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CHAPTER ONE
 

INTRODUCTION AND SUMMARY
 

1.1 INTRODUCTION 

Burroughs Corporation is pleased to present this report which is the result 

,of work carried on under an extension to contract No. NAS2-9456, a preliminary 

study for a Numerical Aerodynanitc Simulation Facility. The primary objective 

of this extension is to produce an optimized functional design of key elements 

of the candidate facility defined in the Final Report (1 ) of the basic contract. 

This is accomplished by effort in the following tasks: 

* 	 To further develop, optimize and describe the function description 

of the custom hardware. 

* 	 To delineate trade-off areas between performance, reliability, 

availability, serviceability and programmability. 

* 	 To develop metrics and models for validation of the candidate 

systems performance. 

o 	 To conduct a functional simulation of the system design. 

* 	 To perform a reliability analysis .of the system design. 

* 	 To develop the software specifications to include a user level high 

level programming language, a correspondence between the pro­

gramming language and instruction set and outline the operation 

system requirements. 
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The results of this effort are presented in five separate chapters: 

Chapter 2. Functional Description includes a summary of the system 

parameters, block diagrams, descriptions, of the major elements and 

the instruction set with detailed timing. 

Chapter 3. Software Issues describes the extensions and restrictions 

on the FORTRAN language and compiler at the functional level a 

discussion of converting statements in extended FORTRAN into machine 

language and a statement regarding the operating system. 

Chapter 4. Simulations presents the models, metrics and methodology 

for conducting the simulation along with preliminary results. 

Chapter 5. Reliability includes two sections. The first presents the 

results of an availability analysis of the systems and the second present 

further discussion of the error detection, correction and control to be 

employed. 

Chater 6. Trade-offs delineates and discusses a large number of 

,design and operating factors for which reasonable alternatives exist. 

While the information in this report is designed to stand alone, it is also considered 

to be a supplement to the Final Report (Ref. 2) of the basic NAS2-9456 contract 

where appropriate, reference is made to this report rather than to unnecessarily 

repeat previously reported information. 

In addition, it should be pointed out that certain terminology used in the previous 

report have been revised. The new terms are: 

. Flow Model Processor (FMP). This is the portion of the system 

previously called the Navier-Stokes Solver (NSS). 1-2 



" 	 Processor Data Memory (PDM) was previously called Processing 

Element Memory (PEM) 

* 	 Processor Program Memory (PPM) was previously called 

Processing Element Program Memory (PEPM) 

* 	 Execution Unit (EU), the logic portion of the array processor, 

formerly called Processor Element (PE). 

The 	following sections summarize the chapters in additional detail. 

1. 2 FUNCTIONAL DESIGN 

TheFMP is an array processor of 512 processors, a control unit, and 521 

modules of extended memory, as described in Reference 1. The major addi­

tfons found in Chapter 2, to the description of reference 1, are, first, the 

provision of SECDED, instead of parity-plus-retry, as the expected means of 

error control in the processors' memory, second, the addition of four on-line 

spare processors as definitely a part of the design (they are mentioned briefly 

as a possibility in reference 1); third, significant revisions and additions to 

the instruction set; fourth, the restriction of the extended memory instructions 

to fetching 512 words (one per processor) per instruction, (the earlier description 

had EM instructions fetching 512 X N words per instruction); and fifth, provision 

for special hardware for computing any floating-point variables that are not 

members of a vector. 

Chapter 2 includes diagrams and figures of every element of the FMP. 
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1.3 SOFTWARD 

The software chapter covers -the FORTRAN language, to a depth necessary to 

cover simple test cases, discusses hand compiling, and is charged with the 

task of reporting on progress in defining the operating system during this 

contract extension. Three and only three extensions are visualized for the 

initial FORTRAN language. First,, the DOALL construct declares to the compiler 

that the iterations of a particular loop can be done in any sequence, or all in 

parallel, without affecting the result; second, declarations of several types of 

use of variables are used to allocate those variables among the different types 

of memory; third, certain system library functions are required, because of the 

parallel nature of the machine, that would not be required in serial FORTRAN. 

None of these library functions are required for the initial benchmarks. 

The operating system is extensively described in reference 1. The level of 

detail in that document is such that the effort of the contract, extension was 

spent more fruitfully on 'language definition, compiler considerations, and hand 

compilation procedures. Thus, the operating system discussion in reference 1 

still stands as the best description so far produced of the operating system of 

the FMP. No attempt has been made to update that description for this report. 

1. 4 SIMULATION 

Chapter 4 discusses the separation of the simulation effort into two levels, 

instruction and FMP level, and the system level. Metrics for each level are 

discussed, and SUBROUTINE TURBDA has been selected as the metric for the 

simulation done in this extensionis also given. The BOSS simulator, in which 

our simulation is being done, is described briefly in chapter 4. 

1-4 



1. 5 RELIABILITY 

A detailed computer model for the reliability of the FMP was run. The results 

of this model bound the availability at 96 percent being the lower limit of 

availability using pessimistic assumptions, and better than 99 percent 

availability being achieved under the most optimistic assumptions. The use 

of spare processors with operating system automatic restart (assumed success­

ful for some fraction of all attempts) produces a very significant improvement 

over the model that has no spare processors. 

The reliability section also includes a discussion of the use of SECDED in all 

memory, of the process of "scrubbing" out the errors that spontaneously arise in 

CCD storage (DBM), and. of other error control strategems that are used in 

the FMP. 

1.6 TRADEOFFS 

Chapter 6 discusses tradeoffs in many areas. These include ease of program­

ming versus execution efficiency, where one wishes to have most of both, 

word and instruction formats, error control methods versus their cost in 

reduced throughput, several specific design issues, relative speeds of specific 

blocks of the system, alternate methods of supplying the floating-point scalar 

capability, and other topics, with a final section on the expansibility of both 

the specific FMP, once built, and the expansibility of the design from which 

it was built. 

1-5 



CHAPTER 2
 

FUNCTIONAL DESCRIPTION OF NSS HARDWARE
 

2.1 INTRODUCTION
 

This functional description is arranged in several successive
 

sections. First, a brief system description of the SAM that is
 

the baseline system- for FMP is given. Second, a brief list of
 

system parameters is provided. Third, the elements of the system
 

block diagram are each described in turn. Fourth, the instruction
 

set of the FMPis given, together with its timings.
 

In all of this, it has not been felt necessary to repeat material
 

that is found in the final report of contract NAS2-9456, except
 

very briefly to refresh the reader's recollection. It is pre­

sumed that the reader has first read that report.
 

No design should be considered to be necessarily final if further
 

investigation should show that the machine performs better with
 

the feature modified. Chapter 6, "Tradeoffs", is a discussion of
 

many of the features that will be studied in simulation during
 

phase 2 (time permitting), and which are therefore likely to be
 

modified in the direction of higher throughput if the baseline
 

system is found wanting.
 

This functional description is intended to provide the base for
 

the information input to a performance simulation of the SAM of
 

the FMP. Some of the information, such as error correction cap­

abilities, is included for completeness in spite of the fact that
 

it has no apparent involvement in a performance simulation.
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2.2 BASIC SYSTEM PARAMETERS
 

Most of the basic system parameters were covered in some detail in
 

the final report Ref. 1. They are summarized here along with
 

additional information of specific interest.
 

2.2.1 Logic Family - ECL is the preferred logic family. Final 

selection of circuits for implementation at this time would only 

lock us into choices that will become obsolete by 1979-1980 when
 

the design is completed. We do not wish to preclude the use of
 

up-to-date technology in the actual design. If the final design
 

were being implemented at this time, Fairchild's 100K series would
 

be chosen, together with compatible memory circuits. The chip 

count projected for 1979-1980 is the one assigned to the baseline 

system. Confidence in this package count is supported in most 

cases by the very similar chip count, of circuit types already 

available in 1977 (usually ECL 100K), which are also given. 

2.2.2 Clock Rate - The clock has been assigned a 40 ns period.
 

The instruction times, given below in terms of this clock period,
 

are compatible with the instruction times derived from a prelim­

inary processor design using ECL 100K.
 

2.2.3 Cabling Methods - The same flat belts used successfully in
 

prior projects in Burroughs for transmitting high-speed signals
 

with fast rise time and low crosstalk will be used for most of the
 

interunit cabels. Reference 1 discusses this choice.
 

2.2.4 Power - While a number of, comments on power were included 

in reference 1, certain detailed information was not. These 

details are provided in the following statements. 

Switching regulators will be used for the sake of effi­

ciency. A net efficiency of 65% is expected from the total
 

power supply.
 

DBM is provided with whatever power is required to make it
 

nonvolatile against glitches and short power outages.
 

Since CCD is proposed for DBM, battery backup would be
 

highly desirable.
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* The ground return from backplane to power supply is never
 

used as part of the path that connects one backplane ground
 

to another backplane ground. Figure 2-1 shows the ground­

ing arrangements expected
 

* Total power for the FMPis estimated (very approximately)
 

at 250 kw, based on an average of 0.8w for each of the
 

200,000 circuit packages, and 65% efficiency in the power
 

supply. These are for the 1980 projected circuit counts.
 

* Every module has its signal ground tied to chassis so that'
 

there will be no floating grounds when the modules are
 

tested as stand-alone modules. In Figure 2-1 these ties
 

are shown as resistors.
 

A requirement on power supplies employed at NASA AMES is that they
 

must ride through the undervoltage transients produced by wind
 

tunnel motor startup, and not pass voltage spikes. In addition,
 

they should be reasonably respectful to the source. 3&queia ipwer
 

supply configurations-satisfy this requirement.
 

* Motor-generator set. Inertia enables an M-G set to ride
 

through large transients. The inefficiency of the M-G set
 

is multiplied into the inefficiency of the system power sup­

plies. The advantage of an M-G set is that it can be added
 

to a system after the fact, without impacting any existing
 

design.
 

Transformerless rectifiers, like the old AC-DC radio,
 

require a filter capacitor, which suppresses spikes, and if
 

large enough, will ride through undervoltage transisents.
 

The unregulated DC (about 280v) is distributed around the
 

equipment and used as input to individual switching
 

regulators. SCR rectifiers are to be avoided, since they
 

inject noise back into the line.
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Battery back-up Uninterruptible Power Supply (UPS).
 

Of the three schemes, the transformerless rectifier is most
 

efficient, and takes the least space. It also has the advantage
 

that back-up batteries can be supplied to a selected subset of the
 

equipment (DBM, in this case). It is also easy to make the
 

rectification redundant. Three-phase full wave rectifiers are
 

actually six-phase for ripple characteristics. They often need no
 

chokes, and have wide conduction angles in the rectifier diodes.
 

2.2.5 Number of Processors - A key decision in the design of the 

FMP is the choice of the number of processors to be implemented. 

The design presented here is based on using the fastest processor 

that is consistent with the speed of memory built of 16k-bit 

static RAM chips. Projecting 100 ns speed for such chips, we 

arrive at a 360 ns floating point multiply as being approximately 

in balance. A faster processor would yield increased speed only
 

if the memory were changed to the faster 4k-bit chips, implying a
 

four-fold increase in the number of components in memory.
 

Reliability, even more than cost, tells us to keep the parts count
 

down, and therefore to design a system consistent with 16k-bit
 

memory chips. It takes about 512 processors, at these speeds, to
 

yield the desired billion floating point operands per second with
 

sufficient margin for inefficiencies.
 

2.3 OVERVIEW OF FUNCTIONAL DESCRIPTION
 

2.3.1 Block Diagram
 

Figure 2-2 (a slightly expanded copy of Figure 1-2 of the Ref. 1)
 

shows the array processor consisting mostly of 512 processors
 

attached by a switch, the Transposition Network, to 521 Extended
 

Memory modules which hold the main data base of theprogram. Used
 

ORIGINAL PAGE IS
 
OF POOR QUALIT
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as a staging area for jobs not yet started, and as the output area
 

for jobs in process or completed, is Data Base Memory. A Control
 

Unit synchronizes the action and controls the transposition
 

network and the transfers in and out on both faces of the extended
 

memory. The controller for the Data Base Memory also accepts
 

requests from the host processor to transfer to and from the host
 

disk pack file system. The Data Base Memory controller resolves
 

access conflicts to and from data base memory. The Control Unit
 

resolves accesses to and from Extended Memory. There is also a
 

Diagnostic Controller used for maintenance and cold starts.
 

Each processor is self-contained, with integer and floating-point
 

arithmetic units, its own instruction decoder, its own program
 

memory, and its own data memory. In addition to the 512
 

processors, four processors are included as on line spares to help
 

achieve system availability requirements, The use of these
 

on-line spare processors is discussed in Chapter Five.
 

2.3.2 Instruction Streams
 

As described in Ref. 1, the FMP is controlled by two instruction, 

streams, which are created in parallel by the compiler from a
 

single sequence of source statements. One instruction stream is
 

being executed in the control unit; the .other is being,executed by
 

all processors asynchronously of each other. Some statements in
 

the source code result in instructions in both instruction
 

streams. Examples are "CALL subroutine", or an arithmetic
 

statement using an EM variable., and therefore requiring a fetch to
 

all processors from the EM. Some of these joint instructions
 

require that the control unit and the processors synchronize
 

themselves. It has been observed that reference 1 does not seem
 

to be clear in explaining synchronization, nor in explicating the
 

means of accomplishing it. Therefore, the discussion digresses
 

here to a detailed discussion of the synchronization mechanism.
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2.3.3 Synchronization.
 

