NASA —CR— |S2107]

UNCLASSIFIED

FINAL REPORT
NUMERICAL AERODYNAMIC SIMULATION FACILITY

PRELIMINARY STUDY EXTENSION

February 1978 ‘

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides
in the author or organization that prepared it.

| (WASA-CR-152707) NUWERICAL ATRODYNANIC — W78-190i1
! = ? .
| SIHULATION FACTLITY. PRELINIWARY STUDY HEm0sT
£’ EXTENSION Final Report (Burroughs Corp.)
273 p HC BR12/1F 201 CS8CL 01a Uaclas
, 83702 08629

Prepared under Contract No. NA‘SZ"-9456‘by
‘Burroughs borpora_rtion r
Paoli, Pa.

for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

u
Si‘ll-:
ty
Y

1o- ’.“""l
= T}
(o)

Al

UNCLASSIFIED

UNCLASSIFIED

FINAL REPORT
NUMERICAL AERODYNAMIC SIMULATION FACILITY

PRELIMINARY STUDY EXTENSION

February 1978

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides
in the author or organization that prepared it.

Prepared under Contract No. NAS2-9456 by
Burroughs Corporation
Paoli, Pa.

for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

UNCLASSIFIED

CONTENTS

Chapter/ Paragraph
1 INTRODUCTION AND SUMMARY
1.1 Introduction
1.2 Functional Design
1.3 Software
1,4 Simulation
i.56 Reliability
1.6 Tradeoffs
2 FUNCTIONAL DESCRIPTION OF NSS HARDWARE
2.1 Introduction
2,2 Basic System Parameters
2.3 Overview of Functional Description
2. 4 Individual Blocks
2.5 Instruction Set and Instruction Timing
3 SOFTWARE ISSUES
3.1 Extended FORTRAN for the FMP
3.2 Hand Compilation for SAM
4 SIMULATION
4.1 Simulation Goals
4,2 Selection of Metrics
4,3 Simulation Models
4,4 BOSS Simulator
4.5 Simulation Model for the Current Study
4.6 Simulation Results
5 RELIABILITY
5,1 Introduction
5, 2 Availability Prediction
5,3 Error Detection and Correction

o e b et H
U D L I T

I N T R
4}

1

| T R B |

1

N DNDNDMD NN
B = 31 DD et
w o

1

H

i

oW
LI O R DR B |

b

(@3]

DI e O DO

Y N N N NN N
| I R |
[B)

L oWt

EM»—-H

Chapter/Paragraph

.

L] L]
Lol el e (o B o TR o - B) IS S I AN]

LIV RS

»

(o2 W« N B wr B s r = > B or R B e p R w > B B o R & R0)
a 8 & . ® = 8 L]

;
-t
NS

6.15
6. 16

6. 17T

6.18
6.19

Appendix

A

CONTENTS (Cont'd)

TRADEOFFS DELINEATED

Introduction

Language Definition

Matching the Compiler and the Instruction Set

Word Format

Instruction Formats

SECDED

Trustworthiness vs. Throughput

Parity within Processors

Instruction Fetching Mechanism

LOADEM and STOREM Block Fetching

Overlappable Extended Memory Access

Single Processor Memory

Processor Program Memory Size, Control
Unit Memory Size

Extended Memory Speed and Transpomtv.on
Network Speed

Control Unit Speed

Scalar Processor

Marginal Checking

Component Technologies

Expansibility

PRELIMiNARY COMPILER ALGORITHMS FOR
SETTING THE TRANSPOSITION NETWORK

SECDED RELIABILITY IMPROVEMENT MODEILS

SPARE PROCESSOR

H
o
}E

O!O)G)GD?‘JO‘)O‘JO‘-‘O‘J@O‘JG}@
LI} [I]
(el e B) IV =SV I U R o R i

[=2]
|
—
8

6-12
6-13
6-14
6-18
6-18
6-19

iii

CHAPTER ONE

INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

Burroughs Corporation is pleased to present this report which is the result

of work carried on under an extension to contract No. NAS2-9456, a preliminary
study for a Numerical Aerodynamic Simulation Facility. The primary objective
of this extension is to produce an optimized functional design of key elements

(1)

of the candidate facility defined in the Final Report’ * of the basic contract.
This is accomplished by effort in the following tasks:
® To further develop, optimize and describe the function description
of the custom hardware,
® To delineate irade-off areas between performance, reliabilifcy,
,avéilability, serviceability and programmability.
® ToO develop meirics and m;)dels for validation of the candidate
sysiems performance.
o To conduct a functional simulation of the sysiem design.
o To perform a reliability analysis .of the system design.
e To develop the software specifications to include a user level high
level programming language, a correspondence between the pro-

gramming language and instruction set and outline the operation °

system requirements,

1-1

The resulis of this effort are presented in five separate chapters:

Chapter 2. Functional Description includes a summary of the system

parameters, block diagrams, descriptions, of the major elements and

the instruction set wilh detailed timing.

Chapter 3. Software Issues describes the extensions and resirictions

on the FORTRAN language and compiler at the functional level a
discussion of converting statements in extended FORTRAN into machine

language and a statement regarding the operating system.

Chapter 4. Simulations presents the models, metrics and methodology

for conducting the simulation along with preliminary results.

" Chapter 5. Reliability includes two sections. The first presents the

results of an availability analysis of the systems and the second present
further discussion of the error detection, correction and control to be

employed.

Chater 6. Trade-offs delineates and discusses a large number of

design and operating factors for which reasonable alternatives exist.

While the information in this report is designed to stand alone it is also considered
to be a supplement to the Final Report (Ref. 2) of the basic NAS2-9456 contract
where appropriate, reference is made to this report rather than to unnecessarily

repeat previously reported information.

In addition, it should be pointed out that certain terminology used in the prévious
report have been revised. The new terms are:
e Flow Model Processor (FMP). This is the portion of the system

previously called the Navier-Stokes Solver (NSS). 1-2

¢ DProcessor Data MEII.IOI‘Y {(PDM) was previously called Processing
Element Memory (PEM)

© Processor Program Memory .(PPM) was previously called
Processing Element Program Memory (PEPM}

© Execution Unit (EU), the logic portion of the array processor,

formerly called Processor Element (PE).

The following sections surnmarize the chapters in additional detail.

1.2 FUNCTIONAL DESIGN

TheFMP is an array processof of 512 processors, a control unit, and 521
modules of extended memory, as described in Reference 1. The major addi-
tions found in Chapter 2, to the description of reference 1., are, first, the _
provision of SECDED, instead of parity-plus-reiry, as the expected means of
error control in the processors! memaory, second, the addition.of four on-line
spare processors as definitely a part of the design (they are mentioned briefly
as a possibility in reference 1); third, significant revisions and additions to

the instruction set; fourth, the restriction of the extended memory instructions
to fetching 512 words (one per processor) per instruction, (the earlier description
had EM instructions fetching 512 X N words per instruction); and fifth, provision

for special hardware for computing any floating-point variables that are not

members of a vector,

Chapter 2 includes diagrams and figures of every element of the FMP.

1-3

1.3 SOFTWARE:

The software chapter covers-the FORTRAN language, to a depth necessary to
cover simple test cases, di-scusses‘hand compiling, and is charged with the

task of reporiing on progress in defining the operating system during this
contract extension. Three and only three extensions are visualized for the
initial FORTRAN language. First, the DOALL construct declares to the compiler
that the iterations of a particular loop can be done in any sequence, or all in
parallel, without affecting the result; second, declarations of several types of
use of variables are used to allocate thoée variables among the different types
of memory; third, certain system library functions are required, because of the
parallel nature of the machine, that would not be required in serial FORTRAN.

None of these library functions are required for the initial benchmarks,

The operating system is extensively described in reference 1. The level of
detail in‘that document is such that the effort of the contract extension was
spent more fruitfully on language definition, compiler considerations, and hand
compilation procedures. Thus, the operating system discussion in reference 1
still stands as the best description so far produced of the operating system of

the FMP. No attempt has been made to update that description for this repof't.

1.4 SIMULATION

Chapter 4 discusses the separation.of the simulation effort into two levels,
instruction and FMP level, a;nd the system level. Metrics for each level are
discussed, and SUBROUTINE TURBDA has been selected as the metric for the
simulation done in this extensionis also given. The BOSS simulator, in which

our simulation is being done, is described briefly in chapter 4.
1-4

1.5 RELIABILITY

A detailed computer model for the reliability of the FMP was run. The results
of this model bound the availability at 96 percent being the lower limit of
availability using pessimistic assumptions, and better t}{an 99 percent
availability being achieved under the most optimistic assumptions. The use

of sparc processors with operating system automatic restart (assumed success-
ful for some fraction of all attempts) produces a very significant improvemerit

over the model that has no spare processors.

The reliability section also includes a discussion of the use of SECDED in all
memory, of the process of "scrubbing" out the errors that spontaneously arise in
CCD storage (DBM), and of other error control strategems that are used in

A
the FMP.

1.6 TRADEOFFS

Chapter G discusses tradeoffs in many areas. These include ease of program-
ming versus execution efficiency, where one wishes to have most of both,

word and instruction formais, error control methods versus their cost in
reduced throughput, several speécific design issues, relat'ive speeds of specific
blocks of the system, alternate methods of supplying the floating-point scalar
capability, and other topics, with a final section on the expansibility of both
the specific FMP, once built, and the expansibilit;lr of the design from which

it was built.

1-5

CHAPTER 2
FUNCTIONAL DESCRIPTION OF NSS HARDWARE

2.1 INTRODUCTION

This functional description is arranged in several successive
sections. First, a brief system description of the SAM that is
the baseline system. for FMP is given. Second, a brief list of
system parameters is provided. Third, the elements of the system
block diagram are each described in turn. Fourth, the instruction
set of the FMPis given, together with ité timings.

In all of this, it has not been felt necessary to repeat material
that is found in the final report of contract NAS2-9456, except
very briefly to refresh the reader's recollection, It is pre-
sumed that the reader has first read that report.

No design should be considered to be necessarily final if further
investigation should show that the machine performs better with
the feature modified. Chapter 6, "Pradeoffs", is a discussion of
many of the features that will be studied in simulation during
phase 2 (time permitting), and which are therefore likely to be
modified in the direction of higher throughput if the baseline
system is found wanting.

This functional description is intended to provide the base for
the information input to a performance simulation of the SAM of
the FMP. Some of the information, such as error correction cap-
abilities, is included for completeness in spite of the fact that

it has no apparent involvement in a performance simulation.

2-1

2.2 BASIC SYSTEM PARAMETERS
Most of the basic system parameters were covered in some detail in
the final report Ref. 1. They are summarized here along with

additional information of specific interest.

2.2.1 Logic Family - ECL is the preferred logic family. Final

selection of circuits for implementation at this time would only
lock us into choices that will become obsolete by 1979-1980 when
the design is completed. We do not wish to preclude the use of ‘
up-to-date technology in the actual design. If the final design
wefe being implemented at this time, Fairchild's 100K series would
be chosen, together with compatible memory circuits. The chip
count projected for 1979-1980 is the one assigned to the baseline
system. Confidence in this package count is supported in most
cases by the very similar chip count, of circuit types already
available in 1977 (usually ECL 100K), which are also given.

2.,2.2 (Clock Rate - The clock has been assigned a 40 ns period.
The instruction times, given below in terms of this clock period,
are compatible with the instruction times derived from a prelim-
inary processor design using ECL 100K. —

2.2.3 Cabling Methods ~ The same flat belts used successfully in

prior projects in Burroughs for transmitting high-speed signals
with fast rise time and low crogsstalk will be used for most of the
interunit cabels. Reference 1 discusses this choice,

2.2.4 Power - While a number of comments on power were included
in reference 1, certain detailed information was not. These

details are provided in the following statements.

* Switching regulators will be used for the sake of effi-
ciency. A net efficiency of 65% is expected from the total
power supply.

* DBM is provided with whatever power is required to make it
nonvolatile against glitches and short power outages.

Since CCD is proposed for DBM, battery backup would be
highly desirable.

512 PROCESSORS L

LOADEM STOREM

== - IEM BACKPLANE GND
| ps.

————— CHASS|S CONNECTION
e SIGNAL GROUND CONNEGTION
* POWER SUPPLY LEADS GROUNDED ONLY VIA
THE GROUNDING CONNECTIONS AT THE LOAD

Figure 2-1. Grounding

[]
° |
pr— i
|
i
|
Ld o e
FANOUT
BOARD -——
DBM
CONTROL
™™
CONTROL
CABLE
\'\\\\\\'\\\\\\\\\\\ HOST
&\ QU BACKPLANE N\
{AND D.C.) - =
*""'_l';“‘——".“""— 'T-—I'P:S. |
EARTH L
NOTES:
EONNININNWY BACKPLANE AT SIGNAL GROUND

£ 18
ORIGINAL PAG
OF POOR QUALITY

2-3

+ The ground return from backplane to power supply is never
used as part of the path that connects one backplane ground
to another backplane ground. Figure 2-1 shows the ground-

ing arrangements expected

Total power for the FMPis estimated (very approximately)
at 250 kw, based on an average of 0.8w for each of the
200,000 circuit packages, and 65% efficiency in the power
supply. These are for the 1980 projected circuit counts.

. Every module has its signal ground tied to chassis so that’
there will be no floating grounds when the modules are
tested as stand-alone modules. In Figure 2-1 these ties

are shown as resistors.

A requirement on power supplies employed at NASA AMES is that they
must ride through the undervoltage transients produced by wind
tunnel motor startup, and not pass voltage spikes. In addition,
they should be reasonably respectful to the source. 38gwalal wer

supply configurations. satisfy this requirement.

. Motor-generator set. Inertia enables an M-G set to ride
through large transients. The inefficiency of the M-G set
is multiplied into the inefficiency of the system power sup-
plies. The advantage of an M-G set is that it can be added
to a system after the fact, without impacting any existing
design.

Transformerless rectifiers, like the old AC~-DC radio,
require a filter capacitor, which suppresses spikes, and if
large enough, will ride through undervoltage transisents.
The unregulated DC (about 280v) is distributed around the
equipment and used as input to individual switching
regulators. BS8CR rectifiers are to be avoided, since they
inject noise back into the line.

2-4

. Battery back-up Uninterruptible Power Supply (UPS).

Of the three schemeg, the transformerless rectifier 1s most
efficient, and takes the least space. It also has the advantage
that back-up batteries can be supplied to a selected subset of the
equipment (DBM, in this case). It is also easy to make the
rectification redundant. Three-phase full wave rectifiers are
actually six-phase for ripple characteristics. They often need no
chokes, and have wide conduction angles in the rectifier diodes.

2.2.5 Number of Processors — A key decision in the design of the
FMP is the choice of the number of processors to be implemented.
The design presented here is based on usind the fastest processor
that is consistent with the speed of memocry built of 1lé6k-bit
static RAM chips. Projecting 100 ns speed for such chips, we

. arrive at a 360 ns floating point multiply as being approximately
in balance. A faster processor.would yield incréased speed only
if the memory were changed to the faster 4k-bit chips, implying a
four-fold increase in the number of components in memory.
Reliability, even more than cost, tells us to keep the parts count
down, and therefore to design a system consistent with 16k-bit
memory chips. It takes about 512 processbrs, at these speeds, to
vield the desired billion floating point operands per second with
sufficient margin for inefficiencies.

2.3 OVERVIEW OF FUNCTIONAL DESCRIPTION

2.3.1 Block Diagram

Figure 2-2 (a slightly expanded copy 0f Figure 1-2 of the Ref. 1)
shows the array processor consisting mostly of 512 processors
attached by a switch, the Transposition Network, to 521 Extended
Memory mo@ules which hold the main data base of the program. Used

ORIGINAL PAGE I8
OF POOR QUALITY

DATA
- Y (e—
| MEMORY TO

FILE
MEMORY

1.2 X 168 BITS/SEC.

\V

ORIGINAL PAGE IS
OF [POOR QUALITY
t

EXTENDED
ENy EM2 MEMORY EM521
1.76 X 1011 BITS/8EC.
TRANSPOSITION NETWORK
(521/512 PATHS}

1.75 X 1011 BITS/SEC. PEAK
PROC. 1 PROC, 2 PROG. 512
PDM
_ | GonTrou | To/rmom
EU UNIT HOST
PPM

DIAGNOSTIC | TO/FROM

CONTROLLER
HOST

Figure 2-2. SAM Block Diagram

2-6 .

as a staging area for Jjobs not yet started, and as the output area
for jobs in process or completed, is Data Base Memory. A Control
Unit sfnchronizes the action and controls the transposition
network and the transfers in and out on both faces of the extended
memory. The controller for the Data Base Memory also accepts
requests from the host processor to transfer to and from the host
disk pack file system. The Data Base Memory controller resolves
access conflicts to and from data base memory. The Control Unit
resolves accesses to and from Extended Memory. There is also a

Diagnostic Controller used for maintenance and cold starts.

Each processor is self-contained, with integer and floating-point
arithmetic units, its own instruction decoder, its own program
memory, and its own data memory. In addition to the 512
procéssors, four processors are included as on line spares to help
achieve system availability requirements, The use of these
on-line spare processors is discussed in Chapter Five.

2.3.2 Instruction Streams

As described in Ref. 1, the FMP is controlled by two instruction
streams, which are created in parallel by the compiler from a
single sequenﬁe of source statements. One instruction stream is
being executed in the control unit; the .other is being executed by
all processors asynchronously of each other. Some statements in
the source code result in instructions in both instruction
streams. Examples -are "CALL subroutine", or an arithmetic
statement using an EM variable, and therefore requiring a fetch to
all processors from the EM. Some of these joint instructions
require that the control unit and the processors synchronize
themselves. It has been observed that reference 1 does not seem
to be clear in explaining synchronization, nor in explicating the
means of aécomplishing it. Therefore, the discussion digresses
here to a detailed discussion of the synchroqization mechanism,

2.3.3 Synchronization,

The process of synchronization occurs within instructions. It
involves two signal lines which go from the control unit to all
processors, namely "CUready" and "go". "CUready” is a level, "Go"
is a pulse that arrives at all processors simultaneously. From
each processor there are two lines, "Enabled" is a copy of the
"enabled" flipflop that exists in each processor; "I got here" is
a signal, a level, which is raised during the execution of some

instructions.

To explain the process, consider the example of a LOADEM instruc-
tion fetching N words from EM. 1In the control unit, the LOADEM
causes the raising of the "CUready" line as soon as the TN
controls have been set to the proper value. In each processor
where "enabled"” is true, "I got here" is raised as soon as the
processor starts executing the LOADEM instruction,

When any processor executing LOADEM sees "CUready" true, the
processor sends the address through the TN to the EM module that
is connected to this processor. The strobe accompanying the

address causes the loading of the address within the EM module,

An "all processors ready"” signal, marking the time at which the
last enabled processor arrives at the LOADEM instruction is
created for the CU (The logic creating this signal is actually
contained within the fanout tree). Using E, as the "enable" bit
of the nth processor, and Hp as the "I got here" line of the nth
processor, the "all Processors ready" signal is given by the
formula

All—pfocessors—ready = (Hp OR EI) AND {Hy OR EE) AND ...
AND (Hg3p OR Egyg)

There is also "any processor enabled", the OR of all the "enable"
bits. -

2-8

When the CU sees "all processsors ready", the CU issues, after an
appropriate delay to let addresses be loaded, a series of N "read"
commands to the EM module and alsc issues, appropriately timed

with respect to the last such command, a "go" pulse to the
processors. In the processor, we load N words under control of

the N strobes coming from EM module through the TN. The “"go"
signals the end of the instruction.

4As a second example, consider the instruction WAIT. Here no
processor action timed to the "CUready" is required, so the CU
sends no "CUready". When the CU sees the "all processors ready"
signal formed from the "I got here"s and the "enable"s, it issues
a "go" to all processors, who have refrained from executing their
next instruction until the "go" is received.

When the processor has raised its "I got here" line, but before it
has received a "go" signal, it is said to be "svaiting". The "I
got here" line is dropped upon receipt of the "go" pulse.

In addition to the above synchronization, the CU also has the
power to transmit commands. The commands are carried on a
4-bit-wide bus accompanied by a strobe line. Many of these
commands are used in the diagnostic¢ programs. Ref. 1, p 4-27, has
a tentative list of operations called forth by these commands.
Some of these commands will be conditional on the "enable" bit of
the processor, some are unconditional independent of the enable
bit. The only such command that is used in user—-generated FORTRAN
programs is the command that simultaneously loads the program
counter and sets the enable bit.

The control unit's command power is exerted over all processors at
once, not over individual processors. Processors that do not join
in some array-wide operation avoid it by a) jumping around the

operation, if it is local to each processor, b) executing certain

instructions (LOADEM, STOREM, SHIFTN) as noops conditional on the
last bit of an integer register in the processor, or c) executing
the STOP instruction, which turns off the "enable" bit until the

CU reaches some point in its instruction stream that turns it back

on.
There is also an interrupt line from processor to CU.

2.3.4 Starting a Run

Dur ing nofmal operation, all data and program for the next run
will be loaded intc data base memory prior to the beginning of the
run. When the run starts, system software in the CIJ loads program
from data base memory to the memory of the control unit (via
extended memory). The initialization phase of the program then
transfers necessary data to extended memory, and transmits the
processors' program to them. These actions are automatically
inserted by the compiler and the linker. With data in place in
extended memory, and allocated space initialized to "invalid"™? and
with code files in place in control unit and processors, user

execution starts.

2.3.5 FIP Hardware .Summary

The Flow Model Processor therefore consists of

- One Control Unit (CU) with its own memory (CUM) with
optional scalar processor capability.

» 512 Processors, (plus 4 spares} each with its own
Processor Data Memory {PDM) and Processor Program Memory

(PEM)

+ One Transposition Network

2-10

521 Extended Memory modules
+ One Data Base Memory and Controller

* One Diagnostic Controlle:

A1l of the above is shown in Figure 2~2 except for the optional
scalar processor and the four spare processors. The scalar pro-
cessor 1is an ingredient of the design which was not needed in
order to successfully match the SAM to the aerodynamic flow
models. Since the scalar processor was not discussed in reference
1, further discussion thereon is found in Chapter 6.

2.4 INDIVIDUAL BLOCKS
Following is a brief description of each of the elements of the
FMPtogether with a formatted tabulation of pertinent features and

.a block diagram of each.

2.4.1 Description of Tables

For each element of the FMP, there is a table of characteristics
given. A very short narrative description gives the intended
function of the element in user prégrams. Source of control is
identified, and the storage cépabilities, both capacity and speed,
are also given. Connectivity to other elements is broken down to
a rather detailed level, with each group of signals that has an
identifiably different function being so identified. In some,
cases, such as CU to processor, signals in the same belt are
identified as a different group in order to more clearly identify
their use.

2-11

The table also discusses the mode of.error control built into the
design. Some mechanisms of error control wére included in the '
baseline system ‘design in the final report. Some further
mechanisms of error control are proposed in Chapter 5. Thas
Ssection represents a particular state of the design, not the final
state,

Two chip counts are given. The 1979-1980 projected chip count is
the one projected for the baseline systém. The second chip count,
using parts now existing in 1977, is given only for corroboration,
to indicate the reasonableness of that projection. It also
represents the chip count of the FMP if design were frozén now.
There are dlso in some cases estimates of the power drain. Aall
these are included only for interest. These are preliminary.

They have no direct bearing on the.performance evaluation

simulation.
"TRD" means "to be determined"”.

2.4.2 Processor The array of 512 processors is charged with the
task of executing the user computations in the program, namely the
floating-point. operations on the problem variables.

The processor executes code c¢ontained in its own proéram memory,
and accepts.- commands from the control unit. Certain instructions
(see Table 2-13) are executed in synchronism with the control unit
(and’hence, by implication, in synchronism with the entire array,
since the control unit expects cooperation from all processors.)

The actions of the processor are delineated by the instruction set
in the next section. Figure 2-3 shows pictorially the division of
the processor into and execution unit, a data memory, and a

ORIGINAL PAGE IS
OF POOR QUALITY

2-12

r———"—"—""T - T === 7
| |
| PPM PDM |
I PROGRAM DATA |
I MEMORY MEMORY I
| A A A A |
I |
| " o [
cu | o| 21 & al z| © |
{(VIA FANOUT BOARDS) | Wl of g gl 2| & |
| [
COMMANDS | y y l
et |
SYNCHRONIZATION Ly | DATA & STROBE
| l
DATA PATH Lol EU |
DATA PATH | | DATA & STROBE
| r
_‘svmcx-momzmlom, I |
INTERRUPT LINE I }
. |
... PROCESSOR |

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 2-3. Processor Block Diagram

TO
TN

2-13

program memory. Figure 2-4 is a block diagram of the logic part
of the processor, showing the independent integer and floating
point units, with separate register files for each. Figure 2-5 is
a diagram of the instruction fetching and overlap machinery, which
is explained at length below in connection with the timing of in-
struction execution. The logic portion of the processor has been

named the "execution unit." Table 2-1 provides data on the EU.

Connections to the processor come from the control unit and the
transposition network. A byte-wide (8-bit) data path is found
both from (BDCST) and to (HVST) the control unit. The
synchronization signals discussed previously also come from the
control unit. The 4-bit wide command path, and its strobe, also
come from the control unit. The data paths to (STOREM) and from
(LOADEM) the transposition network are each accompanied by a
strobe. In addition, each processor is connected to backplane
wiring that expresses its own number. Of the 129 processors in a
cabinet, any one may be the spare processor. Suppose processor
no. N is the spare processor. Then the backplane number for
processors 0 through N-1 is correct, but the backplane number for
processors N1 through 128 must be shifted own by one, to N through
127, in order that the processors being used by the prodram be
consecutively numbered. Therefore, there is a one-bit signal
coming from the switching machinery which tells the processor
whether or not to subtract 1 from its hard-wired processor number
to correct for the location of the spare.

Error control within the processor consists of bounds checks,
reasonableness checks, and consistency checks, as listed in

Ref. 1. See Sections 6.7 and 6.8 for further checks that may be
implemented but at some cost in throughput.

For justification of the 1977 compenent count, see appendix E of
volume ITI of reference 1.

2-14

GI1-¢

-}

Internal Block Diagram of EU

! TO/FROM TO/FROM
{ cu IN
| 1 {8 BITS) (8 BITS)
! PPM PDM i
/w' I BDCST LOADEM
REST OF | I 7\) /'y IHVST STOREM
PROCESSOR N o Nt U MU .
ADDRESSES TN & CU
INTERFACE BYTE-SERIALIZER
EM ADDRESSES T A
L 2 L
INSTRUCTIONS
[1]
ADDRESSES . » SECDED
CHECKER/
. . NTEGER é—»| GENERATOR
< t—3»{ ARITHMETIC
SR REGISTERS
] UNIT
. I;U\g * 49-BIT BUS
cliy
E Q INSTRUCTION PNO
7y t >
» A48-BIT
REGISTERS
2 INSTRUCTION/120 NS
MAX
* 48-BIT BUS
TO INTEGER
TO/FROM CU INSTRUCTION FLOATING POINT Z 'ﬁ?ﬁggﬂ’g:&om’"
DECODE >
CU INSTR. SYNC INSTRUCTION UNIT
- OTHER
Figure 2-4.

TRIGGER TO PPM
\

STAGING
REGISTER :
START TIME, INT.
pDECODE | START TIME, FL. OT
START TIME, MEM
“ISSUE"” COMMAND SCOREBOARD

I

HOLDING

REG.

{FOR DELAYED
ISSUE)

]
o

INTEGER UNIT FL.PT. UNIT MEMORY
INSTR. REG. INSTR. REG. CONTROLS

END TIME, CURRENT MEM, OP, |

END TIME, CURRENT FL. PT. OP.

END TIME, CURRENT INT. OP,

e —

TO DECODING

Figure 2-5. Instruction Fetching and Overlap
ORIGINAL: PAGE IS

OF POOR QUALITY

TABLE 2-1
EXECUTION UNIT CHARACTERISTICS

UNIT: Execution Unit (EU) No. In System: 512 + 4 on-line spares

FUNCTIONAL CHARACTERISTICS

Function: This is the logic portion of the processor, all the processor except memory.
It executes code that has been written by the FMP FORTRAN compiler, including EM
address computations, index calculations and floating point operations.

Source of Control; During User Program: Program stored in PPM, sync's from the CU.
puring System Startup and Diagnostics: Same plus CU commands)

Storages; Capacity: 16 16-bit integer registers
16 48-bit floating point registers
Other registers {see text)

Speed: Multiple accesses each 40 ns clock

Connectivity to Other Elements:

No.
Path To or From 8ig Timing Primary Use
1 BDCST From CU 8 byte/20ns Receive global variables from CU
2 HVST To CU 8 byte/20ns Transmit result to CU (global)
3 LOADEM From TN 9 byte/20ns Receive data from EM
4 STOREM To TN Q byte/20ns Transmit data to EM
5 CUinstr From CU 4 TBD Primarily for diagnostics
6 sync To CU 4 edge Synchronization
7 sync From .CU 4 edge Synchronization .
8 PEno Wired to 9 D.C. level Processor 's own number
backplane

RELIABILITY/REPAIRABILITY/TRUSTWORTHINESS

Error Control Methods: TBD. Modulo 3 check on arithmetic is being evaluated., Error

¢ cases are detected (see text).

Repair Methods: Replace and restart from restart point., On-line replacement (with manual
pull-and-replace at a later convenience of the repairman) is very feasible.

MTBF of Unit: See Chapter 5.

Degraded Modes Available: Programs can be compiled to use less than all the processors
avalilable, thereby bypassing any failed processors. On-line switching of spare pro-
cessors.

PHYSICAL

Chip Count; 1980 Projection: 100 If use 1977 parts: 160 (100K ECL etc.)
{based on preliminary legic design using 100K)
Pysical Size: 1980: One large pc. sized module. 1977: Single removable module

Power Drain: 1980: 150 w 1977: 300 w

2-17

2.4.3 Processor Data Memory - The processor data memory (PDM)

contains work space for each processor. It is also used to hold
local copies of global information, to facilitate their being
fetched by the processor's program. It can be used to window data
from EM. Control is from the memory address register in the
processor. There are 16384 words of 55 bits, consisting of 48
bits data and 7 bits of single-error correcting, double-error-
detecting code. Data address, and control connections are solely
to the processor. 1l6k-bit static KAM chips are used. Figure 2-6
shows some of the logic in the processor associated with the port
into PDM. Table 2-~2 describes major characteristics of the PDM.
See sectiong 6.6, 6.12, 6.13 for discussion of tradeoffs in PDM

design.

2.4.4 Processor Program Memory. Processor Program Memory (PPM)

contains the code file from which the processor executes. It is
addressed directly by the program counter. Overlay comes from the
CU via the "broadcast" (BDCST) path. Except for the size of 8192
words, design is identical with that of PDM.

2.4.5 Control Unit (CU)

2.4.5,1 Basic Contrgl Unit

The control unit, during user prodgrams, is in charge of synchro-
nizing the array for those instructions that require a synchro-
nized array; it issues the "go" signal. It also handles those
portions of the address computation that must be issued from a
central point. The control unit executes the FMP-resident portion
of the system software. It has a single shared memory {CUM) for
both program and data.

2-18

FROM EU

14 BITS ADDRESS »]
R/W PDM
P STACK
INFTIATE
T »| (55 CHIPS)
55
TO/FROM
T.N.
: {’“\\ TO/FROM
{LOADEM, _ -t 55 = SECDED
STOREM] R AN CHECKER/
PARALLEL GENERATOR
TO
_ (s)
BITE-SERIAL \>*
CONVERSION
TO/FROM .
cu
48
{BDCST,
HVST)
Y
EU DATA BUS

Figure 2-6. PDM Logic

ORIGINAL PAGE I3
OF POOR QUALITY

2-19

TABLE 2~2 .
CHARACTERISTICS OF PROCESSOR DATA MEMORY

UNIT: Processor Data Memory (PDM}) MNo. In System: 512 + 4 spares with spare processor
. (formerly processing element memory PEM)

FUNCTIONAL CHARACTERISTICS

Function: Stores temporary variables generated by the processor during computation.
Work space. Subroutine return information. Windows EM data.

i

Source of Control; During User Program: EU command lines
During System Startup and Diagnostics: Same

Storages; Capacity: 16,384 words.
Speed: 120 ns cycle

Connectivity to Other Elements:

No.
f Path To or From Sig. Timing Primary Use
1 data To/from EU 55 static Fetch and store data
2 address From EU 16 static 2ddress
3 control From EU 2 edge or Command

static

RELIABILITY/REPAIRABILITY/TRUSTWORTHINESS

Error Control Methods: SECDED

Repair Method: Removed with entire processor. Not a separate entity.

MIBF of Unit: Dominated by control chips because of SECDED.

Degraded Modes Available: Programs compiled to less than 512 processors bypass failed

_'PDM's. Error correction allows program to continue, but with reduced reliability, in
single-bit failure cases. On-line switching of failed processors.

PHYSICAL
Chip Count; 1980 Projection: 70 If use 1977 Parts: 250
(55 16k-bit mem + 15 control) (100K ECL, etc.) (220 4k-bit mem.

+ 30 control)
Physical Size; 1980: Part of processor assy. 1977: Part of processor assy.
Power Drain; 1980: 1977:

AGE 18
ORIGINAL P
OF POOR. QUALITY

2-20

FROM EU

13 BITS ADDRESS

L
R/W PDM
— STACK
INITIATE
P (55 CHIPS)
A

>
‘ TO/FROM
98 SECDED

CHECKER/

GENERATOR
AND BYTE-SERIALIZER

48

TO INSTRUCTION REG.

Figure 2-7. PPM Logic

2-21

TABLE 2-3
PROCESSOR PROGRAM MEMORY CHARACTERISTICS

UNIT: Processor Program Memory (PPM) No. In System: 512 + 4 spares with
spare processor

FUNCTIONAL CHARACTERISTICS

Function: Contains program for the processor. Is loaded using the BDCST path from
- the CU.

Source of Control; During User Program: Processor's program counter.
During System Startup and Diagnostics: Same

Storages; Capacity: 8,192 words
_Speed: 120 ns

Connectivity to Other Elements:

w N+ =

No.
Path To or From Sig. Timing Primary Use
program To/From EU 55 static Fetch and load program
address From EO 16 static Address
control From EU 2 edge or Command

static

RELIABILITY/REPAIRABILITY/TRUSTWORTHINESS

Error Control Methods: SECDED
Repair Method: Remove with entire processor. WNot a separate entity.

. MTBF of Unit: See Chapter 5

Degraded Modes Available: Program compiled to less than 512 processors bypass failed PPM's.
* Error correction allows program to continue at reduced reliability, in single bit
failure cases. On-line switching of failed processors.

PHYSICAL
Chip Count; 1980 Projection 43 If use 1977 parts: 140
. {28 mem + 15 control) (100K ECL, etc.) (110 mem +
’ - 30 control)
Physical Size; 1980: Part of processor assy. 1977: Part of processor assy.
* Power Drain; 1980: 1977

2-22

The control unit can also be controlled by commands from the host
computer issued via the Diagnostic Controller (DC). This mode of

operation is supplied for the purpose of performing diangostics.

The control unit is at once thé most complex, in terms of variety
of functions performed, and the most pedestrian, in terms of the
demands it makes on the logic designer, of all the units in the
FMP. Such hand analysis as has been done indicates that for the
aerodynamic flow problems, the control unit will most of the time
be waiting on the processors. One of the aims of the simulation
is to find out if this statement is really true, or whether an

investment in a faster control unit will pay off.

The fregquency with which the CU execuies system software upon
interrupt, in the middle of user executions, will affect the
required speed of the CU. The present plan is to so allocate the
tasks in the system that during normal executions no interrupts

either from host or resulting from FMP code are expected.

The host initiates file-system-to-DBM transfers using its copy of
the DBM allocation map and issuing I/0 commands directly to the
DBM controller. ©No FMP-resident routine is involved in the
initiation or completion of these transfers. The DBM controller
resolves any potential conflict between these host transfers and a
CU-initiated DBM-EM transfer,.

Figure 2-7 is the block diagram of a control unit built around a
single bus for transferring all data to and from memory, and using
this same bus for one of the register file outputs. Such a
structure defeats overlap but simplifies design. If simulation
were to show that a faster CU is needed, a faster CU would be
built.

2-23

CUM
(MEMORY)

§

HOST/DC
*———-—
COMMUNICATIONS - I p»| ERROR DETECTION
REGISTER AND CORRECTION
TO EM VIA TN
UPPER BARREL
>
BYTE-SERIAL 4
Prmcmesmnedipml PARALLEL
CONVERTER [w—4¢
¢ . —a-
] PROCESSORS’
l DATA
INSTRUCTION CUM
BUEFER DATA
) "_“"_"“]
]
i
1/0 I FL. PT. | INTEGER cuM
INSTRUCTION ' iNSTRUCTION INSTRUCTION CONTROL
DECODE | DECODE ! DECODE
: | .
|
] | TO
i ! cum ,
t
TO/FROM |
: FL. POINT INTEGER ‘
DC/DBM/TN | ORI . UNIT S
' | LOGIC | T0
I 1 ADDRESS
| REGISTER
I
| 1
. |
| 1 .
—~>»! I FL POINT INTEGER
OPTIONAL i REGISTERS ! REGISTERS
|
ORIGINAL PAGE 1%
Figure 2-8, CU Block Diagram OF POOR QUALITY

2-24

In addition to the portion shown in Figure 2-8, the control unit
alsc contains a section which resolves conflicts for EM between
the instructions of the NSS and the needs of the DBM contrecller.

The control unit has four semi-independent execution stations,
just as the processor has three. The degree to which the
execution of the independent sections is to be overlapped is a
subject for study during simulations in future work. Using the
two aerodynamic flow models as benchmarks tells us that no overlap
is required, therefore specifying an exact mechanism of overlap
has been deferred. The four units are:

* Integer Unit

* Memory Control

* Floating Point Unit (optional, can be omitted if it is
determined that so called scalar processor capability 1is

not required for the contemplated applications. See
Section 6.5)
* Interface to host and DBM controlier

Instruction timing is given in the next section, 2.5. Table 2-4
lists the features of the CU.

2.4.5.2 5Scalar Processor

Floating point scalars are an item of concern in some applica-
tiong. 1In the baseline system, an optional design feature to
handle floating-point Scalars is a floating-point arithmetic
capability in the c¢ontrol unit. For a discussion of other options
for attaching scalar capability to the FMP, see section 6.16.
Scalar floating point capability is not be be confused with the
"scalar unit" found in some other designs. The addressing and
control functions of such a "scalar unit" are included in the
control unit here whether or not the floating-point option is
included.

2-25

TABLE 2-4
CONTROL, UNIT CHARACTERISTICS

INIT: Control Unit: ({CU) No. In System: 1

FUNCTIONAL CHARACTERISTICS:

Function: Executes the non-array portion of the FMP program. Executes the FMP resident
portion of the system software.

Source of Control; During User Program: Program stream contained in Control Unit Memory
During System Startup and Diagnostics: Same plus commands issued from Diagnostic
Controller

Storages; Capacity: Integer Register file, perhaps 16 words, exact number to be determined
by simulation. Floating point register file of 16 words.
Speed: Single-clock access to two registers per file. 40 ns clock.

Connectivity to Other Elements:

$ Path To or From Sig. Timing Primary Use

1 control To DBM Controller TBD TBD Control of DBM-EM transfers

2 return From DBM Controller TBD TBD Completion, error, EM conflict rescolution
3 control To EM TBD TBD Control of EM

4 return From EM TBD TBD Monitoring, errors, interrupt

5 control To TN 13 TBD Control of TN

6 STORCU 'To TN 9 byvte/20ns Data to be stored in EM

7 LOADCU From TN 9 byte/20ns Data fetched from EM to CU

8 command To Processor 4 TBD Diagnostic commands to the processor
9 sync To Processor 4 edge Synchronization of array)
10 sync From Processor 4 edge Synchronization of array
11 BDCST To Processor 8 byte/20ns Broadcast data

12 HVST To Processor 8

byte/20ns Data (such as global max) to CU

RELIABILITY/REPAIRABILITY/TRUSTWORTHINESS

Error Control Methods: TRD

Repair Method: TBD. Repair in place; FMP is down until CU repaired
MTBF of Unit: See Chapter 5

Degraded Modes Available: None.

PHYSICAL

Chip Count; 1980 Projection: 3,000 chips If use 1977 parts: 4,000 chips
(a coarse estimate) (100k ECL, etc.)

Physical Size: 1980 1977:

Power Drain: 1980 1977:

2-26

The FORTRAN language and compiler of chapter 3 makes no use of the
floating-point option in the CU, as there was no use for it "in the

four codes used for benchmarking.

2.4.6 Control Unit Memory (CUM)

The control unit memory holds both program and data for the
control unit. It is addressible only from the control unit, and

sends all data into the central data bus of the control unit.

The control unit memory is identical in electrical design and uses
the same 16k-bit RAM chips as the processor memories. Its size is
subject to verification via simqlatidn. The size resulting from
considerations of the flow-model matching study is 32,768 worés.

The control unit memory is initially loaded from DBM at the
beginning of each run using a routine which is itself resident in
CUM and executes on the CU. The routine trapsfers data and
proaram from DBM ﬁo CUM via EM, '

Data on the control unit memory is found in Table 2-5.

2.4.7 Extended Memory Moduile

Extended memory (EM) is the "main" memory of the FMP, in that it
holds the data base for the program during program execution.
Temporary variables, or work space, can be-held in either EM or

. PDM, as appropriate to the problem. 2all I/0 to and from the FMP
ie to and from EM via DBM. Control of the EM is from two scurces,
the first is instructions executed in the CU, the second is the
DBM controller which handles the DBM-EM transfers. 1In the
baseline system design, the DBM-EM rate is such that the CU gan be
given first priority into EM without losing any of the DBM-EM
transfers, therefore, the CU instructions have priority in the EM.

2-27

TABLE 2-5
CHARACTERISTICS OF CONTROL UNIT MEMORY

UNIT: Control Unit Memory (CUM) No. In System: 1

FONCTIONAL CHARACTERISTICS

Function: Contains data local to the CU, and CU's program. Also contains processor
program as source for overlay during runs. Holds mailbox for host—-FMP communication.
Holds copy of DBM allocation map.

Source of Control; During User Program: CU
‘During System Startup and Diagnostics: Same plus may be accessed by DC if CU not running

_ Storages; Capacity: 32,768 words.
Speed: 120 ns cycle

Connectivity to Other Elements:

A No.
Path To or From Sig. Timing Primary Use
1 data To/from CU 55 static Fetch and store data
2 .- address From CU 16 static Address
3 ' command From CU 2 edge or Command

static

RELIABIILITY/REPATRARILITY,/ TRUSTWORTHINESS

Error Control Methods: SECDED ’

Repair Method: FMP is down while CUM is down. Must replace failed modules for FMP to
recover.

MTBF of Unit: Dominated by control logic because of SECDED

Degraded Modes Available: Error correction allows program to continue at reduced
reliability; in single-bit failure cases.

PHYSICAL
. Chiﬁ Count; 1980 Projection: 175 chips If use.1977 parts: 470
{110 mem + 15 control) (100 ECL, etc.) 440 mem + 30 control)
Physical Size; 1980: TBD ’ 1977: TBD
Power Drain; 1980: 1977:

EM consists of 521 identical modules, which are accessed in
parallel. 521 is a prime number for the sake of allowing
efficient parallel fetching for all vectors of any length (with
the minor exception of any vectors that happen to have elements

spaced apart in memory by exactly 521).

From each EM module we need a transfer rate and access time
consistent with the most economical implementation. For the
baseline system, an implementation in 64k-bit dynamic RAM was
chosen, as being the most economical implementation available by
1980. The low chip count also enhances reliability. Projec-
tions say that a 64k-bit chip will have 250 ns cycle time by that
date. The 280 ns cycle time of the memory is compatible with the
140 ns per word transfer rate through the transposition network.
Each word carries single- error-correction-double-error-detection
code, which is generated at the source (DBM, CU, or processor) and
also checked there, so that transfer paths are covered by the same
error control as the contents of EM.

Having decided on a TN that is almost twice as fast as the EM
module, it would be possible to build the EM module in two
interlaced submodules, if it the streaming mode of fetching were
to see much use. Section 6.10 discusses the tradeoff between
implementing or not implementing this streaming mode of access.
The baseline system as described in this document avoids the com-
plexities of a design suitable for streaming, which includes among
other things, a capability of incrementing the address in the EM
module by nonunity increments. The chip count of table 2-6 does

not include any incrementer.

2-29

DBM
ONE-WORD

BUFFER

CONTROL FROM

DBM CONTROLLER

MEMORY
CHIPS

(64K WORDS
BY 55 BITS)

MAR FOR PROC,
ORCU

MAR FGR DBM

Figure 2-9,

EM Module

EM NO. (WIRED
INTO BACKPLANE)
PARALLEL
1 10 ™
BYTE-SERIAL [™
A
|
————— 4 CONTROL
{ _FROMCU
sqal, PAGE I
RIGINAL
OF poOR QUALITY

2-30

TABLE 2-6
EM MODULE CHARACTERISTICS

UNIT: EM Module " No. in System: 521

FUNCTIONAL CHARACTERISTICS

 Function: Stores problem data base during program executions. Most nearly corresponds
to "core" of conventional processor.

Source of Control; During User Program: Receives commands from CU
During System Startup and Diagnostics: Same

Storages; Capacity: 65,536 words
Speed: BAccess time 200-250 ns, interlaced for 140 ns/word block transfer

Connectivity to Other Elements:

No.
Path To or From Sig. Timing Primary Use
1 ILOADEM To TN 9 byte/20ns Fetching data to processors and CU
2 STOREM From TN 9 byte/20ns Storing data from processors and CU
3 - To DBM 9 full word Results back to DBM
in 400 ns
4 —ee From DBM 9 full word Initial data {and eventually, overlay)
in 400 ns . from DBM
5 No From 10 D.C. level Module's own number
backplane
6 Control From CU TBD TIBD Controls EM operations

RELIABILITY/REPATRABILITY/TRUSTHORIHINESS

Error Control Methods: SECDED (providing acceptable error rates are demonstrated)

Repair Method: Remove and replace

MIBF of Unit: Control dominates failure modes because of SECDED.

Degraded Modes Available: Data continues to be corrected even when there is one hard
error, allowing the current program to complete before repairs are undertaken.

PHYSICAL
Chip Count; 1980 Projection: 86 If use 1977 parts: 274
(55 memory + 30 control) (100K ECL, etc.) (224 mem. + 50 control)
Physical Size; 1980: One medium sized 1977:
p.c. board
Power Drain: 1980 1977:

GE IS
ORIGINAL PA

2-31

Figure 2-8 shows the EM module, including two address registers, a
one-word buffer for DBM transfers, and an access path to the EM

modules own number, wired into the backplane. Table 2-6 gives the
data on the EM module.

2.4.8 Fanout Tree

A series of fanout boards is supplied to provide the CU to
processor connection. From CU to processor,s signals fan out to a
final 512 destinations. From the processors, the signals are
combined, so that, within the CU, a single result appears in
response to 512 signals emitted by the processors. For example,
the "all processors ready" signal becomes true at the clock that
the last enabled processor emits "I got here". Another such
signal is the 5i2-input OR of "enabled".

At the processor, some signals are wired per-processor directly to
the last level of fanout board; others are daisy-chained to eight

processors from a single signal pin on the last board. The fanout
boards are pin-limited. Simple buffers with one input pin and one
output pin per signal dominate the circuit count, so hex buffers,

easily available today, will not be improved upon by 1979-1980.

Data on the fanout tree is in Table 2-7. The figure demonstrating
the fanout tree is Figure 2-10.

2.4.9 Transposition Network

The transposition network allows the fully parallel, 512-wide,
fetching of sets of variables that are to be processed in
paralliel. Up to 512 elements in one-dimensional vectors of any
type can be fetched at full speed in parallel. When DOALL loops
have two index variables, two—-dimensional subsets of
multidimentional arrays can also be fetched in parallel. For
details, see Ref 1, and Chapter Three.

2-32

cu

4 COPIES OF 26 SIGNALS

CABINET (CABINET LEVEL) # REQUIRED
FANOUT BOARD 8 COPIES OF 28 SIGNALS
[,
29
SECOND LEVEL 32 REQUIRED

FANOUT BOARD

26

L.

EU

8 PE'S DAISY-CHAINED
PER BELT

Figure 2-10. Fanout Tree

512 REQUIRED

ORIGINAL PAGE B

OF POOR QUALITY

2-33

TABLE 2-7
PANOUT TREE CHARACTERISTICS

OWEIT: Fanout Tree, CU to Processors No. In Bystem: 1

FUNCTIONAL CHARACTERISTICS

FﬁnptiOn: Provides fanout for signals from CU to the 512 processors; accepts signals from
. the 512 processors and combines them appropriately for the CU. Consists of 36 boards.

Source of Control; During User Program: Mo control; all passive logic.
During System Startup and Diagnostics: Same

Connectivity to Other Elements:

No.

path To or From Sig. Timing Primary Use

1 command From CU 4 TBD Diagnostic

2 sync From CU .4 edge Synchronization of array

3 sync To CU 4 edge svnchronization of array

4 BDCHT From CU. 8 byte/20ns Broadcast data

5 HVST To CU 8 byte/20ns Data to CU (such as global MAX)
6 command To proc. 8's 4(x 64) TBD Diagnostic

7 sync Tc proc. 8's 4(x 64) edge Synchronization of array

8 sync From proc. 4(x 512) edge Synchronization of array

9 BDCST To proc. 8's 8(x 64) byte/20ns Broadcast data
10 HVST From proc. 8's 8(x 64) hyte/20ns 512-input OR of data from processor to CU.

lst 8-way OR done on proc. wiring

RELIABILITY/REPAIRABILITY/TRUSTWORTHINESS

LY
Brror Control Methods: SECDED on broadcast and harvest data.
Repair Method: Remove and replace of defective boards.
MIBF of Unit: See Chapter 5.
" Degraded Modes Available: None

_PHYSICAL
Chip COunt; 1980 Projection: 2,000 chips If use 1977 parts: 2,000 chips
all small scale integration. Dominated by (100X ECL, etc.)

1,504 hex buffers.

Fhysical Size; 1980: 32 cards of 60-80 chips 1977: Same
each

Power Drain; 1980: 1.6 kw 1977: Same

R 18
AL PA
O ooR QUALIT
2-34

The transposition network consists of 521 switchable data paths
from EM to processor, and another 521 data paths from processor to
EM. fThere are two 10-bit control registers, one for offset of the
starting element, and one for skip distance. Since there are two
sets of data paths, the first from processor to EM module, and the
second from EM-module to processor, the settings of the two paths
could be separately controlled. There is just one instruction
that would go faster if both paths'a}e used simultaneocusly with
different settings, namely SHIFTN (see Table 2-10 and 2-11 for a
description). SHIFTN is used in functions that operate
"horizontally" across the parallelism of the array, such as global
sum, global maximum, or global product. SHIFTN would also be used
to implement a Fast Fourier transform on the FMP. 1In the aero
codes used as benchmarks, there is very little use of SHIFM, so
there is no justification for having separate settings for the
first and second data paths, and bidirectional data paths would
serve as well.

A three-bit command register enables the following commands:

1. Enable transfers between processor and EM. The presence

or absence of actual transfer is signified by the presence or
absence of a signal on the strobe line that accompanies each

byvte-wide signal path.

2. Enable transfers between CU port and EM.

3. Enable transfers between the remaining eight paths and EM
(built into the design to allow these eight ports to service

the scalar processor).

4. Broadcast from selected EM module to all Processors.

Table 2-8 gives the characteristics of the transposition network,
Figure 2-11 shows the barrel switches that implement it.

2-35

FROM EM MOPDULES TO EM MODULES
{LOADEM LOADCU) {STOREM, STORCU)

%

521x 9

=

OFFSET " 18 BARREL SWITCHES
: . {9 UP, 9 DOWN)

'521 WIDE

521x9
FROM CONTROLS
—_— {2 10-BIT
cu REGISTERS)
. -
919) | CONNECTIVITY
.) SCRAMBLED
520 x 9 — (SEE REF. 1)
4
Y
18 BARREL SWITCHES
= {8 UP, 9 DOWN)
SKIP DISTANCE 520 WIDE
{TRANSLATED AS
PER REF. 1)
e
«- 1O CU {LOADCU) ®)
FROM CU (STORCU) —— INVERSE OF
* CONNECTIVITY
520 x 9 —— SCRAMBLE
« (SEEREF.1)
q_._
TO PROC. FROM PROC.
{LOADEM} {STOREM)
Figure 2-11, Transposition Network 5-36

ORIGINAL PAGE 13
OF POOR: QUARITY

TABLE 2-8
TRANSPOSITION NETWORK CHARACTERTSTICS

UNIT: Transposition Network (TN) No. In System: 1

FUNCTIONAL CHARACTERISTICS

Function: Provides 521 data paths for fetching in parallel from all EM modules to all
processors; provides 521 -data paths for storing in parallel from all processors to
512 EM modules. Provides path from any one EM module to all processors. Provides
data path to any EM module ffom CU, also path from any EM module to CU.

Source of Control; During User Program: Commands from CU.
During System Startup' and Diagnostics: Same

Storages; Capacity: None. Command register 10 bits offset, 10 bits skip distance, about
3 bits of command. “
Speed:

Connectivity to Other Elements:

No.
Path To or From Sig. "Timing Primary Use
1 LOADEM To Processor 9(x 512) 20ns/byte Data to processor during LOADEM
2 STOREM From Processor 9(x 512) byte/20ns EM addresses' and STOREM data from proc.
3 IOARDCU To CU 9 byte/20ns - Data to CU during LOADCU
4 STORCU From CU 9 byte/20ns Data and address from CU. :
5, — To EM modules 9(x 521) byte/20ns Data ard address to EM modules
6 -_— From TM modules 9(x 521) byte/20ns Data from EM modules ‘
7 contreol From CU 13 TED Reset controls
8 spare To TBD 9(x 8) byte/20ns Reserved for scalar processor
9 spare From TBD . 9(x 8) byte/20ns Reserved for scalar processor

RELIABILITY/REPAIRARILITY/TRUSTWORTHINESS

Error Control Methods: SECDED applied to EM word passes through TN. Detects hard
failures, corrects transients.

Repair Method: TED

MTRF of Unit: See chapter 5] . .

Degraded Modes Available: Some portion of the TN can be bypassed by programs that are
compiled for a less—than full complement of processors. Most, however, cannot.

