended
FORTRAN - Subroutine BTRI

3-55

243203 SUBOUTINE XXM(MLAJ1k JZA)

c

243301 COMPN/BASE/NM4X, JXAX.(OA,LVAX.J.Km, LPOT,GAMA. GA MIPIL,rSMAG

4

2434C 1 ,OX1,9Y) Z1,NON)l2,V(5), F(-)1DAL 'G0DCEGA,1 3XHPY pFCZ

T

243501 2,RM,CNBRPI,ITRI VISC.LAMIN,NP,INTIINT2,!f ;
243609 COMXON/GEj/NIN8' ,RFR]NT,RhAXXRXuAX,DRA9, OYC
243709 COMON/READ/IREAO-IWRIT- K NGRI
243800 COM4ON/VIS/RE'R,qMUE 1
243901 COMON/VAPS/Q(720,6,3))
244001 COHMON/VARO/S(7?0,5,3J) T ? ,
24410, C3MICN/VARIfX(?ZO,30),r(T20 2

o)4(0 ,5)

24420A COM'CN /VAR3/'(120,30). XX(6l,4),YY(60,4),22(6 ,4
24430) C LEVEL 2.0,SXY.Z
244403 COMMONI/COJNT/NC.N-I
244500 COMMON /FLSH/'X2,DY2,Jr
2446O C

24 470n C XI METRICS FORME' FOR A 4-L LINE IN J

244800 C
24490C C

245000 C SYV$ETRY

245100 C
245200 K = M
2453;0 L=LA
245400 JI=JIA
24550^ J2=J2A
245601 KL = (L-)tNOtK
24570' DJ 10 J = JI,J2
245801 RJ = 0(KL,6,J)

245903 IF(K.EQ.I) GO TO 50

24600) IF(K.EQ.KMAX) GO TO 51

246102 XK = (X(KL+I,J)-X(KL-I.J))*9Y?

246206 YK = (f(KL+1,J)-Y(KL-1. J))*OY2

24630 7'K= (ZCKL+IJ)-Z(KL-1.J)*0Y2
24640' G0 TO 72
246500 Sn CONTINUE
24660; X'((-3.*XC L,J)+4.*XZL ,.3-X(Lt 2J).' 2
246701 YK = (-3.*Y(KLJ)+4.*Y: KL+1,J)-Y(L+2J))*''
24 50" ZN = (2K .*Z(LJ)+4.*Z:NL+ ,2)-Z(KL2,J))* YI
24690 G0 TO 72
24700? 51 CONTINUE
247102 XK = C3.*XLJ)-..*X((L-lrJ)+X(K-2.J)*tV
247200 YK = (3.*Y(KL,J)-4.*Y(L-,J+YC(L-2,J))tfY"
247303 Z, = (3.*ZKLJ)-4.*Z(UL-J)+Z(KL-,J))*DY'

247401 T? CONTINUE

247500 IF(L.EQ.1) GO TO 52

247600 IF(L.EQ.LHAX) GO TO 5;

247700 XL = (X(KL+ND,J)-X(CL-4DJ'))CZ2

247900 YL = (r(KL+ND,J)-Y(KL-vD,J))*2Z?

24T900 ZL = CZ(KLNDJ-Z(L-YDJ))-LZ?

248000 GO TO 60

240100 52 CONTINUE

248200 XL = C-3.*X(KL, J)+4..X KL+NOeJ)-X(L+"NO,J))'C*

245300 YL = (-3.*Y(KLJ)+4.*YL+NO,J)-Y(KL+?*N9,J)).*
 '

24840, ZL = (-3.*Z(KLJ)4.*ZCKL+NDJ)-Z(NL+?,NCJ)*C
24350' GO TO 60
248600 53 CONTINUE

248701 XL =

248900 YL = (3.*Y(L,J)-4.*Y((L-ND,.)eY(KL-2*N,J))*fl?

248902 ZL = (3.*Z[KLJ)-4.*Z((L-NO J) Z(KL-2* O J))*E!'

24900-' 60 CONTINUE
249109 XX(J,1) = (YK.ZL-ZK*YL).RJ
249200 XX(J,2) = (ZK*XL-XK.ZL)*RJ
24930" XY(J,3) = CXK*YL-YK*XL)*RJ
24940' XX(JP42 -OMEGA*(Z(CKL,J)*XX(J,')-Y(KLJ).XY(J,:))

24950^ 1 CONTINUE
249603 RETURN
249703 END

Figure 3-20. Original FORTRAN - Subroutine 1X0M

ORIGfm PAGE 1$
oF Poor QUALM3

3-56

http:YK.ZL-ZK*YL).RJ

24320-' SUBROUTINE XXM(),LA, JIk J2'A)
243300 COMMON fASE/NMAX,JMAX,(MAX ,LPky JM, KM.L MDT,GAM'4AG4TI,S-U.F SU&CH
'243400 1 ,DXI,DY1,DZ1,tDND2, V(5),FD(3),H,ALO,GD,CEGHfMX,H'YdZ
243500 ?,RMCNBR.PI, ITR INVISC LAMIN.NP.INTI.I T2,TNTI

24360C CQMMON/GEO/NB1,NB,RFR)NT,RAX.XRXPAXDRAD. DYC

243700 COMMON/READ/IREAD,IWRIT,NGRI

243103 CGMMON/VIS/RE,PR,RMUEIK

243900 COMMONIVARSI(720,6,30)

244000 COMMCN/VARO/S(T20.5,30)

244101 COMMCN/VAR1IX(720,30,),ft(720!O),Z(T2O,3;)

244200 COMMON /VAR3/ 0 (120,30). XX(69,4),YY(60,4),ZZ(6^ , 4'

244300 C LEVEL 2,Q,SXYZ

244400 CDMMON/COUNT/NC.NC1

24450(COMMON /FLSH/DX2,DY2,.!?

244600 C

244100 C XI METRICS FORMED FOR A KL LINE IN J

244303 C

244900 C

245000 C SYMMrTRY

245100 C

245 K = M
2 0 3

245300 L=LA

245400 JI=J1A

245503 J2=J2A

245600 KL = (L-I)*ND'

245709 03 10 J = JlJ2
24S00 RJ = O(KL,6.J)

245901 XK = (X(KL+1,J)-X(KL-1,J))-[Y2

246000 YK = (Y(KLt1,J)-Y(KL-1 J))*CYZ

246100 ZK = (ZCKL+1,J)-Z(KL-IJ))*DY2

246200 XL = (X(KL+NDJ)-X(KL-4DJf))[Z?
246309 YL = (t(KL+NDJ)-Y(KL-O.J)1-'Z2

246400 ZL = (Z(KL*ND,J)-Z(KL-iD,J))*CZ2

246500 XX(J,1) = CYIZL-ZK*YL)*RJ

246600 XX(J,2) = (ZK*XL-XK*ZL)*RJ

246700 XX(J,3) = CXI*YL-YK-*XL)*RJ

24600 XX(J,4) = OMEGA*(Z(KbJ)XXCJ,?)-Y(KL,J)*X%(J.))

246900 10 CONTINUE

247000 RETURN

2 O4710 END

Figure 3-21. Modified Version of Subroutine XXM1 for Improved Performance
on Serial or Parallel Machine

3-57

http:RMCNBR.PI

243200 PROCEDURE XXM(M,LAJ1A. J2A)
243300 GLOBALIBASEIN'4X,JMNXA MAX,LAXJM,KMLIIGAMdAGAMI.SUU.FSCH
243400 1 .OXI,DYIOZI.ND.ND2, VC5),FD(5),DALP,GD,MEGA,HOX.HOY,1CZ
243500 2,RM.CNBR,'I,INVISCLA4IN.NP

243600 GLOEAL/GEO/NBI,NB?,RFR)NTRMDX,XRXMAX,DRAD.DXC

243700 GLOBAL/READ/IREAD,IWRITNGRI

24390) GLO8AL/VIS/RE. R.RMUEd K

243900 EXTENDED/VARS/9(T?0,30.6)

244000 EXTENDEO/VARO/S(720,3,5)

24410! EXTENDEDIVAR/X(720,30),Y(T2C,30),Z(720.30)

244200 LOCAL/VaR3/P(1ZO, 30),X((60,4),YY(60,4),ZZ(6',4)

244300 C LEVEL 2,QS.XY.Z

244400 CONTROL/COUNT/NCNC1,DT

244500 GLOBAL/FLSH/DX2,DY2,DZ!

244600 C

244700 C XI METRICS FORMED FOR A K.L LINE IN J
244800 C
244900 C
245000 C SYMMETRY
245100 C

245200 K = M
245300 L=LA
Z45400 JI=JIA

245500 JZ=JZA

245600 KL = (L-I)*ND K
245700 DO 10 J = JI,J2

245800 RJ = QC(KL,6.J)

245900 XK = (X(KL+I.J)-X(KL-, J))*DY2
246000 YK = (t(KL+1,J)-YCKL-.J))*Y2246100 ZK = (Z(KL.I1J)-Z(KL-1,J)).DY2
24620') XL = (X(KL+NDJ)-X(KL-4D,J))CZ2
246300 YL = (t(NL*ND,J)-Y(KL-IDJ)):DZZ
246400 ZL= (Z(KL4ND,J)-Z(KL-1DJ))*OZ2
246500 XX(J,1) (YK*ZL-ZK-YL)*RJ246600 XX(J,2) = ZK*XL-XKtZL) *RJ
246700 XXCJ13) = (XK*YL-YK*XL)*RJ246500 XX(J,4) = -OMEGA*(Z(KL. J)*XX(J,2)-Y(KLJ)*XX(J,))
246900 10 CONTINUE

247000

247100

Figure 3-22.

I R 243200
2 R 243303

3 R 243500

4 R 243600

5 R 243700

6 R 243R00
7 R 24390)

8 R 244CO0

9 R 244101

10 R 24420)
11 R 44400
12 R 24450

RETURN

END

SAM Extended FORTRAN for Subroutine XXM1

PROCEDURr XXM: FLA,JIA,J?A)
GL BAL/BASE/N4AX, JMAX, KMAXLMAX,JM,FM,LMGAMxA,GAPI,SL,FSACti

2.RN,CNnR,PIIIVISCLAUINNP

GLOBL/GEO/N9, N92,FFRONT,RAX,XRXMAXDRAl.,DXC

GL0SAL/READ/I1EAO,IORIT,NSRI

GLOBAL/VIS/RE.PR, RMUE.,RK
EXTENDEO/VARSFV(T2O30,6)

EXTENDED/VAROS(TZO,30,5)

EXTENDED/V&RI' X(720,30),YC 720, 30),2(720,3)

LOCAL/VAR3/P(120,30),XX(63,4),YY(60,4),ZZ(6',4)

CONTROL/COUNT'NC,NCIDT

GLOBAL/FLSHI/DX2,DY2,DZ2

Figure 3-23. Comparison of Modified FORTRAN and SAM Extended
FORTRAN for Subroutine XXMI

OF-58
3-58

http:EXTENDEDIVAR/X(720,30),Y(T2C,30),Z(720.30
http:2,RM.CNBR,'I,INVISCLA4IN.NP
http:OXI,DYIOZI.ND

3.2.4 Subroutine STEP (Loop DO 30 & DO 40)

The arrays Q and S which have been declared to exist in Extended

Memory have the following extents

Q(720,30,6)

S(720,30,5)

A partitioning in effect of the first extent of 720 into 2 parts

occurs at run time with the variable ND. The first index then has

an extent ND and the second index has an extent equal to LMAX.

This means that if ND*LMAX 720 certain memory locations are not

utilized. This causes some degradation in performance for the SAM

in all three access modes.

Each of the three types of accesses of the Q & S arrays which are

required by the DO 20, DO 30 and DO 40 loops in SUBROUTINE STEP

will be discussed. Because of a complex first order linear

recurrence the index J in the DO 20 loop must be done serially

while the K&L indices are parallel (see example below). Similarly

for the DO 30 loop K is the serial index while J&L are the

parallel ones. For DO 40 L is the serial index and K&K the

parallel ones.

An example of the structure of the program is given below.

DO 20 L=2,LM-O R !G A L

DO 20 K=2,KM Opp J A S

DO 18 J=l, JMAX

KL = (L-I)*ND+K

RR = 1.0/Q(KL,J,6)

(plus many other statements including a complex first order

recurrence in J)

18 CONTINUE

20 CONTINUE

3-59

This is a Case I access as described in Appendix A. The ISKIP=ND.

For ease in handling this generality of splitting the first extent

it is assumed that 720/ND is integral with value ND. The number

of cycles necessary to access the L's and J's is equal to

No. of Cycles = (LD*30+512-l)/512

For the specific case given in the benchmark where ND is equal to

15 then LD is equal to 48 and the No. of cycles equal to 3.

On cycle 1 one is accessing all L's from 1 to LD and J's from 1 to

10 and for the llth J one is accessing L's from 1 to 32. This is

done for each K from 1 to ND. Figure 3-26 maps this accessing of

indices from Extended Memory into the processors.

The last loop, the DO 40 Loop has the L index as the serial index

for the recurrence relation and the K&J indices as the parallel

ones. The structure is

DO 40 J=2, JM

DO 40 K-2, KM

DO 38 LI, LMAX

LK = (L-I)*ND+K

RR = 1.0/Q(KL,J,6)

(plus many other statements including a first order linear

recurrence in L)

38 CONTINUE

40 CONTINUE

This can be considered to be a Case II or Case V accessing pattern

as discussed in Appendix A. Since the accessing of Q & S is

identical a "semi smart" compiler can chose which of the two cases

it wishes to consider this. I.e., Q(KL,J,6) can really be

represented as Q(K,L,J,6) with K varying from 1 to ND, L from 1 to

LMAX and with J varying from 1 to 30. Since both J&K are totally

parallel and all access to Q&S are in the same sense of K,L,J the

"semi smart" compiler can pick which way to do it. In this case

because ND is unknown at run time it would pick Case II.

3-60

The memory layout is shown in Figure 3-24. The accessing pattern

is described in Appendix A as being of Type 3. This means that

the SAM will access 512 elements of the Q array at one time for

J=l, then 512 for J=2 etc., until J=30. This would mean all K's

would be accessed from 1 to ND up to an L value L(last) such that

512 values are accessed.

For example if ND=I0 then 52L values would be accessed each for K

values 1 to 10 except for L=52 which would only access K=l & K=2.

On the next complete cycle those remaining K and L values would be

accessed up to a maximum of 720. Figure 3-25 shows thus.

As can be seen this could be inefficient if ND*LMAX < 512 and

these parameters were set at run time. A more efficient procedure

could be worked out which would have the same flexibility, either

by recompiling with compile time parameters or else with more

efficient coding to permit compaction of the Q array (see Appendix

C).

The next loop DO 30 has the K index as the serial index for the

recurrence relation. Its structure is

DO 30 J-2,JM

DO 30 L=2,LM

DO 28 Kl,KMAX

KL-(L-l) AND +K

RR = 1.0/Q(KL,J,6) GLi IS
(plus many other statements including a firo5.

recurrence relation on K)

28 CONTINUE

30 CONTINUE

3-61

L=I L=2 L=3 L=LMAX

K=1--> ND K=1- K= ND* -ND
KND - K=I J=l

ND+l 720

L=1 L=2 L=3 L-LMAX

C I C=11-eND IK=1 ->ND K=1 -HJD K=1 - ND J1-2

721 1440

L=1 L=2 L=3 L=LMAX

K-i -CND K=i -JND K-i -- ND K1 -- ND -3

1441 2160

L=1 L=2 L=3 L=LMAX

I K=l -N4 K=I -- ND K=1 -ND IK= - N

504721
 505440

Figure 3-24. Memory Layo~it. for Q Array

3-62

*CYCLE I
L-1 L=2 L=3 L=4 L=52

K=I ' 2J=l

O(K,L,2,6) K=1--ND [K=I-ND 3 0 0 0 (-" 1 J-2

* 0 0 0 0

O(K.L,30.6) K=1 -ND fIIF=EiF I~ K=1 7 J*l.=30
N

CYCLE2 L=52 L=53 L=54 L=72

*(,,16 0 0 0 l

O(,,,) = D 0 0 0J=

O(K,L,3%b,) K=3 -- ND. [~3P j~~J 0 0 0 K7-N J3

0 9 10 18 19 27 207 511

PROCESSOR NUMBER

Figure 3-25. Processor Index Values as a Function of Cycle
DO' 20 Loop Subroutine STEP (ND=10)

3-63

OF pOOR QUALMORIG1NML PAGE IS

CYCLE 1 J11J=3 J-L4
JL1 J=2

L=•-*48 [L 8 [I~l-I L[Li--4]i8 L=1 -32 K=1

L=1--8 [--8] [L--- [j---8 " " [L-1,-32 K-2

L=1 -48L=1--- [3---] [1--48 @ K=ND

J=22CYCLE 2 J=11 J=12 J=13 J=14

L=33 -4L= -16K1

[iI] [j3~L=33 -48 EI18 = *6K=ND

CYCLE 3 J=22 J=23 1=24 1=30

7L=17-*74 ~ ~ j K=1

K=2L "
L=17 -48 L 4

48
08
L=I--->48 [LI--->4 [j= --- 0•E iL=--- K=ND

I I I I I 415 5
51

PROCESSOR NUMBER

o 47 48 96 97 145

Figure 3-26. Processor Index Values as a Function of Cycle
D030 Loop Subroutine STEP (ND=15)

3-64

Figure 3-27 shows how the indices will appear in the various

processors. This case requires subiterations of the cycles as on

page A-10. The number of cycles is equal to (ND*30+512-I)/512

which for an ND of 10 means only one cycle. ISKIP=720.

3.2.5 Functions and Macros)

Functions on the FMP will include not only the mathematical

intrinsics, such as ARCTAN, LN, EXT, and SQRT which are expected

of any compiler, but also a family of functions that are brought

about because of the parallel nature of the FMP.

Math Intrinsics

Math intrinsics (ARTAN, LN, EXP, SQRT) are well understood. Some

will be in-line code, some are subroutine calls. All execute

locally to the processor. Since there is nothing new or different

for the FMP, we need not digress to discuss them at this point.

Global Intrinsics

A form of intrinsic function seen in a parallel language, for

which there is no analog in a serial machine, is that function

which operates across the declared parallelsim. A global sum is

the sum of all the elements specified by all the instances of the

index set of the DOALL. A global maximum is the largest element

across the entire DOALL.

To reduce compiler complexity, and to eliminate user programmers'

doubts as to whether parallel operation has been achieved as a

result of compiler analysis, global intrinsics will be supplied.

3-6.

CYCLE=1

K-1
J=1 301 K=21

iJ l ...30] K=3

J=1--

]

30 I3

SUBITERATION

3 L-2

I =

K=1

J=1 ---30 ! K=2

J=1 - 301 K=3

K=ND

[J=l" 30 'ND
11

2

0 K=ND

.3 L-2

K=1

J=1 -.- 30 K=2

J=1 - 30 K=3

J=1- 30

8

1

-2

3 L=LMAX

* K-ND

0 29 59
I

89

PROCESSOR NUMBER

I
299 511

Figure 3-27. Processor Index Values as a Function of Cycle
DO 40 Loop Subroutine STEP (ND=10)

3-66

I

To replace the following serial FORTRAN

A = 0.0

DO 1 J = 1,1000

A = A + B(J)

CONTINUE

the language will allow: ORIGINAL PAGE IS

OF POOR QUALITh
DOALL, J=1,100

A = GLOBALSUM(B(J))

ENDDO

The global operations will presumably include all of the fol­

lowing. Assume that we are inside a DOALL loop expressed as

DOALL, J=JSTART,JEND.

Function Definition

JEND

GOLBALSUM(A(J)) : A(J)

J=JSTART

JEND

GLOBALPRODUCT(A(J)) IT A(J)

J=JSTART

GLOBALMAX(A(J)) Largest of A(JSTART,

A(JSTART+1), ... A(JEND)

GLOBALMIN(A(J)) Smallest of all A(J)

JSTART -J JEND

Global functions are logarithmic in efficiency, that is, it takes

nine steps to produce the 512-way sum across the 512 processors in

one cycle. When the result (such as "A"), is a LOCAL variable, it

is produced across the entire extent of the DOALL.

3-61

An extension of the global operation is the formation of a

parallel linear recurrence in nine (= 1og2512) steps as demon­

strated by Shyh-Ching Chen in his doctor's thesis at the U. of

Ill. In Fortran, consider

DO 1 J=1,1000

A(J+l) = B(J)*A(J) + C(J)

1 CONTINUE

This takes 1000 steps, each with one multiply, and one add. A

parallel algorithm exists that produces the same result in 10

steps. The parallel algorithm can easily be implemented on the

FMP.

-With the inclusion of the parallel linear recurrence as a function

in the language, the programmer has two ways of writing his linear

recurrences. For example, given the serial FORTRAN

DO 1 J=l,1000

DO 1 K=1,1000

A(J,K+I) = A(J,K) * B(J,K) + C(J,K)

1 CONTINUE

there are two ways to write it in FMP FORTRAN given that the order

of nesting the loops is irrelevant otherwise. Namely:

ORIGINAL PAGE IS

OF POOR QUALITYI

3-68

Method I:

DOALL, J=1,1000

DO 1 K=l,1000

A(J,K+l) = A(J,K) *B(J,K) + C(J,K)

1 CONTINUE

ENDDO

Method II:

DOALL, K=1,1000

DO 1, J=1,1000

A(J,K+I) = RECURRENCE(A(J,K) * B(J,K) + C(J,K))

1 CONTINUE

ENDDO

Method I, which executes the recurrence setially in an inner loop,

runs about nine times as fast as method II, which executes each

one of the recurrences in parallel across each value of J in turn.

That is, method I is 512 times as fast as a serial machine, while

method II is 57 times faster than a single serial processor. The

RECURRENCE function is included only for those cases where method

I is not an available option.

3-a9

CHAPTER 4

SIMULATION

4.1 SIMULATION GOALS

The simulation effort during this extension of the feasibility study has two

distinct goals. The first is the requirement of the statement-of-work for

this extension that a simulation of the FMP be prepared, and at least one

simulation run. The second, is to get a head start on those simulations needed

for phase I, and described in Chapter 6 as the mechanism for settling various

trade-offs. The statement of work also calls for the selection of "metrics"

that is, selected portions of the benchmark programs to be.used as inputs to

the simulations to measure the performance of the projected FMP.

Detailed instruction by instruction timing of code execution in CU and EU is

necessary to ensure that the required throughput can be achieved. The design

of major system components must be specified in sufficient detail to provide

structure, logic, and timing parameters for system simulation. This infor­

mation is in Chapter 2.

Compilerfunctioning, including FORTRAN extensions for the FMP, are also

needed and are found in Chapter 3. Hand compilation methods must be specified.

In the case of the current extension, a single metric, subroutine TURBDA, has

been selected and hand compiled for this purpose. Further definition of hand

compilation is needed for phase I. In particular, how much compiler sophistication

4-1

will be achieved in the first version affects hand compilation, and this is still

a subject for discussion. At this time it is best to make conservative assump­

tions, again in order to reduce the element of risk in the simulated system

performance predictions.

The design details and design choices outlined above have been made definite

thoUgh at this time for the first of the detailed simulations which are required

to establish confidence in the feasibility and throughput capability of the SAM

architecture. Any or all of the details may be changed as a result of further

study or the availability of more advanced components. Of course, all such

changes would be supported by simulation studies to maintain or increase

confidence in the correctness of the system design.

4. 2 SELECTION OF METRICS

It is Burroughs understanding that the final selection of metrics will be the

Government's. Metric selection is a function of the architecture that is to

be measured. For example, in a conventional serial uni-processor, the

distinction between "serial" and "parallel" streams of code is irrelevant,

and should have no bearing. With parallel processors such as the two designs

being proposed for the FMP (NAS2-9456 and NAS2-9457 final reports) the

arrangement of data in memory affects the efficiency of parallelism, and metrics

should be selected such that all "directions" of access of that data are represented.

What is important is that the metrics selected be "representative", both with

4-2

respect to the operations being performed by the target architecture, and the

codes that will be run on the FMP. Some "representative" of every kind of code

that the FMP will run is wanted, but the results should be weighted according

to the expected frequency of each "kind. " "Kind" refers to the sort of inter­

action with the architecture that is represented, whether parallelism is two

dimensional or one-dimensional, the direction of accessing, presence or absence

of branches in inner loops, and so on; all the things that may have an affect on

the way the selected architectures behaves.

The metric that has been selected as the one that shall be used in the single

simulation that will be run during the extension of the contract is SUBROUTINE

TURBDA. Like most of both the implicit and explicit codes, it exhibits a

great deal of parallelism, but with some operations conditional on subscript,

so that different things are being done at different subscripts. It thus tests

the architecture's ability to do different things at different grid points. It

includes fetches from, and stores to, the program's data base (in extended

memory), exercising the data transfer paths from the program data base to

the processing resource proper. It contains sufficient arithmetic manipulation

to exercise that aspect of the FMP (although probably less than a "typical"

subroutine). It contains significant. amounts of index computation both on

loop controls and on subscripts. For the FMP design of Reference 1, it exer­

cises the synchroni ation, which is an essential feature of that design.

AL ?UGMG

4-3

4. 3 SIMULATION MODELS

The NASF system simulation modeling will be done at three levels of detail,

with results from a detailed model being used to determine parameter values

for the next higher level model.

The most detailed level of modeling is the instruction timing model for CU

and processors. For example, the model for the processor has as resources

the PDM, PPM, instruction registers and decoding, multipliers, adders, data

and index registers, etc., corresponding to the detailed processor design. A

metric for this model is a sample code sequence generated by hand compilation

of a FORTRAN section typical of the Navier-Stokes codes. Each instruction

is modeled by a sequence of tasks, each requiring one or more of the resources,

and executing for the specified number of clocks. Instruction fetch and decode

is such a task sequence and the extent of overlap with instruction execution is

modeled. Similarly, the extent to which instructions can overlap is modeled

by the use of queueing for resources, or by logic tests, in exact correspondence

with the processor design. The output reports from running this model can be

used to determine parameters for the next level model. An important perfor­

mance factor to be determined is the extent to which the address calculations

for EM accesses can be interlaced with, and overlapped. by the floating point

calculations. The next level of simulation will be the flow model processor,

including the CU, processor, EM, and DBM. The interactions to be measured

are the CU and processor code execution times (previously determined), and

4-4

data transfers between EM and DBM. The metric will be a sequence of code

executions and data transfers approximating the main body of computation in

a Navier-Stokes code. The results will show the throughput performance of the

FMP, together with the utilizations of EM and CU, which interface with DBM

and the rest of the system.

When we wrote the simulation model, we found that the instruction level .model

needed to include the interaction between CU and EU, combining the first and

second levels. The lowest level simulation model therefore is detailed to the

instruction level, but includes CU, a number of processors, and access and

data transmission timing of the Extended Memory and Transposition Network.

Simulation of a number of selected code sections on this model will provide

the paranieters required to model the execution of complete jobs and sequences

of jobs through the Facility.

The overall system model will include the host, File Memory, Data Base

Memory and their interfaces with each other and CU and EIV. The metrics

will be presumed scenarios of. user requests for NSS jobs. The sequence of

scheduling, initialization, NSS operation, and output will be modeled. Impor­

tant functions to be modeled are data base and program transfers from File.