The process of synchronization occurs within instructions. It
 

involves two signal lines which go from the control unit to all
 

processors, namely "CUready" and "go". "CUready" is a level, "Go"
 

is a pulse that arrives at all processors simultaneously. From
 

each processor there are two lines, "Enabled" is a copy of the
 
"enabled" flipflop that exists in each processor; "I got here" is
 

a signal, a level, which is raised during the execution of some
 

instructions.
 

To explain the process, consider the example of a LOADEM instruc­

tion fetching N words from EM. In the control unit, the LOADEM
 

causes the raising of the "CUready" line as soon as the TN
 

controls have been set to the proper value. In each processor
 

where "enabled" is true, "I got here" is raised as soon as the
 

processor starts executing the LOADEM instruction.
 

When any processor executing LOADEM sees "CUready" true, the
 

processor sends the address through the TN to the EM module that
 

is connected to this processor. The strobe accompanying the
 

address causes the loading of the address within the EM module.
 

An "all processors ready" signal, marking the time at which the
 

last enabled processor arrives at the LOADEM instruction is
 

created for the CU (The logic creating this signal is actually
 

contained within the fanout tree). Using En as the "enable" bit
 

of' the nth processor, and Hn as the "I got here" line of the nth
 

processor, the "all Processors ready" signal is given by the
 

formula
 

All-processors-ready = (1 OR El) AND (H2 OR E2 ) AND ...
 

AND (H512 OR E512)
 

There is also "any processor enabled", the OR of all the "enable"
 

bits.
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When the CU sees "all processsors ready", the CU issues, after an
 

appropriate delay to let addresses be loaded, a series of N "read"
 

commands to the EM module and also issues, appropriately timed
 

with respect to the last such command, a "go" pulse to the
 

processors. In the processor, we load N words under control of
 

the N strobes coming from EM module through the TN. The "go"
 

signals the end of the instruction.
 

As a second example, consider the instruction WAIT. Here no
 

processor action timed to the "CUready" is required, so the CU
 

sends no "CUready". When the CU sees the "all processors ready"
 

signal formed from the "I got here"s and the "enable"s, it issues
 

a "go" to all processors, who have refrained from executing their
 

next instruction until the "go" is received.
 

When the processor has raised its "I got here" line, but before it
 

has received a "go" signal, it is said to be "vxaiting". The "I
 

got here" line is dropped upon receipt of the "go" pulse.
 

In addition to the above synchronization, the CU also has the
 

power to transmit commands. The commands are carried on a
 

4-bit-wide bus accompanied by a strobe line. Many of these
 

commands are used in the diagnostic programs. Ref. 1, p 4-27, has
 

a tentative list of operations called forth by these commands.
 

Some of these commands will be conditional on the "enable" bit of
 

the processor, some are unconditional independent of the enable
 

bit. The only such command that is used in user-generated FORTRAN
 

programs is the command that simultaneously loads the program
 

counter and sets the enable bit.
 

The control unit's command power is exerted over all processors at
 

once, not over individual processors. Processors that do not join
 

in some array-wide operation avoid it by a) jumping around the
 

operation, if it is local to each processor, b) executing certain
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instructions (LOADEM, STOREM, SHIFTN) as noops conditional on the
 

last bit of an integer register in the processor, or c) executing
 

the STOP instruction, which turns off the "enable" bit until the
 

CU reaches some point in its instruction stream that turns it back
 

on.
 

There is also an interrupt line from processor to CU.
 

2.3.4 Starting a Run
 

During normal operation, all data and program for the next run
 

will be loaded into data base memory prior to the beginning of the
 

run. When the run starts, system software in the CU loads program
 

from data base memory to the memory of the control unit (via
 

extended memory). The initialization phase of the program then
 

transfers necessary data to extended memory, and transmits the
 

processors' program to them. These actions are automatically
 

inserted by the compiler and the linker. With data in place in
 

extended memory, and allocated space initialized to "invalid"q and
 

with code files in place in control unit and processors, user
 

execution starts.
 

2.3.5 EM? Hardware Summary
 

The Flow Model Processor therefore consists of
 

* one Control Unit (CU) with its own memory (CUM) with
 

optional scalar processor capability.
 

* 512 Processors, (plus 4 spares) each with its own
 

Processor Data Memory (PDM) and Processor Program Memory
 

(PPM)
 

* One Transposition Network
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* 521 Extended Memory modules
 

* One Data Base Memory and Controller
 

* One Diagnostic Controller
 

All of the above is shown in Figure 2-2 except for the optional
 

scalar processor and the four spare processors. The scalar pro­

cessor is an ingredient of the design which was not needed in
 

order to successfully match the SAM to the aerodynamic flow
 

models. Since the scalar processor was not discussed in reference
 

1, further discussion thereon is found in Chapter 6.
 

2.4 INDIVIDUAL BLOCKS
 

Following is a brief description of each of the elements of the
 

FMPtogether with a formatted tabulation of pertinent features and
 

.a block diagram of each.
 

2.4.1 Description of Tables
 

For each element of the FMP, there is a table of characteristics
 

given. A very short narrative description gives the intended
 

function of the element in user programs. Source of control is
 

identified, and the storage capabilities, both capacity and speed,
 

are also given. Connectivity to other elements is broken down to
 

a rather detailed level, with each group of signals that has an
 

identifiably different function being so identified. In some.
 

cases, such as CU to processor, signals in the same belt are
 

identified as a different group in order to more clearly identify
 

their use.
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The table also discusses the mode of error control built into the
 

design. Some mechanisms of error control were included in the
 

baseline system design in the final report. Some further
 

mechanisms of error control are proposed in Chapter 5. This
 

Section represents a particular state of the design, not the final
 

state.
 

Two chip counts are given. The 1979-1980 projected chip count is
 

the one projected for the baseline system. The second chip count,
 

using parts now existing in 1977, is given only for corroboration,
 

to indicate the reasonableness of that projection. It also
 

represents the chip count of the FMP if design were frozen now.
 

There are also in some cases estimates of the power drain. All
 

these are included only for interest. These are preliminary.
 

They have no direct bearing on the-performance evaluation
 

simulation.
 

"TBD" meahs "to be determined".
 

2.4.2 Processor The array of 512 processors is charged with the
 

task of executing the user computations in the program, namely the
 

floating-point operations on the problem variables.
 

The processor executes code -contained in its own program memory,
 

and accepts-commands from the control unit. Certain instructions
 

(see Table 2-13) are executed in synchronism with the control unit
 

(and hence, by implication, in synchronism with the entire array,
 

since the control unit expects cooperation from all processors.)
 

The actions of the processor are delineated by the instruction set
 

in the next section. Figure 2-3 shows pictorially the division of
 

the processor into and execution unit, a data memory, and a
 

ORIGINAL PAGE IS 
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program memory. Figure 2-4 is a block diagram of the logic part
 

of the processor, showing the independent integer and floating
 

point units, with separate register files for each. Figure 2-5 is
 

a diagram -of the instiuction fetching and overlap machinery, which
 

is explained at length below in connection with the timing of in­

struction execution. The logic portion of the processor has been
 

named the "execution unit." Table 2-1 provides data on the EU.
 

Connections to the processor come from the control unit and the
 

transposition network. A byte-wide (8-bit) data path is found
 

both from (BDCST) and to (HVST) the control unit. The
 

synchronization signals discussed previously also come from the
 

control unit. The 4-bit wide command path, and its strobe, also
 

come from the control unit. The data paths to (STOREM) and from
 

(LOADEM) the transposition network are each accompanied by a
 

strobe. In addition, each processor is connected to backplane
 

wiring that expresses its own number. Of the 129 processors in a
 

cabinet, any one may be the spare processor. Suppose processor
 

no. N is the spare processor. Then the backplane number for
 

processors 0 through N-i is correct, but the backplane number for
 

processors N1l through 128 must be shifted own by one, to N through
 

127, in order that the processors being used by the program be
 

consecutively numbered. Therefore, there is a one-bit signal
 

coming from the switching machinery which tells the processor
 

whether or not to subtract 1 from its hard-wired processor number
 

to correct for the location of the spare.
 

Error control within the processor consists of bounds checks,
 

reasonableness checks, and consistency checks, as listed in
 

Ref. 1. See Sections 6.7 and 6.8 for further checks that may be
 

implemented but at some cost in throughput.
 

For justification of the 1977 component count, see appendix E of
 

volume II of reference 1.
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TABLE 2-1 

EXECUTION UNIT CHARACTERISTICS 

UNIT: Execution Unit (EU) No. In System: 512 + 4 on-line spares
 

FUNCTIONAL CHARACTERISTICS 
Function: This is the logic portion of the processor, all the processor except memoly. 
It executes code that has been wi itten by the FMP FOR RAN compiler, including EM 
address computations, index calculations and floating point operations. 

Source of Control; During User Program: Program stored in PPM, sync's from the CU.
 
During System Startup and Diagnostics: Same plus CU commands
 

Storages; Capacity: 	16 16-bit integer registers 
16 48-bit floating point registers 
Other registers (see text) 

Speed: Multiple accesses each 40 ns clock 

Connectivity to Other Elements: 

No. 
# Path To or From Sig Timing Primary Use 

1 BDCST From CU 8 byte/20ns Receive global variables from CU 
2 HVST To CU 8 byte/20ns Transmit result to CU (global) 
3 LOADEM From TN 9 byte/20ns Receive data from EM 
4 STOREM To TN 9 byte/20ns Transmit data to EM 
5 
6 

CUinstr 
sync 

From CU 
TO CU 

4 
4 

TBD 
edge 

Primarily for diagnostics 
Synchronization 

7 sync From CU 4 edge Synchronization 
8 PEno Wired to 9 D.C. level Processor's own number 

backplane
 

RELIAB ILITY/REPAIRAB ILITY/TRUSTWORI INESS 

Error Control Methods: TBD. Modulo 3 check on arithmetic is being evaluated. Error 
cases are detected (see text).
 

Repair Methods: Replace and restart from restart point. On-line replacement (with manual 
pull-and-replace at a later convenience of the repairman) is very feasible. 

MTBF of Unit: See Chapter 5. 
Degraded Modes Available: Programs can be compiled to use less than all the processors 

available, thereby bypassing any failed processors. On-line switching of spare pro­
cessors.
 

PHYSICAL 

Chip Count; 1980 Projection: 100 If use 1977 parts: 160 (100K ECL etc.) 
(based on preliminary logic design using 100K)

Pysical Size: 1980: One large pc. sized module. 1977: Single removable module 

Power Drain: 1980: 150 w 1977: 300 w
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2.4.3 Processor Data Memory - The processor data memory (PDM)
 

contains work space for each processor. It is also used to hold
 

local copies of global information, to facilitate their being
 

fetched by the processor's program. It can be used to window data
 

from EM. Control is from the memory address register in the
 

processor. There are 16384 words of 55 bits, consisting of 48
 

bits data and 7 bits of single-error correcting, double-error­

detecting code. Data address, and control connections are solely
 

to the processor. 16k-bit static PAM chips are used. Figure 2-6
 

shows some of the logic in the processor associated with the port
 
into PDM. Table 2-2 describes major characteristics of the PDM.
 

See sections 6.6, 6.12 , 6.13 for discussion of tradeoffs in PDM
 

design.
 

2.4.4 Processor Program Memory. Processor Program Memory (PPM)
 

contains the code file from which the processor executes. It is
 

addressed directly by the program counter. Overlay comes from the
 

CU via the "broadcast" (BDCST) path. Except for the size of 8192
 

words, design is identical with that of PDM.
 

2.4.5 Control Unit (CU)
 

2.4.5.1 Basic Control Unit
 

The control unit, during user programs, is in charge of synchro­

nizing the array for those instructions that require a synchro­

nized array; it issues the "go" signal. It also handles those
 

portions of the address computation that must be issued from a
 

central point. The control unit executes the FMP-resident portion
 
of the system software. It has a single shared memory (CUM) for
 

both program and data.
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TABLE 2-2 
CHARACTERISTICS OF PROCESSOR DATA MEMORY 

UNIT: Processor Data Memory (PDM) Nb. In System: 512 + 4 spares with spare processor 

. (formerly processing element memory PEM) 

FUNCTIONAL CHARACTERISTICS 

Function: Stores temporary variables generated by the processor during computation. 
Work space. Subroutine return information. Windows EM data. 

Source of Control; During User Program: EU command lines 
During System Startup and Diagnostics: Same
 

Storages; Capacity: 16,384 words.
 
Speed: 120 ns cycle
 

Connectivity to Other Elements:
 

No.
 
# Path To or From Sig. Timing Primary Use 

1 
2 
3 

data 
address 
control 

To/from 
From EU 
From EU 

EU 55 
16 
2 

static 
static 
edge or 
static 

Fetch and store data 
Address 
Command 

RELIABILITY/REPAIRABILITY/TRUSTWOIRTHINESS 

Error Control Methods: SECDED 
Repair Method: Removed with entire processor. Not a separate entity. 
MTBF of Unit: Dominated by control chips because of SECDED. 
Degraded Modes Available: Programs compiled to less than 512 processors bypass failed 

PDM's. Error correction allows program to continue, but with reduced reliability, in 
single-bit failure cases. On-line switching of failed processors.
 