PHYSICAL
Chip Count; 1980 Projection: 10,980 If use 1977 parts: 17,270
(10,480 shifter chips + 500 control) (100K ECL, etc.) 16,770 F 100158 chips

. + 500 control)
Physical Size; 1980: About .200 boards 1977: Same
if 200 signals allowed per board. 1Is
pin limited.
Power Drain: 1980: 1977:) 2-37

2.4.10 Data Base Memory (DBM)

Data Base Memory (DBM) is the window in the computational envelope
of the FMP. All jobs to be run on the FMP are staged into DBM
before running both program and data, all output from the FMP is
staged through the DBM. At some future time (but not with the
initial operating. system) DBM could be used to back up EM for
those problems whose data base is larger than EM. Control of the
data base memory is from a DBM controller, which accepts commands
both from the CU for transfers between DBM and EM, and from the
host for transfers between DBM and the file system.

Many design options exist for the data base memory. Out of this
set of options one particular design was chosen for the baseline
system. This chosen design is a CCD memory built out of
256k-chips, which are projected to be available in the 1980
period. If data base memory were to be built before the
appearance of sufficiently economical CCD chips, one would use
some form of parallel-head rotating magnetic storage. The design
described here is based on the existence of 256k-bit CCD chips
each arranged in the form of 128 shift registers of 2,048 bits
each.

With a projected shift rate of 2.5 MHz in the CCD chips, a desired
transfer rate of 2.5 Mwd/s to and from EM, DBM is built 55 chips
wide, for parallel emission of 55-bit words, by 512 chips deep.
The natural block size with 2,048 bits in each shift register
delivering a block of 2,048 words, is adopted. There are 64k
blocks for a total of 134,217,728 words. ©FError correction is a
SECDED, probably the modified Hamming-plus-parity implemented by
Motorola's 10,163 chip.

2-38

Since the array of CCD chips is 512 x 55, the DBM is constructed
in a number of physical modules, say each one 64 x 55 chips. The
repair philosophy is to pull and replace individual modules, and
the degraded mode of operation would be to run with one or more
modules missing, and the operating system would have to know to
avoid assigning any data to that space.

There are several (probably four) block-sized buffers, which stand
between .the CCD storage and the host interface, in order to reduce
the interference with DBM-EM transfers produced by simultaneous
DMB~host transfers. They can also serve as timing buffers to the
host's disk packs. See Fig. 2-12.

After the transfer of a block to or from the CCD store, the shift
registers rest at the starting position until shifting is required
by the refresh requirements, or until the CCD store is again
addressed, whichever occurs first. Therefore, whenever there are
several rééuests for transfer pending at once, or when they occur
with sufficient frequency, the access time is essentially zero to
the first word of the block. For transfers arriving at random
times, far enough apart in time so as not to interfere, the
average access time is given by:

Tav ? ;E(sz/Tr)

where Ty is the transfer time of a single block (0.82 ms) and T,
is the time between refreshes, T, will be in the specification of
the device, and is expected to lie between 1 ms and 10 ms. There-
fore, the average access time for random data at low usage, to the
first word of the block, has an upper bound which is expected to
lie between 0.67 ms and 0.067 ms. As traffic increases, the
access time is mostly due to interference between competing
accesses, while the contribution due to delay in the memory goes
to zero.

2-39

le— sswipe —a

cCco
CHIP
ARRAY

512 CHIPS
DEEP

"

DATA REGISTER

=y

EBROR CORRECTION
-

CH.1
-~ R S—
2K WORD
-~ BUFFER
&—1—8 K WORD
BUFFER
HOST
—1 ™ 2K WORD
¢—mi BUFFER
3 2K WORD
CH. 2 BUFFER
RESULT
. DESCRIPTOR
TO/FROM
HOST HOST-DBM

I/O DESCRIPTORS

CONTHROLLER

Figure 2-12. DBM Block Diagram

" FRQM
BYTE-SERIAL TO S, N
PARALLEL. .
SECDED CHECK TO EM
EM ACCESS REQUEST
RESULTS
- TO/FROM
cu
| PEMEM TRANSFERS

2-40

‘'TABLE. 2-9
DATA BASE MEMORY CHARACTERISTICS

UNIT: Data Base Memory (DBM) and its controller No. In System: 1

FONCTIONAL CHARACTERISTICS

Function: 1In this memory, data is staged for FMP jobs not yet started, and results of FMP
jobs are output from the FMP. Almost all communication between FMP and host goes through
this memory, both data and program. CCD storage is postilated, although other options
are available, including disk pack. Resolves host—CU conflicts.

Source of Control; During User Program: DBM-FM transfers controlled from CU, DBM-host
transfers controlled from host.
During System Startup and Diagnostics: Same

Storages; Capacity: 134 x 10® words in blocks
Speed: 140 Mb/s (an easily adjustable parameter)

Connectivity to Other Flements:

U1

Path To or From Sig. Timing Primary Use
1 == To/from EM '8+8 words/40 ns Ioads PM at start of run, unloads results
2 —- To/from host TBD, 2 rate matches ILoading DBM, unloading results
paths host file
) : min © system
3 control From CU TRD TBD Receives control from CU for DBM-EM
transfers
result To CO TED TBD —
rcontrol From host TBD TBD Receives control from host for DBM-
. file~system transfers)
6 -result To host TBD TBD Monitoring and error cases

RELIABILITY/REPARTABILITY/TRUSTWORTHINESS

_Error Control Methods: TBD. SECDED may be adequate, and will be used if so. “Scrubbing"
errors arising due to refresh will be needed in CCD memories. ’

Repair Method: TBD.

MTBF of Unit: Domniated by controls since SECDED on memory.

Degraded Modes Available: Error correction codes allow valid data to be fetched in spite
‘of errors in memory. Can operate with failed modules removed.

PHYSICAL
Chip Count; 1980 Projection: 29,160 If use 1977 parts:

(28,160 mem + 1,000 control) (100K ECL, etc.) use disk pack
Physical Size: 1980: about 150 large boards 1977: eight disk pack drives

Power Drain; 1980: 1977:

IS
ORIGINAL PAGE
OF POOR QUALITY

2-41

As a background job, the DBM controller periodically initiates an
access for the purpose of reading the contents of a block and
rewriting that same block with all detectable errors corrected,
since errors are spontaneously created in CCD memories at a low
rate during the refresh operation. It has been conjectured that
these errors are caused by cosmic ray bombardment of the CCD
chips, discharging the little capacitors by temporarily ionizing
the oxide. The rate of periodically initiating access can
rationally be determinedlonly after getting the vendor's speci-
fication on the number of refreshes per error. Preliminary
Fairchild data, if it continues to be true, indicates that one
should scrub through the entire DBM every seven minutes, or that
this background task should occur at one eighth the normal
bandwidth of the DBM., Therefore, this background access is
initiated every 6.55 ms. Only one error-scrubbing access will be
pending at a time, even if the delay in starting exceeds 6.55 ms.
They are not gqueued.

The DBM has a number of channels into the file system of the host.
The number is to be determined by simulation. Initial estimates
are that two channels provide more channel capacity than needed
for the aerodynamic flow models. At least two are needed for
reasons of reliability. Two are assumed for the baseline system
design.

No buffering is needed on the EM side beyond the one-word buffers
in each EM module. The CU will guarantee the acceptance by the EM
of a word coming from DBM is less than 400 ns. Likewise, when
transferring from EM to DBM, the EM module has iﬁs one-word buffer
loaded nominally 800 ns or more ahead of the DBM requirement, and
this time will not slip by more than 400 ns from interference with
array transfers.

2-42

DBM~EM transfers have priority in the EM controls. However, there
is little interference with CU-initiated EM transfers. For
example, when transferring from EM to DBM, one EM cycle loads 521
of the per-EM-module one-word buffers, and then waits for 208
microseconds before another EM cycle is required for the DBM
transfer path.

A design decision, to be made with the aid of simulation in phase
1I, is whether the LOADEM and STOREM instructions should be
limited to 512 words per execution, or whether they should trans-
fer 512 x N words at a time. The description given above is
concordant with a design in which LOADEM and STOREM are 512-word
instructions, which are the only use made of LOADEM and STOREM in
the FORTRAN cémpiler described in Chapter Three. In Chapter Six
the implications of this choice are discussed at further length.

Use of DBM is as a staging area for jobs going into the FMP or
coming out of the FMP. The hardware design also permits its use
as a source for overlaying data and program into the FMP. 1t is
possible to transfer less than a full block, but not to start any
place other than the beginning of the block. A decision to make
heavy use of the overlay capability would result in reevaluating
the transfer rate between EM and DBM.

2.5 INSTRUCTION SET AND INSTRUCTION TIMING

This section lists the instruction set together with a list of
numbers giving the execution times of each.

2-43

2.5.1 Tables

There are three tables. Table 2-10 contains the instructions and
timing for the processor, of which there are 512. Table 2-11
contains instructions and timing for the control unit of the
baseline system. Since no scalar unit is required for the
‘aerodynamic equations, scalar unit timings are not specifiable on
the basis of any known application. Rather arbitrarily, the
floating-point instruqtions of table 2-12 are given the same
timing as their processor counterparts. These instructions belong
to the option for processing floating-point scalars in the control
unit.

Instruction formats arée easy to specify, and have been postponed

until more difficult issues are resclved. See section 6.5.

2.5.2 Imnstruction Execution- Timing

For the processor instructions there are three separate functional
units involved. Each instruction has a starting time in each of
the three units and an ending time .or does not use that unit. The
time of execution of each instruction is dependent on its time of
occupancy (if any) in each of the independent execution units, _
namely: integer unit, floating point unit, and memory controls.
The timing. is described most easily with respect to the
instruction fetching process, which determines the starting time
of each successive instruction. A fourth function unit, to allow
EM fetches and stores to transpire in parallel with other
processing, is under consideration, but has not been included in
this description.

2-44

Entries in the table have the following significance:

"No. of clock periods" is the number of clocks from when the
instruction normally issues to a functional unit, to the termi-
nation of the instruction. The instruction will always have been
decoded from out of the staging register for at least one clock
prior to this,

"Unit busy" is of the form n-m, where n is the number of the
latest clock that previouns instruction is allowed to occupy this
unit, and m is the last clock that this current instruction
occupies this unit.

Some instructions merely stop the instruction fetching process for
a while, until the control unit restarts it. The clock times
given for these instructions represent the time from first
decoding such an instruction in the staging register, until the
start of decoding of the next instruction, under the most
favorable circumstances. Thesa instructions are in tables 2-10
and 2~11, and are WAIT, STOP, ané HELP,

2.5.3 Instruction Fetch Timing

Timing of the instruction fetching mechanisms can be seen with
respect to Figure 2-13., The next instruction is being held in a
staging register. Out of the staging register is decoded the
start times requirad for the functional units if this instruction
were to start at this clock, and the time it will occupy the
holding register. Out of the integer, the floating point, and the

2-45

STAGING
REGISTER

TRIGGER TO

PPM

DECODE

“ISSUE” COMMAND

START TIME, INT.

START TIME, FL, OT

START TIME, MEM

)

HOLDING
REGISTER
(FOR DELAYED
ISSUE)

SCOREBOARD

) I

' I ' v
INTEGER UNIT EL.PT, UNIT MEMORY |

INSTR. REG. INSTR. REG. CONTROLS
i
i
3
|
END TIME, CURRENT FL. PT. OP. !
END TiME, CURRENT INT. OP. i

L ¥ ol 4
TO DECOBING

Figure 2-13. Instruction Fetching Mechanism

memory control functional unit is decoded the ending time
associated with the currently executing instruction. The
"scoreboard" compares all six times. When all four comparisons
say the next instruction will not interfere with current
instructions, the instruction is transferred from the staging
register to the one or more functional unit instruction registers.
If delayed starts in other functional units are part of this
instruction, the instruction is passed to the holding register to
free the staging register for the next instruction.

The program counter always points to the next word in memory after
the staging register contents. Thus, normally the PPM will be
holding the next instruction word statically at its output lines.
Only when the staging register is unloaded in less than three
clocks (the PPM cycle) will the next word not appear. -

A complexity is the existence of half-word and full-word
instructions. Empty halves of half-word instructions carry the
first half of the next instruction, so full-word instructions may
only have their first half present in the staging register. The
first half is sufficient to determine the timing. However, the
second half will contain any memory addresses, so when a fetch
from memory is involved, the second half must also be fetched
before the memory part of the operation can start,

In the baseline system, those instructions which contain a memory

address (either for data or as a branch address), or a literal,
are full-word 48-bit instructions. Others are 24 bits.

2-47

PEPM. CYCLE 1 5 15t/3 |1/20F3 [1/20F4 : T
‘oF3 _|1/20F4 |1/20F5 [1/20F5g 8
PEPM. OUTPUT 1 2/3 3/4 4/5 5/6 78 o | NEXT
15t 1/2 OF 3
y 4
G
STAGING RE] 2 (1){:24 s | 120Fs ;] .) e
HOLDING REG 5 . X -
INTEGER UNIT ; 1]] -
3 | 4 5 9,
FL. PT. UNIT
MEMORY (PEM) -
(1 3 4 5
< 36 : ;{ .
CLOCK | L1 1 1 I 1 1 | I I I I | | | |] [O O I | 1 .1

8¥%-2

AIITVOD 004 A0

g1 §Ovd TVNIDIO

Figure 2-14, Timing Diagram

Jumps take an extra three clocks before the first instruction on
the path branched-to can be started.

2.5.4 Examgle

For an example of how this works, take the sequence of instruc-
tions:

FETCH from memory to integer register

IADD reg. to req.

FETCH from memory to £f£loating point register

ADD from memory (indexed by integer reg.} to fl. pt. regqg.
ADD from mem. (indexed by integer reg.) to fl. pt. reg.

MUL from f1. pt. reg..to fl. pt. reg.
IADD int. reg. to reg.

IADD int. reg. to reg.

oo -] Oy e W

*

STORE from fl. pt. reg. to mem. (indexed by int. regq.)

Figure 12-14 shows the timing diagram for this sequence, according
to the previous instructions. The instructions are given by

number in Figure 12-13., Each c¢lock is 40 ns.

The entire sequence of nine instructions takes 36 clocks, or 1,440
ns. The sum of the "no. of clocks" column in the timing table, °
for these same instructions is 40 clocks. Overlap between
functional units gained little in this example. It is expected to
gain more in :examples which have a higher emphisis on computing ad-
dresses in the integer unit. 1In this present example, the timing,
would have come out the same if the holding register had not been
there, if loading of the staging register were merely delayed.
Simulation may tell us that the holding register gains nothing;
that only the staging register is needed. Simulation during phase
IT will attempt to evaluate the gain given byﬂﬁhe complexities
here described. The final instruction fetching machinery will be
the result of a tradeoff between simplicity and throughput.

2-49

2.5.5 Control Unit Timing

In the absence of a completely detailed design of the control
unit, the internal structure and overlapping capabilities cannot
be visualized with certainty. WNo overlap mechanism in the conttrol
ﬁnit is described in the table except for memory. Since there are
four semi-independent instruction execution units, these times are
pessimistic indeed. However, for aerodynamic flow problems used
as benchmarks, the pessimistic assumption is expected not to
matter, For aero flow problems, the interfering CU action will be
address calculations, which will be a solid swatch of instructions
all for the integer unit. Thus, we postpone designing the overlap
and look-ahead capabilities within the CU until simulation in
phase II tells us how much design effort we should spend on them.

It is assumed that memory fetches and stores will be overlapped.
Fetches can be initiated before the previous instruction is
started. Fetch and store are three clocks each. The fetch of the
next instruction must follow the store of this one, when fetch
folléws store in the instruction sequence.

The diagnostic controller is not used during normal program
running. It is used only for @iagnostics and for system initiali-
zation when power first comes on, or for reinitializing the FMP
system software.

Instruction fetching in the CU is overlapped with instruction
execution, but is out of the same CUM that holds the CU data. The
instruction execution unit will look ahead by an amount yet to be
determined.

2-50

The scalar processor is here implemented by adding floating-point
capability to the control unit and the entire repertoire of
floating point processor type instructions is added to the control
unit instruction set. See the discussion on "Scalar Processor",

in Chapter 6. These instructions are:

ADD, SUB, MUL, DIV, MAD, SSQ, ADDD, MULD, LT, LE, GT,

GE, NEG, EQ, NE, INFL, FIX, FLOAT, INFZ, SETFL, SETZ, PAK2Z,
ABS, UPF, and PENQO (which yields either "O0" or "5I2", to be
determined)

A scalar capability resident in the control unit may require a
faster control unit than the one described in the accompanying
timing tables. The degree of speedup of the design required is a
matter to be determined by simulation. Parallel operation of
semi-autonomous units (as seen in the processor) is one of the
ploys used to achieve increased speed, together with fast multiply
algorithms and other logic speedups. A method of achieving faster
CU memory operation also may be required. Several memory modules,
either interlaced or dedicated to concurrent and overlappable
functions, could be included iﬂ such a design. The times shown
here ignore these additional design options, since they will not
be needed for aero flow benchmarks.

2.5.6 Corresponding Times in Synchronizing Instructions

An additional detail is the relative timing of instructions that
must be synchronized between CU and processors. For these
instructions, execution will proceed when all enabled processors
and the CU have reached the instruction. For each instruction

there is a "CU lead time", Ty. The timing rules are as follows:

2-51

The "go" pulse is emitted from the control unit a time T, after
the start of the instruction, if the "All processors ready" signal
does not delay it. The "go" pulse is effective at the processors
no sooner than a time Tp after the start of the instruction in the
processor. Thus, if both CU and processor arrive at this
instruction at the correct time that both can execute it in the
minimum time, there will be an offset of (Tp - T¢) clocks between
these two initiations. Por various cooperating pairs of synchro-
nizing instructions, Table 2-13 gives Ty, (=Tp - Te).

Table 2-13 contains three columné. Column 1 is the CU name of the
instruction. Column 2 is the processor name of the matching
instruction. Column 3 is the CU lead time Ty. Negative Ty means
that the CU can arrive at the instruction -Ty clocks after the
last processor without delaying the time of the instruction past
its last-processor start time. Ty, values tend to be negative
because the "same" clock pulse at the CU and the processors is
actually about 60 ns sooner at the .CU. That is, Tp=0 implies that
the CU is 60 ns ahead of the processor.

2.5.7 Exceptional Cases

Within the processor, all fault cases result in an interrupt to
system software that is resident in the processor. It is possible
to handle some interrupts without interrupting the CU. Floating-
point out-of-range detection does not cause interrupts, but
results in setting the floating-point variables into "infinity" or
"infinitesimal". Any integer overflow causes an interrupt, on the
theory that most integer operations are address calculations and
overflow represents a faulty address. Attempting to insert a
number outside the range +215-1 into a 16-bit integer register
causes an integer interrupt; likewise executing a FIXD {(double-
length integer) on a number outgside the range +£231-1 results in
interrupt. Any detection of error in the error-detection-
correction logic results in processor interrupt. When the error
is correctible, the interrupt merely logs its occurrence and
returns to user processing.

2-52

TABLE 2-10
PROCESSOR INSTRUCTIONS

No. Unit Busy
Clock . Flt'g Instr.
Description Periods Int Point Mem Iength
ADD, SUB* Floating point add/subtract. Result to
' fl. pt. reg.
Case 1. Reqg. + Reg. to Req. & 0~6 24
Case 2. Reg. + Lit. to Reg. 6 0-6 48
Case 3. Reg. + Mem. to Reg. 9 0-1 39 0-3 48
MUL* Floating point multiply
Case 1. Reg. X Reg. to Reg. 9 0-9 24
Case 2. Reg. X Lit. to Reg. 9 0-9 48
Case 3. Reg. X Mem. to Reg. 12 0-1 3-12 0-3 48
DIV* Floating point divide
Case 1. Reg./Reg. 44 0-44 24
Case 2. Reg./Lit. to Reg. 44 0-44 48
Case 3. Reg./Mem. to Reg. 47 0-1 3-47 0-3 48
DIVR Same as DIV except the second operand

is divided by the 1st.
Case 1. 2d operand in reg. not implemented '

Case 2. Lit./Reg. to Req. 44 0-44 48
Case 3. Mem./Reg. to Reg. 47 0-1 3-47 0-3 48
. MAD Floating point add product of two operands

to third operand. Result to same regis-
ter in which third operand was found.

Case 1. Reg. X Reg. + Reg. to Reg, 11 0-11 24

Case 2. FReg. X Lit. + Reg. to Reg. 11 0-11 48

Case 3. Reg. X Mem. + Reg. to Reg. 14 0-1 3-14 0-3 48
88Q Floating point sum of sguares '

Case 1. Feg.2 + Reg.2 to Reg. 21 0-21 24

Case 2, Mem.2 + Reg.2 to Req. 24 0-1 3-24 0-3 48
ADDD, SUBD Floating point sum (or difference) of

two registers is kept in double length
form and kept in two successive fl. pt.
reg. The exponents of the two results
differ by at least 38. ’ 13 0-13 24

MULD Floating point multiply, with the full
double length result put into two suc-
cessive fl. pt. registers in the form
of two normalized £lt. pt. words with
an exponent different of 36 or mwore.
Inputs are from registers 17 0-17 24

*Tf non-rounding versions of these instructions are supplied, the nexecution times will not
differ from those given for the rounding version.

2-53

FLIT

IADD, ISUB

- IADM, ISBM

IADDD, ISBD

IADDD, ISBD

IMUL

DIV

IMLD

IDVD

TABLE 2-10 (cont.)

No. Unit Busy 3
Clock Flt'g Instr,
Description Periods Int Point Mem ILength
Transfer the 32-bit literal to the :
leading 32 bits of the f£l1. pt. reqg. 2 0-2 48
Integer add and subtract. Both input
operands are from integer registers,
result goes to a third register. One
input may be litera.
Case 1. Reg. £ Reg. or literal 1 0-1 24
(48 if 1it.)
Case 2. Reg. + memory 4 0-4 -3 24
Same as TADD, ISUB, except the first
operand and result are double-length
(from concatenation of int. reg. with
next it. req.)
Case 1, 24 operand int. reg. 2 0-2 24
Case 2, 2d operand lit. 2 0-2 48
Case 3. 2d operand from mem.(16 bits) 5 0-5 2-3 0-3 48
Double-length integer add, oneoperand in
two successive registers, second from two
successive integer register, result to two
successive integer registers 2 04 24
Second (32-bit) operand from memory 5 0-5— 0-3 48
Integer multiply .
Case 1 reg. x reg. or literal 9 0-3 24
(48 -if 1it)
Case 2 reg. X memory 12 0-12 0-3 48
Integer divide. Register or literal
divided by register, result to register
Case 1 reg./reg. or literal 16 0-16 24
(48 if lit)
Case 2 reg./memory 19 0-19 0-3 ,
Multiply double-length integer in two
successive registers by single-length
integer, result to two successive
registers 17 0-17 24
(48 if 1it)
Divide double length integer in one pair of
register by single length integer. Result y
to single-length register 32 0-32 24

D521
IMOD

ILIT

ILITT

IALIT

SB

IAbp1,ISUBL

IMDD

ILT,ILE, IGT
_ IGE,IEQ,INE

SHF

LT, LE, GT,
GE, EQ, NE

TIX

AND,OR

TABLE 2-10 (cont.)

No. Unit Busy
“Clock Flt'g
Description Periods Int Point
Divide double length integer in register
by 521, leave result in double-length
register 13 0-13
Saved remainder instead of gquotient
from IDIV 16 0-16
Transfer 16-bit literal to int.reg. 1 0-1
Transfer 32-bit literal to double-2
length integer register formed by the con-~
catenation of two single-length int. reg. 2 0-2
2dd the 32-bit literal to the designated
double-length int. reg. 2 0-2
Set least significant bit of integer
equal to the result of the proceding test
(excecuted prior to the actual jump) 1 0-1
Add (Subtract) 1 from content of int,reg, 1 -1
Same as IDVD, except result is remainder
not quotient ' 32 0-32
Test first integer register against 2 0-2
second int. reg., if true, branch to
location in branch address field.
If fall thru: 2 0-2
If branch, 4 0-4
Shift index register right end-around by
the number of places found in second
register 2 0-2
Test operand in first f1. pt. register for 2 0-2
compliance with condition with expressed 4 2-4 0-4
condition with request to 2nd reg. new
PCR address in address field
Test integer in one register against 2 0-2
integer in second register, increment by 4 0-4 0-2
content of third reg. Single length only.
Logic combination of one integer register
with another, result to a third 1 0-1

Instr.

Mem Iength

24

24
(48 if 1it’

43

48

48

24
24

24
48

48
48

24
48

fall-thru
if Jump

48
fall-thru
if jump

24

2-55

NOT

BIT

JUMP

CALL

RETURN

INFY

INFL

POP

FIX
FLOAT

FIXD

INFZ

SETFL

TABLE 2-10 (cont.)

No. Unit Busy
Clock Flt'g
Description Periods Int Point Mem
Complement of one integer register,
result to a second 1 0-1
If Nth bit of integer register is ONE, fall 2 0-2
through, else jump to address contained in 4 0-4 2-4

second index register. W is in register or

literal

Set program counter to value found in req.

Subroutine entry. Involves automatic hand-

ling of stack of return information, and
parameter passing
Subroutine return. Stack cut-back

Test £1. pt. reg for equal to infinity

Test Fl. pt. reg. for infinitesimal

Execute stack action of RETURN, but do
not change program counter setting

Set stack pointer to new value, value found

in register

Convert operand found in £1. pt. reg
to integer. Result to integer register.

Current operand in int. reg. to floating,
result to fl. pt. reqg.

Convert operand found in fl. pt. register
to integer, result to two successive
integer registers

Convert operand in fl. pt. reg. to zero if
infinitesimal

Set infintesimal control bit. Underflow
will thereafter create infinitesimals

2 0-2 1-2

1

to be determined, up
to thirty clocks

to be determined, up
to thirty clocks

0-2
2-4 0-4
0-2
2-4 0-4

to be determined

0-1

3-4 0-4

0-4 1-4

3-5 0-5
0-1
0-1

Instr.
Length
24,
24
(48 if 1it)
fall-thru
if Jjump
24

48
. 24
24

if fall-thy
if jump

24
fall-thru
if jump

48
24
24

1

24

24
24

24

2-56

TABLE 2-10 (cont.)

No. Unit Busy
Clock Flt'g Instr.
Description Periods Int Point Mem Length
SETZ Reset infinitesimal control but, U'flow
will thereafter create zeroes 1 0-1 24
PAK2 Take two floating point registers, round

the value found in each to 24 bits length,

concatenate the result, store in memory.

The original operands are saved as long

as the third register is distinct 9 6-7 0-6 &-9 48

PAKI Take two integer registers, move one to the
first half, and the other to the second
half of a 48-bit word which is then
stored in memory 2 0-2 1-4 1-4 48

PAKID Same, except that two pairs of integer reg-
isters hold 32-bit integers each, which are
truncated (off left end) to 24 bit integers

before packing 4 0-4 =7 47 48-
PRAKI3 Pack three 16-bit integer fegisters in a

single word which is then stored to memory 5 0-5 2-8 58 48
UPI Move the two 24-bit halves of a word

fetched from memory to the pairs of regis-—
ters indicated by the two integer reg.
addresses 5 35 2-4 0-3 48

UPI3 Move the three 16-bit fields of a word
fetched from memory to the three int.
registers addressed. Like PAKI3, may be
used to keep an index value, its increment
and its limit packed into a single memory
word 6 3-6 25 0-3 48

UPF Move the 24-bit havles of a word fetched
from memory to the leading 24 bits of the
two fl. pt. registers addressed, with gzero
fill 5 -1 25 0-3 48

BDCST Broadcast. Receive byte serial word from
the CU and insert it into the processor.
Timing varies with the destination.

Case 1. Fl. Pt. register 7 7-8 4-7 24

Case 2. 8ingle Int. register 8 7-9 4-7 24

Case 3. Double (pair of) Int. reg. 9 -9 4-8 24

Case 4. PEM 9 4-7 69 48
HVST "Unbroadcast", send word to the control

unit. From f£1l. pt. register only. 7 4-7 24

2-57

TABLE 2-10 (cont.)

No. Unit Busy
Clock Flt'g
Description Periods Int Point
FETCH Move literal or register to register
Case 1. Literal or fl. pt. reg. to
fl. ot. 1 0-1
Case 2. Literal or int. reg. to int.
reg. 1 -1
Case 3. Lit. to fl. pt. or vice versa 1 0-1 0-1
Case 4. Memory to fl. pt. reg. 3 0-1 2-3
Case 5. #Memory to int. reg. 3 0-3
All integers above are 16-bit integers.
For fetching to pairs of integer registers,
fetching double-length integers, times
are:
Case 6. Flt. pt. to double integer
reg'’s or vice versal 2 0-2 0-2
Case 7. Double int. to double int. 2 0-2
Case 8. Memory to double int. 4 -4
STORE _Store from source to PDM
Case 1. Fl. pt. to memory 3 0-1 0-3
Case 2. 1l6-bit integer to memory 4 0-1 1-4
Case 3. Double length (32-bit) int. to mem 5 0-2 2=5

WAIT Cease operations until CU emits “go".
. Takes one clock (at the instruction fetch

unit), before transmitting the "I got
here" signal. Takes three clocks for "I
got here" to echo back from the CU as a
new setting for the program counter, takes
5 clocks after that for the first instruc-
tion to get decoded. Takes only 4 clocks
if PCR not changed.

. STOP Same as WAIT plus reset "enable". The 9
clocks include the time to restart the
program after starting but do not include

any new setting of the program counter.
HELP Same as STOP, plus sends interrupt to CU
PNO Read processor no. from backplane into

integer register
If processor is above the swithced-out
spare, aid 1 to the rumber.

9

Mem

0-3

0-3
1-4
2-5

ORIGINAL PAGE IS
OF POOR QUALITY

9
9
1 0-1
2 0-2

In all of the following TN instructions, an option is that the execution may be

. conditional on an additional integer register's last bit.

Thus, participation of

a given processor in a LOADEM or STOREM need not use the much slower mechanism of

executing STOP followed by a subseguent turn on.

Instr.
Length

24

(48 if lit)
24

(48 if 1it)
24

48
48

24
24
48

48
48
48

24

24

24

24

24

2-58

LOADEM

LOADEMM

STOREM
STOREMM

SHIFTN

EMNO

OFF

NEG

Note 1l:

streaming of data, and restricting the EM instructions to 1 word each.
of advantages accrue to the limitation to N=1.

TABLE 2-10 (cont.)

Description

Fetch 1 word from EM, address in pair

of int. registers, to f£l. pt. register.
After first clock, test "ready" line
from CU kefore continuing to count clocks

Fetch N words from EM address in pair of
int. registers, to PEM. test "CU ready"
line as above. Memory cycles N times.
Memory address found in int. reg.

not in instruction (Note 1}.

Store 1 word from fl. pt. register to EM.
EM address in double int. register.

Store N words from PEM to EM. PEM address 5+4N

is in integer register (Note 1)

Transmit one word from fl. pt. register
out onto TN after testing "CU ready"
line. After transmission, test for a
new turn-on of "CU ready", and receive
from the line. The time given includes
the 4 clocks the PE waits while the CU
sets the TN to a new setting.

Read EM module mumber into the processor.
Wait for "CU ready", then transmit to int.
register, Delays through the wire of the
PE-to-CU-to-EM-to—-PE path are included

Test bit of int. req., if ZERO, halt and
reset "enable" bit

Make sign bit of f1. pt reg. positive.
Case 1. Operand in f£1. pt. reg.
Case 2. Operand from memory

Change sign of fl. pt. reg.

No.
Clock
Periods Int Point

13

13+
4N
(Note 1)

5

12

Unit Busy
Flt'g
0-13 12-13
0-13
0-2 1-5
55+
4N
C-12
7-8 6-7
0-1
0-1
0-1 23
0-1

Mem

13-
13+
4N

These EM instructions, with a streaming of N words per instruction are
included to assist in evaluating the tradeoff between allowing such an N-word

A number

211 of these instructions are

implemented, but, in the baseline design here presented we have limited the

machine to N=1.

limit.

A design option exists to implement other N uwp to some large
See Chapter Six,

Instr.

Length

24

24

24

24

24
24
24

48

24

2-59

" CADD, CSUB

Covs21
CMD521

CDVMD5 21

- CMD512
CDV512

CMUL

CDIV,

CMOD

INT

MASK

TABLE 2-11

CONTROL, UNTT INSTRUCTIONS

Description

Add, subtract integers within the CU
{32 bits)

Case 1. Literal or reg. to reg.
Case 2, Memory to register

Integer div. of register by 521, result
to a second register

Similar to CDV52l except that original
number MOD 521 is left in a third regis-—
ter.

Produces both quotient and remainder
for 521

Save last 9 bits of one reg. in second reg.
Shift right 9 places end-off into 2nd regq.

Multiply two operands together
Case 1. Literal or reg. by reg.

Case 2. Memory by register

N is the bit position of the most signi-
ficant ONE in the multiplier. Thus, mul-
tiplying by small positive integers is fast.

Divide register by register or literal

Divide register by memory

A preliminary shift, controlled by the
number of leading zeroes in divisor and
dividend, produces all or all but one of
the zeroes in the quotient before the N
successive subtractions.

Save remainder from CDIV

Case 1. Divisor from register

Case 2. Divisor from memory

Test bit n of interrupt register, reset it

Set/reset nth bit of mask register

No.
Cu

Clocks Memory

1 Fetch

10

11

345N

345N Fetch

5+N

54N Fetch

6+N
6+N Fetch

10
10

Instr.
Iength

24
(48 if lit
48

24

24

24
24
24
24

(48 If lit.
48

24
(48 if l1it,

48

24
48

24
24

2-60

CIADl, CISBl

CSHFD

CSHF

CSHFN

TIOM

CFCH
CSTR

CTIX

TICH

CGT, CGE
. CLs, CLE
CEQ, CNE
CCALL
CCALLS
CRET
CRETS

UBSCST

UBDCSTE

TABLE 2-11 (cont.)
Description

2dd (subtract) from register

shift reg. by the shift distance
(literal, or found in 2d regq.)
end-off

shift end-around

Shift numeric. If a right shift, fill the
left with copies of the sign bit,
the shifted-off bits must all equal the
retained sign bit, or integer overflow
is declared.

Transmit content of two or three registers
to DBM-EM controller

Fetch from CU memory to register
Store to CUM from register

Text index in register, and increment
Case 1. Fall-through

Case 2. Jump

Read or write 2 words into 48-bit host-
readable register, interrupt host

Test register against register

Case 1. Fall-through

Case 2. Jump

Enter subroutine, ignore processors

Enter subroutine, synch

Return from subroutine, ignore processors
Return from subroutine, synch
Unconditionally force the processor to
accept a stream of N words for PEM or
PEPM with starting address in CU

register

Same except only enabled processors are
loaded

If left,

No.
Cu
Clocks

L

20
23
30
33

6+4N

6+4N

ORIGINAL PAGE IS
OF POOR QUALITY

Instr.

Memory Length

24

24
24

24

Fetch 24
Fetch 48

Store 48

24

24

24

24
24
24
24
Fetch 48

dur ing
inst.

Fetches 48

2-61

UseTP

"USETPO

CHALTP

CSTOPP

LOADCU

STORCU

LOADRCU

< STORRCU

CFETCH

CSTORE
G

LOADEM

STOREM

TABLE 2-11 (cont.)

No.
Cu

Description Clocks Memory
Unconditionally force the content of CUM

into designated processor register. CUM

address is in instruction stream with

index option 4 Fetch
Same, plus turn on "enable" bit of the processor 4

Halt PE's at end of next PE instruction,

Wait for all PE's to finish. Can restart 4

Stop processors in second clock of this in-

struction. Cannot restart processors, un-

til reinitialized . 3

Fetch to CUM from EM via TN. EM address

in CU register is DIV 521 to make

address-within-module, and MOD 521 to 26+ Series
form module no. (which sets the barrel 4N of
part of the ™). The DIV and MOD are {Note 1) Stores
computationally expensive, therefore,

we stream N words. (Note 1)

Store from CUM to EM. Address calcula- 26+ Series
tion like LOADCU. N words {Note 1) 4N of

'(note 1) Fetches

‘Same as LOADCU except the destination

is the register, rather than memory

pointed to by the register 23

Same as STORCU except the data is taken

from the req. rather than memory 23

Fetch from CUM to address indexable by

register 1 Fetch
Store to CUM from register 1 Store
Change PCR setting 1

Set TN to settings found in register (ROM

for logy (skip—distance) is. in hardware). ORIGINAL PAGE 15
Send "CU ready" bit to processor. When "all OF POOR QUALITY

processors ready" comes back, send N successive
"read" commands to EM at 4 clock spacing.

{See Note 1) Includes TN setting for
broadcasting to all processors for one EM

module. 4+4N

Same, except "write" command sent to EM, 8

Instr.
Length

Fet.ch

24
24

48

48

48

48

48
24

TABLE 2-11 {cont.)
MNo.
Cu . Instr.
Description Clocks Memory Length

SHIFTN Set TN setting and send "CU ready”.
When "all processors ready" comes back,
wait 1 clock, set ™ to 2d setting,
and send "go". 8 24

EMNO Set TN setting and send "CU ready". VWhen
. "all processors ready" comes back, send
"read module no." to EM and "go" to pro-
cessor, appropriately timed. 6 24

CGrsS, CGES, Perform indicated test and wait for "all
CLSS, CLES, processors ready". Then send command to
CEQS, CNES processors to load PCR to either first or
second address depending on the test result.
Also branch in CU if test succeeds. 6 - 24

CTIXS Test index against liiit and wait for "all
processorg ready". Then jam

CILIT 16-bit literal to int. reg. 1 24
CLITT Transfer 32-bit literal to CU. reg. 2 48
CALIT add 32-bit literal to CU reg. 2 48

SETTN Set T controls. WNo synchronization or :
processor interaction occurs 4 24

LOOP Wait till "all processors ready". If
: any are.enabled issue "go". If none
are enabled, jam processor PCR to new
setting found in address field. Used for
synchronized .execution of loops whose loop
control is in a processor variable, and may
be data dependent per processor. 2 24

SYNCH Wait for "all processors ready". Issue
. "gO“ 2 24

TABLE 2-11 (cont.)

Ne.
Cu Instr.

Description Clocks Memory length
BDCST Wait for "all processors ready”, then trans-
“ mit byte-serial word and “"go".

Case 1. Word comes from CU register 5 24)

Case 2. Word comes from CUM 5 Fetch 48
HVST Wait for "all processors ready” then trans-—
. mit "go", receive 48-bit word (If PE is

transmitting an integer, later bytes may

be empty except for the check bits) 9 24
CaND, COR Logic combination of two CU words, result

to register.

Case 1. Both operands in registers or lit. 2 24

Case 2. One operand from CUM’ 2 Fetch 48
CNoT Bit‘complement of CU register 2 24
CIMP 2 and not B. Iogic

Case 1. Both operands register or literal 2 24

Case 2. One operand from CUM 2 Fetch 48
MOVE Register~to—register move 1 24
CBIT,CBITS Jump if any bit of register, ANDed with 2nd

register or literal is ON 6 24

Note 1: These EM instructions, with a streaming of N words per instruction are included
_to assist in evaluating the tradeoff between allowing such an N-word streaming of data, and
restricting the EM instructions to 1 word each. A number of advantages accure to the
limitation to N=l. All of these instructions are implemented, but, in the baseline

design here presented we have limited the machine to N=l. A design option exists to
implement other N up to some large limit. See Chapter Six.

2-64°

AbD, SUB
MUL
DIV

DIVR

S8Q

ADDD
MULD
LT, LE, GT,
GEJ‘ EQ!‘ NEI
INFY, INFL
" PIX, FLOAT
INFX

. SETFL, SETZ
PAK2

UPF

PENO

NEG

TABLE 2-12

FLOATING POINT SCALAR INSTRUCTIONS

Description

Case 1.
Case 2.

Reg. or lit. + reg. to regq.
Reg. + mem. to reg.

Case 1.
Cage 2.

Reg. x reg. or lit. to reg.
Reg. x mem. to reg.

Case 1.
Case 2.

Reg. or reg./lit to reg.
Reg./mem. to reqg.

same as DIV with operands reversed,
Case 2 only.

Case 1.
reg.

Reg. x reg. or lit. + reg. to

Case 1.
Case 2,

Reg.2 + Reg. 2 to reg.
Mem.2 + reg.< to reg.

Floating point double length addition

Floating point double length multiply
capability (single length inputs)

Tests on floating point registers

‘Convert data type

Convert infinitesimal to zero

Set response to underflow to infintesimal
or Zero

Pack two truncated fl. pt. words in mem.
word. :

Unpack two truncated fl. pt. words

Ioad CU register with predetermined lit.
Supplied only to permit symmetry with
processors' code stream.

Take absolute value,
Case 1./ reg./
Case 2./mem./

Change Sign

Clocks
6
6
9
9
44
44
44

11

21
21

13

17

Memory

Fetch

Fetch

Fetch

Fetch

Fetch

24

Store
Fetch

24

Fetch

48

24
48

24
48
48

24

24
48

24
24
48

if

24

24

48
48

24
48

24

Instr. Length

24 (48 if 1lit.)

(48 if lit.)

(48 if lit.)

(48 if 1it)

if £all thru
Jump

2-65

OFFSET TIMES OF PROCESSOR-CU SYNCHRONIZED INSTRUCTIONS

CU INSTRUCTION OR ACTICN

Interrupt
LOADEM

STOREM

SHIFTN

EMNO

BDCAST

HVST

S¥NC

CGTS, OGES; CLSS
CLES, CEQS, CNES,
CTIXS, CJUMPS
CBITS

CCALLS

CRETS

LOOP

TABLE 2-13

PROCESSOR INSTRUCTTION

HELP
LOADEM
STOREM
SHIFTN
EMNO
BDCAST
HVST
VAIT
WAIT

STOP or WAIT
STOP or WAIT
WAIT

Ref. 1. Burroughs Corporation, "Final Report, Numerical Aero-
dynamic Simulation PFacility, Preliminary Study", Dec. 1977.

2-87

CHAPTER 3
SOPTWARE ISSUES

3.1 EXTENDED FORTRAN FOR THE FMP

3.1.1 INTRODUCTION

This chapter describes the extensions and restrictions on the FMP
FORTRAN language and compiler at the functional level. The
overali functional view of this piece of software is stated below,
and is sketched in Figure 3-1,

1. NSS FORTRAN will be as compatible with ANSI FORTRAN
(X333/90) and B7800 FORTRAN as the architecture permits,
Differences from these standards will be indicated in this
document and in detail in the later detailed design
specification.

2. The compilation process will be performed on the B7800
front end and will produce code to be executed on the FMP

system.

3. FMP FORTRAN will have array operations designed to allow
the explicit expression of parallel operations available with
the architecture.

4., The compiler will be designed in a modular fashion with
an internal representation between components which is
identical so that addition modules can be added if desired.
The components as envisioned at this time are:

a. A parser

b. A preliminary optimizer which performs standard serial
optimization techniques.

c. A secondary optimizer which may reorder code to obtain
maximum overlap of functional units.

3-1

[

SOURCE
FILE

- PARSER

SERIAL

OPTIMIZER
ONE

lT

OPTIMIZER
WO

Wi

SOURCE
GENERATOR

FORTRAN

L

CODE

ORIGINAL PAGE IS
OF POOR QUALITY

FMP

GENERATOR

Figure 3-1, FMP Compiler Components

CODE

3-2

d. A code generator

e. A source regenerator which will regenerate serial
FORTRAN as a method of enhancing portability and
providing the user with a programming tool during the
early phases of using the machine.

3.1.2 Functional Objectives of Language Development

In the development of the FMP 1aﬁguage and the FMP compiler the-
following goals were set which are listed below:

1. Allow the user to access features of the machine in a
simple straight forward manner.

2. Add a small number of extensions which are general in
nature rather than a host of épecific cases.

3. As much as is possible keep both the syntax and semantics
of the extensions isolated from those employed in serial
FORTRAN constructs.

4, Provide easily understood and recognizable constructs
which yields programs which the user can understand and
recognize without translation back to serial constructs.

3.1.3 Major Extensions to FORTRAN

There are only two primary extensions to the ANSI FORTRAN. All
other additions and restrictions to the language follow from these
primary extensions. The two consist of a modification to the
normal set of non-executable specification statements and the
addition of a parallel construct.

ORIGINAL PAGE IS
OF POOR QUALITY,

3-3

The modifications in the specification statements are made to
allow the user to control the memory allocation to maximize
efficient utilization of the machine. These memory resident
specifications allow the user to explicity control the allocation
of his data among the Control Unit Memory (CUM), the Exteﬁded
Memory (EM), and Processor Memory (PM). The second construct is a
'parallel construct put in the language to aid the user in
obtaining a simple way in which to express the parallel aspects of
his problem. With both constructs equivalences can be made to
ANSI FORTRAN so that a serial FORTRAN can be regenerated.

3.1.4 Specification Statements

The modifications to FORTRAN will permit the following
specifications:

DIMENSION
2. EXTENDED
LOCAL

4. GLOBAL

For the present the following statements will be disallowed:

1. EQUIVALENCE
2. COMMON (Blank or named)

3.1.4.1 The DIMENSION statement retains its ANSI FORTRAN meaningi
The DIMENSION statement is used to specify the sumbolic names and
dimension specifications (extents) of arrays.

3.1.4.2 The EXTENDED specification statement declares that the

variables specified in the statement are resident in the Extended
Memory. The form of declaration is:

3-4

EXTENDED /cb/ nlist (, /cb/ nlist).....
or)
EXTENDED nlist

where cb is an extended block name

nlist is a list of variable names or array declarators. Only one
appearance of a symbolic name as a variable name Or array
declarator is permitted in all such a symbolic name as a variable
‘name or array declarator is permitted in all suchlists in a

program unit. The ellipses represent repetition.

This construct is similar to blank COMMON in the sense that execu-
tion of a RETURN or END statement never causes these gquantities to
become undefined. (See Specification FORTRAN X3J3/90 page 8-3)

3.%.4.3 The LOCAL specification statemenf declares that the
variables specified in the statement are resident in Processor
Memory. The form of the declaration is:

LOCAL /cb/ nlist (, /cb/ nlist).....
' or
LOCAL nlist

where cb and nlist are defined as above.

This construct is similar to named COMMON in FORTRAN in the sense
that execution of a RETURN or END may cause the gquantities to be
undefined. Note however that execution of a RETURN or END within
a subprogram will not cause entries to become undetermined in a
LOCAL block that appears in the subprogram and appears in at least
one other program unit that is referencing it either directly or
indirectly. (Seé Specification FORTRAN X3J3/90 page 15-15)

3.1.4.4 The GLOBAL spec¢ification statement declares that vari-
ables specified in the statement are controlled by the Control
Unit and are broadcast automatically to the Processor Memory on
Program initiation or if they modified during the execution of a

program. The form of the declaration is:
GLOBAL /cb/ nlist {, /cb/ nlist).....
or ‘
GLOBAL nlist
where ¢b and nlist are defined as above.

3.1.5 The Parallel Construct

The executable DOALL construct is a control statement provided to

permit concurrent execution of:segments of a program.
The DOALL statement is used in conjunction with a terminal
statement ENDDO to form together a loop called the DOALL loop.
The form of these two statements is

DOALL, I=Iy, Ip (,I3) (;J=J7, J2(,J3)) (;K=Ky, K2(;K3))

ENDDO

I is the name of an integer variable. Iy, Iy, I3 are each
integers.

3.1.5.1 Range of a DOALL loop. The range of a DOALL loop
consists of all executable statements that appear following the
DOALL statement including the terminal ENDDO statement.

- 3_.\6‘

No additional DOALL statements may occur within the range of a
DOALL.

If a DO statement appears within the range of a DOALL statement it
must be fully contained within the range of the DOALL statement.

If a arithmetic or logical IF statement occurs within a DOALL
statement, it may not transfer control out of the range of the
DOALL statement. Transfer into the range of a DOALL is
prohibited.

3.1.5.2 Active and inactive DOALL-loops. A DOALL loop is either
active or inactive. Initially inactive, a DOALL becomes active
only when its DOALL statement is executed.

Once active, the DOALL-loop becomes inactive only when the
iteration count (3.1.5.4) for each of its increment parameters

becomes zero.

Execution of a FUNCTION reference or a CALL statement that appears
in the rande of a DOALL statement does not cause the DOALL to
become inactive. Note sgspecification of an alternative return
specifier outside the range of the DOALL is disallowed.

3.1.5.3 Incrementation Parameteré. Specified in the DOALL
statement are at least one set of parameters which are to control
the execution of the statements within the range of the DOALL
loop. These are called the incrementation parameter set and there
may be a total of three sets of them. Each parameter set consists
of three (four) integers known as the DOALL variable, the initial
parameter, the terminal parameter, and (the increment parameter).

3-7

3.1.5.4 Referencing the DOALL variable within the DOALL loop.
References to the DOALL variable, I, (J) or (K) within the

DOALL~-loop is permitted for the following references:

1. Any reference to array subscripts for arrays declared to
be in Extended Memory, however, the DOALL variable may
not reference outside the declared array.

2. BAny reference to the value of the DOALL variable within
an expression of an IF statement if controel is not trans-
ferred beyond the range.

3. The DOALL variable may be used in the evaluation of an
assignment statement, however, not to form forbidden
array reference.

The utilization of the DOALL variable is specifically prohiBited
for the following:

1. Any reference to array subscripts for variables declared
to be LOCAL or which appear in a DIMENSION statement
either explicitly or implicitly.

2. The DOALL variable may not be reassigned within the range
of the DOALL-lcop except by the DOALL statement.

‘3. Transfer of control into the range of a DOALL-loop is
prohibited.

3.1.5.5 Execution of the DOALL construct. The effect of execut-
ing a DO-ALL-loop construct is to execute all body statements,
those following after the DOALL statement and preceding the ENDDO
statement, in a serial fashion for those determined incrementation
parameters set in the DOALL statement. The initial parameter M;
the terminal parameter Mg, and the incrementation parameter M3 are
determined for each incrementation set, Iy, I3, I3. This deter-
mines the allowable values of the DOALL variables I(J and K) equal
to Nyf.

3-8

The DOALL variable I with its Np allowed values is paired with the
first allowed variable of J. Next the DOALL variable of I with
its Ny allowed values is paired with the second allowed variable
of J. This continues until all possible combinations occur. The
total number of combinations is:

Nt for a single DOALL-loop incrementation set
Ny * Ny for a double DOALL-1lo0p incrementation set
Ni{ * Ny * Ny for a triple DOALI~loop incrementation set

Hence the body statements are executed in serial fashion for each
given set of DOALL variables allowed, either I, I & J, or I, J, &
K in a strictly parallel sense.

3.1.6 Subroutines & Procedures as Program Subunits (to be resolved

in Phase II)

3.1.7 Other Constructs

3.1.7.1 ASSIGN Statement. The ASSIGN statement has been dropped
as a possible candidate for a FMP extension. It was found that
the access to Extended Memory could be handled by simple compiler
algorithms through the EXTENDED declaration. It was found that in
complex control structures the programmer was more likely to make
mistakes and cause ARRAY bound errors than if the compiler was to
perform all the necessary accessing. Some details of this will be
shown in later examples. ({See 3.2.2.2 discussion and Fig. 3.4).

3.1.7.2 1I/0. All I/0 for NSS FORTRAN must be performed on vari-
ables assigned to Extended or Control Unit Memory. If variables
in Processor Memory are referenced in an I/0 statement a

syntactical error will result.

3.1.8 Exzamples of Constructs in FMP FORTRAN
3.1.8.1 VALID Triply Nested DOALL-Loop

EXTENDED Q(l00, 100, 100), S5(100, 100, 100)
DOALL, I = 2, 99; J = 2, 99; K = 2, 99

RR 1.0/Q(1, J+1, K-1)

!I

Ry = Q(I+l, J, K) - (I-1, J, K)
Ry = O(I, J, K+l) - (I, J, K-1)
S(I, J, K) = RR * R} * Ry

ENDDO;

2. INVALID

EXTENDED Q(100, 100, 100), $(100, 100, 100)
DIMENSION Ry(100), Ry(100)

K= 2, 99

-

DOALL, I = 2, 99; J = 2, 99

RR = 1.0/Q(I, J+1, K-1)

Ry(I) = 0 (I+1, 3, K) - Q(I-1, I, K)
Rp(I) = O(I, J, K+1) - (I, J, K-1)
S(I, J3, K) = RR * Ry(I~1) * Rp(I+1)

]

ENDDO;

This construct is invalid because the arrays Rj -and Ry declared in
the DIMENSION statement are referenced by the DOALL variable I.

If it is necessary to so reference the arrays Ry and Rp arrays the
doubly nested DOALL construct should be used (See 3.1.8.2).

3-10

VALID

EXTENDED 0(100, 100, 100), S(100, 100, 100)

DOALL, ¥ = 25, 50, 2; J =1, 99; K = 2, 100

IF (I. GT. 30) GO TO 1

Ry = Q(I+l, J, K) - Q(I-1, J, K)
S(I, J, K) = RR * Ry

GO TO 2

Ry = Q(I-1, J, K} - Q(I+1l, J, K)
S(I, J, K) = RR * R

CONTINUE

ENDDO;

INVALID

EXTENDED ©(100, 100, 100), S8(100, 100,
DOALL, I = 25, 50, 2; J =1, 99; K

RR = 1.0/Q(I, J+1, K-1)

IF (I. GT. 30) GO TO 1

Ry = Q(I+l, J, K) - Q(I-1, J, K)
S(I, J, K) = RR * Ry

ENDDO;
CONTINUE

3-11

This DOALL-loop construct 1is invalid because it transfers control
out of the range of the DOALL.

5. INVALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)

DIMENSION Rj(100), Ryp(100)

GLOBAL Jy,, K,

DOALL J=2, Jr; K=2, Ki,

R] (1) = 6.7

If (J 30) GO TO 3

If (K 30) GO TO 4

DO1 I=2, 99

RR = 1.0/Q(I, J, K)

GO TO 5
3 RR = 1.0/0Q(I, J-1, K)

GO TO 5

RR = 1.0/0(I, J, R-1)

R (I) = Q(I+l, J, K) - Q(I-1, J, K)

Rp(I) = Q(I, J, R+l) - Q(I, J, K-1)

S(I, J, K) = RR * Ry(I-1) * Ry(T+1)
1 CONTINUE

ENDDO;

ANSI FORTRAN specifically prohibits transfer of control from
outside a DO-loop to into the body statements of a DO-loop.