Memory to DBM to EM, CUM, and PDM, allocation of DBM space, the

sequence of FlIP operations, including data and program input, computation,'

snapshot and data outputs, and changeover to the next job. Only the FMP

4-5

scheduling and control load on the host will be modeled; the amount of host

capacity available for other necessary work can be measured, or the host can

be loaded to any desired level by undefined "background" jobs and the effect

on NASF throughput measured.

The overall simulation effort will have two functions: first to support the validity

of the SAM architecture by modeling all essential system functions and inter­

faces in sufficient detail and demonstrating proper function of the model, and

second to show.the throughput capability of the system for aerodynamic simulation

jobs by tracing the throughput step-by-step from the instruction level to the

user interface.

Simulations will be written in Burroughs Operational System Simulator (BOSS)

a discrete-events simulator whose input language is the flow-graph of the pro­

cess being simulated. The instruction level simulation of Section 4. 5 is written

in BOSS, the second and third level simulations of Phase II will be written in

BOSS. In Phase II, the instruction-level simulator may be rewritteh in ALGOL,

since substantial improvement in similation execution time is expected.

4.4 BOSS SIMULATOR

The BOSS simulator was used for the simulations because of the relative ease

of modeling with BOSS' and the -short,time available. Special timing simulator

programs for EU and CU code execution probably could have been completed in

three months. Simulations at different levels of detail will be used to 'get perfor­

mance predictions ranging from the EU instruction execution to the user interface

level.

4-6

A discrete events simulator, such as BOSS, models the activity of a system

as a definite sequence of states. The model changes state only at discrete points,

called events, which occur at definite instants of time. Every event can be

predicted at the occurrence of some prior event, and the new state of the

system model resulting from each event can be completely determined from

that event and the prior state. In practice the event prediction and state change

calculations are often probabalistic, because the real system is too complex

to be modeled in full detail. The state variables of the model are mostly binary

logic variables such as busy/hot busy or happened/not happened, and processing

of an event involves the accessing of state tables and evaluation of binary

decision functions. Arithmetic operations rarely occur except in the evaluation

of continuous probability functions where they are used in the binary decisions

or in predicting the times of future events.

The BOSS simulator program runs on a B 6700 or B 7700 Burroughs computer.

It is a general purpose discrete events simulator, witl emphasis on ease of

modeling and efficiency in execution, in exchange for some restrictions on the

size and generality of models. BOSS has been used by the Federal and

Special Systems Group at Paoli mainly for simulating the hardware and software

functions of data processing systems, and improvements and enhancements over

several years have made it especially useful for this purpose.

*OF POO)R QiTYhJC
ORIGINL -"" IS

4-7

In a BOSS simulation the element of model activity is a TASK, A task is

characterized by its requirement for resources and by the algorithm -specified

for predicting its execution time. A task is initiated upon completion of its

predecessor requirement, which is usually a logical combination (AND or OR)

of one or more prior task endings., The task may wait iri queue until the required

resources are available; the selected resource units are then made busy for

the execution time. At the task ending ,event, resources are released, queues

are served, and the predecessor requirements ofany successor tasks are

tipdated. Several kinds of test-and-branch constructs are available to cause

conditional selection of one out of two or more successor tasks.

The direct interaction of tasks is restricted to structures of tasks grouped

together and called PROCESSES. When a process is initiated, one or more

"Starting tasks" within it are initiated without predecessors, and the activity

within it passes from tasks to task until such time as there is no further task

activity, when that active version of'the process ends. Except for competition

for resources,, and certain special constructs, there is no,interaction betwe~n

the active tasks in separate active processes.

The static structure of a BOSS model is described by the structures of the tasks

and their interactions within processes and by the numbers and kinds of

resources available. The'dynamic state of activity is described by the states,

of,activity of processes and tasks. Every task is a member of some process,

and there is no activity in the system model until some process is initiated.

ORIGINAL PAGE 13
4-

QU A L
 OF POo

4-8.

Initiation of processes at specified times corresponds to external loads causing

activity in the system. Processes can also be initiated as subroutines, or by

task endings in other processes. Many processes can be active concurrently,

including multiple but distinct and independent versions of the same process.

Similarly, within a process, many tasks may be active in parallel, including'

multiple independent versions of the same task. Thus, it is easy to model a'

highly parallel system with many concurrent activities, including cases where

many of the parallel activities are very similar in structure.

The basic BOSS structure described above is sometimes in'adequate or

inconvenient for modeling some parts of the system. Therefore, there is

available a superposed structure of local and global variables upon which

arithmetic operations can be performed at task endings. 'These variables can

be addressed directly or indirectly, ahd their values can be used to control

branching at task endings or to modify the resource reqidrement or executiori

time of specified tasks. This extension permits a certain amount of programming

of capabilities not available in the basic BOSS structure. In this way, for

example, the activity in one process can be influenced by actions occurring

in another process.

Figure 4-1 shows graphically the process of implementing and debugging

simulations in BOSS, showing the various steps that the simulation programmer

and the BOSS simulator go through in achieving the final result.

4-9

SUBSYSTEM SYSTEM FLOW

ANALYSIS INTERFACES MODEL

S~i-ETED ORTRJ J BOSS MODEL

SELE FQRTRA, I
CODE SAMPLES F CODE

HAND COMPILED t
CODES

TEST CODES -," STRUCTURE PARAMETER

(METRICS) BOSSINPU'

DEBUG AND BOSS PROGRAM
VALIDATE (B 6700 OR B 7700)

SELECT, EDIT BOSS OUTPUTS

AND LABEL

ORIGjALOrPO0PAGE IS
OF POOR QALITY REPORT TABLES

AND FIGURES
ANALYSIS
OF RESULTS

j

SIMULATION REPORT
REPRT REPORT

Figure 4-1. Flow of Simulation

4-10

4. 5 SIMULATION MODEL FOR THE CURRENT STUDY

The overall structure of the model is shown in Figure 4-2. The Control Unit

and Processor models are driven by code files prepared by hand compilation

of a selected FORTRAN code segment. All the operators of CU and EU are

modeled in detail so that any code may be simulated. Additional operators

may be easily added if needed. Conditional branching cannot be modeled in

complete detail since the model is a timing model, and does not simulate

- the processing of data. Such branches are therefore modeled by specifying

the number of times one path is taken for each time the other is taken. The

count can be specified probalistically. For most branches this will do well

enough; The cases where branching depends on the Processor Number, will

be handled by a later extension.

The Control Unit model includes its processor, a single memory (CUM), and

seven of the control functions interacting, with the processor EU's, as shown.

Any desired number of processors -can be modeled, but the number actually

used will be small (4 to 10) to avoid excessive machine time to run the simulations.

Details of instruction overlap in the CU are not modeled; instruction execution

times are not allowed to overlap, but CUM data fetches or stores can overlap

this execution time of prior or following instructions. A data fetch of one

instruction must come after a data store (if any) of the preceding instruction.,

In case of contention for CUM by program fetches, the data accesses have

priority, but do not abort program fetches already in progress. The program

look-ahead stack has a capacity of four code segments,, which is two memory

words for opcode formats using 24-bit segments.

4-11

EM

TN

/ \
/\

/\

EUCODE

Cu/ / FILE

CODE
/FILE /

N PROCESSORS

READY

EU
EU

WAIT GO_,
CU
 -- I
DSABLE----

{r
ULGH + EN)
PDMPDM

PPM
- PPM

Structure of Model
Figure 4-2.

OF POOR I

4-12

Each Processor consists of an Execution Unit (EU) and separate program and

data memories (PPM and PDM). The EU is 'modeled in some detail in order

to-properly simulate instruction overlap, as shown in Figure 4-3. The

operation is as follows:

4. 5. 1 Program Fetch. The Program Counter (PCR) addresses the next

instruction, which is available at PPM three clocks after the address is available;

As soon as a full word of program stack is empty, the next code word is read

to the stack from PPM, and PCR is incremented. When a branch occurs, the

program stack is emptied and the new code word is available threeclocks after

the new PCR is set.

4. 5. 2 Scoreboard. Each instruction records in the scoreboard the times at

which it will release each resource that it will use. The next instruction must

wait in stack until -all resources that is will need, will be available when needed.

The Scoreboard arid Decoding are modeled logically, but not as resources for

which-there could be queueing.

4.5. 3 Holding Registers. Ifany resource is required at a time later than

instruction start,, that instruction must wait in the corresponding Holding

Register. If that Holding Register, is tied up by the previous instruction, then

the current instruction must wait, even though it could otherwise start,

4-13

,PCR PM

CODE STACK'

(NOMINALLY 3 HALF-WORDS)

N - -
SCOREBOARD

UPDATED TIMES WHEN
PROCESSOR RESOURCES
WILL BE RELEASED

IPH

FPH

PDMH

HOLDING REGISTERS FOR IP, FP,
AND DM USE. IFTHE USE OFA
RESOURCE IS DELAYED AFTER
EXECUTION STARTS, THAT HOLDING
REGISTER IS REQUIRED.

IP INTEGER PROCESSOR

FP FLOATING POINT PROCESSOR

DM PROCESSOR:DATA MEMORY

SYNCHRONIZING NE

CONTROLS OFU301

Figure 4-3. Execution Unit Model

4-14

4. 5.4 Integer Processing, Floating Point Processing, PDM (]P, FP, DiV). These

are modeled as resources, although the Scoreboard should assure that there

will be no queueing for them. The utilization of these resources will give in­

formation about the efficiency of overlap and the fraction of elapsed time that

the FP is in use.

4. 5. 5 Synchronizing Controls. The timing of synchronizing controls is assumed

to take 3 clocks for a round trip from CU to EU and back to CU. This is modeled

as no delay from CU to EU since the control signal arrives at the same time as

the corresponding clock pulse from the central clock. The 3 clocks delay is then

all in the return path from EU to CU. The actions of the Synchronizing Controls

are as follows:

4. 5. 5. 1 READY. The CU raises the ready at the proper time in synchronized

instructions where the EU's must wait for CU action before proceeding (LOADEM,

STOREM). Any EU which reaches such an instruction before CU waits for the

READY level. CU will wait for (IGH and EN) and then turn off the READY level.

4. 5. 5. 2 (IGH + EN). This is level equivalent to a logic function generated as

follows: When an enabled (EN) EU comes to the proper point in a synchronized

instruction it raises the output line corresponding to I Got Here (IGH). This

same level is raised all the time an EU is disabled (EN), hence (IGH + EN).

IGH is turned off by GO from CU. The (IGH + EN) lines for all EU's are ANDed

at the CU to procude its (IGH + EN) input. In the model this logic function is

performed by maintaining separate counts of the number of EU's enabled

(#EN) and in the I Got Here state (#IGH). (IGH + EN-) is true when #EN = #IGH.

4-15

4. 5. 5. 3 EN. EN is ture when #EN=O (no EU's are enabled).

4. 5. 5. 4 GO. When (IGH + ENI becomes true at the CU, it raises the GO

level for one clock. All enabled CU's, on receipt of this signal, turn off the

IGH level and continue the instruction in which they were waiting.

4. 5. 5. 5 Wait GO. When CU sends this signal (one clock), a! enabled EU's

enter the IGH state (waiting for GO) in place of the next instruction start. The

current instruction is or will be finished.

4. 5.'5. 6 Disable. When CU sends this signal (one clock), all enabled EU's

enter the disabled (EN) state -inplace of the next instruction start. The eurrent

iristruction is or will be finished6

4. 5. 6 Extended Memory and Transposition Network, The EM and TN are not

modeled as resources that may be busy; thus it is assumed that during execufion

of CU-EU code, the EM is never in use for DBM transfers. The EM access

time and data transmission time through TN are properly modeled in the

execution time of the LOADEM and STOREM instructions.

4. 5. 7 Code Simulated. The hand-compiled TURBDA assembly codes are

given in Table 4-1 and 4-2, together with an assembly coded SQRT, which

is a simplified version omitting the tests and'Stanches for negative argument

and for negative exponent.

4.,5. 7. 1 Processor Code. The large amount of integer computation at the

beginning of each pass through the TURBDA loop would give a low utilization

of the Floating Point unit, were not for the large block of FP calculation in

4-16

Table 4-1. TURBDA Processor Code Simulated by Model

(ICALL not simulated)
FL
iFbiVM

1GT (No Branch)
IEQL (No Branch)
IEQL, L20

LI

I4

JUMP L3
(Jump to L3)
SlOP

IL
IL

(Jump to L20)
FFETCH SQRT IUPK3

LS ITIX, L4 (Drop through 2 times, FABS IADDL
then exit to L4) FMUL Never IADL

ISHL FSTORE Executed ISHL
IPNO IJUMP, L40 ISUB
IADD L20 FFETCH IADDI
IDIVL FFETCH IANDL
ISTORE FADD ISU1B
IMULL FABS ISHL
IFETCH FMULL IADh
IL FrMUL IADDL

L14 ITIX. LI (Drop through 20 times, FSTORE IPAK3
then exit to LI) JUMP, L40 FADD

IADDL (Jump to L4O) FNEG
ID521 L30 FFETCH FL
LOADEM FFETCH FMUL
IADDL FADD Never FMAD

-o ' 1fl521'
IL

FANBS
FMULL Executed

FMUL
FMUL

IFETCH FMUL EMAD
IEQL (No Branch) FSTORE FMUL
IL L40 IrL FMUfl

LIOO LOADEM FFETCH FMAD
IADDL FMUL FMUiL
ID521
IL

ENTER SQRT
F MUL "FMAD

F'MUL

IFETCH FL FMUL
IEQL (No Branch)IL ,FDIV FADD FNGDFMUL

L200 LOADEM IADDM IIETURN
IFETCH ID521
IGT (No Branch) STOREM
IFETCH JUMP L14
IFETCH (Jump L14)

the SQRT routine which is called once per loop. ICALL and IRETURN are

both estimated at 23 clocks, which may be pessimistic and considerably

reduces the FP utilization of SQRT. In an inner loop such as this, SWRT

should probably be written in-line, since it will occupy no more than 20-30

'words, and about 50 clocks are saved.

Note that the outer loop, starting at L3, is executed twice, and each time

the inner loop, starting at L14, is executed 20 times. This is a sufficiently

large sample of code execution to give valid statistics. Within the inner

loop, in the actual code, each EU will executeone of three branches, de­

pending on the index states. n-the simulation, only the branch starting at L20

(the longest of the thjee) is executed. The other two are hever executed, as

indicated.

In the actual code, two of the LOADEM's are conditional (LOADEMC). However,

only the EM address and 'EM data input are conditional, the timing being the

same, so the simulator makes no distinction.

4. 5. 7. 2 Control Unit Code., The Control Unit code of Table 4-2 begins with

LOOP, because the model starts with all EU's waiting for GO. When, (IG + EN)

is true, LOOP causes both CU and EU's to branch to specified addresses by the

LOOP instruction, and this is a convenient way to get the simulator to jump

to ,the desired addresses in the simulated code files.

4-18

L3

L14

Li

L4

Table 4-2.. TURBDA Control Unit Code Simulated

LOOP
CL
CL
CTIX, L4 (Drop through 2 times, then Branch L4)
CSHFN
CMULL
CFETCH

CL
CTIX, Li (Drop through 20 times, then Branch LI)
CADDL
CADD
CMD521
CL
LOADET
CADDL
CADD

CMD521
LOADEM
CADDL
CADD

CMD521
LOADEM
CADDL

CADD

CMD521
STOREM
CJUMP, L14 (Jump to L14)
CJUMP; L3 (Jump to L)
CRETURN
END SIMULATION

4-19

The only synchronization instructions in this code sample (aside from LOOP)

are the.three LOADEM's and the STOREIVL

The CU and its synchrnoizing action are simulated in some detail to determine

two things:

(1) 	 How much do processors wait at sync points for other processors

to catch up?

(2) 	 Do processors ever wait at sync points for CU to catch up, and .

if so, how much?

4. 6 SIMULATION RESULTS

The simulation runs were made with a model having the Control Unit and

four processors. The code driving the model was the TURBDA code shown

in Tables 4-1 and 4-2, except that the outer loop was reduced to one iteration

and the inner loop to 10, in order to reduce machine time for these first trial

runs. Under these conditions the simulation indicates that the abbreviated

TURBDA runs 4600 clocks on 184 microseconds assuming a-25-megahertz clock.

The full size TURBDA-with two iterations in the outer loop and 31 in the inner

loop would run about six times as long, or 1100 microseconds (27, 600 clocks).

The parallelism is 31x3l = 961, compared with 1024 possible in two iterations;

so, the efficiency of array use is 93. 8 percent in this case;

In the simulated, TURBDA run, each processor performs 281 floating point

operations lasting a total of 2407 clocks, for an average of 8. 6 clocks per FLOP.

The elapsed time of 4600 clocks yields an effective throughput of 1. 53 iVIFLOPS

OPGI l4b-

OF 4-20

per 	processor. The array throughput would, then be 782 MFLOPS, or 733 at

93. 8 percent array efficiency for the 3lxSlx3l problem. As expected for

TURBDA, these rates are considerably lower than 1000 MFLOPS. This

reduced throughput has three causes:

(1), There are 40 EM accesses with the 281 floating point ops, or a

ratio of only 7 to 1. The, EM accesses themselves do not cause

appreciable delay, but the integer operations required to calculate

the EM addresses do causedelay.

(2) 	 The floating point operations of TURBDA contain more than the

normal proportion of multiplies and divides, raising the average

duration fromh the nominal 7. 3 clocks to 8. 6 clocks per floating

point operation.

(3) 	 The function SQRT was simulated as a subroutine, with entry

and return opei-ators.. It is likely that the -compiler will put

simple functions like SQRT in-line. If so, the total time would

be only nine tenths that shown, for an 11 percent increase in

measired throughput.

Some other conclusions of interest are:

(1) Control Unit processing causes essentially no delay (less than

0. 5 	percent of the total time)

(2) 	 Extended memory accesses occupy 11. 5 percent of the time,

including all synchronizing delays.

4-21

(3) Program fetches cause little or no delay. The model does not

measure such delays exactly, and should be modified to do so.

Program memory is-in use 42 percent.

(4) 	 The utilization of the integer unit is 47 percent, data memory

10 percent and floating point unit 58 percent, for a total of

115 percent, indicating the approximate degree of overlap.

(5) 	 The inner loop takes 450 clocks, of which 197 are in the SQRT

routine. Two thirds of the floating point operations are in the

SQRT routine.

Figure 4-4 is an example of one of the output tables of one of the simulation

runs. The unit types represent various system resources as indicated by

the row headings typed in on the left. In some cases the resource is used for

internal control purposes in the model and does not represent a real system

component, so is unlabelled. Some of the resources represent logic levels

and signals such as READY, GO, IGH+EN, EN=0. A processor or CU waiting

for such a level or signal is modeled as queueing for the resource, which is

created to represent the presence of the level or signal.

4-22

UNIT UI1LIZATION STATISTICS

UNIT
TYPE

UNIT
ID

?UMB

TOTAL
TIMES

USED

..... PERCENT OF ACTIVE TIME......

... IN-USE... DEPENDENT.. FREE
DELTA TOTAL DELTA TOTAL TOT'AL

CUM
CUPROC
CPSTAK

24
25
20
20

3
4
5
6

173
233
171
173

11.27
9f.89
11.86
11.40

11.27
98.89
11.86
11.40

0,00
0.00
0.00
0.00

C.00
0.00
0.00

.00

88.73
1.11

88.14
88. 14

20
19
23

7
8
9

171
170

1

11.92
11.62

C.07

11.92
11.62
0.07

0.00
0.00
'0.00

0-00
0.00
0-00

88.08
88.38
99.93

READY
60

(tGH+EN)

28
15
17
21

10
11
12
13

186
24t
246
82

C.91
C.87
C.00
C,; 00

0.91
0.87
0.00
0.00

0.00
0.00
0.00
-0;00

0.00
0.00
0.00
o.-o0-

99.0-9
99.13

100.00
I-0.co-­

#EN=O
IU

FPU
PDM

26
3
4
5

14
15
16
17

1
506
364
154

C-00
47.01
57.74
5.97

0.00
47.01
57.74
9.97

0.00
0.00
0.00
0.00

0.00 100.co
0.00 52.99
C.00 4'2.26
C.00 90.C3

©m PPM 7HOLD) 8
REGIS-S 9

TERS.lQ 10
QUEUED' 13

18
19
20
2!
22

13481
53
52

558

42.37(.00
9.60

10.18
77.55

42.37
0.00
9.60
10.18
77.55

0.00
0.00
0.00
0.00
0.00 -

C.00
0.00
C.00
0.00

57.E3
100.CO
90.40
89.828002.45­

c: PPSTAK 12 2"3
S12 24

12 25

862
862
860

35.50
3 .53
4C.69

35.50
35.53
40.69

0.00
0.00
0.00

C.00
0.00
0.00

64.50
64.47
59o-l

Figure 4-4. Sample of Simulation Output

CHAPTER FIVE

RELIABILITY

5.1 INTRODUCTION

This chapter presents two major aspects of the NASF reliability

and trustworthiness; (1) an availability prediction of the FMP and

(2) further development of the error detection and correction

techniques to the various FMP elements. These topics are covered

in sections 2 and 3 of this chapter, respectively.

The system availability design goal for the B7800 host system and

the Flow Model Processor (FMP) is 90 percent or better. Also, it

is desired that the probability of success for completing runs of

ten minutes and one hour be 'equal to or greater than 98 percent

and 90 percent, respectively, The following is the conventional

formula for computing availability

A= MUT

MUT + MDT

where,

A Availability

MUT Mean Up Time

MDT = Mean Down Time.

Up time is the duration during which the system is continuously

up. Down time is the interval between up timep. It can be seen

that a system MUT = 9 hours or longer combined with a system MDT =

1 hour or less satisfies the availability goal. These values also

satisfy the desired reliability, or probability of success, as

evidenced by the following formula

6-1

R(t) = e- t/SMUT

where,

R(t) = The probability of successfully completing a run as

a function of t

t = Duration of the run (hours)

SMUT = System Mean Up Time (hours)

5.2 AVAILABILITY PREDICTION

The following methods were employed in preparing the FMP avail­

ability pnedictions d-iscussed below.

- Standard component part failure rates were predicted using

the reliability stress analysis prediction method of MIL-HDBK­

217B.

- Potential improvements in reliability through the use of

Single Bit Error Detection and Correction and Double Bit

Error Detection (SECDED) in the FMP memories, fanout tree,

and transposition network were analyzed using a mathematical

model developed specifically for the proposed design-of these

elements.

- System Reliability, Availability, and Maintainability (RAM)

characteristics were analyzed using Program DESIGN, which was

developed by the Burroughs Corporation to aid in designing

fault-tolerant-computer systems.

MIL-HDBK-217B is used extensively throughout the electronics

industry to predict the failure rates of electronic component

parts. Since the prediction methods of MIL-HDBK-217B are quite

detailed and documentation describing these methods is readily

available, only the general aspects of component part failure rate

predictions are discussed in this report.

5-2

Append-ix B contains a description of the SECDED mathematical

model, including the underlying assumptions associated with the

development of this technique. 'A similar-description of the

mathematical model employed in Program DESIGN is in preparation.

5.2.1 OVERVIEW

The proposed Flow Model Processor (FMP) design will be implemented

using state-of-the-art technology of today and currently proposed

state-of-the-art technology for the time frame during which

manufacturing of the FMP will be initiated. Obviously, accurate

reliability projections for some of the LSI component parts re­

quired to implement the proposed machine are difficult at this

point in time. Likewise, projections -with respect to gains in

-reliability through the use of techniques such as Single Bit Error

Detection and Correction and-Double Bit Er-ror Detection (SECDED)

can only be hypothesized based on assumed failure modes until the

design is completed, built, and tested.

Recognizing that the above and additional considerations must be

seriously addressed to ensure meeting the specified system

availability requirements of 90 percent, an analysis has been

conducted to bound the potential availability of the current FMP

design. Both optimistic and conservative points of view have-been­

considered for those conditions which can not be accurately

projected at this point in time. In addition, sensi'tivity

analyses .have been conducted within the upper and lower projected

availability bounds to determine where design attention must be

concentrated in order to achieve the stated availability require­

ment and reap the greatest reliability and availability gains for

the effort expended.

5-3

The results of this preliminary availability analysis serves two

purposes. First, the analysis shows specific failure, recovery,

and repair time reliability and maintainability estimates at the

subsystem, module, And component part levels that are consistent

with overall system availability of 90 percent and MTBF of 9 hours

or better. Second, the analysis numerically bounds achievable

Mean-Up-Time (MUT), Mean-Down-Time (MDT) and Availability

estimates within the broad range of reasonably optimistic and

pessimistic assumptions.

The following paragraph summarizes the results of this preliminary

availability and the rationale for the assumptions made. As the

FMP design progresses, the availability analysis will be iterated

to further refine specific reliability and maintainability

estimates to narrow the.bounds of uncertainty associated with

these preliminary projections.

5.2.2 Summary of Results

The first step in this analysis was to develop an overall

Availability block diagram of the FMP (Figure 5-1). The estimated

parts counts for all major elements, considering the types of

component parts currently envisioned, were then prepared. For

standard component parts, failure rates were predicted using the

reliability stress analysis prediction method of MIL-HDBK-217B.

Consideration was then given to the failure rates of-large memory

packages (16K, 64K, 256K) of the future. It was hypothesized that

the best that could be expected in terms of reliability is

achieving failure rates equivalent to those achievable today for

4K memory packages (approximately 0.1 Failures Per Million Hours

(FPMH)). The worst reliability that one could expect to encounter

was judged to be equivalent to the series failure rate build up

for the number of 4K parts required to make up the larger memory

packages; i.e. for 16K: 0.4 FPMH, for 64K: 1.6 FPMH, and for

256K: 6.4 FPMH. Using these component part failure rates for

each of the major elements provided the upper and lower bounds

with respect to projected device reliability.

5-4

WONTROL UNIT foUl MEMORY (CUM) FAOTTE PT

MODULE I ODULE MODILE MODULE

PROCESSOR A PROCESSOR PROCESSOR PROCESSOR

MODULE
 EXTEND MORU MU

ONPROCESSMO
 ORYOR P ROCESSOR PROCESSORY
MODULE E O MODULEMODULE

M(TOtDU NETW RK (TN P
,L~~ . . ~.-..- -. -. -. . - . . - -. .-.

PRDOESSORATByA Ay PROCESSOR 2 PROCESSOR 3 DAY 4
ATA BAYCESSOR

MEMOR EXEDD I ETEDD ETNE I EXTNDE

L NETWORK "RNC} •
CONTROL

EXTENDED MEMORYMODOLE

-I -. -,. - . - . . . - - - - - - - - - . . . - .-.- -. - -. - ­

521DE EXTENDED OR MODULESd=

M Y
RDRSMEMORYA MEMORYAS= : EDLILE

*

=TROL~~~ COTO (EMI CNRL

The notation NI/N means that out of the N identical elements in
must be operating for the system as a whole tothe system, 1W - - - - - - - - ---- ----5 ­

be operating.

Figure 5-1. Availability Block Diagram of the F MP

I JAE5-5

Next, a mathematical model was developed to study the potential

improvements from SECDED. Using this model, it was found that

gains could vary from a lower bound factor of 2 to upper bound

factors of 164 for 16K, 327 for 64K, and 653 for 256K memory

packages.