PHYSICAL
 

C(hip Count; 1980 Projection: 70 If use 1977 Parts: 250
 
(55 16k-bit mem + 15 control) (100K ECL, etc.) (220 4k-bit mem.
 

+ 30 control)
 
Physical Size; 1980: Part of processor assy. 1977: Part of processor assy. 
Power Drain; 1980: 1977:
 

ORIGINAL 'AGB IS 

OF pooR QUALIY 
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TABLE 2-3 
PROCESSOR PROGRAM MEMORY CHARACTERISTICS 

UNIT: Processor Program Memory (PPM) No. In System: 512 + 4 spares with 

spare processor
 

FUNCTIONAL CHARACTERISTICS 

Function: Contains program foL the processor. Is loaded using the BDCST path from 
the CU. 

Source of Control; During User Program: Processor's program counter. 
During System Startup and Diagnostics: Same 

Storages; Capacity: 8,192 words 
Speed: 120 ns 

Connectivity to Other Elements: 

No.
 
# Path To or From Sig. Timing Primary Use 

1 program To/From EU 55 static Fetch and load program 
2 address From EU 16 static Address
 
3 control From EU 2 edge or Corand
 

static 

RELIABILITY/REPAIABILITY/TRUSTWORIHINESS 

Error Control Methods: SECDED
 
Repair Method: Remove with entire processor. Not a separate entity.
 
MTBF of Unit: See Chapter 5
 
Degraded Modes Available: Program compiled to less than 512 processors bypass failed PM's. 

Error correction allows program to continue at reduced reliability, in single bit
 
failure cases. On-line switching of failed processors.
 

PHYSICAL
 

Chip Count; 1980 Projection 43 If use 1977 parts: 140 
.-(28 mem + 15 control) (100K ECL, etc.) (110 mem + 

30 control) 
Physical Size; 1980: Part of processor assy. 1977: Part of processor assy. 
Power Drain; 1980: 1977: 
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The control unit can also be controlled by commands from the host
 

computer issued via the Diagnostic Controller (DC). This mode of
 

operation is supplied for the purpose of performing diangostics.
 

The control unit is at once the most complex, in terms of variety
 

of functions performed, and the most pedestrian, in terms of the
 

demands it makes on the logic designer, of all the units in the
 

FMP. Such hand analysis as has been done indicates that for the
 

aerodynamic flow problems, the control unit will most of the time
 

be waiting on the processors. One of the aims of the simulation
 

is to find out if this statement is really true, or whether an
 

investment in a faster control unit will pay off.
 

The frequency with which the CU executes system software upon
 
interrupt, in the middle of user executions, will affect the
 

required speed of the CU. The present plan is to so allocate the
 

tasks in the system that during normal executions no interrupts
 
either from host or resulting from FMP code are expected.
 

The host initiates file-system-to-DBM transfers using its copy of
 

the DBM allocation map and issuing I/O commands directly to the
 

DBM controller. No FMP-resident routine is involved in the
 

initiation or completion of these transfers. The DBM controller
 

resolves any potential conflict between these host transfers and a
 

CU-initiated DBM-EM transfer.
 

Figure 2-7 is the block diagram of a control unit built around a
 

single bus for transferring all data to and from memory, and using
 

this same bus for one of the register file outputs. Such a
 

structure defeats overlap but simplifies design. If simulation
 

were to show that a faster CU is needed, a faster CU would be
 

built.
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In addition to the portion shown in Figure 2-8, the control unit
 

also contains a section which resolves conflicts for EM between
 

the instructions of the NSS and the needs of the DBM controller.
 

The control unit has four semi-independent execution stations,
 

just as the processor has three. The degree to which the
 

execution of the independent sedtions is to be overlapped is a
 

subject for study during simulations in future work. Using the
 

two aerodynamic flow models as benchmarks tells us that no overlap
 

is required, therefore specifying an exact mechanism of overlap
 

has been deferred. The four units are:
 

* 	 Integer Unit 

* 	Memory Control 

* 	Floating Point Unit (optional, can be omitted if it is 

determined that so called scalar processor capability is 

not required for the contemplated applications. See
 

Section 6.5)
 
* 	Interface to host and DBM controller 

Instruction timing is given in the next section, 2.5. Table 2-4
 

lists the features of the CU.
 

2.4.5.2 Scalar Processor
 

Floating point scalars are an item of concern in some applica­

tions. In the baseline system, an optional design feature to
 

handle floating-point scalars is a floating-point arithmetic
 

capability in the control unit. For a discussion of other options
 

for attaching scalar capability to the FMP, see section 6.16.
 

Scalar floating point capability is not be be confused with the
 
"scalar unit" found in some other designs. The addressing and
 

control functions of such a "scalar unit" are included in the
 

control unit here whether or not the floating-point option is
 

included.
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TABLE 2-4
 

CONTROL UNIT CHARACTERISTICS 

UNIT: Control Unit: (CU) No. In System: 1 
1 

FUNCTIONAL CHARACTERISTICS: 

Function: Executes the non-array portion of the FMP program. Executes the FMP resident 
portion of the system software. 

Source of Control; During User Program: Program stream contained in Control Unit Memory 
During System Startup and Diagnostics: Same plus conmands issued from Diagnostic 

Controller
 

Storages; Capacity: Integer Register file, perhaps 16 words, exact number to be determined 
by simulation. Floating point register file of 16 words. 

Speed: Single-clock access to two registers per file. 40 ns clock. 

Connectivity to Other Elements: 

# Path To or From Sig. Timing Primary Use 

1 control To DBM Controller TBD TBD Control of DBM-EM transfers 
2 return From DBM Controller TBD TED Completion, error, E1M conflict resolution 
3 control TO E4 TED TBD Control of EM 
4 return From EM TBD TBD Monitoring, errors, interrupt 
5 control TO TN 13 TED Control of 9N 
6 STORCU To TN 9 byte/20ns Data to be stored in EM 
7 LOADCU From TN 9 byte/20ns Data fetched from EM to CU 
8 command To Processor 4 TBD Diagnostic commands to the processor
 
9 sync TO Processor 4 edge Synchronization of array 

10 sync From Processor 4 edge Synchronization of array
 
11 BDCST TO Processor 8 byte/20ns Broadcast data 
12 HVST To Processor 8 byte/20ns Data (such as global max) to CU 

RELIABILITY/REPAI RAB ILITY/TRUSTWORIFHINESS 

Error Control Methods: TBD 
Repair Method: TBD. Repair in place; F"P is down until CU repaired 
MTBF of Unit: See Chapter 5 
Degraded Modes Available: None. 

PHYSICAL 

Chip Count; 1980 Projection: 3,000 chips If use 1977 parts: 4,000 chips 
(a oarse estimate) (100k ECL, etc.)
 

Physical Size: 1980 1977:
 
Power Drain: 1980 1977:
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The FORTRAN language and compiler of chapter 3 makes no use of the
 

floating-point option in the CU, as there was no use for it in the
 

four codes used for benchmarking.
 

2.4.6 Control Unit Memory (CUM)
 

The control unit memory holds both program and data for the
 

control unit. It is addressible only from-the control unit, and
 

sends all data into the central data bus of the control unit.
 

The control unit memory is identical in electrical design and uses
 

the same 16k-bit RAM chips as the processor memories. Its size is
 

subject to verification via simulation. The size resulting from
 

considerations of the flow-model matching study is 32,768 words.
 

The control unit memory is initially loaded from DBM at the
 

beginning of each run using a routine which is itself resident in
 

CUM and executes on the CU. The routine transfers data and
 

program from DBM to CUM via EM.
 

Data on the control unit memory is found in Table 2-5.
 

2.4.7 Extended Memory Module
 

Extended memory (EM) is the "main" memory of the FMP, in that it
 

holds the data base for the program during program execution.
 

Temporary variables, or work space, can be held in either EM or
 

PDM, as appropriate to the problem. All I/O to and from the FMP
 

is to and from EM via DBM. Control of the EM is from two sources,
 

the first is instructions executed in the CU, the second is the
 

DBM controller which handles the DBM-EM transfers. In the
 

baseline system design, the DBM-EM rate is such that the CU can be
 

given first priority into EM without losing any of the DBM-EM
 

transfers, therefore, the CU instructions have priority in the EM.
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TABLE 2-5
 

CHARACTERISTICS OF CONTROL UNIT MEMORY
 

UNIT: Control Unit Memory (CUM) No. In System: 1
 

FUNCTIONAL CHARACERISTICS 

Function: Contains data local to the CU, and CU's program. Also contains processor
 
program as source for overlay during runs. Holds mailbox for host-FMP corfmunication. 
Holds copy of DBM allocation map.
 

Source of Control; During User Program: CU 
'During System Startup and Diagnostics: Same plus may be accessed by DC if CU not running 

Storages; Capacity 32,768 words.
 
Speed: 120 ns cycle
 

Connectivity to Other Elements:
 

No.
 
# Path To or From Sig. Timing Primary Use 

1 
2 
3 

data 
address 
command 

To/from Cu 
From CU 
From CU 

55 
16 
2 

static 
static 
edge or 
static 

Fetch and 
Address 
Command 

store data 

RELIABILITY/REPAIRABILITY/TRUSTWOIHINESS 

Error Control Methods: SECDED 
Repair Method: FMP is down while CUM is down. Must replace failed modules for FMP to 

recover.
 
MTBF of Unit: Dominated by control logic because of SECDED 
Degraded Modes Available: Error correction allows program to continue at reduced 

reliabilityj in single-bit failure cases.
 

PHYSICAL
 

Chip Count; 1980 Projection: 175 chips If use.1977 parts: 470
(110 mem + 15 control) 
 (100 SCL, etc.) 440 mem + 30 control) 

Physical Size; 1980: TBD 1977: TBD
 
Power Drain; 1980: 1977:
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EM consists of 521 identical modules, which are accessed in
 

parallel. 521 is a prime number for the sake of allowing
 

efficient parallel fetching for all vectors of any length (with
 

the minor exception of any vectors that happen to have elements
 

spaced apart in memory by exactly 521).
 

From each EM module we need a transfer rate and access time
 

consistent with the most economical implementation. For the
 

baseline system, an implementation in 64k-bit dynamic RAM was
 

chosen, as being the most economical implementation available by
 

1980. The low chip count also enhances reliability. Projec­
tions say that a 64k-bit chip will have 250 ns cycle time by that
 

date. The 280 ns cycle time of the memory is compatible with the
 

140 ns per word transfer rate through the transposition network.
 
Each word carries single- error-correction-double-error-detection
 

code, which is generated at the source (DBM, CU, or processor) and
 

also checked there, so that transfer paths are covered by the same
 

error control as the contents of EM.
 

Having decided on a TN that is almost twice as fast as the EM
 

module, it would be possible to build the EM module in two
 
interlaced submodules, if it the streaming mode of fetching were
 

to see much use. Section 6.10 discusses the tradeoff between
 

implementing or not implementing this streaming mode of access.
 

The baseline system as described in this document avoids the com­
plexities of a design suitable for streaming, which includes among
 

other things, a capability of incrementing the address in the EM
 

module by nonunity increments. The chip count of table 2-6 does
 

not include any incrementer.
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TABLE 2-6
 

EM MODULE CHARACTERISTICS
 

UNIT: EM Module No. in System: 521 

FUNCTIONAL CHARACTERISTICS 

Function: Stores problem data base during program executions. Most nearly corresponds 
to "core" of conventional processor.
 

Source of Control; During User Program: Receives commands from CU 
During System Startup and Diagnostics: Same
 

Storages; Capacity: 65,536 words
 
Sped: Access time 200-250 ns, interlaced for 140 ns/word block transfer 

Connectivity to Other Elements: 

No. 
# Path TO or From Sig. Timing Primary Use 

1 LOADEM 
2 STORE4 

To TN 
From TN 

9 
9 

byte/20ns 
byte/20ns 

Fetching data to processors and CU 
Storing data from processors and CU 

3 - To DBM 9 full word Results back to DBM 
in 400 ns 

4 --- From DBM 9 full word Initial data (and eventually, overlay) 
in 400 ns from DBM 

5 No From 10 D.C. level Module's own number 
backplane 

6 Control From CU TBD TBD Controls EM operations 

RELIABILITY/REPAIRABILITY/TRUSTWORHINESS 

Error Control Methods: SECDED (providing acceptable error rates are demonstrated)
 
Repair Method: Remove and replace
 
MTBF of Unit: Control dominates failure modes because of SECDED.
 
Degraded Modes Available: Data continues to be corrected even when there is one hard
 

error, allowing the current program to complete before repairs are undertaken. 

PHYSICAL
 

Chip Count; 1980 Projection: 86 If use 1977 parts: 274
 
(55 memory + 30 control) (100K ECL, etc.) (224 mem. + 50 control)
 

Physical Size; 1980: One medium sized 1977:
 
p.c. board
 

Power Drain: 1980 1977:
 

ORIGINAL PAGE IS 

OF pOOR QUALITY 
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Figure 2-8 shows the EM module, including two address registers, a
 

one-word buffer for DBM transfers, and an access path to the EM
 

modules own number, wired into the backplane. Table 2-6 gives the
 

data on the EM module.
 