3-12

3.1.8.2 Doubly Nested Loops

VALID

EXTENDED Q(10¢, 100, 100), S(100, 100, 100)
DIMENSION Ry(100), R5(100)

DOALL, J=2, 99; K=2, 99

R1(I)=6.7

DOy I=2,99

RR=1.0/0(I, J+1, K-1)

Ry (1) Q(I+l, J, K) - Q{I-1, J, K)

Ra(I) o(x, J, K+l)

S(I, J, K) = RR * Ry(I-1) * Ro(I+1)
CONTINUE

ENDDO; This is the correct syntax for handling the

problem in Example 2. (3.1.8.1)

2.

VALID

EXTENDED Q(104, 100, 100), S(100, 100, 100)
DIMENSION R;(100), R5(100)
GLOBAL J1,, Kp,

DOALL, J=2, J; K=2, K,
R1(I)=6.7

DO1I=2, 99

If (J.GT.30) GO TO 3

If (K.LT.30) GO TO 4
RR=1.0/0Q(I, J, K)

GO TO 5

RR=1.0/Q(J, J-1, K)

GO TO 5

RR 1.0/Q(I, J, K-1)

Ry(I) = Q(I+l, J, K) - Q(I-1, J, K)
Ro(I) = Q(I, J, K+1) - (I, J, K-1)
S(I, J, K) = RR * Ry(I-1) * Ro(I+l)
CONTINUE

ENDDO;

il

3.1.8.3 Use of the LOCAL Construct

1.

VALID

EXTENDED Q(100, 100, 100), S(100, 100, 100}

LOCAL Rj(100, Ro(100), +CONST
GLOBAL JL, JK)

DOALL, J=1,JL; K=1,KL

R(1)=6.0

R(100)=10.0

DO 1 I =2, 99

RR=1.0/Q(I, J, K)

Ry(I}) = Q(I+l, J, K) - Q(I-1, J, K)

Ry(I) = O(I, J, K+l) - Q(I, J, K-1)

CALL TEST (1)

S{I, J, K} = RR * R(I-1) * Ry(I+1l) * CONST
CONTINUE

ENDDO;

SUBROUTINE TEST(I)
LOCAL R1{100), R2(100), CONST
IF (R1(I). GT. R2(I)) CONST=R1(I)

" RETURN

END

3-14

2., INVALID

EXTENDED Q(100, 100, 100), S(100, 100, 100)
LOCAL Rj(100), Ry(100)

GLOBAL JL, JK

DOALL, J=1,JL; K=1,KL

R(1) = 6.0
R(100) = 10.0
DO11I=2, 99

RR=1.0/0(I, J, K)

Ry(I) = Q(I+l, J, K) - Q(I-1, J, K)

Ro(I) = Q(I, J, K+L) - Q(I, J, K-1)

CALL TEST(I)

S(I,J,K) = RR*R1(I-1)*R2(I+1)*CONST
1 CONTINUE

ENDDO;

Using the identical SUBROUTINE TEST above would cause an undefined
reference to CONST because the LOCAL declaration does not contain
the variable CONST. Naturally, TEST could have been defined with
two parameters T and CONST. which would have been valid.

3-15.

3.2 HAND COMPILATION FOR SAM
3.2.3 Overview

The methodology of hand compilation for the SAM will be described
through a series of examples each of which will be transformed in
a series of staées from original FORTRAN to ASSEMBLER CODE.
References will be made to Appendix (A) which discusses
preliminary compiler alogrithms for setting the transposition

network.
In each example the following code steps will be taken:

1. Original NASA-AMES FORTRAN

2. Extended FORTRAN for SaM

3. Compiler output including code reorganization (written in
a Pseudo FORTRAN .

4, Compile output showing Transposition Network and Memory
Module computations (again in a pseudo FORFRAN or META
ASSEMBLER)

5. ASSEMBLER CODE .

The example chosen from the Explicit Code was the SUBROUTINE
TURBDA because it demonstrates the ability of SAM to operate in a
concurrent manner and provides a vehicle for demonstrating the com-
piler's ability to handle control statements through a "mimicking”
technique and also provides an example of why it is felt that an
ASSIGN statement could cause programmer error. The second example
is the major LOOPS .of the SUBROUTINE STEP including the subroutine
calls and the called SUBROUTINES BTRI and XXM. One loop (DO 20)
will be discussed in detail while the other two (DO 30) and {DO
40) will show the differences in the transposition network
settings ahd the memory module accesges for the different memory

accessing. (D030 & DO40 discussion to be supplied later).

3-16

3.2.2 SUBROUTINE TURBDA

3.2.2.1 Original Code and SAM Extended FORTRAN ,
. In Figure 3-2 the original NASA-AMES version of the SUBROUTINE is
shown. The FMP Extended FORTRAN as written by‘the programmer is
given in Figure 3.§. In both cases the common declarations were
modified slightly to remove extraneous variables from this
specific example. As you will note, the programmer wrote a two
dimensional DOALL-lcop with a serial inner DO loop. Because there
is no data depending on I it could have been written as a three
dimensional DOALL.

3.2.2.2 Preliminary Code Analysis

Figure 3-4 shows the preliminary compiler code analysis. Within
the DO 1 loop the compiler determines what array elements stored
in Extended Memory must be fetched through the Transposition
Network. For a given I, J, K, EI(I, J, K) must be fetched.
However, only for J=1 must the element EI(I, J+1, K) and for K=1
must the element EI(I, J, K+1l). The compiler will be capable of
recognizing these accesses to extended memory and will "mimic" the
branch structure. It also will be able with this mirroring of thé
original structure be able to access only the requisite elements'
and prohibit out of bounds access of the array even if those
elements are not subsequently used. This protection is even more
critically necessary when accesses occur in the negative sense

rather than the positive one as in this example.

3-17

SUBROUTINE TURBDA
COMMON/A12/ RHOW(31,31,31),E(31,31,31),E1(31,31,31)
COMMON/A5/ IL,JL,KL,CV
COMMON/A6/ RMUL(31,31,31)
CVi=1./CV
PO 1 K=1,KL
20 1 J=1,JL
Do 1 I=1,IL
TEMP=ABS(EI(I,J,K))*CV1
IF{K.EQ.1) TEMP=.S5*ABS{EI(I,J,1)+EI(I,3,2))*CVl
1F(J.EQ.1) MEMP=.5*ABS(EI{I,},K)+EI(I,2,K))*CV1
RMUL(I,J,K)=2.207E-08*SQRT (TEMP**3) /TEMP+198.6)
1 CONTINUE
RETURN
END

Figure 3-2. Original NASA-AMES FOCRTRAN

SUBROUTINE TURBDA
EXTENDED/Al2/ RHOW{31,31,31),E(31,31,31),E1(31,31,31)
GLOBARL/A5/ IL,JL,KL,CV
EXTENDED/A6/ RMUL(31,31,31)
CVl=1./CV
DOALL, J=1,JL:K=1,KL
DO 1 1=1,IL
TEMP=BABS(EI(I,J,K)}*CVl
I#(K.£0.1) TEMP=,5*ABS(EI(I,J,1)+BI(I,J,2))*CVl
IF(J.EQ.1) TEMP=.5%ABS(EI{I,l,K)+EI(I,2,K))*CV1
RMUL(I,J,K}=2,270E-08*SQRT(TEMP**3) /TEMP+198.6)
1 CONTINUE
ENDDO;
RETURN
END

Figure 3-3. Extended FORTRAN for SAM

3-18

SUBROUTINE TURBDA
EXTENDED EI{31,31,31),RMUL(31,31,31}
GLOBAL CV,JL ,KL,IL
DOALL, J=1,JL;K=1,KL
Cvl = 1.0/CV
Do 1 I=1,IL
E]l =EI(I,J,K)
FOR{J,NEQ.1l) null fetch next line
E2 =EI(I,J+1,K)
FOR(K.NEQ.1l) null fetch next line
E3 =EI(I,J,K+1)
IF(J.EQ.1) GO TO 3
IF(K.EQ.1l) GO TO 2
TEMP=ABS{El)*CVl
GO TO 4
2 TEMP= 0.5%ABS(EI1+E3)*CVl
GO TO 4
3 TEMP=0.5*ABS{El + E2 }*CV1
RMUL(I,J,K) = 2.270E-08*SQRT{TEMP**3)./(TEMP+198,6}
CONTIRUE
ENDDO
RETURN
END

Note: The expression "Null fetch next line®™ implies that the
transposition network will be set to fetch all the elements for
BEX(I,3+1,X} for given I. However only those for which J=l will in

fact be passed from Extended Memory to the Processors.

Figure 3-4. Compiler Code Analysis

3-19

As one can see in this example all processors for which J#1 & K#l
all execute TEMP=ABS(E1*CVvl. All processors for which J=1

{including K=1) compute TEMP=0.5* ABS{El1+E2)*CV1l. All processors
for which K=1 and J=1 form TEMP=0.5*ABS(El+E3)* CVl. These three

cases occur for & given I concurrently.

3.2.2.3 Computer Programmatic Transformations Including

Transposition Network Calculations

Figure 3—5 shows the Control Unit and Processor Element code
streams in a FORTRAN like language or META ASSEMBLER. The
compiler recognizing the two dimensional DOALL on J,K, which are
the second and third indices of Extended arrays EI and RMUL and
calculates the number of cycles to be performed (the DO 10 loop)

i.e. NMAX

(ISECONDSIZE*THIRDSIZE + Nprocessors-1)
Nprocessors

(31*31 + 512-1) = 2
512

Similiarly the compiler recognizes that ISKIP=IFIRSTSIZE=31. Note
that all accesses to EI and RMUL are of type 1 as described in
Appendix A.

3-20

CU INSTRUCTIONS PE INSTRUCTIONS

ENTER TURBDA 1 ENTER TURBDA
2 CvVl=1.0/CV
DO 10 N=1,2 3 BO 10 N=1,2
IVV=512%N-512 4 IVV=512*N-512
5 IV= IVV+PENO
6 KM1=IV/31
7 K = RM1+1
8 J = IV-RM1¥31+1
IN= IVV*31 9 IN= IV*3l
IAP1=IBSET+IN 10 1201= IBSEI+IN
IAP2=1Ag1+3] 11 IAD2- IAP1+31
IAP3=1A8+961 12 IA03=IAF+961
IA#4=IBSRM+IN 13 IAG4= IBSRM+IN
Do 1 I=1, IL 14 DO 1 I=1,IL
II=I-1 15 I1=1-1
OFFSET1=MOD(IAF1+II,521) 16 MADD1= (IAB1+IT)/521
17 SYNCH
18 FOR {J.NE.1l) MODE=0
OFFSET2=MOD(IAG1+II,521) 19 MADD2= (IR02+II)/521
: 20 SYNCH
21 FOR (K.NE.l) MODE=0
OFFSET3=MOD(IA@3+II,521) 22 MADD3= (IA@3+II)/521
23 SYNCH
24 IF {J.GT,JL) GO TO 8
25 IF (K.GT,EL) GO' TO 8
26 IF (J.EQ.1) GO TO 2
27 IF (K.EQ.1) GO TO 3
28 TEMP=ABS {E1)*CV1
29 GO TO 4
30 2 TEMP=0.5*%ABS(El+E3)*CVl
31 GO TO 4
32 3 TEMP=0.5(ABS(El+E2)*CV1
33 4 R=2.270E-08*TEMP
34 *SORT (TEMP) / (TEMP+198.6)
OPFSET4=MOD(IAF4+I1,521) 35 MADD4={ IAG4+II}/521
36 8 CONTINUE
37 SYNCH
1 CONTINUE 38 1 CONTINUE
10 CONTINUE 39 10 CONTINUE
EXIT 40 EXTIT

Note: The Expression Mode #0 is merely a device used to imply that for those
values of the variable not equal to 1 fetches through the Transposition
Network do not occur.

Figure 3-5, Compiler Output with Transposition Calculations

ORIGINAL PAGE I8
OF POOR QUALITY|

CHA-

On entering the subroutine (line 1) of Figure 3.5 each processing
element calculates CV1 (line 2). Loop 10 is then initiated which
represents the number of times the array must be cycled as
mentioned above (line 3). Next IVV is calculated which repre-
sents the number of processors that have been utilized to that
cycle number. Obviously the compiler does not perform 512*N-512
but rather start from zZero and increment by 512, however, FORTRAN
usage was utilized here. The processing elements then perform a
number of calculations (line 4 - line 8). IV=IVV+IPENO represents
the address in J,K space that each processing element has. From
that number its J and K value is determined (line 7 and line 8).
KMl (line 6) which represents the K value minus 1 which is used in
the J calculation is calculated separately.

Lines 10 thru 13 represent address calcuations. For the control
unit one is calculating the address of the arrav element which is
to. go into processing element @ for each transposition network
setting, i.e. THE OFFSET. The processing element it is performing
and address calculation on the specific array element. This is
why line 9 has different determinations for IN. Lines 10 thru 13
are address calculations for EI{I,J,K) (line 10} EBI(I,J+1,%) (line
11), BI(I,J,R+1)} (line 12) and RMUL{I,J,¥X) (line 13). ©Note line
10 and 13 start from the base address IBSET of EI and IBSRM of
RMUL. The CU instructions are computing the address calculation
f6r the array element which is to go to processor =8 while the
processors are calculating the address of the array element to go
to Processor = IPENO.

3-22

Note all these index computations are performed only for the outer
loop. They do not occur for the inner DO1TI=1,IL loop (line 14).

Next the I index is decremented by 1 .(line 15), again a FORTRAN
antifact, which would not occur in the ASSEMBLER code but this is
FORTRAN. The memory module address, MADD1 (line 16) is computed
in the processing element while the offset, IFSET1 (line 16) is
computed by the mod function in the control unit. The array and
the control unit now SYNCHRONIZE. In a similar fashion in the
offset and memory module address are calculated for each of- the
next two array access and synchronized accordingly (lines 18 thru
28). DNote that for (J.NE.1l) (line 18) a mode bit is set which
turns-dfﬁ the array fetch. Similarily for (K.NE.1l) {(line 21).

The next step the compiler takes is to skip computations for those
values of J between JL+1 and 31, thé value declared for the array
in the EXTENDED declaration (line 24). This is the way the
preliminary compiler is going to handle the one dimensional vector
length/declared extent problem at this junc;ure. Alternative
algorithm are known; however teaching the algorithms and

subsequent hand compilation would require Burroughs‘more effort
than the possible machine performance degradation.tﬁatnﬁght occur.
during simulation.. For (K.GT.KL) a similar“branéh\is per formed
_(1ine 25). Note that 8 CONTINUE must be above the next ‘
synchronization point. Next the branches for sections of code
which will be computed ‘for (J.EQ.1l), ({K.EQ.1l). AND (J.NEQ.1))
and for all other J and X vaiues less than JL and KL. (lines 26
thru 32) All processors except those that have J or K values
greater ‘than JL or KL then process lines (33,34). The OFFSET
calculation for RMUL is then made in the Control Unit and the
Memory Module address in the processors (line 35). Synchroni-
zation occurs and the transfer of RMUL (I,J,K) from Processor to
Extended Memory occurs. Lines 14 to 37 are looped ﬁntil IL is
reached and then the second cycle, line 3 to 38 are executed
before the subroutine is EXITed.

3-23

Earlier it was mentioned that this piece of code could have been
executed as a three dimensional DOALL loop. As can now be seen,
this would probably not be advantageous in terms of performance
for two reasons. First, due to the branches on J and K {lines 24
thru 27) each processor would have to perform the index cal-
culations of lines 6, 7, and 8 for all I values if one did a 3-D
DOALL-loop. Second, since IL< 31 one only needs to execute this
loop with the preliminary compiler IL times with a 2-D DOALL-loop.
In a 3-D DOALIL loops I would have to be computed and a branch
similar to lines 24 and 25 would also have to be made. At this
time this appears less efficient in highly branched code and where
the array fit is good - i.e., on cycle 1, all 512 processors are
utilized while in cycle 2, 88% of the processors are utilized. If
the array size were instead EI(25,25,25) then 100% would be used
on cycle 1 while only 113 or 22% would be used on cycle 2. With a
3-D DOALL one would have 31 cycles of which 30 would be 100% busy
and 1 cycle of 50% busy. In that case the additional indexing com-
putations would be masked in the total execution time.

3.2.2.4 Assembler Code for TURBDA

This code is shown in Figures 3-6 and 3-7.

3-24

L

1006 TOENT
1601 CODESEG
152 ENT
1303 <TARRT CILIT
1504 CILIT
1e0s L2 D
105 CSHFH
1007 CHULL
Ieos CFETLH
i0Ge CILIT
WG e LTIN
foid L IADDL
112 CIaboe
in13 Mons2
i1t CILIT
s LOARDEM
1617 CIRDOL
{617 L IRODR
1p1e MODS21
fors LOARDEME
iz L IRDOL
121 £ IRDOF
12z MODS2t
1523 LOADEME
FRUR CIRDDOL
te25 CcIAnDp
1026 MOOos21
162 STOREM
nze JUMF
faza L JUHP
30 LY RETURH
10321 ERD

*

Figure 3-6, Handcompiled Control Unit Code

CH-IMPLICIT -TUREDR

START

CRi.0

LR
CE1.LR2.LW
EPEtEP1 -"‘"..:‘
CRELRSVET
rR2IL

LR7.T

LEF R

CPa R B2ETI
CRQ.CPT.CFD
k]

CRIL 31

RS LR
CFPa.LRe,IBSETS
CRS L[R2 CFS
CR%

LR GFIL
CPa[RELIBSEIR
LPOLRSCR2
LR

CREETD
CRSWLREIBSRM
CREFFLFT
LR

LRS RO

L1t

L3

Subroutine TURBDA

3-25

http:CRP9.CR?.CR
http:CPS.CP7.CP
http:CRI.C2.LL

L
1040
101k

1m0a

16320
1640
=0
HAEAN]
1070
fLan
i|95

G L B

VD T ot b b b

Fo oy oo Fu

Sl cn Il 0 P R ol PYRLEY I P~ R o]
e e NI - -0

for ot Foo Tor Py

1300
1205
1216
IJEG

| Zat
1356
4250
1270
1375
1375
1325
1290
1408
1405
110
1420
1430
1L
1L
14E0
1470
1420

Pigure 3-7,

(e i =y e = i

THDEKT
CANESER
ENT
STRPT FLIT
FOIUL
ILIT
ILIT
L= ITI®
SHFL
 PEHO
IROO
oL
ISTORE
IMuLL
FLLE
ISTORE
IMULL
IFETLH
ILIT
Lit ITIx
IRODOM
1ADD
DS
LOADEM
IAODH
Aon
mnsat
ILIT
IFETCH
1ED
ILIT
LiGG LOARDEMC
1ADOH
1RDD
1oz
ILIT
IFETCH
JEQ
JILIT

LetL LORDENL

IFETCH
IFETCH
[5UBL
I6T
IFETLH
IFETCH
T5UBL
IaT
1ED
IED
FFETCH
AEB%
FiliL,
FETOFE
JUMF

Handcompiled Execution Unit Code

FE-IMPLICIT TUFFRLA

START
=5 I I
FRi.FFI1.CU1
IF2.t

IFt.@
TF1.TRE L
IRZIR2.-9
IFYy

IPL IFZ IRY
IR IR% 21
RS R M1
IFE.IRS .2
1PE, IRB A IRE
IRE I
IFEJIF% .3
TP IL

IRS -1

IFF RSN
IRGIRG, IBSETI
IFEIF2 IR
Ife

1R&ET
IREVIRG IBSETS
1P, IREVIRS
IRE

IFIE

IR{1 .0
IPt11 0. LTC0
IFiG .0
IPE.EZ.IRTE
IRE.1R:IBSEIZ
IFE. 1P, IRS
IRE

IRAG 1

IR KT
IRf1 0 L2G0
IR0 <4
IRZESJIRID
IF12 400
IF1Z.dL
IRIZJIR1Z41
IR JARFIZL80
IP1Z LMY
IF{4.KL
IRIY IFIN.
IFIZ R 1% LB0
IF‘I 1 ’]:l i Bein
IF1Z,0.L26
FRIWET

Frz
FRZ.FF1FF2
FFZ.TEHF
LED

Subroutine TURBDA

REGINAL
QF poOR QU

pAGE 1B
m’i‘i

3-26

http:IP6.1R5.31

3.2.3

SUBROUTINE STEP (LOOP DO 20)

The next portion of code to be examined is STEP (loop DO 20) which

includes CALLS to BFPRI and XXM. A number of Figures have been
made of the code and they are-listed below with a brief

description.

—

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

3-8

3-9
3-10

3-11

3-12

3-13

3-14

3-15

3-16

The original NASA-AMES FORTRAN of Subroutine
STEP.

SAM Extended FORTRAN. for Subroutine STEP

A comparison file of Figures 3-8 and 3-9 showing
R{Replacements), I(Insertions) - (Deletions)
Preliminary Compiler Code Reorganization for
Stbroutine STEP

A compar ison of the Figures 3-9 and 3-12
Compiler programatic transformations including
?ygqsygsition Network Settings for‘Control Unit
Subrouézﬁé STEP T

Same as above for Processor - Subroutine STEP

Implicit/Steppiece NSS3CU Assembler Code

Implicit/Steppiece NSS3PE Assembler. Code

Additionally the SUBROUTINES BTRI and XXM are examined. The
related Figures are:

Figure
Figure
Figure
Figure

Figure

Figure
Figure

3-17
3-18
3-19
3-20
3-21

3-22
3-23

Original NASA-AMES Code for Subroutine BTRI
SAM Extended FORTRAN for Subroutine BTRI
Compar ison of Figures 3-17 and 3-18

Original NASA-AMES Code for Subroutine XXM
A modified version of xxMlL which will produce
iﬁproved performance on the CDC7600 and SAM
SAM Extended FORTRAN for SUBROUTINE XXMl
Compar ison of Figures 3-21 and 3-22

ORIGINAL PAGE IS -

i YL
OF POOR QUALITY pgeEDING PAGE BLANK NOT FILAS

3-28

=T
k2
L8]
L. €Y -
X Uy
= = -
x> &
sl st
[} 9 ~
Y L
I x [N
o Q) -~
tal [T
LI Y LY
ot ot — [Tal
240 - [y
Xl o - [}
“3 .o B N
(G 1= e Iv.) -
- & 2, -t []
0 ~ -
[=1L B ~ -~
LY —~ n
0 by -~ -
- M w
oK LY -
L% st o0 =
O eE [t IV) 0
a8 T b3 LS [
ez o (X}
e TN 0T 4 Pod S -
(X} LY 4 LSS ~
M O ~ w
- O 2 O S
Rl aw ~oa [T
-t 2T ey [¥4 [N
N Rl o)
>IN F atn [AN [[V
- [74 -~
e T sy e a1
W e S - - - - -
RO e OO R L Ea + D3 &* Dm “
MU O o x DE ¥ DN Duruotd
L T ED o AOM - -~ < DE UM DUXmM S[Sopr
EZ > aEOM A& el » [YT AT WD R Ea
A0 MD . B D b -] D I O+ TN O
WD OO ASOOMNNZO x N FEOREIca Xl e ax
HE AT an MO o oD] ~oQ® e © et LI A i | DS L | | M
L L N VY-S R) -t w e Mo e o s 0¥ (S R NETS R O NILTAN & XL}
L R LA St ILY -l TENL + P =l ~T=} RN ST Nyt Wkt g RN AOIE N NN+ K
e P L) B LI N 3 S ¥ % o s LTXX [P NN I B) EE R R I\ IR SR 3 o T NP BE oo T PET N RCT
V™D aZ NN oy e a a = JE % & & » - her e B K iKY ool § roecb e oo
Ll & N DY) O) e LRLINTN] » B Tl Ta v -l & R aDeIeym .
W A Cano s s . -~ 3 i Ny WA s b & R WU Ry g wwnn.
R L= WL Lt o o L e O o e e L N - (i) s Ty Sz
MO0 O eI, 4 O@ Den tOTITNTI™ON K QA LA & K K o e e S e o o i
o e e S S S AVl T e M NI N T et v UMY o2 LD UM T LA e SR G i e O 1y
DEAETTEEZITE X Vied B et T at ot R - T R T I O N T ey
OPx LEOOoCCDLO0o oo E MMM o @ T DN o i Lt ettt IO UM MR MY o T o o
EED XX FTTTFWITY WA 3¢ U= B H X HUHNOEOOW & Ah 6% st hhanbnbabnann
OELEXXEITTLE>Z YL E & nad < W TR IO i e B et B b e
20 E0CooRLOLDE . T rOaoE - _Ja@fdomiNMmg o« O 23t DT o 17 00 P S ottt ot o ot ot et bt e bt S ot e s o A hr s s
L L LLLOJO0 EOWAG o ETTOONOETYE ¢ EPAFDIOULOQLLOARO0O0DA0ON0NS0C0ma
L I N - *®
L [
- »
« -
* L
© Low [AISTRY [ATS13]

- coIoe 'S - Qo o OO ODOEOOoOOLO0
~e (=] o c [wl=ml=) oL R e NTEICN C CQOIOIOL O D P,
COoOCOoOCoCCCOooOOOC OCOOOQ OO0 = Sl N C v
-y Ll VL E5 STN Lz] AR U D e O Ch St DM o LMD P T30 O (UM WD b 00 O O 1 OIS If O e 6D Oh et O M
U D O8O WD DU MY DR O O O A .
QD (&0 a0 g OO0 a0 0 GO0 0 8N X0 O 0 €0 60D AN 0 W0 o en iR o T DNV DN e RO RGO O VRO N D O RN OV O OV O O
L X Y- (3.
-l e 111‘1111111111111_1_ alala Lol

Original Piece of Subroutine STEP

Figure 3-8,

3-29

http:OXIOY1,OZIND,N2,'V(5).FD
http:LFDTGAIA.GA

it o

P~~~
L gt g Pel
“"h e
[aralafalinl
LT
e ar ke
e
[l —T=1-T-]

C

CxvxexxEND OF AMATRX

P Lalal Yol . n" [

— M n P Y

e L. R h YLt JTaW] []

~—l EEFETE L Y T

[3R 3 L L 'Y RLEEEIE X

~ 97T ey " SaanAan &
] aa 13V et Z Z
A e TITITITITY ket a aT
Ww A W RwWOOOe @TITITIMTITY T e
M* Jd DOOSMED ¢ ¢ 0 8 8% i w5
Tl wx 11111 CoQoeaamDaUt)
oY wews N -J
s CPCE AL LI I A o b M
TIRE -t -

[0 e R B T e el Y et ol Pt ol g 21V]
DT A TE Z2AMM AN IS INEZZ 0 2D
E -Ecco I R N N Lal

iy o NZE o O E E T T L T EZ 2T
L L TR I Y N N N N O A N S N N N e L
4 “ TITTITINYITITITTITITITITIMITITYE

D™ O L. 0% 5l S s " et Nt o Y S s? s e e e Yot B b ot T
LICH0s O (O)% a0 K = (000 00 QDA IO L O S D D Lan

Y] M
— LAt [aY]

.

)

L]

o

=

k] =]
&

- o

-~ o

- ("]

I [}

™ d

=] 2]

[=] Lol

= (5]

L =

- x
-

" v
-
]

wloouy

s
— MY Y
A b o8 ah
[l e b b v 4
X T vl Y
TP bl L.

-
SNOOH BB HN

F4 UL o o

e MU,

Lt JE SN N e]

m NN
— kR o A

N D

- NI E O

L £ o L INPENT ALY o TP P

COVIVIVI O L

«
o~

-
[yY]

COOOVROCCOL OO0 OOOCOCCONUNE OCADl GGL COGO QOO OOOC COE CCa
COO00COO0O0000 Co00000O00OLO0DO0OOO0ODOO0OCOOCoOOcto0
ACA= OOCN QLI M (O Oh O DM NGO M G0 O8O =0 ML EN D M T 08 © ot DM o D0 b @O St (MY WP WD
3:”36.46#54& =T 2 WO LN N AN AN FUO WD AD D (DA DWW WD e bt b b b B, P b O3 60 60 05 €0 00 €0
PO ROO A TN RO OO0 OO et
et et e o e e e ot 9 1111.1!11111111!111\;11111111.111111”“22

Figure 3-8.

Original Piece of Subroutine STEP (Cont)

3-30

http:j-C?+2..*.C1

wr 23
a X -~
7Y wn
PO o -
afh 4
aT Y+
X = L
Ve L
o -
—T -—
F - {a]
<t L -
[Tt i} n
alal c - -
oL ~r s
o o - Y-
X = - L g
<O o PN] [=]
[5, 13- B4 (a4 -
N [l] ~
a [=] why n
- - (=l 3 -
anl [V Lol n
e [L)
¥y ox - L=
2T D w
x - "D -
-~ [+ L o
(Y13 > [=} o] LY
My oa (53 ~
- - Wy
E AP Y (51 -
s X (2t W
A 0D0S & -
U E atn ot % o
Lo abrZ MmaD -]
A ZE W AN A [-~
S i e P B 8 M o TV L2 - —
CATFFr aOOCOX e - "D *
O g, O L MR - x DN e DINNNE D
WO XD %S~ N e} =SENM DT O
TZE o amiXOOCO WA = LY ol X {C kWD
IR Lhe; mlr AR o -l . o« DO F =IO G X
A0 @ whap e AN a8 - [L 1 s ONE)Xy
BT 2Ot e O D Y] - Ex oLl 8IS RO) RONTEY 22
O D atdh AMOU D << = - P tatal ++inT [S1. 2 R RT3, f FLIE]
LoEMZ Al & el a T o + 5 e [Tl T LY Wkt DN
B I 00 bt L VO v 56— o LT E [= o TTrxxT O # # = S AN gt o O O vt O S BUNTY
WD AZENEXXE G B [+ 4 3 = P alalalalatal I B I J 4 &= EraorooUl | o) oo
(TN e Ly - L AN T ® Uy x A TP O Gy L o E- =1
LIV e G (Y)20 e MY 4, (Dbt LERES - b I T T Tl Lt T - O LU T [(IR LI LI TRE T N T T
Z L s Ll N NN OO0 o ey —t Met™TITITIT) M OO O O D
[l =N gLl 3 Falalal S N i =2 1]] I oo & n & &9 3 T DO 8 DD H K ™ i om i P P e P
e S PO, e Ll L2 O D L - LD i winstad O NN a1 QD bt et (UMY ST e O BN e O VY (et
Dud FE A IO0O 0N O™ Wil m — (=T 4 S o NSO FEEL n o6 R R AR R RR R KRR A&
Oty (Il ol 22 g0) - = N e I . Tt~ L+ 1=] O3 o o et et e O SOOI I MM M
¢ OO0 a0 Ll el L= -t WHNA 5 0 el Lol dy Tu N TRNTIN IS [NES- o ([[T AT 4 LT FL I A N S N Y S O N O P Sy e
MO s E00O0FER U0 ¥ o Q HHHnN = Sl Huil WG NN TITNTITITIIITINNIN
Dl XX OLCD FOLCE -) IOt NN minT & o2 D et DU P U U e e et s M k! e Yo s R el St St s et e
[LB NT. TLTL IVE PTPY R T) O o = OO XY * EXDIWEIDOOQLOLLOAOCOOOOMINOREE OO0
ity e~y -
[} "
* -
» -
L *
(&) [S8 L&] [E1525] (81815

SLooCoQodCco ooo gnuon._fl..nvonl_on..n!.-n!.\bzs&.sn-ﬂvon.ooonuocﬂuﬂunnvoon..ﬁ:,l.h)ﬂuﬂa090000000300000
MODOOOOOOMOWMGOOWO00000000000000090000000000000000000DQ000000000000000
UM PO OO0 QYNNG [NAD OINTE WO O T O et O TN NN oA 000 @O (DR o0 00 @ vl o WD A O OV O vt (UM 1N D b a0 0 Ot
ﬁkﬁhﬁﬁkﬁﬁsss5555883363399999999999999900000000001111111111222222222233
0T @00 Q&) CHG X 0D o0 M D 0 MO O DM QN U ODOOTCNCOIO OO RC TR ORAROINCOARRC OO VOO
et 0 gl g el wrd i 2] o el e ol ol ok wed il 90 el eyl = et i Pt v] vt el e g w0l el ed et v 9] o] e) et e e e 111111&.1[1 ol g |

Figure 3-9. Identical Piece of Subroutine STEP in SAM

Extended FORTRAN

3-31

ORIGINAL PAGE IS
OF PNOD ATTAT TV

http:C4=R4.UU
http:EXTENOED/VARIIX(720.30

OF POOR QUALITY

ORIGINAL PAGE 18

o
=
- M
« ~DD0D iabatalaiad L1 I T
rwond —D0DD0 [—OIW LN [alaladnlal: -2 -
OX Uegas - L LY PV aBX ST | 1
LR SR N1V -1 ~ TEx T IR R . N
MM AR ek b AT FTEL L & (2]
e aXodd §F 3 X o] e b e L N LY »
I & ma ¢ ML Lol od 110t vl 2 X (<41
X O LAMNLIILIS 1 -~ -~ A s TITITITITY kb on -~
A aOOE Ead X o ow ¥+ WML W W OO Oo0TTIMTITY 9 T TXE L i B g7
P NI T U P - 4 LKL I N - ARoRa s OO0 ¥ e e ST W bod o 99 VI
EEOE Ly - X e - ZoMTTTENm 111 0000 oOqDOndlD NN = L <
=< Xl R + A N Ty] WA - O MNONmAsem B O
HunmHEHOD Y X U I Sy -3 [V J - L« [N NS o o N TINL IO L T T (T LI I T E I L 1O T I T -4 o e edNMWD [8]=]
£3 LYER A I Y. -] - D& o W et WHWa =4 (POl (I S W Sl a4
S P P g o g P gy BIN e o 3 IO SO ™70 e e b vt [} N S e N iy e 1 s S D [T I T O TITITIMIM e NNrZ W
M FANM Y L D™ ALY MK OO I XAV E NN AN P N A N M P (A T P e D Ldar B N A R el
snhasanhba O 2 *37 r ow GHE®ED ARG RAaa e enhadaka s AaMPINTE L. W 0 Ll ="9"%02
-1 S SO RO Lol Tather Dl = J= L INY -+ ¥ [} [+ 4 HHIUW M EE R TR rFFEEETETZTN & & hby O o L] [=1
anh e haasa D) Dy WO e HH (LI L O & & &shag % halag s TN WD d] IO
2TDTIMTNTS & X X Ewoo = WHOMFN IO T O - 3200 A Q=0
Nt o el Nt Nt At et s bad CPC) R AD AD O D E D I e TP I O L4, I UV Y T 0 N o i o Rt N et Nt e o St b o e Wl OO D L e L b Y 2 (% B e BTN B JTa LRIl WL P [N - o
SHOOOGOASE & O -IDPOT Ompead Qe =L MEODOMOOWLIQSNO [E 2 LaVVVIIVINVIAIIY azw
L * - =
L L]
L ™~ * v
*® [3Y] M~ @ o [T -
L. N N [\Y
(SIS YA Lo LLOLOO

COODOOCOCOOO00 wNMINWVCHNCOOOCHMNMIINO GO OO OnOOCQC COOGCCOHNMINOOOCCOCOOCOOCC MM I AOOE &
OOOQCQOOCOO OO0 OO OGC OO --HOOOOOOOOOOOOOOOO0oOCOOOOOOODOONOOOOOOO0OCIDOOODOr OGS DGO
BN D 8 00 G D M AN NN D WD NI A S O h DA OO O C et O M F U000 I 00 O v 0U MO WD e 0088 O 08 B 008 €0 o UMY LD (O 20 O8 St S MM MR MYV M A e
MM AN T 3 T T T T T Ty P 3 T T T N T NSO A A 0D WO AD W0 A0 D D DAL D W D WD e e b e R e e e e 0N 0000 60 00 00 60 B 60 &) 00 (0 00
Daealle o K- Xe e T s el e e ook - oY e N 3 o S e o, N 0 e N N Y N N R e s N - N R . L A N, . . . T N N o N e - - o Y
D e e L B e L L T L el T L L L B T e e bl Ll L md ol g Lo L B L e B e O e Lt e Lol o L b ot [o Qs ot gualt e pinch puch s pund e o Qi st o g IR Bl puiie el s put i e Y T Y)
COOOOOOO0OC OO0 COOOD OO CHDOCOCCOOCONOC OOt OOCO0ODOLC OO LOOOOOOOOOOCHDOOGO0DNOS
[=l=lafelelalelelelalegelolaleledrtelololelalalelolalclalelelolalslalalololaloalfalelalotololelolelrleelstalolele oo lata o Relatr ot lala o YaYe Tatele ottt a)

Figure 3-9, Identical Piece of Subroutine STEP in SAM

Extended FORTRAN (Cont)

3-32

http:BTRIfZ.JM

3.2.3.1 BSam Extended FORTRAN for SUBROUTINE STEP (I.OOP DO 20).

Figure 3-10 shows the changes made in the original NASA-AMES
program to produce SAM Extended FORTRAN. As can be seen, the
greatest number of changes occur in the declarations. Only the
named COMMON blocks, VARS, VARF, and VAR]1 need to be put in
Extended Memory. Note for simplicity in accessing the last two
extents on the S and Q matrices were inte:rchanged.

The Named Common Blocks VAR3 and BTRID are put in LOCAL Memory.

It should be noted that in another portion of the program,
SUBROUTINE METOUT, the arrays XX, YY, and 2Z are written out after
the subroutine calls. This would not be permitted and an
additional copy to Extended Memory Arrays, say XX1, YYl, and ZZ1
would be needed. Also, the P array is used in a variety of ways
including an EQUIVALENCE statement in other portions of the code.
However, for this specific portion of the code the P array is not
accessed in any way and so for convenience was left in LOCAL for
the example. Copies of all data in GLOBAIL memory are assumed to

be in Processor Memory.

The only other changes to the program were the replacement of the
DO 20 loops with the two dimensional DOALL loop (and ENDDO
statement) and the replacement of the CALL statement in line
1897¢8 to an INCLUDE since the PROCEDURE XXM]l has Extended Memory

References. (Further discussion of this will be supplied later.)

ORIGINAL PAGE IS
OF POOR QUALITY

3-33

£
x

—~
uw
-
o
[
o
(TS
-
—~
[Tal
-
[Tl
.
b L)
r LIRY
L3 ~—~ b
(2] LARY - I =]
=L =t -
o N
[=] by
.. O =
> Eat Lo B T
L d ~ LY
¥ ~aa Q
> NGO W
- [RY+ I
o O
= (o b ol -
LS M= o~
b3 . AN
«f (=L -
F o [AVIE N T
oo o M~ & -
Z a7 e &
P I e T R Y LY -
T ax P A o
Ol & &A=
T 4O &
o Ly O LIPF R 6
-l ATy n & RNy
W AHEOO00L A X

SMAX, KMAX, LMA X, JM, KM, LM, GAMMA, GANT ,Sul-FSMACEH

WM D N W)
A abohehe & g %o
b Gl 4K O e e Wt LD T
E N AW TIL PN - V0]

w A Mo ZwE
Bditn,), oo d SIS
VLD L0 &
o a0
A AD o e I oL *sb= H
 EO S g gLl D DD
) D [[[~ LN BN N
O g ZT 2 A0)
0 0 O Ml eti= _j
CEDOQR =0T
O AKX OO0
G w2 ottt o
o

CLUDE XXMI{CsLols JHMAX)
NDDOENDTC

INCL
END

[al-1aX s Ins inlatni kel ainl
[~flelolotol+lolatolalelale]s]
DN DR OO O i b I O T
oF AP AT oo T N NIAUN IO T OV D
e oS MupDaayan Xrasyin
et w4l b gt] ot g v el) ot

EEE ok Eradd g

HOM I A ONO O = (M TN
o et et et et

Comparison of Original and SAM Extended

FORTRAN - Subroutine STEP

Figure 3-10,

3-34

3.2.3.2 pPreliminary Code Analysis and Code Reorganization for
STEP.

Figure 3-11 shows the preliminary code reorganization that would be
performed by the compiler. The DO loop variables in line 19450f -
have been modified so that they now read b0 25 J=2, JMAX-1. This
was done so that the initial and terminal values are composed -of
literals or Global variables that would exist both in Processor
and Central Memory.

The code only accesses the arrays Q and S from Extended Memory.
The accessing of the Q array is shown in lines 189501-189505 and
in lines 194501-194510. The notation for this data movement from
Extended Memory to Processor Memory is with the FORTRAN statement
Q1=Q(KL, J, 1). (This notation is used for clarity and is not
meant to be an implied ASSIGN statement.) The accessing of Q(KL,
J-1, 6) is only necessary of J=2 for the other values exist in
Processor Memory, hence, the IF test and branch at line 194501.
Since the DO 25 loop exists in both the Processor and Control Unit
Code the execution pattern is:

1. Set J=2

2. Synch for fetch Q(KL, 2, 6)

2. Svnch for fetch Q(KL, 1, 6)

3. Synch for .fetch Q(KL, 3, 6)

4. Set J=3

5. ©Synch for fetch Q(KL, 4, 6) (2 and 3 already in Processor

Memory)

6. Set J=4

7. 8ynch for fetch Q(KL, 5, 6} (3 and 4 already in Processor
Memor y)

3-35

IMPLICIT/STEPPIECENSSL €12722/77)

[
-0
xrr ~
Vi ["a]
D= .
(Y= [=3
o v-4
Xa o
et e
e s 102]
[-~
=3 2 g
e n £ i
"l O -~ . &}
-E X - © A «t}
o o P o s}
x L) (=] ot Q
- (=] -~ [==]
W = i [
[My - [
rn o Ll 5] w
-t w =X .
K-.A F N) m &
-« =t (L 4 "
wo X - . [+ mm
aX ~No o R By
s » [X' At
bt LS < Lol d [&) 0 0
an (=1 2 [Y
P n (5} "~
-y 'Y n
T = [~T ¢ -
wi & I Ol uN
Lo ~ -
} o4 L] -y [=]
oy we E P w -
L2 2O aw et - -
WO & a3 =D » = = - x &
AN Ao £ A - - o - «a ~hoD
SO L, LIMMINY & w” x DK E DNNE DN DD
WMOJEED & & & D i | DENPM DTV DL e a
EER» A EOoOoT U £ - M SO0 K el N Rk HVWON
AN XXMM XN -l ~ o« p=l0.R L W LD L] Y] R TATXT Y
ACHADE Shapnbe SN & & a - LK 1A OMTEI Xl EXEXXNE) ¢
I O £ RIS o] =N e veir LI aCorl T BULI et | | YK b NI
Qe 42w alJO.GHAM NI W |l L 4 . 2L DT * SN B RRLIA R LTAE - 3L S TETETE)
LR A et O %, oy el Sy b X * et []=]a]a] NN WX Kol H A MO N XN NI NN
Bt 20 P et) e £ I 1D €73 el il 0 e o e [~ it b o e = - € K L J Ao OUMY 8§ vttt OO wt P wmd g O M v 5] TP § vl DY
SUD»WWNNMNN-WW Rmm = [talaial ol T N B N] &hWG EEECIAit) 1 | OX0R00) § OCOr I0C LY W O e
ab] L] o I MYl (MY g [P o [
LI el DL AP S B MY & DD [L Y ~ M ona ko s L N N LI L I L L LI L T T O O T U T T I TN T
Ay aLdl bt g, 2 CrE 00 [y YN] Y] - Med™ITIEIT) 4 4 A w et 06 05 O0F wed O b (7 DX
OO0 DD OO af, =etd) 13 Ik a™I™II™ M OO O S I o wd T8 30 ™ im0y o 1, g o 0, P S Gy iy o0 T P, S, e e, Py ey g, P
T T Mo o B, LTS Bt 7 N T a2 x -t Ll o o o) el o e e e i A R L3 0 bt D Y o3 L) O P T LR ek N o Ly el O Y o I e O NY
Ded i o el A0S, QO™ [T T N (N - 0 XMW - MM IO $EIEE & & & & & & 4 & % A% & a btk ahhh
DO Zr) 2. -4 DU il WIS . T 0 <3 A e o el o OO O O (MY MY MY 2P o o P AL UL
ML) 00O LI Ll =t NN 2 PO N X WIE NEIMEOLT o % & & & B & & &% &6 A A& &AGGA&aA&a&LSY
W0 AL OO o e L e IC L Ex O W o npnnn o W un LTI TR U I B e R ot i B L S o B B B Lo T R e o ot ot e B T B e
Dl Cudad SH X HOLOD EREO = 4 EQDm MM AWM & T vt OLY W L AL o W Nt e o b S M e o N ' e Y Y o N ot e g
SGIDJGGGEEELLCL EeIva g ¥ I D OO &I ﬂ m XD QLOQOLOACO00ADOROOAMC LGSO MO]
-
' od ~
* L
L 3 L
- L]
[&] [AY3]14) [SIA]E) [SIN]E)

OCOoLOOoOORoOOOACOOOCOOOOOLOOOAMNMEINCOOCOCOO0OOQONOOOO0DCMOOONOO0DCON0QQOOCOoOCQO0
QOOOOGCO000CO0NODOOOCO OO0 COOAOAnO0O0000COSO o000 OOaCOCOOoOOGaDOOS0C00O0OCa0
O Nl 1 L0 e L0 08 €03 e TV ol 10 LD OV P Y AL 0 O 3 md DM LA LA LA AYAD P 00 €0 G vt TV Y o 11 1 I O 08 0 9ed NI LY 1D P €0 O 53 o DN MYl AD oe 0 O SOt N MY o I D - D O
iM&ik#&44555555553338369999999999999990000000300111111111122222222223333333333
WATOVEODEOADOOEOCOODEOROOOCENROCLODVOCLDLATCORIAONAC AT ACOOREOC NN ORIARRRD MO R
el g e ot 0t il ol 4] e e el g e e el Pt e Pl 0t et et el] el e s o el e ol 0 et el il ol el et v Ol] el el ad ped e ot pet wod b amd el 1 ol el e

Preliminary Compiler Code Reorganization

Subroutine STEP

Figure 3-11,

3-36

http:04=Q(KL.JA
http:CONTROL/COUNT/NC.NCI.DT
http:SCLAHIN.NP

RE+GAMMA=UU

CasnnenfND OF AMATRX

D(Jdr5+5)

£

(8]

"y~ ~ -
[UMY P O
~ (ALY et B ')] 1
o TXEZTE AT L.
L N WY EZXZFXFTEX X
o ol i pd 5l aabnha &
Ll [LR il il
[] - - Mo YT LA X L]
*wE O ¥.3 -_OLM G, W W A O DY ™Y
-0 . - A B AR OO ¢ 1 1 ¢ tuhwv ey Dw
X el - TLMIMIT 13) 11 SOSO0ARRO0KRI0 wiMEn
o T 1Y, 0 | hd LI EN WL Ny
aty & - P 2 T O O N T T T T IO TR LT T T T (O (1 I T T 1)
& +7 a0 - P RE 3 3% 4

-t Winnin
=

L e A IR oed OITL o T ™0 0 st g B 70 P00 00 PP 0 0, N 10 0 5 PN B P o P W
MRy SR O A 8 8 I IV L) AU T e O G U e O o L et L o R SE T e i i e Y
a (3454 Ew Fei X A AR R KRR RS AR AR NI NG
ARG D) o HHY HINMEZEREXIPR PP FEEFILT o a4 s diey
et s L 1 | I (I 3 [1] and AEARRGARESEERSATTIMNIIIE
x [[E Ny V.- - WM T I YT M I T Y N T I O et v
OO DO ORI LAV 31 T ot o W S o/t e e el b o S L i L ke e e OO
OO Oa Okrotcan Ot O OODOMLIIILIL DS [5)
(]
o~ e 0O [2V]]
- [o
P e

LS |

ILTRX

CexaxeEND OF F

S MUsT BE ZERO ON B.C.

LA yey

=K ek TR0 oY
™ Ny
LY =]
cuOdm e LD
NN =]
R NN XY lalalatelal -
v e AU AL
e I N NN XYY
o Gl "0 E
- =1
w3 od od e e 2D
- 3N RN b
o ot O MY ol U e o v e Lt LT
uIVIvhnNVIny ool

000000123#5601203391234500000000300000000000123‘500000300000000123‘5000
0009033911100900900000000000000000000000333330000000000000003303000
ﬂ55555555556?59999990123&567890123656789999990123‘56739012333333457
‘ﬁ“ﬁ‘ﬁﬁ“‘“ﬁ‘#ﬁ“#ﬂs55555555556555665555656677????77??533835883383

CONPON AP APO RO R i

DOO0D
(=T bV]
o o2 o o
PN DN

99

Wl gl v Y gl e e vt el SN O

el

el lalal ol oty v e w] et v el e 9 e vl el e el e spd pf vl o

ORIGINAL PAGE IS
OF POOR QU

Preliminary Compiler Code Reorganization

Figure 3-11,

Subroutine STEP {(Cont)

3-37

In SUBROUTINE TURBDA branches on the DOALL variable were
demonstrated. This example demonstrates branching capability in
fetching on inner nested DO loop variables.

Finally the fetching and storing of the array S is shown in lines
194901-194905 and 198301-198305. Because of the notation chosen,
i.e., 8i = 8(KL, J, 1) the statements were removéa from the DO
LOOP (23) on N. This is not a requirement. An array, say SS with
subscripts could have been declared,with a simple DIMENSION

statement.

Figure 3-12 shows the lines of code that have been replaced (R),
inserted (I), or deleted {-).

3.2.3.3 Programmatic Transformations by the Compiler and
Transposition Network Calculations for STEP Portion

Figure 3-13 and 3-14 shows explicitly the address calculations for
setting the Transposition Netwot k Offset (3-13) and the Memory

Module address (3-14) for each access from Extended Memory.
Considering the Control Unit Code first in a line by line basis:

188600 Hidden loop N has 2 cycles

188601 Calculation of # of PE's used to that cycle

188601 Address of Q(Ivv+1l,1,1) in memory which is in PE§=f.
i.e., on cycle 1 the address of Q(1,1,1) is eqgual to
the base address of Q in memoryv. On c¢ycle 2 the
address of Q(513,1,1) is the base address of Q plus
512.

188602 Address of Q(IVv+l,1,2) is 42,600 greater than
Q{IVV+l,1,1)

188603 - 188639 Similar other calculations for S and Q

[
[
~
[+]
<
H ' -) P P P g P
L L BT e — e 1 -
s L B - e A HALY
—~ o~~~ VX e - TATITIMIMTT M N N
R L RS 3T, e LYY | + O & & a & s VIS e i
[@ ang ™2 iy ¥elor Lo O N RO YUY PO 0N 0 wd
i B R S Ty S O S S W) - Cru XX WML B I NP & AR s~
" oaa e AT W e b2 D0 T T e e et D e e L LI R et~
wd el d S K RN TIOUXE M ERE W LA VI M A iy il b R R S R R
PR T LT - I -t e Deilinn et P U L e e e L T) T
W e OO NIRRT D HWAr g i oon s & LSRN Y
> OO oS N= W prun o T o T Tae T [T U O 1 K 0 [|
[L LN T T T T T HE o0, UMD 3 L0) e S PETYTIvIE
- O N T O e 0D CIO T 2= "I L I U900 07 0 bl b e e vt DM 3 N v s b
AP D ROOEHSI e Ao VHAI VA IRV
(]
-~ @ o -
[o
[

O UM NG OGO O IND O MO O U SN G =N M IN GO OO AN TIND
0O O0O0oODOOCAACOODMSHOOODOOCOCONDOoOOO0OOO LoD
DML DN IO M AP N W WD DA NN N N WD O O TGN G R O O O8O U8 O3 O Qo I MMM O P Y
OO DO OO QD O G vt o B <P od o T T 7 P T 8 -1 o T T oF P 1 100 D010 0 I A0 80 D) DD 00 D0 D
MW VXU ODNRRNNP AR NAANRRRORROTRONTNDACNORROROCO D
el vl et e e ol o b e s g ed 0] o e et T] vl v] o] v v] e el el v] et et et o el b] e e

O Ot Wt et st b (8 O Q0 02 DX (0 el 4t el ok it el el et b £ FET (0 b el bt O el e et el O 07 O X 0 It e e e d Bt

O P NGO A D VO O M T UND e DO NP F N0 b 0 O O 4l MY U0 h 000 O et (UMY P UVD M

wdre] od wed ot vl et wed vt U SO GO O SI OU O S P M R I RTR RARTRN F J F F oF T T

Figure 3-12. Comparison of SAM Extended FORTRAN and Compiler
Reorganized Code - Subroutine STEP

3-39

WILL HAVE DETERMINED THE NUMZER CF CY'LES

Lo doo

IE. NHIDDEN = (720/ND*LMAX+N-1)/N = 2 CICLES

ALST THAT ISKiIP

=1

(S E]

- Ly

al -
[[Fal
[P -
.t c
i - & w
L L)
e [
aly -
- -~
T wn
= -
LI 'R
sl O - -
- B ~r «©)
A0 o - [¥4]
T s o, - ~
L3 © D []
FLEL- R4 [t -
.« & o ey ~
0 o atg w
d e (=) a
[] Lt Tl w
N 4 [S] [
o X - <
[% 4 [Ry] o
2 N L] LT =] ot
Ve~ B ~ (%]
s~ > Lo} -
Mo - L} -~
-y - [Tal
N e LY
IO e oy w
[)W - [S -
HUNE Ao ' £ ©
Lo ab= T A w
Ao ZIE e WO A -
Al B Ll o o —
o AEMN) D200 O
ML WM 6w
WD JOTED & w hm N
EZ 6 a=EOOOO (I
Y ae ane (MMM ZUN

VN RN W2
Lid b 5 Sl o o NI
L i), D e () 20 2 e MY A CTId
2t 2 ALt NN N DO
DS EDE D OO A
= D N Y L L L 3w D
DudZ =t | 000N QO
Oty aCa 2 0)
EE WO Ll -
@Y AL I e (I 2 Y
Dad ol | I OO
[T Y1 B Y L-FL-TL. LI VY U P 2 |
ey .

L *)

-l -l —t

vEO OO 400
OO0 OO0 A&~ T Fe ZIZ
GO0 COOOI M1 4151 4+ 1>+
Sa 40 A0 A0 3 40 DD O % S w5 5 e e D T e S 0

2 OO OO S 0y DO e bt o 0 0 = e 0 e Bl o B
bt o o T T T bl P e
PR R AP
Nt + s+ sttt
-t 2 2 3 3 e 3 e P T PN
B 1 O M et et D g 1 A IS N D LA VO
&l DGO A OO0 00 00 0 a0 m
ZUIO QOO T O T O bt b bk b o o 374 i, 18 pomf P 4}
11 0 OO . g o 00 K L
b L o Lo o o e Ll S I T T L TR LI I (N TR}
s LI LI L T 1 L (T =¥ == =z
UM DM PN T XA XA X0 Xo X0
O 1 DI CFVIVIUTUI 5 9 g 20 Inm B D e P Il g
i elelalalalal-tolalalal=lalalalelelalelel]
e A L g e o K o oL L L o oF o el L] X
(0 et fd b s Bt e el bl vt o e et b bt et et Bt Pl

.