Finally, redundancy was considered. In this case, the ability to

automatically detect, isolate, and decommit failed elements

without noticeable interruption was investigated. As an upper

bound on reliability, perfect recovery was considered. The lower

bound was established for a situation where no recovery without

interruption could be achieved. In this portion of the analysis,

both permanent type failures which require a repair action and

intermittent type failures which only require a recovery action

were factored into the computations.

Using the previously discussed upper and lower bound values, it

was determined that the design potential availability for the

currently proposed FMP is,:

* Upper Bound: AFMP = 0.9995 (see Fiqure 5-2)

* Lower Bound: AFMP = 0.9554 (see Figure 5-3)

Both these optimistic and conservative forecasts indicate a high

degree of confidence in the ability of the proposed design to meet

the overall system availability requirement of 90 percent. Using

the above upper and lower bound availabilities for the FMP, it can

be shown that the required availability of the B7800 host system

to meet the 90 percent system availability is:

* AB7800 = .9004-for the Upper Bound FMP Requirement

* AB7800 = .9420 for the Lower. Bound FMP Requirement

5-6

The above required availability values for the B7800 host system

are currently being exceded by Burroughs B7700 systems operating

in the field today. Since the B7800 system is expected to be even

more reliable and maintainable than currently available B7700

systems, the overall system availability requirement for the FMP

and the B7800 host system appears to be reasonable and achievable.

The data used to obtain these results are presented and discussed

in the following sections.

5.2.3 THE BOUNDS OF FMP AVAILABILITY

This sectio shows the bounds of the failure rates of all packages

and 	subsystems. The bounds of MUT (Mean-Up-Time), MDT

(Mean-Down-Time) and availability of the FMP are the highlights.

The failure rate of the system is significantly reduced with

judicious design and the following factors:

1. 	A ground-based benign environment, where there is nearly

zero environmental stress with optimum engiheering

operation and maintenance

2. 	Use of high quality parts, MIL-M-38510, class B level

commercial parts being strongly suggested

3. 	On-line processor spares

4. 	Error correction techniques, including SECDED.

5. 	'Adequate maintainability, as reflected in time to repair.

5.2.3.1 PACKAGE FAILURE RATES

The circuit packages are the basic elements in the FMP and accom­

panying the-reliability of the FMP is a function of the failure

rates of these packages. As mentioned in the previous section',

the 	failure rates of digital circuit packages are predicted with

the 	guidelines of MIL-HDBK-217B. Table 5-1 shows the predicted

failure rates and the operating environmental conditions of the

5-7

control or logic packages used in the FMP. For the memory

packages, the lower bound of those failure rates is 0.1 FPMH. The

assumed upper bound of the failure rate of an m-bit memory package

(m>4,000), denoted as Xm, may be computed with the following

formula; representing the failure rate of the same memory built of

4k-bit parts.

Nm = m X UPPERBOUND F.R. FOR 4K MEMORY FPMH

4K BIT

5m = m X 1 FPMH =*M X 2.5 X 10 - FMPH

4,000

Table 5.2 shows the upper bounds of the failure rates of a variety

,of memory packages.

5.2.3.2 THE FAILURE RATES AND MTBF OF SUBSYSTEMS

A subsystem contains the packages listed in Tables 5-1 and 5-2.

The failure rates of the subsystems of the FMP are predicted by

parts count method. the memory subsystems failure rates are

modified by the SECDED reilability improvement factor which is

defined as the ratio of the subsystem MTBF With SECDED to that

without SECDED. The factor is discussed in detail in appendix B.

It can vary from two to six hundred and more, depending on the

size of the memory package. Table 5-3 presents the list of the

packages, the failure rates and MTBF of the control or data

processing subsystems. Table 5-4 and 5-5 show the bounds of the

failure rate and MTBF's of the memory subsystems. The upper

(lower) bounds of the failure rates (MTBF's) are predicted with

the SECDED reliability improvement factor of two and the failure

rates of the memory packages at their upper bounds. The lower

(upper) bounds of the failure rates (MTBF's) are generated when

the SECDED improvement factors are at their upper limits and the

failure rates of the memory packages are on their lower bounds.

5-8

Table 5-1. The Predicted Failure Rates of the Control or Logic Packages

PART NUMBER

.1000 0001
100C 0002

10 0003

1000 0004

100C COO5

1000 C006

*PART DESCRIPTION

ECL CONTROL'SSI-I
ECL CONTROL-SSI-1I

ECE CONTROL-SSI-III

ECI CONTRCL-SSI-IV

ECL CONTROL-PSI

EC. CONTROL-LSI

*TYPE*G,/jB*PINS*TEHF*ENV*GLAL*GtAIT*INOIV[DUAL FR*

DIG 4 16 45 GE 8 1 0.0C622
DIG 6 16 45 GE B 1 0.0O778

DIG 15 16 45 G6 9 I 0.CI3CT

DIG 22 16 45 GE a 1 0.01633

DIG 4C 16 60 GE 8 1 0.C60E2

DIG 130 16 60 GE 8 1 0.13000

Table 5-2. The Upper Bounds of the Failure Rates of Memory Packages

cC

PART NUKDEF

2000 c00

2000 C002

2000 C003

PAFT DESCRIPTION

HOS 16K RAN

3OS 64K RAY

N05 256K HAM

*TYPE*GJT/B*PINS*TEPPIENV*QUAL*aUANT*INCIVIVUAL FF*

SAH 16000 22 60 7B B 1 0.4000C

RAM 64000 22 6o G8 1 1.600CC

RAN2"6000 22 60 6EB B 6.40000

C'
t:4

.0D

Table 5-3. The Predicted Failure Rates and MTBFs of the Control Subsystems'

LEVEL 1 DESIGNATION: PE
PART NUMBER *PART DESCRIPTION

1000 0006 ECL CONTROL-LSI

MTBF= 76924.16 12.9998

LEVEL I DESIGNATION: -U

PART NUMBER *PART DESCRIPTION

1000 0001 ECL CONTR&L-SS I-!
1000 0005 ECL CONTROL-MSI

MTEF= 13;49.15 73.'647

LEVEL I DESIGIATION: FOT
PART NUMBER *PART DESCRIPTION

1000 00 2 ECL CONTROL-51-II

MTBF= 64287.32 15.5552

LEVEL I DESIGNATION: TN
PART NUMBER *PART DESCRIPTION

1000 0004 ECL CONTROLASS I-IV

MTBF= 5843.59 171.1278

LEVEL 1 DESIGNATION: TNC

PART NUMBER *PART DESCRIPTION

1000 0001 ECL CONTRUL-SS I-

*TYPE*G/TIB*PINS*TEMP*ENV*QUAL*QUANT*INDIVIDUAL FR*
 TOTAL FR*

DIG 130 . 16 60 GB B 100 0.13000 12.99982

FAILURES PER MILLION HOURS

TY'E$/T/3*PI4S*T MP*ENV*QUAL *CtUAN T*INDIVIDUAL FR- TOTAL FR*
iIC 4 16 45 GS R 2CO0 0.00622 12.44043
'IG 40 16 6' Gr9 1C0 0.06082 60.824?3

FAILURES 0R PILLION HOUR S

*TY'E*G/T/B*PINS*TEMP*ENV.QUAL*QUANT*INDIVIDUAL
t R* TOTAL FR*

D1 6 16 45 G) 5 2000 O.OOT8 15.55517
FAI LURES PER SILLION HOURS

*TY E*G/T/j*PINS*T P*ENV*QUAL*CUANTINOIVIDUAL FR- TOTAL, FR*
DIG a2 16 45 GB 8 1OABe 0.01633 171.12T79

FkILUQES PER MILLION HOURS

TY'*E*G/T/q*PINS*T'MP*ENV*QUAL*CUANT*INDIVIDUAL FR* TOTAL FR*

DIG 4 16 45 GB 5 500 0.00 622 3.11011
MTEF; 321532.40 3.11 1 F&ILU9ES PER MILLION HOURS

PART

IOOC

NUMBER

003

LEVEL 1 DESIGNATION: FM-C
*PART DESCRIPTION

ECL CONTROL-SS I-Ill

*TY E*rIT/3*PINS*TvMP*E V-QUAL*GUANT*TNDIVIDUAL FR*

IG 15 16 45 G9 R 30 0.01307

TOTAL FR*

0.39214
MTBF= 2550138.28 0.3921 FAILURES PER ILLION HOURS

LEVEL I DESIGNATION: CBM-C
PART NUMBER *PART DESCRIPTION *TYE*G/TI*PINS*TFMP*EV*QUAL*CUANT*INDIVIDUAL FR*
1000 0033 ECL CONTROL-SSt-III jIr 15 16 45 09 1000 0.01307

MTBF= '76504.15 13.0712 FAILURES PER WILLION HOURS

TOTAL FR*

13.07119

http:64287.32
http:13;49.15
http:76924.16

Table 5-4. The Lower (Upper) Bounds of the Failure Rates (MTBF) of the
Memory Subsystems

LEVEL 1 DESIGNATION: PEN

PART NUMBER *PART DESCRIPTION *TYPE*G/T/B*PINS*TEMP.ENV*QUAL*QUAhT*INIVIDUAL FR* TOTAL FR*

1000 0001 ECL CONTROL-SST-I DIG 4 t6 45 GO 8 15 0.00622 0.09330

2000 0001 4OS 16K RAN RAM 16000 2? oo (5 E 55 0.00061 0.03353

MTBF= 7884153.75 0.1268 FAILURES PER MILLION HOURS

LEVEL 1 DESIGNATION: PEPM

TOTAL FR*

PART NUMBER *PART DESCRIPTION *TYPE*GTB*PINS*TEMPENV*QUAL*QUAT-INDIVIDUAL FR*

0.00061 0.01707

2000 0001 MOS 16K RAN RAM 16000 22 ;O ,B a 28

0.00622 0.09330
000 0001 ECL CONTROL-SSI-I DIG 4 16 45 GO- a 15

MT F= 9060039.53 0.1104 FAILURES PER MILLION HOURS

LEVEL 1 DESIGNATICN: CLP
FF- TOTAL FV*

PART NLPBES *PART OESCRIPIION *TYrE*G/T/B*PINS*TEF*EV*QAL*CLAI'1INCIVICUAL

GB 55 o.COOel 0.03353
CS 1§K RAP RAP 16COC 2222CCC COOl

PITEF= 2582C925.34 O.0335 FAILURES FES PILLION HOURS

LEVEL 1 CESIGNATICN: Et-M
PART NLPEEF -PART DESCRIPTION *rYPE*G/TJB.PINS*TEPFEV*QLAL*LA T*INEIVILAL Fi* TOTAL FR*

ZCC CC02 MCS 64K RAP RAP 6400C 22 GO 48 .5 0.co030 0.01676

0TEF= 55,651E34.45 C.01E0 FAILURES PES PILLION HOLRE

LEVEL 1 CESIGNATICN: 0E2t-M
PAT hLMSEF *PART DECSIPTICN *TYPE*G6Tjd*PINS*TEPFEhV*ccAL*.LATyINCIVICUAL F* TOTAL FR*

2CCC C03 MOS 256K RAP RAP aSo00 22 Go GC 5 55 0.0015 O.OG 42

ITEF=I?57?53.48 C.OOe4 FAILURES FEF ILLION HGURS

cn

I.

01

http:ITEF=I?57?53.48
http:55,651E34.45
http:2582C925.34
http:9060039.53
http:7884153.75

Table 5-5. The Upper (Lower) Bounds of the Failure Rates (MTBF) of the
Memory Subsystems,

LEVEL I DESIGNATION: PEN
PART NUMBER *PART DESCRIPTION *TTPE*G/T/B*PINS*TENP*ENV*QUAL*CUANT*INDIVI9UAL FR* TOTAL FR*
1000 0001 EGL CONTROL-SSI-T DIG 4 16 45 GO a 15 0.00622 0.09330
2000 0001 OS 16K RAM - RAM .16000 ' 22 0 rB R 55 0.20000 11.00000

"TfBF= 90144.48 11.0933 FAILURES PER MILLION HOURS

LEVEL I DESIGNATION: PEPH
PART NUMBER *PART DESCRIPTION *TYPE*G/T/B*PINS*TENP*EV*QUAL*QUAT*INDIVIDUAL FR TOTAL FR*

2000 0001 NOS I6K RAM RAM 16000 22 60 28 0.20000 5.60000
1000 0001 ECL CONTROL-SSI-I DIG 4 t6 45 G8 B 15 0.00622 0.09330

MTS= 175644.96 5.6933 FAI'LURES PER MILLION HOURS

LEVEL I DESIGNAIICN: CUM
PART NUMBER *PART DESCRIPTION *TYPE*G/TIJB*PINSITEHP*ENV*QUAL*CUAI*INCIVGbAL FF* TOTAL FR*

2CO GC1 MOE 16K RAM RAP 16CO0 22 60 13 55 0.20000 1.OCGQQ

1T2iF 50509.05 11.o0000 FAILURES PER PILLION HOURS

LEVEL I OESIGNATIONt EM-N
PART NIMBER *PART DESCRIPTION WIYPE*GITOB*PINS*TE'f-*EAV*QLA*CLAAI*IhCIVID AL FR* TOTAL FR*
2000 0c02 5MOS64K RAM RAM 64000 22 6,0 P 55 0.000C6 44.0C,00

PITEF= 22727.27 44.000 FAILURE! PER PILLION HOURS

LEVEL 1 DESIGNATION: OBP-M
PART NUMBER - 'PART DESCRIPTION *TYRE*G/TJB*PINS*TEMP*EV*QUALtCUAhA*INDIVIOUAL FR*' TOTAL FR*

200C C003 NO! Z566 RAM RAM 2 .O0O 22 60 B 55 3.20000 176.00000

PTEF= 5681.02 176-0000 FAILURES PER PILLION HOURS

00

cr

1 ,

The legends of these and following tables are defined as:

TYPE - Integrated circuit type

G/T/B Number of gates, 6r of transistors, or of bits

TEMP - Junction temperature predicted with MIL-HDBK-217B

ENV - Environment (GB - ground-based benign or standard office

environment)

QUAL - quality/screening level (B-MIL-M-38510, class B)

QUANT - not listed in table 5-1 or 5-2

INDIVIDUAL FR - individual faiure rate (per million hours)

Some of the other terminology in these and following tables and

figures is as follows. Mnemonics representing elements of the FMP

are the same as those shown in Figure 5-1, such as "FOT" for
"fanout tree" or "TNC" for the "control portion of the transposi­

tion networfk". "MRT" has been used for "mean down time"; the

programmer was thinking that all down time was repair time. "RE"

recovery efficiency is the fraction of the time that a retry is

successful. For example, for a single bit failure in memory

covered by SECDED, RE is 1.000. For a catastrophic "single point"

failure, RE is 0.000. "Single point" identifies those portions of

the system where a failure at a single point disables the system.

5.2.3.3 AVAILABILITY OF THE -FMP

The major task of this section is to assess the bounds of MUT, and

availability using the program DESIGN. Using the program we can

thoroughly investigate critical factors pertinent to the failure,

repair, and recovery processes. As required, the following

determinants of system interruption and downtime have been

included:

-5-13

* Permanent and Intermittent Hardware Failure land Repair

Rates

* System Automatic Secovery Features

* System Manual Recovery Rates

Sufficient data have been collected for design new systems

successfully. With these data and all informations from the

previous sections, the program provides an output with all salient

input data and analytical results. The computer printouts used

designations matching thoseon the block diagram of Figure 5-1.

Corresponding to Table 5-4, Figure 5-2 shows a print-output which

points out the upper bounds of MT, and availability of the FMP

are 1,032 hours, 0.43 hours, and .9995, respectively, as the MTBF

of the hard failure is the same as the MTBF of the intermittent

failure. Similarly corresponding to Table 5-4, Figure 5-3

presents an output which shows the lower bounds of MT and avail­

ability are 3.5 hours and .9554 respectively, when the MTBF of the

hard failure is ten times of the intermittent failure.

5.2.3.4 SENSITIVITY ANALYSIS

Since some factors shown in the previous sections are uncertain,

and the failure rates of the memory packages are unknown, a

sensitivity analysis has been made to study how those factors

affect MUT, MDT, and availability of the FMP. Here we perform an

experiment with respect to all the factors. In the experiment,

some wide range varieties are considered, as in the following:

1. 	Two levels of the failure rates of the-memory packages,

namely the upper bounds and the lower bounds as shown in

Section 2.1

5-14

VAME R N 4TBRP) NTqF(I) SPFM DRI SRT RE(P) RE(M) DMT HUT MRT AVAIL'
CU 1 1 1364j 13649 0.000 1.00 0.00 0.000 0.000 0.10 6824.5 0.550 0.999919
CUM 2 2 9000000 - 0.00 0.25 0.00 O.OCC 0.000 0.10 NO EFFECT ON PERFORPANCE
TNC 1 1 321532 321532 0.000 0.50 0.00 0.000 04030 0.10 160766.0 0.300 0.999998
.FIT 1 1 64287 - -7.000 0.25 0.00 0.000 0.000 0.10 64287.0 0.250 0.999996

TN 1 1 5843 - 3.000 0.25 0.00 0.000 0.000 0.10 5843.0 0.250 0.999957
EM-c 521521 2550138 2550138 3.000 1.00 0.00 0.000 0.003 '0.10 2447.3 0.550 0.999775
EM-M 521521 9000000 - 3.000 0.25 0.00 0.000 0.000 0.10 1724.5 0.250 0.999986
DBMC I 1 t6504 76504 -3. ,000 1r.00 0.00 0.000 0.000 0.10 38252.-0 0.550 0.999986
DSM 512512 9000000 -- 000 0.2 0.0 0.000 0.00 0.10 17578.1 0.250 0.999986
PROC-1 128129 75545 75545 3.005 i.00 '0.25 1.000 1.00 0.10 50162.4 0.222 0.999995
PR3C-2 128129 T5545 75545 0.005 1.00 0.25 1;0c0 1.000 0.10 50162.4 0.222 0.999996
PROC-3 1281Z9 75545 75545 3.005 1.00 0.25 1.000 1.000 0.10 50162.4 0-222 0.999996

O-- PRC-4 128129 75545 75545 0.005 1.00 0-25 1.000 1.003 0.10 50162.4 0.222 0.999996

LEGEND
F
N

Numberof DavcesReqoatedtobeOperttmlgfOrSCCeSS
Number of Devicet Available

FMP TOT AL= 1032.1 0.43 0.9995854'- 9
MTBF(P)i Mean TimeBetween Failures - Permanent
MTSF (I) Mean Tini Betv.een Failure, - Intermttent
SPFM
ORT
SRT
RE P)

Percentage of Failures tbi' armSingle Point Failures
DeviceRepal. Time - Pe-marneit Failures
Single Point Failure Rep-ir Time - Permanent Failures
Rcccve'y Efficiency - Permonent Failures

RE (I)
OMRT

Recovery Effiiency - lniemieni
Device Manual Recovery Time

Failures

Figure 5-2. Print Output of the Upper Bounds of MVUT, MRT and Availability of the FMP

C,

F-.

iAME R N MTBF(P) MTeF(I) SPFM ORT SRT RE(P) R (I) OMRT MUI RT AVAIL

CU 1 1 13649 1365 3.000 1.00 0.00 0.000 0.000 0.10 1240.9 0.182 0.99985

:UM 2 2 90909 -- .000 0.25 0.00 OOCO 0.003 0.10 45454.5 0.250 0.999995

FOT 1 1 64287 0.000 0.25 0.00 0.000 0.000 0.10 642.87.0 0.250 0.999996

TNC t 1 321532 32153).000 0.50 0.00 0.000 0.00) 0.10 29230-0 0.136 0.999995

TN 1 1 5843 - 0.000 0.25 0.00 0.000 0.000 0,.10 5343.0 0.250 0.999957

EM-C 521521 2550138 255 14 2.000 1.00 0. G0 0.000 0.003 0.10 445.0 0.182 0,99959P

EM-M 521521 22727 -' 3.000 0.25 6.00 0.000 0.000 0.10 43.6 0.250 0.994302

OBMC1 1 76504 7651 3.000 1.00 0.00 0.00 0. 00 0.10 6955.4 0.182 0.999974

D01M 512512 5652 -- 3.000 0.25 0.00 0.000 0.000 0.10 11.1 0.250 0.977969

PROC-1 128129 33572 3357 3.005 1.00 0.25 0.000 0.000 0.10 23.7 0.100 0.99578

PROC-2 128129 33572 3357 0.005 1.00 0.25 0.000 d.000 0.10 23.7 0.100 0.99578-

PROC-3 128129 33572 3357 3.005 1.00 0.25 0.000 0.000 0.10 23.7 0.100 0.99518

PROC-4 128129 33572 3357 0.005 1.00 0.25 0.000 0.000 0.10 237 0.100 0.99578'

LEGEND
F
N
MTBF(P)
MTBF Il)
SPFM
DRT
SRT
RE W)
RE (I)
DMRT

Number of Devices Required to be Operating for SUCCesS
Number of Devics Available
Mean Time Between Failures - PefriaFent
Mean Time Batweul Falures - Intermittent
Percentage of Failuris that are Single Point Failures
Device Repair Time - Permanent Failures
Single Point Failure Reoair Time - Permanent Failures
Rlecovery Efliciency - Permanent Failures
Recovery Efficiency - Intermittent Failures
Qevice Manual RecOvery Time

F /p TOT AL= 3.5 0.16 0.9554e497

Figure 5-3. Printout Output of the Lower Bounds of MUT and Availability of the FMP

I

2. 	Two levels of SECDED improvement factors, taking "two" as

the lower bound level while the upper level corresponding

to the upper limit of different memory packages stated in

Section 2.2

3. 	The ratio between the MTBT of intermittent failure to the

MTBT of permanent failure are 1, 5 and 10.

4. 	The recovery efficiencies are chosen from 70% to 100%

with 10% increment.

The results are summarized in.Table 5-6. From the results we

learn the availability changing only from 96.13 to 99.96% is not

significantly affected by those factors. If the memory packages

are of a low reliability level and SECDED improvement factors are

low, MUT and MDT are affected slightly by them. On the other

hand, if the memory packages are highly reliable and SECDED im­

provement factor is large, the MUT is increased by 200% to 300%

and the MDT is decreased by 25% to 30% as the ratio between the

MTBF for permanent failures (MTBF(P),) and the MTPF for

intermittent failures (MTBF(I)) changes from 1 to 5. Under the

same conditions- the MUT increases very rapidly as the recovery

efficiency is close to 100%. Finally it can be pointed out that

the MUT is significantly affected by the reliability quality of

the memory packages as expected.

5.3 ERROR DETECTION AND CORRECTION

5.3.1 Error Control Coverage

In the baseline system there are a number of mechanisms for error

detection and correction. These include error detection and

correction on all memories, with sufficiently powerful codes to

guarantee uncorrected error rates lower than a specified require­

ment, and undetected error rates below an even lower required

rate.

5-17

Table 5-6. Sensitivity Analysis of the MUT, ,MRT
and Availability of the FMP

RUN PACKAGE felabili4 p
NQ. FAILURE I HIBF-APrve~Mn2t (I)

RATE Factor

I .1 f]1b * 1

2 ft 1

3 	 1

4 	 1

5 	 5

6 5

7 5

ft 5

9 " 	 10

10 " 	 10

11 -	 10

12 	 10

13 " 2 1

14 	 22 1

15 "2 1

16 " 2 1

17 2 5

18 2 5

19 2 5

* 20 2 5

21 2 10

22 * . - 2 10

23 2 10

24 2 10

Note*: 6K RAM-- 164** 16K RAM--
64K RAIlH-- 327 64K RAM--

256K RAm-- 653 256K RAk--

RECOVERY
EFFICIENCY

W);

70

80

90

100

70

80

90

100

70

80

90

100

70

80

90

100

70

80

90

100

70

80

90

100

.4 f/Mh
1.6 f/Mh
6i4 f/h

HUT

194.3

263.9

411.4

1032.1

68.5

95.0

155.1

421.5

37.8'

52.7

87.1

249.2

109.1

135.3

'178.2

260.9-

52.1

68.9

101.7

194.0

27.9

37.8

60.0

145.4

-MT 	 AVAIL-
ABILITY

.16 .9992

.18 .9993

.23 .9994

.40 .9995

.12 .9982

.13 .9986

.15 .9990

.23 .9994"

.11 .9971

.12 .9974

.13 .9985

.18 .9993

.18 .9984

.20 .9985

.23 .9987

.29 .9989

.14 .9974

.15 .9978

.17 .9983

.24 .9988

.12 .9957

.13 .9966

.14 .9976

.21 .9986

ORIGINAL PAGE IS

OF POOR QUALITY

5-18

The mechanisms fall into three classes. First, there are errors

such that immediate correction is done, even if there is'a single

hard error in the machine. Error correction in memory is such.

Second, there are errors that are detected immediately when they

occur. Third, there is a repertoire of checks which is intended

to detect as many as possible of those errors not detected

immediately. For example, memory Words are initialized to

"invalid". As long as a substantial amount of memory is in the

"invalid" state, there is a substantial chance of detecting a

memory addressing error because of the "invalid" word fetched in

response.

Table 5-7 shows the pecentage of the total chips in the FMP that

are covered by each made of error correction. There are

approximately ninety-eight thousand chips (49% of the machine)

that have error Correction capabilities applied to them in the

baseline system. These are the memory chips. In addition there

are about twelve thousand additional chips that are involved in

data transfer paths of sufficient parallelism that the addition of

.error-correcting check bits in parallel would represent a modest

(20% to 40%) increase in parts count. There are one hundred eight­

teen thousand chips in the baseline system that have immediate

error detection. This includes all the memory chips plus the

transposition network which has the EM error detection code on all

data passed through it and parity on microcode ROMs. We could add

about nine thousand,-chips to this total by putting a modulo-3­

check digit on all arithmetic-units and adding parity or SECDED to

the parallel path from CU to processors. Additional chips would

be required by such additional error detection.

5-19

Table 5-7. Error Control Methods and Applicability
Table 5-7. Error Control Methods and Applicability

UNIT Error Control Methods Available at

No. Chips

PE 7k arith

PDM/ 38k mem.

PPM

TN 10k

EM 31k mem

Fanout 2K in paral-

lel paths

CU h mem.

DC

OEM 29k mem.

TOTAL 127k

possible

TOTAL 118k

as per

baseline

Ierror

Error Detection

mod-3 check digit

for arith. parity
on microcode.

yes (Note 1).

SECDED will work.

EM's SECDED catches

hard errors(Note 1)

SECDED or better if

needed. Note 1

Can add parity

Same as PDM

SECDED or stronger.

Note 1.

127k chips have

error detectible at

same clock that

error occurs

118k chips have

error detectible

at same clock that

occurs

Reasonable Redundancy

Error Correction

Retry on error(?)

yes (Note 1). SECDED

will work.

Under investigation

SECDED or better if

needed. Note 1

Can add SECDED at 25%

Same as PDM

SECDED or stronger

code. Scrubbing of

errors. Note 1.

120k chips have error

correctible even if

hard failure exists

108k chips have error

correctible even if

hard failure exists

Error Control Methods Obscure

No. Chips

34k non-arith.