2.4.8 Fanout Tree
 

A series of fanout boards is supplied to provide the CU to
 

processor connection. From CU to processor,s signals fan out to a
 

final 512 destinations. From the processors, the signals are
 

combined, so that, within the CU, a single result appears in
 

response to 512 signals emitted by the processors. For example,
 

the "all processors ready" signal becomes true at the clock that
 

the last enabled processor emits "I got here". Another such
 

signal is the 512-input OR of "enabled".
 

At the processor, some signals are wired per-processor directly to
 

the last level of fanout board; others are daisy-chained to eight
 

processors from a single signal pin on the last board. The fanout
 

boards are pin-limited. Simple buffers with one input pin and one
 

output pin per signal dominate the circuit count, so hex buffers,
 

easily available today, will not be improved upon by 1979-1980.
 

Data on the fanout tree is in Table 2-7. The figure demonstrating
 

the fanout tree is Figure 2-10.
 

2.4.9 Transposition Network
 

The transposition network allows the fully parallel, 512-wide,
 

fetching of sets of variables that are to be processed in
 

parallel. Up to 512 elements in one-dimensional vectors of any
 

type can be fetched at full speed in parallel. When DOALL loops
 

have two index variables, two-dimensional subsets of
 

multidimentional arrays can also be fetched in parallel. For
 

details, see Ref 1, and Chapter Three.
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TABLE 2-7 

FANOUT TREE CHARACTERISTICS 

UNIT: Fanout Tree, CU to Processors No. In System: 1 

FUNCTIONAL CHARACTERISTICS 

Function: Provides fanout for signals from CU to the 512 processors; accepts signals from 
. the 512 processors and combines them appropriately for the CU. Consists of 36 boards. 

Source of Control; During User Program: 1b control; all passive logic. 
During System Startup and Diagnostics: Same 

Connectivity to Other Elements:
 

No.
 
# Path To or From Sig. Timing Primary Use
 

1 command From CU 4 TBD Diagnostic 
2 sync From CU .4 edge Synchronization of array 
3 sync TO CU 4 edge Synchronization of array 
4 BDCHT From CU- 8 byte/20ns Broadcast data 
5 HVST To CU 8 byte/20ns Data to CU (such as global MAX) 
6 command To proc. 8's 4(x 64) TBD Diagnostic 
7 sync IT proc. 8's 4(x 64) edge Synchronization of array
 
8 sync From proc. 4(x 512) edge Synchronization of array
 
9 BDCST To proc. 8's 8(x 64) byte/20ns Broadcast data 
10 HVST From proc. 8's 8(x 64) byte/20ns 512-input OR of data from processor to CU. 

1st 8-way OR done on proc. wiring 

RELIABILITY/REPAIEABILITY/TRUST ORTH RIESS 

Error Control Methods: SECDED on broadcast and harvest data.
 
Repair Method: Remove and replace of defective boards. 
MTBF of Unit: See Chapter 5.
 
Degraded Modes Available: None 

PHYSICAL
 

Chip COunt; 1980 Projection: 2,000 chips If use 1977 parts: 2,000 chips
 
all small scale integration. Dominated by (100K ECL, etc.) 
1,504 hex buffers.
 

Physical Size; 1980: 32 cards of 60-80 chips 1977: Same
 
each
 

Power Drain; 1980: 1.6 kw 1977: Same
 

O OROF p~OR Q'A4 2-34 
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The transposition network consists of 521 switchable data paths
 

from EM to processor, and another 521 data paths from processor to
 

EM. There are two 10-bit control registers, one for offset of the
 

starting element, and one for skip distance. Since there are two
 

sets of data paths, the first from processor to EM module, and the
 

second from EM-module to processor, the settings of the two paths
 

could be separately controlled. There is just one instruction
 

that would go faster if both paths are used simultaneously with
 

different settings, namely SHIFTN (see Table 2-10 and 2-11 for a
 

description). SHIFTN is used in functions that operate
 

"horizontally" across the parallelism of the array, such as global
 

sum, global maximum, or global product. SHIFTN would also be used
 

to implement a Fast Fourier transform on the FMP. In the aero
 

codes used as benchmarks, there is very little use of SHIFTN, so
 

there is no justification for having separate settings for the
 

first and second data paths,, and bidirectional data paths would
 

serve as well.
 

A three-bit command register enables the following commands:
 

1. Enable transfers between processor and EM. The presence
 

or absence of actual transfer is signified by the presence or
 

absence of a signal on the strobe line that accompanies each
 

byte-wide signal path.
 

2. Enable transfers between CU port and EM.
 

3. Enable transfers between the remaining eight paths and EM
 

(built into the design to allow these eight ports to service
 

the scalar processor).
 

4. Broadcast from selected EM module to all processors.
 

Table 2-8 gives the characteristics of the transposition network.
 

Figure 2-11 shows the barrel switches that implement it.
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TABLE 2-8
 

TRANSPOSITION NETWORIK CHARACTERISTICS
 

UNIT: Transposition Network (TN) No. In System: 1 

FUNCTIONAL CHARACTERISTICS 

Function: Provides 521 data paths for fetching in parallel from all EM modules to all 
processors; provides 521 -data paths for storing in parallel from all processors to 
512 EM modules. Provides path from any one EM module to all processors. Provides 
data path to any EM module from CU, also path from any EM module to CU. 

Source of Control; During User Program: Commands from CU. 
During System Startup and Diagnostics: Same 

Storages; Capacity: None. Command register 10 bits offset, 10 bits skip distance, about 
3 bits of command. 

Speed: 

Connectivity to Other Elements: 

No. 
# Path TO or From Sig. Timing Primary Use 

1 LOAD7 To Processor 9(x 512) 20ns/byte Data to processor during LOADEM 
2 STORM4 From Processor 9(x 512) byte/20ns EM addresses and STOREM data from proc. 
3 LOADCU To CU 9 byte/20ns Data to CU during OADCU 
4 STORCU From CU 9 byte/20ns Data and address from CU 
5 -- To EM modules 9(x 521,) byte/20ns Data and address to EM modules 
6 -- From ?I4 modules 9(x 521) byte/2Ons Data from -EM modules 
7 control From CU 13 TED Reset controls 
8 spare To TBD 9(x 8) byte/20ns Reserved for scalar processor 
9 spare From TBD 9(x 8) byte/20ns Reserved for scalar processor 

RELIABILITY/REPAIRABILITY/TRUSTWO INESS 

Error Control Methods: SECDED applied to EM word passes through TN. Detects hard 
failures, corrects transients. 

Repair Method: TBD 
MTBF of Unit! See chapter 5 
Degraded Modes Available: Some portion of the TN can be bypassed by programs that are 

compiled for a less-than full complement of processors. Most, however, cannot. 

PHYSICAL
 

Chip Count; 1980 Projection: 10,980 If use 1977 parts: 17,270 
(10,480 shifter chips + 500 control) (100K ECL, etc.) 16,770 F 100158 chips 

+ 500 control)
 
Ehysical Size; 1980: About 200 boards 1977: Same
 

if 20(1 signals allowed per board. Is
 
pin limited.
 

Power Drain: 1980: 1977: 2-37
 



2.4.10 Data Base Memory (DBM)
 

Data Base Memory (DBM) is the window in the computational envelope
 

of the FMP. All jobs to be run on the FMP are staged into DBM
 

before running both program and data, all output from the FMP is
 

staged through the DBM. At some future time (but not with the
 

initial operating system) DBM could be used to back up EM for
 

those problems whose data base is larger than EM. Control of the
 

data base memory is from a DBM controller, which accepts commands
 

both from the CU for transfers between DBM and EM, and from the
 

host for transfers between DBM and the file system.
 

Many design options exist for the data base memory. Out of this
 

set of options one particular design was chosen for the baseline
 

system. This chosen design is a CCD memory built out of
 

256k-chips, which are projected to be available in the 1980
 

period. If data base memory were to be built before the
 

appearance of sufficiently economical CCD chips, one would use
 

some form of parallel-head rotating magnetic storage. The design
 

described here is based on the existence of 256k-bit CCD chips
 

each arranged in the form of 128 shift registers of 2,048 bits
 

each.
 

With a projected shift rate of 2.5 MHz in the CCD chips, a desired
 

transfer rate of 2.5 Mwd/s to and from EM, DBM is built 55 chips
 

wide, for parallel emission of 55-bit words, by 512 chips deep.
 

The natural block size with 2,048 bits in each shift register
 

delivering a block of 2,048 words, is adopted. There are 64k
 

blocks for a total of 134,217,728 words. Error correction is a
 

SECDED, probably the modified Hamming-plus-parity implemented by
 

Motorola's 10,163 chip.
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Since the array of CCD chips is 512 x 55, the DBM is constructed
 

in a number of physical modules, say each one 64 x 55 chips. The
 

repair philosophy is to pull and replace individual modules, and
 
the degraded mode of operation would be to run with one or more
 

modules missing, and the operating system would have to know to
 

avoid assigning any data to that space.
 

There are several (probably four) block-sized buffers, which stand
 

between the CCD storage and the host interface, in order to reduce
 

the interference with DBM-EM transfers produced by simultaneous
 

DMB-host transfers. They can also serve as timing buffers to the
 

host's disk packs. See Fig. 2-12.
 

After the transfer of a block to or from the CCD store, the shift
 

registers rest at the starting position until shifting is required
 

by the refresh requirements, or until the CCD store is again
 

addressed, whichever occurs first. Therefore, whenever there are
 
several requests for transfer pending at once, or when they occur
 

with sufficient frequency, the access time is essentially zero to
 

the first word of the block. For transfers arriving at random
 

times, far enough apart in time so as not to interfere, the
 

average access time is given by:
 

Tav = (Tb2/Tr) 

where Tb is the transfer time of a single block (0.82 ms) and Tr
 

is the time between refreshes. Tr will be in the specification of
 

the device, and is expected to lie between 1 ms and 10 ms. There­

fore, the average access time for random data at low usage, to the
 

first word of the block, has an upper bound which is expected to
 

lie between 0.67 ms and 0.067 ms. As traffic increases, the
 

access time is mostly due to interference between competing
 

accesses, while the contribution due to delay in the memory goes
 

to zero.
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'TABLE. 2-9 

DATA BASE MEMORY CHARACTERISTICS 

UNIT: Data Base Memory (DBM) and its controller No. In System: 1 

FUNCTIONAL CHARACTERISTICS 

Function: In this memory, data is staged for FMP jobs not yet started, and results of FMP 
jobs are output from the FMP. Almost all conmunication between FMP and host goes through 
this memory, both data and program. CCD storage is postulated, although other options 
are available, including disk pack. Resolves host-CU conflicts. 

Source of Control; During User Program: DBM-4 transfers controlled from CU, DBM-host 
transfers controlled from host.
 

During System Startup and Diagnostics: Same 

Storages; Capacity: 134 x 106 words in blocks
 
Speed: 140 Mb/s (an easily adjustable parameter)
 

Connectivity to Other Elements:
 

# Path TO or From Sig. Timing Primary Use 

1 To/from EM '8+8 words/40 ns Loads EM at start of run, unloads results 
2 -- To/from host TBD, 2 rate matches Loading DBM, unloading results 

paths host file 
min system 

3 control From CU TBD TBD Receives control from CU for DBM-EM 

transfers 
4 result Tb CU TBD TBD -­

5 icontrol From host TBD TBD receives control from host for DBM­

file-system transfers 
6 result TO host. TBD TBD Monitoring and error cases 

RELIABILITY/REPARIABILITY/TRUSTWOIRHINESS 


Error Control Methods: TBD. SECDED may be adequate, and will be used if so. "Scrubbing"
 
errors arising due to refresh will be needed in CCD memories. 

Repair Method: TBD. 
MTBF of Unit: Domniated by controls since SECDED on memory. 
Degraded Modes Available: Error correction codes allow valid data to 'be fetched in spiteof errors in memory. Can operate with failed modules removed.
 

PHYSICAL
 

Chip Count; 1980 Projection: 29,160 If use 1977 parts:
 
(28,160 mem + l,000 control) (100K ECL, etc.) use disk pack 

Physical Size: 1980: about 150 large boards 1977: eight disk pack drives 
Power Drain; 1980: 1977: 

ORIGINAL PAGE IS 

OF poOR QUiA tL 

1 
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As a background job, the DBM controller periodically initiates an
 

access for the purpose of reading the contents of a block and
 

rewriting that same block with all detectable errors corrected,
 
since errors are spontaneously created in CCD memories at a low
 

rate during the refresh operation. It has been conjectured that
 

these errors are caused by cosmic ray bombardment of the CCD
 

chips, discharging the little capacitors by temporarily ionizing
 

the oxide. The rate of periodically initiating access can
 

rationally be determined only after getting the vendor's speci­

fication on the number of refreshes per error. Preliminary
 

Fairchild data, if it continues to be true, indicates that one
 

should scrub through the entire DBM every seven minutes, or that
 

this background task should occur at one eighth the normal
 

bandwidth of the DBM. Therefore, this background access is
 

initiated every 6.55 ms. Only one error-scrubbing access will be
 
pending at a time, even if the delay in starting exceeds 6.55 ms.
 

They are not queued.
 

The DBM has a number of channels into the file system of the host.
 
The number is to be determined by simulation. Initial estimates
 

are that two channels provide more channel capacity than needed
 
for the aerodynamic flow models. At least two are needed for
 

reasons of reliability. Two are assumed for the baseline system
 

design.
 