C

CxxaFILTRX

o

(CITADOB+3 D521
MODCCIAQXM#II)-S521)

SYNCH

IFSETXM

s
L)
-
>
L2rd

MODCC TAOXP#+#1))»521)

IFSETXHN= MODCC FAQXNPN + 43),521)

IFSETXP

SYNCH
. SYNCH

IFSETXPN= MODCC{ IAOXPN + JJ),521)

SYNCH

=M T NOAOC OO OOCOODU oo O MG CmS NP TP MU O NP TINP R OO O OO0 OO0 QW U W OO e I o Ine
9900000000000000000000000000033333333334&k&ﬁﬁkhﬁ4550000000090001111111
(=1 =] =] 00001234567890123.&._..jro23-.45666666666565666666656666590123&.‘ I L= BT L N5 JRC I JT BU JL X 4
T T oF T F oy T T AL U0 A U B O B0 D000 65 60 60 e el 0D 8 00 @ of @0 @0 60 G0) 00 00 ® G0 40 i (B Ch o I Th ONER O 8 (R v R On
o o o 0D 6N 0D Y 00 g0 OO A D g) e o e 833“.5858888588853388888388558388833853“-5885 A @ e
et el gt gl e vy P e 9=t et el =t et et 4 e il] el 74 vt =] 9l gt] Tt]l e o i Y e g 0t et o vt rd] et e gt e) e b et e e] el
LOCOoODOOO0D Onvﬂu00
COOCooOao 000000000000Onu0@00000000000000000.000.00000QOOOOOOOUOGOOOODO [=]=la=]

Figure 3-13. Control Unit Code for SAM - Subroutine STEP

(META Assembler)

3-40

~ - ~ o~
[P —, -l - -~ o~ -) -~
~ e Nt e o~ ™~ Lol o B B A -
— o UY el e N [Ta] &N NN N N
Ly I O L) - - [To I o B T & B 7]
[T A B B LA T ' T « n b . %
a & T, “« % T ™ O e e e
Ll B B B T e B | b B B B T]
-y - FY ' - ™ e '3 - oy e T T]
- -y e] + 4+ 4 #
+ *+ = E 4+ 4 T = - 0NOM N
A A ¥ & x o ox o oo O o O
= e oy BNNNN 0o o o o o
oD o o0 P o o O O o« ot o o «T
o of of W o = - - L I I B
Bd bl Bt b g e e et ™ T)
L ™ " T e e o D v
L v S — S = [N == T o R = |
O a0 oo o0 o <= 0 0o 0 o Q
Lo = B~ N = R — B = B~ B <=} TOoOX X £ x X
X X x¥x¥ X xr xx x X 121
wbe
[[] 13 1] H il []] It 1] " H " H] il
z = & = L1~
LT o X a X a I o DD NN N
e B e e MM NN T 1o o o o
[N R e AT e
o W W W W W W Lo bl Vo R TV S T R Y Ry Y]
Vi W oW W I N T I BT Y]
L T VI T PR Y [Tt by TESRRNY FURRERTURES FUR T
L I B U T T (] [X Y= T B e R R]
X X * L. & T X T (=] F x* T T
w o L O o v o Lo e (S et
= E &£ &£ =T £ F E zZ &£ £ Z
P o > = > o = >
LT I B T BT T B 7 B ¥ LT Y I T]

MO T et VN T MDA D0 O e (D e T NS D O O et S M N D O G O C OO O OO OO OO OO OO OO OCOC OO COCCO OO ol
YO R R QU S O D M M D IR NN NN OO O OO OO DN D OO DO OO0 0 COO00OC OO0 0RO SO0 OCOCOO OO0 DO OO OO D
T T T P TP T T T T T AT S T T TV O NN WDV AL O B e P A UV WD e O S e U W D P S0 O S et B 3 WD e 0 60 = B MY b D e D On O vt
RN RN OO OOV ROV RO AR RGO ONROOCOCOOOO0 OO v rdrt v vt el vt {4 SU I B IO OJ O B PR MM M P M0 oy
0 MG N TN g @) N Ten NN D A SHN O N OO NO N DVADD OTCDRALNG T OO T O TP PO G OS.CO B ROOROCCNOOMOD o 0 &0 AT
Lttt a alalalolalalad o] 11111111111111!.1..1.!..1‘.1111111..111_.-41111111111.111111&11111‘111111.1111111

Figure 3~13.'- Control Unit Code for SAM - Subroutine STEP

(META Assembler) {Cont)

3-41

ORIGINAL PAGE IS

-~
-l Ll
[\F] -
["a) (Y]
~—~ - [Ta)
- e - "™ P e e T) ~ o e e
. [e e e vt e
[Ep N 31 c NN NN NN LAVIE o S VIR - VR o
.- A [I T T { o B T T T A T T v o i
~ 1 P L) - - - . [LS » -
- 2 R A s e T] L T T T R)
- M T m ™ o e T s o)
T3 S 2 S a5 = e e T S T
[T IEY o] - * + - - + - * - +> -
[~ -] oo M M H ﬂ ...M ﬁ
M o L= T T BT, T 7 B e B] [J
?m -1 D o O o O O (&) o o o o o
— -t o, o o | o K . o W e o o
- % e P N N e @ L
et L A ~~ L L
V-AOTD m-u\ A I s X o e W W b
<NOO O o o o o o A » Qo TTEN o o o o o
EM~OX E o o o o Q9 oo -y o o O 2 o
b £] r X © X ¥ I [ad [= I N £ X T X X
-~ u 1} - . [] L)
O) 0 [} 1}] n [} - Ld gl e 13 It n 1] L =]
Wiy o« F wwio Wb N T o 4
DTG W RDWw e N M o N = - = - 0N e
T WD o Za v v v oW = L Ll Oeiws v o W Vi
- [l o W l w - bl
oo™l L DO L b W b o v Oy o b e b Lt
r = I T T© T I u " w W x w o
O L~ o L o Qo (%]
[y T E D 2 FE ZT X n o= T &2 ZE Z N
- = = A= = > B e NN = > > > N
vow LT, T T, T T 7 I -] (SIS SIS)E1 Vi v own

QO Lt MG e MHA WM O O Dt U N O A D GO O OO0 0000000 RANOO OO MMIGOOO OGO O MmO OO O C MM I N WA O OO0
QOO0 NMNAMMNANI AN MM MM MMM O OO O OO OO OO OO OGO OO OO OO COOO OO0 OOOLOOSLOOOO OO0 OGS
O AN AN WO A LA LN N WD N A DD Y0 e G0 S U M) G D e 60 08 €0 o4 (UMY o U A0 M B0 O R O8 0 O S rd IS LT UM A0 B €0 00 08 € #=d VI M PAIVE N N TR NS B 1D
ST T3 BT T T T T T T3 F T T T g T F IO A AL NN DA AD LOAD W0 WO DD DD D D e P e B B B N o s e e €0 00 0 60000 00 €0 €000 66 D @00 0 e o

oo rorRNN N OO DR RT ORI PC AN N OO N RGO CRONTVT [y e

Control Unit Code for SAM -~ Subroutine STEP

Figure 3-13.

(META Assembler) (Cont)

3-42

Lk
-y
x X -~
1 v e ™
-t - [N
L] -y -
+— ox Y]
4 T a g
T Tlad L.
o X neS -
v [+ — Ll =TI ~
u = v ¥ "
- I = 7] () o = -
v - i oo vy
- - [~ sl - -
[R) A [13 o ad » - £
-] o _jeT x o - -]
. - (1) L X » - (o]
o L3 Eb <0 o — (=)
=z x2 [L. L1 B g) [
m wos E- 4 L] LY [+ =4 Laaln] -~
W [=] [g | 0 oy (3] n
o o La r u ==t - = -
x - Q oot ¥ o~ "
= w wx - D Ea ar o -
= i QX £ o e x [o
ﬂ [L | orr w T we [N oy
ut Ll oo T2 X s o« o ~
T ﬂ b) hrlo T 4 ~ o
[[FYRNE. T | 1Y) o X or .
N b= ¥ o . P - Midm ~
[=] It Owd d - LS v
W (= w = Al - [Ly
= = T & u & -t s A N w
[3 0D &8 oW [Xt W43 [. [
x oy (=] Lol MUNGE (7 —rs [
o 3 z s W T Los =& D]
w o - @M Ol T DU MW -
[+ P " W g P P o T ey PTY
uh 1A Xk O LWl AATF e OO YW
= Trud o O@ HMNKILEWNMM . g - - -
[#] + 2 Om O JIEET e a0
[& Z-a QX XE aa-TOO0Oo O OO0CO 0000 +*+00 +Q0 +00
> m el I - RO AEINNM s OO OOOO LEr Liw T
ol o v T WO AN A i ARy OO OO Sl)+l &
b o w —cF =) N A e (T g LD « o= = T e N T L e Sy e
a o o - T hioa = A5 ol o e T = = £ e o T T IR, Pt e A x
—Q ~ 1 HOE O XEOL EZ s s N g x L =z L A -
~HO ~ oa <NE X b b A Pt 0 WO e s e L X O R eAb b btk b [=]
g} - e T IO A ENE AL aZN [- 33 3 D 3 e B Pl Pl g F
X LI 4 Wik 3 O WS oOsnag LD o ® UM O+ X b e NFHA A MM FUHO VIS T VD WD *
= %) =W b I AL D ()2 T DR) () el RE L) OOV U LD MOS0 0o 00 (00 o0 S -
oy E O ¢ W »OZC sl NN IO® O N N OO O U C O O bl rdind bt g ood et i ot et -
Wwm W Zo.X EVHOOEOX S OO0T G- M EE R) L L L A Lt '
~0 L = Lo Y- -0 N L WINTIV I N Y. Lo U b il o e et o bt bt g bt U N DN W H D .|
e £ o ko Dbt 1100 O™ View || et R HNRREDY Y zzZ 2 =z -
0L = X o4& e et L -t] SN N AN DM P NEA XA X6 X0 TA X0,
x T = Y OO OO I I, e - [T TN DI DIV e I I P e S P DI 3¢ |
Ow =Z bl DO X Z 0 X > - o o0Oo0000o000o0C0O00a00000 X
[& s 4 . Hoh Dd ol) O g0y T (DT K e ol ul of aff of of of o aff o @l oF 6wy o oF ol = af ol pou
- [I VD WD OWWL L J [R TL T T i v e o et et ol [
1] [A oy —
T = = T
ot .
-
DOV RUUERLE WO (%] (X1 [ETEFE) [ETETE]

. o .
TN AR A M AW GO OO C O OO GE O OO Cr e DY MIAT ~ @ -
OO0 CHOGEOO M Mt A O COO06 BOO00 So 00D aaa S CoEDaOnNMIINOND OO UM NI VOO OS

OO0 oCOQO0OCOOQOOOOHNM I ONOOC

]

Figure 3-14, Processor Code for SAM - Subroutine STEP

(META Assembler)

3~43

Tg?s

b}

M)aDF (Lo LTa2) BRA(LLGTLLMYY

-
o~ -
(1] o
o ~ [Fal .
o -~ .
- — - - ™~ [l - — i —_— —t —
®«0 D - A ADIDIDD [T F= IR VI R YN Y o~~~ & G
MR 8 DN E DNWYN —DDDD M (2 T N T o BTSN T o BT o1 P T ST Pl atat Y S,
IO DU DUOT Uaox o ox g [T L |) —ruMmarnt g
L kR & ® gL NDOk < 7) P T . T] SZZErF a“he Ak .
L0 ® P e XM D e 30 3 ot B | he I B B B B 3 -4 LS S W LEEELEE &
sobElIcerXiges Xl i 1 X (=K * ot 2 B By B er Ml Lo Losboata Ll] [N S N Y -
DU e NI | M S Ll R« Y] + + + + - +* [N A A | Labal T ol 4
&'k F Ol & MDD E XL LONOILIOL] 1 ©T o v owd N M A TR L -
e B R L EE T Y E R » Do o @ 1w W D ~ e el e A IR DT TINITIIITY 3
SO Em O I NI B) =M AT T -t 0 o0 o o o ocr - QOO ¢ 8+ 1 S g S W 0D g
OF 1L EXEcO Wy a - EON - e w of o oAf af e~ - 240 111 QOQOOOORNOOWOIL) widMgn o
s I e L I B B I 1Y w [T f¥JFy] LAWY [
[T L L T T L LT N L T T L T T T L L - - ey L . s HOoHBaMBARNDHEBBHINY -t
-z [Ll] H m®™ L] ol —ABTI R ey LI H (=]
PN ST e, PN S, T i, e S Lttt ety [0] " 1 il 1l omd 0 EENDE ST AL N i R P, L e, P e P e P T [N
O PN AN ML Nt b DT o x a0, t O 10 E LT FZ AU NN A NN N Z 2 2 s D
AA b AR AR RALRARR D P T o - N0 Y ORmMYOr asadfaitsaitabibiagedts titmbIadnmeE o
CUN DO MM MM Ly SF oy o SF NN N HNWTZo a9 O o n Vo A el -] [+ MR R Ry EF TR T D= o s am O
et e, B e e S e i T B T W T o UL o IR = SO R - o B = T = T o T - T = T R TR T I R T R S N N N N N N N Y1 b o S L T
TFANTIPINIITIAMINININNNN T X N o oo E O 08 0 o ownl - BTN NIMINOw e wwwE O
Tt At bttt o Nt U N At Nl At W Nt St g e L} OO . DO S g af O T T O L (D e e W s s e g e At e s o e e e S e L L T
OOCO0QQOA00AAO 040000 &« QOMNMY X poOY ¥ A ¥ ¥ ¥ e dirOSeLadtinOonttooubiotme W W
® L
* xr T r ™ T ¥ I L]
* SN oL O Lo ™M -
w0 o e T Fr 2 ZE X o o
¥ Eadi B N Y A o o (o} L
Lo [T Y, Lt IR B T B, ST] [S1&1E)

SO oo ROOOL OO LOALCOODMNMMENETM D (WMFNEhEOC~NOP oo OO0 O0CCOOCOCOOO0OCoOCONMEAOOOT
COOOOODOOOOOODOO0OODROOR OO rrirmeirt m —NMNM N MMAUMMMM MM OO o0 0000000 OO0 HOO OO0
O 2 UMD Rean o O 0] M W LD p 00 O S et T g U0 U LAWY LW LR LS O [N R WA BV WA WD AN NI DA LIS A 00 00 O et (UM T N b @ O QA M 3 1RO M O OV TNON On 00 On D el a0y
[EN NI AT TN ST TLTA T L RS TR LT L VO R . B Lo B B0 QU SC L. g€ IV JE JL L. S QU JU JE Lot B 2F T0 L X e gt 2€ BC T Lo g B T T TTall oI o Yo Y AN o bTa P o V- RV - AT o U=V RV IV IV XY=LV V- V- RV IV 2N 100 SN N

o o Onen i Loa=ag e Xl o g o) oo OO RO DO NN NN NNV ONOVON VDOV DN O O
91.1.9 9&9“”.;”“”“@.”” IN..W....I lm.....l..m...ﬂ..l.1”111“3111“11111111111.1111.11.1.1111.111111111111111111111111

ine STEP

-~ Subrout

>~

(META Assembler) (Cont)

Figure 3~14. Processor Code for SAM

3-44

http:RMJ=RN.RJ

12

©

TQ

o

T
o

L]
[}

TaLW?

XX CJo2Y=Y(RL» J)eXY (Jsr"))

RalGTea{H)a0% el lelEa?)eIRa{LaGT LMY

Re (K, GTa{ MI)aORCL.LTe2)a2R(L W

- e o - e I
NN N LoV V] (v s Al
L R o B T T I TA T T T I I T WY o LN R o v e e
AL BN A e W NE O W - AL AL - -~ L . I U YR .Y
Fr N o T S A T T T T e B o BT o T o A) d Wt i n
e T e e T e Ty B SR Ve B] e g X . T Y =
~ o m T T A s T T s, Ty LI Lo T T T =1
her 2 B S + b e T K e B B e T3 PN e B I B By | MY -
hor S By J it Bar | e B | SAOIIN PN 3 e b B B B B | e =
»- s * = = * W X 4 = = (AN VIV A B] + L. L -]
» W X 0 X g X a4 X 0 L a E a OO Jd, - oMo N Ex < -
- OO ¥ XM I e B B 3= N NN P R Lt L] @ o 2 P O M FraT.Y 'x)
r o O © 0O o O 0 0 Q o 0 @ O~rOQOAmNASARL X O & © O OO 0d (ST -
HOW of O K A o o W X I K W I VR ERZTZTECNXT o € 4 « o X sIITXTT [L]
WO bt b b b b b e b b B b b s A s T EX MO X b b e e e W W W « #h=in oo
e bt At el ey W o W e e as v e NOEEEWNMNugw]l 7 o e e o wamsaes =3 Y]
- Lt tad i N I - N > &0 (LU I T]
1o~ gl i ZEZZN U n [P AT S NS bals e VL T D»x
Lt S LI | B) non | | N | I I e tnoai whn g N N TTIT X QXERE LI e DA g e e
-1 = = = = - T L L A] R - - S . 1Ta L7 - L L TR VT, R P
w0 E OO0 OF O O F O X 4 ¥ O ¥ O XYNOwoweweawr M E it M ST e M AOMEDDWO) S XEX 5 b b sy,
OW O M W M Fo R L - T T A LY SaaaNEG O O O Owimxixw N «HWIIGD OV W & A ved oo e wed =i 0]
-0 000 @6 o0 00000880 SERrtnEEImmmTE-n D 0 Q Owphiun X W QL Eao0 s anadg
1o oo oo o8 0060 0 W MLwwE D DO 0 Ow < wann TR e i i
o™l o O A Al o o g ol af o o o FTIEY N MM OO o L e (T D et O M 1 D i e W o bt
G™TF X X X ¥ X X X X I X T X EMI-PMIPNN X MOIO™IA X ¥ X X o ¢ EDx>EIDULOULLOOOOoROD
-
X r* r x X T * ® T X ¥ I T o T r T x -
[S I R L = IS T R N X s - o L owu L *
Zz F xFr 2 X 2 ZF T E F xXx = Z z 2 > 2 *
e 3 B e e = B 3= M I e B D = > = .
L T T BT R B BT BT Y I T I 7 v oW o

[. ~ OCCOODOOOOCOoOoO0

w o U D P B O €3 vt BN WD D B OO € e DM Gt FHE M P O Gt NI N 00000 00O 0O 00

MM%A. M%n.m.nﬂ_l..ull 1112227.29_22223333555555555566003000000OISDOOOOOOOOOOOOOWMONNWWMNNMN

Qg ot T AT T BT FF A P F T T T T AT T TP TS ..a.u.....b..a..u.u:uA.NMkﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ%ﬂHWWMMMMW%WNMIIRIIII«;IIZZ
o (=, -

SO TN O OV R £ RO EN R O £ O TA OV CR OR O DNER DN N RO ON N R OVER G DR R DA R Ch O o1 O O B O O O e e O O O D O v On 1P 3

_ 5 355339333&5%%383583535
qqﬁﬁwmwﬁk.ﬂ.ﬂmﬂ”wuwﬁlumlwlﬁ11111111[111111111111.1.1.111.11.11.!.1.111.1.111111111.111111.11..111

3-45

Figure 3-14. Processor Code for SAM - Subroutine STEP
(META Assembler) {Cont)

97400

i9;580 E 5 MUST BL Z‘ERO N R,
1376090 IF{ {K.LE.2).OR{K.GT.KM).OR.{L.LE.2).0R.(1_GT.LM) GO TO 666
197792 CALL BTRII 2, JM}

1978049 666 DO 21 J = 2,JM

197903 $1 = F(J4-1)

198002 $2 = £1J1,2)

198102 $3 = F{J»3)

198209 $6 = FLJsk)

198309 §5 = F(Js5)

198301 MADDS1 = [IAOS1+JJ) /521
198302 SYNCH

198303 MADDSZ = [Ia052+JdJ)/52L
198304 SYNCH

198305 MADDSI = [IADS3+40) /521
198306 SYNCH

198307 HADDSG = (IAOS4+JJ3/521
128308 SYNCH

196309 MADDSS = [TAOSS+d0)/521
198311 21 CONTINUE

19840¢C 29 CONTINUZ

213509 RETURN

Z18700 END

Figure 3-14. Processor Code for SAM - Subroutine STEP
(META Assembler) (Cont)

ORIGINAL PAGE IS
OF POOR QUALITY

3-46

http:L.LE.2).OR.(L.GT

188640

Since the PROCEDURE XXM1 has been INCLUDED it is
necesary to perform address calculations for the X,
Y, Z arrays. In a similar fashion IA@XM represents
the address of X{(KL-1,J) or rather X(fgl) on cycle 1
and X{511,1) on cycle 2. It appears that at this
juncture that one is accessing outside of array
bounds. Note that in the original FORTRAN (Figure
3-6) the L and K loops go from 2 to LM and KM
respectively while the hidden N loop of this Figure
does not indicate this. Line 189433 of Figure 3-12
iz an IF branch meant to indicate that the code will
not be executed. 1In fact a transposition network
calculation will be made for PE#=0 on an address one
less than the base address in order to calculate the
OFFSET. However, because of the K,L calculations
done in the PE code those specific accesses are not
perﬁormed. i.e., for this case those PE's whose K or
L value is less than 2 or greater than KM or LM will

not perform the computation.

188641-18850 Similar computations for X(KL+ND,J) etc. with J

1894405

always set equal to 1.
First inner J loop which has been included from
procedure XXMI.

189407-189432 Synchronizations and OFFSET computations by

MOD (Address,521)

189500-~19440 DO 12 loop with attended accesses of Q matrix

values 1~5.

3-47

194500-197000 DO 25 loop with the fetches to Q(KL,J,6),
QO(KL,J=1,6) and Q{(KL,J+1),6). For simplicity
additional computations were not made in the N loop
initiation to specify an OA@Q6P(plus) + IAFQ6M(minus)
equivalent to the J+1 and J-1 but rather left the
addition and subtraction to be done in the MOD function
expressions of line 194527 and 194523. This would infact
be inefficient as it would be performed for each J.

The IF branch spanning 194503-194527 ‘has been
explained in 3.2.3.2.

197800-~198310 DO 21 loop

198400 End of DO 20 loop - The cycle loop

In an early analogous manner the Processor Element Code is

generated. In this case however each processor performs a
calculation to determine relative address as a function of cycle
and PE#.

188602 Calculation of relative address

188604 Calculation of L value

188606 Calculation of K value

188607-188628 Calculation of array addresses in Extended
Memory

189405~189461 DO 10 loop included from XXMl procedure. Note
as the J index increases the array address increases
by 720. Also line 189433 indicates the "non-
computation" for undesirable K and L values

189500-194400 DO 12 loop

194500-197000 DO 25 loop

197700 CALL BTRI a SUBROUTINE in the normal FORTRAN sense.
Its modification into SAM Extended FORTRAN is shown
in Figure 3-21 to be few indeed. (A branch around
BTRI should be explicitly shown similar to line
189433)

197800-198311 DO 21 loop

198400 End of N loop for number of cycles

3-48

3.2.3.4 Assembler Code for STEP
To be supplied in Phase IX
3.2.3.5 Subroutine BTRI - SAM Extended FORTRAN

As can be seen in Figure 3-19 the comparision of the original
FORTRAN (Figure 3-17) and the SAM Extended FORTRAN (Figure 3-18)
only one change had to be made in the code. This was the LOCAL
declaration for Named COMMON/BTRID/. Since no extended variables
are fetched or stored in this piece of code it runs entirely

internal to the processor as written.
3.2.3.6 SUBROUTINE XXM and XxXMl.

It was noted in examining the IMPLICIT code that the majority of
calls to the SUBROUTINE XXM occurred in loops whose initial and
terminal members precluded taking the branches which occurred in
this code. (Lines 245800, 245900, 247500, and 247600.) Since
this reduces the performance of the whole code on both the CDC7600
and on S53M the code was modified into two SUBROUTINES. One, XXM,
to be used when the calling loop had initial and terminal values
and XXMl for those calling loops in which K never equal to 1 or
KMAX and L never equal to 1 or LMAX. See Figures 3-20 and 3-21.

Figure 3-22 shows XXMl written in SAM Extended FORTRAN and 3-23
shows the differences.

Since this code was brought into STEP via the INCLUDE statement,

further discussion is not necessary.

. E;[S
O P00R, QUALITY

3-49

. *
wn -t -
" [} t ™
- (=} - -
- - - o~
3 'al | -
~ — - —
w e -~ et
- -] My -
th e - -)
o x 4 -~
o Y - -
[N - i 4 — -
s & 2 - [oy
[w * - - -
[AT | ~ w - ' —
- . " - T — |
LA - oo ~ et e
- n eyl 1 " " [i
LU L] -~ — 2t 4 — om e
LT - ¥ = pget ' o
b [[L (o] oD — -~
[~ . T - " (] o Cbimet
. ol ”~ i L - ~T -~ | -
~ . wy <N « U] xa,] zm
no ¢ -~ * ad Ol - LY ~ LY
L - ~D [Ta] LR} - L] L] -
LT R * Tk - Tal-4 L) - n - [T
LI bl k] —~1 e [=]=] -l Z < &
QN ~ Lad-=1a} Lt o Je=] - X] ain 1<
[T - Ll rian Da) L] 11 MM W - -~ .
[~ Lae B Ll | L] lalal TN omm ot e
oo o™ o M M EL e o n < [xw
[M TN g “un L) ~]1 e [i
~ -t ~d TR] —t [MBSy ~ ay
" [o N tUn ~t) e oo =30 -l ——
LI i LLAVEE STN] EaR I STV Ny U s * 5 (] an " x
wnwooM ol [b o=} [b=TTa] [aTaT=] [|P P SV o~ — - [
. M DD DX e I} LI | LI N R MUY ETXX LN Tal L
~ ol ~ LoVl XL \N] PR Y % g0 [AVLANT.N] [Talc 3 gl R P | 'Y [T Y m o«
w0 - ™~ vt oM Y VL B el gl JTal MO v ~F 11 L kY] ot 2T L]
e N -t Lk W] P .) Lalla Bl s R i -} o o 3 17] =d e el vy Y e & -~
- L4 - e, s 1a N e ~0 8 L. Lalalalel P I] e P
b N S | & Ll R 17 [T LN s et 4 ol Lalaialal *E Ea [T ~es .
i - - ~d O Mt O DM S e otof S0 ek =t [V - 114 Zm
sl o D0 DD =50 N LA | - - LoVl nEs 4T ooy O wl L
- & b - DEDuE DDEDE DOIDE et ey J R |- dedaded INE KM Zm o~
I L B LI] el) pird fowet e o H 0 MY b b 11y o.arMmea .y iy
- o [} e L)t DO e e NI e T e el e e [Ty LR TNY Py o~ P 1L Y LY - o
LT =T RV oD R MM e T I it 1) [} VI T IR AEEEE (NDOD W ey L -4
=Dim M LT I W U S | I N I I NS IR Y [o I Y i) KU KELL T aaah FIIY Y it ~ an
[i) a WA TH 1 e [Kol lal [I I BT P Y N1 L T, WIS MR RO N TIMIN e e 1 =t E -t
[l S TalR e g B Wy iy) BT U T R s U Bl o R R A WP PIOU et i R Row A | QDO A~ B
[] LR L i gt i Tel tE ot S B A B TN Lo ERE I B L L EaV AP QL RN | o W P P O =D0m; % d b d ed T o el I e
nrN LFE I N N N A S U I R AN GRS L IS SN L P T e el T R B I B Y ST W T Yo T T RTINS Y S T T WY IV
Laiv=t _} V) e awmd St By, & R oF o %o BUIAINLY & bt b o e 1 MO B oty I IF VD Amdem D % R Yt
& . Dt D A A e O e s AT s A s A Dl i b L. O QOO0 w IO b II(HWC
lalad=Ra) U [o U RN LD [0 0 PR U | Ty N T O [e O O I | L ket L L L | i w TETFTEX N W, sy e s g7
e OO ey v et St bt S, et LD e Bt bt S et e bt b g gt S g it S W R R N R s LT K R N R R R ek kb=) PR M N
DN St L bt 8 D DOt D 0 e 0 S g U T RSP ST MG R e UM INIAST MR T N ey -~ by
OWUE D DX @O w4 D 1 (0 0 D i b [0 [0 0 0! (OO0 (O {0 A =Dt NN D % a6 & A0 wDIMPUY & & 6 & A0 G Zi A vd o 3wl O v
o st bt =t L L Oy H o R WMo 0 NA) e O) e e e et o)) ad i X pd SNt o b L
O A) {1 1 I LD rd CI OGN o W ord DM 3 W O A LA OO NI) 1 I)) B =0 L 00) it O et 13

DO Ly I L et Dot Dbt v et D MDY O VT 2 o M R AN N A ST NSt D N D i bt e ot D = M P N v v e DO O | OO D s vt
D) O3 b bt =t o) D D D D D T D ed I Dl D d el d D OO0 O Q0O WKL L LLOOOOQOOMDODNIMD Al DX
- L]

(ST Y e Yol Tl il Y ol e Tt nd eI nl =L Sl ot T Sl alal ol Lokl o gl=T oo Tl al il ol RSl el =lala) =Tl ol T Lol lalalsle folelolwlelelalaflelalelelo e Ty
OO CO0OOOOOCOOOOODOO00O0CO00O00oloOOO0000O0O000OO00000OCCODOOODOO00OO00
NP NGO ™AIM S NO A COOAGMM P P OChD RO NV P A O’ OIS N OO0 O=NM S NW R O O BN DD R O Ot
B A DI IO O P MMM I MY M RN ST 3 T 0 o o ST T O A L TN DO N A0 WO WD 0 W0 DO A D e B e b e b b b e 00 30 0000 0 6000 00 B0 GO O e
ST AT B P T T T T LT T T T F AT T T T T T TP T T T T T TP BT T T o oF TP T T I T T T T T T T TP

Original FORTRAN - Subroutine BTRI

Figure 3-17.

3-50

«
-~
M
LY
-
LY
[TaY - e 3|
a 2 < 2 m
- 4] -,
u - 1
i - -~ E
> o 2 L
' - .
-~ [o m U
A N , &
[y L] —t
in - - ¥ (=
oy [™ . A R
-~ o« e - s U
w 1ol v - m e mmmw
~F — ~ Qam o~ L
™ -) L Lad’al ~ 1 G (=¥
- -] [Ut - [N7 =
=+ - -~ * Bt — - R =
[a} [] L-3 ~F - =d L] Zm
Tl »* - [L) — - 0 O
~] o [- o [\ V[N —t ~
~ [Tg] Tal [Tald -t xx ™ [T .-
-~y « M - [] I Laaloal] - n F - -
o ~D ~1 LK [T & P " Pz o
- N & il [Talt 4 * u - n X =Hin ~ “
- It Loadag] 0o] M i £} w W A -3
L M * & oD N T o = L3 [ad]
M ow =] i [] wJd cimm boa it =10
~ M0 «M1 - -~ -~y " & ¥ — ') - " pn
o T, Mz - KL LY WP Ve —— ~d TN
LT} T TR TN o~ YN [A TR 1Y M1 o wm [% r T
-l el -1 Yy Ll | x u W e] - ™) L Y -l -~
* & WWn tine [l ale] U vt LV LaViaN] L I | L) LY. * ¥ Ny
My [a2 RE £ \N] L RC X \N14¥) * N ohale 2T ol - [« ST o . 4] L AN B XN]
™ oD [3NIN Pl g] AN a1 Y] PRLE | S N | xxx [== KN L] o D
NN =R B=N DIE L) Mrarin nare e~ d) LI Y [TR T -1 NI oFe) DD
- nd A -l E A ol L Lkl] et 2t i B L L] i - LY Y L.Y] P XS]
o T) O ed 0 DO N ~i DD [elalgigl L] o e N (43N] Ay UM i
—t ®TTE o T UallgPoF L] bbb hand 11t L N L laniol s o - E LR) “Faudst ot
= Ll Lalal -~ tt 1 2 [al=ta]al [atalal e N g bt [L: I 7 (%] = ~ e~ TR
I ko in I RN i1 PEEX L] 1 2t 27, @mEm —- Za e ™ R U [RS
- Ottt DM T ot DML e dtl) vl et CRLY wdalodod ~é B [e L Y [y -t PUrit e et DMIP e 0
o~ HDHDD DD e DN (MM [l lie] O] S MRy - -y - a bt o DD e ded DD e
- f=2"—E X | PDaew DD R X o et [Talod ok [nimbmbal WM ld w sy [-1 - DHT Kk w DD
] i] vy * Noyd | v L R 1) PNy Ohlblbaag AXTFXXY Do X =X Al] Bt f oot W W] o %
i e OIPNEU D et tM ANET el TN N KR A K X A &R)T o e - k- eyt DD M
Uit MM) ST) INTMO N s M RN ST PO AQAMI U DM X - s e et MM) W] 1y
od Seddd ol &R wlwld w1 o odved 1wl oW & A [Al - — ek hw OO0 G Ew EmCI et L vl ded Y w1 PN Y | -
CRAS IR] M T L AN A G DD DDA S o WV N ALl s BN AN s)
et el dare il T e A e led - d U AL el el T T o T T e I I | A s QIO H 0 L e s B Y = L Ll L o s il WPTE STV Wt o T ST YN
I N A 8 ANV AT AU AT el L e @ P NSO e OO0 N gt ot E D e NE M N0 AT & w0 & a—inyg
SRR B A ANIDINE S A MMM AL LA LY D000 H O] WL W I 8 I s e b osos SN DU s & RN A R
Ot Syt 7 PN e M A Sl o AT A N s AU e Sl B N SR 0 NS S AT ETTD P2l AT AN SOy ot elond M S e et AT o o W, L0
Vit i ST T ww T s L il gt D i DM [b= mif UM & b a R A E D D) oA faid B et T P s st T T

TEATII LI WwWriww T TR W LT DT Wi Dt NN DN NS DN (M 3N A MM eiS ANEZ) A E i i Tt T L T T e w LT Twriw T T

Mgyt gl idignHeded Jadadd & 88 % M o ded ol & h 8 & ab=DE vt vt a0 LG WO 0 WU RH oy

Lt A L TE AT N T T R AT Rt B B JTa P TaNE s IE Va7 o b T TR TTITIE LT T T T T L o L L B =) e RS TO) o 2k 1) et O Y Lt DUMY T A O MY T e O

DA Dt v v PR OGP B O LT o oF M MY LA o W E0 vt N w2 U 5 b o o e 0 00 D00 U P P U e e o 3 1 D C0 000 L) €9 00 e St 3T amd O wd (] e vt ey MY ML T D) 8 o2 o o3P W1 MYy

- DT DD D) 2 1D] =l P YO R OACOR, L L OO OGO MM OM DO SOl OOTMM D IR0 NI IDD AT Dl
L] -

- -]
"alog) -t -
L% (2] 8] e O (3] (%]

OCODOQOLOGCoODOOOODOO0
) oo 000n..gﬂ«nueﬂuﬂ.ﬂ;ﬂ.nuooa_oqn.nvoﬂQﬂ.on-oogoanvooonnv gSi88es
R St e e S e b A A T LIt

g o O S v (M 0 DR O Eh S Py
99“”%"””%“%““%%WMMmumluwmnllzzp?_zzzzzzs3333333334b.:.m,:._.t.-...n_ﬂMﬂﬂ““ﬁﬁ:ﬁ%ﬁﬁﬁﬁﬁﬁ%%%%%%%%%%?55
I T o P PO AN AN D U AATHAS BN SO N IATIAA I IR AN DR IRIn RIS NN INY T T AL A AT A ALTAL

Original FORTRAN - Subroutine BTRI (Cont)

Figure 3-17.

3-51

http:D3=L33*(CI1,3,M)-L31.91-L32.D2
http:U35=(H(3.5)-L31*U15-L3?.U25).L5

“F(I¢1ls 2Y 2B shs2)~F(I#1»33+5(IsN>»3

[Tl
o
- -
T3} [T3)
-7 -
= -
M - []
- -t -
Uy (=] ~r
Tl * -
i ~T -
SN wn Tl ~
® M - [1998 w
~ ~4 * % -
o] Taltg -
¥ M [=1=] -
aad=1Ta] -« oD "
=3] g layl 11 -
™y L {Ts) e ~m
M N -t eed wr -y
LIRS 1Y) ~11 -a [
-l D LAt 13T] i Zun
[JNTat | [a]ale] [l LY - n
Moy D LR [= P N ———t
i N LAN 14N 1N] LK] vt
=20 e Lagb 272l [Tal~ gl Ot
ad oAy [N] a0 s
bk b (Ta) ~r SO0 ~L
LA bt e 1 13 1
- D oo Lo Rt -~
L ine L N o M0 oy
MIF il 1) bl e . . + 6
el D M WU [T [1,%]
S0 ¥ Sfadaldd eyl (Y -
LR 110y Ol Lt
bt WA P LI B [L =]
WA N o BN UN S M0 ~o
wdod | e h &8 ~F M O o~
11 mifie Abipa=(3 33 DO [Ta R o 3 |
P LN b e b LALL] el o Pl
MF AL bt b b b @D W0 4 Dl . h
A Lwwwie QD00 00 LTS]
[LR N R A ST R N il w13

Nt T e OO0 ST e A e S ey bl I 34

TE e DN N NI et i O

Hol) O aded e fudi. & & & & ADF o &)

L gt T TR TR TR o e e e T I T I

LA™ LN O vt DI Y DN At g o et] 1) O e L)

el D) OOO OO0 W b e bl DL, =LY
-

CONOOOOOoOOOC OO OCOODOOOOO0
CoOOODOOD0OCD0 Co0OODDAao
PG LMD I O O8 Sramt I o3 DD e OV S el UMY L U
PP f b B 00O @ DD D VD o 08 h O N O
BN OB A N N D LAtV a Y Tall ol TailatreTT o ST YYTo)

Figure 3-17. Original FORTRAN ~ Subroutine BTRI (Cont)

3-52

- -
[Ead - —
Liad s L} i
- [5] ko .
- « A -
~ T [Ta [-
[Tal uw -4 - —t
- - =2 -~ s
[- 1 ~ =,
oo - - ’
[Te xr - ~
W = . - x
+ - wn -t 2] .
~ ™ [] - (") oy
o -) - -
o -~ n L)] o~
[Tal - [Ta) N U s - [-
bl - =2 =4 o — .
<N o 1 LE] - [l
o “ ~ - [Tatt 4 — [N
- - ~r - % 3 ot] L]
[~ n ~ - cr P for] - ~)
o T o d M -t * r et O et
e~ - 1 o - =4 ~ [-
wooa L] N] Tphed n ES- N * E4.7
" M = * M 4 ol ot .. -~ -~
u r —4 - w - n - - MY ol [y
o - ne - a4 M .~ a . [Ty
< - s I Saddatd -~y Pus (=]] anddid e~ -
' o ™M Mon ~ M for Y= rEY ey [T, [I~
— T e sl e S | amn it MM 1Pt LY —~ .
[L LTIl " . ~~ < oo m St et A
- LY Y] - [ad X" 2 Tal |23] ey e FPEE] L) [
-~ L] L) g, Y] L= g Tal - ~e [Tadt. J oy] [-
[Ta -4 ~_t~ oy -t el [aYIyV TN] Ll] Ll ™} il
[Y -l * = A'al [ATak] -~k [T (] T] fran ot o }]y, b
u - r et g Ll] OUEM Ny Lal i L [N A | L] L 8
. ™M ™ SO L acd=-1"p] (2] =Ta Qlub- oy -~ - Y
o M [ati=Ta Vo) DD . oD AR LE K X:1 TN EXLX [N, iy
wo ~ LAV B V1Y) £ O * acali [T N S P Y - A I
r - o~ -r et p DRI PRV I gv.) My P eyt o -~ P T Y] (-3 LR
~n © - hlack]] [TalTa g L) bed 2DDWn —trt et " [TR Y ~F
- . s - Ll Llat] [P] 1l ™ -~ 8 [N Lalamlelnl Py | - o d
= J - M U U AT et et ol S~~~y 'R) g Pl b ~— LY
- s -t Mot (M Tl OIMAT e f=l=laTa ML ot et ek [Al Z=m
" s ™~ DD 3D e DN PR Y ML Mo O a9 “~K
<y M o DEDre DDaDy DD ety I P, ledaded K EE e s [P
- [Hrb e WA kAl NG b 0 111l CaMmou M Ay [
[t] L) e e IO ORS el M Y et o ded 3 Wil P lin Lo tac R N 21 N[R L I Y -
gy O S Ot M M) s el WOl b [==1 V8 P ARLXE NoDD W wey,, Y Ea
Lo ALY L BT Lo T S) [[N BN JUE iy N NN B U NN I B Y M) R HEL) X awabh FE 1) ¥ w1 X ~ %t
Xex &) « EQNETH o st AN NN VISFMBIE e UMY M0 e X L
A Ty e By o N AP s T B sl R et s 8 R A N0 ed A OEDIUGE ewE L
] b) R My el Sd b RO) A DMy Sl a) =2oD0m LT S P T T) - ZLn)
g A Wad & 8 kA 6 OO0 & & a s & & e Jemtan P NNt SO H I8 i sE i sl ule
Ll -t N b d e M B, & Rl G S RN Ny it b i i s g b P o IOt LY ey | N || WVID e btem) o pI\aw.‘.
Zb= E & Sweniaraa s dli dda s o B s s b e JH_ el bOOROQAOU I OO mmmmed w g et T v
—m o JIE [o TN U LA L O L TN O R DY T O | PP RO PN T (I (RO [O PR YIS & 3 - - R TV R TR TR T N T 1. O |
Lt Ran i et Mt St) i it et Yy e S e e s Y e b e W W R R U R R R w s b XM %,

SZEVIJa b § b Sy ottt O T R et DD gl et S M ST A AR RO P AU NI MO D M D -~ b g

DOZE D000 00 00 || 00000 v bt DD D) St o D O O W 20 i TP AT W h & & &IOS & & & & AMIE g 20 O e+ X

X i = 0 HOH) LSOO T L T T T Y T N E I O T T (T SO JO J JP . TOOOON JUI O O O 7. WU DU O 0 O T A TN N P [0 PR Ny NPy = S e ST

MEXCH U #H NAMAAEUNME N O N O P e OO 0 T 3 bbbt 3 (0 (N)] ittt (3 bt O =)

DO et bt) 20) Py e O et e A IS LN o o o3 ML MHAADIA T N O M 1D O e v s D10 ot DIV I vt at st G L O T O 00 o 25

O DR D 10D D DD D dd Dl o ed Wl D00 0000 bl L O O0O0000 00 @mONa ol DT M.
« *

-l
. -
o (5] o o - o [&

[alalrlelolalvlolelalselalolotmlrlolglolainle el lofi gl elloloTiiglal e Lol glal @it ia IoTatwlal e lrlalolelol oY=l lnlelolY o¥ o T~ ool afof =YoTo T o]
[=1-FalalolelalalrlotnlololelolctalalalelalalolataloleletalalolatalePolatulelelotal ol iml=la v loto I le = oY=l T Tl e Lot o P Yo T Do T o Tl T T 15)
BUMY ST U D P G0 O D PRI WG R 1D T v+ O 3 D0 a0 O @ v M L3 LD e 80 08 O vt () T 1MAD P 80 08 S N M PN e 0 O B 1 UM W D - 00 O D
OO B NI O O QUMM MMM M M LF 3 O ST T o3 - 2 AN AN 1A AU WD D O DD WD D D e bt b e b A i A 80 40 07 03 00 a3 0 E0 28R 0 on
T TS AT T TTT I TEATET T T Tl T TG T TT g F T TT T F ST FH T ARG T T H ot -TToir T or

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI

3-53

L]
Lt
(2]
LY
z
-
w - —
' - [
* L -t
U =]
[- -
- L x
1 bt -
L L N
x - -
- 1 e
w - - 1y
e - - ol Lol N
~ = v [N s LY
u ') [Tt - .
K] - -~ €It "~ €~
o = o - " i -~
- ”~ [] s =T LT Y Ol
- - () - e | P [
tn o - - D2 * = m
-t] - - u e Ll o LI
-~ Tk . -5 - ol ~ [o X L] [lat —~
g LT, un Ui -4 X L™ L d 2] 2]
x [l o =1 el - 4 < n <t
-4 ~D -~y L] Qo T H L Xl "z ~
* e b [TaT%] - - Lt ~ -
-~ - Lal sl fer] =1 Tt Lol] —_ 0 o ow E Ao -
Laild [a=1"sl LK] oo N Ut e [+ s L ™
e Se M [} - d Qoo LIS -tz Lan=-111
-~ Laa X N oal M N JTa] ~ - ~e XL [T ay ~ T
o~] N TN e -1+ nJeg [Talt 2] o ot —r [\ U
~3 T [TLP TN -~ - n JA[ATE] LAYAVESY o LY 3 L= ~y T
- ot S LI —— . =D v — ot —~— -
L] € X AT,Y [Rt X [Tl L o [YLt TN [I] L —r * X AT,
L LA I Y] “ 5 Cib b e A'al o~ o m e ~” AT O
o ea2ND NN O LB =y EXFE 'O W * o uDNND
[3Um= 1oV E o] DeDE DOoOw) M [Tak 4o ~1 1 .. [P ~Tr [yVl=1 ¥V} DeDe
- AVE A L AL F LY [] [ealadley et il v sl * 3 et -~ L AN Y1 1) L UL |
o dvad) AT [[AWPX JTaY “~t i o oo e] fxl=T=T=] - n o . v - o o) T4} Iy
-t «Ma Jt Jou I | [Fa i TL W] e [N LER R bt et s Zm -t *MuE ot
p- o~ -0 il D [T~ Tola] —~ FOT TS e i (L2 Y P ¥ =2 o~ d e~ T
L] L TS 3T, 1y &n 1 tine LR M AV T JTa1 [egdeelead — Ea o~ L M & LT
- Ot vy LD e et DML el et v e et LAY At * ¥ e dd - [WhL. 3.4 - ClreiMeied PEIslaT el (Y
o~ "D D A WD D st DN e (UM N et L 1T LI 4 T e o HDHDD AeDED -
- DE&DE 4 DORIDE D00 R O wdededed Wyt oot i T e R PO o owb) § 2 ot DeDar TTRTe 2
[] Brdl b ¥ Bl & U Rl PVl Ol ~XEXEx DD r O wxr ~ «iD L] Hed | e B Kt] - K
et O OIN = e AN et L M et KRN R T A6 A N JEEY - o T Lol Dol I AN L L LAV T L P T I]
ettt MM S] INNNLJIN e N e IS ey AN DM 2 s Aty Dt MM o ST
-l) ot S W AT dded] s a A A MM A s A OO0 o T Lol S SO LU P ot f I Y (N I Y I A R |
ANE A E EAMema D U AN s DD N A e ny MAa N R W s ANEd N I AMAS T |
P I N o B T PR PN G L U e g LY b i b B [L] L [P TS WP pY . ¥ r N LN TR T} D Ak B 5 R o A O o™ s 5 P o i, o Y g T L o L g L P
SONIM P =t a2l & AIBI M AT At AT bl L b L SN ST O O = LD Q0 L 1 i e RO NI N F et AL & AN RTE feiny
ki bR e ARSI & R B & R T Lt IEEEI0 H LDerraten bl L LML H B0 e T e S a a ok w AN IO A R R s
O el] P VLN e Y bt bt ST P Bt b A LA S L H K N E ST DI N EY RS ETTFXED) sl ZE (1M N Ottt v N s Y bef o o P o s s LA
Aty S At T D T s WD P s w0 o A v s b e (UM N s e e s W DD M el s i e AR i TE 8T
HHIHHHHH(i((HHH(I(HHHH(IU123&5U54321U5123h5563211 .2 | A0 X et L vt T L T 0 v W T T et A T

L T L T L I T LI L T O T T T T T - O T o T O T S N T O O O N =2 L A R T T L T T (T T O L L O [T TR L T T T
LAV AV o P AT T T ST L LB SR S RN R B L STa P BN B TNl b ST T ETIN T L DT) o WAl bttt = Tt O e O e 13 et DU VY | et QUMY L3 W el O MY oF (N8N
B St e M PRI N T 2N M AR TN F 10 D e M G B0 2D St S et 1 0 €0 9 UMY a3 10 o et e e T3) (00 L (3 C30D Mt ot 28 DNt D e v md MY MU MY QNS O o o T MR
WD A2DD 4P AD O] AT D R O R 0OOOL WL L L OO00OOOMMMEDI i, AOTES DD D 1IDdDD DD du
N - -

~ ©
Tals] - Ll
©) [} et O (3} o

CLOCE § COCOMUOO U0 OOONLOOOOOC OOLODOLOCCOOCONNOLOO0NoO0 00O COOOOOEOOCOOOO0M
[Slafeleletelolalelolofololofulolotelonlelale ool ol Topoyotata Totol- It lo et PaTo Joto Tole TaT=te Tt = T B T T Y R Y Y Py Ty e e e Y = T Y= e R T e T et
AMUNFN OO O-NM I I DA G O AN S N0 00 O UM I MO R GO O =08 o 1A WD 00 OV O = N MG WD A 80 O O et ML UMD e 00 O D ot (3 M1 [D R 00 h O vl 0
O ODOL OO DO OO gyt vt 1w wrd = == O QSO OO BIOS O OIF AMIEY 0 M MMM 3 o o SF 3 O W3 8 WD LN DU IO A (AN AD U DD DD D DD D b b b
Telf T T Ty ST Y UA WAL A A HD NI (A A A AT AR N A NI DIA IR D IR NLINIS D S SIS MNIDIO LD O Y I DI s i s

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI (Cont)

3-54

http:04=L44*(F:I.4)-L41*nD-.42*D2-L43.03
http:D=L22*(F,2)-L21.DI

1Y-FCI+1a2YeBLIshs2)~F (I #1,3)2B(IsX>»
*

un
(]
- -
[Tl uy
- -
= o
= - 1
~ - -~
w o -
~d - -
4 4 -
Hn T2l Tald -
[Raal - [179 un
—~D -~ LR -
1Y] ey e -
W7 PP oo oo -
MmN L3 o0 -4
e 3 QP | rearn 1 r
*eny T ~ o
MY vl It Lol
[T A ITV] ~3 - -
Y] [y iy ¥ iyY] Ll Zun
LT (] Yo] [l - A
g B LAY LR N [~ PN ' vt
oD [AY1a¥]o¥] &« ¥ g ~
SDe i [TalK Lg] sl og]
- & e r. i 4 Lt Y -y
N 1 ~1 D5 Ll ™
[Ta Ta e Lo) et 11 -
el § [wlelals] —~ e~ "
LAY LI 2 P Ll 4
Ml st () eird v L Y 4+ N
Ll 2T 3 L 1Y o I T)l [=F-4\Y]
DRI o eded [TATP RS] A
g [UL " B] TS VI PR Lo bt b=
I T N P e N 1w
WY N s DM NS [Fa¥- gl Nl ~ 0w
—ted i At s a8 A A [l Y] =
1§ A a3 D520 Wy A
Gt AT L [T R I I I | [-]
M AT e e e b b 3 P O s & ¢
S AT wiwew OO0QO0 7 b
[AL L NWE R R R PR AT 20 +n
Sty T g et SN LM ~—

LT Wy Dot OV NI (U DN 00

NWH I NG aladedededO & % & & &) et sl

Mg WL TR it bt = ey

PN I DA OIM PN O o i f| 1l Dl L

] = o I I b bl bl L LY
“

o
[=

(&) (] o
ACOOCOOLLOC OO0 OO oOoc

[=l=l=latallel-Yolol oY =lrls g eleLalelslolmlolat =]
MO MO0 O UM o N 0 GO I IN D

e bl A b b 29 0 XD DD 230 ME O o N NN OO (!

AR LA AP D INLA DR LMD AN IO

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI (Cont)

LOCAL/BTRID/AC3 05595 358(605525)sC{6255,5),D(60,5+5)4F(0"+5)

R 42300

1

3-55

Figure 3-19. Comparison of Original FORTRAN and SAM Extended
FORTRAN - Subroutine BTRI

al

[)

T

X

vy

LW

- I

- .

2 >

[

[N N

— &

¥ o

Y

L

[-~

<t <L - . -~

Py K3 . r r e or o

L 4 3 [ALaj-] YL .