14k control

16k control

1k single

signal

3k

lk

2k control

71k

80k

Comments

(Note 2)

Many errors will be

address errors, also

Note 2

Note 2

Random logic Note 2

DC not used during

user program

Note 2

Dominated by PE logic,

and memory controls.

41% of NSS.

Dominated by PE logic,

and memory controls.

45% of NSS.

Note 1. This error detection/correction is
report.

included in the baseline system as described in the final

Note 2. Consistency checks, initialization to "invalid", confidence tests, etc. are designed
to forestall any error from going undetected for too long. Undetected transient failures
are the primary concern.

IL,7
M0

5.3.2 Improvements over Reference 1

IReference 1 lists a large number of reasonableness checks that

attempt to monitor the errors in that 40% to 44% of the FMP for

which direct error correction and error detection cannot be

implemented simply. These include tests for "invalid", the code

to which memory is initialized. These include a check for illegal

opcodes, or memory addresses out of bounds, including bounds

checks on index calculations. Unnormalized numbers should never

be fetched for a floating point operation. The list goes on. All

of these are helpful. None, obviously, gives absolute protection.

Three items should be added to the design of reference 1 in the

area of error detection and correction. These follow.

5.3.2.1. On-line Processor Spares. An on-line spare processor is

extremely effective in eliminating repair time, or postponing

actual repair until convenient. Appendix C describes the imple­

mentation in detail. One spare per cabinet is provided.

5.3.2.2. Error Detection, Error Correction in PDM, PPM, and CUM.

These memories, whose memory chips account for 19% of all the

circuit packages in the FMP, are to be provided with error

correction. The final report seems to have obscured this

requirement by laying stress on an error correction method which

quite possibly may not work. Likewise, error detection for

uncorrectible errors is to be provided. SECDED is being provided

in the baseline system, as of this report.

5-21

5.3.2.3. Error Correction in the Transposition Network. The

error correction code of the EM provides error detection against

hard failures in the transposition network and error correction

against single transient failures. This is included already in

the baseline system design, even though reference 1 failed to

emphasize it. It is possible to provide a TN design which

corrects for single hard errors in the TN, just as SECDED corrects

for single hard errors in memory. The best code for this purpose

has yet to be determined. One design adds three signals to the

already nine-wide TN path. Four Hamming check bits are applied to

the eight data bits in each byte. The OR of all twelve bits can

serve instead of the strobe, since all parities are odd. The

byte-correcting code is in effect concatenated with the SECDED

code used in EM, so no overall parity is needed for error

detection; the SECDED takes care of that.

5.3.3 Duplexed Computation

For an almost 100% check on the computation, one can repeat the

user program, using a different set of 512 processors for the

second run. Using the processor switching of Appendix C, one can

run-the problem first with the spare at the right end, and then

second with the spare at the left end. If the answers agree, the

answer is presumably free of any hardware error. Note that this

method is-simpler, from a hardware implementation point of view,

than operating the processors in pairs which shadow each other,

but, like having pairs of processors do the same computation, it

also cuts the throughput in half.

5-22

5.3.4 Hard Error Tolerance

The habitual use of confidence and diagnostic checks, together

with all the above error detection-, assures that a hard failure

cannot remain undetected for long in the FMP. Repair time is

essentially zero for failures in that 82% of the chips in the FMP,

where either error correction allows the FMP to continue to run in

spite of the error, or processor switching switches in a spare

processor while the bad processor is removed and replaced at

leisure. For the remaining 18% of the components, repair is

needed before the FMP can continue to run. Thus, detection of

hard failure is more than adequately done and availability is

aided by having-82% of the failures associated with "zero" repair

time, or postponable repair.

5.3.5 Transients

60% of the packages, if involved in some transient error, will

produce effects that are immediately detected and usually

corrected, leaving 40% not covered. Obviously, it is better to

include tests that have some chance of detecting error than not to,

have such tests. However, it is difficult to guarantee that all

transient errors will- be caught before the run ends for 99.9% of

the runs. Even if we add mod-3 check digits in arithmetic, and

parity in the CU-to-processor fanout tree, 36% of the packages

remain in this category. part of the machine where detection
-The

of transient error is less than perfect consists of the memory

control and proecessor logic, primarily not the arithmetic portion

of the processor, but instruction decoding, register addressing,

shifting, and miscellaneous logic.

The main-defense against transient error is, and always has been,

proper electrical and logic design. Wiring rules, noise budgetsr.

crosstalk calculationsr maximum delay calculations, and so on, are

all part of the design.

5-23

CHAPTER 6

TRADEOFFS DELINEATED

6.1 INTRODUCTION

The design of the FMP will result from tradeoffs among a number of

factors

* 	 Performance

* 	 Reliability

* 	 Availability

* 	 Programmability

* 	 Spectrum of Applications

Cost

* 	 Schedule

* 	 Risk

The first four factors are explicitly mentioned in the statement

of work for the extension to this study contract. The fifth, the

spectrum of applications for which the FMP is to be designed, is

mentioned here as it has a direct bearing on the results of some

of the tradeoffs. For example, a scalar processor would probably

not be included if the applications were strictly limited to

aerodynamic flow and meterological problems. Yet the scalar

processor will be necessary for some other applications and will

interfere only slightly with the other desiderata.

Programmability covers two distinct aspects. First, is the system

one with which the compiler writer can successfully contend?

Second, is the system presented to the user, including its

FORTRAN, an easy one?

6-1

Following are short discussions of specific issues where the

result is a trade between factors. In many cases, simulation

using test cases taken from the intended spectrum of applications

is the appropriate tool to resolve the tradeoffs.

6.2 LANGUAGE DEFINITION

A part of the language definition in the extended FORTRAN to be

used for the FMP in an exercise of trading off throughput vs.

programmability. Proper language design finds some point 'where

almost the maximum throughput of the machine can be applied to the

desired spectrum of applications with little difficulity from

language restrictions or awkard constructs. That is, the language

restrictions necessary to ensure throughput do not interfere much

with one's ability to write programs for the selected set of

applications.

However, we note that programmability for all applications will

interfere greatly with throughput, and that absolute maximum

throughput for all applications is likely to require a depth of

analysis beyond that feasible in the compiler.

6.3 MATCHING THE COMPILER AND THE INSTRUCTION SET

Hardware capabilities that are unused by the compiler are a waste

of money and represent a flaw in the design. Capabilities in the

language, that would be commonly and frequently used, for which

the hardware provides no convenient way for the compiler to

implement, result in awkward and inefficient code, and are also a

flaw. However, the hardware, once specified, is not likely to

6-2

have its instruction set expanded much during the life of the

machine, while the compiler presumably will continue to evolve

during that same period. Therefore, it is the capabilities of

that eventual hoped-for compiler, not the simplicity of the first

one, against which the instruction set is to be judged. An

example is the loading of PPM conditional on the "enable" bit.

Our first compiler has no use for such a conditional capability.

However, the capability costs almost nothing, since loading memory

must be conditional on "enable" anyway, while the capability

allows a type of concurrency between processors which we expect to

be useful in the long run.

6.4 WORD FORMAT

In reference 1, a word format of 1 bit sign, 8 bits exponent, and

39 bits fraction part is suggested as ideal for the FMP. The BSP

uses 1 bit sign, 11 bits exponent, and 36 bits fraction. The

format with 7 bits exponent was determined as adequate for the

Navier-Stokes application. The BSP format was arrived at after

judging the precision and range requirments of a wide variety of

applications. Thus, the BSP word format is more likely to be

-suitable for a wider variety of applications, some-of which will

require the additional range on the exponent, while the re­

quirement of 10 decimal digits precision for the Navier-Stokes

equations will be satisfied with either format.

Therefore, for the purpose of being adaptable to a wider range of

applications, and not incidentally, for the additional purpose of

being format-compatible with an existing commercial product, it is

* proposed to standarize on a word format containing 1 bit sign, 11

bits exponent, and 36 bits fraction part.

6-3

6.5 INSTRUCTION FORMATS

There is a well-known tradeoff between code file size and ease of

decoding the individual instruction. For example, a full-length

address field in the instruction allows the use of absolute

addresses where appropriate, whereas if the instruction has a

short address field, it must always be with respect to some base

address held in the hardware.

In the present instance, a variation which we wish to test by

simulation, during phase II, is the use of 32-bit and 16-bit

instructions. The 16-bit instruction has room for only two

register addresses; the 24-bit instruction contains three.

Therefore the use of 16-bit formats will speed up instruction

fetching while interfering with the optimization of the use of

registers in the processor. According to one example tested, the

instruction fetching is already faster than arithmetic execution,

and 24-bit instructions will be preferred.

6.6 SECDED

Rigid requirements were set up for main memory in the FMP,

consisting of PDM, PDP, and CUM. Less than one bit in 1016 is to

be in error uncorrected, and less than one bit in 1018 is to be

undetected. To satisfy these requirements, a single-error­

correction, double-error-detection code is proposed. However, at

this writing the actual error rates and failure mechanisms of the

memory chips to be used are unknown. When these error rates and

failure mechanisms become known, the SECDED should be reevaluated

to make sure that it is neither too weak to cope with the error

rates actually occurring, nor an overkill causing unnecessary

cost. Since SECDED may permit the scheduling of repair while the

system continues to run in degraded mode, it produces savings in

maintenance cost while improving availability. The memory chips

would have to be unbelievably reliable before SECDED did not pay

for itself.

6-4

6.7 TRUSTWORTHINESS VS. THROUGHPUT

In considering error correction and detection, we credit the FMP,

not with the total number of right answers it produces, but with

the amount of answers that a rational user can use with

confidence. One approach to trading off error correction and

detection against raw throughput is to maximize this effective

throughput. With no error correction at all, it is determined

that most answers are probably wrong, and the effective throughput

is practically zero, even though reams of so-called answers might

be coming off the printer. With triple redundancy and voting on

every element in the system, the throughput would be a fraction of

the raw throughput with no error correction, but the answers would

be very trustworthy. Somewhere between these extremes is an

optimum. As explained in the last part of section five, the

existing baseline system design has sufficient error detection

that there is little chance for a hard error to go undetected for

long. A more severe problem for the FMP is the defense against

transient errors.

In the baseline system design described in reference 1, 54% of the

packages in the system have single error correction, so that any

single error produced in these packages is corrected during the

run, which, continues to produce correct answers. 11% of the

packages have immediate detection of any errors in them, so the

run terminates immediately if errors occur in them. The other 35%

of the packages are covered by a variety of error checks, which

are intended to eventually detect any errors. However, the

detection is indirect and not immediate, and some transient errors

will remain undetected.

6-5

If we apply additional error checks, throughput is reduced, but

trustworthiness of the results is improved. Figure 6-1 is an

oversimplified graphical representation of the effect. At some

reasonable amount of error control circuitry, the effective

throughput is maximized., Using f to represent the fraction of the

total hardware devoted to error control (assuming total hardware

remains constant), we can plot To, the "raw" throughput, equal to

the number of inches in the pile of printoutper.hour, and T, the

effective throughput which is the amount of useful answers

produced. To decreases with f. In fact, To decreases faster than

linearly with f, since (1-f) of the hardware is devoted to producz

ing useful output, and the fraction f that checks for errors can

only interfere. We can write:

T=(T 0 x (l-f))/G(f)

ThL functio-n G(f) can only increase with f, for any rational

design.

Finding the form of the funtion G(f) is probably not feasible.

What can be done, however, is to estimate the effect on the

detected and undetected error rates for any particular proposed

error detection/correction technique, together with its effect on

parts count or raw throughput. Each proposed error control

mechanism costs a certain percentage of the equipment, has a

certain throughput reduction associated with it, and catches some

percentage of otherwise uncaught errors.

As an example, consider the addition of a modulo .3check digit to

arithmetic computation. Generating the check digit takes almost

as much additional logic as is already in the adders -being

checked. Thus, adding -7% to the chip count of the machine catches

almost all errors occurring in what is now 6bout 7% of the

machine. In addition, the 7% new packages create errors of their

own, which will usually be detected as arithmetic errors, so they

do not add to the undetected error rate, but do create false

alarms.

6-6

Is a 7% false alarm rate added to the rate of detected error, a 7%

increase in parts count and power, plus the throughput reduction

due to the extra clocks used for checking, a fair price to pay for

the X% decrease in the rate of undetected error? When the actual

percentages are determined, perhaps the question can be answered.

6.8 Parity within Processors

Data transfers within the processor have been designed on the

expectation that the reliability and accuracy of digital oper­

ations in logic circuits can be made as perfect as desired at the

design stage, using worst-case design. Whatever the error require­

ments, careful design can ensure that the performance exceeds

them.

Parity checks on inter-register transfers could be implemented,

including transfer to the memory address registers. Such parity

checks will add about five chips to the processor logic for each

parity check required. Four parity checkers, or twenty chips, may

be needed. In addition, one clock, for the parity checking, will

be added to many operations, including most of the operations that

are now one clock long. Although 'no careful study of the situ­

ation has yet been done, it is apparent that parity checking

internal to the processor will add 20% to the component count of

the PE, will add errors of its own, and will degrade raw through­

put significantly, while failing to check any of the processor

logic operations, only the transfers.

6.9 INSTRUCTION FETCHING MECHANISM

In section two, the equipment description, a particular scheme for

overlapping the execution of noninterfering instructions, and for

doing some anticipatory instruction fetching was described. This

scheme has not been validated in simulation to see how well it

6-7

T° (0)

RAW THROUGHPUTTo

EFFECTIVE
THROUGHPUT A
T

0.-I

CDI

H
I-

FRACTION OF HARDWARE DEVOTED TO CHECKING

Figure 6-1. Throughput vs. Error Detection

6-8

works in real program streams as emitted by the compiler.

Simulation studies to determine how simple an instruction fetching

and overlap mechanism we can have and still maintain thioughput

would be desirable. Fortunately, most of the processor design

details are independent of these decisions.

6.10 LOADEM AND STOREM BLOCK FETCHING

The baseline system as described in Chapter Two of this report

omits from the LOADEM and STOREM instructions the ability to

stream N words out of each EM module in parallel for a total of

512N words per instruction. Initial work on handcompiling from

FORTRAN source for the NSS indicates that almost all fetching from

EM is with N=l. (Example: SUBROUTINE TURBDA, See Ch. 3) If this

turns out to be true in general, the block fetching capability is

not worth the complexities it costs. Simulation, using test cases

taken from real code, with multiple word fetches allowed and

disallowed, can be used to evaluate the effect on throughput. If

N greater than 1 is necessary, the following changes to the

baseline system of Chapter Two are seen:

" Rearrangement of data on DBM-EM transfers is required, as

described in the final report, so that, for N >1, data in

EM-along the index in which streaming is taking place are

all found in the same EM module. Rearrangement is neither

needed or desirable when N=l.

* 	 The requirement for rearrangement of data disallows most

equivalencing on EM arrays, a restriction on normal FORTRAN

that need not be imposed if N=l.

* 	 EM module design becomes more complicated. To keep up with

the TN streaming rate, the EM module is divided into two

6-9

submodules, as a side effect making the SECDED code less

effective. A need to increment the EM address per word

while streaming also adds complexity, especially since the

increment is a large integer, not unity.

* There is additional compiler complexity,

Enforcing the restriction that N must be 1 thus enhances relia­

bility and availability, while simplifying compiler and operating

system, and having an undetermined effect on throughput.

6.11 OVERLAPPABLE EM ACCESS

A fourth instruction execution station could be added to the

processor which would handle the EM access independently of the

integer and floating point units at the expense of requiring two

units contending for PDM, namely this EM unit, and the previously

identified memory control. Having issued an EM fetch to this

unit, no fetches from PDM would be allowed.

The amount of' increased overlap obtainable is dependent on the

compiler's being able to insert the EM fetches ahead of the place

wheie the data is required. In some of the loops in the benchmark

programs, this requires the insertion of the EM accesses for the

next iteration inside the current interation. The question to be

answered by a tradeoff study is whether the increased compiler

complexity required to exploit such an addition to the design

produces enough increased throughput to be worth the difference.

6-10

6.12 SINGLE PROCESSOR MEMORY

Processor memory is separated into two separate memories for the

sake of increased throughput. Data fetching and instruction

fetching go on in parallel. Furthermore, no conflict resolution

between fetching program and data need be implemented. The tradi­

tional way of getting interlace between two memory modules in a

single memory system is to make module number the least signifi­

cant bit of the address. This particular method would not work in

the processor, since data is fairly random, and program steps,

although sequential, are interspersed with data fetches and

stores. Thus, the two-memory design of the baseline system

achieves better interlacing than the traditional scheme. However,

it has, the drawback that program and data memory is not inter­

changeable; a program just over 8192 words cannot overflow into

data memory, and similarly for data.

An alternate design for the processor memory is as follows. Two

modules of 16384 words each are used to form a single homogeneous

address space. Module number is the most significant bit. The

compiler assigns all program addresses to the upper module and all

data addresses to the lower module, except that, if either module

is full, the other module can be used.

The alternate design achieves just as good interlace of memory

accesses as does the baseline system. When memory sizes are

exceeded by either data or program but not by both together, the

penalty is a slight slowdown, not an inability to run. Memory

controls are slightly more complex, since program and data

accesses will interfere whenever either overflows its normal half

of the memory.

6-11

6.13 PROCESSOR PROGRAM MEMORY SIZE, CONTROL UNIT MEMORY SIZE

The processor program memory (8k words) was chosen to adequately

hold the aerodynamic flow model programs. Overlay of code from

GUM is easy and quick, and allows PPM to be smaller than the

entire code file. However, PPM should be large enough so that

overlay is not so frequent as to interfere with throughput.

An overlay capability can be provided so that progr-am can overlay

into CUM from DMB, via a buffer area in EM. Since such overlay is

not needed for the flow model, it was not proposed as part of the

initial capabilities of the operating system.

For a different spectrum of applications, larger code files and

different sequences of execution may be encountered. Hence, the

code storage capabilities of the FMP may have to be reevaluated i-f

there is a change in the spectrum of applications.

6.A4 EXTENDED MEMORY SPEED, TRANSPOSITION NETWORK SPEED

The- baseline system extended memory is constructed--of 64k-bit RAM

chips, operated at the fastest reasonable cycle time available at

the time the FMP is constructed. It was projected for the

baseline system that the cycle time would. be on the order of 200

to- 250 ns for the chip, and that therefore a cycle time for the EM

module of 280 ns was appropriate.

If the 64k-bit chip is in fact significantly faster than that, EM

would be designed faster to match the chips. But, to go.faster

than allowed by the 64k- bit chips will require the use of 16k-bit

RAM chips, a four-fold increase in memory chip count from 28,655

chips to 114,620, a 43% increase in the chip count in the FMP and

a distinctly adverse effect on availability and cost.

'
 6'-12

The point to be determined by the tradeoff is whether to increase

in throughput from using 16k-bit chips is worth the extra cost,

additional failures, and extra power of using 16k-bit chips in the

EM modules.

The results of this tradeoff will be a function of how much

computation is accomplished per fetch from extended memory, which

is very dependent on the specified spectrum of applications. It

was clear that for the aerodynamic flow problems,, and almost

certainly for the meterological problems also, that the 64k-bit

chips will have more speed than needed. It also appears

(according to the Electronic Times of November 7), that actual

64k-bit chips will be faster than those postulated for the

baseline system. Simulation, using inputs that represent the

entire spread of intended applications, is the appropriate tool

for investigating this tradeoff.

The TN speed and design will have to be adjusted to match the EM

speed. Thus, the revision in TN design will also have to be

factored into the tradeoff. An EM made faster by using 16k-bit

chips is partially self-defeating, since the wire lengths from EM

to processor, now about 40 feet, will get significantly longer

when the EM quadruples in physical size.

6.15 CONTROL UNIT SPEED

The speed of the control unit, including the implementation of

specific instructions such as DIV 521, DIV 512, and MOD 521 that

are needed for specific CU actions (in this case, calculating EM

address and TN settings), is best determined by simulation using

test cases that cover the entire spectrum of applications. A very

fast MOD 521 instruction has been described by C. R.Vora in U.S.

patent 3,980,874. Since there is only one control unit in the

6-13

entire array, the optimum CU design is clearly that one that

almost never interferes with throughput. On the other hand, a too

fast and hence unnecessairly complex CU will have adverse effects

on reliability and availability, and possibly will also make the

compiler design more complex if some of the complexities require

cooperation from the compiler to be effective. This optimum CU

design is a function of the spectrum of applications.

6.16 SCALAR PROCESSOR

6.16.1 Dependency on Spectrum of Applications

The FMP has been described as an array of 512 processors and a

control unit. The control unit concerns itself with synchroni­

zation, some address calculation, and loop control. All floating

point arithmetic is done .in the array. Aerodynamic flow models

are well calculated on this machine. However, there are other

applications, which do not have sufficient parallelism almost

everywhere in the algorithm to be efficiently computed on this

machine. If it is desired to broaden the spectrum of applications

of the FMP, it is desirable, for some applications, to furnish a

scalar processor to take over those portions of the floating-point

calculation where most of the processors are idle'waiting for a

few to complete calculations. The term "scalar Processor",. as

used here, refers.strictly to floating point scalar computations.

Loop control and other program execution control where a single

decision controls the processing of the entire array has been

accomplished, on other architectures, by the "scalar processor"

portion of the equipment. These functions are included as an

essential part of the control unit, and in so far as-they are

scalar, the control un-it is a scalar processor, whether or not

specific equipment for handling floating point scalars is

supplied.

6-14

An evaluation of which applications are going to require the

addition of a scalar processor for efficient mapping onto the FMP

has not been made. It is suspected that the meteorology appli­

cations are like the aero flow models and will not require a

scalar processor. Whether a scalar processor is desirable, and

which of the several options mentioned below for including a

scalar processor in the design, is a function of the intended set

of applications, and can therefore be defined properly only when

NASA defines the amount and-kind of extensibility of scope that is

desired for the FMP. The baseline system as described includes

the third of the three design options below.

6.16.2 Simple Scalar Processor The simplest recipe for providing

a scalar processor capability in the FMP is simply to provide a

faster, more powerful processor for processor number 0. The first

processor is the one that will be assigned to vectors of length

one; and which will be executing processor code when the compiler

can find no parallelism. Thus, without doing anything special to

the compiler, we gain some scalar capability by simply making the

first processor a faster one. During parallel swatches of code,

this processor cooperates with the others, and'the program does

not know that it is different. Those swatches of code where 512

processors are idle take much less tfme because the first

processor has been made faster. When short swatches of scalar and

vector code alternate, overlapping of scalar and vector operations

occurs.

6.16.3 Added Processor The simple system does not give the

scalar processor any particular speedup for accessing EM. it does

not give the scalar processor any faster way of handling those

actions that require cooperation with the control unit. At the

expense of complicating the compiler, we can add scalar processor

hardware that is separately programmed, and which can subsume some

of the control unit functions for scalar processing.,

6-15

Suppose we provide a separate, and different processor, which has

its own access to extended memory, and which is designed to

execute a more nearly independent code stream than that of the 512

processors in the array. Figure 6-2 shows a block diagram of the

FMP with such a scalat processor represented. Langauge extensions

and programming methods for using such a capability will have to

be defined.

Extended memory is "core" for the FMP. The amount of accessing

into extended memory by the scalar processor may be such that

extended memory speed will be a bottleneck for those applications

that make extensive use of the scalar processor capability.

Hence, for some range of applications, a faster extended memory

(and hence one with fewer bits per chip), must be provided. Using

16k-bit chips instead of 64k-bit chips, for more "IMspeed,

increases from 29,176 memory chips to 116,704 memory chips, an

increase of 44% of the package count of the entire NSS.

The added processor has LOADEM and STOREM instructions in its

instruction stream which do not require the cooperation of the CU,

merely contend with it for access to the extended memory. The

synchronization between the added processor and the CU is thereby

reduced, while requiring the compiler to determine when synchroni­
zation is required for correct execution of the program. Scalar

processing and vector processor on the same data must be done in

the correct order.

6.16.4 Enhanced Control Unit It has been suggested that scalar

processor capability can be achieved by adding floating point

instructions to the control unit. This also may imply that the

control unit be speeded up from its no-scalar-processor design so

it has the free time to perform as a scalar processor. The

discussions about accessing EM apply to this option as well as

they apply to the previous one.

B-16

EXTENDED MEMORY

521

- 521 PORTS
EMCONTROL

TN CONTROLEM

ACCESS TN
RESOLUTION

DBM
CONTROLLER

EM

ACCESSES

ACCESSES

~512 PORTS

512SCALAR
soBPROCESSOR

PROCESSORS

Added Scalar ProcessorFigure 6-2.

I

ORIGINAL PAGE It

OF POOR QUALITY
6-17

6.16.5 Recommendation Simulation of various programs across the

entire spectrum of applications is recommended a s means of

determining which of the several recipes for providing a scalar

processor is to be adopted, if any. The budget for compiler

writing is also to be consulted, since the sekarate processor

requires additional decisions on the compiler's part, as well as

additional language extensions perhaps.

6.17 MARGINAL CHECKING

A strategy for weeding out incipient failures in electronic

equipment is to vary some parameter up and down from its nominal

value, measure the margins, and determine when those margins are

deteriorating, and what the faulure mode is at which they fail.

The parameter being varied can be supply voltage, clock frequency,

temperature, or anything else that appears to affect operation.

It has been determined that marginal checking is useless for

worst-case designed digi-talicitcuits. However, as noted in the

final report, LSI cannot be worst-case designed in the conven­

tional sense, and marginal checking may be valuable for weeding

out those low-margin.LSI packages that have a higher than normal

transient error rate.

6.18 COMPONENT TECHNOLOGY

The speed of any given system architecture is ultimately limited

by the performance of the circuit from which it is assembled. The

final component choice for the FMP will weigh carefully the trade

off of speed (and power) consideration against the risk and cost.

The inital procurement cost of a more advanced technology pro­

viding more desirable performance is easily measured. It is

6-18

usually shown that the initial cost of more advanced circuit are

easily justified in overall system performance improvements.

(Thus reducing the cost per operation.) However, the risk in

selecting a more advanced and higher performance circuit

invariably may be considerable, with potential for affecting the

production of system being built in a number of ways:

* 	 The delivery may be slow due to low yields.

* 	Failure rates may be higher than anticipated.

* 	The performance characteristics of devices made in pro­

duction may be degraded from the original developmental

samples and design goals.

* 	 Low usage may discourage development of second sources, and

result in continued elevated prices.
* 	Unforeseen application problems discovered only during

system checkout could require redesign or retrofit.

It would be very desirable from a system performance point of view

to be able to use the fastest circuits possible. However, the

possible risks that accompany this choice make it imperative that

a very careful tradeoff analysis be conducted given the choice of

a mature, slow (but adequate) speed technology and an advanced

faster speed technology.

6.19 EXPANSABILITY

By expansibility we mean generalizability and expandability. The

NASF design has many features allowing an upward compatible second

copy, as well as features allowing the upgrading of the NASF

itself. This section lists some of the areas in which

expansibility is found.

6.19.1 Address Sizes The address sizes are uniformly larger than

the memories they address, allowing the memories to be replaced by

larger ones.

6-19

Data Base Memory holds 134 million words (227 and is

addressed by the control unit whose register size is 32 bits.

Extended memory holds 34 million words (just over 225) and is

addressed by processor (32-bit integers) and control unit (32

bits).