No buffering is needed on the EM side beyond the one-word buffers
 

in each EM module. The CU will guarantee the acceptance by the EM
 

of a word coming from DBM is less than 400 ns. Likewise, when
 

transferring from EM to DBM, the EM module has its one-word buffer
 

loaded nominally 800 ns or more ahead of the DBM requirement, and
 

this time will not slip by more than 400 ns from interference with
 

array transfers.
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DBM-EM transfers have priority in the EM controls: However, there
 

is little interference with CU-initiated EM transfers. For
 

example, when transferring from EM to DBM, one EM cycle loads 521
 

of the per-EM-module one-word buffers, and then waits for 208
 

microseconds before another EM cycle is required for the DBM
 

transfer path.
 

A design decision, to be made with the aid of simulation in phase
 

II, is whether the LOADEM and STOREM instructions should be
 

limited to 512 words per execution, or whether they should trans­

fer 512 x N words at a time. The description given above is
 

concordant with a design in which LOADEM and STOREM are 512-word
 

instructions, which are the only use made of LOADEM and STOREM in
 

the FORTRAN compiler described in Chapter Three. In Chapter Six
 

the implications of this choice are discussed at further length.
 

Use of DBM is as a staging area for jobs going into the FMP or
 

coming out of the FMP. The hardware design also permits its use
 

as a source for overlaying data and program into the FMP. It is
 

possible to transfer less than a full block, but not to start any
 

place other than the beginning of the block. A decision to make
 

heavy use of the overlay capability would result in reevaluating
 

the transfer rate between EM and DBM.
 

2.5 INSTRUCTION SET AND INSTRUCTION TIMING
 

This section lists the instruction set together with a list of
 

numbers giving the execution times of each.
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2.5.1 Tables
 

There are three tables. Table 2-10 contains the instructions and
 

timing for the processor, of -which there are 512. Table 2-11
 
contains instructions and timing for the control unit of the
 

base-line system. Since no scalar unit is required for the
 

aerodynamic equations, scalar unit timings are not specifiable on
 

the basis of any known application. Rather arbitrarily, the
 

floating-point instructions of table 2-12 are given the same
 

timing as their processor counterparts. These instructions belong
 

to the option for processing floating-point scalars in the control
 

unit.
 

Instruction formats are easy to specify, and have been postponed
 

until more difficult issues are resolved. See section 6.5.
 

2.5.2 Instruction Execution -Timing
 

For the processor instructions there are three separate functional
 

units involved. Each instruction has a starting time in each of
 

the three- units and an ending time or does not use that unit. The
 

time of execution of each instruction is dependent on its time of
 

occupancy (if any) in each of the independent execution units,
 

namely: integer unit, floating point unit, and memory controls.
 

The timing. is described most easily with respect to the
 

instruction fetching process, which determines the starting time
 

of each successive instruction. A fourth function unit, to allow
 

EM fetches and stores to transpire in parallel with other
 

processing, is under consideration, but has- not been included in
 

this description.,
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Entries in the table have the following significance:
 

"No. of clock periods" is the nuiber of clocks from when the
 

instruction normally issues to a functional unit, to the termi­

nation of the instruction. The instruction will always have been
 

decoded from out of the staging register for at least one clock
 

prior to this.
 

"Unit busy" is of the form n-m, where n is the number of the
 

latest clock that previous instruction is allowed to occupy this
 

unit, and m is the last clock that this current instruction
 

occupies this unit.
 

Some instructions merely stop the instruction fetching process for
 

a while, until the control unit restarts it. The clock times
 

given for these instructions represent the time from first
 

decoding such an instruction in the staging register, until the
 

start of decoding of the next instruction, under the most
 

favorable circumstances. These instructions are in tables 2-10
 

and 2-11, and are WAIT, STOP, and HELP.
 

2.5.3 Instruction Fetch Timing
 

Timing of the instruction fetching mechanisms can be seen with
 

respect to Figure 2-13. The next instruction is being held in a
 

staging register. Out of the staging register is decoded the
 

start times required for the functional units if this instruction
 

were to start at this clock, and the time it will occupy the
 

holding register. Out of the integer, the floating point, and the
 

2-45 



SHSTAING
 

REGISTER 
(FOR DELAYED 
ISSUE) 

INEENTFL. PT. UNIT MEMORY 
INSTR.REG. INSTR.REG. CONTROLS
 

END TIME. CURRENT MEM. OP. 

END TIME, CURRENT FL. PT. OP. 

END TIME, CURRENT INT. OP. 

TO DECODING 

Figure 2-13. Instruction Fetching Mechanism 
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memory control functional unit is decoded the ending time
 

associated with the currently executing instruction. The
 
"scoreboard" compares all six times. 
When all four comparisons
 

say the next instruction will not interfere with current
 

instructions, the instruction is transferred from the staging
 

register to the one or more functional unit instruction registers.
 

If delayed starts in other functional units are part of this
 

instruction, the instruction is passed to the holding register to
 

free the staging register for the next instruction.
 

The program counter always points to the next word in memory after
 

the staging register contents. Thus, normally the PPM will be
 

holding the next instruction word statically at its output lines.
 

Only when the staging register is unloaded in less than three
 

clocks (the PPM cycle) will the next word not appear.
 

A complexity is the existence of half-word and full-word
 

instructions. Empty halves of half-word instructions carry the
 

first half of the next instruction, so full-word instructions may
 

only have their first half present in the staging register. The
 

first half is sufficient to determine the timing. However, the
 

second half will contain any memory addresses, so when a fetch
 

from memory is involved, the second half must also be fetched
 

before the memory part of the operation can start.
 

In the baseline system, those instructions which contain a memory
 

address (either for data or as a branch address), or a literal,
 

are full-word 48-bit instructions. Others are 24 bits.
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Jumps take an extra three clocks before the first instruction on
 

the path branched-to can be started.
 

2.5.4 Example
 

For an example of how this works, take the sequence of instruc­

tions:
 

1. FETCH from memory to integer register
 

2. IADD reg. to reg.
 

3. FETCH from memory to floating point register
 

4. ADD from memory (,indexed by integer reg.) to fl. pt. reg.
 

5. ADD from mem. (indexed by integer reg.) to fl. pt. reg.
 

6. MUL from fl. pt. reg. -to fl. pt. reg.
 

7. IADD int. reg. to reg.
 

8. IADD int. reg. to reg.
 

9. STORE from fl. pt. reg. to mem. (indexed by int. reg.)
 

Figure 12-14 shows the timing diagram for this sequence, according
 

to the previous instructions. The instructions are given by
 

number in Figure 12-13. Each clock is 40 ns.
 

The entire sequence of nine instructions takes 36 clocks, or 1,440
 

ns. The sum of the "no. of clocks" column in the timing table,
 

for these same instructions is 40 clocks. Overlap between
 

functional units gained little in this example. It is expected to
 

gain more in iexamples which have a higher emphisis on computing ad­

dresses in the integer unit. In this present example, the timing
 

would have come out the same if the holding register had not been
 
there, if loading of the staging register were merely delayed.
 

Simulation may tell us that the holding register gains nothing;
 

that only the staging register is needed-. Simulation during phase
 

II will attempt to evaluate the gain given by,the complexities
 

here described. The final instruction fetching machinery will be
 

the result of a tradeoff between simplicity and throughput.
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2.5.5 Control Unit Timing
 

In the absence of a completely detailed design of the control
 

unit, the internal structure and overlapping capabilities cannot
 

be visualized with certainty. No overlap mechanism in the control
 

unit is described in the table except for memory. Since there are
 

four semi-independent instruction execution units, these times are
 

pessimistic indeed. However, for aerodynamic flow problems used
 

as benchmarks, the pessimistic assumption is expected not to
 

matter. For aero flow problems, the interfering CU action will be
 

address calculations, which will be a solid swatch of instructions
 

all for the integer unit. Thus, we postpone designing the overlap
 

and look-ahead capabilities within the CU until simulation in
 

phase II tells us how much design effort we should spend on them.
 

It is assumed that memory fetches and stores will be overlapped.
 

Fetches can be initiated before the previous instruction is
 

started. Fetch and store are three clocks each. The fetch of the
 

next instruction must follow the store of this one, when fetch
 

follows store in the instruction sequence.
 

The diagnostic controller is not used during normal program
 

running. It is used only for diagnostics and for system initiali­

zation when power first comes on, or for reinitializing the FMP
 

system software.
 

Instruction fetching in the CU is overlapped with instruction
 

execution, but is out of the same CUM that holds the CU data. The
 

instruction execution unit will look ahead by an amount yet to be
 

determined.
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The scalar processor is here implemented by adding floating-point
 

capability to the control unit and the entire repertoire of
 

floating point processor type instructions is added to the control
 

unit instruction set. See the discussion on "Scalar Processor",
 

in Chapter 6. These instructions are:
 

ADD, SUB, MUL, DIV, MAD, SSQ, ADDD, MULD, LT, LE, GT,
 

GE, NEG, EQ, NE, INFL, FIX, FLOAT, INFZ, SETFL, SETZ, PAK2,
 

ABS, UPF, and PENO (which yields either "0" or "512", to be
 

determined)
 

A scalar capability resident in the control unit may require a
 

faster control unit than the one described in the accompanying
 

timing tables. The degree of speedup of the design required is a
 

matter to be determined by simulation. Parallel operation of
 

semi-autonomous units (as seen in the processor) is one of the
 

ploys used to achieve increased speed, together with fast multiply
 

algorithms and other logic speedups. A method of achieving faster
 

CU memory operation also may be required. Several memory modules,
 

either interlaced or dedicated to concurrent and overlappable
 

functions, could be included in such a design. The times shown
 

here ignore these additional design options, since they will not
 

be needed for aero flow benchmarks.
 

2.5.6 Corresponding Times in Synchronizing Instructions
 

An additional detail is the relative timing of instructions that
 

must be synchronized between CU and processors. For these
 

instructions, execution will proceed when all enabled processors
 

and the CU have reached the instruction. For each instruction
 

there is a "CU lead time", TL. The timing rules are as follows:
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The "go" pulse is emitted from the control unit a time Tc after
 

the start of the instruction, if the "All processors ready" signal
 

does not delay it. The "go" pulse is effective at the processors
 

no sooner than a time Tp after the start of the instruction in the
 

processor. Thus, if both CU and processor arrive at this
 

instruction at the correct time that both can execute it in the
 

minimum time, there will be an offset of (Tp - Tc ) clocks between
 

these two initiations. For various cooperating pairs of synchro­

nizing instructions, Table 2-13 gives TL (=Tp - Tc).
 

Table 2-13 contains three columns. Column 1 is the CU name of the
 

instruction. Column 2 is the processor name of the matching
 

instruction. Column 3 is the CU lead time TL. Negative TL means
 

that the CU can arrive at the instruction -TL clocks after the
 

last processor without delaying the time of the instruction past
 

its last-processor start time. TL values tend to be negative
 

because the "same" clock pulse at the CU and the processors is
 

actually about 60 ns sooner at the ,CU. That is, TL=O implies that
 

the CU is 60 ns ahead of the processor.
 

2.5.7 Exceptional Cases
 

Within the processor, all fault cases result in an interrupt to
 

system software that is resident in the processor. It is possible
 

to handle some interrupts without interrupting the CU. Floating­

point out-of-range detection does not cause interrupts, but
 

results in setting the floating-point variables into "infinity" or
 

"infinitesimal". Any integer overflow causes an interrupt, on the
 

theory that most integer operations are address calculations and
 

overflow represents a faulty address. Attempting to insert a
 

number outside the range ±215-1 into a 16-bit integer register
 

causes an integer interrupt; likewise executing a FIXD (double­

length integer) on a number outside the range ±231-1 results in
 

interrupt. Any detection of error in the error-detection­

correction logic results in processor interrupt. When the error
 

is correctible, the interrupt'merely logs its occurrence and
 

returns to user processing.
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TABLE 2-10
 
PROCESSOR INSTRUCTIONS
 

No. Unit Busy 
Clock Flt'g Instr.
 

Description 	 Periods Int Point Men Length 

ADD, SUB* 	 Floating point add/subtract. Result to 
fl. pt. reg. 

Case 1. Peg. + Reg. to Reg. 6 0-6 24 
Case 2. Fag. + Lit. to Reg. 6 0-6 48 
Case 3. Reg. + Mem. to Reg. 9 0-i 3-9 0-3 48 

MUL* 	 Floating point multiply
 
Case 1. Peg. x Reg. to Reg. 9 0-9 24 
Case 2. Peg. x Lit. to Reg. 9 0-9 48 
Case 3. Reg. x Mee. to Reg. 12 0-1 3-12 0-3 48 

DIV* 	 Floating point divide 
Case 1. Reg./Reg. 44 0-44 24 
Case 2. Peg./Lit. to Reg. 44 0-44 48 
Case 3. Peg./Mem. to Reg. 47 0-1 3-47 0-3 48 

DIVR 	 Same as DIV except the second operand 
is divided by the 1st. 
Case 1. 2d operand in reg. not implemented 
Case 2. Lit./Reg. to Reg. 	 44 0-44 48
 
Case 3. Mem./Peg. to Reg. 	 47 0-1 3-47 0-3 48 

MAD 	 Floating point add product of two operands 
to third operand. Result to same regis­
ter in which third operand was found. 
Case 1. eg. x Rag. + Reg. to Peg. 11 0-11 24 
Case 2. Peg. x Lit. + Reg. to Reg. 11 0-11 48 
Case 3. Reg. x Mem. + Reg. to Peg. 14 0-1 3-14 0-3 48 

SSQ 	 Floating point sum of squares
2Case 1. Peg. 2 + peg. to Reg. 21 0-21 24 

Case 2. Mem. 2 + Reg. 2 to Reg. 24 0-1 3-24 0-3 48 

ADDD, SUBD 	 Floating point sun (or difference) of 
two registers is kept in double length 
form and kept in two successive fl. pt. 
reg. The exponents of the two results 
differ by at least 38. 13 0-13 24 

MULD 	 Floating point multiply, with the full 
double length result put into two suc­
cessive fl. pt. registers in the form 
of two normalized flt. pt. words with 
an exponent different of 36 or more.
 