-t B oM a4 e [RTATS] -3

Lo B-] rap e latatel LI L~

PRS- — > o r o o~ P~~~ -

[YT ~N carsea > - —~—— 23

D w ™ [[mlele] » oW =T]

a & O . [alatal 4o [Tl] [Y ~

Fapresy PRy o~ et 4 [l e o=} b]

U N - N o v o T) . " ¥ N =3 -

o e 3 . .. w he 2o] Y] - ¥ ou -t

E RN 4 oo AATTANELY LIS + ¥ DAty e

LD 3 [AYTY.] Y [aVES YT N] T | 131 [

T h e od ot 10t W I P | >

2 &2 a e D e) X.y X o d d rt S et 4" [

e Tt LSE et s 454 1 2 2=t ettt ~

"l s LIN'Y = oty St gt Nt [AVIAN1 4N} [B | oot ~

S 1. 'Y ~— [[I bl ot} g - + * & -

g 327 W Oy Dottty Lalalal Ll £icacy har Bt i | e~ -

FTareey Y Wi P T I ~en “« oy . I3] [
] BN e .~ = [ql 414l LI e 2 - 000D - . =
o w0 O (=17, -4 rhx v LY o~ = [=l=] >
nd M aln Pt s | P o P L g oyt ey haw Jubv | W FELZ Ik
= L (o4 o J g | 1 - na P 1y oo~
ad D i aXx N D LAt S| b B | 3w U P oo 1" o el d o #TD
NV, A T e A ~E - a & & LI I il et - e PP A v - g
—on AL a T A (e syl =l et L] L L B I] 3¢ D 1 e wad ef)
% N L WA L nl b * & e ol A ol " E ¥ POI=I g
e o E DY W WO LA I 3 [U " LI I 2 NN . e [L
X ZD A E DN A e [Ny = Fr3VIE e) L I Y = e et [] e e RN XN
I e B R N - - I 1= T o = At et ot +* ¥ . BT T ot ol] - > Ty DN
e mHEIE ANt &% D [= B3 o~ irt 10 o~~~ [I] 100 &
AN Z aZRMOC N a0 L [X~ I] e 2 v eaes DO e b har e | Lol T TN [y o - 4
N R a LN A e g D= X o0 (L1 Lt LY S Mo 2 B - b Ty oy | - TITITY N
FX v el Aoy AT [+ ™ MmN d el L} L d ok & Wy
PR L T DT T L b S L S [= W S LEF LS Y Xy i ded OO o Xt wddd EXXE
b W B s g ALY e - vl b M et Nt st Wy OXMEZEE o Nt XX MO

W &N ONNO-EnNZn @ EOYLmat o+ F 2 e Nt et mp L b 4 bt by Sl bt |
LIV 0 M EC-L a™_| O ~ S X)] L) M=t s) o e D= g
2o s Lo P O, Lol IR} ™" LI LI B o WLV e ® & x Haty
T DV O S S e Da vy, & ()™] W e B WAL 8 8 L ¢ s e DL GLE ¢ Ly Ll
[I o e R wl ad D LI NI) R DOMMMOO N NO D O MMM e e
DRI rIrE W QO et D oty T DA T WAk Zadwit Pt F NN g 2
OLULOOOOODOU 200 — X el D X et [wn TS0) oy (=] [~=T%13 o og R oA
TED A FFEFrIuwrr o a- B S Tt N W IS TR TR TRt N T TR E N ot e I TR ER e N I TR RTINSt o TR LR T ot e L] [T e e S e 1o~
MX s ¥X¥EXLLEIXE>XIY W L P R} [P z P4 F- 2w z = ot e Ry
e] e rOQOOOOC0WERE L) Iyt [M L R TR] FIREAVS o Erk VR louten) ob "Wy b mp) VI U PN TS | oo | g 00 JON S | o Lo B N O [y b o 2 TR E
[EY STOLLEODLJOL X B W T O e e A LD C 3 3 PO D P 3 b 30 D B U3 30 3 P (0 S B I) 2R 30 e €3 B L)

— g x
-4 = Lal} < [
> [T] [w 4
[-t oF M
w uh n Wy

L5 LLLLLL

QLMD C G SN0 © COCVDIOOCO T OOV L eI OO C OO OO OO Hal gl ol Tl e Pl ol STt £
CoOCd oooCOoONOO OO UOCUNCOROCDDODOCODOCOOOOCODOO0ODO00
SIM G DA OO Gt N N O M DOV S = OU M VO R 00 08 @ I (UM N WD T O = 0N 3 PO A 100 @ s Mg WO b TN G v fU P O R
IR YR I AT T o S8 ST o S LS PO DR D B0 D WD U D DD P b R B e e b, b 00 0@ G000 6360 03 G000 6 8 M, O P O TR0,
=¥ ..1.u...u.r.-.r.....i.u.rﬂ...u..u.r4..h..k..h.L.:u.ri..n..n...h..n.ﬁ.r.-.nu...u.-M..u.r.....n.rqau...u.ﬂ..&.u_:u..n.lﬁth..u...n..u.na..ﬂ..n.fﬂ-“ru.:ﬂ..u.l._.;uvrﬂfu-n.ru..u.rﬂ.u...ﬂ.q..ﬂrn.ﬁ
U0 O BdD OJ O OO DI DI AT U0 O 00 0 D0 D 0 0V O 0 B IO 0 0 DT O D 0 00 0 OI0J I B B SO0 S0 0y O 0 0 0 O DI BT O B 6 O S0 SN S

Figure 3-20. Original FORTRAN - Subroutine XXM

OF POOR QUALITY

ORIGINAL PAGE 13

3-56

http:YK.ZL-ZK*YL).RJ

Bl =TE =T o YT N~

JIA »J?A)

H
C
.n
U
sz
FU
!*
UP
Uv
SQ
-.H
T.p
qx
An
GH
'l)
nqA .)
vG n._. :
ch 9 -
AVIY n J
G..LTD 6 (
)9“- { K
T.na....nu z v.n
DG!A Z t
p:ZR \...)
“DTD n} J
LLNI 34 ’
rA..l.vn r-. L
HI’A 00 K
Kaly Zﬁ (
’ﬂTx ?(Y
M!\’ (Y -
J)IR _.Lv.)
n_ﬁovn 9-. ._.,_?.Z 7_
v.(D.l \J\.. Zz.!_ l
ADNX Ok 22200D J
.v.rr’l. 1_’ vlvnYit... r\
L!NMI IO ﬂCD)]) X
9).|.RR O_b tnt})\a u.n
XS.H.,G 2(}\..\.JJJ...JJ..
A(!TN 7.x \l\a)ri’D\Rnﬂ)

X > 7 oy ot 3 [\ MTINN2OTh kK F 7Y

L Yl LYo L TN [N o AT

o A IO A o Lol L R i i i e |

¢ AV LM MmO - [L e L}
W D KD & a0 ™~ o E TR W
AL ES AL DN A N N e v 32 XTI
- RN Al &AL N St Bt o B P Pl 3 B b
« W OHIDE aOOONMNE & Flain LN R
AIME A Fq NN & [R A Yo Y N] - 4

P s lasalr i ke L Foe g L]
FTINTITIT) A o AW WAL
CIRT A MNIOIODEEXE
2t R e 20 S g R CD

[1R KR T |

~ LY [R PO N |
R W

1 U et o e Nt Ll
od TR I e) D e] AN AN T

L e A = DL R L VS R AV Lyl g g

b L TV S O Ll S S b
TF AP Al v 420
2T N TR AL (P IR N D N
BN O A MY R
i At QIO Ry Zw
LMA —A A N L &y
ZaEr bl TP S,
[aals sl e ts AL Te = L ML WE L
| e B i T e e e TR A
DX ATETFZETIE T

OOXxUQOODOOD0 oo = N O LR T
FYOARLTFFIITEX LT VY e H BN DI 0
O A TITEETFEXXI>IXL It gk ot S Nt bt - ()

20 XoORreoQwoo
W ROOLLOO I
-

MO O TR Y W bl) e X O e
3T o) YT 0 00 D NP D N 3 K O D)

=]
-l

XI METRICS FORMED FOR A Ko L LINE EIN J

SYMMETRY

(&] OOV

OO OO OO OCOOCOCOHOL OO O
W= ~o
UM B ND b 00000000600000000000000000000
MM M A 3 7 3 e B S OIS O 0D A o U O Ot
Ty .u,.q.u..?....n..?u......q#ﬁ.-.&.4�??

POoOOCOOOMOOD

O U0 (U RUETEN U VN R BRI NN PR B e et e e e e 3 kg T 3.3 3,

LAt TN VLA TE N TN TN TN N LY N TN ENT ST TN PN PN

Modified Version of Subroutine XXM1 for Improved Performance

Figure 3-21,

on Serial or Parallel Machine

3-57

http:RMCNBR.PI

REAXs XRe XMAX, DRAD. DXC
7
4

P
RI
[4
»

N
T,
NG

- Y
-
EE XD s
el W Lt
A QOO N
LV E AP AT LT T Y =]
O MEIED o awm el

MAX S MAX AL PAX s JMsKMa L Mo GAMMA»GAMI» SHU-FSVACH
TY(S),FD(S)»HD»ALP»GD, CMEGA,HEX s HDY T2

s J1A J2AD

AN EHE I r wwr O ald &
Lt hln kL NAM A0
e I 2 el (N Sk W
02T P D bl LY D v D e
D O RN O A
Mud sEHNON AN DT

Nl DaLine22 M & miv)
Ll See oy LIPS SR DO)
00 (D L0 S LD oyt m L
23N Oy, M S Ll LS O
QUumMTIdl oo oo
WA T ZEF I I
O MDD WILIL e Lt
DO A ROk —i=O>» Z0
O W) 0 wd o 2 O
0.t LR LA LI [P S TS T]

bt)

(55

X1 METRICS FORMED FOR A KoL LINE IN J

N utd

Lt L
fONNNO 30
tat ot K I
[mlate Pl ol
L Y T
AT Y
bl B WY - 4.
NMMIQACO N kg™

XXCJe 2=V LKL 3)* XX {Js)}

Lk Lo I I RS JEO S S
LI B R IO DL S) s
e A b
0 Nt et 3 e N I
e Nt gt D s P P 20 e e
bl AN LN I I
b mamm e

YO) T Y g B S LD
+TITITI R A RN R Ry
QAT aDOIRDXENYX
vt Wl EE L e b O
ETHOE b bk)
P Tk S I |
e e N

1 XYy ut
ol Y I e P D P v Ty

o E it O L T4

@ e e BTIE N LI I TO I T T L A e o =

Laal | I N [y 1} [el =]

u oA O TN M b o 2 D e 2 Ty

LM ol ™Y 0 3 3 e g P O L)

ax

Do o

W i
[SLSININTRTS

Figure 3-22. SAM Extended FORTRAN for Subroutine XXMi1

s KM LM GAHMASGANT »SHML,FSYACY

NT»RMAX, XReXMAXDRAY. DXL
(
»

MAK s LMA Y, I

9
x

-
=z

Jzal

DU aw
WX Ol (7 & & 0

L e At X OO OO
LA N R VI N4 VTN T NT L £
- SO aha b & a5
LR ol 4 4. ST TR N
Pl L 111 W« T T N 1N
Lo T iy o b oedn W
AT 3t IO et b)
M N XD TN,
Mlutbd o O & T NI

N OV > MOV
Lo R L™ 0
LM Y e OO L.
DND NN S L
[P - PR T Vo Ve L= O
WO T2
Q0 & @G U L~ =0
OoOT OO - {JZC
0200) DD
PGQM [L23 2L NPV N AN |5 13

COC OO OO
=lod e =lofslul=tlolsl o]
CHMIN D b €0 00 O ot O3 EN
Ll TS L L T X gt ¢ J
S SF ol F At T T T T T
IRV LAV WV TV] NP LN L N TN TN T X

oo ey

ATV o U e 0O TR G i
i vyt

Figure 3-23. Comparison of Modified FORTRAN and SAM Extended
FORTRAN for Subroutine XXM1

PACE 15

ORIGIN

AL P
QOR QUALITY

OF ¥

3-58

http:EXTENDEDIVAR/X(720,30),Y(T2C,30),Z(720.30
http:2,RM.CNBR,'I,INVISCLA4IN.NP
http:OXI,DYIOZI.ND

3.2.4 Subroutine STEP {(Loop DO 30 & DO 40)

The arravs Q and S which have been declared to exist in Extended
Memory have the following extents

Q(720,30,6)
5(720,30,5)

A partitioning in effect of the first extent of 720 into 2 paits
occurs at run time with the variable ND. The first index then has
an extent ND and the second index has an extent equal to LMAX.
This means that if ND*LMAX 720 certain memory locations are not
utilized. This causes some degradation in performance for the SAM

in all three access modes.

Each of the three types of accesses of the Q & S arrays which are
required by the DO 20, DO 30 and DO 40 loops in SUBROUTINE STEP
will be discussed. Because of a complex first order linear
recurrence the index J in the DO 20 loop ﬁust be done serially
while the K&L indices are parallel (see example below). Similarly
for the DO 30 loop K is the serial index while J&L are the
parallel ones. For DO 40 L is the serial index and K&K the
parallel ones.

An example of the structure of the program is given below.

DO 20 L=2,LM KHHG

DO 20 K=2,KM OF ngﬁL PAGE 15
DO 18 J=1, JMAX Warrry

KL = (L-1)*ND+K
RR = 1.0/Q(KL,J,6)
{(plus many other statements including a complex first order
recurrence in J)

18 CONTINUE
20 CONTINUE

3-59

This is a Case I access as described in Appendix A. The ISKIP=ND.
For ease in handling this generality of splitting the first extent
it is assumed that 720/ND is integral with value ND. The number
of cycles necessary to access the L's and J's is equal to

No. of Cycles = (LD*30+512-1)/512

For the specific case given in the benchmark where ND is equal to
15 then LD is equal to 48 and the No. of cycles egual to 3.

On cycle 1 one is accessing all L's from 1 to LD and J's from 1 to
10 and for the 11lth J one is accessing L's from 1 to 32. This is

done for each K from 1 to ND. Figure 3-26 maps this accessing of

indices from Extended Memory into the processors.

The last loop, the DO 40 Loop has the L index as the serial index
for the recurrence relation and the K&J indices as the parallel
ones. The structure is

Do 40 J=2, JM
DO 40 K-2, KM
DO 38 L1, IMAX
LK = (L-1)*ND+K
RR = 1.0/Q(KL,J,6)

{plus many other statements including a first order linear

fi

recurrence in L)
38 CONTINUE
40 CONTINUE

This can be considered to be a Case II or Case V accessing pattern
as discussed in Appendix A. Since the accessing of Q0 & S is
identical a "semi smart" compiler can chose which of the two cases
it wishes to consider this. TI.e., Q(KL,J,6) can really be
represented as Q(K,L,J,6) with K varying from 1 to ND, L from 1 to
LMAX and with J varying from 1 to 30. Since both J&K are totally
parallel and all access to Q&S are in the same sense of K,L,J the
"semi smart" compiler can pick which way to do it. In this case
because ND is unknown at run time it would pick Case II.

3-60

The memory layout is shown in Figure 3-24, The accessing pattern
is described in Appendix A as being of Type 3. This means that
the SAM will access 512 elements of the Q array at one time for
J=1, then 512 for J=2 etc¢., until J=30. This would mean all K's
would be accessed from 1 to ND up to an L value L(last) such that
512 values are accessed.

For example if ND=10 then 52L values would be accessed each for K
values 1 to 10 except for L=52 which would only access K=1 & K=2.

On the next complete c¢ycle those remaining K and L values would be

accessed up to a maximum of 720. Figure 3-25 shows thus,

As can be seen this could be inefficient if ND*LMAX < 512 and

these parameters were set at run time. A more efficient procedure

could be worked out which would have the same flexibility, either
by recompiling with compile time parameters or else with more

efficient coding to permit compaction of the Q array (see Appendix

cC).

The next loop DO 30 has the K index as the serial index for the
recurrence relation. Its structure is

DO 30 J-2,JM
DO 30 L=2,LM
DC 28 K1 ,KMaX
KIL-(L-1}) AND +K
RR = 1.0/Q(KL,J,6) | | | RIGINAL PAGE&
{plus many other statements including a flr%%-m Q,UAL
recurrence relation on K)
28 CONTINUE

30 CONTINUE

3-61

< J=T
720)

J=3

L=1 L=2 1=3 L=LMAX ;
K=1—ND| K=1—ND | K=1—>ND * * | X=1-—>ND 7///////////////5
‘ND+1
(L=1 L=2 L=3 L-LMAX
‘K=1—>ND{ K=1—>ND| K=1-—>ND K=1 —ND 7//////////////%3 J=2
721 1440
(L=1 L=2 L=3 L=LMAX
K=1 — ND| K=1 —>ND| K=1 —>ND K=1 —>ND 7////////////// /]
1441 2160
L=1 L=2 L=3 L=LMAX
K=1 —> N[} K=1 —>ND| K=1 —ND k=1 —ND[000
504721 505440
Figure 3-24., Memory Layout for @ Array

3-62

.CYCLE 1

Q{K,L,1.6)

Q{K,L,2,6)

Qa(K,L,30,6)

r

CYCLE 2

Q{K,L,1,6)

QiK,L,2,8)

Q(K,L,36,6)

DO+ 20 Loop Subroutine STEP (ND=10)

L=1 =2 L=3 L=4 L=52
-j'
K=1 — ND) K=1—>ND K=1 — ND K=1—>NI & ® & [K=1-—>72}" J=1
K=1->ND K=1-»ND K=1 —Ng ‘K=1—>ND| ® @ & |Ku1—> 72| J=2
L]
L] L J L] L L] ”
] ® [] L] ®
K=1 —>ND K=1 —>ND} K=1 —ND) “1—gg o o o [K=1—>72 U320
L=52 1=53 L=54 L=72
K=3 —>ND K=1—>NDj K=1—ND| o o o K=1 — ND| J=1
=3 — ND K=1-—>ND K=1—>ND ¢ oo K=1 —ND J=2
|] L] [] []
] L] []]
L 4
K=3 —>ND|. K=1—> ND IK=1—ND o o o K=1—>ND J=30
|
|
!
|
| !] [
0 10 18 19 27 207 511
PROCESSOR NUMBER
Figure 3-25, Processor Index Vzlues as a Function of Cycle

3-63

IS
ORIGINAL PAGE
OF POOR QUALITY

CYCLE 1
' J=1 =2 =3 J=4 J=11
L=1 — 48 L=1 —>48 L=1 —>4al L=1 —» 48 L=1—>32| K=1
1=1 —> 48 L=1—>48 L=1—> 48 L=1 —» 48 L=1—>32| K=2
[] []
-] [] ®] L J
® L] [] []
L=1—>48 | t=1—>a8 L=1—48 L=1 —»48 L=1—>48 | K=ND
CYCLE 2 J=11 =12 J=13 J=14 J=22
L=33 ——>44 L=1—>48 L=1 —> 48 L=1 —> 48 L=1—> 16| K=1
1=33—>48 L=1 — 48 L=1 — 48] ° [L=1 —>48 L=1 —>16] K=2
[] L} [] [3 |]
[[] [L] ®
[®
L=33 —>48 L=1—> 48 L=1—> 48 L=1 —> 48 L=1—>16| K=ND
" CYCLE3 =22 =23 =24 J=30
L=17—>48 L~1—48 L=1 —> 48 o |1=1—>48 =1
L=17—>48 L=1—>48 1=1 —>48 o | L=1—48 =2
[] [] »
) . o * .
L 4 |] [] ®
L=1 —>48 {=1—> 48 1=1—> 48 o|1=1—48 K=ND
T | l] I]
0 a7 48 96 97 145 415 511

PROCESSOR NUMBER

Figure 3-26. Processor Index Values as a Function of Cycle
. DO 30 Loop Subroutine STEP (ND=15)

3-64

lFigure 3-27 shows how the indices will appear in the wvarious
processors. This case requires subiterations of the cycles as on
page A-10. The number of cycles is equal to (ND*30+512-1)/512
which for an ND of 10 means only one c¢cycle. ISKIP=720.

3.2.5 Functions and Macros)

Functions on the FMP will include not only the mathematical
intrinsics, such as ARCTAN, LN, EXT, and SQRT which are expected
of any compiler, but also a family of functions that are brought
about because of the parallel nature of the FMP.

Math Intrinsics

Math intrinsics (ART2N, LN, EXP, SQRT) aré well understood. Some
will be in-line code, some are subroutine calls. 2all execute
locally to the processor. Since there is nothing new or different
for the FMP, we need not digress to discuss them at this point.

Global Intrinsics

A form of intrimsic function seen in & parallel language, for
which there is no analog in a serial machine, is that function
which operates across the declared parallelsim. A global sum is
the sum of all the elements specified by all the instances of the
index set of the DOALL. A global maximum is the largest element
across the entire DOALL.

To reduce compiler complexity, and to eliminate user programmers'
doubts as to whether parallel operation has been achieved as a
result of compiler analysis, global intrinsics will be supplied.

CYCLE=1

SUBITERATIOI\!

Ket .
-
J=1 —» 30| K=2 1
J=1—=30| K= -2 .
=1—> 30 '3 & L=t
. . '
] L]
] K=ND)
K=1 J=1—> 30 ND
J=1 —>30| K=2 " j
=1 —=> 30 K= 2
=1 — 30 3
. .) L=2
@ .
. . K=ND .
d L]
J=1 —> 30 ND
b . '..a
L]
[
=1
.)
J=1 —> 30] K=2 . 1
=1 —= 30] K= L .2
=1 —30 3} L=LMAX
» L]
] L]
. K=ND ¢
4=1 -—> 30 ND
i I | |
o 29 59 89 298 511
PROCESSOR NUMBER
Figure 3-27, Processor Index Values as a Function of Cycle

DO 40 Loop Subroutine STEP (ND=10)

3-66

To replace the following serial FORTRAN

A=20.0
P01 J=1,1000
A=A+ B(J)

I CONTINUE

the language will allow:
DQALL, J=1,100

A = GLOBALSUM(B(J))
ENDDO

ORIGINAL PAGE I8
OF POOR QUALITY

The global operations will presumably include all of the fol-

lowing. Assume that we are inside a DOALL loop expressed as

DOALL, J=JSTART,JEND.

Function

GOLBALSUM(A(J))

GLOBALPRODUCT(A{J))
GLOBALMAX(A(J))

GLOBALMIN(A(JY})

Definition

JEND

> e

J=JSTART

JEND
T A(J)
J=JS5TART

Largest of A(JSTART,
A(JSTART+1), ... A{JEND)

Smallest of all A(J)
JSTART £ J< JEND

Global functions are logarithmic in efficiency, that is, it takes

nine steps to produce the 512-way sum across the 512 processors in

one cycle. When the result (such as "A"), is a LOCAL variable, it

is produced across the entire extent of the DOALL.

3-67

An extension of the global operation is the formation of a
parallel linear recurrence in nine (= logp512) steps as demon-
strated by Shyh-Ching Chen in his doctor's thesis at the U. of
I11l. In Fortran, consider

bo 1 3=1,1600
A(J+1l) = B{J)*A(J) + C(J)
1 CONTINUE

This takes 1000 steps, each with one multiply, and one add. A
parallel algorithm exists that produces the same result in 10
steps. The parallel algorithm can easily be implemented on the
FMP.

With the inclusion of the parallel linear recurrence as a function
in the language, the programmer has two ways of writing his linear
recurrences. For example, given the serial FORTRAN

DO 1 J=1,1000

DO 1 K=1,1000

A(J,K+1) = A(J,K) * B(J,K) + C(J,K)
1 CONTINGE

there are two ways to write it in FMP FORTRAN given that the order
of nesting the loops is irrelevant otherwise. Namely:

ORIGINAL PAGE IS
OF POOR QUALITY,

3-68

Method I:

DOALL, J=1,1000
DO 1 K=1,1000
A(J,K+1) = A(J,K) *B(J,K) + C(J,K)

1 CONTINUE
ENDDO
Method II:

DOALL, K=1,1000

DO 1, J=1,1000

A(J,K+1) = RECURRENCE(A(J,K) * B(J,K) + C(J,K))
1 CONTINUE

ENDDO

Method I, which executes the recurrence serially in an inner 1loop,
runs about nine times as fast as method II, which executes each
one of the recurrences in parallel across each value of J in turn.
That is, method I is 512 times as fast as a serial machine, while
method II is 57 times faster than a single serial processor. The
RECURRENCE function is included only for those cases where method
I is not an available option.

3-89

CHAPTER 4

SIMULATION

4,1 SIMULATION GOALS

The simulation effort during this extension of the feasibility study has two
distinct goals. The first is the requirement of the statement-of-work for
this extension that a simulation of the FMP be prepared, and at least one
simulation run. The second, is {0 get a head start onthose simulations needéd
for phase II, and described in Chapter 6 as the mechanism for settling various
trade-offs. The statement of work algo calls for the selection of "metrics',
that is, selected portions of the benchmark programs to be used as inputs to

the simulations to measure the performance of the projected FMP.

Detailed instruction by instruction timing of code execution in CU and EU is
necessary to ensure that the required throughput can be achieved, The design
of major system components must be specified in sufficient detail to provide
structure, logic, and timing parameters for system simulation. This infor-

mation is in Chapter 2,

Compilerfunctioning, including FORTRAN extensions for the FMP, are also
needed and are found in Chapter 3. Hand compilation methods must be specified.
In the case of the current extension, a single metric, subroutine TURBDA, has

been selected and hand compiled for this purpose. Further definition of hand

compilation is needed for phase Il. In particular, how much compiler sophistication

will be achieved in the first version affects hand compilation, and this is still
a subject for discussion, At this time it is best to mdke conservative assump-
tions, again in order to reduce the element of risk in the simulated system

performance predictions,

The design details and design choices outlined above have been made definite
though at this time for the first of the detailed simulations which are required
to establish confidence in the feasibility and throughput capability of the SAM
architecture, Any or all of the details may be changed as a result of further
study or the availability of more advanced components. Of course, all such
changes would be supported by simulation studies to maintain or increase

confidence in the correctness of the system design.

4,2 SELECTION OF METRICS

It is Burroughs understanding that the final selection of metrics will be the
Government's. Metric selection is a function of the architecture that is to

be measured. For example, in a conventional serial uni-processor, the
distinction between '"gerial’’ and "'parallel" streams of code is irrelevant,

and should have no bealring. With parallel processors such as the two designs
being proposed for the FMP (NAS2-9456 and NAS2-9457 final reports) the
arrangement of data in memory affects the efficiency of parallelism, and metrics
should be selected such that all "directions" of access of that data are represented,

What is important is that the metrics selected be ''representative’, both with

respect to the operations being performed by the target architecture, and the
codes that will be run on the FMP., Some "representative' of every kind of code
that the FMP will run is wanted, but the results should be weighted according

to the expected frequency of each "kind, ' "Kind" refers to the sort of inter-
action with the architecture that is represented, whether parallelism is two
dimensional or one-dimensional, the direction of accessing, presence or absence
of branches in inner loops, and go on; all the things that may have an affect on

the way the selected architectures behaves,

The metric that has been selected as the one that shall be used in the single
simulation that will be run during the extension of the contract is SUBROUTINE
TURBDA. Like most of both the implicit and explicit codes, it exhibits a
great deal of parallelism, but with some operations conditional on subscript,
so that different things are being done at different subscripts. It thus tests

the arci:itecture's ability to do different things at different grid points, It
inclufies fetches from, and stores to, the program's data base (in extended
memory), exercising the data transfer paths from the program data base to
the proceséing resouJ;'ce proper, it contains sufficient arithmetic manipulation
to exercise that aspect of the FMP (although probably less than a "typical"
subroutine), It contains significant amounts of index computation both on

loop controls and on subscripts. For the FMP design of Reference 1, it exer-

cises the synchronization, which is an essential feature of that design.

GE ¥
O Bo0R QUALITH

4-3

4,3 SIMULATION MODELS
The NASF system simulation modeling will be done at three levels of detail,
with results from a detgiléd model being used {o determine parameter values

for the next higher level model,

The most detailed 1<.eve1 of modeling is the instruction timing model for CU

and pro;':essors. For example, the model for the processor has as resources
the PDM, PPM, instruction registers and decoding, muitipliers, adders, data
and index registers, etc., corresponding to the detailed proceséor design, _A
metric for this model is a sample code sequence generated by hand compilation
of a 1f'-‘ORT]EtA-N section typical of the Navier-Stokes codes, Each instruction

is modele;d by a sequence of tasks,_ each requiring one or more of the res;)urces, ‘
and executing for the specifi-ed number of clocks, Instruction fetch and decode
is such a task sequence and the extent of overlap with instruction execution is
modeled. Similarly, the extent to which instructions can overlap is modeled

by the use of queueing fc;r resources, or by logic tests, in exact correspondence
with the processor design. The output reports from running this model can be
used to determine parameters for the next level model., An important perfor-
Iﬁance factor to be -determined is the extent to v;hich the address calculations
for EIVI accesses can be interlaced with, and overlapped.by the floa'tting point
calculations. The next level of simulation will be the flow model processor,
including the CU, processor,' EM, and DBM, Thé interactions fo be measured
are the CU and processor code execution times (previéusly determined), and'.

P P,GE ‘S\

Oﬁl%m% QU
OF ¥

data trahmsfers between EM and DBM, The metric will be a2 sequence of code
executions and data trans%fers approximating the main body of computation in
a Navier-Stokes code. The results will show the throughput performance of the
FMP, together Vi.fith the utilizations of EM and CU, which interface with DBM

and the rest of the system.

t

When we wrote the simuldtion model, we found that the instruction level model
needed to include the inte_raction between CU and EU, combining the first and
second levels. Theé lowest 1e;rel simulation model f.:herefore is‘ detailed to tll'l’e
instruction level, but includes CU, a number of processors, and access and
data transmiséion timing of the Extended Mefn&ry and Transposition Network,
Simulation of a number of seiected code sections on this model will provide

the param‘éters required to‘ model t.he execution of complete jobs and sequences

of jobs through the Facility,

T-he overall s;y'stem model will include the host, File Memory, Data Base
Memory and their interfaces with each other and éU and EM. The metrics ;
will be presumed scenarios of.ﬁéer requests for NSS jobg., The sequence of
scheduling, initialization, NSS operation, and output will be modeled. Impor-
tant functions to be modeled are data base and program ntrans‘;fe’rs from File -
Memory to DBM to EM, CUM, and PDM, allocation of DBM space, the _ :

sequence of FMP operations, including data and program input, c_ornpl.lf::a.t-ion,i

snapshot and data outputs, and changeover to the next job, Only the FMP

1-5

scheduling and centrol load on the host will be modeled; the amount of host
capacity available for other necessary work can be measured, or the host can
be loaded to any desired level by undefined "background' jobs and the effect

on NASF throughput measured,

The overall simulation effort will have two functions: first to support the validity
of the SAM architecture by modeling all essential system functions and inter-
faces in sufficient detail and demonstrating ﬁroper function of the model, and
second to show the throughput capability of the system for aerodynamic simullation
jobs by i.:racing thé throug}:;put step-by=-step from the iﬁstruction level to the ‘

user interface, -

Simula;;ions will be written in Burroughs Operational Sy,stem Simulator (BOSS)

4 discrete-events simulator whose input language is the flow=-graph of the prb-
cess being simulated. The instruction level simulation of Section 4. 5 is written
in BOSS, the -s;econd élnd third 1evé1 simﬁiations of Phase II will be written in
BOSS, In Phase II, the instruction-ievel-simulator may be rewritten in ALGOL,

since substantial improvement in simulation execution time is expected,

' 4,4 BOSS SIMULATOR

The BOSS simulator was used ‘for the simulations because of the relative eas?

of mé;deling w{th BOSS‘ and the.short time available, Special‘timing simulator
programs for EU and Cﬁ code execution probably c‘ould have been compieted in -

_ three morfths; Simulations at different levels of detail will be used to 'get perfor-
mance predictions ranging from the EU instruction execution to the user interface

level,

4-6

A discrete events simulator, such as BOSS, models the activity of a system

as a definite sequence of states, The model changes state only at discrete points,
called events, which occur at definite instants of timme. Every event can be
predicted at the occurrence of some prior event, and the new state of the
system model resulting from each event can be completely determined from

that event and the prior state. In practice the event prediction and state change
calculations are of’—cen probabalistic, because the real system ig too complex

to be modeled in full detail. The state variables of the model are mostly binary
logic variables such as busy/not busy or happened/not happened, and processing
of an event involves the accessing of state tables and evaluation of binary
decision functions. Arithmétic operations rarely occur except in the evaluation
of continuous probability functions where they are used in the binary decisions

or in predicting the times of future events.

The BOSé simulator program rm'as 0;1 a B 6700 o;r- B 7700 Burroughs éomputle'r.
Itisa gener:al purpose digcrete events simulator, with ‘emphasis on ease of
modeling and efficiency in execui:ion, in exchangt;. for some restrictions on the
size and generality of modells. BOSS has been used by the Federal and

Special Systems Group at Paoli mainly for simulating the hardware and software
fimctions of data processing systems, and improvements and enhancements over

several years have made it especially useful for this purpose.

PAGE 18

ORIGINAL *0\ 7ty

. oF POOR QU

In 2 BOSS simulation the element of model activity is a TASK, A taskis
characterized by its re‘quirement for resources and by the algorithm -specified
for predicting its execution time. A task is initiated upon completion of its .
predecessor requirement, which is usually a logical combination (AND or OR)

of one or more prior task endings. The task may wait in queue until the required
Tresources are ava.il};;lble; the selgcted resource units are then made bﬁsy for

the execution time, At ‘-che task ending -event, resources are released, qiieue:s
are served, and the preciecessor requirements of.any successor tasks are 2
tpdated. Several kinds of test-and-branch constructs are available to cause

conditional selection of one out of two or more successor tasks.

The direct interaction of tasks is r;estricted to structures of tasks groupeci
together and calied‘ i:"l'x"OCESSES. When a process is initiated, ‘one or more
"'s{aftiqg tasks" within it are initiated Wi‘th.O‘l-lt predeceslsor's, and the activity
within it ‘passes from tasks to task until such time as there is no further tas’k
éctivity, when that active version of the précess ends. Except for comﬁéti’tior?
for resour"ces,,’and ‘c‘ert ain special constructs, there is no interaction betweén

the active tasks in separate active processes.

The static structure of a BOSS model is described by the structures of the tasks
and their intéractio;ls within 'processe's and by the numbers and kinds of
resources available. The 'dynémic state of activity is-descrﬂ‘)ed by the states,
of. activity of -processes and tasks. -Every task is a member of some process,

and there is no activity in the system model until some process is initiated,

AGE TS
ORIGINAL PAUE
OF POOR QUALITY

4-8.

Initiation of procésses :;11: spécified‘ times corresponds to external loads causing
activity in the system. Processes can also be initiated as subroutines, or by
task endings in other processes. Many processes can be active concurrent].);;,
including multiple but distinct and iﬁdependent versions of the same process.
Similarly, within a process, many tasks may be active in parallel, including’
multiple independent versions of the same tagk. Thus, it is easy to model a:

highly parallel system with many concﬁrrent activities, including cases where

many of the parallel activities are very similar in structure.

The basic BOSS structure described sbove is sometimes inadequate or

) incor;vénient for modeling some parts of 1.:h.e ;ystern. Thgrefore, there is
available a superposed structuré of local and global variables upon which
ar'ithr.neti(; operations can be performed at task endings. These variables can

be addressed directly or indireétly, and their values can be used to control
b1;anching at task endings or to 'xlnodify ;:ile reéource requirement or execution

- ti’nie'of specified tasks. This extension permits a certain 'ar;%ount of programming
of capabilities not avéilable in the basic BOSS structure. In this way, for

example, the activity in one process can be influenced by actions oceurring

in another process.

Figure 4-1 shows graphically' the process of implefnenting and debugging
simulations in BOSS, showing the various steps that the simulation programmer

and the BOSS simulator go through in achie:ving the final result,

4-9

CODE SAMPLES

Y

HAND COMPILED

SUBSYSTEM SUBSYSTEM)
SPECIFICATIONS N FLOW MODELS —-1
CODE SUBSYSTEM SYSTEM FLOW
ANALYSIS INTERFACES MODEL
L BOSS MODEL
o) SELECTED FORTRAN, PR |
: | FLOW | CODE

IR 1

CODES

TEST CODES - .

v

{METRICS)

AL PAGE I8
ORIGT QUALITY | REPORT TABLES

OF POOR

|

|
. STRUCTURE | PARAMETER
N 1
_ BOSSINPUT 1 CARDS -

wl

DEBUG AND
VALIDATE

Y

BOSS PROGRAM
(B 6700 OR B 7700}

.

SELECT, EDIT
AND LABEL

!

BOSS OUTPUTS

AND FIGURES

ANALYSIS
OF RESULTS

!

SIMULATICON
REPORT

Y

Figure 4-1.

REPORT
- TEXT

Tlow of Simulation

4-10

4,5 SIMULATION MODEL FOR THE CURRENT STUDY
The overall structure of the model is shown in Figure 4-2, The Control Unit
and Processor models are driven by code files prepared by hand compilatio;l
of a selected EOR’I‘RAN code segment. All the operators of CU and EU are
modeled in detail so thai: any code may be simulated. Additional operators '
may be easily added if needed. Conditional branching cannot be modeied in
cecmplete detail since the model is a timing model, :':md does not simulate
‘the processing of data,” Such branches are therefore modeled by specifying
the number of times one path is taken for ea;:h time the other is taken. The'
count can be specified probalistically, For most branches this will do well
énough; The cases where branching depends on the Processor Number, will

be handled by a later extension.

The Conirol Tjnit mc’)'del includes its pl;'ocessor, a single memory (CUM), and
~ seven of tiue control functions interacting with the processor EU's, as shown,
‘Any deéired nqmber of processors-can be modeled, but the number a:ctually
used will be small {4 to 10) to r;tvoid excessive machine time tc-> run the simulations.
Details of instruction overlap in the CU aré not modeled; instruction execution
t.imes are not allowed to overlap, but CUM data fetches or stores can overl;ap
this e;;ec;ltion time of prior or following instructions. A datd fetch of one
instruction must come after a data store (iflany) of the preceding instruction.;
In case of contention for CUM by proéfam fetches, the-data accesses have
priority, but do not abort program fetches already in progress. The program
look-ahead ‘stack has a capacity of four code ségments,, whicﬁ is two memory

words for opcode formats using 24-bit segments.

4-11

cu
CODE
FILE

READY
-

GO
R]

| WAIT GO

N
AN
AN
' EU
CODE
\ FILE
AN
AN
. N PROCESSORS
.
Ve
i i
— —i
::; EU ::: EU — — —
cu - -
DISABLE " 9 1 . ! I
IGH + EN)
- PDM PDM -
EN)
-] 1
PPM PPM T
-CUM
Figure 4-2, Structure of Model
1S
L GB
ORIGINA Ty

4-12

Each Processor consists of an Execution Unit (EU) and separate program and
data memories (PPM and PDM). The EU is'modeled in some detail in order
to-properly simulate instruction overlap, as shown in Figure 4~3, The

operation is as follows:

4, 5, 1 Program Fetch, The Program Counter (PCR) addresses the next
ingtruction, 'which ig avéiiable at PPM tlf;ree clocks after the address is available;
As soon as a fu11l word of program stack is empty, the next code word is read

to the stack from PPM, and PCR is increme_:nted. When‘ a branch occurs, the

program stack is emptied and the new code word is available three -clocks after

the new i’C‘R is set.

4, 5,2 Scoreboard. Each instruction records in the scoreboard the times. at
which it will release each resource that it will use. The next instruction must
wait in stack until-all resources that is will need will be available when needed,

The Scoreboard and Decoding are modeled logically, but not as resources for

which-there couid be queueing.

4. 5.3 Holding Registers, If any resource is required at a time later than
i_nstm;;tié;—s-;c‘é;%, that instruction must wait in the corresponding Holding

Register, If that Holding Register is tied up by the previous instruction, then

the current instruction must 'wait, even though it could. otherwise start,

4-13

.PCR

——— PM

|
I

~ CODE STACK
(NOMINALLY 3 HALF-WORDS)

UPDATED TIMES WHEN

f— e
DECODING [
IPH
FPH
: PDMH
._’ .
’]
- .
-:--b
‘ FP
I
Ll
oM
e

SYNCHRONIZING
CONTROLS

|

cu

SCOREBOARD | PROCESSOR RESOQURCES
WILL BE RELEASED

HOLDING REGISTERS FOR IP, FP,
AND DM USE. IF THE USE OF A
RESCGURCE IS DELAYED AFTER
EXECUTION STARTS, THAT HOLDING
REGISTER 18 REQUIRED.

INTEGER PROCESSOR

FLOATING POINT PROCESSOR

PROCESSOR:DATA MEMORY

B IS
O S00R, QUALITY

Figure 4-3, Execution Unit Model

4-14

4,5, 4 Integér Processing, Floating Point Procesgsing, PDM (IP, FP, bM), These

are modeled as resources, although the Scoreboard should assure that there
will be no queueing for them, The utilization of these resources will give in:-
formation about the efficiency of overlap and the fraction of elapsed time that

the FP is in use.

4, 5.5 Synchronizing Controls. The timing of synchronizing conirols is assumed

to take 3 clocks for a round trip from CU to EU and back to CU. This is modeled
as no delay from CU to EU since the control signal arrives at the same time as
the corresponding clock pulse from the central clock. The 3 clocks delay is then
all in the return path from EU to CU., The actions of the Synchronizing Controls

are as follows:

4.5.5.1 READY, The CU raises the ready at the proper time in synchronized
instructions where the EU's must wait for CU action before proceeding (LOADEM,
STOREM)., Any EU which reaches such an instruction before CU waits for the

READY level. CU will wait for (IGH and EN) and then turn off the READY 1eive1.

4,5.5.2 (IGH + EN), This is level equivalent to a logic function generated as
follows: When an enabled (EN) EU comes to the proi;er point in a synchroniz]ed
instruction it raises the output line corresponding to I Got Here (IGH). This'
same levei is raised all the time an EU is disabled (EN), fh:ence (fGH + EN),

IGH is turned off by GO from CU, The (IGH + EN) lines for all EU's are ANDed
at the CU to ;‘)rooude its (IGH + EN) input. In the model this logic function is

performed by maintaining separate counts of the number of EU's enabled

(#EN) and in the I Got Here state (#IGH)., (IGH + EN) is true when #EN = #IGH,

4~15

' 4.5.5.3 EN. EN is ture when #EN=0 (no EU's are enabled).

4,5,5,4 GO. When (IGH + EN) becomes true at the CU, it raises the GO

level for one clock. All enabled CU"'s, on receipt of this signal, turn off the

IGH level and continue the ingtruction in which they were waiting.

4.5.5.5 Wait'GO. When CU sends this signal (one clock), all enabled EU's
enter the IGH state (waiting for GO) in place of the next instruction start. The

current instruction is or will be finished. .

4,5.5. 6 Disable. When CU sends this signal n(one clock), all enabled EU's
enter the disabled (EN) state in- place of the next instruction start, The current

instruction is oxr will be finished,

4.5.6 Extended Memory and Tran.sposition Network, The EM and TN are not
modeled as resoﬁrces that may be busy; thus it is assumed that during executicn
of CU-EU code, the EM is never in use’ for DBM transfers., The EM access
time and data traﬁsrﬁissio_n time through TN are properly modeled in the

execution time of the LOADEM and STOREM instructioné.

4.5.7 Code Simulated. The hand-compiled TURBDA assenibly codes are

- given in Table 4-1 and 4-2, together with an assembly coded SQRT, which
is a simplified version omitting the tests and ‘branches for negative argument

and for ﬁegative e'xbonent.

4.5. 7. 1 Processor Code. The large amount of integer computation at the

beginning of each pass through the TURBDA loop would give a low utilization

of the ¥loating Point unit, were not for the large block of FP calculation in

.4-16

Q

140
&

1
1

it

0

ki

&

)

-

Ty
aovd

A

AL

1511

Li=%

Table 4~1. TURBDA Processor Code Simulated by Model

(ICALL not simulated) IGT (No Branch) . L1 JUMP L3
FL Il;!QL (Mo Branch) (Jurmp to L3}
FDIVM IEQL, L20 14 STOP
IL ' (Jump to 1.20)
I, FFETCH SQRT IUPK3
L3 ITIX, L4 (Drop through 2 times, FABS Never IADDL
then exit to L4} ' FMUL Executed IANDL
ISHL FSTORE ISHL,
IPNO ’ IJUMP, L40 ISUB
ApDD o 120 FFETCH . IADDY
IDIVL : FFETCH IANDL
ISTORE FADD ISUB
IMULL - FABS ISHL,
IFETCH ' FMULL IADD
IL ,) FMUL IADDL
L14 ITIX, L1 (Drop through 20 fimes, . FSTORE . IPAK3
then exit to L1} JUMP, L40 FADD
IADBL {(Jump to Y40} FNEG
ID521 130 FFETCH FL
LOADEM _' FFETCH) FMUL
IADDL FADD Never FMAD
D521) ' FABS Executed FMUL
1L FMULL - FMUL
IFETCH , FMUL FMAD
IEQL (No Branch) FSTORE FMUL
IL L40 FL . FMUL
L100 LOADEM FFETCH FMAD
IADDL FMUL FMUL
ID521 ENTER SQRT . FMUL
I, FMUL . FMAD
IFETCH FL FMUL
TEQIL. (No Branch) FADD FNEG
IL , FDIV FMUL
1200 LOADEM IADDM IRETURN
IFETCH ID521
IGT (No Branch) STOREM
IFETCH JUMP L14
IFETCH (Jump L14)

the SQRT routine which is called once per loop. ICALL and IRETURN are :.
both estimated at 23 clocks, which may be pessimistie and considerably
reduces the FP utilization of SQRT, In an in;ler loop such as this, SWRT
should probably be written in-line, since it will occupy no more than 20-30

words, and about 50 clocks are saved.

Note that the outer loop, starting at L3, is —executed twice, and each time

the inner '100p, starting at 1,14, is executed 20 times, Thisis a sufficiently :
large sample of code execution to give wvalid statistics., Within the inner
loop, in the ac;t‘:ual code, each EU will execute-.one of three branches, de-
pending on the index states. In-the simulation, only the branch starting at L20

(the longest of the three) is executed, The other two are never executed, as

ipdicated.

In the actual code, two of the LOADEM's are conditional (LOADEMC). However,
only the EM address and EM data input are conditiona‘l, the timing being the

same, so the simulator-makes no distinction.

4, -5. 7, 2 Cont‘rolh Unit Code.. The Control Unit code of 'I‘able 4-2 begins with
LOCOP, because the model starts W-i{‘:h all EU's waiting for GO. When. (IG + EN)
is true, LOOP causes .both CU and EU's to branch to specified addresses by the
LOOP instruction, and this is a- convenient way to get the simulator to jump

to the desired addresses in the simulated code files,

4-18

L3 -

L4

L1
1.4

Table 4-2., TURBDA Control Unit Code Simulated

LOOP

CL

CL : .

CTIX, L4 (Drop through 2 times, then Branch L4)
CSHFN

CMULL

CFETCH

CL

CTIX, L1 (Drop through 20 times, then Branch L1}
CADDL

CADD

CMD521

CL .

LOADEM

CADDL

CADD

CMD521

LOADEM

CADDL -
CADD
CMD521
LOADEM

" CADDL

CADD

CMD521

STOREM \

CJUMP, L14 (Jump to 1.14)
CJUMP; L3 (Jump to L3
CRETURN .
END SIMULATION

4-19

The only synchronization instructions in this code sample (aside from LOOP)

are the three LOADEM's and the STOREM.

The CU and its synchrnoizing action are simulated in some detail to determine

two things:

(1} How much do processors wait at sync points for other processors
to catch up? ' ;
(2) Do processors ever wait at sync points for CU to catch up, and .

if so, how much?

4. 6 SIMULATION RESULTS

The simulation runs were made with a model having the Control Unit and

f"o1‘.1r processors, The code driving the model was the TURBDA code shown

in Tables 4-1 and 4-2, except that the outer loop was reduced to one iteration
and the inner loop to 10, in ordér to reduce machine time for these first trial
runs. Under these conditions tl;.e simulation indicates that the abbreviated
TURBDA runs 4600 clocks on 184 microseconds assuming a-25-megahertz clc!>ck.
The full size TURBDA. with two iterations in the outer 1oop‘ and 31 in the inner
loop would run about six times as long, or 1100 microseconds (27, 600 clocks).

The parallelism is 31x31 = 961, compared with 1024 pogsible in two iterations;

so, the efficiency of array use is 93, 8 percent in this case;

In the simulated TURBDA run, each processor performs 281 fioating point
operations lasting a total of 2407 clocks, for an average of 8. 6 clocks per FLOP,

The elapsed time of 4600 clocks yields an effective throughput of 1, 53 MFLOPS

1

1GINA. 1
OR 00 UALI 4-20

per processor., The array throughput would then be 782 MFLOPS, or 733 at
93, 8 percent array efficiency for the 31x31x31 problem, As expected‘for
TURBDA, these rates are considerably lower than 1000 MFLOPS, This

reduced throughput has three causes:

(1). There are 40 EM accesses with the 281 floating point ops, or a
I;étio of only 7 to 1. The EM accesses themselves do not cause
appreciable delay, but the integer operations required to ca-lculate
the EM address$es do cause delay. |

(2) The floating point opérat%ons of TURBDA contain more than the
normal proportion of multiplies and divides, raising the average
duration t"ro'm the nominal 7, 3 clocl;;s; to 8. 6 clocks per floating -
point operation,

(3) The function $QRT m-rél.s simulat.ed as a subroutine, with entr;y
and return operators.. It is likely that the.compiler will put
simple functions like SQRT in-line. ¥ so, the total time wquld

- be only nine tenths that shown, for an 11 percent increase in

measured throughput.

Some other conclusions of interest are:

(1) Control Unit processing causes essentially no delay (less than
0. 5 percent of the total {ime)
(2) Extended memory accesses occupy 11.5 percent of the time,

including all synchronizing delays.

4-21

(3) Program fetches cause little or no delay. The model does not
measure such delays exactly, and should be modified to do so.
Program memory is'in use 42 percent,

(4) The utilization of the integer unit is 47 per:cent, data memory
10 percent and floating point unit 58 percent, for a total of
115 percent, indicating the approximate degree of overlap,

{5) The inner loop takes 450 clocks, of which 197 are in the SQRT
routine, Two thirds of the floating point operations are in the

SQRT routine,

Figure 4-4 is an example of one of the output tables of one of the simulation
runs, The unit types represent various system resources as indicated by
the row headings typed in on the left. In some cases the resource is used for
internal control purposes in the model and does not represent a real system

component, so is unlabelled. Some of the resources represent logic levels

and signals such as READY, GO, IGH+EN, EN=0, A processor or CU waiting
for such a level or signal is modeled as queueing for the resource, which is

created to represent the presence of the level or signal,

4-22

AITTVOD ¥00d d0
ST EHVd TVNIDIYO

ge-¥

UNIT UTILIZATION STATISTICS

UNIT TOTAL .., ,.PERCENT OF ACTIVE TIME ceaeee
UNIT ID TIMES ...IN-USE... LDEPENDENT.. FREE

TYPE ®MiMB USED DELTA TOTAL DELTA TOTAL TOTAL -

CUM 24 3 175 11.27 11.27 0.00 C.00 88.73
CUPROC 25 4 233 96,89 98.89 0.00 .00 1.11
CPSTAK 20 5 171 11.86 11.86 0.00 0.00 88,14

! 20 6 173 11.40 11.40 0.00 .00 88.€0

20 7 171 11.92 11.9¢ 0.00 0-00 B88+08

19 8 170 11.62 11.62 0.00 .00 88.38

~— 23° 9 I €.07 0.07 0.00 ' 0.00 99.53

——— 28 10 186 .91 0.91 0.00 €.00 99.¢9
READY 15 11 24y C.87 0.87 0.00 0.00 99.13

60 17 12 246 .00 0.0¢C 0.00 €.00 100.C0

{IGH-+EN} - 21 13 82 ° (.00 0.00 0:00 .00 1006=C0"
FEEN=0 26 14 1 .00 0.00 0.00 0.00 100.€C0
Iv: 3 15 506 47.01 47.01 0.00 0-00 52.59

FPU & 16 364 S7.74 S57.74 0.00 .00 42.26

POM 5 17 154 5. 97 9.97 0.00 .00 90.C3

PPM 7 18 1346 42.37 42,37 0.00 €.00 57.€3
HOLD}{ 8 19 1 €.00 0.00 0.00 0.00 10G¢.CO

REGIS- 9 20 53 S« 60 9.60 0.00 C.00 90.40
TERS J L. 10 2t 52 1€.18 10.18 0.00 0.00 B89.E2
QUEUED + 13 22 558 77.55 77.55 0.00 - 0400 -22445-
PPSTAK 12 23 862 3£.50 35.50 0.00 - C.00 64.50

! 12 24 862 3£.53 35.53 0.00 C.00 64.47

! 12 25 . 860G 4C.69 40.569 0.00 0.00 . 59.31-

Figure 4-4, Sample of Simulation Output

CHAPTER FIVE
RELIABILITY

5.1 INTRODUCTION

This chapter presents two major aspects of the NASF reliability
and trustworthiness; (1) an availability prediction of the FMP and
(2) further d9velbpment of the error detection and correction
techniques to the various FMP elements. These topics are covered
in sections 2 and 3 of this chapter, respectively.

The system availability design goal for the B7800 host system and
the Flow Model Processor (FMP) {s 90 percent or better. Also, it
is desired that the probability of success for completing runs of
ten minutés and one hour be 'equal to or greater than 98 percent
and 90 percent, respectively, The following is the conventional
formul a for-computing availability

A = MOT .
MUT + MDT
whefe,
A = Availability
MUT = Mean Up Time

"

MDT Mean Down Time.

Up time is the duration during which the system is continuously
up. Down time is the interval between up times. It can be seen
that a system MUT = 9 ‘hours or longer combined with a system MDT =
1 hour or less satisfies the availability goal. These values also
satisfy the desired reliability, or probability of success, as

evidenced by the following formula

R{t) = e—t/SMUT
.where,
R(t) = The probabilit& of successfully completing a run as
a function of t :
£ = Duration of the run (hours)
= System Mean Up Time (hours)

SMUT
5.2 AVAILABILITY PREDICTION

The following methods were employed in pfeparing the FMP avail-
ability predictions discussed below.

- Standard component part failure rates were predicted using
the reliability stress analysis prediction methed of MIL-HDBK-

217B.

' - Potential improvements in reliability throuéh the use of
Single Bit Error Detection and Correction and Double Bit
Error Detection {SECDED) in the FMP memoiies, fanout tree,
and transposition network were aﬁalyzed using a mathematical
model developed specifically for the proposéd design of these
elements. ' ’

"~ System Reliability, Availability, and Maintainability (RAM)
characteristics were analyzed using Program DESIGN, which was
developed by the Burroughs Corporation to aid in designing
fault-tolerant- computer systems.

MIL-HDBEK-217B is used extensively throughout the electronics
industry to‘predict the failure rates of electronic component
parts. Since the prediction methods of MIL-HDBR-217B afe'quite
detailed and documentation describing these methods is readily
available, only the general aspects of component part failure rate
predictions are discussed in this report.

Appendix B contains a description of the SECDED mathematical
model, including the underlying assumptions associated with the '
development of this technigue. 'A similar .description of the
mathematical model employed in Program DESIGN is in preparation.

5,2.1 OVERVIEW

The proposed Flow Model Processor (FMP) design will be implemented
using state-of-the-art technology of today and currently proposed
state—of-the-art technology for the time frame during which
manufacturing of the FMP will be initiated. Obviously, accurate
reliability projections for some of the LSI component parts re-
quired to implement the proposed machine are difficult at this
point in time. Likewise, projections with respect to gains in
.reliability through the use of techniques such as Single Bit Error
Detection and Correction and Double Bit Error Detecﬁipn {SECDED)
can only be hypothesized based on assumed failure modes until the

design is completed, built, and tested.