Control unit memory holds 32k words (215) and is addressed b~y

the control unit whose integers are 32 bits long. Care jtDi3]

be exercised not to insert 16-bit address register that

cannot be expanded.

Processor data memory holds 16k words (214) and has a 16-bit

address. A four-times expansion of PDM is thus permitted.

Processor program memory holds 8k words (213) and has a

16-bit address.

Upgrades by replacing the memories with larger ones are therefore

very feasible.

6.19.2 Transfer Rates There are a number of options for

increasing the transfer rates between portions of the FMP. Many

of these are discussed in other paragraphs in this section, and

clearly, new transfer rates could be chosen for any new design,

depending on the results of tradeoff studies. As a retrofit, the

easiest area to increase transfer rates is in the DBM-EM

transfers. This is fortunate , since if some virtual memory

scheme is implemented,this is the area of the baseline design that

may have to be improved. Each EM module has a one-word buffer, so

no EM changes at all are required for increased transfer rates,

just increased parallelism is the accessing of these buffers. The

DBM would have to be reconfigured for increased parallelism,

assuming that current projections about CCD shift rates are

correct.

6-20

6.19.3 Memory Size The address space allows increased memory

size. The need for increased memory size could arise from a

number of causes. CUM is required to hold enough program (both.CU.

and array processor program) to keep the array busy for a,

reasonable amount of the time between program overlays from DBM.

Thus, complex programs may require increased CUM. size,

PDM size is the result of the reguirement for temporary variables,

and sometimes, for buffering data fetched from EM. The required

PDM size is therefore applications-dependent. We believe that the

aerodynamic flow problem requires a larger-than-typical PDM, and

that larger PDM's are unlikely. However, the expansion opportu­

nity is there.

PPM, on the other hand, must hold enough program to keep the

processors busy for a reasonable time between overlays from CUM.

For problems, like the aerodynamic model, where there is an inner

loop, this implies that at least the inner loop be contained

within the PPM. Overlay from CUM is fast, and this will allow

reasonable efficiency even when this is not true.

DBM, the window in the computational envelope, must be large

enough to hold results from the last job, space for the current

job, and the objects being assembled for the next job. If job

sizes are to grow, expandability of the DBM is a requirement.

6.19.4 Upgrades via Software Upgrading capability, by adding

features to the software, can be accomplished without any hardware

changes. The initial software is configured around the

areodynamic flow model requirements. A number of features, not

required by the aerodynamic flow models, can be added to handle a

broader range of requirements, including:

6-21

* 	Windowing of data for executing jobs whose files exceed

the size of EM.
* 	Language extensions, including such things as subscripted

subscripts, linear recurrences on the parallel subscript,

and so on.
* 	Vectorizer, to analyze nonparallel FORTRAN and produce FMP

FORTRAN for operation on the parallel machine.
* 	Multiprogramming capability on the FMP. Proper implemen­

tation of multiprogramming may require hardware additions

as well.

6-22

APPENDIX A

Preliminary Compiler Algorithms for Setting the Transposition

Network

Definition of the FORTRAN extensions and restrictions for the NASF

requires rigorous definition of the algorithms for setting the

SKIP and OFFSET of the transposition network and matching them

closely to the FORTRAN constructs.

The 	issues to be addressed in this memo are:

1. 	Matching of FORTRAN DOPARALLEL to EM accessing.

2. 	Requirements for multiple accessing within a DOPARALLEL

construct.

3. 	Optimization of accessing for single access types.

As a preliminary step in addressing these issues a more complete

definition of the DOPARALLEL statement needs to be formulated.

The DOPARALLEL statement cannot be nested for this results in

possible programmer error. Rather the DOPARALLEL statement is

defined to have multiple increment sets.

i.e. DOPARALLEL J=Jl,J2,J3; K=Kl,K2,K3 ...

where 	 Jl = initial value most rapidly varying index

J2 = final value most rapidly varying index

J3 = skip distance most rapidly varying index

K1 = initial value next most rapidly varying index

K2 = final value next most rapidly varying index

K3 = skip distance next most rapidly varying index

(...) ellipses indicates further increment sets

ENDDO;ENDDO

A-1

1. Matching Fortran DOPARALLEL to Extended Memory Accessing

Since the entire set of multidimensional DOPARALLEL statements is

difficult to discuss, the specific example of three dimensional

accessing with a 2 dimensional DOPARALLEL and a single dimensional

inner loop will be described in detail. For this three

dimensional case there are 6 possible access patterns for any

given array corresponding to the possible permutation of the

indices,

A(I,J,K) Case I

A(K,I,J) Case II

A(J,K,I) Case III

A(I,K,J) Case IV

A(J,I,K) Case V

A(K,J,I) Case VI

It is necessary for the compiler to determine the SKIP distance

and the OFFSET of the transposition network for any of these

accesses for the given DOPARALLEL construct. i.e.,

EMARRAY A(IFIRST, ISECOND, ITHIRD)

DOPARALLEL J=l, JLIM; K=, KLIM

DO 1 I=l ILIM

S(i) = Access Case (i)

1 Continue

ENDDO; ENDDO

The equations for setting the Transposition Network (SKIP and

OFFSET) are given in Tables 1A through IC. Table ID provides a

table for determining index parameters. It is assumed, of course,

that the array has been laid out in memory in the FORTRAN sense.

To clarify these equations a complete example is worked out in

detail in Figures 1-7. The chosen array; A(5,3,7) has extents

less than the number of memory modules (11) and processing

elements (10) in a manner similar to that of the NASF problems.

A-2

Equations for

Transition Network OFFSET Calculations

Given Quantities

N = Number of processors

M = Number of memory modules

IAO = Base address of array having index parametersr, J0, Ko

IFIRST = extent of first parameter in array

ISECOND = extent of second parameter in array

ITHIRD = extent of third parameter in array

Determined Quantities from Figure 1

ICLIM = Total number of cycles

IDEL Skip distance associated with I parameter

JDEL = Skip distance associated with J parameter

KDEL = Skip distance associated with K parameter

ILIM = Array extent assciated with I parameter

JLIM = Array extent associated with J parameter

KLIM = Array extent associated with K parameter

Defined 	quantities

IC = cycle number

NN = subiteration number

K1 = (N*(IC-I))/(JLIM) + K0 = least rapidly varying index*

Jl = (N*(IC-I) - (K-KO) * JLIM + J0 = most rapidly varying index*

IA00 = IAO + (J-J0)*JDEL + (K-K0)*KDEL

Transposition Setting SKIP distance = JDEL

*Jl, K1 	 values for processing element 0

1st ,subiteration

Table 1A

A-3

=
-OFFSET Calculation for Transposition Network (Subiteration 1)

for given I value

IADD(IC,l) = IA00 + (I-T0) * IDEL (address of first element

to be fetched)

OFFSET (IC,l) = (IADD(IC,l)) MOD(M)

-OFFSET Calculation for Transposition Network (all other subiterations*)

for given I value

IADD(IC,NN) = IA0 + (I-I0)*IDEL + (KI-K0 + NN-I) *KDEL

(address of first element to be

fetched on this iteration)

IP (IC,NN) = (NN-I)*JLIM -Jl+J0

(processor that needs to obtain

this first element on this iteration)

OFFSET (IC,NN) = (IADD(IC,NN) - IP(IC,NN)*JDEL) MOD(M)

*Subiterations 2 4 NN LNX

where NX = 2N+1+(JLIM-Jl) +1 i-
N

If (NN.EQ.NX). AND (K(NN).EQ.KLIM) further subiterations do not need to be

performed. K(NN) is the K index value of the 1st element of the NNth

subiteration.

Table lB

A-4

http:NN.EQ.NX

Parameter Assignments for Arbitrary Array Extents
and Number of Processors

CASE ILIM JLIM - KLIM IDEL JDEL KDEL ICLIM

1 FIRST
r,J,K)

2 ISECOND
[K,I,J)

3 ITHIRD
(J,K,I)

4' IFIRST
I,K,J.)

5 ISECOND
'Jr,I,K)

ISECOND

ITHIRD

IFIRST

ITHIRD

IFIRST

ITHIRD

+

ISECOND

ISECOND

ITHIRD

1

IFIRST

IFIRST*ISECOND

1

IFIRST

IFIRST

'IFIRST*ISECOND

1

IFIRST*ISECOND

1

IFIRST*ISECOND

1

IFIRST

ISECOND

IFIRST*ISECOND

(ISECOND*ITHIRD
+N-l)/N

(IFIRST*ITHIRD)
+N-1)/N

(IFIRST*ISECOND
+N-IN

(ISECOND*ITHIRD
+N-I)/N

(IFIRST*ITHIRD)
+N-1)/N

6 [THIRD
K,J,I)+N-IN

ISECOND ITHIRD IFIRST*ISECOND IFIRST 1 (IFIRST*ISECOND

EM ARRAY A(IFIRST, ISECOND,ITHIRD)
Number of Processors = N

Table iA

oo
I=J

Index Value Determination

TEMP = IADD(IC,NN) - IA0) - (I-1)*JDEL

J K IVAL JVAL KVAL
Case TEMP

1 NO J K I J K

2 YES TEMP/JDEL+I (TEMP-(J-l)*JDEL) K I J

/KDEL+I

J K I
3 NO J K

4 YES TEMP/JDEL+I (TEMP-(J-l)*JDEL) I K J

/KDEL+I

5 YES TEMP- (K-1)*KDEL) TEMP/KDEL+1 J I K

/JDEL+l

6 YES TEMP/JDEL+I (TEMP-(J-i)*JDEL) K I

/KDEL+l

Table l

ORIGINAL PAGE IS

OF pOOR QUALXIX

A-6

Figure 1 details the memory layout, assuming an arbitrary starting

point for the first element. The remaining Figures show the six

possible cases.

Utilizing the equations of Table 1 one can determine all the

parameters and the-SKIP and OFFSET for any case. For example

taking CASE II (since it is more complex with access A(K,I,J)) the

parameters are:

Given Quantities (Table IA)

N=l0

M=l 1

IA=19

IFIRST=5

ISECOND=3

ITHIRD=7

Determined quantitites (Table IC)

ICLIM = (IFIRST*ITHIRD N-I)/N (5*7+10-1)/10 =4

IDEL=5

JDEL=15

KDEL=l

ILIM=5

JLIM=7

KLIM=3

.0 JO, 1(=1

Assume that one wishes to determine the SKIP and OFFSET and

subsequently the IVAL, JVAL & KVAL of the indices for the second

cycle, second subiteration, inner loop index number 3 - i.e.

transposition setting #12

Defined Quantities (Table 1A)

IC=2
= 2NN

I=3

A-7

Memory Layout for Array A(5,3,7)

11 337 347 537

10 217 317 417 517 127 227 327 427 527 137 237

9 126 226 326 426 526 136 236 336 436 536 117

8 525 135 235 335 435 535. 116 216 316 416 516

Address 7 434 534 115 215 315 415 515 125 225 325 425

within 6 314 414 514 124 224 324 424 524 134 234 334

'Memory 5 223 323 423 523 133 233 333 433 533 144 214

4 132 232 332 432 532 113 213 313 413 513 123

3 531 112 212 312 412 512 122 222 322 422 522

2 411 511 121 221 321 421 521 131 231 331 431

1 x x x x x x x x 111 211' 311

0 x x x x x x x x x x x

0 1 2 3 4 5 6 7 8 9 10

Memory Modules

No. Memory Modules = 11

No. Processing Elements = 10

Absolute address AO 19

Memory Module No. M# = 8 =.(19) MOD 11

Address in MOdule A# = 1 = (19) DIV 11

Address of any element AE# = Address A(L1, L2, L3)

*A0 + (LI-I) + 5x(L2-1) + 5 x 3(L3-1)

Figure 1

A-8

Case I

EMARRAY A(5,37)

DOPARALLEL J=1,3; K=1,7

DO 1 I = 1,5

Sl = A(IJ,K)

1 CONTINUE

ENDDO

ENDDO

SKIP = JDEL = 5

Setting Sub PE NUMBER

Number Cycle Iteration OFFSET 0 1 2 3 4 5 6 7 8 9 ADD

1 1 1 8 111 121 131 112 122 132 113 123 133 114 19

2 1 1 9 2111 221 231 212 222 232 213 223 233 214 20

3 1 1 10 311 321 331 312 322 332 313 323 333 314 21

4 1 1 0 411 421 431 412 422 432 413 423 433 414 22

5 1 1 1 511521 531 512 522 532 513 523 533 514 23

6 2 1 3 124 134 115 125 135 116 126 136 117 127 69
7 2 1 4 224 234 215 225 235 216 226 *236 217 227 70

8 2 1 5 324 334 315 325 335 316 326 336 317 327' 71

9 2 1 6 424 434 415 425 435 416 4.26 436 417 427 72

10 2 1 7 524 534 515 525 535 516 526 536 517 527 73

11 3 1 9 137 119

12 3 1 10 237 120

13 3 1 0 337 121

14 3 1 1 437 122

15 3 j 1 2 537 123

Figure 2

A-9

'Case II

EXl ARRAY A(5,3,7)
DOPARALLEL J'l,7; K=1,5
,DO 1 I = 1,3
S2 = A(K,I,J)
1.CONTINUE
;ENDDO
:ENDDO

SKIP = JDEL = 15

Setting Sub PEM Number Assigned
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 '9 ADD PE#

1 1 1 8 11 112 113 114 115 116 117 19 0
2 1 1. 3 =211 212 213 20 7
3

4
1 1 2

8
121 122 123 124 125 216 217

)22__222 223,
25
26 7

5 7
6 1

1
2

7
2

[=3,132 133 134 135 136 137
23 232 233

3
31

0
7

7 2 1 10 11 215 216 217 65 0
8 2 2 5 1311 312 313 314 315 316 31 7

9 2 1 4 22 225 226 227 70 0
02 2 10 - 32 322 323 324 325 326 26 4
11 2 1 9 12311235 236237 75 0
12 2 2 4 31 332 333 334 335 336 27 4
13 3 1 1 13171 111 0
14 •3 2 7 411] 412 413 414 415 416 417- 22 1
15 3 3 2 511 512 23 8
16 3 1 6 1327 _- 116 0
17 3 2 1, 422 423 424 425 426 427 - 27 1

18.9 33 31 70 L-3 3] 2 2,441521J 522 28121 80°
20
21

3
3

2
3 1

4 432 433 4-34 435 436 437 --­
15311 53,2

2
33

1

19- 43 1 16575 12 0
2% 4 1 513514 51551575

23 4. 1 3- 524 525 526 527 58 0
24 4 1 8 1-5-33 53A4 535 53!5 537 63 0

Figure 3

AH 10

Case III

EM ARRAY A(5,3,7)

DOPARALLEL J=1,5; K=I1,3

DO 1 I = 1,7

S3 = A(J,K,I)

1 CONTINUE

ENDDO

.ENDDO

SKIP = JDEL = 1

Setting Sub PEM Number Assigned

Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 9 ADD PE4

1 1 1 8 111 211 31ii 1 1 121 221 321 421 521 19il 0

2 1 1 1 112 212 312 412 512 122 222 322 422 522 34 0

3 1 1 5 113 213 313 413 513 123 223 323 423 523 49 0

4 1 1 9 114 214 314 414 514 124 224 324 424 524 64 0

15 1 1 2 115 215 315 415 515 125 225 325 425 525 79 0

6 1 1 6 116 216 316 416 516 126 226 326 426 526 94 0

7' 1 1 10 117 217 317 417 517 127 227 327. 427 527 109 0

8 2 1 7 131 231 331 431 531 29 0

9 2 1 0 132232 332 432 532 44 0

10 2 1 4 133 233 333 433 533 59 0

11 2 1 8 134 234 334 434 534 74 0

.12 2 1 1 135 235 335 435 535 89 0

13 2 1 5 136 236 336 436 536 104 0

14 2 1 9 137 237 337 437 537 115 0

Figure 4

ORIGINAL PAGE IS

OF POOR QUALITY

A-I

Case IV

EM ARRAY A(5,3,7)

DOPARALLEL J=l, 7; K=I, 3

DO 1 I = 1,5

S4 = A(I,K,J)

1CONTINUE

IENDDO

*ENDDO

SKIP = JDEL = 15

Setting Sub PEM Number Assigned

Number Cycle Iter OFFSET 0 1 2 3' 4 5 6 7 8 9 ADD PE#

1 1 f1 112 113 114 115 116 117 19 0

2 1 1 7 -- 121 122 123 24 7

3 1 1 9 [21221324215216217 20 0

4 1 2 8 1221 222 223 25 7

5 1 1 0 3112 313 314 315 316 317- 21 0

6 1 2 9 -- 2 26
31 322 323 7

7 1 1 0 W 412-413 414 415 416 417 22 0

8 1 2 10 421 422 423 27 7

9 1 1 1 W512 513 514 515 516 517t 23 0

10 1 2 0 5 522 523 28 7
ii 2, 1 3 11241 125 126)27 _ 69 0
12 2 2 2 jI3B 132 133 134 135 136 29 4
13 2 1 4 224 225 226 227 70 0
14 2 2 3 23 232 233 234 235 236 30 4
15 2 1 5 IM 325 326 327 3 71 0
16 2 2 433 33233 334 335 336 31 4
17 21 1 6 f424 425 426 427 . 72 0
18 2 2 5 I4K 432 433 434 435 436 32 4
19 2 1 7 524 525 526 527
20 2 2 6 5 ,7 532 533 534 535 536 33 4
21 3 1 9 137. 119 0
22 3 1 10 237 120 0
23, 3 1 0 337 121 0
24 3 1 1 43fl 122 0
25 3 1 2 f53[123 0

Figure 5

A-12

Case V

EM ARRAY A(5,3,7)
DOPARALLEL J=l, 5; K=7
DO 1 I = 1,5
S5.= A(J,I,K)(Qt44
1 CONTINUE

ENDDO
ENDDO

SKIP = JDEL = 1

Setting Sub PEI* Number Assigned
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7' 8 9 ADD PE#

1 1 1 8 111 211 311 411 511 19 0
2 1 2 7 112 212 312 412 512 34 5
3 1 1 2 1 221 321 421 521 24 0
4 1 2 1 1022 222 322 422 522 39 5
5 1 1 7 131 231 331 43-1 531 44 0
6 1 2 6 11321 232 332,432 532 59 5
7 2 1 5 11131 213 313 413 513-- 49 0
8 2 2 4 14 214 314 414 514 69 5
9 2 1 10 123 223 323 423 523 - 54 0

10 2 2 9 i2324 224 324 424 524 69 5
11 2 1 4 233 333 433 533- 59 0
12 2 2 3 1341234 334 434 534 69 5
13 3 1 2 11151215 315 415 515 79 0
14 3 2 '1 j 216 316 416 516 94 5
15 3 1 7 11251 225 325 425 525 84 0
16 3 2 6 -­ 126 226 326 426 526 99 5
17 3 1 1 1A 235 335 435 535 -- 89 0
18 3 2 0 1136]236 336 436 536 104 5
19
20
121

4
4
4

1
1
1

10
4
9

[I171217 317 417 517
[127 227 327 427 527
1137 237 337 437 537

109
114
fi19

0
0
0

Figure 6

A-13

Case -VI

EM ARRAY A(5,3,7)

DOPARALLEL J=l, 3; K=,

DO 1 I = 1,7

S 6 A(K,J,I)

1 CONTINUE

ENDDO

ENDDO

SKIP = JDEL = 5

Setting Sub PEM Number 'Assigned

Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 9 ADD PE#

1 1 1 8 1111121 131 19 0

2 1 2 5 211 221 231 20 3

3 1 3 2 131 1 321 331 21 6

1 4 10 f4-T 22 9
5 1 1 1 1121122 132 34 0
6 1 2' 9 21- 222 232 . 35 3­
7 1 3 6 312 322 332 36 6
8 1 4 3 4 37 9
9 1 1 5 1173 123 133 49 0

10 1 2 2 21 223 233 50 3

11 1 3 10 313 323 333 51 6

12 1 4 7 413 52 9

.1.3 1 1 9 114 124 134 64 0

14 1 2 6 1214 24 234 65 3

15 1 3 3 f31 324 334 66 6,

16 1 4 0 414, 67 9

11, 1 1 .2 l15 125 135 _ 79 0.
18 1 2 10 215 2,25 235 80 3
19, 1 3 7 13151 325 335 81 6
2f0 1 4 4 - 82 9
21 1 1 6 W 126 136 94 0
22 1 2 3 1 226 236 95 3
.23 1 3 0 - 316 326 336 96 6

24 1 4 -8 416 97 9

25 1 1 10 1 127 137 109 0

2'6 1 2 7 217 227 237 110 3

27 1 3 4 317 327 337 i l 6

28 1 4 1 17 112 9

29 2 1 5 1422 431 27 0

30 2 2 24 [521 531 23, 2

31 2 1 9 42432 42 0

32 2 2 6 4 512 522 532 38 2

33 2 1 2 L 433 57 0

34 ,2 2 10 - 13523 533 53 2

35 2' 1 6 14241 434 -ORIG64AL W ' 72 0

36 2 2 3 , 51]524 532 yPWgi62

37 2 1- o 425 435 oF POOR Q4'I87 2

38 2 2 7 515 525 535 83 2

39 2 1 3 1426436 102 0

40 2 2 0 1516526 536 98 2

41 2 1 7 L27 437 117 0"

42 1 2 2 4 fl 7 527 53,7 ii3 2

Figure 7

A-14

KI=(10+1)/7+l=2

Ji=10-1*7+1=4

SKIP=JDEL=15

Using the OFFSET calculation equation for NN=2 in Table 1B one

obtains

IADD(2,2)=19 + (3-1)*5 (2-1 + 2-1)*1

= 19 + 10 + 2 = 31

IP (2,2) = (2-1) * 7-4+1 4

OFFSET (2,2) = (IADD(2,2) - IP(2,2)*15) MOD (11)

= (31-4*15) MOD (11)

= (-29) MOD (11) = 4

This OFFSET calculation may appear strange at first glance. SInce

one wishes this element to be produced in processing element 4 one

needs to determine what the "virtual" address of the array element

would have been to put an element into processing element $.

i.e. *-Address1 Address 16 Address 31

411511 121,21 321 2151131 231 3431
x x x x x x x x 111 211 311

x Kx x X x x x x x x x

0 -o 0 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 0 0 0 Virtual
0 0 0 0 0 0 0 0 0 Addresses

Ars= (-29) Address = (-14)

PE=P PE=I

.A-15

Mode bits for PE's #0,1,2,3 will produce null fetches.

Having now determined the SKIP and the OFFSET one may wish to

determine the specific indices of the element. This is done by

means of Table ID.

Temp = (31 - 19) - (3 - 1) *5

= 12 - 10 = 2

J = 2/15 + 1 = 1

K = (2 - (1-1) *15)/1 + 1 = 3

A(IVAL, JVAL, KVAL) = A(K,I,J) = A(3,3,1)

In a, similar fashion one can determine the SKIP and OFFSET for any

setting number for any of the six possible cases. Additionally

Table II gives a listing of a computer program which performs

these computations.* Representative output is given in the appendix

for the set of cases listed below.

IAO Mem Mod #PEs IFIRST ISECOND ITHIRD

19 11 10 5 3 7

19 11 10 9 5 6

19 11 10 6 2 8

27 13 11 6 2 8

2. Requirements for Multiple Accessing within DOPARALLEL

Construct.

The compiler will recognize if a variety of access types occur

within a given DOPARALLEL and will modify the basic access

algorithm. For example given

*Note this is a very preliminary algorithm and should not be considered

"proven" software in any sense.