Inputs are from registers 	 17 0-17 24 

*If non-rounding versions of these instructions are supplied, the nexecution times will not 
differ from those given for the rounding version. 
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TABLE 2-10 (cont.) 

Description 

No. Unit Busy 
Clock Flt'g

Periods Int Point Mem 
Instr. 
Length 

FLIT Transfer the 32-bit literal to 
leading 32 bits of the fl. pt. 

the 
reg. 2 0-2 48 

IADD, ISUB Integer add and subtract. Both input 
operands are from integer registers, 
result goes to a third register. One 
input may be litera. 
Case 1. Reg. ± Reg. or literal 

Case 2. Reg. -+memory 

1 

4 

0-1 

0-4 0-3 

24 
(48 if lit.) 

24 

IADM, ISBM Same as IADD, ISUB, except the first 
operand and result are double-length 
(from concatenation of int. reg. with 
next it. reg.) 
Case 1. 2d operand int. reg. 
Case 2. 2d operand lit. 
Case 3. 2d operand from mem.(16 bits) 

2 
2 
5 

0-2 
0-2 
0-5 2-3 0-3 

24 
48 
48 

IADDD, ISBD Double-length integer add, oneoperand in 
two successive registers, second from two 
successive integer register, result to two 
successive integer registers 2 0-4 24 

IADDD, ISBD Second (32-bit) operand fro memory 5 0-5 0-3 48 

IMUL Integer multiply 
Case 1 reg. x reg. or literal 

Case 2 reg. x memory 

9 

12 

0-9 

0-12 0-3 

24 
(48 if 

48 
lit) 

IDIV' Integer divide. Register or literal 
divided by register, result to register 
Case 1 reg./reg. or literal 

Case 2 reg./memory 

16 

19 

0-16 

0-19 

24 
(48 if lit) 

0-3 

IMED Multiply double-length integer in two 
successive registers by single-length
integer, result to two successive 
registers 17 0-17 24 

(48 if lit) 

IDVD Divide double length integer in one pair of 
register by single length integer. Result 
to single-length register 32 0-32 24 
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ID521 

IMOD 

ILIT 


ILIT 

IALIT 

SB 

IADDI,ISUBI 

IMDD 

ILT,ILE,IGT 

IGE,IEQ,INE 


SHF 

LT, LE, GT, 

GE, EQ, NE 


TIX 

AND,OR 

TABLE 2-10 (cont.) 

No. 

Clock 


Description Periods 

Divide double length integer in register 
by 521, leave result in double-length 
register 13 


Saved remainder instead of quotient 
from IDIV 16 


Transfer 16-bit literal to int. reg. 1 


Transfer 32-bit literal to double-2 
length integer register formed by the con­
catenation of two single-length int. reg. 2 

Add the 32-bit literal to the designated 
double-length int. reg. 2 

Set least significant bit of integer 
equal to the result of the proceding test 
(excecuted prior to the actual jump) 1 

Add (Subtract) 1 from content of int.reg. 1 

Same as IDVD, except result is remainder 
not quotient 32 


Test first integer register against 2 

second int. reg., if true, branch to 
location in branch address field.
 
If fall thru: 2 

If branch, 4 


Shift index register right end-around by 
the number of places found in second
 
register 2 

Test operand in first fl. pt. register for 2 
compliance with condition with expressed 4 
condition with request to 2nd reg. new 
PCR address in address field 

Test integer in one register against 2 
integer in second register, increment by 4 
content of third reg. Single length only. 


Logic combination of one integer register 
with another, result to a third 1 

Unit Busy 
Flt'g 

Int Point Mem 
Instr. 
Length 

0-13 24 

0-16 

0-1 

24 
(48 if lit: 

48 

0-2 48 

0-2 48 

0-1 

0-1 

24 

24 

0-32 

0-2 

24 

48 

0-2 
0-4 

48 
48 

0-2 

2-4 
0-2 
0-4 

24 

48 
fall-thru 
if jump 

0-2 
0-4 0-2 

48 
fall-thru 
if jump 

0-1 24 
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TABLE 2-10 (cont.) 

Description 

No. Unit Busy 
Clock Flt'g 

Periods Int Point Mer 
Instr. 
Length 

NOT Complement of one integer 
result to a second 

register, 
1 0-1 24, 

BIT If Nth bit of integer register is ONE, fall 
through, else jump to address contained in 
second index register. N is in register or 
literal 

2 
4 

0-2 
0-4 2-4 

24 
(48 if lit) 

fall-thru 
if jump 

JUMP Set program counter to value found in reg. 2 0-2 1-2 24 

CALL Subroutine entry. Involves automatic hand­
ling of stack of return information, and 
parameter passing 

to be determined, 
to thirty clocks 

up 
48 

RETUIN Subroutine return. Stack cut-back to be determined, 
to thirty clocks 

up 
24 

INFY Test fl. pt. reg for equal to infinity 2 

4 2-4 

0-2 

0-4 

24 
if fall-thr 
if jump 

INFL Test Fl. pt. reg. for infiritesimal 2 

4 2-4 

0-2 

0-4 

24 
fall-thru 
ifjump 

POP Execute stack action of RETURI, but do 
not change program counter setting to be determined 48 

TOS Set stack pointer 
in register 

to new value, value found 
1 0-1 24 

FIX Convert operand found in fl. pt. reg 
to integer. Result to integer register. 4 3-4 0-4 24-

FLOAT Current operand in int. 
result to fl. pt. reg. 

reg. to floating, 
4 0-4 1-4 24 

FIXD Convert operand found 
to integer, result to 
integer registers 

in fl. pt. register 
two successive 

5 3-5 0-5 24 

INFZ Convert operand 
infinitesimal 

in fl. pt. reg. to zero if 
1 0-1 24 

SETFL Set infintesimal control bit. Underflow 
will thereafter create infinitesimals 1 0-1 24 
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TABLE 2-10 (cont.) 

Description 

No. Unit Busy 
Clock Flt'g 

Periods Int Point Mem 
Instr. 
Length 

SETZ Reset infinitesimal control but, U'flow 
will thereafter create zeroes 1 0-1 24 

PAK2 Take two floating point registers, round 
the value found in each to 24 bits length, 
concatenate the result, store in memory. 
'the original operands are saved as long 
as the third register is distinct 9 6-7 0-6 6-9 48 

PAKI Take two integer registers, move one to the 
first half, and the other to the second 
half of a 48-bit word which is then 
stored in memory 2 0-2 1-4 1-4 48 

PAKID Same, except that two pairs of integer reg­
isters hold 32-bit integers each, which are 
truncated (off left end) to 24 bit integers 
before packing 4 0-4 2-7 4-7 48-

PAKI3 Pack three 16-bit integer registers in a 
single word which is then stored to memory 5 0-5 2-8 5-8 48 

UPI Move the two 24-bit halves of a word 
fetched from memory to the pairs of regis­
ters indicated by the two integer reg. 
addresses 5 3-5 2-4 0-3 48 

UPI3 move the three 16-bit fields of a word 
fetched from memory to the three int. 
registers addressed. Like PAK13, may be 
used to keep an index value, its increment 
and its limit packed into a single memory 
word 6 3-6 2-5 0-3 48 

UPF Move the 24-bit havles of a word fetched 
from memory to the leading 24 bits of the 
two fl. pt. registers addressed, with zero 
fill 5 0-1 2-5 0-3 48 

BDCST Broadcast. Receive byte serial word from 
the CU and insert it into the processor. 
Timing varies with the destination. 
Case 1. Fl. Pt. register 
Case 2. Single Int. register 
Case 3. Double (pair of) Int. reg. 
Case 4. PEM 

7 
8 
9 
9 

7-8 
7-9 
7-9 

4-7 
4-7 
4-8 
4-7 6-9 

24 
24 
24 
48 

HVST "Unbroadcast", send word to the control 
unit. From fl. pt. register only. 7 4-7 24 
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TABLE 2-10 (cont.)
 

No. Unit Busy
 
Clock Flt'g 


Description Periods Int Point Mem 


FETCH Move literal or register to register
 
Case 1. Literal or fl. pt. reg. to
 

fl. pt. 1 0-1 


Case 2. Literal or int. reg. to int.
 
reg. 1 0-1 


Case 3. Lit. to fl. pt. or vice versa 1 0-1 0-1 

Case 4. Memory to fl. pt. reg. 3 0-1 2-3 0-3 

Case 5. Memory to int. reg. 3 0-3 0-3 

All integers above are 16-bit integers.
 
For fetching to pairs of integer registers,
 
fetching double-length integers, times
 
are:
 
Case 6. Flt. pt. to double integer
 
reg's or vice versal 2 0-2 0-2 

Case 7. Double int. to double int. 2 0-2 

Case 8. Memory to double int. 4 0-4 0-3 


STORE 	 Store from source to PDM
 
Case 1. Fl. pt. to memory 3 0-1 0-3 0-3 

Case 2. 16-bit integer to memory 4 0-1 1-4 1-4 

Case 3. Double length (32-bit) int. to mem 5 0-2 2-5 2-5 


WAIT 	 Cease operations until CU emits "go". 
Takes one clock (at the instruction fetch 
unit), before transmitting the "I got 
here" signal. Takes three clocks for "I
 
got here" to echo back from the CU as a
 
new setting for the program counter, takes
 
5 clocks after that for the first instruc­
tion to get decoded. Takes only 4 clocks
 
if PCR not changed. 9 


ORIGINAL PAGE IS
 
STOP Sane as WAIT plus reset "enable". The 9 OF POOR QUALITY
 

clocks include the time to restart the
 
program after starting but do not include
 
any new setting of the program counter. 9 


HELP 	 Same as STOP, plus sends interrupt to CU 9 


PNO 	 Read processor no. from backplane into
 
integer register 1 0-1 

If processor is above the swithced-out
 
spare, add 1 to the number. 2 0-2 


Instr.
 
Length
 

24
 
(48 if lit)
 

24
 
(48 if lit)
 

24
 
48
 
48
 

24
 
24
 
48
 

48
 
48
 
48
 

24
 

24
 

24
 

24
 

24
 

In all of the following TN instructions, an option is that the execution may be
 
conditional on an additional integer register's last bit. Thus, participation of
 
a given processor in a LOAD4 or STOREM4 need not use the much slower mechanism of
 
executing STOP followed by a subsequent turn on.
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TABLE 2-10 (cont.) 

Description 

No. Unit Busy 
Clock Flt'g 

Periods Int Point Mem 
Instr. 
Length 

LOADEM Fetch 1 word from EM, address in pair 
of int. registers, to fl. pt. register. 
After first clock, test "ready" line 

from CU before continuing to count clocks 13 0-13 12-13 24 

LOADEMM Fetch N words from EM address in pair of 
int. registers, to PEM. test "CU ready" 
line as above. Memory cycles N times. 
Memory address found in int. reg. 
not in instruction (Note 1). 

13+ 0-13 
4N 

(Note 1) 

13-
13+ 
4N 

24 

STOREM Store 1 word from fl. pt. register to EM. 
EM address in double int. register. 5 0-2 1-5 24 

STOREMM Store N words from PE14 
is in integer register 

to EM. PEN 
(Note 1) 

address 5+4N 5-5+ 
4N 

SHIFTN Transmit one word from fl. pt. register 
out onto TN after testing "CTU ready" 
line. After transmission, test for a 
new turn-on of "CU ready", and receive 
from the line. The time given includes 
the 4 clocks the PE waits while the CU 
sets the TN to a new setting. 12 0-12 24 

EMNO Read EM module number into the processor. 
Wait for "CU ready", then transmit to int. 
register. Delays through the wire of the 
PE-to-CU-to-EM-to-PE path are included 8 7-8 6-7 24 

OFF Test bit of int. reg., 
reset "enable" bit 

if ZERO, halt and 
2 0-1 24 

ABS Make sign bit of fl. pt reg. positive. 
Case 1. Operand in fl. pt. reg. 
Case 2. Operand from memory 

1 
3 0-1 

0-1 
2-3 0-3 

24 
48 

NEG Change sign of fl. pt. reg. 1 0-1 24 

Note 1: These EM instructions, with a streaming of N words per instruction are 
included to assist in evaluating the tradeoff between allowing such an N-word 
streaming of data, and restricting the EM instructions to 1 word each. A number 
of advantages accrue to the limitation to N=l. All of these instructions are 
implemented, but, in the baseline design here presented we have limited the 
machine to N=I. A design option exists to implement other N up to some large 
limit. See Chapter Six.
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TABLE 2-11 
CONTROL UNIT INSTRUCTIONS 

Description 


CADD, CSUB 	 Add, subtract integers within the CU 
(32 bits)
 
Case 1. Literal or reg. to reg. 