Recognizing that the above ané additional considerations must be
seriously addressed to ensure meeting the specified system
availability reguirements of 90 percené, an analysis has been

" conducted to bound the potential availability of the current FMP

design. Both optimistic and conservative points of view have been -

considered for those conditions which can not be accurately
projected at this point in time. In addition, sensitivity)
analyses -have been conducted within the upper and lower projected
availability bounds to determine where design attention must be
concentrated in order to achieve the stated availability require-
ment and reap the greatest reliability and availability gains for
the effort expended.

o-3

The results of this preliminary availability analysis serves two
purposes. First, the analysis shows specific failure, recovery,
and repair time reliability and maintainability estimates at the
subsystem, module, and componént part levels that are consistent
with overall system availability of 90 percent and MIBF of 9 hours
or better. BSecond, the analysis ﬁumerically bounds achievable
Mean-Up-Time (MUT), Mean-Down-Time (MDT) and Availability
estimates within the broad range. of reasonably optimistic and

pessimistic assumptions.

The following paragraph summarizes the results of this preliminary
availability and the rationale ‘for the assumptions made. As the
FMP design progresses, the availability analysis will be iterated-
to further refine specific reliability and maintainability
estimates to narrow the bounds of uncertainty associated with
these preliminary projections.

5.2.2 Summary ¢f Results

The first step in this analysis was to develop an overall
Availability block diagram of the FMP (Figure 5-1). The estimated
parts counts for all major elements, considering the types of
component parts currently envisioned, were then prepared. For
standard component parts, failure rates were bredicted using the
reliability stress analysis prediction method of MIL-HDBK-217B.
Consideration was then given to the failure rates of.large memory
packages (16K, 64K, 256K) of the future. It was hypothesized that
the best that could .be expected in terms of reliability is
achieving failure rates equivalent to those achievable today for
4K memory packages (approximately 0.1 Failures Per Million Hours
(FPMH)). The worst reliability that one could expect to encounter
was judged to be equivalent to the series failure rate build up
for the number of 4K parts required to make up the larger memory
packages; i.e. for 16K: 0.4 FPMH, for 64K: 1.6 FPMH, and for
256K: 6.4 FPMH, Using these component part failure rates for
each of the major elements provided the upper and lower bounds
with respect to projected device reliability.

5-4

CONTROL BNIT
(O~——| CONTROL UNIT {£U) MEMORY (CUM) FANOOT TREE (FOT)
| At 1 Antnitie 1 i7777—777 1T 1
i HI I [1 |
| | PRocEssom 1 | | processor || 1| eaocessor I 11 processor ||
1~ wopuLe W | 1] mobuLe) Il meoue _1 I I[] mooue I
| o T t ! 1
i | | [I
I 1 erocessor I 1} erocessor I PROCESSOR || eprocessor | |
1 MODULE 1 moDuLE i MODULE T MODULE T
i [} I 1 [. }
i Pk [i [i Pl H |
| 1281120 b 128/129 o 1281128 |1 12128 |
[1 | 1 1| —t | } L {
! | processon P L processor | |! : L PROCESSOR | | f 1 L pROCESSOR | _|
] MopuLE - E WODULE ; || woouLE Do MODULE]
I
| t | o T 1
b e ~ L e - — 1 L e - —— — 4 e e e e — +
PROCESSOR BAY 1 PROCESSOR BAY 2 PROCESSOR BAY 3 PRQCESSOR BAY &
TRANSPOSITION NETWDR TRANSPDSITION
CONTROL{TNC) ° * NETWORK [TM}
EXTENDED MEMORY MODULE
14 -]
—————————————————————— han —_——— e e e e e e ——
e 1T H [I
F 1 exvenpeo ” ! !]
| {wmevory | |exreneen! |1 | sorenpen || extenoen F—:— ot EXTENDED | | pyrenpen| |
T conTRoOL [MEMORY [T memoRy MEMORY L cg TROL- MEMORY
1 | tene (EMM} I | | conTROL | 1 N
| I } !
e e e e e — & b e e e e 4 e e e e -
_
- "
521 EXTENDED MEMORY MODULES
DATA BASE DATA BASE DATA BASE DATA BASE
MERORY = ~ MEMORY MEMORY - ~=-— MEMORY —0
CONTROL {0BME) MODULE (1EMm} MODULE MOBULE
L J

"

526 DATA BASE MEMORY MODULES

*
The notation M/N means that out of the N identical elements in
the system, M must be operzting for the system as a whole to
be operating. ’

Figure 5~1. Availability Block Diagram of the FMP

1S
sqINAL PAGE
opROOR QUALITY

Next, & mathematical model was developed to study the potential
improvements f£rom SECDED. Using this model, it was found that
gains could vary from a lower bound factor of 2 to upper bound
factors of 164 for 16K, 327 for 64K, and 653 for 256K memory
packages.

Finally, redundancy was‘considered. In this case, the ability to
automatically detect, isolate, and decommit failed elements
without noticeable interruption was investigated. As an upper
bound on reliability, perfect recovery was considered. The lower
bound was established for a situation where no recovery without
-interruption.could be achieved. In this portion of the analysis,
both permanent typé failures which require a repair action and
intermittent type failures which only require a recovery action
were factored into the computationsf

Using the previously discussed upper and lower bound values, it
was determined that the design potential availability for the

currently proposed FMP is:

* Upper Bound: Apyp = 0.9995 (see Figure 5-2}

0.9554 {see Figure 5-3)

* Lower Bound: Apyp

Both these optimistic and conservatiye forecasts indicate a high
degree of confidence in the ability of the proposed design to meet
the overall system availability requiremént of 90 percent. Using
the above upper and lower bound availabilities for the FMP, it can
be shown that the required availability of the B7800 host system
to meet the 90 percent system availability is:

]

.9004 for the Upper Bound FMP Reqguirement
.9420 for the Lower. Bound FMP Requirement

* RAp7800
* Ap7800

n

The above required availability values for the B7800 host s?stem
are currently being exceded bf Burroughs B7700 systems operating
in the field today. Since the B7800 system is expected to be even
more reliable and maintainable than currently available B7700
sydstems, the overall system availability requirement for the FMP
‘and the B7800 host system appears to be reasonable and achievable.

The data used to obtain these results are presented and discussed
. in the following sections.

5.2.3 THE BOUNDS OF FMP AVAILABILITY

This section shows the bounds of the failure rates of all packages
and subsystems. The bounds of MUT (Mean-Up-Time), MDT
{Mean-Down-Time) and availability of the FMP are the highlights.
The failure rate of the system is significantly reduced with '
judicious design and the following factors:

1. A ground-based benign environment, where there is nearly
zero environmental stress with optirum engineering
) operation and maintenance -.
2. Use of high quality barts; MIL-M~38510, class B level
" commercial parts being strongly suggested
3. On-line processor spares ’
4. EBrror correction techniques, including SECDED.
5."Adequate.maintainability, as reflected in time to. repair.

5.2.3.1 PACKAGE FAILURE RATES

The circuit packages are the basic elements in the FMP and accom-
panying the reliability of the FMP is a function of the failure
rates of these packages. As mentioned in the\previéus section,
the failure rates of digital circuit pacﬁages are predicted with
the guidelines of MIL-HDBK-217B. Table 5-1 shows the predicted
failure rates and the operating environmental conditions of the

5-7

control or logic packages used in the FMP. For the memory
packaées, the lower bound of those failure rates is 0.1 FPMH. The
assumed upper bound of the failure rate of an m-bit memory package
{m >4,000), denoted as.km, may be computed with the following
formula; representing the failure rate'of the same memory built of
4k-bit parts.

nm X UPPERBOUND F.R. FOR 4K MEMORY ppuy
4K BIT

An

N

;\m =mX

1l FpMH =M X 2.5 X 10~5 FMPH
4,.000

Table 5.2 shows the upéer bounds of the failure rates of a variety
of memory packages.

5.2.3.2 THE FAILURE RATES AND MTBF OF SUBSYSTEMS

A subsystem contains the packages listed in Tables 5-1 and 5-2.
The failure rates of the subsystems of the FMP are predicted by
parts count method. 'The memory subéystems failure rates are
modified by the SECDED reilability improvement factor which is
defined as the ratio of the subsystem MTBF with SECDED to that
without SECDED. The factor is discussed in detail in apﬁendix B.
It ¢an vary from two to‘six hundred and more, depending on the
gize of the memory package. Table 5-3 presents the list of the
packages, thé failure rates and MTBF of the control or data
processing subsystems. Table 5-4 and 5-5 sﬁow the bounds of the
failure rate and MTBF's of the memory subsystems. The upper
{lower) bounds of the failure rates (MTBF's) are predicted with
the SECDED reliability improvement factor of two and the failure
rates of the memory packaées at their upper bounds. The lower
(upper} bounds of the failure rates (MTBF's) are generated when
the SECDED improvement factors are at their upper limits and the
failure rates of the memory packages are on their lower bounds.

5-8

LITVOD HO0d d0
S EHV TVNIDINO

6g

PART NUMBER

Table 5-1, The Predicted Failure Rates of the Control or Logic Packages

*PART DESCRIPTICN

1000 0001 ECL CONTROL=SSI-I
100C 0002 ECL CONTROL-SSI~11
106¢ 6003 ECL CONTROL-SSI-III
1000 €04 ECL CONTROL ~SSI~1V
100¢ €005 ECL CONTROL=¥SI
100¢ €006 ECL CONTROL-LSI

Table b-2,

PART NUKBEF *PART DESCRIPTIGN

2000 0Co1 KOS 16K RAW

2000 €CO2 YOS 64K RAF

MOS 256K RAM

2000 €063

*TYPE*G/T/B*PINSATEMF+ENVAQLAL=CLAMTIND IVIDUAL FR#

DIE
DI¢
DIE

D1I¢

DIG
01¢

4
€
15
22
4C
130

16
16
16
16
16
16

22
22
22

45
45
a5
45

" 60

60

6¢
60

GE
GE
GiE
GE
GE
GE

6B

GB B
60 GB

8

B
B
B
B
8

The Upper Bounds of the Failure Rates of Memory Packages

l .

s b el o

0.00622
0.09778
C.C13C7
0.01633
0.06082
0.13000

*TYPESG/T/B*PINS*TEFFAENVHAQUAL*QUANT2INCIVIBUAL FF=
FAK 16C0¢
RAM 6400¢C
RAM 256000

0.4000¢
. 1.600€0C
6. 40000

01-G

PART
1000

PART
1000
1000

PART
1000

PART
1000

PART
1000

PaRrT
100¢C

PART
1coo

Table 5-3. The Predicted Failure Rates and MTBFs of the Control Subsystems

LEVEL 1 DESIGNATION: PE

NUMBER *PART DESCRIPTION *TYPEXG/T/B PINSATEMPAENY #QUAL *QUAKTAIND IVIDUAL FRw
0006 ECL CONTROL-LSI . DIG 130 16 60 GB - B 100 0.13000
MTBF= 76924.16 12.9998 FAILURES PER MILLION HOURS
LEVEL 1 DESIGNATION: -V
NUMBER - *PART DESCRIPTION CTYSEAS/T/3«PINSAT. WP *ENV#QUAL *CUAN TXIND IVIDUAL FR#
0001 ECL CONTRuL=SS I~T 716 & 6 45 6B R 200 |, 0.00622
aon g ECL CONTROL=MSI YIG 40 16 6 6R & 1000 0.06082
MTEF= 13349415 73.°647 FALLURES PZR MILLION HGURS '
LEVEL 1 DESIGYATION: FOT . . «
NUMBER *PART DESCRIPTICN *TY2ExG/T/B*PINSYTEMP4ENV- QUAL*GUANTAIND IVIDUAL <R+
00972 EEL TONTROL-SSI-II a1 & 16 45 5% § zedo 0.00778
MTEF= 64287.32 15.55%52 FA[LURES PER NILLION HOURS
LEVEL 1 DESIGNATION: TN ' 4
NUMBEFR *PART DESCRIPTION *TYECAR/T/3 #PINSAT: MP*ENV #QUAL *SUANTHIND IVIDUAL FRe
Co0 4 ECL CONTROL =55 I-1v n1G 22 16 45 GB B 104890 0.01633
MTBF= 5643.59 171.1278 FALLURES PER NMILLION HOURS
LEVEL 1 DESIGNATION: TNC .
NUMBER *PART DESCRIPTLON *TY'E*G/T/3#PINS+T" MPAENVQUAL *GUANT*IND IVIDUAL FRw
0051 ECL CONTRIL=55I-1 215 L 16 45 GB8 3 500 G.00622
MTEF= 321532.40 3.11 1 FATLURES PER MILLION HJURS
LEVEL 1 DESIGNATION: FM-C
NUMBER *PART DESCRIPTION *TY2E«G/T/3 #PINS*TEMP#ENY *QUAL *GUANT«IND IVIDUAL FRw
€003 ECL CONTROL-SS I-II1 DIg 15 16 45 GR R 10 " 0.01307
MTRF= 2550138.28 0.3921 FALLURES PER MILLION HOURS
LEVEL 1 DESIGNATION® CEM-C
NUMBER - *PART DESCRIPTION *TY EwG/T/3+PINS«Tr MPoENV #QUAL*CUANT*INDIVIDUAL FR+
c023 €CL CONTROL-SSI-III 11r 15 16 %5 5a ® 1000 0.01307

MTBF= "76504.15 13.0712 FA[LURES FER WELLION HOURS

TOTAL FR»
12.99%82

TOTAL FR»

12.44043
60.82423

TOYAL FR*
1555517

TOTAL: FR=
171.12779

TOTAL FR+
3.11011

TOTAL FR=*
0.39214

TOTAL FR=
13.07119

http:64287.32
http:13;49.15
http:76924.16

I1-6

PART
1000
2000

PART
2000
1000

PART
ZCCC

PART
20¢¢

PART
2CG¢

Table 5-4, The Lower (Upper) Bounds of the Failure Rates (MTBF) of the

Memory Subsystems

LEVEL 1 DESIGNATION: PEM

NUMBER *PART DESCRIPTION 2 TYPEAG/Y/B*PINS*TEHPAENY *QUAL*QUAAT«INDIVIDUAL FR+
0001 ECL CONTROL -SSY-X DIG 4 t6 45 GB8] 15 0.00622
0001 MOS 16K RAM RAM 16000 22 o0 GB = 55 000061
MTBF= 78B4153.75 0.1268 FAILURES PER MILLIDN HOURS
LEVEL 1 DESIGNATION: PEPM
NUMBE R *PART DESCRIPTION oTYPENG/T/B*PINS*TEMP=ENY* QUAL=QUART+IND IVIDUAL FR+
0001 MOS 16K RAM RAN 16000 22 &0 GB B 28 0. 00061
0001 ECL CONTROL=SSI~I DIG 4 16 &5 GB- B s 0.00622
NTEF = 9060039.53 0.110% FAILURES PER MILLION HOURS
LEVEL 1 DESIGNATICHNE: CLP
NLWBER *FART DESCRIPTIGN «TYPEXG/T/B*PINS*TEMF2EAV*QUALACGLAM TAINCIVICUAL FR#
cco1 MCE 16K RAM fA¥ 16C0C . 22 &6 GB B 55 0.C00E!
FTEF= Z25E20925.34 (G335 FALLURES FER PILLIDQ HOUR S
LEVEL 1 CESIGNATICN: EM-H
NUMEER sPARY DESCRIPTIGN *TYFEAG/T/BAPINS2TENFALAVHQUALACLAMTHINC EVIDLAL FR»
ccez MGS 64K RA¥ RAV §4C0C 22 GO <8 . D 5 C.Co0zc
FTEF= S5651624445 CoCLlE& FAILURES PER FILLION HELURS
LEVEL 1 CESIGNATICN: CEBM=m -
hUkBER *PART DESCRIFTICN *TYPEAG/T/84PINSTEMFAEAV#GUAL *GLANT#INC IVICUAL FRe

CGe3 MOS 256K RAN RAN 256000 22 G6¢ GB B cg

G«COG15
FTEF=118757753.448 C.0084 FALLURES FEF FILLIOM HGURS

TOTAL FR~
0.09330
0.03353%

TOTAL FR»
0.01707
0.09330

TOTAL FRw
C.03353

T0TAL FR»
0.Cl678

TOTAL FR+
0.0C842

http:ITEF=I?57?53.48
http:55,651E34.45
http:2582C925.34
http:9060039.53
http:7884153.75

gr-g

Table 5-5. The Upper (Lower) Bounds of the Failure Rates (

Memory Subsystems"

LEVEL 1 DESIGNATION: PEM

PART NUMBER «PART BESCRIPYION

*TYPE*G/T/B*PINSaTEMP2aENY #QUAL *CUANT+IND IVIDUAL FR»

1000 0001 ECt. CONTROL =SS I~T - ple 4 16 &5 GB B8 15 0.00622
2000 0001 MDS 16K RAM RAM 16000 - 22 0 MR 1) 55 0.20000
MTBF= 90144.48 11.0933 FAILURES PER MILLION HOURS
LEVEL 1 DESIGNATION: PEPN
PART NUMBER *PARY DESCRIPTION ATYPEXG/T/Be«PINS#TENPAENV2QUAL*QUART«INDIVIDUAL FRe
2000 000t MOS 16K RAM RAM 16000 ~ 22 60 za 0.200400
1000 0001 ECL CONTROL=SSI~1 pI6 & 16 45 GB B 15 0.00622
MT BF = 175644 .96

S.6933 FAULURES PER MILLION HOURS
LEVEL 1 DESIGNATICON: CUM
PART NUNBER ~ #«PART DESCRIPTIGN

*TYPEMG/T/B*PINSaTEMP+ENVE QUAL®CQUANT#INCIVIGUAL FF»
2C0C ¢Co1 HOS 16K RAM

RAK 16006 22 6¢C B " 55 0.20000
HTEF= 50509.05 11.0000 FAILURES PER MILLION HOURS

LEVEL 1 CESIGNATION: EM-HM

PART NULNBER sPAKT DESCRIPTIGN

STYPE*G/T/BaPINSATENF2ERV*QLAL*CLAN TAIND IVIDUAL FR=
20640 <co2

KOS 64K RAM RAN 64000 22 €0 >

FTEF= 2272727 446000 FALLURES PER FILLION HOURS

LEVEL | DESIGNATION: CBM=H
© «pART DESCRIFTION

200C CGo03 KOS 256K RAM
¥TEF=

55 0.2800C0

/
PAFT NUMBEGF

RAM 256000 22 60 B 55
5681.82 176.0000 FAILURES FER PILLION HOURS

o1 HOVA TVNIOTEO

AgrTvaD ¥00d dO0

MTBF) of the

ATYREAG/T/B *PINS*TERPEAVAQUAL2CUANT*INDIVIDUAL Ffi»
3.200090

TOTAL FR»
0.09330
11.00000

TOTAL FR»
5.60000
0.0933¢0

TOTAL FR»
11.0C000

TGTAL FR»
44 ,0C000

TOVAL FR»
176.00000

The legends of these and following tables are defined as:

TYPE - Integrated circuit type

G/T/B =~ Number of gates, or of transistors, or of bits

TEMP - Junétion temperature predicted with MIL-HDBK-217B

"ENV - Environment (GB - ground-based benigﬁ or standard office
environment)

QUAL - quality/screening level (B-MIL-M-38510, class B).

QUANT - not listed in table 5-1 or 5-2

INDIVIDUAL FR - individual faiure rate (per million hours)

'Some of the other terminology in these and following tables aﬂd
figures is as follows. Mnemonics representing eléments of the FMP
are the same as those shown in Figure 5-1, such as "FOT" for
"fanout tree” or "TNC" for the "control portion of the transposi-
tion network". "MRT" has been used for "mean down time"; the
programmer was thinking that all down time was repair time. "RE"
recovery efficiency is the fraction of the time that a retry ig
successful. For example, fof a single bit failure in memory
covered by SECDED, RE is 1,000. For a catastrophic "single point"
failure, RE is 0.000. "Single point" identifies those portions of
the system where a failure at a single point disables the system.

5.2.3.3 AVAILABILITY OF THE FMP

The major task of thié section is to assess the bounds of MUT, and
availability using the program DESIGN. Using the[program‘we can
thoroughly investigate critical factors pertinent to the failure,
repéir, and recovery processes., As required, the following
determinants of system interruption and downtime have been
included: l

-5-13

* Permanent and Intermittent Hardware Failure .and Repair
Rates

* System Automatic ﬁecovery Features

* GSystem Manual Recovery Rates

Sufficient data have been ‘collected for design new systems
successfully. With these data and all informations from the
previous sections, the program provides an output with all salient
’input data and analytical results. " The computer printouts used
designations matching those-on the block diagram of Figure 5-1.
Corresponding to Table 5-4, Figure 5-2 shows a print-output which
points out the upper bounds of MUT, and availability of the FMP
are 1,032 hours, 0.43 hours, and .9995, respectively, as the MTBF
of the hard failure is the same as the MTBF of the intermittent
failure. Similarly corresponding to Table 5-4, Figure 5-3
presents an output which shows the lower boﬁnds of MUT and avail-
ability are 3.5 hours and .9554 respectively, when the MTBF of the
hard failure is ten times of the intermittent failure.

5.2.3.4 SENSITIVITY ANALYSIS

Since some factors shown in the previous sections are uncertain,
and the failure rates of the memory packages are unknown, a ‘
sensitivity analysis has been made to study how those factors
affect MUT, MDT, and availability of the FMP, Here we perform an
experiment with respect to all the factors. In the experiment,

some wide range varieties are considered, as in the following:

1. Two levels of the failure rates of the memory packages,
namely the upper bounds and the lower bounds as shown in
Section 2.1

5-14

0 30
NEOTHO:

w I F

irivod u
§1.80Vd TV

G1-g

NVAME
cu
CumM
TNC

FaT

™
EM=C
EN-M
DM C
D8M
PROC-1
PRIC-2
PRIC-3
PRI C~4

Figure 5-2,

Lao R T N T -
e oy e

1t
521521
521521

1 1
512512
129129
128129
123129
128129

MTBF{P) MTAFCI) SPFM

13649 13649 D.000
9000000 — 0000
321532 321532 0.000
64287 — 2.000
5843 — 3.000
2550138 2550138).000
9000000 — 3.000
76504 76504 -3.000
9000000 — 3.000

75545 . 75545 1.005
75565 75545 0.005
715545 75545 2 .005
75545 75545 0.005

LEGEND

+ Number of Dovices Requered to be Operating for Success
1 Number of Davices Avasabie
t Mean Time Between Fallures — Permanent

Mean Time Batwten Falures — Intermutient
Percentage of Fallyres that are Single Paint Fallures
Deyice:Reparr Time — Permanent Failures

Single Peint Fallure Repayr Time ~ Permanent Fallures

+ Rengvery Efftciency — Permanent Farlures

Recovery Efficigncy — Intermuntent Fadures

1 Device Manual Regovery Time

DRT

1.00
0.25
0.50
0.25
0.25
1.00
0.25
1.00
0.25
1.00
1.00C
1.00
1.00

SRTY

0.00
0.00
0.00
0.00
0.00
0.00
0.090
0. 0Q
0. 00

" 0e 25

0«25
0«25
0«25

RE(P) RECT)
0. 000 0.000
0.0C0 0.000
0. 000 0:000
0.000 0.000
0.000 0.000
0.00Q 0.002
¢.000 0.000
0.000 0.000
0.000 0,000
1.000 1.000
1.0C0 t.000
1.000 1.000
1.000 1.002

FMP

DMRT -

0.10
0.10
0.10
0.10
0.10
‘0a10
010
0.10
0.10
0.10
.10
0.10

0.1¢

TOT AL=

MUT
68264 .5
NO EFFECT
16076640
64287 «0

58643.0
2447.3
1727% .5
38252.-0
17578 .1
50162 .4
50162.4
50162.%
50162, 4

1032.1

MRY
2.550

AVAIL
0.999919

ON PERFUORMANCE

0-.3G0
0.250
0.2590
04550
0.250
D550
0.250
0.222
0.222
0.222
0.222

Print Output of the Upper Bounds of MUT, MRT and Availability of the FMD

04999998
04999995
0.959957
D.999775
0.999936
0.959986
0.999986
0.99999
N.959996
0.999996
0.959996

0403 NePP558541 9

91-6

i AME R N MTBFL P MTAF(I) SPFHM ART SRT REC(P) RE(I) DMRT MUT YRT AVATL
Cu B T 13649 1365 }. 000 1.00 0.00 0.000 0.000 0.10 12&%0.9 D0.182 0.99985°
UM 2 2 - 90909 -—= Y000 0.25 '0-90 0«0C0 0.000 0.10 454 54.5 0.250 0.959995
FoT 1 1 64237 -~ 04000 .25 0. 00 0. 000 0.000 010 64287.0 0.250 0.999996
TNC 1 1 321532 32153 J.000 0.50 0.00 0.000 0.00) 0410 29230.0 04136 0.999995
™ 1 1 5843 - 0,000 0.25 0.00 0.000 0,000 OeI0 5343.0 04250 0.999957
EM=C . 521521 2550138 255714 3.000 1.00 0.00 0.000 0,009 0.10 445.0 0.182 0.999597
EM-M 521521 22727 — 9.000 0.25 0.00 0.000 0.000 0.10 43.6 0.250 0,994 302
DBMC 11 76504 7651 J.000 1.00 0.00 0.020 0.000 0.10 §955.4 04182 0.999974
D3M 512512 568 2 -~ 3000 Q.ZS 0.00 0.49Q00 0.000 0,10 . 11«1 0.250 0.977%69
PROC=1 128129 33572 3357 3.005 1.00 6-25 0-000 04000 0.10 23.7 0.100 0.99578-
PROC=2 128129 33572 3357 0,005 1.00 0.25 0.000 0.000 0,10 23.7 0.100 0.99578"
PROC- 3 128129 33572 3357 0.005 1.00 _ 0.25 0.000 0.000 0.10 23.7 0.100 0.9§5% 8"
PROC=4 128129 33572 3357 0.005 1.00 0.25 0.000 0.000 0.10 2327 0.100 0.99578"
LEGEND S
H " red * Operating for Suc .

N e of Bavces Avaianta o oo FMP TOTALZ 305 0416 0.9554E497"

« MTBFIP) 1 Mean Time Betweon Failures ~ Permanent ! -

MTS8E (i) Mean Time Between Fallures — intermuttent

SPFM Percentage of Failures that are Single Paint Failures

ORT Dewice Repalr Time — Permanent Fadures

SAT Singte Point Failure Repair Time = Permanent Farlures

RE (P} - Recoveary Efficiency — Permanent Failures

RE (1) Recavery Efficiency — Intermittent Failures

OMRT ; Clewsce Manysl Recovery Tume

Figure 5-3, Printout Oufput of the Lower Bounds of MUT and Availability of the FMP

2. Two levels of SECDED improvement factors, taking "two" as
the lower bound level while the upper level corresponding
to the upper limit of different memory packages stated in
Section 2.2 ‘ '

E -
3. The ratio between the MTBT of intermittent failure to the
MTBT of permanent failure are 1, 5 and 10.

4. The recovery efficiencies are chosen from 70% to 100%
with 10% increment.

The results are summarized in Table 5-6. From the results we
learn the availability changing only from 96.13 to 99.96% is not
significantly affected by those factors. If the memory packages
are of a low reliability level and SECDED improvement factors are
low, MUT and MDT are affected slightly by them. On the other
hand, if the memory packages are highly reliable and SECDED im-

" provement factor is large, the MUT is increased by 200% to 300%
and the MDT is decreased by 25% to 30% as the ratio between the
MTBF for permanent failures (MTB?(P)) and the MTPF for - .
intermittent failures (MTBF(I)) changes from 1 to 5. Under the
same conditions the MUT increases very rapidly as the recovery
efficiency is close to 100%. Finally .it can be pointed out that
the MUT is significantly affected by the reliability quality of
the memory packages as expected.

5.3 ERROR DETECTION AND CORRECTION

5.3.1 Error Control Coverage

In the baseline system there are a number of mechanisms for error
detection ‘and correction. These include error detection and
correction on all memories, with sufficiently powerfﬁl codes to
guarantee uncorrected error rates lower than a specified require-
ment, and undetected error rates below an even lower required
rate,

5-17

Table 5-6. Sensitivity Analysis of the MUT, MRT

and Availability of the FMP

EUN PACKAGE | ReliabilitylMrpr (P) RECOVERY MUT -¥0T AVA-T.L-
*G. FAILURE | Improvement|MTRF (I EFPICIENCY ABILITY
RATE | Facter (%) -
1 R/ * 1 70 194,3 .16 +5992
2 . " 1 80 263,9 .18 .9993
3 n " 1 90 411.4 .23 <9994
4 " " 1 100 1032.1 <40 -9995
5 " n 5 70 68.5 .12 .9982
6 n n 5 80 95,0 .13 9986
7 " n 5 90 155.1 15 .9990
8 n " 5 100 421,5 .23 9994
9 " " 10 70 37.8" | .11 9971
10 n P 10 80 - 52,7 .12 .9974
11 " " TR 90 87.1 .13 9985
12 n " 10 100 249.2 .18 9993
13 " 2 1 70 109,1 .18 9984
14 " 2 1 80 135.3 | .20 .9985
15 " 2 1) 178.2 .23 .9987
16 " 2 i 100 260,9- .29 .998Y
17 A p: 5 70 52,1 .14 .99%4
18 " 2 5 80 68,9 .15 .9978
L " 2 5 90 101.7 .17 9983
. 30 " 2 5 100 196.0 | .24 .9988
21 " 2 10 70 27,9 | 12 .9957
22 " 2 10 80 37.8 .13 9966
T2 g 2 10 90 60.0 | .14 .9976
24 " 2 10 100 145.4 .21 .9986
Kote * ¢ 16K RAM-= 164 %% : 16K RAM-- .4 £/Mh
64K RAM-- 327 64K RAM-~ 1.6 £/Mh
256K RAM-- 653 256K RAM-= 6.4 £/Mh

ORIGINAL PAGE IS
OF POOR QUALITY

5-18

The mechanisms fall into three classes. PFirst, there are ‘errors

such that immediate correction is done, even if there is'a single

hard error in the machine. Error correction in memory is such.
Second, there are errors that are detected immediately when they
occur. Third, there is a repertoire of checks which is intended
to detect as many as possible of those errors not detected
immediately. For example, mémory words arée initialized to
"invalid".- As Yong as a substantial amount of memory is in the
"invalid" state, there is a substantial chance of detecting a
memory addressing error because of the "invalid" word fetched in

response.

Table 5-7 shows the pecentage of the total chips in the FMP that
are covered by each made of error correction. There are
approximately ninety-eight thousand chips (49% of the machine)
that have error correction capabilities applied to_them‘in the
baseline system. These are the memory chips. In addition there
are about twelve thousand additional chips that are involved in

data transfer paths of sufficient parallelism that the addition of

-error—correcting check bits in parallel would represent a modest

(20% to 40%) increase in parts count. [There are one hundred eight-

teen thousand chips in the baseline system that have immediate
error detection. This includes all the memory chips plus the

transposition network which has ‘the EM error detection code on all

data passed through it and'ﬁarity on microcode ROMs. We could add

about nine thousand chips to this total by putting a modulo-3.

check digit on all arithmetic-units and adding parity or SECDED to

the parallel path from CU to processors. Additional chips would
be required by such additional error detection.

5-19

Dg-8

Table 5-7.
Table 5-17.

Brror Control Methods and Applicability
Error Control Methods and Applicability

UNIT Error Control Methods Available at Reasonable Redundancy Error Control Methods Obscure
No. Chaips Brror Detection Brror Correction No. Chips Comments
PE 7k arith mod-3 check digit Retry on error(?) 34k non—arith. | (Note 2)
for arith. parity
on microcode.
PDM/ 38k mem. yes (Note 1). yes (Note 1), SECDED 14k control Many errors will be
PPM . SECDED will work. will work. address errors, also
™™ 10k EM's SECDED catches| Under investigation -— ———
hard errors(Note 1)
EM 31k mem SECDED or better if| SECDED or better if 16k control Note 2
needed. Note 1 needed. Note 1
Fanout| 2K in paral-{ Can add parity Can add SECDED at 25% 1k single . Note 2
lel paths gignal
cu % mem. Same as PDM Same as PDM 3k Random logic Note 2
Dc 1k £C not used during
user program
DBM 29k mem. SECDED or stronger.; SECDED or stronger 2k control Note 2
Note 1. | code. Scrubbing of
errors. MNote 1.
TOTAL 127k 127k chipa have 120k chips have error 71k Dominated by PE logic,
possible error detectible at| correctible even if and memory controls.
game ¢lock that hard failure aexists 11% of wss.
error ocours
TOTAL | 118k 118k chips have 108k chips have error 80k Dominated by PE logic,
as per error detectible correctible even if and memory controls.
baseline at same clock that hard failure exists 45% of N58.
} error oCcurs
Note 1. This error detection/correction is included in the baseline system as described in the final
report. '
Note 2. Consaistency checks, initialization to "invalid", confidence tests, etc., are desigped

to forestall any error from going undetected for too long.

are the primary concern.

Undetected transient failures

5.3.2 Improvements over Reference 1

Reference 1 lists a large number of reasonableness checks that
attempt to monitor the errors in that 40% to 44% of the FMP for
which direct error correction and error detection cannot be
implemented simply. These include tests for "invalid", the code
to which memory is initialized. These include a check for illegal
opcodes, or memory addresses out of bounds, including bound s
checks on index calculations. Unnormalized numbers should never
be fetched for a floating point operation. The 1list goes on. All
of these are helpful. None, obviously, gives absolute protection.

Three items should be added to the design of reference 1 in the

area of error detection and correction. These follow.

5.3.2.1. On-line Processor Spares. An on-line spare processor is

extremely effective in eliminating repair time, or postponing
actual repair until convenient. Appendix C describes the imple-
mentation in detail. One spare per cabinet is provided.

5.3.2.2. Brror Detection, Error Correction in PDM, PPM, and CUM.

These memories, whose memory chips account for 19% of all the
circuit packageé in the FMP, are to be provided with error
correction. The final report seems to have obscured this
requirement by laying stress on an error correction method which
quite possibly may not work. Likewise, error detection for
“uncorrectible errors is to be provided. SECDED is being provided
in the baseline system, as of this report.

5-21

5.3.2.3. Error Correction in the Transposition Network. The

error correction code of the EM provides error detection against
hard failures in the transposition network and error correction
against singlé transient failures. This is included already in
the baseline system design, even though reference 1 failed to
emphasize it. It is possible to provide a TN design which
corrects for single hard errors in the TN, just as SECDED corrects
for single hard errors in memory. The best code for this purpose
haé yet to be determined. One design adds three signals to the
already nine-wide TN path. Four Hamming check bits are applied to
the eight data bits in each byte. The OR of all twelve bits can
serve instead of the strobe, since all parities are odd. The
byte-correcting code is in effect concatenated with the SECDED
code used in EM, so no overall parity is needed for error
detection; the SECDED takes care of that.

5.3.3 Duplexed Computation

For an almost 100% check on the computation, one can repeat the
user program, using a different set of 512 processors for the
second run. Using the processor switching of Appendix C, one can
run- the problem first with the spare at the right end, and then
second with the spare at the left end. If the answers agree, the
answer is presumably free of any hardware error. Note that this
method is simpler, from a hardware implementation point of view,
than operating the processors in pairs which shadow each other,
but, like having pairs of processors do the same computation, it
also cuts the throughput in half.

5-22

‘5.3.4 Hard Error Tolerance

The habitual use of confiéence and diagnostic checks, together
with all the above error detection, assures that a hard failure
cannot remain undetected for long in the FMP, Repair time is ;
essentially zero for failures in that 82% of the chips in the FMP,
where either error correction allows the FMP to continue to run in
spite of the error, or processor switching switches in a spare
processor while the bad'processor is removed and replaced at
leisure. For the reﬁaining 18% of the components, repair is
needed before the FMP can continue to run. Thus, detection of
hard failure is more than adequately done and availability is
aided by having.82% of the failures associated with "zero" repair
time, or postponable repair.-

5.3.5 Transients

60% of the packages, if involved in some transient error, will
produce effects that are immediately detected and usually
corrected, ieaving 40% not covered. Obviously, it is better to
.include tests that have some chance of detecting error than not to
have such tests. However, it is difficult to guarantee that all
ﬁransient errors will be caught before the run ends for 99.9% of
the runs. Even Iif we add mod-3 check digits in arithmetic, and :
parity in the CU-to-processor fanout tree, 36% of the packages
remain in this category. '‘'The part of the machine where'éetection
of transient error is less than perfect consists of tle memory
control and proecessor logic, priﬁarily not the arithmetic portion
of the processor, but instruction decoding, register addressing,
shifEing, and miscellapeous logic. '

The main defense against transient error is, and always has been,
pﬁoper electrical and logic design. Wiring rules, noise budgets.
crosstalk calculations, maximum delay calculations, and so on, are
all part of the design. .

5-23

CHAPTER 6
TRADEQFFS DELINEATED

6.1 INTRODUCTION

The design of the FMP will result from tradeoffs among a numbetr of
factors ' '

L

Performance
Reliability
Availability

% %

Programmability
Spectrum of Applications
Cost

Schedule

* Risk

*. Ok

*

Ehe first four factors are explicitly mentioned in the statement
of work fof the extension to this study contract. The fifth, the
spectrum of applications for which the FMP is' to be designed, is
mentioned here as it has a direct bearing on the results of some
of the tradeoffs. For example, a scalar processor would probably
not be included if the applications were strictly limited to
aerodyriamic f£low and meterological prdblems. Yet the scalar
processor will be necessary for some other applications and will
interfere only slightly with the other desiderata.

Programmability covers two distinct aspects. First, is the system
one with which the compiler writer can successfully contend?
Second, is the system presented to the user, including its
FORTRAN, an easy one?

6-1

Following are short discussions of specific issues where the
result is a trade between factors. In many cases, simulation
using test cases taken from the intended spectrum of applications
is the appropriate tool to resolve the tradeoffs,

6.2 LANGUAGE DEFINITION

A part of the language definition in the extended FORTRAN to be
used for the FMP in an exercise of trading off throughput vs.
programmability. Proper language design finds some point where
almost the maximum throughput of the machine can be applied to the
desired spectrum of applications with little difficulity from
language restrictions or awkard constructs. That is, the language
restrictions necessary to ensure fhroughput do not interfere much
with oqefs ability to write programs for the selected set of

applications.

\However, we note that prdgrammability for all applicétions will
interfere greatly with throughput, arid that absolute maximum
throughput for all applications is likely to require a depth of
analysis beyond that feasible in the compiler.

6.3 MATCHING THE COMPILER AND THE .INSTRUCTION SET

Hardware capabilities that are unused by the compiler are a waste
of money and represent a flaw in the design. Capabilities in the
language, that would be commonly and frequently used, for which
the hardware provides no convenient way for the compiler to
implement, result in awkward and inefficient code, and are also a
flaw. However, the hardware, once specified, is not likely to ‘

6-2

have its instruction set expanded much during the life of the
machine, while the compiler presumably will continue to evolve
during that same period. Therefore, it is the capabilities of
that eventual hoped-for compiler, not the simplicity of the first
one, against which the instruction set is to be judged. An
example is the loading of PPM conditional on the "enable" bit.

Our first compiler has no use for such a conditional capability.
However, the capability costs almost nothing, since loading memqry
must be conditional on "enable" anyway, while the capability ‘
allows a type of concurrency between processors which we expect to
be useful in the long run.

6.4 WORD FORMAT

In reference 1, a word format of 1 bit sign, 8 bits exponent, and
39 bits fraction part is suggested as ideal for the FMP. The BSP
uses 1 bit sign, 11 bits exponent, and 36 bits fraction. The
format with 7 bits exponent was determined as adequate for the
Navier-Stokes application. The BSP format was arrived at after
judging the precision and range reguirments of a wide variety of
applications. Thus, the BSP word format is more likely to be
-suitable for a wider variety of applications, some .of which will
require the additional range on the exponent, while the re- :
quirement of 10 decimal digits precision for the Navier-Stokes

equations will be satisfied with either format.

Therefore, for the purpose of being adaptable to a wider range of
applications, and not incidentally, for the additional purpose of
being format-compatible with an existing commercial product, it is
* proposed to standarize onh a word format containing 1 bit sign, 11

bits exponent, and 36 bits fraction part.

6-3

6.5 INSTRUCTION FORMATS

There is a well-known tradeoff between code file size and ease of
decoding the individual instruction. For example, a full-length
address field in the instruction allows the use of absolute
addresses where appropriate, whereas if the instruction has a
short address field, it must always be with respect to some base
address held in the hardware.

In the present instance, a variation which we wish to test by
simulation, during phase II, is the use of 32-bit and 1l6-bit
instructions. The 16-bit instruction has room for only two
register addresses; the 24-bit instruction contains three.
Therefore the use of 16-bit formats will speed up instruction
fetching while interfering with the optimization of the use of
registers in the processor. According to one example tested, the
ingtruction fetching is already faster than arithmetic execution,

and 24-bit instructions will be preferred.
6.6 SECDED

Rigid requirements were set up for main memory in the FMP,
consisting of PDM, PDP, and CUM. Less than one bit in 1016 is to
be in error uncorrected, and less than one bit in 1018 is to be
undetected, To satisfy these requirements, a single-error-
correction, double-error-detection code is proposed. However, at
this writing the actual error rates and failure mechanisms of the
memory chips to be used are unknown. When these error rates and
failure mechanisms become known, the SECDED should be reevaluated
to make sure that it is neither too weak to cope with the error
rates actually occurring, nor an overkill causing unnecessary
cost. Since SECDED may permit the scheduling of repair while the
system continues to run in degraded mode, it produces savings in
maintenance cost while improving availability. The memory chips
would have to be unbelievably reliable before SECDED did not pay
for itself. ’

C-3

6.7 TRUSTWORTHINESS VS. THROUGHPUT

In considering error correction and detection, we credit the FMP,
not with the total number of right anéwers it produces, but wi;h
the amount of answers that a rational user can use with
confidence. One approach to trading off error correction and .
detection against raw throughput is to maximize this effective
throughput. With no error correction at all, it is determined
that most answers are probably wrong, and the effective througﬁput
is practically zero, even though reams of so-called answers migﬂt
be coming off the printer. With triple redundancy and voting on
every element in the system, the throughput would be a fraction of
the raw throughput with no error correction, but the answers would
be very trustworthy. Somewhere between these extremes is an
optimum. As explained in the last part of section five, the
existing baseline system design has sufficient error detection
that there is little chance for a hard error to go undetected for
long. A more severe problem for the FMP is the defense against

transient errors.

In the baseline system design described in reference 1, 54% of the
packages in the system have single error correction, so that any
single error produced in these packages 1is corrected during éhe
run, which continues to produce correct answers. 11% of the
packages have immediate detection of ‘any errors in them, so the
run terminates immediately if errors occur in them. The other 35%
of the packages are covered by a variety of -error checks, which
are intended.to eventually detect any errors., However, the

" detection is indirect and not immediate, and some transient errors

will remain undetected.

6-5

If we apply additional error checks, throughput is reduced, but
trustworthiness of the results is impro&ed. Figure 6-1 is an
oversimplified graphical represenﬁation of the effect. At some
reasonable amount of error control circuitry, the effective
throughput is maximized. Using f to represent the fraction of the
total hardware devoted to error control {assuming total hardware
remains constant), we can plot T,, the "raw" throughput, equal to
the number of inches in the pile of printout per _ hour, and T, the
effective throughput which is the amount of useful answers
produced. T, decreases with £. In fact, T, decreases faster than
linearly with £, since (1-f) of the hardware is devoted to produc-
ing useful output, and the fraction f that checks for errors can
only interfere. We can write:

T={Ty x (1~£))/G(f)

The function G(f) can only increase with £, for any rational
design.

Finding the form of the funtion G(f) is probably not feasible.
What can be éone, however, is to estimate the effect on the
detected and undetected error rates for any particular proposed
error detection/correction technique, together with its effect on
parts count or raw throughput. Each proposed error control
mechanism costs a certain percentage of the equipment, has a
cértain throughput reduction associated with it, and catches some
percentage of otherwise uncaught errors.

As an example, consider the addition of a module 3 check digit to
arithmetic computation. Generating the check digit takes almost
as much additional logic as is already in the adders being
checked. Thus, adding -7% to the chip count of the machine catches
almost all errors occurring in what is now about 7% of the
machine. In addition, the 7% new packages create errors of their
own, which will ﬁsually be detected as arithmetig errors, so they
do not add to the undetected error rate, but do create false
alarms. .

6-6

Is a 7% false alarm rate added to the rate of detected error, a 7%
increase in parts count and power, plus the throughput reduction
due to the extra clocks used for checking, a fair price to pay for
the X% decrease in the rate of undetected error? When the actual
percentages are determined, perhaps the question can be answered,

6.8 Parity within Processors

Data transfers within the processor have been designed on the
expectation that the reliability and accuracy of digital oper-
ations in logic circuits can be made as perfect as desired at the
design stage, using worst-case design. Whatever the error require-
ments, careful design can ensure that the performance exceeds

them.

Parity checks on inter-register transfers could be implemented,
including transfer to the memory address registers. Such parity
checks will add about five chips to the processor logic for each
parity check required., Four parity checkers, or twenty chips, may
be needed. In addition, one clock, for the parity checking, will
be added to many operations, including most of the operations that
are now one clock long. Although no careful study of the situ-
ation has yet been done, it is apparent that parity checking
internal to the processor wili add 20% to the component count of
the PE, will add errors of its own, and will degrade raw through-
put significantly, while failing to check any of the processor
logic operations, only the transfers,

6.9 INSTRUCTION FETCHING MECHANISM

In section two, the eguipment description, a particular scheme for
overlapping the execution of noninterfering instructions, and for
doing some anticipatory instruction fetching was described, This
scheme has not been validated in simulation to see how well it

6-7

Tol0) -

‘/1/.RAWTHROUGHPUTT°

7

EFFECTIVE 8 1
THROUGHPUT A

THROUGHPUT

FRACTION OF HARDWARE DEVOTED TO CHECKING

Figure 6-1. Throughput vs. Error Detection

6-8

works in real program streams as emitted by the compiler.
Simulation studies to determine how simple an instruction fetching
and overlap mechanism we can have and 'still maintain thioughput
would be desirable. Fortunately, most of the processor design
details are independent of these decisions.

6.10 LOADEM AND STOREM BLOCK FETCHING

The baseline system as described in Chapter Two of this report
omits from the LOADEM and STOREM instructions the ability to
stream N words out of each EM module in parallel for a total of
512N words per instruction. Initial work on handcompiling from
FORTRAN source for the NSS indicates that almost all fetching from
EM is with N=1. ({Example: SUBROUTINE TURBDA, See Ch. 3) If this
turns out to be true in general, the block fetching capability is
not worth the complexities it costs. Simulation, using test cases
taken from real code, with multiple-word fetches allowed and
disallowed, can be used to evaluate-the effect on throughput. If
N greater than 1 is necessary, the following changes to the
baseline system of Chapter Two are seen:

* Rearrangement of data on DBM~EM transfers is reguired, as
described in the final report, so that, for N >1, data in
EM .along the index in which streaming is taking place are
all found in the same EM module. Rearrangement is neither
needed or desirable when N=1.

* The requirement for rearrangement of data disallows most
equivalencing on EM arrays, a restriction on normal FORTRAN
that need not be imposed if N=1.

* EM module design becomes more complicated. To keep up with
the TN streaming rate, the EM module is divided into two

6-9

submodules, as a side effect making the SECDED code less
effective. A need to increment the EM address per word
while streaming also adds complexity} especially since the
increment is a large integer, not unity.

* There is additional compiler complexity-.

Enforcing the restriction that N must be 1 thus enhances relia-
bility and availability, while simplifying compiler and operating
system, and having an undetermined effect on throughput.

6.11 OVERLAPPABLE EM ACCESS

A fourth instruction execution station could be added to the
processor which would handle the EM access independently of the
integer and floating point units at the exﬁense of requiring two
uﬁits contending for PDM, namely this EM unit, and the previously
identified memory control. Having issued an EM fetch to this
unit, no fetches from PDM would be allowed.

The amount of increased overlap obtainable 'is dependent on the
compiler's being able to insert the EM fetches ahead of the place

where the data is reguired. In some of the loops in the benchmark

programs, this requires the insertion of the EM accesses for the
next iteration inside the current interation. 'The gquestion to be
answered by a tradeoff study is whether the increased compiler
complexity required to exploit such an addition to the design

produces enough increased throughput to be worth the difference.

6-10

6.12 SINGLE PROCESSOR MEMORY

Processor memory is separated into two separate memories for the
sake of increased throughput. Data fetching and instruction
fetching go on in parallel. Furthermore, nc conflict resolution
between fetching program and data need be implemented. The tradi-
tional way of getting interlace between two memory modules in a
single memory system is to make module number the least signifi-
cant bit of the address. This particular method would not work in
the processor, since data is fairly random, and program steps,
although sequential, are interspersed with data fetches and
stores. Thus, the two-memory design of the baseline system
achieves better interlacing than the traditional scheme. However,
it has the drawback that program and data memory is not inter-
changeable; a program just over 8192 words cannot overflow into
data memory, and similarly for data.

* - .
An alternate-design for the processor memory is as follows. Two
modules of 16384 words each are used to form a single homogeneous
address space. Module number is the most significant bit. The
compiler assigns all program addresses to the upper module and all
data addresses to the lower module, except that, if either module
ig full, the other module can be used.)

The alternate design achieves just as good interlace of memory
accesses as does the baseline system. When memory sizes are
exceeded by either data or program but not by both together, the
penalty is a slight slowdown, not an inability to run. Memory
controls are slightly more complex, since program and data
accesses will interfere whenever either overflows its normal half
of the memory.

6-11

6.13 PROCESSOR PROGRAM MEMORY SIZE, CONTROL UNIT MEMORY SIZE

The processor program memory (Bk words) was chosen to adegquately
hold the aerodynamic flow model programs. Overlay of code from
CUM is easy and quick, and allows PPM to be smaller than the
entire code file. However, PPM should be large enough so tﬁat
overlay is not so frequent as to interfere with throughput.

An overlay capability can be provided so that program can overlay

into CUM from DMB, via & buffer area-in EM. Since such overlay is
not needed for the flow model, it was not proposed as part of the

initial capabilities of the operating systeﬁ.

For a different spectrum of applications, larger code files and
different sequences of execution may be encountered. Hence, the
code storage capabilities of the FMP may have to be reevaluated if

there is a chande in the spectrum of applications.
6.4 EXTENDED MEMORY SPEED, TRANSPOSITION NETWORK SPEED

The baseline systém extended memory is constructed..of 64k-bit RAM
chips, operated at the fastest reasonable cycle time available at
the time the FMP is constructed., It was projécted‘for the
baseline system that the cycle time would be on the order of 200
to 250 ns for the chip, and that therefore a cycle time for the EM
module of 280 ns was appropriate. ‘

If the 64k~bit chip ié in fact significantly faster than thaﬁ, EM
would be designed faster to match the chips. But, to go.faster
than allowed by the 64k- bit chips will require the use of 16k-bit
RAM chips, a four-fold increase in memory chip count from 28,655
chips to 114,620, a 43% increase in the <chip count in the FMP and
a distinctly adverse effect on availability and cost.

6-12

The point to be determined by the tradeoff is whether to increase
in throughput from using 16k-bit chips is worth the extra cost,

additional failures, and extra power of using 16k-bit chips in the

EM modules.

The results of this tradeoff will be a function of how much
computation is accomplished per fetch from extended memory, which
is very dependent on the specified spectrum of applications. It
was clear that for the aerodynamic flow problems, and almost
certainly for the meterological problems also, that the 64k-bit
chips will have more speed than needed. It also appears
(according to the Electronic Times of November 7), that actual
64k-bit chips will be faster than those postulated for the
baseline system. Simulation, using inputs that represent the
entire spread of intended applications, is the appropriate tool

for investigating this tradeoff.

)

\

The TN speed and design will have to be adjusted to match the EM
speed. Thus, the revision in TN design will also have to be
factored into the tradeoff. An EM made faster by using lé6k-bit
chips is partially self-defeating, since the wire lengths from EM
to processor, now about 40 feet, will get significantly longer
when the EM quadruples in physical size.

6.15 CONTROL UNIT SPEED

The speed of the contrel unit, including the implementation of
specific instructions such as DIV 521, DIV 512, and MOD 521 that
are needed for specific CU actions (in this case, calculating EM
address and TN settings), is best determined by simulation using
test cases that cover the entire spectrum of applications. A very
fast MOD 521 instruction has been described by C. R.Vora in U.S.
patent 3,980,874, Since there is only one control unit in the

6-13

entire array, the optimum CU design is clearly that one that

almost never interferes with throughput. On thé othéi:haad, a too'
fast and hence unnecessairly complex CU will. have adverse effects
on reliability and availability, and possibly will also make tﬁe
‘compiler design more complex if some of the complexities require
cooperation from the compiléf to be effective. This 6ptimum Cu
design’ is a function of the spectrum of applications.

6.16 SCALAR PROCESSCR

6.16.1 Dependency on Spectrum of Applications

The FMP has been described as an array of 512 processors and a
control unit, The control unit concerns itself with synchroni-
zation, some address calculation, and loop control. All floating
point arithmetic is done .in the array. Aerodynamic flow models
are well calculated on this machine, However, thére‘are other
applications, which do not have sufficient paréllelism almost
everywhere in the algorithm to be efficiently computed on ‘this
machine. If it is desired to broaden the spectrum of applications
of the FMP, it is desirable, for some applications, to furnish a
scalar processor to take over those portions .0of the floating-point
calculation where most of the processors are idle waiting for a
féew to complete calculations. The term "scalar Processor™, as
‘used here, refers strictly to floating point scalar computations.
Loop control and other program execution control where a single
decision controls the processing of the entire array has been
accomplished, on other architectures, by the "scalar processor"
portion of the equipment. These functions are included as an
egssential part of the control unit, and in so far as-they are
scalar, the control unit is a scalar processor, wﬁethe; or not
specific equipment for handling floating point scalars is
supplied.

6-14

An evaluation of which applications are going to require the
addition of a scalar processor for efficient mapping onto the- FMP
has not been made. It is suspected that the meteorology appli-
cations are like the aero flow models and will not require a
scalar processor. Whether a scalar processor is desirable, and
which of the several options mentioned below for includiné a
scalar processor in the ‘design, is a function of the intended set
of applications, and can therefore be defined properly only when
NASA defines the amount and-kind of extensibility of scope that is
desired for the FMP. The baseline system as described includes
"the third of the three design options below.