A-16

Table II

$SET LIST

$RESET FREE

FILE 5=COMP ILER/D ATAP LN I T=D IS KFECORD=l4 PBLCK ING= 30

FILE 6=FILE6pLNIT=PRINTER

C
C
'C

C BURFOUGH' S COFP CRA7ION
C CCMPILEF ALGORTkirn FCP DETERMIN4ING-
C TFANSPOSITI-C. NETh.OFK SETTI-NGS
C OFFSET AND SKIP DISTANCE' FOR 3-C ARFAYS
C
.C
C

DIMENSICN IADD(lOp1O) ,IP(10,10),ISET (O,10)

C
C INPLIT VARIABLES
C ITYPE ="ARRA'NGEMENT OF AR.FAY INCICES
C ITYPE 1 (IJK)
C IYPE = 2 (K.I,J)
C ITYPE 3 (J,K,I)
C ITYPE 4 (.IK,JI
C IYPE 2 5 (JtIK)'
C ITYPE = 6 (KJ, I I
C IAO = BASE ADDRESS OF' ARRAY A WITH INDICES IO.JO,KO
C M NLMBEF CF MEORY MOCULES
C N = NUMBE'F F PFOCESS ING ELE-MENTS
C IFIRST= ARRAY EXTENT OF FIRST DIMENSICN OF A'FAY
C ISECND= ARRAY -EXTENT OF SECCNE EIMENS ION EF AFRAY
C ITHIRD= ARRAY EX-TENT OF THIRD DIMENSIEN OF ARFAYC JO = INDEX VALLE OF BASE ACDESS
C K-O = INOEX VALUE OF BASE ADDRESS
C
C

REAC(5,IOO.) I TYPEIAOM, NIFI RST P ISECND, IT HIRE, KO, JO
WRITE(6,11 1l.ITYPEIAOPMN,IF IRSTP ISECNCPITHI:FDPKO;,J3

C
C

C SET UP CF INITIAL PFOBLEM PARKMETERs INDEPENDENTC OF CR CEDING. ,C. I'DELJDELKDEL = SKIP DISTANCES

C ILIMPJLIMPKLIM = ARRAY EXTENTS
C ICLIM = NUMBER OF CYCLES
C
C

IF(ITYPE.EQ.1) GO TC 1

IF(IjYPE EQ 2) GO TG 2

IF'ITYPE.EQ.3) GO TC 3

IF(ITYPE.EQ.4) GO TC 4

IF(ITYPE.EQ,.5.) GO TO 5

IF(ITYPE.EQ.6) GO To -6

IF(ITYPE.LT.1) GO TE 7

IF(IT'TPEGT.6) GO TO 7 pLGE1 " TIEEL = I OR%1 qn ,GT I
JCEL = IFIRSI " ,
KEEL = IFIRS *I SECNDC Op Pop.T'TL
ICLIM= (ISECNC*ITHIFD 'N-1 I/(N)
JLIm = ISECND
ILIM = IFIRSTKLIM =ITHIRD

GC' TO B
.2 IDEL = IFIRST

JEEL = IFIRST*ISECNC
K.DEL = 1
ICLIN= (IFIRST*ITHIRDN-I)/(N)

JLIH = ITHIRD
ILIM, = ISECND A-17

KL I =IF IRST

3 IICEL = IFIRST*ISECNC
JOEL
KOEL

=
=

I
IFIRST

ICLIM= (IFIRST*ISECNDON-1)/(N)
JLIM = IFIRST

4
ILIM = ITHIRD
KLIM = ISE'CNDGo TO, 8ME= 1
KEEL

=
=

IFIR-ST*ISEC.NC,
IFIRST

ICLIM= (ISECNC*ITHIF04N1I3/(N)
JLIM = ITHIFD
ILIM = IFIRST
KLIM = 'ISECND
GE TO 8

5 IEL
JCEL

=
=

IFIRST
1

KEEL =
ICLIM=
JLIM=

IFIRST*I SEC NC
(I FIRST* I*II RD 4N-I)/(N)
'IF IRST

ILIM
KLIM

=
=

ISECND
ITHIRD

6
GC TO- 8
J'EEL = IFIRST
KEEL = IO "
I*CEL = IFIRST,*1SECNC
ICLIM= (IFIRST*'ISECND4N-1)/(N)
JLIM = ISECND
ILIM = ITHIRD
KLIM = IFIRST
GO TO 8

7
0I

WRITE'(6,101 1
FORMAT(Z-X,IYOL
GC TO aa

HAVE' AN ERFOF I-N ITYFE')

C

e WRITE(6,1123
WRITE(C6,1 14

IDELJCEL,KOEL.,ICLIMJLIM, ILIM

C
C
C START OF CYCLE LOOP
C
C
C

00 10 IC = IICLIM
IWV= N*(IC-1)
K=(IVV)/(JLI4) # KO
K1= K
J=(IVV)'(K',I)*(JLIM)
J1=J

* JO

C
C

IAOL= IAO*(J-1)*JCEL+(K1)-*DEL
WRIT'E(6,'13) ICIVVPJK

C
C
-C S--ART OF INNERMOST LOOP INCEX I-
C
C
C

00 20 I '=IILIM

C

IADO(IC.I)
IP(IC,13 =

=
0

IACO0 +(l-1)*IDEL

C,
C
C
C

SUBITERATICN LCOPS

C

DO 30 NN= 1sN
-N2=NN-1

C
9

IF (NN.E0.1) GO TC 9
IAOC(ICNN,) = IAO+(I-l)*ICEL + (K1-1+N2)-*KDEL
IP(ICNN) = NZ*JLIM-J1,1
CONTINUE
'WRITE(6,100) ICNNIA(O(ICNN.,IP(ICNN)
IF(IP(ICNN).GT.-'I) GO T] 20
ISET(ICNN)= (IADC(ICNN)eIP(I.CNN)*JCEL) A-18

C
C
C
CC

ADJUSTING ISET TE POSITIVE NUMBER

C
40

50

DC 40 KAP= 1.100
IF(ISET(IC.NN).GE.O) GO T 50
ISET(ICNN) = ISET(ICNN) +
CCNTINUE
WRITE(6,100) ICNNISET(ICPNN)
ISET(ICPNN) = MCD(ISET(IC.NN),M)

C
C
C
C

CETERMINATION CF
NOT REQUIRED FER

INDEX VALIES FIRST ELEMENT OF
OFFSET AN[SKIP DETERMI ATICNS

SET-

C

C

C

IF(ITYPE.E.1) GE TO 201

IF(ITYPE.EQ.2) GC TO 202

IF(ITYPE.EQ.3) GE TO 203

IF(ITYPE.EQ.5) GE TO 205

IF(ITYPE.EQ.6) GC TO 206

201 IVAL= I
JV AL=J

-KVAL=K
GO TO 207

02 TEMP (0IAC(ICNN)-IAO -1
J=TEMP/JCEL 4 1
K= (TEMP -(-1)*JEL)/KOEL
IVMALK
4W AL=I
NVAL=J

Go TO 207

203 IVAL=J

JVAL=J

NVAL=I

GO TC 201

IELI

+ I

204 TEN (IACD(ICNN)IA 0 (11)*IDELI
J=TEP/JCEL 4 1
K= (TEMP -(J1)tJDEL)/KEL + 1
IV=1
KV AL= J
KW AL=K
GO TO 20?

205 TEMP=(IA E7 IC NN)-IA0
2TEMP/KCEL *I
J=(TEMP-(K-ItOEL)/JOEL
IVPAL=J
JVAL=I
KV AL=N
Go TO 201

1-1 IOEL 3

*I

206 TEMP=(IACD(ICNN :lAO - (I-1)*IDELJ
J=TEMPI/JCEL 4 1

K= (TEMP "(J'1)*JDEL)/KDEL + I

IV AL=K
C t*ttt**********I***t*************************t****C

C

C END OF JNCEX COMPUTATIONS

C

C

JVAL=J

KVAL= I

207 NUM = NUM 4 1
IF(NN.EQ.1) GO TO 31

IF((IADC(IC.NN)-IAflO(ICI)).EQ.JDEL*JLIM*N2) GO Tt 20

31 WRITE(6,115) NLMICsNNtISET(IC NN),IVALJVALKVAL

IF((ITYPE.EQ.1).OR.(ITYPE.EQ.3)) GO TO 20
IF((IC.1).EQ.ICLIM) GE TO 0

IF(K.EQ.KLIM) GC TO 20

30 CCNJINUE

20 CON INUE

10 CENTINUE
100 FCRMA T(ZX, 1215)
1l1 FORMAT(5X.ITYPEO'. IAO *,tMEMCDO'.' PES ', IFIRSTOP

C' ISECOND*,' ITHIROl,' KO go JO',//5Y,415.1h17,l 3I7//)

A-19

112 F'ORMAT (5X, IDEL 0 PO JCEL*% KDEL*P* ICLIMP', JL Im't
C' ILI tI 5X.616/)

113 F ORNA T (5XP'CYCLE'.'SU BX TER'., J * , KI/5X.4 162
114 FCRIArC5XP' NUP'P CYCLE'#' SUeITER',' CFFSEI'O, IVAL'P

C 0 JVALO,* KVAL')
115 FCRtAT(5X, 215, 19P 17,3X9 3I)

aO CONTINLE

END

A-20

DOPARALLEL J=l, JLIM; K=l, KLIM

DOO 1 I=l, ILIM

S1 = A(I,K,J) * A(K,I,J-)

1 Continue

ENDDO: ENDDO

it is obviously required that for a given J,K pair that a specific

processing element must receive both of them. If one considers the

previous example and determines the assigned processing element

for

Type I A(3,2,5) PE# 3

Type II A(2,3,5) PE#1

But this is wrong. Both of these accesses must go to the same

processing element. The solution to this apparent dilema is to

expand the array size at compile time by "'squaring" it if one of

these type accesses occurs, anywhere in the program, i.e. given

the array A(5,3,7)>with extents 5,3,7

one expands it to square by increasing all extents to the largest

one, i.e., 7 and accessing the array as though it were of size

A (7,7,7).

This is demonstrated in detail in Figure SA&B for all 6 accessing

patterns. The I index, the innermost, is not iterated for each

cycle. As is obvious one obtains the correct J,K pair in each

processing element as is required. The appendix contains the

examples listed below.

IA0 Mem Mod #PEs IFIRST ISECOND ITHIRD

19 11 10 3 3 3

19 11 10 5 5 5

27 13 11 6 6 6

19 11 10 7 7 7

-AIGtN AG A-21

.OoOP. QUAIX1

Extended Accessing

of Array A(5,3,7)*

P.E. Number Specific Examples

Case I 0 1 2 3 4 5 6 7 8 9 (i,2,3)

(I,J,R) ilh& 131 141 151 161 i71 112 122 132 (i,2,1)

a 	 113 i33

* 	 i14 i24 i34 i44 i54 ±64 14 i15 i25

35 i45 i55 165 i75 i16 i26 i36 i45-i56

.Fi; 	 6i17 i27 i37 i4-7--5-7 -7 -7-4-­

(i indices 6&7 also suppressed)

Case II

kI,JI) m @ li3 li4 li5 i6 i7 (3,i,2)

2122 2i3 (1,i,2)

214 2i5 2i6 217

1311 Q 3i3 3i4 3i5 3i6

411 4i2 	4i3 4i4 4i5 4i6 47

[l1 5i2

513 5i4 5i5 5i6 517

7 	 67 2 6i 6 6i-5

(i indices 4,5,6 & 7 also suppressed)

Case III

(J,K,I) 	[j t311 411 51i 63A97i 121 221 32i (2,3,i)

14211 521 6-2-421 131 C(3 331 431 531 4i (2,1,1)=<

732 141 241 341 44i 4 4 4 1.5i 25i
j~Its-----st51 75 1G- ---26 i--3E4-464--­

271 371 47i 571-6-7-7-74i

(no i indices suppressed)

*I index indicated by i, assuming iteration

deleted elements indicate null fetches

Figure 8A

A-22

P.E. 	Number Specific Examples

5 9
Case IV 0 - 2 3 4 6 7 8

0i,3,2)
(I,K,J) i l 3

(ii l i22 i23 (i,1,2) ='Q

i24 i25 i26 ii33 i34 i35 i36

* 	 i56 i57­

7 -i!2 i:73
 i74 i!75 i76 i7-7

(i indices 6&7 also suppressed)

7i 	 (2,i,3) =Case V 1ili F-3il 4i1 51l

112i2i2 3i2 (2,il) = (J,I,K)

4i2 512 i (i 313 413 5 i

11 2i4 3i4 4i4 5i4 .i64-M-i2

3154i5 515 64-5- -7i

li6 2i6 316 4i6 5i6

117 27 37 4i7 517 64--44

(i indices 4,5,6 & 7 suppressed)

Case VI

=C
151i 161 171; 	 (3,2,1)(K,J,EI 11i 2> 13 i 14 i 	 f21- '22i 23i (1,2,i)

* 2 3 Q 3 3 i 34i 35i 36i

kll5 42i 43i 44 45 461 47i2i

S5 55iq 56i 57-i

.---- 73i 71 736 f i i
n 	_i 27i

(no i indices suppressed)

Figure 8B

OF poR QUALIATY
AA-23G IS

A-23

3. Optimization of accessing for Single Access Type

If a single type of access occurs within a DOPARALLEL construct and

is one of the less favorable ones then the compiler will reverse

the order of the DOPARALLEL construct. Case I and ITT are already

optional. Case IV and VI would be inverted, i.e., the construct

would be DOPARALLEL K=l, KLIM; J=l, JLIM.

Cases III and V would reamin as written with a warning to the

user.

A-24

Appendix A

Normal Accessing

A-25

'ITYPE. IA MEMOD #PES 'IFIRST tSECON{ ITIIRO KO .JC

1 19 11 1c 3 7 1

IOEL JOEL KDEL ICLI'1 JLIM ILI'

1 5 15 3 3

NUM CYCLE SUBITER OFFSET IVAL JVAL K AL
1 1 1 8 1 1
2 1 9

3 1 1 10 1' I

4 1 1 a 4 1
5 1 1 1 1 1
6 2 1 3 1 4
7 2 1 4 2 ? 4
8 2 1 5 3 4

9 2 1 6 4 . 4
10 2 1 7 5 2 ,4

V! 3 1 9 1 7 7

12 3 1 i0 2 3 7

13 3 1 c 3 3 7

14 3 1 1 4
 7

15 3 1 2 5 7

ITYPE IAO MEMOC #PES IFIRST ISECOND ITIqRC KO .C

2 19 11 I[5 3 71 1

TOEL JOEL KCEL ICLIM JLIM ILIM

5 15 1 4 7 3

NUM CYCLE SUEITER OFFSET IVAL JVAL KVAL

1 1 1- 8 1 1 1

2 1 2 3 2 1 1

3 1 1 2 1 2 1

4 1 .2 8 2 2 1
5 1 1 7 1 3 16 1
 2 2 2 3 1
7 2 1 10 2 1 4
6 2 2 c 3 1 1
9 2 1 4 2 ? 410 2 2 10 3 2 1
1 2 1 9 2 4
12 2 2 4 3 i 1
OIGllp PAGE IS 13 3 1 1 3 1 7

.- 1". 3 2 2..7 4 1 1ofpOOR 15 3 62 5 1 116 3 1 6 3 7
17 3
 2 1 4 2 1

18 3 3 7 5
 2 119 3 1 0 3 7
20 3 2 6 4 1

21 3 3 1 5 3 1

2? 4 1 9 5 1 3
23
 4 1 3 5 2 3

24 4 1 E 5 3 3

ITYPE lAO MEMOD *PES IFIRST ISECONO ITHIPD KO JC

3 19 11 IC 5 .3 7 1

ICEL JOEL KCEL ICLIM ILIM ILl'

15 1 2
5 7

NUM CYCLE SUEIIER OFFSET IVAL JVAL K AL

1 1 1 8 1 1

2 1 1 1 1 1

3 1 1 5 1 1

4 1 1 9 1 1
5 1 1 2
 1 1
6 1
 1 6 1 1 6

1 1 1 1c 1 1 7

8 2 1 7 1 3 1

9 2 1 C 1 3 2

10 2 1 4 1 3 3

It 2
 1 8 1 3 4
12 2 1 1 1 3 5

13 2 1 5 1 3
 6

14 2 1 9 1 3
 7

A-26

1

IhYPE IAO MEMOD SPES IFIRST ISECOND IT4HIRD KO JC

4 19 11 1c 5 3 7 1

IDEL JOEL KEEL ICLIM JLIM ILIM

1 15 5 3 7 5

NUM CYCLE SUEITER OFFSET IVAL JVAL KqAL

1 1 1 a 1 1 1

2 1 2 7 1 1 1

3 1 1 9 2 1 1

4 1 2 e 1 1

5 1 1 it 3 1 1

6 1 2 9 3 1 1

7 1 1 0 4 1 1

8 1 2 1C 4 1 1

9 1 1 1 5 1 I

1i 1 2 'C 	 1 1

11 2 1 3 1 4 2

12 2 2 2 1 4 ?

13 2 1 4 2 4

14 2 2 3 2 4 2

15 2 1 5 3 4

16 2 2 4 3 4

17 2 1 6 4 4

18 2 2 5 4 4 2

19 2 1 7 5 4 2

20 2 2 6 5 4 2

21 3 1 9 1 7 3

2'2 3 1 IC 2 7 3

23 3 1 0 3 7 3

24 3 1 1 4 7 3

25 3 1 2. 5 7 3

ITYPE IAO MEMOE #FES IFIRST ISECOND I'THIRD KO JC

5 19 11 ic 5 3 7 1

IDEL JDEL KDEL ICLI JLIM ILI"

1 	 15 4 5 3

NUM 	 CYCLE SUEITER OFFSET IVAL JVAL K AL
1 	 1 2 1 1

2 	 1 2 7 13 1 1 2 1 1

4 1 2 1 1 2

5 1 1 7 1

6 	 1 2 6 1 3

22 1 5 1 1 3

8 2 2 4 1 1

9 2 1 1c 1 2 3

10 2 2 9 1 .4

11 2
 1 4 1 3 3

12 2 2 3 1 1 4

13 3 1 2 1 1 5

14 3 2 1 1 1 6

15 3 1 7 1 2 5

16 3 2 6 1 2 6

17 3 1 1 1 3 5

18 3 2 G 1 3 b

19 4 1 10 1 1 7

20 4 1 4 1 2 7

21 4 1 9 1 3 7

A _97

KO JC
APES IFIRST ISECOND ITHIRD
IHYPE IAO MEMOD

6

IDEL

15

NUN
1

2

3

4

5

7

8

I.

11

12

13

14

15

16

11

1-

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

!7

38

39

40

41

42

19

JOEL

5

CYCLE

1

1

1

1

1'

1

1

1

1

1.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

11 Ic 5

KDEL ICLIM JLIM

1 2 3

SUBItER OFFSET

1 e

2 5

3 2

4 IC

1 1

2 9

3 6

4 3

1 5

2 2

i
lC

4 7

1 9

2 6

3 3

4 C

1 2

27e 10

7

4 4

1 6

2 3

3 0

4 8

1 1C

2 7

3 4

41

1 5

2 2

1 9

2

1 2

2 iC

1 6

2 3

1 1c

2 7

1 3

2 G

1 7

2 4

3

ILIM

7

IVAL

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

4

4

5

4

5

4

5

4

5

4

5

4

5

4

5

JVAL

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

1

2

1

2

1

1

7 1

KVAL

1

1

1

1

2

2

2

3

4

L

4

4

5

6

6

7

1

7

1

1

2

3

4

4

5

1

5

7
T

7

A-28

IhYPE IAO MEMCD IPES IFIRST ISECCNE ITI4IRE KO JO

1 19 11 10 9 5 6 1

IOEL JOEL NOEL ICLIM JLIM UII

1 9 45 3 5 9

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL

1 1 I 8 1 1 1

2 1 1 9 2 1 1
3 1 1 10 11
4 1 1 0 4 1 1
5 1 1 1 5 1 1
6 1 1 2 6 1 1
7 1 1 3 7 1 1

51 4 E
9 1 1 5 9 1 1

10 2 1 10 1 1 A

11 2 1 0 2 1
12 2 1 1 3 1 3
13 2 1 2 4 1

14 2 1 3 5 1 3

15 2 1 4 6 1

16. 2 1 5 7 1 3
17 2 1 6 E 1
1 2 1 7 9 1 "

19 3 1 1 1 1 5

20 3 1 2 2 1 5

21 3 1 3 3 1 5

22 3 1 4 4 1 5

23 3 1 5 5 1 5

24 3 1 6 6 1 5

25 3 1 7 7 1 5

26 3 1 8 F 1 5

27 3 1 9 9 1 5

ORIGINAL PAGE IS

OF POOR QUALxTl

A-29

ITYPE IAO ME14CD #PES IFIRST ISECCNX ITHRO KO JO

2 19 11 10 9 5 6 1

IDEL JDEL KDEL ICLIM JLIM ILIM
9 45 1 6 6 5

NUM CYCLE SUBIIE OFFSET IVAL JVAL KVAL

1 1 1 8 1 1 1

2 1 2 3 2 1 1

3 1 62
4 1 12 1
5 1 1 4 1 11
6 1 2 10 2 3 1>

1 1 2 1 4 1
8 1 2 8 2 4 1
9 1 1 0 1 5 1

10 1 2 6 2 5 1

2 1 2 2 1 5
11

12 2 2 8 1 1 1

1
13 2 3 3 4 1

14 2 1 0 2 2 5

1,5 2 2 6 3 2 1

16 2 1 4 2 1

17 2 1 9 2 3 5

18 2 2 4 3 3 1

19 2 3 10 4 3 1

1 7 2 4 5

21 2 2 2 3 4 1

20 2

1
22 2 3 8 4 4

23 2 1 5 2 5 5
24 2 2 0 3 5 1
25 2 3 6 4 5 1
26 3 1 2 4 1 3
27 3 2 8 5 1 1
2E 3 1 0 4 2 i
29 3 2 6 5 2 1
30 3 1 9 4 3 3
31 3 2 4 5 3 1
32 3 1 7 4 4 3
33 3 2 2 5 4 1
34 3 1 5 4 5 3
35 3 2 0 5 5 1
36 4 1 2 6 1 1
37 4 2 8 7 1 1
38 4 1 0 6 2 1
39 4 2 6 1 2 1
40 4 1 9 6 3 1
41 4 2 4 7 3 1
42 4 1 7 6 4 1
43 4 .2 2 7 4 1
44 4 1 5 6 5 1
45 4 2 0 7 5 1
46 5 1 T 7 1 5
47 5 z 2 e 1 1
48 5 3 8 9 1 1
49 5 1 5 7 2 5
50 5 2 0 E 2 1
51 5 3 6 9 2 1
52 5 1 3 7 3 5
53 5 2 9 e 3 1
54. 5 3 4 9 3 1
55 5 1 1 7 4 5
56 5 2 7 E 4 1
57 5 3 2 9 4 1
58 5 1 10 7 5 5
59 5 2 5 e 5 1
60 5 3 0 9 5 1
61 6 1 7 9 1 3
62 6 1 5 9 2 3

63 6 1 3 9 3 3

64 6 1 1 9 4

65 6 1 10 9 5
 3

A-30

ITYPE IAO MEMCD APES IFIRST ISECCNC ITA4IRO KO JO

3 19 11 10 9 5 6 1

IOEL JOEL DEL ICLIM J IM ILtIM

45 1 9 5 9 6

NUM CYCLE SUB'ITEF OFFSET IVAL JVAL KVAL
1 1 1 8 1 1 1
2 1 1 9 1 1 2
3 1 1 10 1 3
4 1 1 0 1 4
5 1 1 1 1 1 5
6 1 1 2 1 1 6

7 2 1 7 2 2 1

8 2 1 8 2 2 2

9 2 1 9 2 2 1

10 2 1 10. 2 2 4

11 2 1 0 2 2 5

12 2 1 1 2 2 6

13 3 1 6 3 3 1

14 3 1 7 3 3 2

15 3 1 8 3 3 3

16 3 1 9 2 3 4

17 3 1 10 5 3 5

18 3 1 0 3 3 6

19 4 1 5 4 4 1

20 4 1 6 4 4 2

21 4 1 7 4 4
22 4 1 8 4 4 4

23 4 1 9 4 4 5

24 4 1 10 4 4 6,

25 5 1 4 5 5 1

26 5 1 5 5 5 2

2? 5 1 6 5 5 3

2E 5 1 7 5 5 4
29, 5 1 8 5 5 5
30 5 1 9 5 5 6

1'ORGI AL PAGE

OF, pooR QUAUVYX

A-31

ITYPE IAO NEMCD #PES -IFIR'ST ISECCN(ITHIRE KO .jo

4 19 11 10 9 5 6 1

IDEL JDEL KOEL ICLIM JLIM ILIM
1 45 9 3 6 9

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL
1 1 1 8 1 1 1
2 	 1 2 0 1 1 1

1 1 22 1 1
1 1 2 1 1

5 1 1 10 3 1 1
6 	 1 2 2 3 1 1
1 	 1 1 0 5 1 1
a 	 1 2 3 4 1 1
9 	 1 1. 1 5 1 1

10 1 2 4 5 1 1
11 1 1 2 6 1 1
12 1 2 5 6 1 1

13 1 1 3 7 1 1
14 1 2 6 7 1 1
15 1 1 4 E 1 1
16 1 2 7 e 1 1
17 1 1 5 9 1 1
la 1 2 8 9 1 1

19 2 1 10 1 5 2
20 2 2 2 1 5 2
21 2 3 5 1 5 2
22 2 1 0 2 5 2
23 2 2 3 2 5 2
24 2 3 6 2 5 2
25 2 1 1 3 5 2
26 2 2 4 3 5 2
27 2 3 7 2 5 2
28 2 1 2 4 5 2
29 2 2 5 4 5 2
3'0 2 3 8 4 5 2
31 2 1 3 5 5 2
32 2 2, 6 5 5 2

33 2 3 9 5 5 2
34 2 1 4 6- 5 2
35 2 	 7 6 5 2

36' 2 	 10 6 5 2
31 2 1 5 7 5 2
38- 2 2 8 7 5 2

3'9 2 3 0 7 5 2
40 2 1 6 E 5 2
41 2 2 9 E 5 2
42 2 3 1 e 5 2
43 2 1 7 9 5 2
44 -2 2 10 9 5 2'
45 2 3 2 9 5 2
46 3 1 4 1 3 4
47 3 2 7 1 3 4
4E 3 1 5 2 3 4

ORIGINAL PAGE IS 49 3 2 8 2 3 4
OPOR50 5 o 33 11 '67 43 33 4

OPORQUALITY 	 5 3 2 9 3 3 4

53 3 2 10 4 3 4

54 3 1 8 5 3 4
55 3 2 0 5 3 4
56 3 1 9 6 3 4
57 3 2 1 6 3 4
58 3 1 l 7 3 4
59 3 2 2 7 3 4
60 3 1 0 f 3 4
61 3 2 3 e 3 4
62 3 1 1 9 3 4
63 3 z 4 9 3 4

A-32

ITYPE IAO MEMCD SPES IFIRST ISECCNE IT14IRC KO J.3

5

[DEL
9

NUN
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

26

2?
26

29

30

31

32

33

34

35

36

3?
38

39

40

41

42

43

44

45

46

47

4a

49

50

51

52

53

54

55

19

JOEL
1

CYCLE
1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

11 10 9

KDEL ICLIN JLIM
45 6 9

SUBITER OFFSET
1 8

2 0
1 6

2 9

1 4

2 7

2

5

1 0
2 3

1 10

2 2

1 8

2 0

1 6

2 9

1 4

2 7

1 2

z 5

1 1

2 4

1 10

2 2

1 8

2 0
1 6

2 9

1 4

2 7

1 3

z 6

1 1

2 4

1 10

2 2

1 8

2 0
1 6

2 9

1 5

z 8

1 3

2 6

1 1

2 4

1 10

2 2

1 8

2 0

1 7

1 5

1 3

1 1

1 10

5

ILIM
5

IWAL
1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

3

1

3

1

2

1

3

1

3

1

4

1

4

1

4

1

4

1

4

1

5

1

5

1

5

1

5

1

5o

1

6

6

6

6

6

JVAL
1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

4

4

5

5

1

1

z
2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

2

3

4

5

6 1

KVAL
1

2

1

2

1

2

1

2

1

2

2

3

2

3

2

2

2

3

3

4

1

4

4

3

4

3

4

4

5

4

5

4

5

4

5

4

5

5

6

5

6

5

6

5

6

5

6

6

6

6

6

6

ORIGINAL PAGE IS
OF POOR QUALITY

A-33

ITYPE . IAO MEMND #PES IFIRST ISECCNE ITI'IRC KO JO

6 19 11 10 9 5 6 1

IDEL JOEL KDEL ICLIM JL IM ILIH
45 9 1 5 5 6

NUN CYCLE SUBITE6 OFFSET IVAL JVAL KVAL

1 1 1 8 1 1 1

2 1 2 8 2 1 1

3 1 9 1 2.
4 1 9 2 2
5 1 1 10 1 1
6 1 2 10 2 1 3

7 1 1 0 1 1 4

8 1 2 0 2 I 4

9 I 1 1 1 1 5

10 1 2 1 2 1 5

11 1 1 2 1 1 6

12 1 2 2 2 1 6
1 3 2 1 10 3 1 1
14 2 2 10 4 1 1
15 2 1 0 3 1 2
16 2 2 0 4 1 2
1? 2 1 1 3 1 2

18 2 2 1 4 1 3
19 2 1 2 11 4
20 2 2 2 4 1 4

21 2 1 3 3 1 5

22 2 2 3 4 1 5

2"3 2 1 4 3 1 6

24 2 2 4 4 1 6
25 3 1 1 -5 1 1

26 3 2 1 6 1 1

27 3 1 2 5, 1 2

2t 3 2 2 6 1 2

29 3 1 3 5 1 3

30 3 2 3 6 1 3

31 3 1 4 5 1 4

32 3 2 4 6 1 4

33 3 1 5 5 1 5

34 3 2 5 6 1 5
35 3 6 5 1 6

36 3 6 6 1 6

37 4 1 3 7 1 1

38 4 2 3 f 1 1

39 4 1 4 7 1 2
40 4 2 4 8 1 2

41 4 1 5 7 1
42 4 2 5 f 1 3
-43- 4 1 6 7 1 4

44 4 2 6 e 1 4
45 4 1 7 7 1 5

46 4 2 7 E 1 5
47 4 1 8 7 1 6
48 4 2 8 e 1 6
49 5 1 5 9 1 1
50 5 1 6 9 1 2

51 5 1 7 9 1 3

52 5 1 8 9 1 4

53 5 1 9 9 1 5

54 5 1 10 9 1 6

A-34

ITYPE IAO MEMOD IPES IFIRST ISECONC ITHIRD KO iC

1 19 11 ic 6 "2 8

IDEL
1

JOEL
6

KDEL
1,2

ICLIM
2

JLIM
2

ILI%'
f

NUN
1
2
3
4
5
6
1
8
9

t0
11
12

CYCLE
1
1
1
1
1
1
2
2
2
2
2
2

SUEITER
i
1
1
1
1
1
1
1
1
1
1
1

OFFSET
8
9

IC
0
1
2

3
4
5
6
7

IVAL
1
2
3
4
5
6
1
2
3
4
5
6

JVAL
1
1
1
1
1
1
1,
1
1
1
1
1

K AL

1
1
1
1
1

6
6
6
6
6

ITYPE IAO MEMOD #PES IFIRST ISECOND ITHIRD KO JC

2 19 11 iC 6 2 8 1

ICEL
6

JOEL
12

KOEL
1

ICLIM
5

JLIM
8

ILIM
2

NUM
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
1T

"18

CYCLE
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5

SUBITER
1
2
I
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1

OFFSET
8
1
3
7
0
4
6

10
3
7
9
2
6

10
1
5
2
8

IVAL
1
2
1
2
2
3
2
3
3
4
3
4
4'
5
4
5
6
6

JVAL
1
1
2
2
1
1
2
1
1
1
2

1
1
2
?
1
2

KVAL
1
1
1
1
3
1
3
1
5
1.
-
1
7
1
7
I
i
1

ITY'PE

3

IAO MEMOD

19 11"