Case 2. Memory to register 


CDV521 	 Integer div. of register by 521, result 
to a second register 


CMD521 	 Similar to CDV521 except that original 
number MOD 521 is left in a third regis­
ter. 

CDVMD521 	 Produces both quotient and remainder 
for 521 

CMD512 	 Save last 9 bits of one reg. in second reg. 


CDVS2 	 Shift right 9 places end-off into 2nd reg. 

CMUL 	 Multiply two operands together 
Case 1. Literal or reg. by reg. 

Case 2. Memory by register 
N is the bit position of the most signi­
ficant ONE in the multiplier. Thus-, mul­
tiplying by small positive integers is fast. 

CDIV 	 Divide register by register or literal 


Divide register by memory 
A preliminary shift, controlled by the 
number of leading zeroes in divisor and
 
dividend, produces all or all but one of
 
the zeroes in the quotient before the N 
successive subtractions.
 

CMOD 	 Save remainder from CDIV 
Case 1. Divisor from register

Case 2. Divisor from memory 

INT 	 Test bit n of interrupt register, reset it 

MASK 	 Set/reset nth bit of mask register 


No. t 

CU Instr. 
Clocks Memory Length 

1 24 
(48 if lit 

1 Fetch 48 

9 24 

10 24 

11 24 

1 24 

1 24 

3+ N 24 
(48 if lit. 

3+ N Fetch 48 

5+N 24 
(48 if lit. 

5+N Fetch 48 

6+N 24 
6+N Fetch 48 

10 24 

10 24 
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CIADI, CISBI 

CSHFD 

CSHF 

CSHFN 

TIOM 

CFCH 

CSTR 

CTIX 

TIOH 

CT, CGE 
CLS, CLE 
CEQ, CNE 

CCALL 


CCALLS 


CRET 


CRETS 

UBSCST 


UBDCSTE 

TABLE 2-11 (cont.) 
No. 
CU 

Description Clocks 


Add (subtract) from register 1 

Shift reg. by the shift distance 
(literal, or found in 2d reg.) 
end-off 1 

Shift end-around 1 

Shift numeric. If a right shift, fill the 
left with copies of the sign bit. If left,
 
the shifted-off bits must all equal the
 
retained sign bit, or integer overflow 
is declared. 3 

Transmit content of two or three registers 
to DBM-EM controller 2 


Fetch from CU memory to register 1 

Store to CUM from register 1 

Text index in register, and increment 
Case 1. Fall-through 3 

Case 2. Jump 7 

Read or write 2 words into 48-bit host­
readable register, interrupt host 2 

Test register against register 
Case 1. Fall-through 3 
Case 2. Jump 8 

Enter subroutine, ignore processors 20 


Enter subroutine, synch 23 

Return from subroutine, ignore processors 30 


Return from subroutine, synch 33 

Unconditionally force the processor to
 
accept a stream of N words for PEM or 6+4N 

PEPM with starting address in CU 

register 


Same except only enabled processors are 
loaded 6+4N 

ORIGINAL PAGE I8 
OF POOR QUALITY 

Instr. 
Memory Length 

24 

24 

24 

24 

Fetch 24 

Fetch 48 

Store 48 

24 

24 

24 

24 

24 

24 

24 

Fetch 48 
during 
inst. 

Fetches 48 
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Description 

TABLE 2-11 (c6nt.) 
No. 
CU 

Clocks Memory 
Instr. 
Length 

USETP Unconditionally force the content of CUM 
into designated processor register. CUM 
address is in instruction stream with 
index option 4 Fetch 48 

USETPO Same, plus turn on "enable" bit of the processor 4 Fetch 

CHALTP 	 Halt PE's at end of next PE instruction, 
Wait for all PE's to finish. Can restart 

CSTOPP 	 Stop processors in second clock of this in­
struction. Cannot restart processors, un­
til reinitialized 

LOADCU 	 Fetch to CUM from EM via TN. EM address 
in CU register is DIV 521 to make 
address-within-module, and MOD 521 to 
form module no. (which sets the barrel 
part of the TN). The DIV and MOD are 
computationally expensive, therefore, 
we stream N words. (Note 1) 

STORCU 	 Store from CUM to EM. Address calcula-
tion like LOADCU. N words (Note 1) 

LOADRCU 	 Same as LOADCU except the destination 
is the register, rather than memory 
pointed to by the register' 

STORRCU 	 Same as STORCU except the data is taken 
from the reg. rather than memory 

CFETCH 	 Fetch from CUM to address indexable by 
register 


CSTORE 	 Store to CUM from register 

CJUMP 	 Change PCR setting 

LOADEM 	 Set TN to settings found in register (TOEM
for log 3 (skip-distance) is. in hardware). 
Send "CU ready" bit to processor. When "all 

4 	 24 

3 	 24 

26+ Series 48 
4N of 

(Note 1) Stores 

26+ Series 48 
4N of 

(note 1) Fetches
 

23 	 48 

23 	 48 

1 Fetch 48 

1 Store 48 

1 24 

ORIGINAL PAGE IS 
OF POOR QUALITY 

processors ready" comes back, send N successive 
"read" commands to EM at 4 clock spacing. 
(See Note 1) Includes TN setting for 
broadcasting to all processors for one EM 
module. 4+4N 24 

STOREM Same, except "write" command sent to EM, 8 24 
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SHIFTN 


EMNO 

CGTS, CGES, 
CLSS, CLES, 
CEQS, 'SNES 

CTIXS 


CILIT 


CLITT 


CALIT 


SETIN 


LOOP 


SYNCH 


TABLE 2-11 (cont.)
 

Description 


Set TN setting and send "CU ready".
 
When "all processors ready" comes back,
 
wait 1 clock, set TN to 2d setting,
 
and send "go". 


Set TN setting and send "CU ready". Ten 
"all processors ready" comes back, send 
"read module no." to EM and "go" to pro­
cessor, appropriately timed. 


Perform indicated test and wait for "all
 
processors ready". Then send command to
 
processors to load PCR to either first or
 
second address depending on the test result.
 
Also branch -inCU if.test succeeds. 


Test index against liiit and wait for "all
 
processors ready". Then jam
 

16-bit literal to int. reg. 


Transfer 32-bit literal to CU. reg. 


Add 32-bit literal to CU reg. 


Set TN controls. No synchronization or
 
processor interaction occurs 


Wait till "all processors ready". If
 
any are .enabled issue "go". If none
 
are enabled, jam processor PCR to new
 
setting found in address field. Used for
 
synchronized execution of loops whose loop
 
control is in a processor variable, and may
 
be data dependent per processor. 


Wait for "all processors ready". Issue
 
"golf 


No. 
CU Instr. 

Clocks Memory Length 

8 24 

6 24 

6 24 

1 24 

2 48 

2 48 

4 24 

2 24 

2 24 
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TABLE 2-11 (cont.) 
No. 
CU 	 Instr.
 

Description 	 Clocks Memory Length 

BDCST 	 Wait for "all processors ready", then trans­
mit byte-serial word and "go".
 
Case i. Word comes from CU register 5 24
 
Case 2. Word comes- from CUM 5 Fetch 48
 

HVST 	 Wait for "all processors ready" then trans­
mit "go", receive 48-bit word (If PE is
 
transmitting an integer, later bytes may
 
be empty except for the check bits) 	 9 24
 

CAND, COR 	 Logic combination of two CU words, result 
to register.
 
Case 1. Both operands in registers or lit. 2 24
 
Case 2. One operand from CUM 2 Fetch 48
 

CNOT 	 Bit complement of CU register 2 24
 

CIMP 	 A and not B. Logic
 
Case 1. Both operands register or literal 2 24
 
Case 2. One operand' from CUM 2 Fetch 48
 

MOVE 	 Register-to-register move 1 24
 

CBIT,CBITS 	 Jump if any bit of register, ANDed with 2nd
 
register or literal is QN 6 24
 

Note 1: These EM instructions, with a streaming of N words per instruction are included 
-to assist in evaluating the tradeoff between allowing such an N-word streaming of data, and 
restricting the EM instructions to 1 word each. A number of advantages accure to the 
limitation to Nel. All of these instructions are implemented, but, in the baseline 
design here presented we have limited the machine to N=l. A design option exists to
 
implement other N up to some large limit. See Chapter Six. 
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TABLE 2-12 

FLOATING POINT SCALAR INSTRUCTIONS 

Description Clocks Memory Instr. Length 

ADD, SUB Case 1. Reg. or lit. + reg. to reg. 
Case 2. Reg. + mem. to reg. 

6 
6 Fetch 

24 (48 
48 

if lit.) 

MUL Case 1. Reg. x reg. or lit. to reg. 
Case 2. Peg. x mem. to reg. 

9 
9 Fetch 

24 (48 if lit.) 
48 

DIV Case 1. Reg. or reg;/lit to reg. 
Case 2. Reg./mem. to reg. 

44 
44 Fetch 

24 (48 if lit.) 
48 

DIVR same as DIV with operands reversed, 
Case 2 only. 44 Fetch 48 

MAD Case 1. Reg. x reg. or 
reg. 

lit. + reg. to 
11 24 (48 if lit) 

SSQ Case 1. Reg. 2 + Reg. 2 to reg. 
Case 2. Mem.2 + reg.2 to reg. 

21 
21 Fetch 

24 
48 

ADDD Floating point double length addition 13 24 

MULD Floating point double length multiply 
capability (single length inputs) 17 24 

LT, LE, GT, 
GE, EQ, NE, 
INFY, INFL 

Tests on floating point registers 2 
4 

48 if fall thru 
if jump 

*FIX, FLOAT *Convert data type 4 24 

INFX Convert infinitesimal to zero 1 24 

SETFL, SETZ Set response 
or zero 

to underflow to infintesimal 
1 24 

PAK2 Pack two 
word. 

truncated fl. pt. words in mem. 
6 Store 48 

UPF Unpack two truncated fl. pt. words 2 Fetch 48 

PENd Load CU register with predetermined lit. 
Supplied only to permit symetry with 
processors' code stream. 

1 24 

ABS Take absolute value, 
Case I./ reg./ 
Case 2./mem./ 

1 
I Fetch 

24 
48 

NEG Change Sign 1 24 
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TABLE 2-13
 

OFFSET TIMES OF PROCESSOR-CU SYNCHRONIZED INSTRUCTIONS
 

CU INSTRUCTION OR ACTION PROCESSOR INSTRUCTION TL
 

Interrupt HELP -3 
LOADEM LOADEM 1 

STOREM STOREM 1 

SHIFTN SHIFTN 3 

EMNO EMNO 1 

BDCAST BDCAST -3 

HVST HVST -3 

SYNC WAIT -3 

CGTS, OGES, CLSS WAIT -3 

CLES, CEQS, CNES, 

CTIXS, CJUMPS 

CBITS 

CCALLS STOP or WAIT -3 

CRETS STOP or WAIT -3 

LOOP WAIT -3 
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Ref. 1. Burroughs Corporation, "Final Report, Numerical Aero­

dynamic Simulation Facility, Preliminary Study", Dec. 1977.
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CHAPTER 3
 

SOFTWARE ISSUES
 

3.1 EXTENDED FORTRAN FOR THE FMP
 

3.1.1 INTRODUCTION
 

This chapter describes the extensions and restrictions on the FMP
 

FORTRAN language and compiler at the functional level. The
 

overall functional view of this piece of software is stated below,
 

and is sketched in Figure 3-1.
 

1. NSS FORTRAN will be as compatible with ANSI FORTRAN
 

(X3J3/90) and B7800 FORTRAN as the architecture permits.
 

Differences from these standards will be indicated in this
 

document and in detail in the later detailed design
 

specification.
 

2. 	The compilation process will be performed on the B7800
 

front end and will produce code to be executed on the FMP
 

system.
 

3. FMP FORTRAN will have array operations designed to allow
 

the explicit expression of parallel operations available with
 

the architecture.
 

4. The compiler will be designed in a modular fashion with
 

an internal representation between components which is
 

identical so that addition modules can be added if desired.'
 

The components as envisioned at this time are:
 

a. 	A parser
 

b. 	A preliminary optimizer which performs standard serial
 

optimization techniques.
 

c. 	A secondary optimizer which may reorder code to obtain
 

maximum overlap of functional units.
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d. 	A code generator
 

e. 	A source regenerator which will regenerate serial
 

FORTRAN as a method of enhancing portability and
 

providing the user with a programming tool during the
 

early phases of using the machine.
 

3.1.2 Functional Objectives of Language Development
 

In the development of the FMP language and the FMP compiler the­

following goals were set which are listed below:
 

1. 	Allow the user to access features of the machine in a
 

simple straight forward manner.
 

2. 	Add a small number of extensions which are general in
 

nature rather than a host of specific cases.
 

3. 	As much as is possible keep both the syntax and semantics
 

of the extensions isolated from those employed in serial
 

FORTRAN constructs.
 

4. 	Provide easily understood and recognizable constructs
 

which yields programs which the user can understand and
 

recognize without translation back to serial constructs.
 