6.16.2 $Simple Scalar Processor The simplest recipe for providing

a scalar processor capability in the FMP is simply to provide a
faster, more powerful processor for processor number 0. The first
processor is the one that will be assigned to vectors of length
one; and which will be executing processor code when‘the compiler
can find no parallelism; Thus, without doing anything special to
the compiler, we gain some scalar capability by simply making the
first processor a faster one. During parallel swatches of code,
this processor cooperates with the others, and the program does
not know that it is different. Those swatches of code where 512
pfocessors are idle take much less time because the first
processor has been made faster. When short swatches of scalar and
vector code alternate, overlapping of scalar and vector operations
occurs,

6.16.3 Added Processor The simple system does not give the

scalar processor any particular speedup for accessing BEM. It does
not give the scalar‘processor any:faster way of handling those
actions that require cooperation with the control unit., At the
expense of complicating the compiier, we can add scalar processor
hardware that is separately programmed, and which can 'subsume some

of the control unit functions for scalar processing. -’

6-15

Suppose we provide a separate, and different processor, which has ,
its own access to extended memory, and which is designed to
execute a more nearly independent code stream than that of the 512
processors in the array. Figure 6-2 shows a block diagram of the
FMP with such a scalar processor represented. Langauge extensions
and programming methods for using such a capability will have to
be defined.

Extended memory is "core" for the FMP. The amount of accessing
into extended memory by the scalar pfocessor may be such that
extended memory speed will be a bottleneck for those applications
that make extensive use of the scalar processor capability.

Hence, for some range of applications, a faster extended memory
{and hence one with fewer bits per chip), must be provided. Using
16k-bit c¢hips instead of 64k-bit chips, for more TH{ speed,
increases from 29,176 memory chips to 116,704 memory chips, an
increase of 44% of the package count of the entire NSS.

The added processor has LOADEM and STOREM instructions in its
instruction stream which do not require the cooperation of the CU,
merely contend with it for access to the extended memory. The
synchronization between the added processor and the CU is thereby
reduced, while requiring the compiler to determine when synchroni-
zation is reqguired for correct execution of the program. Scalar
processing and vector processor on the same data must be done in
the correct order.

6.16.4 Enhanced Control Unit It has been suggested that scalar

processor capability can be achieved by adding floating point
instructions to the control unit. This also may imply that the
control unit be speeded up from its no-scalar-processor design so
it has the free time to perform as a scalar processor., The
discussions about accessing EM apply to this option as well as
they apply to the previous one. N)

6~16

EXTENDED MEMORY

521
U : . s 0
EM 521 PORTS >
CONTROL
EM TN CONTROL
ACCESS - ™
RESOLUTION
A
DBM
CONTROLLER
" (5
ACCESSES
EM
ACCESSES
A 512 PORTS -~
U SCALAR .512 .
PROCESSOR
‘ PROCESSORS

Figure 6-2. Added Scalar Processor
f

I
ORIGINAL PAGE
OF POOR QUALITY

6-17

6.16.5 Recommendation Simulation of various programs across the

entire spectrum of applications is recommended as g means of
determining which of the several recipes for providing a scalar
processor is to be adopted, if any. The Eudget‘for compilér
writing is also to be consulted, since the separate processor
requires additional decisions 6n the compiler's part, .as well as
additional 1aﬁguage extensions perhaps.

6.17 MARGINAL CHECKING

A strategy for weeding out incipient failures in electronic
equipment is to vary some parametér up and down from its nominal
value, measure the margins, and determine when those margins are
deteriorating, and what the faulure mode is at which they fail.
The parameter being vafied can be supply voltage, clock freguency,
temperature, or anything else that appears to affect operation.
It has been -determined that marginal checking is useless for
wSrst—case designed digital cifcuits. However, as notgd in the
final report, LSI cannot be worst-case designed in the conven-
tional sense, and marginal checking may be valuable for weeding
out those low-margin LSI packages that have -a higher than normal
transient error rate,

6.18 COMPONENT TECHNOLOGY
The speed of any given system architecture is ultimately limited

by .the performance of the circuit from which it is assembled. The
final component choice for the FMP will weigh carefully the trade

off of speed (and power) consideration against the risk and cost, -

The inital procurement cost of a more advanced technology pro-

viding more desirable performance is easily measured. It is

6-18

usually shown that the initial cost of more advanced circuit are
easily justified in overall system performance improvements.
{Thus reducing the cost per operation.) However, the risk in
selecting a more advanced and higher performance circuit
invariably may be considerable, with potential for affecting the
production of system being built in a number of ways:

* The delivery may be slow due to low yields.

* Failure rates may be higher than anticipated.

* The performance characteristics of devices made in pro-
duction may be degraded from the original developmental
samples and design goals.

* Low usage may discourage development of second sources, and
result in continued elevated prices.

* Unforeseen application problems discovered only during

. system checkout could require redesign or retrofit,
It would be éery desirable from a system performance point of view
to be able to use the fastest circuits possible. However, the
possible risks that accompany this choice make it imperative that
a very careful tradeoff analysis be conducted given the choice of
a mature, slow (but adequate) speed technology and an advanced
faster speed technology.

6.19 EXPANSABILITY

By expansibility we mean generalizability and expandability. The
NASF design has many features allowing an upward compatible second
co@y, as well as features allowing the upgrading of the NASF
itself, This section lists some of the areas in which
expansibility is found.

" 6.19.1 Address Sizes The address sizes are uniformly larger than

the memories they address, allpwing the memories to be replaced by
larger ones.

6~19

Data Base Memory holds 134 million words (227 and is
addressed by the control unit whose register size is 32 bits.

Extended memory holds 34 million words (just over 225y and is

addressed by processor (32-bit integers) and control unit (32
bits).

Control unit memory holds 32k words (213) and is addressed by

the control unit whose integers are 32 bits long. Care ;wd>bl

be exercised not to insert 16-bit address register that

cannct be expanded.

Procesgsor data memory holds 16k words (214) and has a l6-bit

address. A four-times expansion of PDM is thus permitted.

Processor program memory holds 8k words (213) and has a

16-bit address.

Upgrades by replacing the memories with larger ones are therefore

very feasible.

6.19.2 Transfer Rates There are

a number of options for

increasing the transfer rates between portions of the FMP, Many

of these are discussed in other paragraphs in this section, and

clearly, new transfer rates could

be chosen for any new design,

depending on the results of tradeoff studies. BAs a retrofit, the

easiest area to increase transfer

rates is in thé DBM-EM

transfers. This is fortunate , since if some virtual memory

scheme is implemented,this is the
may have to be improved. Each EM
no EM changes at all are required
just increased parallelism is the
DBM would have to be reconfigured
assuming that current projections
correct.

area of the baseliné design that
module has a one-word buffer, so
for increased transfer rates,
accessing of these buffers. The
for increased parallelism,

about CCD shift rates are

6-20

6.19.3 Memory Size The address space allows increased memory

size. The need for increased memory size could arise from a

nuaber of causes. CUM is required to hold enough program (both. COU.

and array processor program) to keep the array busy for a
reasonable amount of the time between program overlays from DBM.

Thus, complex programs may require increased CUM size.

PDM size is the result of the requirement for temporary variables,
and sometimes, for buffering data fetched from EM. The reguired
PDM size is therefore applications-dependent. We believe that the
aerodynamic flow problem requires a larger-~than-typical PDM, and
that larger PDM's are unlikely. However, the expansion opportu-
nity is there.

PPM, on the other hand, must hold enough program to keep the
processors busy for a reasonable time between oveérlays from CUM.
\For problems, like the aerodynamic model, where there is an inner
loop, this implies that at least the inner loop be contained
within the PPM. Overlay from CUM is fast, and this will allow

reasonable efficiency even when this is not true.

DBM, the window in the computational envelope, must be large
enough to hold results from the last job, space fbr the current
job, and the objects being assembled for the next job. If job
sizes are to grow, expandability of the DBM is a requirement.

6.19.4 Upgrades via Software Upgrading capability, by adding

features to the software, can be accémplishgd without any hardware
changes, The initial software is configured around the :
areodynamic flow model requirements. A number of features, not
required by the aerodynamic flow models, can be added to handle a
broader range of requirements, including: !

6-21

Windowing of data for executing jobs whose files exceed
the size of EM.

Language extensions, including such things as subscripted
subscripts, linear recurrences on the parallel subscript,
and so on.

Vectorizer, to analyze nonparallel FORTRAN and produce FMP
FORTRAN for operation on the parallel machine.
Multiprogramming capability on the FMP. Proper implemen-—
tation of multiprogramming may reguire hardware additions
as well,

6-22

APPENDIX A

Preliminary Compiler Algorithms for Setting the Transposition
Network

Definition of the FORTRAN extensions and restrictions for the NASF
requires rigorous definition of the algorithms for setting the
SKIP and OFFSET of the transposition network and matching them
closely to the FORTRAN constructs.) ’

The issues to be addressed in this memo are:

1. Matching of FORTRAN DOPARALLEL to EM accessing.

2. Reguirements for multiple accessing within a DOPARALLEL
construct.

3. Optimization of accessing for single access types.

As a preliminary step in addressing these issues a more complete
definition of the DOPARALLEL statement needs to be formulated.
The DOPARALLEL statement cannot be nested for this results in
possible programmer error. Rather the DOPARALLEL statement ig
defined to have multiple increment sets.

i.e. DOPARALLEL J=J1,J2,J3; K=K1,K2,K3 ...

where Jl

J2 = final value most rapidly varying index

initial wvalue most rapidly varying index

J3 = skip distance most rapidly varying index

K1l = initial value next most rapidly varying index
K2 = final value next most rapidly varying index
K3 = skip distance next most rapidly varying index
(...) ellipses indica;es further incremenit sets

ENDDO ; ENDDO

1. Matching Fortran DOPARALLEL to Extended Memory Accessing

Since the entire set of multidimensional DOPARALLEL statements is
difficult to discuss, the specific example of three dimensional
accessing with a 2 dimensional DOPARALLEL and a single dimensional
inner loop will be described in detail. For this three
dimensional case there are 6 possible access patterns for any

given array corresponding to the possible permutation of the

indices
A(I,J,K) Case I
A(K,I,d) Case II
A(J,K,I) Case III
A{I,K,J) Case IV
A(J,I,K) Case V
A(K,J,T) Case VI

It is necessary for the compiler to determine the SKIP distance
and the OFFSET of the transposition network for any of these
accesses for the given DOPARALLEL construct. i.e.,

EMARRAY A(IFIRST, ISECOND, ITHIRD)
DOPARALLEL J=1, JLIM; K=1, KLIM
DO 1 I=1 ILIM)
. 8(1) = Access Case (i)

1 Continue
ENDDO; ENDDO.

The equations for setting the Transpbsition Network {(SKIP and
QFFSET) are given in Tables 1A through 1C. Tablé 1D provides a
table for determining index parameters. It is assumed, of course,
that phe array has been laid out in memory in the FORTRAN sense.

To clarify these equations a complete example is worked out in
detail in Figures 1-7. The chosen array; A(5,3,7) has extents
less than the number of memory modules (1ll) and processing

elements (10) in a manner similar to that of the NASF problems.

Equations

for

Transition Network OFFSET Calculations

Given Qua
N =
M=

IFIR
ISEC
ITHI

ntities '

Number of processors

Number of memory modules
IAPp = Base address of array having index parameters:IB, Jd, Ko

ST = extent of first parameter in array

OND = extent of second parameter in array

RD = extent of third parameter in array

Determined Quantities from Figure 1

ICLI
IDEL
JDEL
KDEL
ILIM
JLIM
KLIM

Defined g
IcC
NN
K1
Jl

H

I

M = Total number
= Skip distance
= gkip distance
= Skip distance

of cycles

associated with I parameter

associated with J parameter

associated with K parameter

= Array extent assciated with I parameter

= Array extent associated with J parameter

= Array extent associated with K parameter

vantities

cycle number

subiteration number
(N*(IC~1))}/(JLIM) + KO = least rapidly varying index*
{(N*(IC-1) - (K-K@) * JLIM + JP =
1203 = IAQ + (J-JP)*JIDEL + (K-K&)*KDEL

Transposition Setting SKIP distance

JDEL

most rapidly varying index*

*J1l, K1 values for processing element @

1st subiteration

Table 1A

-OFFSET Calculation for Transposition Network (Subiteration = 1)
for given I wvalue

IADD(IC,1l) = IA@PP + (I-I@) * IDEL (address of first element
. to be fetched)
QFFSET {IC,l) = (IADD(IC,l)) MOD(M)

-OFFSET Calculation for Transposition Network (all other subiterations*)}

for given I value

IADD(IC,NN) = IA@ + {(I-I@)*IDEL + (K1-K@ + NN-1) *KDEL
(address of first element to be
fetched on this iteration)
IP (IC,NN) = (NN-1)*JLIM —-Ji+J@
(processor that needs to obtain
this first element on this iteration)
OFFSET (IC,NN) = (IADD(IC,NN) - IP(IC,NN)*JDEL) MOD(M)

*Subiterations 2 < NN 4 NX
where NX = 2N+1+(JLIM~J1) +1 Nr= i+ N4+ -0
N . FIum

If (NN.EQ.NX). AND (K(NN).EQ.RLIM) further subiterations do nct need to be
performed. K(NN) is the K index value of the 1lst element of the NNth

subiteration.

Table 1B

http:NN.EQ.NX

e-v

Parameter

JLIM

Assignments for Arbitrary Array Extents

and Number of Processors

CASE ILIM _ KLIM IDEL JDEL KDEL ICLIM

1 TPIRST ISECOND | ITHIRD 1 IFIRST IFIRST*ISECOND | (ISECOND* ITHIRD
(1, T,K) : : +N-1)/N

2 TSECOND | ITHIRD | F5B€oND “IFIRST TFIRST*ISECOND]| T (IFIRST* ITHIRD)
K K,I,J) T HRsS™ +N-1)/N

3 . QTHIRD | IFIRST TSECOND | IFLIRGT* IGECOND 1 " IFIRST (IFIRST* ISECOND
(J,K,I)) +N-1)/N

I~ [RFIEST TTHIRD | ISECOND i IFIRST* ISECOND TSECOND T ISECOND* ITHLRD:
(I,X,3) +MN-1)/N

5 TSECOND | LFIRST | LTHIRD IFIRST 1 TFIRST* ISECOND | (IFIRST* ITHIRD)
(3,1 ,K) *N-1)/8

3 TTHIRD ISECOND | ITHIRD | IFIRST* ISECOND IFIRST 1 (IFIRST* ISECOND
' K,J,I) , +N-1) /N

EM ARRAY A(IFIRST, ISECOND, ITHIRD)

Number ¢f Processors = N
Table 1§

AIITYOD F00d J0
ST FHVE TVNIDINQ

Index Value Determination

TEMP = IADD(IC,NN) - IA®) - (I-1)*JDEL
Case TEMP J K IVAL JVAL KVAL
1 NO J K I J K
2 YES TEMP/JDEL+1 (TEMP-(J~1)*JDEL) | K I J
/KDEL+1
3 NO J K J K I
4 YES TEMP/JDEL+1 (TEMP-{J-1)*JIDEL) I K J
/KDEL+1
5 YES TEMP-(K-1) *KDEL) TEMP/KDEL+1 J I K
/JIDEL+1
6 YES TEMP/JDEL+1 { TEMP=-(J-1)*JDEL) K J I
/KDELA+1
Table 1D
ORIGINAL PAGE I8
OF POOR QU

Figure 1 details ‘the memory layout, assuming an arbitrary starting
point for the first element. The remaining Figures show the six

possible cases.

Utilizing the equations of Table 1 one can determine all the
parameters and the-SKIP and OFFSET for any case. For example
taking CASE II (since it is more complex with access A(K,I,J)) t@e
parameters are:

Given Quantities (Table 1A)

N=10

M=11
IA@=19
IFIRST=5
ISECOND=3
ITHIRD=7

Determined guantitites (Table 1C)

ICLIM = (IFIRST*ITHIRD#N-1)/N (5*%7+10-1)/10 =4
IDEL=5

JDEL=15

KDEL=1

ILIM=5

JLIM=7

KLIM=3

36, 39, K@=l

Assume that one wishes to determine the SKIP and OFFSET and
subsequently the IVAL, JVAL & KVAL of the indices for the second
cycle, second subiteration, inner loop index number 3 - i.e.

transposition setting #12
Defined Quantities (Table 1A)

IC=2

NN=2
I=3

Memory

Layout for Array A(5,3,7)

11 337 347 537
10 217 317 417 517 127 227 327 427 527 137 237
9 126 226 326 426 526 136 236 336 436 536 117
8 525 135 235 335 435 535, 116 216 316 416 516
Address 7 434 534 115 215 315 415 515 125 225 325 425
within 6 314 414 %514 124 224 324 424 524 134 234 334
Memory 5 223 323 423 523 133 233 333 433 533 144 214
4 132 232 332 432 532 113 213 313 413 513 123
3 531 112 212 312 412 512 122 222 322 422 5322
Y 411 511 121 2213 321 421 521 131 231 331 431
1 X X X X X X X X 111 211" 311
0 X x X X X X X X X b4 b
0 1 2 3 4 5 6 7 8 9 10 .
Memory Modules
No. Memory Modules = 11°
No. Processing Elements = 10
' PAGE IS
ORIGINAL L T oy
_ of POOR QUAL
Absclute address Af = 19
Memory Module No., M§ = = {19) MOD 11
Address in MQdule A} = = {19) DIV 11
Address of any element AE$ = Address A(Ll, L2, L3)

‘Af + (L1-1) + 5x(L2-1) + 5 x 3(L3-1)"

Figure 1

EMARRAY A(S,%ﬂ)
DOPARALLEL J=1,3; K=1,7

Case 1

DO11I=1,5
s1 = A(I,J,K)
1 CONTINUE
ENDDO
ENDDO
SKIP = JDEL = 5
Setting Sub PE NUMBER
Number Cycle Iteration OFFSET 0 1 2 3 4 5 & 7 8 9 ADD
1 1 1 8 Tfi'lZl 131 112 122 132 113 123 133 114 19
2 1 1 9 211y 221 231 212 222 232 213 223 233 214 20
3 1 1 10 13110 321 331 312 322 332 313 323 333 314 21
4 1 1 0 411] 421 431 412 422 432 413 423 433 414 22
5 1 1 1 511] 521 531 512 522 532 513 523 533 514 23
6 2 1 3 124} 134 115 125 135 116 126 136 117 127 69
7 2 1 4 224] 234 215 225 235 216 226 236 217 227 70
8 2 1 5 324} 334 315 325 335 316 326 336 317 327 71
9 2 1 6 424 434 415 425 435 416 426 436 417 427 72
10 2 1 7 524] 534 515 525 535 516 526 536 517 527 73
11 3 1 9 137 119
12 3 1 10 237 120
i3 3 1 0 337 121
14 3 1 1 |437 122
15 3 1 2 537 123
Figure 2

‘Case

II
EM ARRAY A(5,3,7)
DOPARALLEL J=1,7; K=1,5
DO1 T =1,3
. 82 = A(K,I,J)
1. CONTINUE
: ENDDO
! ENDDO
SKIP = JDEL = 15
Setting Sub PEM Number Assigned
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 '9 ADD . PE§
1 1 |1 8 |[111] 112 113 114 115 116 117 19 0
2 1 | 3 211] 212 213 | =20 7
3 1|1 2 {{121 122 123 124 125 216 217 25 0
4 1 2 - 8 1221 222 223] 26 7
5 1|1 7 {131 132 133 134 135 136 137 30 0
6 1 2 2 ‘ 231 232 2331 31 | 7
7 2 1 10 |{214] 235 216 217 ___ 65 0
8 2 2 5 | |31 312 313 314 315 316 | 31 7
.9 2 1 .4 224 225 226 227 1 70 0
110 2 2 10 | {321) 322 323 324 325 326 | 26 4y
11 2 |1 9 |[234] 235 236 237 75 0
12 2 2 4 : 331l 332 333 334 335 336 27 4
13 3 i I B 111 0
14 73 2 7 412 413 414 415 416 417, 22 1
15 3 3 2 7 511} 512 23 8
16 3 1 6 (1327 116 0
17 - 3 2 1, [421) 422 423 424 425 426 427 27 1
I8 | 3 3 7 |521] 5221 28 8
19 3 1 0 {337 : 121 0
20 03 2 6 [433) 432 433 434 435 436 437 32 1
21 {3 |3 1 ‘ 531 532 | 33
22 | & T 9 {1513 514 515 516 517 53 0
23 | 4 1 3 {[532} 524 525 526 527 58 0
24 | 4 1 8_1[533] 534 535 536 537 63 0
Figure 3
)
phGE
ORIGDUS” quaui™
O‘E‘ PQO

A=10

Case III
EM ARRAY A(S5,3,7)
DOPARALLEL J=1,5; K=1,3
pDOol1I=17
83 = A(J,K,I)

1 CONTINUE
ENDDO
. ENDDO
SKIP = JDEL = 1
Setting Sub . PEM Number Aséigned
Number Cy¢le Iter OFFSET O 1 2 3 4 5 9] I 8 9 ADD PE#
1 i 1 8 111} 211 211 411 511 121 221 321 421 521 19 0
2 1 1 1 112¢ 212 312 412 512 122 222 322 422 522 34 0
3, 1 1 5 113} 213 313 413 513 123 223 323 423 523 49 0
4 1 1 9 114} 214 314 414 514 124 224 324 424 524 64 0
'5 1 1 2 115} 215 315 415 515 125 225 325 425 525 79 0
"6 1 1 6 116§ 216 316 416 516 126 226 326 426 526 94 0
Y7 1 1 10 117} 217 317 417 517 127 227 327 427 527 109 0
8 2 1 7 1311231 331 431 531) 29 0
9 2 1 0 1324232 332 432 532 44 0
10 2 1 4 133§ 233 333 433 533 59 0
11 2 1 8 134§ 234 334 434 534 74 0
12 2 1 1 13571 235 335 435 535 89 0
13 2 1 5 136f 236 336 436 536 104 0
14 2 1 9 137{ 237 337 437 537 115 0
Figure 4

ORIGINAL PAGE IS
OF POOR QUALITY

A-11

Case IV

EM ARRAY A(5,3,7)
DOPARALLEL J=1, 7; K=1, 3
pol1I=1,5

A-12

s4 = A(I,K,J)
1 'CONTINUE
IENDDO
. ENDDO
: SKIP = JDEL = 15
i ~ -
Setting Sub PEM Number Assigned
"Number Cycle Iter OFFSET 0 1 2 3° 4 5 6 7 8 9 ADD PE#
1 1 1 111} 112 113 114 115 116 117 19 0
2 1 1 7 122 123{ 24 7
3 1 1 9 | |213] 212 213 214 215 216 217 20 0
4 1 2 8 . [221 222 2231 25 7
5 1 1 1 10 |J]311] 312 313 314 315 316 317 _ 21 0
6 1 2 9 321} 322 323} 26 7
7 1 1 0 '} (41l 412 413 414 415 416 417 .22 0
8 1 2 10 422 423{ 27 7
9 1 1 1 512 513 514 515 516 517 23 0
10 1 2 0 {521 522 523 28 7|
11 2 1 3 | |124] 125 126 147 . 1 69 0
12 2 2 2 124 12 |131] 132 133 134 135 I36] 29 4
i3 2 1 4 224] 225 226 227 70 0
14 -2 2 3 232 233 234 235 236| .30 4,
15 + 2 1 5 325 326 327 171 0
16 2 2 4 (333 332 333 334 335 336| " 31 4
17 21 | 1 6 | |424] 425 426 427 , 72 0
18 2 1 2 5 |43 432 433 434 435 436] 32 4
19 2 1 7 | [524] 525 526 527 73 0
20 2 2 6 \531] 532 533 534 535 536} 33 4
21 3 1 9 | i37- 119 0
22 3 1 10 | 237 120 0
23. 3 1 0 337 121 0
24 3 1 1| [437 122 0
25 3 1 .21 [537 123 0
Figure 5

EM ARRAY A{(5,3,7)

Case V

A-13

DOPARALLEL J=1, 5; K=7
DO1T=1,5
§5.= A(J,I,K) (VI
1 CONTINUE
ENDDO
ENDDO
SKIP = JDEL = 1
Setting Sub PEM Number Assigned
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 g ADD PE#
1 1 1 8 | 113 211 311 411 s11 19 0
2 1 2 7 112) 212 312 412 512 | 34 5
3 1 1 2 221 321 421 521 __ 24 0
4 1 2 1 L22] 222 322 422 522 | 39 5
5 1 1 7 | 133 231 331 431 531 : : 44 0
6 1 2 6 32 232 332.432 532 | 59 5
7 2 i 5 | IL13] 213 313 413 513 29 0
8 2 2 4 114 214 314 414 514 | 69 5
9 2 1 10 | {123 223 323 423 523 ‘ 54 0
10 2 2 9 | 124 224 324 424 524 | 69 5
11 2 1 4 | {133 233 333 433 533 59 0
12 2 2 3 [134] 234 334 434 534 | 69 5
13 3 1 2 ||115] 215 315 415 515 79 0
14 3 2 1 L1d 216 316 416 516 | 94 5
15 3 1 7 | 129 225 325 425 525 84 0
16 3 2 6 |, : [126] 226 326 426 526 | 99 5
17 3 1 1 {l3d 235 335 435 535 89 0
|18 3 2 0 l136l 236 336 436 536 {104 5
19 4 1 10 |[117] 217 317 417 517 109 0
20 4 1 4 |[127] 227 327 427 527 114 0
21 4 1 9 |[137] 237 337 437 537 1119 0
Figure 6

Case VI

EM ARRAY A(5,3,7)
DOPARALLEL J=1, 3; K=1, 5
DO1TI=1,7

86 = A(K,J,I)

1 CONTINUE
ENDDO
ENDDO
SKIP = JDEL = 5
Setting Sub ‘ PEM Number) "Assigned
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 9 ADD PE$#
1 1 1 8 | f111}121 131 19 0
2 1 2 5 211] 221 23111 20 3
3 1 3 2 311 321 331 _ 21 6
4 1 4 10 : - Jaiy | 22 9 |
5 1 1 1 ! [112]122 132 34 0.
6 1 2" 9 222 232 . 35 3-
7 1 3 6 312] 322 332 36 6
8 1 4 3 l412] | 37 9
9 1 1 5 123 133 | 49 - 0
10 1 2 2 223 233 50 3}
11 1 3 10 323 333 51 6
12 1 4 7 , - 52 9
13 1 1 9 124 134 64 0
14 1 2 6 214 224 234 65 3
15 1 3 3 1 314] 324 334 66 6
16 1 4 0 ‘ Taid) | &7 9
17 1 1 2 125 135 79 0.
18 1 2 10 215| 225 235 © 80 3
19 1 3 7 1315] 325 335 81 6|
20 1 4 4 : 415]| 82 9
21 1 1 - 6 | [116] 126 136 94 0
22 X 2 3- , [216] 226 236 95 3
.23 1 3 0 - , 316} 326 336 96 . | 6
24 1 4 8 416]{ 97 9
25 1 1 10 127 137 109 | 0
26 1 2 7 [217) 227 237 110 |« 3
27 1 3 4 - 327 337 111 6
28 1 4 1 , a\7 112 9
29 2 il 5 | J427 431 27 0
30 2 2 2 | — [513] 521 531 , 23. 2
31 2 1 9 | [427 432 _ 42 0
32 2 2 6 - |51 522 532 | 38 2
33 2 1 2 | [423 433 57 0
34 2 2 10 , 523 533 ’ q 53 2
35 2 1 6 424] 434 ’ ORIGINAL PAGE: 15:. 72 0
36 2 2 "3 {514 524 532 OF POOR QUALITY | 68 2
37 2 1- 10 | [425] 435 o 87 0
38 2 2 7 [515 525 535 83 2
39 2 1 3 | l426] 436 _ 102 0
40 2 2 0§ 516 526 536 98 2
41 2 1 7 | [427] 437 — 117 0
42 2 2 4 {517] 527 537 , 113 2

Figure 7
A-14

K1=(10+1}/7+1=2
J1=10-1*7+1=4
SKIP=JDEL=15

Using the OFFSET calculation eguation for NN=2 in Table 1B one
obtains

IADD(2,2)=19 + (3-1)*5 (2~1 + 2-1)*1
=19 + 10 + 2 = 31
IP (2,2) = (2-1) * 7-4+1 = 4
OFFSET (2,2) = (IADD(2,2) - IP(2,2)*15) MOD (11)
(31-4*15) MOD (11}
(-29) MOD (11) = 4

This OFFSET calculation may appear strange at first glance. SlInce
one wishes this element to be produced in processing element 4 one
needs to determine what the "virtual" address of the array element
would have been to put an element into processing element f.

i.e. —> Address 1 Address 16
PE=2 PE=3

X X X X

X X X X X X X X X

0 0 0 0 0 0 0 0 0

0 0 0 0 0 G a 0 Virtual

0 0 Q 0 0 0 0 0 Addresses
Address = (-29) ddress = (-14)
PE=f PE=1

A-15

Mode bits for PE's #0,1,2,3 will produce null fetches.

Having now determined the SKIP and the OFFSET one may wish to
determine the specific indices of the element. This is done by
means of Table 1D.

Temnp = (31 - 19) - (3 - 1) *5
=12 - 10 = 2
J=2/15 +1 =1

i

K (2 - (1-1) *15)/1 + 1 = 3
A(IVAL, JVAL, KVAL) = A(K,I,J) = A(3,3,1)

In a similar fashion one can determine the SKIP and OFFSET for any
setting number for any of the six possible cases. Additionally
Table II gives a listing of a computer program which performs
these computations.* Representative output is given in the appendix
for the set of cases listed below.

1A Mem Mod #PEs IFIRST ISECOND ITHIRD
19 11 10 5 3 7
19 il 10 9 5 6
19 | 11 10 6 2 8
27 . 13 11 6 2 8

2. Requirements for Multiple Accessing within DOPARALLEL
Construct.

The compiler will recognize if a variety of access types occur
within a given DOPARALLEL and will modify the basic access
algorithm. For example given

*Note this is a very preliminary algorithm and should not be considered
"proven" software in any senSe.

A-16

Table I

« * * +“

- - -« "

* * * [™ " * .

" - * x L] % =

" = « . x * x b=
« - L [] n - 1_._
* * * - >~ * L * -

] - " . Ty - - - - E <
« - - (=) < (X et « -« z *

» A - L] [TATHY - - (") " =5

* * * I s “« o f .o o

» - ") T o ®"OTIn = - (A 3

o - * Y ("R e Ly v * 4 2

- * * %) (PR = Ve LY -2 [+ W 1 - <

* * * - c o O ¥ W * & o2

- * - [= ® X W L= TA) -

* ") * . Z 0= Y- £ Ok> *x m

[] " . b - - - (W5 Lo U6) ®« L % Lol 5~ 4 B - m

ot » O e * * o by * O -l ¥ P At

H - Z * » w T DN w“rTe U)o o L » T;WA

. — o * ~ tal - ZZEWZEayy sk e AXo k Du@

z * =z * o Y - LIE LY et B W * o

— L] — o - — . OEFEHE Wi o - o o« *

5 - b T « [N] [U3 weitbad e (T " alaw wl > *

[- [| * (=R] = Wl o;o E N~ F A M *

o] « WM « - " — T 1) -z w REE -

—d « aad e} x - > e ZOarar LN [Y o .

w » Wz » — > w LWl Ll s < Dz -

L) * DO - Lt -r . EOZ el PR TE] [+ W *

- - —\d - van L o Y S L I L T U T aw ik -

- - o * -t K ETIr ™I b e o Sk x #

W L] g - - . L= S S Y - A~ [+ e 3] LN b’z Rl kl .edIE -

o * L * ~H JIKKIJFREFWF * 0 - lde A

@ * = = * o= [T B TN A N =il Y = e] P T * K= e _y - -~ -~

o *® 3 xar * - ¥ O™ Ty ¥O oo Ll Ve O * = =z

[& - Lan SIS] - L S’ S St Vel Nt s U} LI AL e i e " -t ® = . - — '

Ll ™ —~E O » o= - VXA ZZELL LY (W * ~ ~

= » - K » LTl = T Tl udlded . azxw [T AN * ~ -~

- « RWTD * ~ Lded (N ST LD 2 Lo L o b s ay D) * -4 -

x* " oW - a.» x SISV & * aX ¢ A b Ry] - 1 3

w " PT.NP. « Lol Y, SO (RN LR L L (= QY TTY T, T A K [T A WY * = =

— " @ - * (S T 3t NI - aon tod L} 3C P R TN Lt TE T W ST - -

(o} * ooy * T IS FII VN R TR Y S O L * - o o

H - (&30 Lotr * O* o000 0.00.0 LI <) L b ZWwo g0 * I HOLUICIWLD (=173 L o

- (¥ -l * R g = e B e N T O DY L EX st 0 e et et L Lt o o S R SR Zd - S

Ll R rot =2 * s atand and antand ol 5 = TP AR 33 L YTV R L] wx (ST

Z =a - * ©H O o i el el g () O I o g T e # Wip % (VIR * 0000000 Lad b W k-

- . Twwvn - v4* LR [* JOOIGEULD U3 s v

N e P 1V L] - A - | I wa g una o by * -— Lo

o« [-t) O - o= [S]] A et N o WP ey ey iy iy, ey Py FrEay ' e

= g % Qb » o« r .d " - U AN PN D D Podr 2 pmpmy b= 0 D)

<L [] ol 2V} - g = LP et - " T e ety NNQZFUIC [7o 10 BT A]

0 [+ oF 4T * =% g > \ =) = N K Lt #FIFLAIDI=~ rarulOasa o

- kW - 13 17 R T - . s [b e O " et % [ATV V9| TUY PRI PRI L . ST VY TR T I R Vi, O

x Zw oI5 Lad e - EE - - e Y * et N v Rt ey AL Ll o

L) = - (48 R J L B P U LU L] s ittt oy o) P gl oy M0

—t LR] * et &£ WD n 0 a.0.9.000:0 =]

.0 bt v bl Al T e e e w3) WA MWD N HY
Wwa Wk - o o wrled o e 1 e e s e o e - o - .
WE I L] Lt * LD ® Ll ol Ll L D TN RN P D 4 4 J T R P S 5

e eew ¥ x ¥ ® arr & Ko S\t bt o et et Nt St LI LML) o vttt it i) o) e s
Whie () e % hd e .. e by L e bl e bl e (LG Y) O RO O LS
(I [N (B L [~ “KXE®E" Ll LT Y T T T T L i V-1 B L]
-l o -« - - - b
[v3) L] " * * « *
7Y - « - - - -
wWudld wWs * * *® - «
i) ™ - - - " =
W * - o~
[T FCECCCCCCCLCC LQLOLOLWOLLOLLLLLUVOOLLOL (ATRTATAIATATATSTETATS)

MO0

eizlslyplpielelp]

GONOOO0

= IFIRSTY

KLIY
GG 10 8
1CEL = IFIRST+ISECNE
JOEC = 1
KBEL = IFIRST
ICLIN= CIFIRST*ISECND+N=1)/(N)
JUIM = IF IRST
TLIN = 1THIRD
KLIM = ISECND
P A
S8 Z drimsterseenc
KCEL = TFIRST
ICLIM= (ISECNC* ITHEIRD ¢N=1)/7(N)
SUIH = ITHIED
ILIM = IFIRST
KLIM = 1SECND
6C T0 8
S IBEL = IF IRST
JCEL = 1
KEEL = IF IRSTaISECAL _
ICCIN= CIFIRSTaITAIRD eN=13/CN)
R R -
KCIM = ITHIRD AGE B
6 3%el% 8 trst Ogmﬁﬂﬁgé&ngfﬂ
KCEL = 1 OF POO
TOEL = IFIRSTISECNC
TCLIM= CIFIRST+TSECND +N=1)/CN)
JUIM = ISECND
ICIM = ITHIRD
KLIN = IFIRST
60 T0 8
7 WRITE(6,101)
0L FORMATC2X»*YDL HAVE AN ERFOF IN ITYPE')
€ WRITEC65112) IDELs JCEL sKOELsTCLIMNsJLT M IL IN
HRITEC 6114)
AR AR R RAE AR AT AT A% A2 it AR AR AR ARtk kb d kA ik A A AR AR AN Ak A 4 A% A &

START §F CYCLE LCOP

fh kAt kAddb it Ak A d b ARk th ik AR it RAt ANtk ARSI Nt S Ak dtd 44 b

0 10 IC = {;ICLIH

K

YVI=(K=1)+(JLIMN]} ¢ JO

= TAD#(J~1)+JCEL#(K =1)*KDEL
EC6o113) IC,IVV,dsK
*

Akt dwdk hk ak Akt Ak Ik bk AR R ik N AN AR AN I N AN R Ak e TR AN

START OF INNERMOST LEQP INLEX ==~=]==-

RE AR AR AR AR R AR AR AR AR AR AR AR AX AR AN AR AR AR AR S H AR AR AR AR AR AR AA A% Ak m b
D0 20 I = 1,ILI¥
IADDCICs1) = IACO «(I-1)3IDEL
IPCIC,11 = O

B AR AR AR SR 2L R A AR AN AR AR A A AR AR AR AR IR AR A% AR AR AF AR AN SR AN AR A b Ak dn

SUBITERATICN LCOPS

At A% fd 4k !***i*.***i*i*iﬁi*i*i*i*i*ti1*1*iti*iii*i**t!*i*i*ﬂ*i
DO 30 NN= 1,N
‘NZ=NN=1
IF (NN.EG.1) GO TC 9 _
EADDCIC,NN) = TAO¢CI-1)aILEL ¢ (K1-1¢N2)*KDEL
IPCIC,NN) = N2xJilIM=Jisl -
9 CONTINUE :
WRITEC6,200) ICs NN»IACDCICSNND»IP CICSNN)
TECIPCICSNANI.GT.A=1) GO TC 20
ISETCICNN)= CIADCCIC,NN)=IPCICs NN) 4JCEL)

“A-18

AR Ak A A AR AR AR AR AR AR AT AR AR A IR IR AR AR AN I K AR AR AR AR PR IR RN A Aw Sw N
ADJUSTING ISET TC POSITIVE NUMBER

btk AN AT AN AR Ad dk AR AN

~x

b]

Lol %]

oxX Ed
in ==
* *=«

L (yav™
= X
AL L

O i
W oe
|5 Y YIVE

e il 8
f i (YK |
e s W
Wil O
-0 ovy b ™
D M OXE R

wrivst i s dhdhdinivit i bt hdin iR AR

*® i~ -y -
* sZmH LI
o i ~~ »

* L o] 0)*
® oz QO+
HOE Tk
L A NI N
oy k= QDO ¢
WL - I L
" N mtlihs ¥
W o bt bt e K
w wil Zeld ¥
* L. NIEKV s
tDIICHIﬂ

]

(=
- ©
n

LR R L,

-
-
*
L 3
-
| &)

W LLLOLELL

”~

S~
b -
- -« ~
- - - Lol
* - - -
- - - - .
bl * b [=] o
* et » ~N V-
* - L] [»]
- - " L | L B
* * * - [T .
g - * > =t
- - L] O x -
- het e D a -
] * L] —d
b J - - Ll -} '.ﬁ
o « L] [ANLS - T
- - ” =72 -
L] - « LI Y] 7. %3
* " * X N W
- - L.} by o~
- - L. 3 [
« * *) el -
- " n * o -
-« ¥* * -~ LY e
* - ~ - b - * e - 3
* e val -l -l * * Qo [~
* tat e Lt wl - ” 3 ™ (W]
L] [[o] © - * LA Te
* [-t L] bt « * pren W e
* L * * " - ¥ * Wivs 8 P
" ~ ~ ~ -~ - L] * e 30 -
* - % L . J L] - - * i [Yoo
* L] ' L [] - - ~ur e - ¥
L] e [T | - B [N B | (7] * =l 1D
- Wt w o - o T =z - . L0 =]
* e (UMILAD o =} - o % oo * (I <w
"D OO0 3 x] 3 | I P ¥ % - " P e) €D o
LI 5V EANTAYE VT o] -~ . o ~ * e " ™ SalN -
- [« B o o~ [~ T | Q ~ % - - [g 7T 5 T o
00000 ot] o« - N < o % - * Cwd 8/ - X
s o s i s Lan I PV L %) Lo I Lo BN VRN - - CC Al E o
* 1 Q 1 O 1w 1. O = o - Ll b (= 120] - X
LAY | -~ ~ 3 -~ ~ 3 - « 1 e gt Laj e
* OO Wow Zz &« Z x z o =z a * (=} ” Q&Y g -
* L L e i 2™ [&] « -2 e N e
NN L L] & 4 % * o~ i
* wpg MIUNO [SX N] Lre Qe (AL N - » - ™ AlNOXE [LT
« ® o 9 P - ™ - [Sy L B 1 - ut * =t & et Lad i) e e &
*TPDIPD o) bl A e [L =2 " b A Saak o I B | [Y)
« Lot [TV [JVRN | Oy~ [ML * = L DT My 0% £y
" o9 000 [T} e~ e 309 L& 1% 1) e LILD - L] * =)o, slULININGE
* ity (=2 dar]+ B [} o 0] Oty | Ox™n ¥ L P DD D w D
LA S T . NN o~ [Vt~ o [\ lauie N + B NSwIT ¥ s LA BIRR-4 N R4 3 g g8
I e I D e =3y W L MY Yy WO LI W eyt W Wy (=] L - S T I T P 2 L7
B s s bt (G HGF U IE— 0 W WEU U T L HOUTLI R ER T W ST g g XS e e E
1 6ot et ot bt ot o el ered B (i o)] P d e nd P) L e P (LA P d e e Ot W [= Bl e Tk W (X e R (Y QO ek
LESTWIWINFINPL - & £ S o R WAL W AL Ehmwy KLl The - W e 2 et L 3 L e e L I
e e i e OO Q) HowmE il) & Lt *™ IR L L L Lo L PR P
o Pt et et b el TR T (Y e D 0 P TP X (D TR N (Db TR PE TR (D e 0 T TS D) T X e - .C

- - *
M o L] [-4 oQOo0 -
- - o~ L] o wn 0 -« * o My M1 ot © ot
- = =1 o = [~ o - - o~ —t e
N ™ o o~ o
[ATATAIEIRTATS)

A-19

'y
-
. |
-f,
>
LY 4
»
m bt
- P
- e
-
. L
. MXin
o Wik
v Sl
=W
Ko I
od
(=] -
- LY
- -
- LY A
[[F¥]
L
by
2 4]
e B
L7]
. eow)
- LI ST
T kW™
Ll
O we s
3 =y >
-y = M
-8 -
= [
W -
L) -

(%) (&
o M on
e ol]~
- ey 0

A=20

DOPARALLEL J=1, JLIM; X=1, KLIM
DOO 1 I=1, ILIM
§1 = A(I,K,dJ) * A(K,L,I)
1 Continue
ENDDO: ENDDO

it is obviously required that for a given J,K pair that a specific
processing element must receive both of them. If one considers the
previous example and determines the assigned processing element
for

Tyvpe I A{(3,2,5) PE# 3
Type II A(2,3,5) PE4#1

But this is wrong. Both of these accesses must go to the same
processing element. The solutidn to this apparent dilema is to
expand the array size at compile time by "squaring" it if one of

these type accesses occurs, anywhere in the program, i.e. given
the érray A(5,3,7) with extents 5,3,7

one expands it to square by increasing all extents to the largest
one, i.e., 7 and accessing the array as though it were of size
a (7,7,7).

This is demonstrated in detail in Figure 8A&B for all 6 acceésing
patterns. The I index, the innermost, is not iterateé for each
cycle. BAs is obvious one obtains the correct J,K pair in each
processing element as is required. The appendix contains the
examples listed below. ’

IAg Mem Mod #PEs IFIRST ISECOND ITHIRD -

19 11 190 3 3 3
19 11 10 5 5 5
27 13 11 6 6 6
19 11 10 7 7 7
GE® -
HRIGINAL PAgﬂm A-21
_gi'pOOR-Qﬁ

Extended Accessing
of Array A(5,3,7)*

P.E. Number Specific Examples
Case I _0_ 1 2 3 4 5 6 7 8 9 (i,2,3 =J.
(1,3,8) |[F1<2P i31 i12 122 132 (i,2,1) =>

43l i52-t62+72 113 {2) 133 43453363
73 114 124 i34 4 115 125

£35] +45—455-+65—475 116 126 136 145456
1661576 i17 i27 137 4T-i5T—i67477

(i indices 6&7 also suppressed)

Case II :
(K,I,J) }11H<£E}>li3 1i4 1i5 1i6 1i7 (3,1,2)

2i1] 2i2 2i3 (1,i,2)
[311]@2} 3i3 3i4 3i5 3i6.
411] 412 4i3 4i4 4i5 4i6 4i7

|511] 5i2
5i3 5i4 5i5 5i6 5i7

|6 642613644615
‘ [Fi 4243744745 736 747

(i indices 4,5,6 & 7 also suppressed)

OO

| 2i4] 215 2i6 2i7

577

Case III -
(J,K,T) [1lg<é§}>311 41i 51i €934 12i 22i 32i (2,3,1)
221 521 62i—72i 13i QE) 331 43i 53i 63+ (2,1,i) =

[351-45155+ 6575116126 1364464564
67611727 3P+ 4F+—57+—674 T34
{(no i indices suppressed)

ve

*T index indicated by i, assuming iteration
deleted elements indicate null fetches

Figure 8A

A-22

) P.E. Number . Specific Examples
Case IV o 1 2 3 4 5 6 7 8 9 (:)

(1,K,J) {iij<el>ii3 114 i15 116 117 i " T(1,3,2)
o &> \i21] i22 i23 (1,1,2) =S

124]125 126 127 o

-@133 i34 i35 136

137

| : EE ', .' : ._54 .- o .

[566-+67 =

(i indices 6&7 also suppressed)

Case V 11] 3il 4il1 5il1 68— (2,1,3) =€;2
_ \> -212 312 (2,i,1) =

(J,I,K)
4i2| 512 61272
‘113l@ 3i3 4i3 5i3 6—1-3-

hi4l214 3i4 4i4 5i4 6i4 714
11i5| 215

ol

i3

3i5] 4i5 515 6+5—~%i5
{ii6] 2i6 3i6 4i6 5i6

11i7] 2i7 3i7 4i7 5i7 6i77i7
(i indices 4,5,6 & 7 suppressed)

Case VI
(K,J,X) llik12£>131 F4+—3 54364174 (3,2,1)
1 21il 2231 23i 121

:W @@ 331 344354 364

[41i] 421 43i 444i45i-46i 474

[

[N

-
nu

|511|521
(no 1 indices suppressed)
Figure 8B
19
AL PAGE
o o

A-23

3. Optimization of accessing for -Single Access Type °

If a single type of access occurs within a DOPARALLEL construct and
is one of the less favorable ones then the compiler ﬁill reverse
the order of the DOPARALLEL construct. Case I and ITI are already
optional. Case IV and VI would be inverted, i.e., the construct
would be DOPARALLEL K=1, KLIM; J=1, JLIM.

Cases IIT and V would reamin as written with a warning to the

user.

A-24

Appendix A
Normal Accessing

-JL

FSECOND ITHIRD KO

TFIRST

IA0O MEMOLD #PES

TTYPE,

1

11 ic

19

-

KDEL TCLIY JLIM ILI~

5

JOEL
CYCLE

1

IDEL

-— T e aT AT AT R PN e P
=T
4
I el L N N N s Ll Y

-x
-
-

-4 1 e O G L e O O LN

IvaL

T

Ll

v

OO O M UMD M O S O i N
-t Eh |

aF

vl o ot el ey v v e e e

SUEITER

vt g e vt 0 OV O DU I MT RA PA

™

O SFNNO A OO D e MY DY
s A 0 el et v e

Nt

KO

ITHIRE

IFIRST

IAJ MEMOE #PES

ITYPE

ISECCNC

i

1C

11

19

ILI¥
3

JLIHM
4 7

KDE% ICLINM

JDEL
15

IDEL
5

e e v e vt el o T R et el N v e N el v e N Y
-1,

e
x=

e e P OV VY o (O PR e e v O D e AN e (N D)
L -4

>

by]

ad e OU v A DI O PN O MY IV MY A T S N DM SR O LO WO U
o

=

-

[

L

74

e SO IANS OO P O O LY o 3 SN ST e P 0 vt P 00 vt ON Y)Y W
L - i

o]

o

W, .

P e A O O 1 O 0 1 00 et U T i O) rd SV e
ot s

17

=

W

LJ

-l

0 o vl vl o =t ol (0 OO 0 DU DI W MG N P MO A L Y o o o
oo

[&]

X (MM TV OM OO NM g N M GO — oM
o vl Bk gt e et e gt o =t AN AN DU O
-

ORIGINAL PAGE 19

ITHIFD K9 JL

ISECONG

IFIRST

IAQ MEMOD #PES

ITYPE

Ny

11

19

FLIM ILYIC
2

KBE% ICL IM

1

IGEL JDEL
15

D M M WO

AL

K

&11;111112.331\.333
-3
-

e T vt vt e ol et v] el et
Ty
o=
L]

[
Lad
[7e]

e G o LY O WAL € M €7 T GO 117 O

e i
o

o 7

(v

e g el el el e e B g e T] g o] el
Lo]

-

-

i

79]

L L)

(S e L L e P T TN Xy NT.NT.NT N
=

o

ErditiM POl 0 Ol g
W et)

A-26

K
b

ISECOND

KoC JC

FTHIRD

IFIRST

IAO MEMOD #PES

ITYPL

1¢

11

i9

KCEL ICLIM

IDFL 4

ILIM
5

JLIN
5 3 7

SUEITER

DEL
15

1

vt et e e et = et DU D VIO, O S L B NI e N MY

KvaL

Ll bl oo lal ol ok o R Bt ST L JU BT SL L S TS 2 g o N

JVAL

A A MM ST TN A e G NN ML PN - DN PN

Ivar

—
s
vy
Lo QOO - OMOLI MNP RPN O w0
Ly - — —
o

Lo AV B Ve IR R e RN RAVE o RV SAVE L RANE L In¥E ok L ol e R

d
wd
G vl v g v o s e v e O DY DS O O O U DSOS MY MY B MY
e
|5

T vl M IO M0 O e = O P U O SO0 €D e DIV Y
e #ot gt O et el e e O O O DN BN

Ny

I'THIRE KO «C

ISECOND

IFIRST

TAO MEMOEL #PES

19

ITYPE

1€

1t

LI o BN TRVE R R E 4 TE VRV TT WU TN Y N

[

[*Y)

v

L O e OV o P A2 B S €O ON ST MO i, WO OO
L. - L]

[

o

[¥V)

“11(-1 OO v O 1 O el D0 e (09 0t (N o] 7o g
[35]

-

wy

e e et e AN O DI MM MO L T T

CYCLE

et F U D o, WS O P WNO B N
el T et] o o S) e D (N

Ny

A_On

X0 JC

ITHIRD

IFIRST

IAD MEMOD #PES

ITYPE

ISECOND

it

11

19

 KDEL ICLINM

ILIN
7

JLIM
3

2

1

JOEL
5

wd WY
Lid vt
[=]
—

PR e D R ISV VESNT VLl e F o g F AN U AL ADE O A et SRR T LT LA D M M
-4

-

>

—d v 1..1..1..111..11.1..111111..1.1111111117;121213“121219 i
=L

-

b J

N ..41?..3.41234123#1234123#1?_3:4#_3&.5:43454545#5
£

-

L]

T

Ls)

v
Fe_han/._nu._l.g635»&0?9630—(0?:&.63680?&.IEJZQ;EZCGSC?ZJG?LH
T8 -4 — L Ll —t —

o

Qs

8]

| 1Y g “123-&1.._./:_1...414.{_3.&12?...419.:4...&.1?_3..41217_17_121217.12
— .

m

=

1

L)

wd

Clll111111111111111111111111122222222222222
-
L

T oA B T TN DA s O MM IO VRO~ NMFUINO N VOO
pee} purpisprppn e el S TET VAT VISUNNTNIS A e Lod ot Da Lag b o atab Lt LA S - 5
=

A-28

KO JO

1AQ NEMED #PES IFIRST ISECCNL ITHIRL

1TYPE

10

11

19

KDEL I1CLIM

O T Tt el ek P P DL P P N O PO L0 L U LYLOY UYLV

«
=

4

L e R e R P L el e e e e L R e e e P L L
wt

T

9

ILIH

JL I
5

<4DEL
9 45 3

IDEL
1

J

—d P O IT N0 P O e B L 1D P M O v (0 PP UMD P U ER

<t
b
E]
[=]
W
vl
WB9m01234500123ﬁ56?123456?89
—y
[on]
[} 4
Lt
e vt el o gl vl b vl ot oy] P v e v vl e v vl v vl oo v =
ot
fae]
=2
w
w
-
L2 vk ot el v et =0V DO OU Y DU I S T MY Y MYV MY RO
-
'S

Tt NP MWD P 00 QD bt ML A Y Pee 7 DVED wd (N TIAT LD
o e e gl el et v e vt et €N N O NITY OV NN

L3Y

ORIGINAL PAG
OF PQOR

E IS
QUALITY; -

A-29

J2

KO

ITHIRD

IAD MEMLD RPES IFIRST

ITYPE

ISECONE

10

i1

19

ILIM
5

&

Ju IM

&

KDE% ICLIM

JDEL
45

IDEL
g

Lo Ll o) 1111 ey L ey L PR I Ta e L T T T T TATS PSS A B RS Tt Lo g R Dt il e ahalalalalalalal el Aleleh kel U et Y e MY e gy MO PR Y

=L
o

b

AT OGO PHVT AT S N DY O O M MM T LA v O O M ST et 7 OO MO ST ST I N et ot 0 O (P PN 8 - ININALN s M ST LD

=t
-
)
L12121212122342342342342344545&5&5&56?676?676?789?59789789?8999999
-
-
-
e
L
7,
Fn¥361fﬂ0w:00a3581:06‘:shdﬁl?nfbﬂa:cﬁn?n9&44ZR:UZRXU50147%&307L¢8:iuﬁz:vhqéerﬁdu?:ijlmw
[L] -
[
14
w.lz-..sz L N L VY N TN L R PN R R NN TR Lo ToN R R ToN b e Jo¥ o 1o] P TN PN R TaNT o TV SN Ll | 1212 Lae o ¥] g] 123-121u121-121-11111
—
m
o
vy
d
&1#111?111#;11%4272(292(29:c293££2213321332133zfuﬁh:thJQQLIQSREﬁD5n£55q:35::DSR106L¥D6
o
(=

. t T ON D v (I ¥ LD
B O LD T O 3 (N M DD B0 N O et O MU (O N B 00 €3 vt (3 M LW P O O8O vt O PP U0 0P B O8N O +A NV LNWD P
= et wd o vt oo d vt et ot O N EN EEI O N N EU (NG VY MYV MY W MINY MY MY o o~ oo o ottt 8 o UM LY EALA LALLM S W00 WD
x

A-30

KD 43

ITHIRC

1F IRST

IAO MENLD #PES
19

ITYPE

ISECONE

10

11

KDEL ICLIM

ILIM
6

JL IM
9

9 5

SUBITER

1

JOEL
CYCLE

IDEL
45

OGN D) o (0 NI AT WD 4 (P T I D O MLT LN O v o M ST D
-
=
1

e e La Ee P TN T NTGNT NIVt Lt lac Db Ll g B - = B QF 2T JToTFoTTo TV TV A ¥Y. Y

L8
-~

-

it el 112222ZZT_Iu_t-!.?.?u:u.-n-.nﬂ.rﬂtu.:u.ss [Ta1Ta VaYTal

IvVA

DPAC ~NMNOOOO-ONOAD OINDND OO N D M0 o
- = - -

OFFSET

vt v et ol g 0t vt gl o ol v W) ok f el ol et et el vt o et Y e pd el od

vl vt vt ot ot PV O LI MY MY M M) o o2 o S LN VA LY

EmNMIT NGO RAQ MM FINOMROADNMT NI O
vt il e b ol el el o wd wed TN TN O OO TN OV OO 9

NU

A-31

KO <0

ITHIRL

IAD MEMCD #PES IFIRST

ITYPE

ISECCNL

10

11

19

,
T
>
]

It IM
9

6

JUIM
3

KDE# ICLIM

JDEL
45

IDEL
1

I el e e e e L L R Lo b R B TANTAVE NTANToNIANE QN EANEoVEGN EuN TGN TN Fa¥ KoV TN E QNI NE VT NT FTNENENTNT VTR £ g0 K - gt S0 . - g 2 g0 g0 Bt K PN 5 JX. J
L
>
x

At 0 o gt vl 7 o] e ot o e S =HALAN WSO DN IR A AU LW LN WD IS WU LYW U AN MM AN) PO IR N PO RN M PR

wd PP OID M 3 NGO P R UWIUD O8 O ot vt OO O IO G 3 ST N WD (D I T et (U QU B8 O O v vt 03 O YT U W0 O R S GO TN DN

-4

»

(]

o

tu

W

ﬂ809102031&25364?58m2503614725836947m5806917024?5859?08091m2031k.
-] -

o

14

ad .

e [V R R LN T e TN e FNE o N R TN S L N Lt E el VLt LN Ll e J N Dbt TN E g R e TN e B TN Lt B N BT N R TN L N o IR TN o PN NN L TN E e TN L]

Lo |

fas}

o

vy

L

wd

3 ot 4o wed -l et et =l vt o i vt ol vt e ek DO OO O OV OV OO0 O OO DU O B0 O OO O O SO O T NN D TN M MY IV MY IV NN T Y 10 N B

> .

o

H123456?890123k567890123456?890123#56?&90123#56789Di23ﬁ567890123
vl vl e et v vt vt w4 ot = SN NIV LN NN N MMM M MM MMM 3 o OF o o oF o o o D INIA IS IN 1AW AR DD

NU

OF POOR QuALITY

ORIGINAL PAGE IS

A-32

ITHIRE KO Jo

ISECCNL

IFIRST

IAD MEMCLD #PES

ITYPE

10

11

19

ILIM
5

JLUIM
9

&

KDEL. ICLIM
45

1

IDE% JOEL

wed T ORI T D TG e DGR UMV PN M AU T ML PO N T WG ST NSN3 ST DN GO DB IN GO 0 DD WO WO WD
=L
e
x
AT T S NN YOI MY NISE 3 U e e DY O PV N e 0 QU MIMI B IO vl o G TP MY o 10 N i OUE o 1D

-]
-
™
-

Il ol el e e e L N N S IR TN T Lo PR TRt Lo bl L RS L B S IS R 8 14151515151&165566

-

Y

—

fom

L

)
W80694?25U3w28069QT251kw280694?3614m280695836140280?531w

-

[]

T

Ld

b VL T WV R N E SN N TN LN L e YN R PN L TN TR VR G AV E S [N R BV R o FV o TaVE TV TV R o T N N TN L TN T N LN e e e L)
— .