PES

I1

IFIRST

6

ISECOND

2

ITHIRD

8

KO

1

Jc

ICEL
12

JDEL
1

KOEL ICLIM' JLIN
6 2 6

ILIM
3

ORIGINALPAGEIS

OF POOR QUALITY

NUM
1
?
3
4
5
6

8
9

10
11
12
13
14
15
16

CYCLE
1
1
1
1
1
1,
1
1
2
2
2
2
2
2
2
2

SU8ITER
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

OFFSET
e
9

10
a
1
2
3
4
7
8
9

10
0
1
2
3

IVAL
1
1
1
1
1
1
1

-
5
5
5
5
5
5
5
5

JVAL
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

K-AL
1

4
5
6
7

1
2
3
4
5
6
7
a

A-35

ITYPE TAO MEMOD UPES IFIRST

4 19 11 iC 6

IDEL JOEL KOEL ICLIM JLIM

1 12 '6 2 8

NU4 CYCLE SUEITER OFFSET

1 1 1 a
2 1 2 6
3 1 1 9
4 1 2 7
5 1 1 10

1 2 8
7 1 1 C

1 2 9
9 1 1 1
10 1 2 iC
11 1 1 2

1? 1 2 0

13 2 1 5

14 2 1 6

15 2 1 7

16 2 1 8

IT 2 1 9

18 2 1 t0

ITYPE IA,O MEMOD SPES IFIRST

5 19 11 IC 6

OEL JOEL KNEL ICA.IM JL1M

6 1 12 5 6

NUM CYCLE SUEITER OFFSET
1 1 1 a

1 2 3
3 1 1 3
4 1 2 9
5 2 1 2

6 2 2 8
7 2 3 3
8 2 1 8
9 2 2 3

10 2 3 9

11 3 1 2

12 3 2 8

13 3 1 8

14 3 2 3

15 4 1 2

16 4 2 e

17 4 1 8

1 4 2 3

19 5 1 7

20 5 2 2

21 5 1 2

22 5 2 8

ISECOND ITHIPD KO JC

2 8 1

ILIM

6

IVAL JVAL KVAL
1 1 1
1 1 1
2 1 1
2 1 1
3 1 1

3 1 1

4 1 1

4 1 1

5 1 1

5 1 1

6 1 1

6 1 1

1 3 2

2 3 2

3 3 7

4 3 2

5 3 2

6 3 2

ISECONC ITHIRD KO JC

2 8 1

ILI
2

IVAL JVAL K AL
1 1 I
1 1 2
1 2 1
1 2 2
5 1 ?
1
1

1
1

3
4

5 2 2
1 2 3
1 2 4
3 1 4
1 1 5
3 2 4
1
k

2
1

5
6

1
1

1
2

7
b

1 2 7
5 1 7
1 1 8
5 ? 7
1 2 8

A-36

ITYPE IO MEMO $FES IFIRSI ISECOND ITHIRD KO Jf

6 19 11 i 6 2 8 1 V

IDEL JDEL KOEL ICLIM JLIM ILIM

12 6 1 2 2 8

NUM CYCLE SUEITER OFFSET IVAL JVAL KVAL

1 1 e 1 1
2 1 2 8 2 1 1

3 1 3 e 3 1 1

4 1 4 8 4 1 1

9 1 5 8 5 1 1

6 1 1 9 1 1 ?

7 1 2 9 2 1 2

q 1 3 9 3 1

9 1 4 9 4 1

10 1 5 9 5 1

11 1 1 10 1 1 3

12 1 2 10 2 1 3

13 1 3 Ic 3 1 3

14 1 4 IC 4 1 3

15 1 5 ic 5 1 3

16 1 1 C 1 1 4

1? 1 2 0 2 1 4

1f 1 3 C 3 1 ­
to 1 4 0 4 1 4

20 1 5 0 5 1 4

21 1 1 1 1 1 5

22 1 2 1 2 1 5

23 1 3 1 3 1 5
24 1 4 1 4 1 5

25 1 5 1 5 1 5

26 1 1 2 1 1 6

27 1 2 2 2 1 6

28 1 3 2 3 1 b

29 1 4 2 4 1 6

30 1 5 2 5 1 6

31 1 1 3 1 1 7

3? 1 2 3 2 1 7

33 1 3 3 3 1 7

34 1 4 3 4 1 7

35 1 3 5- 1 7

36 1 1 4 1 1

37 1 2 4 2 1

38 1 3 4 3 1

39 1 4 4 4 1

40 1 5 4 5 1

41 2 1 2 6 1 1

42 2 1 3 6 1
43 2 1 4 6 1

44 2 1 5 6 1 4

45 2 1 6 6 1 9

46 2 1 7 6 1 6

47 2 1 8 6 .1 7

48 2 1 9 6 1

A-37

ITYPE

1

IDEL

1

NUM
1
2
3
4
5
6
7

8
9

10

11

12

ITYPE

2

IDEL

6

NUm

1
2

3
4
5

6
7
8

9

10

11

12

13

14

15

oF
19

20

ITYPE

3

IDEL

12

NUM

1
2
3

4

5

6
7

8
9

10
11

12

13

14

15

16

IAO MEMOD $PES IFIRST

27 13 11 6

JOEL KCEL ICLIM JLIM

6 12 2 2

CYCLE SUBITER OFFSFT

I 1 1

1 1 2

1 1 3

1 1 4

1. 1 5

1 1 6

2 1 2

2 1 3

2 1 4

2 1 5

2 1 6

2 1 7

IAO MEMOD #PES IFIRST

27 13 11 6

JOEL KDEL ICLIM JLIM
12 1 5 8

CYCLE SUBIIER OFFSET

1 1 1
1 2 IC
1 1 7
1 2 3
2 1 12
2 2 8
2 1 5
2 2 1
3 1 0
3 2 6
3 3 2
3 1 3
3 2 12
3 3 E
4 1 4

4 2 6
5 1 2

5 1 8

IAO MEMOC *PES IFIFST

27 13 11 6

JOEL KDEL ICLIM JLIM

1 E 2 6

CYCLE SLEIER OFFSET
1 1 1
1 1 C
1 1 12

1 1 11

1 1 10

1 1 9
1 1 a

1 1 7
2 1 12

2 1 i1
2 1 lC

2 1 9

2 1 8

2 1 7

2 1 6

2 1 5

ISECONC .ITHIRD KO it

2 8 1 1

ILIM

6

IVAL JVAL KVAL

1 1 1
2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

1 2 0

2 2 6
3
4 2

5 2

6 2

ISECONE ITHIFD K.. JC

2 8 1

ILI"

IVAL JVAL K AL

1 1

1 1

1 1

2 "1 1
2 1 4

11 1

2 2 4

3 ? 1
3 1 7

4 1 1

5 1 1

3 7

4 1

5 11

5 1

6 C1
6 1

6 2 5

ISECOND ITPIRD NO JC

2 8 1

ILIM

8

IVAL JVAL KVAL

1 1 1
1 1 2
1 1 3

1 1 4

1 1 5

1 1 6

1 1 7

1 1 8
6 2 1

6 2 2
6 2 3

6 2 4

6 2 5

6 2 6

6 2 7

6 2 8

A- 38

1

ITYPE IAO MEMOD #FES IFIPSI ISECONE II-IR (C J-:

4 27 13 11 b 2 1

ICEL
1

JOEL
12

KDEL
6

ICLIM
2

JLIM
8

ILI"

NUM
1
2

4
5

7

9
15
11
12
13
14
15
16
1?
16

CYCLE
1
1
1
1-
1
1
1
1.
1
1
1
1
2
2
2
2
2
2

SUBITER
1
22

2
1
2
1
2
1
2
1
2
1
1
1
1
1
1

IFFSET
1

2
3
3
4
4
5
5
6
6
7
4
52
E
7
8
9

IVAL
1
1
?
2

4
4
5
5
6
b
1

3
4
5
6

JVAL
1
1
1
1
1
1
1
1
1
1
1
1
4
4

4
4
4

t AL

1
1
1
1

1
i
1

t
2

2
I

ITYPE IAO MEMOC $FES LFIST ISECONO IT.HIRD KO J(

5 27 13 '11 6 2 6 1 1

IrEL
6

JOEL
1

KOEL
12

ICLIN
5

AIM
6

ILIM
2

NIM
1
2
3
4
5
6
7
a
9

10
11
12
13
14
15
16
17
18
19
20
21
E2
23
24

CYCLE
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4.
4
5
5

SUEITER
1
2
1
2
1
2
3
1
2
3
1
2
3
1
2
2
1
2
3
1
2
3
1
1

OFFSET
1
7
7
c
5

11
4

11
4

IC
2
e
1

1
7

12
5

11
c

11
4
9
2

IVAL
1
1
1
1
5
1
1
6
1
1
5
1
1
5
1
1
4
1
1
4
1
1
3
3

JVAL
1
1

2
1
1

- 1
2
2
2
1
1
1
2
2
2
1
1
1
2

"
2
1
2

KVAL
1
2
1
2
2
3
4
2
3
4
4

C

4

b

7

3

A-39

Appendix B

Extended or Squared Accessing

A-40

ITYPE IAO MEMOC #PES FIRST ISECON ITFIRD KC J

6 27 13 11 6 2 8 1

IDEL JOEL KEL ICLIM JLTM IL'

12 6 1 2 2

NLM CYCLE SLEIIER OFFSET IVAL JVAL K AL

1 1 1 1 1 1
2 1 2 3 1 1

3 1 3 5 1 1

4 1 4 7 4 19 1 9 1
6 1 6 it 6 1 i

7 1 1 0 1 1 2

1 2 2 2 1 ­
1 - 4 3 1 ?)

10 1 4 6 A 1

11 1 5 e 5 1 /

12 1 E 1C 6 1

13 1 1 12 1 1

14 1 2 1 2 1

15 1 3 - 3 1

16 1 4 5 4 1

17 1 5 .1 5 1

18 1 E 9 6 1 s

19 1 1 11 1 1 4

20 1 e C 2 1 4

21 1 3 2 3 1 4

22 1 4 4 4 1 4

23 1 5 E 5 1 4

24 1- 6 E 6 1 4

25 1 1 10 1 1

26 1 2 12 2 1

27 1 3 1 3 1

26 1 4 3 4 1

29 1 5 5 5 1 5

0 1 6 7 6 1 5

31 1 1 9 1 1

32 1 2 11 2 1 6

33 1 3 c 3 1 ,

34 1 4 2 4 1

315 1 5 4 5 1

36 1 6 E 6 1 6

37 1 1 - e 1 1

38 1 a Ic 1 7

39 1 3 12 3 1 1

40 1 4 1 4 1 7

41 1 ' 3 5 1 7

42 15 6 1 7

43 1 1 7 1 1

£4 1 2 9 2 1 ,

45 1 *3 11 3 1 .

46 1 4 c 4 1

47 1 5 2 5 1

46 1 E 4 6 1 5

49 2 1 12 6 1
50 2 1 11 6 2
51 2 1 !1C 6 2 3

52 2 1 9 6 4
!3 2 1 e 6 2 5
54 2 1 7 6 2 6

55 2 1 6 6 c 7

56 2 1 5 6 2 F

ORIGINAL PAGE IS

OF POOR QUAITY

A-40

ITYPE IAO MEMD #PES IFIRST ISECENt ITHIRD NO J9

1 19 11 10 3 - 3 3 1

IOEL JOEL NOEL ICLIM JLIM ILIM

1 3 9 1 3 -3

NUN CYCLE SLBITEF O FF SET IVAL JVAL KVAL

1 1 1 8 1 1 1
2 1 1 9 2 1 13 1 1 10 3 1 1

ITYPE IAO MEMED #PES IFIRST ISECCNC ITHIRC KO JO

2 19 11 10 3 3 1

JOEL JOEL NOEL ICLIM JAIN ILIH

3 9 1 1 3 3

NUN CYCLE SUBITER OFFSET IVAL JVAL KVAL

1 1 1 8 1 1 1

2 1 2 4 2 1 13 1 3 0 3 1 1
4 1 1 0 1 2 1
5 1 2 7 2 2 1
6 1 3 3 3 2 1
1 1 1 3 1 3 18 1 2 10 2 3 19 1 3 6 3 3 1

ITYPE IAO MENCO #PES IFIRST. -ISECCNE ITPIRI KC Ja

3 19 11 10 3 3 3 1

IDEL JOEL NOEL ICLIM JIM IL I

9 1 3 1 3 3

NUN CYCLE SUBITER OFFSET IVAL JVAL KVAL1 1 1 8 1 1 1
2 1 1 6 1 1 2
3 1 1 4 1 1 3.

ITYPE IAO MENCO #PES IFIRST ISECCNE ITHIRC KO JO.

4 19 11 10 3 3 3 1

IDEL JOEL NOEL ICLIM JLIM ILIM

1 9 3 1 3 3

NUN CYCLE SUBITEF OFFSET IVAL JVAL KVAL

1 1 1 8 1 1 1
2 1 2 6 1 1 I

3 1 3 4 1 1 1

4 1 4 2 1 1 1
5 1 ,1 9 2 1 1

6 1 2 7 2 1 1

32 1
4 3 2 1 1
9 1 1 10 3 1 1

10 1 2 8 3 1 1
11 1 3 6 3- 1 1
12 1 4 4 3 1 1 A-41

ITYPE IAO MENCD #PES 'IFIRS-T ISECENE ITIRC KO jo

5 19 11 10 - 3 3 3' 1

IOEL JOEL KOEL ICLIM JLIM ILIH

3 1 9 1 3 3

NUM CYCLE SUBITER OFFSET IVAL JVAL KV&L

1 11 8 1 1 1

2 1 2 3 1 1 2
3 1 3 1 1"
4 1 1 0 1 1­
5 1 2 6 I 2 26 1 3 .1 1 2 3

1 1 1 3 1 1
 e 1 2 9 1 3 2
9 1 341

ITYPE IAO MENLD #PES IFIRST ISECCN, *IT hIRC KO J3

6 19 11 10 3 3 3 1

JOEL JOEL KOEL ICLIM JLIM ILI
9 3 1 1 3 3-

NUN 'CYCLE SUBITER O.FF SET IVAL JVAL KVAL

1 1 1 8 1 1 1

2 1 2 0 2 1 13 1 3 3 3 1 14 1 1 6 1 1 2
5 1 2 9 2 1 26 1 3 1 3 1 2
7 1 1 4 1 1
e 1 2 7 2 1
9 1 3 10 3 1

ORIGINAL PAGE IS
OF POOR QUALMY

A-42

ITYPE IAO MEMOG IPES IFIRST ISECOND ITHIRD KO JC

1 19 11 iC 5 5 	 1 1

IEL JOEL KOEL ICLIM JLIM ILI.M
1 5 25 3 5. 5

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL

1 1 1 e 1 1 1

2 1 1 9 2 1 1

3 1 1 Ic 3 1 1

4 1 1 0 4 1 1

5 1 1 1 5 1 1

6 2 1 3 1 1 3

7 2 1 4 2 1 3

8, 2 1 5 3 '1

9 2 1 E 4 1 3

10 2 1 7 5 1 3

1 3 1 9 1 1 5

12 3 1 Ic 2 i 5

13 3 1 c 3 1 9

14 3 1 1 4 1

15 3 1 2 5 1 5

ITYPE IAO MEMOD #PES IFIRST ISECOND ITHIRD KO Jr.

2 19 11 iC 5 5 5 1

IDEL JOEL KDEL I'CL1M JLIM ILl

5 "25 1 3 5

NUM 	 CYCLE SUEITER OFFSET IVAL. JVAL K AL

1 	 1 - 1 1

1- 2 5 1 1

1 I 2 1

4 1 2 10' 2

5 1 1 7 1

6 1 2 4 2 1

S1 1 1 4 1

1 2 9 4 1

9 1 1 E 5 1

11 1 2 3 z 5 1

11 2 1 Ic 3 1 1

12 2 2 7 4 1 1

13 2 1 4 3 1

14 2 2 1 4 2 1

15 2 1 9 3 3- 1

1,6 2 2 6 4 3 1

17 2 1 3 3 4 1

18 2 2 c 4 4 1

19 2 1 8 3 	 1

20 2 2 5 4 5 1

21 3 1 1 5 1 t

22 3 1 6 5 2 1

23 3 1 C 5 3 1

24, 3 1 5 1 4 1

25 3 1 1O 5 5 1

ORIGINAL PAGE IS
OF POOR QUALITY

A-43

ITYPE IAO MEMOD IPES IFIRST ISECOND ITHIRD KO JC

3 19 1-1 1C 5 5 5 1

IDEL JOEL KEEL ICLIM JLIM ILIM

25 1 5 3 5 5

NUM CYCLE SUEITER OFFSET IVAL JVAL KVAL
1 1 1 e 1 I- 11 1 1 0 1

3 1 1 3 1 1 3

4 1 1 6 1 1 4

5 1 1 9 1 1 5
6 2 1 7 1 3 1
7 2 1 10 1 3 2
8 2 1 2 1 3 3

Q 2 1 5 1 3 4

10 2 1 e 1 3 5

13 3 1 6 1 11

12 3 1 9 1 5 2

13 3 1 1 1 5 ,

14 3 1 4 1 4

15 3 1 7 1 5

ITYPE IAO MEMOO $PES IFIRST ISECONC ITHIR.O KO Jc

4 19, 11 iC 5 5 5 1

IDEL JOEL KEEL IC.IM JLIM ILl"

1 25 5 3 5

NUm CYCLE SUEITER OFFSET IWAL JVAL K AL

1 1 1 e .I 1

2 1 2 9 1 1
3 1 1 9 1 1
4 1 2 I 2 1 1

5 1 1 1,0 3 1 1

6 1 2 G 3 1 1

7 1 1 0 4 1 1

a 1 2 1 4 1 1

9 1 1 1 5 1 1

10 1 2 2 5 1 1
11 2- 1 7 1 1 1

-12 2 2 8 1 1 3

13 2 1 e 2 1 3

.14 2 2 9 2 1 3
15 2 1 9 3 1 3

16 2 2 10 3 1 3

17 2 1 10 4 1 3

1 2 2 c 4 1 3
19 2 1 C 5 1 3

20 2 2 1 5 1 3

21 3 1 6 1 1 5

22 3 1 7 2 1 5

23 3 1 8 3 1 5

24 3 1 9 4 1. 5

25 3 1 tO 5 1 5

SALA Q
ORII~iLPAGE IS

A-44

ITYPE IAO MEMOD APES IFIRST ISECOND ITHIRD KO JC

5 19 11 1C 5 5 5 1

IDEL JOEL KDEL ICLIM JLIM ILIM

5 1 25 3 5 5

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL
1 1 1 8 1 1 1
2 1 2 6 1 1 2
3 1 1 2 1 2 1
4 1 2 a 1 2 2
5 1 1 7 1 3 1
5 1 2 5 1 3 2
7 1 1 1 1 4 1
8 1 2 10 1 4 ?
9 1 i 6 1 1
I1 1 2 4 1 5

II 2 1 3 1 1 3

12 2 2 1 1 1 4
13 2 1 e 1 2 3
1 2 2 6 1 ? 4
15 2 1 2 1 3 3

16 2 2 C 1 3 4

1? 2 1 7 1 4 3
 .
1 2 2 5 1 4 4
19 2 1 1 1 5
20 2 2 IC 1 5 4
21 3 1 9 1 1 5
22 3 1 3 1 2 5
23 3 1 8 1 3 5
24 3 1 2 1 4 5
25 3 1 1 1 S S

ITYPE IAO MEMOD IPES IFIRST ISECOND ITHIkD KO JC

6 19 11 iC 5 5 5 1

IDEL JOEL KDEL ICLIM JLIM IL I,
25 5 1 3 5

NUN CYCLE SUEITER OFFSET IVAL JVAL K AL

1 1 1 8 1 1
2 1 2 6 1 1
, 1 1 0 1 1
4 1 c 9 2 1 ?
5 1 1 3 1 1 3
6 1 2 1 2 1 3
7 1 1 E 1 1 4
8 1 2 4 2 1 4
9 1 1 9 1 1 5

10 1 2 7 2 1 5
11 2 1 1c 3 1 1
12 2 2 8 4 1 1
13 2 1 2 3 1 "2
14 2 2 0 4 1 2
15 2 1 5 3 1 3
16 2 2 3 4 1 3
17 2 1 e 3 1 4
18 2 2 6 4 1 4
19 2 1 C 3 1 9
20 2 2 9 4 1 5
21 3 1 1 5 1 1

22 3 1 4 5 1 2

23 3 1 7 5 1 3

24 3 1 IC 5 1 4

25 3 1 2 5 1 5

ORIGINAL PAGE IS
OF POOR QUALITY

A-45

ITYPE IAO MEMOC PES IFIRST ISECOND ITHIRD KO .JC

1 27 13 11 *6 6 6 1

ICEL JOEL KDEL ICLIM JLIM ILIM

1 6 36 4 6 6

NUM CYCLE SUEITER OFFSET]VAL JVAL IVAL
1 1 1 1 1 1 1
2 1 1 2 2 1 1
3 1 1 3 3 1 1
4 1 1 4 4 1 1
5 1 1 5 5 1 1
6 1 1 E 6 1 1
7 2 1 2 1 6 2

1 3 2 6 2
9 2 1, 4 3 6
8 2

10 2 1 5 4, 6 2

11 2 1 6 5 6 ?

2
12 2 1 7 6 6

13 3 1 3 1. 5 4

4

15 3 1 5 3 5 4

16 3 1 6 4 5 4

.17 3 1 7 5 5 4

14 3 1 4" 2 q

4
18 3 1 e 6 5
19 4 1 4 1 4 6

20 4 1 5 2 4 6

6

22 4 1 7 4 4 6

23 4 1 8 5 4 6

24 4 1 9 6 4 6

21 4 1 E 3 4

OF POOR QUAUM
ORLIGAL~ PAE 1­

A-46

ITYPE IAG MEMOD #PES IFIRST ISECOND ITFIRD 1(0 -JC

2 27 13 11 6 6 6 1

ICEL JOEL KOEL ICLIM JLIM ILI'

6 3-6 1 4 6

NUM CYCLE' SUEITER OFF5ET IVAL JVAL ?('AL
1 1 1 1 1 1
2 1 2 7 1 1
3 1 1 7 1 11
4 1 2 0 2 ? 1
5 1 1 c 1 3 1
6 1 2 6 2 3 1
T 1 1 6 1 4 '1

8 1 2 12 2 4 1

9 1 1 12 1 5 1

13 1 z 5 2 5 1

11 1 1 5 1 6 1

12 1 2 11 2 6 1

13 2 1 C 2 1 6

14 2 2 6 3 1 1

15 2 3 12 4 1 1

16 2 1 6 2 2 6

1? 2 2 12 3 1

18 2 3 5 4 1

19 2 1 12 2 3 6

20 2 2 5 3 3 1

21 2 3 11 4 3 1

22 2 1 5 2 4 6

23 2 2 11 3' 4 1

24' 2 3 4 4 4 1

25 2 1 11 2 5 6

26 2 2 4 3 5 1

27 2 3 Ic 4 5 1

28 2 1 4 2 6 6

29 2 2 10 3 6 1

30 2 3 4 6 1

31 3 154 1 5

32 3 2 11 5 1 1

33 3 3 4 6 1 1

34 3 1 11 4 2 5

35 -3 2 4 5 1

36 3 3 I 6 2 1

37 3 1 4 4 3 5

38 3 2 10 5 3 1

39 3 3 3, 6 3 1

40 3 1 Ic 4 4 5

41 3 2 3 $ 4 1

42 3 3 9 6 4

43 3 1 3 4 5 5

44 3 2 9 5 5 1

45 3 3 2 6 5 1

46 3 1 9 4 6 9

47 3 2 2 5 6 1

48 3 "A a 6 6 1

49 4 1 iC 6 1 4

50 4 1 3 6 ? 4

91 4 1 9 6 3 4

5c' 4 1 2 6 4 4

53 4 1 8 6 5 4

54 4 1 1 6 6 4

ITYPE

3

IDEL
36

NUM

1
2

3
4
5
6

7

8
9

10

Ii

12

13

14

15
16

17
18

19
20
21
22

23

24

IAO MEMOD aPES IFIRST

27 13 11 6

JOEL KEL ICLIM JLIM
1 6 4 6

CYCLE SUEIIER OFFSET
1 1 1
1 1 11
1 1 8
1 1 5
1 1 2
,11 1 12
2 1 12

2 1 9

2 1 6

2 1 3

2 1 a

2 1 IC
3 1 i
3 1 7
3 1 4
3 1 1
3 1 11
3 1 .2

4 1 E
4 1 5

' 1 2
4 1 12
4 1 9
4 1 6

ISECUND ITHIRD KO JC

16 6

ILIM
6

IVAL JVAL KVAL

1 1 1
1 1 2

1 1 3

1 1 4

1 1 5

1 1 6
6 2 1

6 2 2

6 2 3

6 2 4

6 2 5

6 2 6
5 4 1
5 4 ?

5 4 3
5 4 4

5 4 5
5 4 6

4 3 1
4 6 2
4 6 3
4 6 4

4- 6 5

4 6 6

ORIGINAL PAGE IS

OF pooR QUALITY

A-48

IFIRST. I-SECOND ITHIRD- KO Je
ITYPE IAO MEMOD #PES

4 27 13 A11 6 6 6 1

IDEL JOEL KOEL ICLIM JLIM ILIM

1 36 6 4 6 b

NUM CYCLE SUEIIER OFFSET IVAL JVAL KAL
1 1 11 1 1
2 1 2 12 1 1

3 1 2 1

4 1 2 0 1 1
5 1 1 3 3 1 1
6 1 2 1 3 1 1
7 1 1 4 4 1 1
8 1 2 2 4 "1 1
9 1 1 5 1 1

10) 1 5 1 1
1 6 6 1 111 1

12 1 2 4 6 1 1

13 2 1 5 1 6 2

1 2
14 2 2 3 6

15 2 3 1 1 6

16 2 1 6 2 6

17 2 2 4 2 6 2

13 2 3 2 2 6 2

19 2 1 7 3 6 2

2
20 2 2 5 3 6

21 2 3 3 3 6 2

1 e 4 6 2

23 2 2 6 4 6 ?

22 2

24 2 3 4 4 6

25 2" 1 9 5 6 2
26 2 2 7 5 6 ?

5 6 ­27 2 3 5

28 2 1 iC 6 6 2
29 2 2 e 6 6 2
30 2 3 6 6 6 2
31 3 1 7 1 5 4
'2 3 2 5 1 5 4

3 3 1 , 433 3

34 3 1 8 2 "5 4

35 3 2 6 2 5 4

36 3 3 4 2 5 4

17 3 1 9 3 5 4
18 3 2 7 3 5 4
39 3 3 5 3 5 4
40 3 1 lc 4 5 4
41 3 2 e 4 5 4
42 3 3 6 4 5 4
43 3 1 11 5 4
44 3 2 9 5 5 4

4

46 3 1 12 6 '5 4

45 3 3 7 5 5

4? 3 2 10 6 5 4

48 3 3 8 6 9 4

6
49 4 1 9 1 4

50 4 1 1C 2 4 6

51 4 1 11 3 4 6

2 4 1 12 4 4 6

53 4 1 0 5 4 6

54 4 1 1 6 4 6

A-49

#PES IFIRST ISECOND ITHIRD KO JC
1TYPE IAO HEMOC

I5 27 13 11 6 6 6

IDEL JOEL KDEL ICLIM JLIM ILIM

6 1 36 4 6 6

IVAL KVAL
NUM CYCLE SUEITER OFFSET JVAL

1 11 1 1 1 1

2 1 2 5 1 1 2
1 2 13 1 1 7

4 1 11 1 2 2

5 1 1 c 1 3 1
6 1 2 4 1 ,3 2

1 11 6 1 4 1
8 1 2 IC 1 4 2
9 1 1 12 1 5 1

2
10 1 2 3 1 5

11 1 1 5 1 6
 I"

?

13 2 1 3 6 1 2

12 1 2 9 1 6

1 1 3
14 2 2 7

1 1 4
15 2 3 11

1 6 2
16 2 9 2

17 2 2 0 1 2 3

3 1 4
18 2 4 ?

1 6 2
19 2 2 3

6 3
20 2 2 1 3

21 2 3 10 1 3 4

2 1 e 6 4 2
22

23 2 2 12 1 4 3

3 3 1 4 4
24 2

25 2 1 1
 6 5

26 2 2 5
 1 5 3

1 5 4
2? 2 3 9

28 2 1 7 6 6 2

329 2 2 11 1 6
3 1 4
30 2 2 6

4
!1 3 1 9 5 1

C 1
32 3 2 1 5

1 6
33 3 3 4 1

34 3 1 2 5 2 4

1 2 5
35 3 2 6

1 Z 636 3 3 10

37 3 1 8 5 3 4
1 3 5
38 3 2 12

3 1 1
39 3 3 3

1 5 4 4
40 3 1

5
-2 1
41 3 5 4

3 1 6
42 3 9 4

7 5
43 3 1 5 4

44 3 2 11 1 5 5

3 2 1 5 6
45 3

1 (5 6 4
46 3

2 4 1 6 5
47 3

1 6 6
48 3 3 8

1 4 6
49 4 2 1

6
50 4 1 e 4 2

1 4 6
51 4 1 3

1 4 6
52 4 7 4

1 4 6
53 4 C 5

6
.1 4
54 4 6 6

ORIGINAL-PAGE IS
OF POOR QUAJITY

A-50

ITYPE IAO MEMOD NPES IFIRST ISECOND ITHIRD KO JC

6 27

IDEL JOEL

36 6

NUM CYCLE
1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

1? 1

13 2

14 2

15 2

16 2

17 2

18 2

19 2

20 2

21 2

22 2'

23 2

24 2

25 2

26 2

27 2

28 2

29 2

30 2

31 3

32 3

33 3

34 3

35 3

36 3

37 3

38 3

39 3

40 3

41 3

42 3

43 3

44 3

45 3

46 3
47 3

48 3

49 4

50 4

51 4

52 4

53 4

54 4

13 11 6

KEEL ICLIM JLIM

1 4 6

SIJBITER OFFSET
1 1

2 5

1 11

2 2

1 8

2 12

1 5

2 9

1 2

2 6

1 12

2 3

1 6

2 iC

3 1

1 3

2 7

3 11

1 C

2 4

3' 8

1 ic

2 1

3 5

1 7

2 11

3' 2

1 4

2 e

3 12

1 2

2 6

3 10

1 12

2 3

3 7

1 9

-2 C

3 4

1 E

2 IC

3 1

1 3

2 7

3 11

1 0

2 4

3 8

1 11

1 e

1 5

1 2

1 12

1 9

6

ILIM

IVAL
1

i

2

1

2

1

2

1

2

1

2

2

3

4

2

3

4

2

3

4

2.

3

4

2

3

4

2

3

4

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

6

6

6

6

6

6

6

JVAL
1

1

I

1

1

1

1

1

1

1

1

1

6

1

1

6

1

1

6

1

1

6

1

1

6

1

1

6

1

1

5

1

1

5

1

1

5

-1

-1

5

1

1

5

1

1

5

1

1

4

4

4

4

4

4

1

K AL

1

2

3

3

4

4

5

5

6

6

1

1

1

2

2

?
3

3

3

4

4

4

5

5

6

6

6

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

1

2

3

4

5

6

A-51

ITYPE lAG HEMOD SPES IFIRST ISECOND ITHIRD KO JC

1 19 11 1C 1 7 7 1

IDEL JOEL KEL ICLIN JLIM ILIM

1 7 49 5 7 7

NUN CYCLE SEITER OFFSET IVAL JVAL KVAL
1 1 1 8 1 1 1
2 1 1 9 '2 1 1
3 1 1 10 3 1 1
4 4 1 0 4 1 1
5 1 1 1 5 1 1
6 1 1 2 6 1 1
7 1 1 3 7 1 1
8 2 1 1 '1 4
9 2 1 2 2 4
10 2 1 3 .3 4

11 2 1 4 4 4

12 2 1 5 5 4 2

13 2 1 6 6 4 2

14 2 1 7 7 4 2

15 3 1 5 1 7 3

16 3 1 6 2 7 3

17 3 1 7 3 7 3

18 3 1 e 4 7 3

19 3 1 9 5 7 3

20 3 1 1C 6 7 3
21 3 1 a 7 7 3
22 4 1 9 1 3 5
23 4 1 10 2 3 5
24 4 1 0 3 3 5
25 4 1 1 4 3 5

26 4 1 2 5 3 5
27 4 1 3 6 3 5
28 4 1 4 7 3 5

29 5 1 2 1 6 6

30 5 1 3 2 6 6

31 5 1 4 3 6 6

32 5 1 5 4 6 6

!3 5 1 6 5 6 6

34 5 1 7 6 6 6

35 5 1 8 7 6 6

ITYPE IAO HEMOC *PES IFIRST ISECOND ITHIC K) Jr

19 11 1C 7 7 7 1

IDEL JOEL KCEL ICLIN JLTH ILIm
1 49 1 5 7 7

NUN CYCLE SCEIlER OFFSET IVAL JVAL K AL
1 1 1 8 1 1 i
2 1 2 7 1 1
3 1 1 4 1 1

OR O t 4 1 2 3 2

O)FBO Q l 65 11 12 100 2
1 3

3
1
11

1 11 7 1 4 1
8 1 2 6 2 4 1
9 1 1 3 1 j I

10 1 2 2 2 5 1
11 1 1 10 1 6 1
12 1 2 9 2 6 1
13 1 1 6 1 7 1
14 1 2 5 2 7 1
15 2 1 2 2 1 4
16 2 2 1 3 1 1
17 2, 1 9 2 2 4
18 2 2 E 3 2 1
19 2 1 5 '2 3 4
20 2 2 4 3 3 1
21 2 1 1 2 4 4

22 2 2 0 3 4 1

23 2 1 8 2 5 4

24 2 2 7 3 5 1

25 2 1 4 2 6 4 A-52

26 2 2 3 3 6 1

27 2 i c 2 7 4

z8 2 2 10 3 7 1

29 3 1 7 3 1 7

30 3 2 6 4 1 1

1 3 3 5 5 1 t

32 3 1 3 3 2 7

33 3 2 2 4 2 1

34 3 3 1 5 ? 1

35 3 1 1o 3 3 7

36 3 2 9 4 3 1

37 3 3 8 5 3 1

38 3 1 6 3 4 7

39 3 2 5 4 4 1

40 3 3 4 5 4 1

41 3 1 2 3 77

42 3 2 1 4 5 1

43 3 3 0 5 5 1

44 3 1 9 3 6 7

45 3 2 e 4 6 1

46 3 3 7 5 6 1

47 3 1 5 3 7 7

48 3 2 4 4 7 1

49 3 3 3 5 7 1

!0 4 1 C 5 1 3

51 4 2 1o 6 1 1

52 4 1 7 5 2 3

A3 4 2 6 6 2 1

54 4 1 3 5 3 3

55 4 2 2 6 3 1

56 4 1 1C 5 4 3

57 4 2 9 6 4 1

58 4 1 6 5 5 3

59 4 2 5 6 5 1

IO 4 1 2 5 6 3

61 4 2 1 6 6 1

62 4 1 9 5 7 3

E63 4 2 8 6 7 1

64 5 1 5 6 1 6
65 5 2 4 7 1 1

66 5 1 1 6 2 6

67 5 2 0 7 2 1

68 5 1 8 6 3 6

69 5 2 7 7 3 1

70 5 1 4 6 4 6

71 5 2 3 7 4 1
72 5 1 0 6 5

7,3 5 	 110 T 5 1

6 6 6

75 52

74, 5 1 7

6 7 6 1

76 5 1
 3 	 6 7 6

7 7 1
77 5 2 2

I1YPt IAO MEMOD #PES IFIRST ISECOND ITHIRD KO JC

3 19 	 11 10 7 7 7 1

IDEL JOEL KDEL ICLIM JIN iL14

49 1 7 5 7 7

NUN CYCLE SUEITER OFFSET iVAL JVAL K AL
1 1 1 8 1 1 1
2 1 1 2 1 1
3 1 1 7 1 1 3
4 1 1 1 1 1 4
5 1 1 6 1 99
6 1 1 0 1 1 6
7 1 1 5 1 1 7
8 2 1 7 4 ? 1

9 2 1 1 4 2 2

10 2 1 6 4 2 3

11 2 1 0 4 2 4

12 2 1 5 4 2 5

13 2 1 10 4 2 6

14 2 1 4 4 2 7

15 3 1 6 7 3 1

16 3 1 0 7 3 z

17 3 1 5 7 3 3

18 3 1 1C 7 3 4 A-53

19 3 1 4 7 3 5

20 3 1 9 7 3 6

21 3 1 3 7 3
 7

22 4 i 5 3 5 1
23 4 L le 3 5 2
24 4 1 4
 3 5 3

25 4 1 9
 3 5 4

26 4 1 3
 3 5 5

2F 4 1 8 3 5 6

1 2 3 9 7
28 4

1 4 6 6 1

!0 5 1 9 6 6 2

29 5

1 5 1 3 6 6 3
33 5 1 2 6 6 5
34 5 1 1 6 6 6
35 5 1 1 6 6 7

ITYPE IAO MEMOD #PES IFIRST ISECONO ITHIRD hO JC

4 19 11 iC 7 1 7 1

IDEL JOEL KOEL ICLIM JLIn IlM

1 49 7 5 • 7 7

NUN CYCLE SUBItER OFFSET IVAL JVAL KVAL
1 1 1 e 1 1 1
2 1 2 2 1 1 1
3 1 1 9 2 1 1
4 1 2 3 2 1 1
.5 1 1 10 3 1 1
6 1 2 4 3 1 1
7 1 1 0 4 1 1

11 2 5 4 1 1
9 1 1 1 5 1 1

10 1 2 6 5 1 1

11 1 1 2 6 1 1

12 1 2 7 6 1 1
13 1 1 3 7 1 1
14 1 2 e 7 1 1
15 2 1 a 1 4 2
16 2 2 2 1 4 2

17 2 1 9 2 4 ?

1 2 2 3 2 4 2

19 2 1 10 3 4 2

20 2 2 4 3 4 2

21 2 1 0 4 4 ?

22 2 2 5 4 4
23 2 1 1 5 A 2
24 2 2 6 5 4 2
25 2 1 2 6 4 2
26 2 2 7 6 4 2

27 2 1 3 1 4 2

28 2 2 8 7 4 2
29 3 1 8 1 7 3

30 3 2 2 1 7 3

31 3 3 7 1 7 3
32 3 1 9 2 7 3

33 3 Z2 3 2 7 3

0 of 35 3 3 10 2 7 3
3 3 I 2 7 3

37 3 3 9 3 7 3

38 3 1 0 4 7 3

39 3 2 5 4 7 3

40 3 3 10 4 7 3

41 3 1 1 5 7 3

42 3 2 6 5 7 3

43 3 3 0 5 7 3

44 3 1 2 6 l 3

45 3 2 7 6 7 3

46 3 3 1 6 7 3

47 3 1 3 7 7 3

48 3 2 8 7 7 3
49 3 3 2 7 7 3

50 4 1 2 1 3 5

51 4 2 1 1 3 5
52 4 1 3 2 3 5
53 4 2 8 2 3 5
54 4 1 4 3 3 5
55 4 2 9 3 3 9
56 4 1 5 4 3 5

57' 4 2 10 4 3 5
 .a 4 1 6 5 3 5 A-54

59 4 2 0 5 3 5

60 4 i 7 6 3 561 4 2 1 6 3 5

62 4 1 8 7 3 5
63 4 2 2 7 3 5

64 5 1 2 1 6 6

65 5 2 7 1 6
 6

66 5 3 1 1 6 6
E7 5 I - 2 6 668 5 2 t 2 6 6

69 5 3 2 66 6

70 5 1 4 3 6 6

r1 5 2 9 3 6 6
72 5 3 3 6 6
73 5 1 5 4 6
 6

74 5 2 10 4 6 675 5 3 4 4 6 6

76 5 1 6 5 6

77 5 2 0 5 6

78 5 3 5 5 6 4

79 5 1 7 6 6

80 5 2 1 6 6 •

f1 5 2 6 6 6

e2 5 1 6 7 6

63 5 2 2 7 6

84. 5 3 7 7 6

ITYPE IAO EHO IPES IF[RST ISECONt ITHIRD K0 JC

5 19 11 IC 7 7' 1 1

IOEL JOEL KDEL ICLIM JLI ILIM

7 1 AS 5 7 7

NUN CYCLE SU61IER OFFSET IVAL JYAL NVAL

1 1 1 8 1 1 1
2 11 2 6 1 1 2
3 1 1 4 1 ? 1

4 1 2 2 1 2 2

5 11 0 1 3 1

6 1 2 9 1 3 2

7 1 1 7 1 4 1

8 1 2 5 1 4 2
9 1
 1 3 1 5 1

10 I - 1 1 5
11 1 1 10 1 6
 1

12 1
 2 a 1 6 2

13 1 1 6 1 7 1

14 1 2 4 1 7 ?

15 2' 1 5 4 1 2
16 2 2 3 1 1 3

17 2 1 1 4 2 2

1e 2 2 10 1 2 3
19 2 1 6 4 3

20 2 2 6 1 3
 3

21 z 1 4 4 4 2
22 2 2 2 1 4 3

23 2 1 C 4 5 2

24 2 ? 9 1 5 3

25 2 1 7 4 6 2

26 2
 2 5 1 6 3

27 2 1 3 4 7 2

28 2 2 1 1 7 3
29 3
 1 2 7 1 3
30 3 2 C 1 1 4

31 3 3 9 1 1 5

3 3 1 77 2 3

33 3 2 7 1 2 4
34 3 3 5 1 2 S

35 3 1 5 7 3 3

36 3 2 3 1 3 4

37 3 3 1 1 3 5

38 3 1 t 7 4 3

39 3 2 10 L 4 4

40 3 3 a 1 4 5

41 3 1 f 7 5 3

4 3 2 6 1 5 4
43
 3 3 4 1 544 3 1 4 7 6 3 A-55

. 5 3 p 2 1 6 4

1 6 546 3 3 0
3 1 0 7 7 347

9 748 3 2 1 4
1 549 3 3 7 7

50 4 1 8 3 1 5
51 4 2 6 1 6
52 4 1 4 3 2

z . 653 4 2 2
554 4 1 0 3 3

59 4 2 9 1 3 6

6? 4

58 4 1 3 5 5

59 4 2 1 5 6

60 4 1 10 3 6 5

661 4 2 8 1 6
1 6 3 7 5

63 4 2 4 1 7 6

62 4.

64 5 1 5 6 1 6

65 5 2 3 1 1 7

666 5 1 1 6 2
67 5 2 10 1 2 7

68 5 1 8 6 3 6

69 5 2 6 1 3 7

70 5 1 4 6 ,4 6

71 5 2 2 ,1 4 7

72 5 1 0 6 5 6

73 5 2 9 1 5 7

74 5 1 7 6 6 6

2 5 6 775 5

76 5 1 3 6 7 6

7(5 .2 1 1 7 1

ORIGTpjL
PAG'POOR QJ~rI'$

A-5 6

APPENDIX B

SECDED RELIABILITY IMPROVEMENT MODELS

B. 1 INTRODUCTION

The reliability of a computing system can be significantly improved by employing

single bit error correction and double bit error detection (SECDED) technology,

which is thus used by the FMP to increase its reliability.

The report presents a model of reliability improvement assessment of a module

operated with SECDED. It can be easily embedded in the system reliability

prediction model. The final result is shown in a mathematical expression. The

bounds of the reliability and the improvement factor are studied. A computer

program coded on FORTRAN is also developed and validated, with double

precision computation.

B.2 MODEL

There are n chips in a module; a chip has m bits. A word which consists of n

bits can be stored in this module by addressing each bit to a different chip.

Without SECDED a bit failure induces the chip failure and the module failure as

well. Assume the time to failure of a bit is exponential distributed, then the

time to failure of a chip and that of a module are also exponential distributed.

ORIGINAL PAGE IS

OF POOR QJAITY

B-I

In some cases, a bit hard failure could cause a chip failure with probability

(I-S). We call it 	 a catastrophic bit failure. Otherwise a bit failure is called

non-catastrophic 	bit failure with probability S. Assuming the MTBF of the

chip as a time unit, we have that the MTBF of a bit is m time units and the

bit failure rate is I/r/. The MTBF and the failure rate of a module are I/n

and n respectively. The expected time between (i-1)th and ith bit failure, the

expected time to 	ith bit failure, the probability of no two-bit failure in one

word and the probability of two-bit failure in one word are stated in Table B-i.

The module fails at the ith bit failure only when there is neither catastrophic

failure nor two-bit failure in the same word before the ith bit failure, but

there is a catastrophic failure or two-bit failure in the same word when the

ith bit failure occurs. Since the transient and catastrophic failures of a module

at the ith bit failure are mutually exclusive, the MTBF of a module with

SECDED is given by

n-i}MTBFm = (1 -S) 4I +

+ 	 m M i-1 n(rn-(k--l)) si)____i

m nn-(k-l)ra -1) S) + mn(i-1)

n-1-Ltjni­

B-2

Table B-i. Expected Times and Probabilities

ith bit failure 1 2 iI i m m+

Expected time
between the (i-i)th
and ith bit failure

m
mn

m
rn-i

m
-­ 62)

m
mn-(-

m
mn-(m-1)

m
mn-rn

Expected time
to the ith bit
failure

m
mn

m
mn-1

+ In
mn

i-1
E
k=i

m

mn-(k-i)

i

k=i

m

mn-(k-1)

m
z
k-1

m

mn-{k-1)

m+1

k=1

m

mn-(k-I-

Prob. of the ith
bit failure being
non-catastrophic
failure

S S S S S S

00

Prob. of the ith
bit failure being
catastrophic
failure

1-S 1-S i-S 1-S 1-S i-S

pProb.
8 of no. two

bit failure in
one word

1 n(m-1)
n-i

n(m-(i-2))
mn-(i-2)

n(m-(i-1))
mn-(i-1)

n-1
mn-(m-1)

0

Prob. ot two
bit failure in
one word

0 n-1
mn-1

n-(i-2)
mn-(i-2)

n)i-1)
mn-(i-1)

n(m-1)
mn-(m-1)

CA

I

From the above expression, the reliability improvement factor can be shown as

n. MTBF m . When S=l, we have the upper bound of the factor' and MTBFm As.

S=O, we have the lower bound of the factor and MTBF m , if m is large enough the

lower bound of the factor is 2.

If the expected time between the (iPl)th and ith failure is fixed as n time units the

expected time to th6 ith bit failure is i. n. The M/fTBF of a module with SECDED

is given by:

(1 - S) 2MTBF
m 	 n

+ 	 i jL n(m-(k-1)) S(i-1) S Sn(i-1)
in (i-1)i=2 k=l mn-(k-i)

+mm 	 .
n LS mn-(k-1)

[k= 1

Similarly as S=1 or 0, we have the upper bound or the lowerbound of the factor

and MTBFm, respectively. When m is large enough the diff rence between the

MTBF 's of the two models is negligible and so is that between the factors. The

program for computing the reliability improvement factor are given in the

Table B-2.

ORIGINAL PAGE IS

OF POOR QUALITY

B-4

CARD #0001

CARE #00o2

CARD #0003

CARt #0004

CARD 50005

CARE 50006

CARC #0007

CARC #0008

CARD #0009

CARD #0010

CARE 10011

CARE #0012

CARE #0013

CARE #0014

CARD #0015

CARC #0016

CARD #0017

CARE #0018

CARD #0019

CARO #0020

CARD 10021

CARE #0022

CARD #0023

CARE #0024

CARE #0025

CARE 50026

CARC #0027

CARD #0028

CARD #0029

CARD #0030

CARE #0031

o 0 CA #0032

S#ARD 0033

itc CARE #0034

CARE #0035

CARE #0036

CARE #0037

CARE #0038
d CARE #0039CARD #0040

CARD #0041

CARD 50042

CARD 50043

CARE #0044

CARE #0045

CARE #0046

SUJROUTINE SECFAC(MvNvSrFAC)

C

C

C THE PROG. COMPUTES THE SEEDED RELIABILITY IMPROVEMENT FACTOR.

C N # OF BITS IN A CHIP. ---- (INPLT)

C N S OF CHIPS IN A NODULE. ALWAYS EQUAL TO 5 OF BITS IN A WORD
C

C S THE PROS. OF A NON-CATASTROPHIC BIT FAILURE.

C FAC SECOED RELIABILITY IMPROVEMENT FACTORy

C DEFINED AS MTBF OF IHE MODULE WITH SECEED

C DEVIDED BY MTBF OF THE MODULE WITHOUT SECOED

C

C

IMPLICIT REAL*8(A-HO-Z)

FK=FLOAT(N)

FN=FLOAT(N)

FfIFN=FN*FN

SEDVI=I./FN

1=1

PI=I.

C COMPUTING EXPECTED MTBF GIVEN THE 1ST

SUM=CI.-S)*(SED*,.i/(FN1I.))

SIml=l.

SI=SEDH

00 100 1=2.p+l

SIHI=SINZ*S

C STOP COMPUTING NEGLIGIBLE QUANTITY

IF(SINt.LE. 1.E-10) GO TO 200

FI=FLOAT(I)

FIMI=FLOAT(I-1)

C COMPUTING PROS. OF NO 2-BIT FAILUR IN ONE WORD tP

PI=PI*CFM-(FI hI-i))*FN/(FMIFN-(FIlH-1.))

C COMPUTING EXP C ED TIHE UP TO THE ITH BIT FAILURE

SI=SI+FM/(FMTFN-FIMI)

---- (INPLT)

"--(INPLT)

--(OUTPLT)

C COMPUTINGSPROB. OF THE MODUtE.FAILURE AT THE ITH BIT FAILURE

S . S*(FIMI*FN)/(FNTF FIMl)

FPROB=SIMI*PI*S3

C STOP COMPUTING NEGLIGIBLE QUANTITY
IF(FPROB .LE. 1.E-20) GO TO 200
C COMPUTING EXPECTED PTBF GIVEN THE MODULE FAILED BEFORE OR

C AT THE 1 TH BIT FAILUR
 SUN UMSI*FPROB

100 CONTINUE

200 FAC=SUM*FN

RETURN

END

BIT FAILURE
IS CATASTROPHIC CNE

TO THE ITH BIT FAILURE

Cr

http:IF(SINt.LE

APPENDIX C

SPARE PROCESSOR

INTRODUCTION

In Chapter 5, the reliability and availability -calculations make use of the

switching of spare processors. This appendix presents the method of

switching in more detail, to support the claims made in Chapter 5. First,

a discussion of the hardware that needs to be added to support the switching,

and second, the implications for processor number are given.

SWITCHING

Figure C-i shows a switching network, which amounts to one additional level

of logic at the processor side of the transposition network. This network there­

fore increases the depth of the transposition network from ten levels to eleven

levels of logic. Switching is electronic, under software control. The

spare processor can occur at any location from processor 0 to processor 128

in the cabinet. Figure C-i shows the first cabinet; the others are similar.

No switching is needed inthe connections to and from the control unit. All

outputs from the control unit to processors are broadcast to all processors;

the inputs from processors to CU are either ANDed together with a 512 -way

AND, or ORed together with a 51 2 -way OR in the fanout boards. The fanout

ORIGINAL PAGE IS

OF POOR QUALITY

C-I

TRANSPOSITION NETWORK
3 OTHER
CABINETS

128
PER

CABINET

PROCESSORS
NUMBERED: 0 1 2 3 4 H 2 2

BELOW SPARE ABOVE SPARE

Figure C-I. Switching of Spare Processor in One Cabinet

board needs appropriate input from the spare processor to form the correct

51 2 -way result. For example, in forming "all processors ready", or in

forming "any processor enabled", the correct result will be achieved by

having the spare processor's "enable" bit in the FALSE state.

PROCESSOR NUMBER

The PNO instruction produces processor numbers from 0 through 511 in the

512 processors that are switched into the system, independently of which ones

are spare. Each processor in the cabinet has wired into its backplane a

number from 0 through 12a Each cabinet has a number (0, 1, 2, or 3) set by

a switch at the cabinet Yanout board. If it were not for the spare processor,

the cabinet number would be concatenated with the hard-wired number in the

backplane to form the processor number. As it is, processors above the spare

processor subtract 1 from their hard-wired number before concatenating it with

the cabinet number to form the programmatic processor number as part of the

PNO instruction. Thus, there are ten poles on each switch shown in Figure C-1.

The eight data lines plus one strobe make nine poles for transposition network

use, plus this bit for the PNO instruction to use in calculating the processor

number.

SETTING THE SPARE PROCESSOR SWITCH

The setting of the spare processor switch is done only at a time when the array

has halted. Switching is controlled from the diagnostic controller in response

to commands from the host. Hence, the FMP programs are never aware of

C-3

which processor is spare, and as explained above, the FMP programs will

always have an FMP of 512 processors, numbered from 0 through 511, on

which to run.

C-4