2 e]

-

vy

[FE]

wd

L3 ot et vt vt 1 e ot vt et OO OO O N O O VOV 1 3 MY Y N NIV MY VY G 8 o P o I o <2 o LALOUA A LNALD LA 1N N RO R @O
-

w2

I vt O TP 1Y 0 T N €3 e (3 I8 LN A D e BF TNED vt O T < U0 P8R0 O Q3 wed O YT P LM O P T2 ONED wek NP8 1) (O K2 O €3 w0V o LY
1[1111111122222222223333333333“.‘“““‘““555555

NU

OF POOR QUALITY

ORIGINAL PAGE 18

A-33

KO JO

. IAGC MEMCD #PES IFIRST ISECCNL ITHIRE

ITYPE

10

11

19

ILIM
6

JL M
5

5

KDE} ICLIM

g

IDEL JDEL
45

IO T ST ST N NGOG = AR LT LN WO = e NI M T DUV 0 S O U PO S U WD v O ST NS

-
™=

4

o = it 0l s o vt o o il 7 A e o v gt o ol S gl vl el el ol v 9 S] ol g il e e el v o e ey

-
=

e]

.L.....Z.l?_l.?_l?_12122..&.342.&.1_417435.56 56565556:;67&?875?8?&7&999999
- R '

-

i

[

LJ

)

L SR O ONON mnuOO 1122mm001122 MM 3 g et e d O M o NN WD WO I M G SR IN N D WD M e 0 00 1 O MO Oh
[L] 4
o

=

t

[{ NL o R AR AN R TANE o f VR TV TaNE o TaN L TN L TV T o W VA o TA T [aN] o WV Ea IAVE L TaN R a TR (AR TaVE JaV R g (o VE L FaNE L oV ol el lanl e o |
ek .

4]

=

W

L

. ;

QO pmt et ot vt v ot vl et vt vt o] £ OO O O O OO I DI O P MM P MM IV N PMTNNY O F SF P o o o2 T NN NN
=

L

O D P A v B) PND e B0 OV D H N N0 P TP O8N 3 et N MY P WD P GO OV O v NIV 1 (3N 00 O8N O e (N M-
el vt vt vl et vl ol et ot O VNN VN N IN M OB MMM M MM G G 3 P <3 o o o8 S ALBLD AN

NU

A-34

L JC

ITHEIRD

ISECOND

IAD MEMOC #FES IFIRST

ITYPEC

iC

11

19

b

ILI™

JLIM
2

2 2

1
SUEI

IDE% JDE% KDEL ICLIM

wdre e e 0000V D
L -4

»

ard O v P gk el vt v = = e
™3

>
-

L ENE s STaRV-R T VEL B STV
-

IV

W2 O NN LN
-4

OFFSET

TER

" qod vl P d ol vl gl]] v ey

vaed et e e o wed (N O TN OV OO

CYCLE

A EaNE RS JTaVeF N o ¥ W P o ¥]
=2 et ol e

N

ITHIRD KO JEe

ISECOND

IAC MEMOD #PES IFIRST

ITYPE

19 11 ic

2

ILINM
2

JLIM
5 8

1
SUBITER

KDEL ICLIM
12

CYCLE

ICEL JDEL
&

Pl ol R LT o Eo el o TR o STl l RN AL L o)
-
o=
x

P Ll o IaVIAVE oo oV Gl o L VN L L T oV T VT T SN
'

-
-

wd i B e AU MY OUN MYV B ST ST UV O D
-

-
-t

[

[F]
2

WO vl MY P D RO MMM OO O = N
L i -
(o]

L RAV R BAVE L RANE o F o NE L TANE ARV AN IANE

— et = OGO M A MY P B A LN

T (UM FINOR, €D e N FIN O O
v el el i o] o] et

NU

KO JG

TA0 MEMOD- #FES IFIRSTY ISECOND ITHIRD

ITYPE

w—r

1¢

11

19

3

KDEL JCLIM JLIN TLIM
6 2 6

1

IDEL JDEL
12

A M) FUND e NI TN O T
< -
A

J e et vt v et et e OO I DI DI OO
-

J¥

ok o v vt v et LA UL IOAWNDN

IVAL

[

Lot

L%

U WD Qe DI MST o G0 OH €0 3 = D 7Y
Liw -t L]

o

[Fi)
a1?11111f11932627:c27h
[
(S

Ot M UV
Tesn M BN D0 et e el e W e vl

NU

ORIGINAL PAGE IS
OF POOR QUALITY

A-35

JC

K0

ISECOND

IAO MEMOD #PES IFIRST

ITYPE

ITHIRD

1c

11

19

ILIM
6

JLIM
8

2

KDEL ICLIN

JOEL
12

IDEL
1

L e L e L R R e Ta S AN T S AN LN NN
-z
-
x
wed il vt o At wed vyl e e e B) NG N B VY
X
=
3
R L aC RVl Lok £ STaNTagV o RoR ol AN [s B JUSRY o)
L4
-
[
==
[+1]
vy
LEIONPRODOR-OUONONNON~O0ND
b -l]]
[an}
o
w
e o U0 e U e DV e OV et 0 et O] vt vt wed ok) e
L
18}
=
[7¢]
Lt
wd
L) vl omd sdwtod vod vl pel vd werd et DU O U DN Y
>
&]
TN MO M D e o
=3 vt v e gl P] g vt]
=

ITHIRD KO JC

ISECONC

IFIRSTY

IAG MEMDC #PES

ITYPE

i1c

11

19

JLIM ILIw

KCEL IC._IM
12
SUEITER

1

JDEL
CYCLE

I9EL
b

HAAE NN T M T I TNO O o m

AL

¥

.IMII?. Ot vt o O O O et N O et i O 0 vl vl O O

>
- .

Mll_ll_b.ll_b v e N et 1) vl 4 e et o) L et

-
-

[
ket
Ly
Lie QU MY G N T0) OO 1) DA OO0 400 VY (N G Q0 MY I (NI TN 60
[
o

Lol R NaVh S IANT Lo L RANT o L TaNE o LN P AV TN L TAVE TR

e v e N OO O O QUM MINI MY G S S DDA WD

H1)3456?890123456?€9012
) v e el gl W g o G DN AN

NU

A-36

Ko J€

IANO MEMOC #PES IFIKST ISECOND ITHIRD

ITYPE

ic

11

19

LI
8

2

JLINM

2

1
SUEITER

6
CYCLE

IB%% JDEL KODEL ICLIM

ettt i e DN S DR MM NI S P NN N G O D DD M R S P A S T 5 O e MY o L DR o

<t
-
=

et e d e e e sl e e e e e et o el] o et 0t] e e gl g el gl o ¥l el e e gl ot T] il et e]

LaaRaVlag B SUSE S LoVNE BN SVaT S NaXT oI Tl St f oV B T Y NE B AT T NN o, B Y P T SEN O M T U OO WO B OO

ET

)
W WOWERCNCNON TN QDO L0 L) O QD3 vl ol vt gt w4 N TV (T DN V)) IV G T S ST TV o WD T2 on
vt vt et =]

oF

AN N e N P UV AN ST Y ed N LGP U Yo O Y ST U e (I MG Y e DN WF Y O M) U el e el el g v 9l

v et vt ot ol P rd g v et e ol e e v) ol el] o gl o e] e v e et et et el e o O O N O N O

LA M F IO G O NV NG T Qe AN TN WOA OO Sed o F NP MDDt UM N O D
T e e et e e O O N CU S CU DN N O M IV I (OO) M I AT g T T ST o8 T T

Nu

A-37

.ITHIRD KO J1

TSECONT

IFIRST

TAQO MEMOLC #PES
27

ITYPE

11

13

vt e de et DD g
L4
>
x

e b hae gl an B o [N LN SN T Y N

JVAL

wd = OU A SN D e O ML DO
<l
-]
(]

[
Lo
3
L ™M FUNAWDTIM P UV e

OfF

A e el e gl Y W] Tt v

SUEITER

vt gl v = OO IO O O

CYCLE

r XTI R TR TAE. 3. ST

NU

il v gt
'

K2 JC

ITHIED

1SECONT

- TAQ MEMOD #FES IFIRST

€

I7YP

13 1

27

ILIv

ICLIM JLIM
5 8

1

KDEL

el N
Ludvd

JO

IDEL

-l Tl e et b e P D S e
L4

x

et e (A e v (0 e e O
- .

>

b

d = QYOS QUMY A M S NN O N0 WO
4

-

—

[

Ll

v

Lo = A PTG V00D WD NI O B I QD B0
| e -~ i L) -t

o .

o

Lt

e O el A0 #eb () O Y D e O Y 3 ed B0 [N v =t
(="

[ad]

-

(72]

(Y]

-l

L) et eed e d (U DY DO MY MM PP NP S NN
b2

[}

T ~=NAUMSTNOR OO (NN S NOMN D
e Ot g e WS er] el et gt AN

NU

KQ

ISECOND ITHIRE

IFIRST

IAQ MEMOL #PES
27

ITYPE

11

13

8

ILIM

JLIM
6

2

KBE% ICLINM

1

JOEL

TDEL
12

ade DR AT LD P G0 v 04 MY G LD M OO
-3
>
x

o b et YO OO OO NI O
-x
=3

-

e vl v =t gl e vt el e DO WD D DD DD

ot
>

-t

[,

L

w2

e OO v OO M (N et O OV M I U
W t ol ot vl d

[

&=

9]

1oon e o ¥t o v e] v T et e v gd P T
L]

23]

-

W

wl

e

EewetQUMFTPNOMN DO MWD
- ot el e et W4 gl el
=

A-38

Ke

IAG MEMOD #FES IFIFST ISECONL ~ ITRIRD

ITYPE

13 11

27

LI~

8

JLINM

2

€

KGCEL ICLIM
SUETTIER

JOEL
12

ICEL
1

-l - e D L E e T N prpem et N N N ¥ LS N P
-«
x
Lol ol ol el o e R PR R E T g0 L G P g
-
-
-
-l TS s e B ST D DO D
L 4
=->
=
[o

LLE
vy

L O M) O 3 UOVETY WO D P TP UV e QO

ar

ot D0 i It N b (3 7t G 1k L 7t ot v ot g et

el L b L L L T Lo P TR I A PN TN AN TN 13N

CYCLE

b A PN R 4T o RN S R R Ia g I JUR RV PN &)
- Raal A B R L Rl R]

NU

Ko

IAC MEMOL #FES IFIRST ISECONC ITHIRD

ITYPE

13 11

27

2

ILIM

]

JLIM

xw

ICLI

wd N

ICEL JDEL KOE
6 1 i

..N_-..?_122342344c‘,5:u: I L OFed TR
=
>
e Lo at WAL oL IaVEAVASE o b Sl T VLN LT Py N T N TN
-x
-
-
ad vt vt o O el D vt v U v v U vl e o v b o vt et Y N
-t
]
—
-
w

v
W NG B U el T e o OO T 4 S vt P N LN el 1 Y ot o ON €N

[T - e el

[oes}

x

(YY)
-llc...:/._ln‘l2?“121qln/.__‘~122-121-19;1«11
L]

[13]

=

W

L

-l

2 vt et DG UOVO N DI M NI NN G WP o o oF ST L
P

(&

X O TN D P00 N O ot O 3 1D e 0 OV D et N MO
- } Lo LR R P el T o [ANT NTAVICEY Y]
=

A-39

Appendix B
Extended or Squared Accessing

A-40

KC

ISECONC ITHIKD

IF IRSY

IA0 MEMDL #PES
27

ITYPE

o

11

13

1LY

JLTH
T2

2

i

KEEL ICLTIM
SUEITER

o DR L T SR LAV AT Sl W o Y Yl Sl LA Rl AR BN S B 2% DU R T Y T I ek T N R X AU B od WL L STATV o S
-g

x

Pl e e Dl L e e R e T R R T e e e e e P P P P er N PP e Py F U T [S LAY AN
-4
-_
-

e D AP T D S OV IO SN T DD e OIS (MWD e DM LD D v D) s D e O N S LA W0 WD DDA A0 WO DD

=1
=9
—

o
Lat

v

i =PI P Ot 0 O WD G G O vt I DL e O 1 602 0 o W W O I R LY P O w0 0 a3 A7 O S O et P P 08 v G O ST O vt L O G P WD LY
i e)] -t , - et et

OF

THONMIT ST U NN e O M UV O 0 VD e A MY VD e Y L U A e OV DT U YA vl AN D U) et O\) 0T LY AL et o oot] oo Y g vt

ol et ot qod il ot el 1111111111111111111111__1.111.1.1.11111111111122222222

CYCLE

M P OMNCr O TN OMOCO =AM NOA DO Ol I U0 RN OO0 OO T U @O M 05 O = M D
d Lashaad ol ol ol al ol ol X oo LA IANEVANVIANE S VINVIANISVISSE 0T o TaR R gL on TobTLgY s Tag LR RE B R g L= - i QN R T JPETTL 1T TTRITAYY YTEY

NL

OF POOR QUALITY

ORIGINAL PAGE I3

A-40

ITYPE IAD MEMCD #PES IFIRST ISECCNL ITHIRD

1 19 11 10 3 -3

IDEL JDEL KOEL ICLIMN JLIM ILIN
1 3 9 1 3 3

NUN CYCLE SUBITEF QFFSET IvYAL JVAL
1 1 1 8 1 i
2 i 1 9 2 1
3 i 1 10 3 1

KVAL
1

1
1

ITYPE IA0 MEMCD #PES IFIRST ISECCNL ITHIRL

2 19 1+ 10 2 3

3
NUNM CYfLE SUBITER DFgSET Iva

IDEL JDEL KOEL ICLIM JLIM ILIM
3 9 1 1 3

JVA

L
1
2
2
1
2
2
1
2
k!

O ooy A B LN
Pt s it Pk o (ks o P
Lad PO NS et 1t P ke
OO N~ DO

ITYPE IAO MENMCD #PES IFIRST -ISECCNC
I 19 11 10 z 3

IDEL JDEL KOEL ICLIM JUIM ILIM
5 I 3 1 3 3

NUM CYCLE SUBITER OFFSET IVAL JVAL
T 1 1 8 1

2 i 1 €
3 1 i 4

[y
[SY ST Y

ITYPE IAD MEMCD #PES IFIRST ISECCNC
& 19 11. 10 3 3

iDEL JDEL KDEL ICLIM JLIM ILIM
1 9 3 1 3 3

NUM CYCLE SUBITEF OFFSET IVAL JVAL
1 1 1 8 1 1l
4 1 2 6 1 Tl
3 1 k4 4 i i
2 S R

v 2 i

¢+ 3 g

8 i 4 3 2 1

9 1 i 10 2 1

10 1 2 8 3 1
i1 i 1 6 3 i
12 4 4 3 1

KVA

Pt s B ot ot ok ot ot ot

ITHIRCL

KVAL
1
2
k!

ITHIRE

KVA

e e e T Ty g

J2

A-41

ITYPE IAD MENCD #PES IFIRST ISECCNC ITHRIRE
S 19 11 10 - 3 3 r

IDEL JDEL KDEL ICLIM JLIM ILIM
3 1 9 1 3 3

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL
1 1 1 8 1 1 1
2 1 2 3 1 1 2
3 1 2 g 1 1 3
& i i 0 1 2 i
5 1 2 6 1 2 2
6 1 3 -1 1 .2 2
7 1 1 3 1 3 1
g 1 2 9 1 3 2
9 1 2 4 1 2 3

ITYPE TA0 MEMCD #2PES IFIRST ISECCNL _ITRIRC
6 19 11 10 3 3 2

IDEL JDEL KDEL JCULIM JLIM ILIM
9 3 1 1 3 3.

NU

M CYCLE SUBITER OFFSET IVAL JvAL KVAL
1 1 1 8 1 1 1
2 1 2] 2 1 1
3 1 3 3 2 1 1
4 1 1 6 i 1 2
5 1 2 9 2 1 2
] ! 3 1 z i 2
7 1 1 4 1 1 2
g 1 2 7 2 1 2
9 1 k! 10 k! 1 3

ORIGINAL PAGE IS
OF POOR QUALITY

A-42

J9

JC

ISECOND TTHIRD KO

IFIRSY

IAQ MEMOD #PES

ITYPE

Uy

1¢

11

19

ILIM
5

JLIH
5.

3

S
I

JOEL KDEL ICLIM
5 é
CYCLE

ICEL
i

—t ol o] e N R MR LS IO LT

KV AL

Ll e F R R L L PR e P]

JVAL

Ll aS el ATAR RaV i oIl ST S NaVNl gl AT ot

IVAL

QO OO OO v M S UMW P O QD et (N
— i

OFFSET

SITER
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1

Suy

WM AD L 00 OO e NS e LY
vt 0 el pmd el vl

NuU

N T T I e e

ITHIRE KO JOo-

ISECOND

IFIRSTY

IAQ0 MEMOC #PES

ITYPE

1
4

i

icC

11

19

-

Iti:

5

JLTH

3

1

KDEL ICLIM
SUEITER

L
5

E
2
CYCLE

Jo

wd i
L
[==]
-

O v o v e et e el et v vl e] 5]] o g gt i vt

AL

K

vt et - [Z,nu‘..q;j_)l.....ﬁ_?..f?...n.:u. [aITAL LN N S EX I

M_.L..Ll O wt O\ wmd B ot BSOS LA LIS U
>
[og]

ET

)
L QO LN O &7 P ot O A FHG o o+ O\ D VI 62 GO UM vt WD €0 1 €D
=t -~

]

af

st I e O et O et D et O 7 O vt LN 9 O et DN et A 7] v et e

ot o kel O OV O U O (VU TN O O MY R VY MY Y

Lt MM PO M OO e M S O 0 D UM G N
w o P g] T e e WA DN A O

OF POOR QUALITY

ORIGINAL PAGE IS

A-43

JC

ISECOND ITHIRD KO

IAG MEMOD #PES IFIRST

ITYPE

11 i¢

19

KCEL ICLIM

ILIM
5

JLIM
5

5 3

1

JDEL
CYCLE

1DEL
25

L S eV A BC ST R oSN T STaR ISR ST 51
L -4

T

-

x

o v e MY NIRRT A DU s LAY
-

-

b}

coed =l v et il e e] el ol el]
o

-

-

-

LF]

b, B QMO P OO N WD 0 vt o P
[]

=)

x

[¥¥]

P e el v et P Y] e T] v e
by

w

-

I

Ll R K L RN RN FaVEaNEANT N os 1 00 o]

T A MFNO N D0 T NV G I
= P e =g

NU

ISECONC ITHIRD KO

IAC MEMOD #PES IFIRST

ITYP:

134

11

19

JLIM o ILIV
5

KCEL IC. IM
25 5 3

IDE% JOEL

mden et e e e PN T MO MR A L N AU L
g

x

1.111.11111111111111111111..1

-
-
-
-y

d T AR M ST S U N e st DU UMY MY N U e OO VY L
-

-
Lo

b

Lud

[24]

i DI OA TN D 4D ©O et v LN P U B O O €D 0D €3 £ e AD M (D CA ED
L]

L. i ey

[om]

o

[FE] . .
=i O\ vt O OV 08 O o U\ ot 4 O 7t K0 ot 0 7t 0] e ¥t gond 9l oot
-y

73]

-2

[%e)

[}

s | ‘.

Lo e R L L e T T P T N TAN T NI ST NE NV T VT AN LY LTV T
o

[]

F oo ISP UD B 0 N DU g WD G OO O o N MY S M
jen] W el ek el g e i e vt et 0 A0S DN N NN
= ' f

A-44

ITHIRD KG JC

ISECOND

IFIRST

IAG MEMOC #PES

19

IYYPE

i<

i1

IDEL JDE
5

PN G RaR D Tl T o TR A BE o Pl SRR £ o 3 i ST o N a N Ta ST al Vo)
L

-

>

H112233ﬁ.k§. Wyt et U DG MY O UV A NN T
-

J

) T T) v ot] nd v] o v e =g e e e et =] e e e
=X

o=

[

[N

|8

w2

L W ADON QP LN v OO =T e T) C I M LN v CO O M (N P
" - -~

o

o

w

= =l O e O 8 DV v O e O ¥ O 1 D v D) [vt D e 1md 9 vy
-

jaa]

-

7y]

15|

-

O vl vl v ool ek] el v O O O O O U NS Y DI IMAMI) A N
b =

L]

T o N N A B S NN N ey 3 R e (I e DY
L L T L P o R L o INTIANIA VAR N AN EA]

Nu

JC

ISECOND ITHI®RD KO

IFIRST

IAD MEMOD #PES

[TYPE

1C

11

19

>

IL Ix

S

JLIM

3

1

KDEL ICLIM

JOEL
5

N
Lt
o
L

e O W ST Y U e O DI R ST D LD e (N ST L
-4

»
Ll P e L e R oy ol e e e ey e L E]

wd
-r
o=
-

e B NAVh o TaVE S JoVE L RaVI ot goa Bl g BN gt doa s dlaTTaliallotis]
ar

>

-

[

1

w

Lie GO AL 9 O8N Y et AL o O Ta 6.3 00 00 UM MY QU D) €0 OF ek - RO T
[T -t [
(=]

[+ 4

(T

P 4 D et D et 00 et N ot AN 0 O 0t O 098 L0 44 () wt D\ el #twd ymd wd
—t

w

o]

[7,]

L

-

L5 0 vt et o e ol et v OV O 0N O 0 D O UM IV N VY
b

Q

Z O TN O M T DM P WA, G0 OO e ML I
= 9l 0] =t g v g ed NV AN N TN
<

OF POOR QUALITY

ORIGINAL PAGE 15

A-45

Ko . J¢C

ITHIRD

ISECOND

~

IAO MENMOC #PES IF IRST

ITYPL

13 11

27

ILIM
6

JLIM
6

ICLTIM

KCEL
)

JDEL

ICEL
1

36

Pl alal o Eala Do IaVIatRatiat i RaVEL - g g% L5 b JUo TV, R¥ RN <FV IV o]
= .

-
i

»
&

Lnhantaad ol <LV e RN RV oAV AV JULTTLYVATT TV RPARE U 5 J Bt L 2

-l
-
-
br]

ﬂ123456123&56L23&56123#56

=
—

.

L

S N

[P R Ul p - TRtV RAN] oL JTRIVR S Lo PN STRRVAT SR SN JTLRTEY Y, 414
L.

o=}

x

E -

oo gt o] ol] et P e A W] e W e el W]] ot] yoef vl] el
(2] .

=R

pin |

w

L

|

€ vt w4 el vt o O\ OV EN QN O T MY MY V) VYN Y W ST ST ST T
>

(8]

EeitNMFNDONOROONM IO OR e NN
o0 bbb ke Lo Lol ol o Ron L o VTGN PY VRGN

N

A-46

Ko -JC

ISECONC ITHIRD

IAQ MENMOL APES IFIRST

ITYPE

11

13

27

ILT¥

JLIN
6

4

KOEL ICLIM
38 1
CYCLE" UEI

IBEL JDEL
6

d ol v el ol gl e = e e e Ot et D e e D e D) vl e Dt e D v e e T e et et e U et el S e e U e e O T G T WS
¥

e L AU ST I N e = (U MMM G ST NN A WD W S e DO M N T NN N R D O ST N

Fl??GGGEZZESICG?_62::./_5151..n........u.c..u,c1.5141.&.3.&.03C393929FCEC39281
. Lo = I I L B B T~ T B B o B Do T T I B

[s
[*¥]
P 0 et O e OV O 4 OV e D OV B e (S 3 st O Y e O\) = O Y P =t O M Rt DN M 1= O I I vt I P O Y e D 3 w0] vd ol vl oy e

"

Wt) ol e el v ol e v ol g vl (N O O OOV O T O DN DN O O DO U OV (8 DI MYV VTV VG RO N RO) N A N MY S N R VY o S -

AN N D MO A M e MDA, DSt UM FUND P DN O i M T UMD, VOO et (NN INOMN TN i ry MYy
=t el et et e wmd vt el ot v OO DU OO ANV OU AN A O MIMIMI M R I N E N o o o o o o3 ol o S SF DM

NUM

e L L VR TAVERT NE ST NENTE P SN PEFNT L S NTRRE SN PE TN JEIV VoI o U, FE XTIV I TR RV - T TV ST RV- IV IV IN-JY. IV, JV- 8

A-47.

Ko Jc

ISECCKRC ITHIRD

IFIRST

ITYPE

IAQ0 MEMOD 2PES

27

11

13

TLIM
[

JLIM
6

€ 4

1

CYCLE

ID%% JDEL KDEL ICLINM

)t N I MNP NI (M G IS NN W WD
L4

-3

x

Tt et A AR OJ OO O NS S ST T OO OO D
L- 4

=

™

nad vt vt e DD D DD D NN VN LN - T P T T
-5

e

L)

[

tad

Vv

e vt v O N O DO ONDIIED QO P o v ol G WU MY O N O LY
. el et - b

0

o

b

o g v e v)] T o o et N] o] T e v] o g g P
iy

8 §)

=

v

v tvd et et (0 OU N O OO O NI VG MG N T S8 T T T T

N TNORTONO. 4 NM G DO DN IM
vt T e o et et o e OO AN O O

NY

8
ORIGINAL, PAGE
OF POOR QUALITY

A-48

KO JC

ITHIRD

ISECOND

IFIRST.

IA0 MEMOD #PES

ITYPE

-y

13 " 11

27

IL ¥

M
b

JLO

&

KDE% ICLIN

IDEL JDEL
1 3e

et el el wah et v g e O 0 0 OOV OV OO O OGN DU OO O (U NPT ST T T T T T T PO O D0AD D

AL

K’

L11111111111166666666666666666655;55555555555555%&#&445
L -4 . ,

-
-

drtvn By el 1A LD WO et el e QOO M M) o T PN D WD e v = DO MM M ST NN N ORI M T IND

L

>

-t

[T

w

vl

L i OO €00 et o O LN MO S L M md WD O S LMY GO0 ST O e N ED G0 e NN D W0 T O P NGRS BD v 08 P IS 00 On £t KD o
W v 4 L] -4 -ttt vt vt

o

o

w

i INSTRRA N W L TV RS R AV R V]] 1231231a431.:(31../._31r/.:.\ulz—.\ulf{_31n{_3123123111111
Lo]

1 5

=]

7]

(MY

= .

hx g P e g per ey N T NT VT VTN TN TANT NI VT NINT S NENENTSVEN TN T L LoD Labl o Dt gl g laa L b gl sk g B b i
D

[)

A P TUND P O D e MY g VDN o O St ML N DM D O D AIMFUIO M DO O e Mg N D RO AN
= e e L e TS ATV AN TN TENION NTSVISNT e S DT Dt bt Lt Lt I 0 - . s 0 R L AL AL AL AL e
z

A-49

KO JC

i1 THIRD

ISECOND

IAO0 MEMOL #PES

ITYPE

IFIRST

13 11

27

ILIM
6

1CLIv JLIM
4 6

KDEL
3¢

1

IDE% JOEL

l._.....9._1.?..1.21.2121?"23&.23523423&.?.347_34L.Srocu.srn..u._b5455 L gTalValt JTa R¥+ RN o RN RV« TNAJT N 4]
q,

e
=

.L.u.122_..:_5&..4556611122?333.4.4:4555666111222333 T T AN AOAWD O M TN
= !

=

-
L1111111111116116116116116116115115115115115115114#44#4
L. 4

=

-

T

ut

ur

Lo el 4 e v €2 o 40 €3 O M EY O M P et G DD T INADHD SO D MY ot L0 P v DN O 3 o3 TN WD QB0 S M v 08 B B O 00 O U ol P 02100
[P —4 L P] el o | - — v i

o

[+

wd

ot LN vt —.L.I.?_lr/_1«(121a¢31r{31n£31231r(:...).1231231—(31n£3121u1ﬁcs T Y e O e e el e
[]

w

=2

v

ud

|

Cy vt et ot 111111111222222?_22?_22?_22222333333333333333333 ST <F =¥t o
-

o
H123456?8901?3#56?390123&56?890123&56?8901234567890123#
= e v e 7 et Aty =d WA OGN DN EN OV AU DU SN T N RO TN TN VT I WG oT T S S S ST <3 S U
=

ORIGINAL. PAGE IS
OF POOR QUALITY

A-30

KO JC

IAC REMOD #FES IFIRST ISECOND TITHIRD

ITYPE

11

13

27

ILIv
ot

JLIM
b

A

KBEE ICLIM

JOEL
6

- e i PN S UMD A e ed CU OGO MY NG R ST o0 U N YA D WD o et e e N AU O M N IV ST O ST NTIOTN WD WD WO w1 MY 2 UND
3

>

] T et gl vt e et et D v WO v et 0D v D e et WD et D e et 1 e e U e U e e U0 el e D v e U e T T ST T
-

b

|

-t T O e N el OV v O OU O VYT O MY ST O N ST OO M O O o PN AD 3 VD T WD o 1D LA PN WD WO WD D WD D
=L

-

-t

e

wh

72

L e U Y et OJ QOO YOS (VD DU NI D v VT P = O W O OO N b v O - 00 (OO O O Y P On OO T W G0 v M P ot O o 00 v S 1 NI DI O
(™ - - -t —t — - - - -t — - = -
[me]

a4

u . .

e = O A e O 1 0 e W DN e OO e O N o= DU) =t O P e OU WY et O 90 e O) o4 D) wd AN PO) ol O 1) r=d DN B0 7 0N YY) v 7 o] el vl ot
It .

[+ &]

-

w

[}

-t .

L3 vt ot vt e wed vl vl ool el et b4 O G OJ OO OV DU QU O D O U OGN U (UM MM P MG RN M MM NI M VN VN o =T T T o
L.

W

~

EmtSMM TN oMM N O OO Qe NN OA . D O~-MMINO DR O N O S M ST
LR BTl ol T L e P R S I T VEANERYE R SVIANTANTAVESNE o Lo g Lag Db lodlad o tobdy gl o BN JU U 0 I8 JIC QN U PR JiRITal A ol R)

NU

AGE 15
ALY

ALY
Q0R €

ORIGIN
OF ¥

. A-51

KQ JE

1A0 MEMOLC #PES IFIRST ISECOND ITHIRD

ITYPE

11 ic

i9

7
IVAL JSVAL

ILIM

JLIM
14

5

49
SUEITER

7
CYCLE

IﬂE% JOEL KDEL ICLIM

et o el wad e e wed e G 0 I O MY M, O MRV BT UV S MO0 WO D DD O

KV AL

ol e el et = T G T T o B B P P e Pl NI TN M I MDD DD DD D D

YA O S A D P v DU P WD P v B MY SN WD Rt MV WD e e O M LN WD B

WL Dot NN UM NG P NOA LR OO N QN M M S D e O
- - -

OFFSET

Pt wpnf vl v et v od ey el] e g o] ot] e o e]]] vl) P e Ty

v et et O DO O NN (MY I M o A i & dalial a7l g lig TVl

E v JM DR OO et MM ND R, D O =i M TN D e DO D i M 3 1N
vl ol el et e gt g o] w1 AN I DY O OT OO DI DN DM NI

NU

K9 J7

IAO0 MEMOC 2PES IFIRST ISECOND ITHIRLC

ITYPE

19 11 i1c

-

KCEL ICLIMN JLTN ILIx
49 1 5 7 7
SUEITER

CYCLE

(IDEL JvEL

A-52

el vt et = et el o g el oo el v vl e S T e v o T
L3
=
..lLll._. £ M PO O B B rt el IO M S LN WO D
Fd
-

“7...3_1. OB v) OO O A I SN Ot B A O P
> .
L]

OFFSET

€0 Pl I CD P i) MO ONAD WL ot D0 U U <3 =L 3 00 o o)
] —t

g UL O ol O o A0 v O o O g U ot Dt N vt O 70 D vt O wed O

Ll et L e L e T P VLN YT\ FNT NIV ENT NN TNT N

X ot N M D a0 O8O vl DU 2 DD b 00 D et VY LD
N b ot el e et DU O IO DU R AW

NU

[3

B R] Y T L e T T P L e PP RV P IY o ol o B Ll
B oy emd oo O O O I 0 o o o LS LA WD o i e o vt O B 3 A o S LN D D P R et DU O M VS o o WU DD e e

UM A M LA MY WD M A N T UM 1M 2 A LD D MDD BN WD D 10 A D e a e WD A0 e

£IE5 P AL M Ot €3 07 00 A0 LY TN 94053 O L) P LY o D E3 25 P ADH MY CNTIER LD DN e O BN o et GO G0 P o V2 E0 D MO T N
L] - i - L]

ToetEn) b O T £ 1) P CTIVY ot DU Y 958 U 1) ol O WY o O3) 9 L ot T rmd E PV g A0 900 (0 md DN w0t O 7md T wetly TN DI =4 O

SO MM M I W MY NI MY TV NS VI8 M3 I MM VLI W AP A o o WP o0 o o S S SF P AR T innnin

P 0 O 3 ot CUPT o VD, OO GAGD #44 O o UAAD P SO 08 1 =4 IUME At 14 WD b G0 03 Lt UMY T LD I SO et DT TUNNR
I 100 IV L LR PO M o o o S ol S8 T o oF 1N LA D ADIAANAS DD D WD NID WD WD P P PaPebe e

JC

X0

ISECOND TITHIRD

IFIRST

IAO0 MENODD ¥PES

1ITYPS

11 10

19

LI
7

) 3 7) 7

CYCLE SVEITER OFFSET

iBE% JOEL KDEL JCLIM J 1IN

A-53

M]n B 0D I e OB D e PN U

x

ad #rl et DO E O U MT I M N T

JYA

Lo lalal ol loTo U FULE S I &8 2 T8 L LN o o N L

VAL

WD = WD O N e D OO P D CINO I v
- -t

ol ot T 0] e ad Wl e wd ol e P]] 4 o vl el

ol il et g e el et 4 O O IO L) DI MIMI NG Y BN

» UM S ND b O O3 O i UMY U D 0D O O vt
el T e el el vl e 0 DN O

NU

N ST LD N et BT U D P

A INERA AN B BDWD O WDD

M M ML B MDY O DD DD D

L1EI o CHHD A o DV O et
-y

3 g el e g el v g el e k) e v

O A ST SN T AN RN

MM NI DD N g N
TN D DU O DN O IV a0 Y

Je

K0

IAC MEKMODD »PES IFIRST ISECCND ITHIRD

ITYPE

ic

i1

19

JDEL KDEL ICLIN

ILTN
7

JLIN
- 7

7 5

49

EDEL
1

A-54

..l._-..ll 1111.1.111..1..1..1..?_2??.22?.?.?_222?_9._3333335333332.333333335555555555
3

x

M_l.ll ATt et B P e ST T AT T o T AT F AT T AT B BB P b e B P B BB B BB P B b i e Y NG IV MG N N R S
-

-

M_llz AR ST 1A NS D P b vt w4 E BYR VD 2 LU U 000 P P vl vt g SO O N MY o o PLOV A D D WO P B ol et O MY -3 < LV
= .

L]

[,

Lt .

v 1

Li G IO MO S U ot A0 T P Y UV O 8 N 223 0 U ot A0 D e 13 T 60 0 e O 49 00 €3 o G UMD et L0 €0 o et 1) 00 00 O R V) K o 8 LY AR D
L - -t -4 [

u i

o

[7Y) -

1 el O et O P00 ot T o L) 0 b ONF g 0 8 DNt D e C0 9 000 o) 0l At £ 10 i (U 1 4 (4] D 8t DN)99 O 17 md 00 I NI YT 99 D) md €k D8] el D ot 8
-l

<]

=2

v

Wl

od

O vt ek o vl gl et iyl o el o o= 00 O O DI O OJ B DU O OUOJ (U SR MM D NI NN Y MEMIIVTNL T N NININ N O AP o o o o o
D=

w

T O UG PO Q8 (D v DU il U AD P (5 O O e ST g WD e, 90 O8O oed D P WD P RO R (UM 2 1N D

-0 o
11111113112222222222333331.331.3.-.i.u.-..niiiww—.w NPT D OO0

MR UYLA

Ny

ﬁm
=
{4
A=)
=2 A
3

g%
u%

NP NS DD D DD OB 0 s £ L (R
MM MO DO G O WO WD D D 0 WDAD U B O D D

AL o P oot O DU M3 8 o U WL D WD WD, P

Tt O ORI bt YRS O S Oy I G0 20 CI UM v 00 U DU,
Ll

T 0wt O MY N P I IO v SN P Y

- N D RAWT AN AL WA A

S LI O DI (N VD R SO D N T
\DAD AP 0 WADWIADAD et Bt b b P oo e (3 O W G5 <D

Ko JC

TAQ MEMDD SPES IFIRST ISECONC TITHIRD

ITYPE

11 ic

19

L
i

7
IVAL JVWAL

ILi«

JLIM
7

45 5
E SUEITER DFFSET

1

7

T0EL JDEL XDEL ICLIM
NUM CYCL

A-55

SRS TR O e QU A e PO N MR R M M BT IDI R IR MY 1 R o e MY L0 P N U s

KV AL

e O CUMI A 1 P D e Bt et D MY G S LY VNS D P b et ot O YOIV o o F AL LA D

W o g ol ke oyt ot o e bl e o e e Y ot v Tt e vt o el B o B g et

GG OJET G e UMY 0l O O WD o LA 9 €3 TODE o TN O e U PP et DU T DR U8 [LMY N wed d €3 €O 2400 o TN
-l L] L

e O vt Ol O T i o Dt O OV ot Ol v Ol vt O ot 00 v S0 U D S5 N 0 (DI ot DU 14 CL) YY) 0 D T et O,

e i et et o vt g e ot D L N VO B B0 NS00 3 CU I M ML IR b MY Y) R MY MY B TV

= TP LN A e (0 O €5 7 UM o U\ e) 8 D et DI AU, GO D -t O o LTVAD o €0 08 3 wi NI o Y
0 o o 9t ot st T £ NS CN € EIANIEUENS DR T) O) 90 V2000 o ol ot o P

:

i

H

Qasfhnrﬁ.rosrbﬂ.,h.sas&sfos PP AD e WO (OO0 e

Tat gl 4
6??7112233&555667?1122334&5566??
. i
1?.1..13131313._\:31313161516161 D Wi D 4
i
L1 NNtV P]

GO DD F OICI O i I =D DD TN O W DT
i vt
i

OO O

} Ay e DU N 121212\-2&12121212121212

m
_3333#ﬂé#&#ﬁiﬁ&ﬁﬁﬁﬁSSSSSSSS555555

@ D e 00 OO e OUML VDN O O v DM o N0 8
PILOE S W DN AD (O W ADHD W ADAO W WD I P e P B P

[V e R eley] 3 e (N
[STl et fa L R

i

A-56

APPENDIX B

SECDED RELIABILITY IMPROVEMENT MODELS

B.1 INTRODUCTION
The reliability of a computing system can be significantly improved by employing
single bit error correction and double bit error detection (SECDED) technology,

which is thus used by the FMP to increase its reliability.

The report presents a model of reliability improvement assessment of a module
operated with SECDED, It can be easily embedded in the system reliability
prediction model. The final result is shown in a mathematical 'expression. The
bounds of the reliability snd the improvement factor are studied. A computer
program coded on FORTRAN is also developed and validated, with double

precision computation,

'B.2 MODEL
There are n chips in a module; a chip has m bits. A word which consists of n
bi;s can be stored in this module by addressing each bit to a different chip,
Without SECDED a bit failure induces the chip failure and the module failure as

well, Assume the time to failure of a bit is exponential distributed, then the

time to failure of a chip and that of a module are also exponential distributed,

ORIGINAL PAGE IS B-1
OF POOR QUALITY

In some cases, a bit hard failure could cause a chip failure with probability
(1-5). We call it a catastrophic bit failure. Otherwise a bit failure is called
non-catastirophic bit failure with probability S. Assuming the MTBF of the
chip as a time unit, we have that the MTBF of a bit is m time units and the

bit failure rate is 1/m. The MTBF and the failure rate of a module are 1/n
and n respectively. The expected‘ time between (i-1)th and ith bit failure, the
expected time to ith bit failure, the probability of no two-bit failure in one
word and the probability of two-bit failure in one word are stated in Table B-1.
The module fails at the ith bit failure only when there is neither catastrophic
failure nor two-bit failure in the same word before the ith bit failure, but
there is a catastrophic failure or"two-bi‘t failure in the same word when the

ith bit failure occurs. Since the fransient and catastrophic failures of a module
at the ith bit failure are mutually exclusive, the MTBF of a module with

SECDED is given by

MTBF_ = (1_3){__L + _m }
m n

rmn~1
+ m n{m-{k~1)) (i-1) Sn(i-1)
i=2 Limy mn-(ked) kﬂl mn-(k-1) | 1-8) + mg
m 11 m
*S Z = ||] ntm-ke1))
res o Lok N i a1

3
:
s

E~-d

SI OV TV¥NIDIH0

Table B-1. Expected Times and Probabilities
ith bit failure 1 2 —_ i-t i —_ m mt+1
Expected time
between the (i-1)th m m m m m m
and ith bit failure mn mn-T mn-{i-2) mn-{i-1) mn-{m-1) mn-m
Expected time m -1 m i m m m mt+1 m
to the ith bit m mn-1 > z > 2
failure mn =1 mn-(k-1) k=1 mn-{k-1) k=1 mn-{k-1} k=1 mn-{k-1—
m
mn
Prob. of the ith
bit failure being S L S S S -8
non-catastrophic
failure
Prob. of the ith
bit failure being 1-S 1-S 1-8 1-8 1-S 1-8
catastrophic
failure
Prob, of no. two .
bit failure in 1 n{m-1) n{m-{i-2)) n{m-(i-1}) n-1 0
one word nn-1 mn-{i-2) mn-(i-1) mn-{m-1)
Prob. ot two
bit failure in 0 n-1 n-(i-2) n}i-1) n{m-1) 1
one word mn-1 mn-{i-2} mn-{i-1) mn-{m-1)

From the above expression, the reliability improvement factor can be shown ds
n, MTBFm. When S=1, we have the upper bound of the factor and MTBFm. As
5=0, we have the lower bound of the factor and MTBFm, if m is large enough the

lower bound of the factor is 2.

If the expected time between the (i+1)th and ith failure is fixed as n time units the
expected time to thé ith bit failure is i-n, The MTBF of a module with SECDED

is given by:

MTREF ~ (1 -8) g—
m n
m i~1] '
i ‘ n{m-(k-1)) (i-1) _ Sn(i-1)

+Z_: n]'-:I mn-{k-1) S (1-8) + mn-(i-1)

i=2 k=1 ,
PP = m

n Z mn-(k-1)
k=1

Similarly as S=1 or 0, we have the upper bound or the lower-bound of the factor
. and MTBFm, respectively. When m is large enough the diffgrence between the
M’I‘BFm's of the two models is negligible and so is that between the factors. The

program for computing the reliability improvement factor are given in the

Table B-2,

ORIGINAL PAGE IS
OF POOR QUALITY

~ PN

Wl
o
=2
Lt -
b frofn = —
- aded et [-,
Goa.f.a. Liw
2rZZ- | &)
It D] [
ot X b vt O = T
oi 11w a [+3]
i<t o)
(=1 } | 2 A | [= L
| d -4 BRI | | e o
O B] 7] - =
-r - -l [+
L 7 L - e
- < e o -z
e (5] © - L. ad
£ @ [} =
id 174) Q - o
L b @ =] L - St [
W o W oo -] tod
- [= A FE Y Lt o W (4]
D W D oW * 4 - £ X
o -l ald = p=- T [
e O MLl wal CQ e I3
X =~ w=OngD L e -l
b Ul O - ST BT -
-t (% 3= (T Ere T S
- bl) - [
T bl e e | o i d ke
- O o EX —t Zf et et
o d ot =] Oy « -l
et LIzl x =
o B WL e Zrl W [~]
-« > ITFOD W - O)
€ AuLIOO - L L B L x
w * OO0 > &8 -l P
U o EoXEF [— DEY =T ol
”~ o € =0 x= - odlieds w4 =0T
o (2 1-RFEI A | oo gy g i Ly, = -
-t [Aa =TT -~ 20 Lt = =0
[T Wi L e e o -] - e el LIE el
- 0 o <« fad vt e b ot = A
w QD L»llu -~ 8 [« 1o o o W
» WS 100 M -2 T =1 S~} 4 L1
x IrID Emy] [L.]78 We DD Q. LI T
. IEx Ol =] - it P & AT Wi
x [TEL] D - [T9 m oLl w DO L
-t r « frol ol ol x= [22 20 | L L R LI -OD
(&) bt waxX X |] oo wl 5 L= Q e DI -0
- - L] - X -t il b=l LD
L NEt Lo Wil D= w x -l Pt Ml e U
o Lt Ol m o ac W U O L e I Dt D
tuf - N oz x Ll i Ll DXL OXT ® L] oy
L] - 20 " QDD P | L’z * e] [nianet pndBE] 4 1 T T
B.b=er ML L4 W x oL s, WG o
[Th eI OWEo Ead o 22 [FER 4 SUICD 5w D) el L, OO W €D Ll
= QM) - CXEZn=E B N W ELIED] G DN s O 2
ol (X G ™ LI T b 17 H opuibd e S M N N T bt MM L
[TR Ll L Lol i o W ? INT-TUPFEHP*ITBE AR
= WD LWV bt e s, @ ¢ e Dt NAD0 TEDXE
[~ (L) T COD |} GIIDOSPHUFGQGiG_=PRGTUNUN
[} 4 (=1 3 B "ot ot ol 2 1) t@l s JLIC I) | e v Sty il
€& o RTTETRTES- S T BTV T T S T 1T, TINE 1o MY, TRVR o [o= T S T S]
- B LTt Nt 00] AL | R N O ke el S GO
[+ EEEEIIU ™D Trted Ot L Dot DN, Qe LB CwllE
Ll [%] IFFFSIPPSSSDSPIFFPPPSPSFP!PTSCFRE
pe - [=] rxr xr x [~ B =4
=EXZ . D - L& o b Ol
o w [S A R) 1 Qep
) [T
o0
QL QLLOLLOLOD W (A (S & N % O LD -l

vt O WD e G0 ENED wd MY LANAD e OO D et UV NAD P O O i UM IMND e Q0 O\ O el i\ M W MWD
L 0% 2 O E D (OO et vl] e il e ittt et N OO OJ O O QGOSN O VIV MIMIMMI MM o o o o o
[=lela]lalele]elelolefolslolrlelolelalelriniclalolelelalelalrioleel lalelelelelelaleloatlalals
[elolelalolalelelellolelalelelololalele ol clw]lelelalalmlelolelelele ololelolelelotelalatd
T i Bk e T e e s e ey T Y Tk My e ek Rk W T e Rk Dk R Tk Wi e S W e Bale Tk e W T e e T e e e B W R 0k

O LI LILICIECI LI CICICY £ LD CACIED LHOEIED 9 CLI0 6 LIRS LI I LI CILI CICL) CICILICY
07007 0 A O 02 O- Qo O 0 02 07 0 0 3 010 0 O G 0. 0 £ 00 A 0 0 O 0 0 0 0 000 00 O O Qe g 02 Q2 2 0

oL %D Wl oL T ol ol A ol wl L wX w0 L oL wL e L X o e o oL o L ol e ol ®E L ol ool AT ol el oy <
o o S o o (o o o o) Gl o £ D 0 o () € Ko o o o o € o o G) (i K o) (L R WD O R L I I I L D

ORIGINAY PAGE IS
OF POOR QUALITY

http:IF(SINt.LE

APPENDIX C

SPARE PROCESSOR

INTRODUCTION

In Chapter 5, the reliability and availability calculations make use of the
switching of spare processors. This appendix presents the method of
switching in more detail, to support the clairhs‘made in Chapter 5. First,

a discussion of the hardware that needs to be added to support the switching,

and second, the implications for processor number are given.

SWITCHING

Figure C-1 shows a switching network, which amounts to one additional level
of logic at the processor side of the tr‘ansposition network, This network there-
fore increases the depth of the transposit:ion'network from ten levels to eleven
levels of logic. Switching is elecironic, under software control. The

spare processor can occur .at any location from processor 0 to processor 128

in the cabinet. Figure C-1 shows the first cabinet; the others are similar.

No switching is needed inthe connections to and from the control uanit. All
outputs from the control unit to processors are broadcast to all processors;
the inputs from processors to CU are either ANDed together with a 512-way

AND, or ORed together with a 512-way OR in the fanout boards. The fanout

ORIGINAL PAGE IS C-1
OF POOR QUALITY

-9

TRANSPOSITION NETWORK

3 OTHER
CABINETS
S
L] [] []
128
PER
CABINET
. PROCESSORS ‘ §\\
NUMBERED: 0 1 2 3 \4§ 5 e o ¢ 127 128
N
N
L ¥ . 4 k—'—'_— . = g J
BELOW SPARE ' ABOVE SPARE

Figure C-1. Switching of Spare Processor in One Cabinet

g1 mOvd TYNIDINO

ALFIVOO 9004 40

board needs appropriate input from the spare processor to form the correct .
512-way result. For example, in forming "all processors ready', or in
forming "any processor enabled”, the correct result will be achieved by

having the spare processor“s "enable' bit in the FALSE state.

PROCESSOR NUMBER

The PNO instruction produces pr'ocessor numbers from 0 through 511 in the

512 processors that are switched into the systemn, independently of which ones
are spare. Each processor in the cabinet has wired into its backplane a
number from 0 through 128 Each cai.ainet has a number (0, 1, 2, or 3) set by

a switch at the cabinet Tanout board. If it were not for the spare processor,

the cabinet number would be concatenated with the hard-x;vired number in the
backplane to form the processor number. As it.is, processors above the spare
processor subtract 1 from their hard-wired number before concatenating it with
the cabinet number to form the programmatic processor number as part of the
PNO instruction, Thus, there are ten poles on each switch shown in Figure C-1.
The c;ight data lines pigs one strobe make nine poles for transposition network
use, plus this bit for the PNO instruction to use in calculating the processor

number.

SETTING THE SPARE PROCESSOR SWITCH
The setting of the spare processor switch is done only at a time when the array
has halted. Switching is controlled from the diagnostic controller in response

to commands from the host. Hence, the FMP programs are never aware of

C-3

which processor is spare, and as explained above, the FMP programs will
always have an FMP of 512 processors, numbered from 0 through 511, on

which to run.