3.1.3 Major Extensions to FORTRAN
 

There are only two primary extensions to the ANSI FORTRAN. All
 

other additions and restrictions to the language follow from these
 

primary extensions. The two consist of a modification to the
 

normal set of non-executable specification statements and the
 

addition of a parallel construct.
 

ORIGINAL PAGE IS
 
OF POOR QUA 4ITX
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The modifications in the specification statements are made to
 

allow the user to control the memory allocation to maximize
 

efficient utilization of the machine. These memory resident
 

specifications allow the user to explicity control the allocation
 

of his data among the Control Unit Memory (CUM), the Extended
 

Memory (EM), and Processor Memory (PM). The second construct is a
 

parallel construct put in the language to aid the user in
 

obtaining a simple way in which to express the parallel aspects of
 

his problem. With both constructs equivalences can be made to
 

ANSI FORTRAN so that a serial FORTRAN can be regenerated.
 

3.1.4 Specification Statements
 

The modifications to FORTRAN will permit the following
 

specifications:
 

1. DIMENSION
 

2. EXTENDED
 

3. LOCAL
 

4. GLOBAL
 

For the present the following statements will be disallowed:
 

1. EQUIVALENCE
 

2. COMMON (Blank or named)
 

3.1.4.1 The DIMENSION statement retains its ANSI FORTRAN meaning!
 

The DIMENSION statement is used to specify the sumbolic names and
 

dimension specifications (extents) of arrays.
 

3.1.4.2 The EXTENDED specification statement declares that the
 

variables specified in the statement are resident in the Extended
 

Memory. The form of declaration is:
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EXTENDED /cb/ nlist (, /cb/ nlist) .....
 

or
 

EXTENDED nlist
 

where cb is an extended block name
 

nlist is a list of variable names or array declarators. Only one
 

appearance of a symbolic name as a variable name or array
 

declarator is permitted in all such a-symbolic name as a variable
 

name or array declarator is permitted in all suchlists in a
 

program unit. The ellipses represent repetition.
 

This construct is similar to blank COMMON in the sense that execu­

tion of a RETURN or END statement never causes these quantities to
 

become undefined-. (See Specification FORTRAN X3J3/90 page 8-3)
 

3.1.4.3 The LOCAL specification statement declares that the
 

variables specified in the statement are resident in Processor
 

Memory. The form of the declaration is:
 

LOCAL /cb/ nlist (, /cb/,nlist) .....
 

or
 

LOCAL nlist
 

where cb and nlist are defined as above.
 

This construct is similar to named COMMON in FORTRAN in the sense
 

that execution of a RETURN or END may cause the quantities to be
 

undefined. Note however that execution of a RETURN or END within
 

a subprogram will not cause entries to become undetermined in a
 

LOCAL block that appears in the subprogram and appears in at least
 

one other program unit that is referencing it either directly or
 

indirectly. (See Specification FORTRAN X3J3/90 page 15-15)
 



3.1.4.4 The GLOBAL specification statement declares that vari­

ables specified in the statement are controlled by the Control
 

Unit and are broadcast automatically to the Processor Memory on
 

Program initiation or if they modified during the execution of a
 

program. The form of the declaration is:
 

GLOBAL /cb/ nlist (, /cb/ nlist) .....
 

or
 

GLOBAL nlist
 

where cb and nlist are defined as above.
 

3.1.5 The Parallel Construct
 

The executable DOALL construct is a control statement provided to
 

permit concurrent execution of-segments of a program.
 

The DOALL statement is used in conjunction with a terminal
 

statement ENDDO to form together a loop called the DOALL loop.
 

The form of these two statements is
 

DOALL, I=Il, 12 (,13) (;J=Jl, J2 (,J3 )) (;K=KI, K2 (;K3 ))
 

ENDDO
 

I is the name of an integer variable. II, 12, 13 are each
 

integers.
 

3.1.5.1 Range of a DOALL loop. The range of a DOALL loop
 

consists of all executable statements that appear following the
 

DOALL statement including the terminal ENDDO statement.
 



No additional DOALL statements may occur within the range of a
 

DOALL.
 

If a DO statement appears within the range of a DOALL statement it
 

must be fully contained within the range of the DOALL statement.
 

If a arithmetic or logical IF statement occurs within a DOALL
 

statement, it may not transfer control out of the range of the
 

DOALL statement. Transfer into the range of a DOALL is
 

prohibited.
 

3.1.5.2 Active and inactive DOALL-loops. A DOALL loop is either
 

active or inactive. Initially inactive, a DOALL becomes active
 

only when its DOALL statement is executed.
 

Once active, the DOALL-loop becomes inactive only when the
 

iteration count (3.1.5.4) for each of its increment parameters
 

becomes zero.
 

Execution of a FUNCTION reference or a CALL statement that appears
 

in the range of a DOALL statement does not cause the DOALL to
 

become inactive. Note specification of an alternative return
 

specifier outside the range of the DOALL is disallowed.
 

3.1.5.3 Incrementation Parameters. Specified in the DOALL
 

statement are at least one set of parameters which are to control
 

the execution of the statements within the range of the DOALL
 

loop. These are called the incrementation parameter set and there
 

may be a total of three sets of them. Each parameter set consists
 

of three (four) integers known as the DOALL variable, the initial
 

parameter, the terminal parameter, and (the increment parameter).
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3.1.5.4 Referencing the DOALL variable within the DOALL loop.
 

References to the DOALL variable, I, (J) or (K) within the
 

DOALL-loop is permitted for the following references:
 

1. 	Any reference to array subscripts for arrays declared to
 

be in Extended Memory, however, the DOALL variable may
 

not reference outside the declared array.
 

2. 	Any reference to the value of the DOALL variable within
 

an expression of an IF statement if control is not trans­

ferred beyond the range.
 

3. 	The DOALL variable may be used in the evaluation of an
 

assignment statement, however, not to form forbidden
 

array reference.
 

The utilization of the DOALL variable is specifically prohibited
 

for the following:
 

1. 	Any reference to array subscripts for variables declared
 

to be LOCAL or which appear in a DIMENSION statement
 

either explicitly or implicitly.
 

2. 	The DOALL variable may not be reassigned within the range
 

of the DOALL-loop except by the DOALL statement.
 

3. 	Transfer of control into the range of a DOALL-loop is
 

prohibited.
 

3.1.5.5 Execution of the DOALL construct. The effect of execut­

ing a DO-ALL-loop construct is to execute all body statements,
 

those following after the DOALL statement and preceding the ENDDO
 

statement, in a serial fashion for those determined incrementation
 

parameters set in the DOALL statement. The initial parameter M1
 

the terminal parameter M2 , and the incrementation parameter M3 are
 

determined for each incrementation set, Il, 12, 13. This deter­

mines the allowable values of the DOALL variables I(J and K) equal
 

to NJ.
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The DOALL variable I with its NI allowed values is paired with the
 

first allowed variable of J. Next the DOALL variable of I with
 

its N, allowed values is paired with the second allowed variable
 

of J. This continues until all possible combinations occur. The
 

total number of combinations is:
 

NI for a single DOALL-loop incrementation set
 

NJ * Nj for a double DOALL-loop incrementation set
 

N1 * Nj * NK for a triple DOALL-loop incrementation set
 

Hence the body statements are executed in serial fashion for each
 

given set of DOALL variables allowed, either I, I & J, or I, J, &
 

K in a strictly parallel sense.
 

3.1.6 Subroutines & Procedures as Program Subunits (to be resolved
 

in Phase II)
 

3.1.7 Other Constructs
 

3.1.7.1 ASSIGN Statement. The ASSIGN statement has been dropped
 

as a possible candidate for a FMP extension. It was found that
 

the access to Extended Memory could be handled by simple compiler
 

algorithms through the EXTENDED declaration. It was found that in
 

complex control structures the programmer was more likely to make
 

mistakes and cause ARRAY bound errors than if the compiler was to
 

perform all the necessary accessing. Some details of this will be
 

shown in later examples. (See 3.2.2.2 discussion and Fig. 3.4).
 

3.1.7.2 I/O. All I/O for NSS FORTRAN must be performed on vari­

ables assigned to Extended or Control Unit Memory. If variables
 

in Processor Memory are referenced in an I/O statement a
 

syntactical error will result.
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3.1.8 Examples of Constructs in FMP FORTRAN
 

3.1.8.1 VALID Triply Nested DOALL-Loop
 

EXTENDED Q(100, 100, 100), S(100, 100, 100)
 

DOALL, I = 2, 99; J = 2, 99; K = 2, 99
 

RR = 1.0/Q(I, J+1, K-i)
 

R1 = Q(I+1, J, K) - Q(II, J, K)
 

R2 = Q(I, J, K+) - Q(I, J, K-i)
 

S(I, J, K) = RR * R1 * R2
 

ENDDO;
 

2. INVALID
 

EXTENDED Q(100, 100, 100), S(100, 100, 100)
 

DIMENSION RI(100), R2 (100)
 

DOALL, I = 2, 99; J = 2, 99; K = 2, 99
 

RR = 1.0/Q(I, J+l, K-i)
 

RI(I) = Q (I+l, J, K) - Q(I-1, J, K) 

R 2 (I) = Q(I, J, K+l) - Q(I, J, K-i) 

S(I, J, K) = RR * R1 (I-1) * R2 (I+1) 

ENDDO;
 

This construct is invalid because the arrays R1 and R2 declared in
 

the DIMENSION statement are referenced by the DOALL variable I.
 

If it is necessary to so reference the arrays R1 and R2 arrays the
 

doubly nested DOALL construct should be used (See 3.1,8.2). 
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3. VALID 

EXTENDED 0(100, 100, 100), S(100, 100, 100) 

DOALL, I = 25, 50, 2; J = 1, 99; K = 2, 100 

RR = 1.0/Q(I, J+l, K-i) 

IF (I. GT. 30 GO TO 1 

2 

R1 = Q(I+1, J, K) - Q(I-1, J, K) 

S(I, J, K) = RR * R1 

GO TO 2 

R1 = Q(I-1, J, K) - Q(I+1, J, K) 

S(I, J, K) = RR * R1 

CONTINUE 

ENDDO; 

4.. INVALID 

EXTENDED Q(100, 100, 100), S(I00, 100, 100) 

DOALL, I = 25, 50, 2; J = 1, 99; K = 2, 100 

RR = 1.0/Q(I, J+l, K-i) 

IF (I. GT. 30) GO TO 1 

R1 = Q(I+I, J, K) - Q(I-1, J, K) 

S(I, J, K) = RR * R1 

1 

ENDDO; 

CONTINUE 
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This DOALL-loop construct is invalid because it transfers control
 

out of the range of the DOALL.
 

5. INVALID
 

EXTENDED Q(100, 100, 100), S(100, 100, 100)
 

DIMENSION R1 (100), R2 (100)
 

GLOBAL JL, KL
 

DOALL J=2, JL; K=2, KL
 

R1 (I) = 6.7 

If (J 30) GO TO 3
 

If (K 30) GO TO 4
 

DO 1 I = 2, 99 

RR = 1.0/Q(I, J, K)
 

GO TO 5
 

3 RR = 1.0/Q(I, J-1, K) 

GO TO 5
 

4 RR= 1.0/Q(I, J, K-i)
 

5 RI(I) = Q(I+1, J, K) - Q(I-1, J, K) 

R2 (I) = Q(I, J, K+1) - Q(I, J, K-1) 

S(I, J, K) = RR * RI(I-1) * R2 (I+I)
 

1 CONTINUE
 

ENDDO;
 

ANSI FORTRAN specifically prohibits transfer of control from
 

outside a DO-loop to into the body statements of a DO-loop.
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3.1,.8.2 Doubly Nested Loops
 

1. VALID
 

EXTENDED Q(100, 100, 100), S(100, 100, 100)
 

DIMENSION R1 (100), R2(100)
 

DOALL, J=2, 99; K=2, 99
 

RI(I)=6.7
 

DO 1 I=2,99
 

RR=1.0/Q(I, J+l, K-1)
 

RI(I) = Q(I+1, J, K) - Q(I-1, J, K)
 

R2 (I) = (, J, K+I)
 

S(I, J, K) = RR * RI(I-1) * R2 (I+I )
 

1 CONTINUE
 

ENDDO; This is the correct syntax for handling the
 

problem in Example 2. (3.1.8.1)
 

2. VALID
 

EXTENDED Q(100, 100, 100), S(100, 100, 100)
 

DIMENSION R1(100), R2 (100)
 

GLOBAL JL, KL
 

DOALL, J=2, JL; K=2, KL
 

R1(I)=6.7
 

DO 1 I = 2, 99
 

If (J.GT.30) GO TO 3
 

If (K.LT.30) GO TO 4
 

RR=1.0/Q(I, J, K)
 

GO TO 5
 

3 
RR=I.0/Q(J, J-l, K)
 

GO TO 5
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4 
RR 	1.0/Q(I, J, K-I)
 

5 	RI(I) = Q(I+I, J, K) - Q(I-1, J, K) 

R2 (I) = Q(I, J, K+1) - Q(I, J, K-i) 

S(I, J, K) = RR * RI(I-1) * R 2 (I+1) 

1 
CONTINUE
 

ENDDO;
 

3.1.8.3 Use of the LOCAL Construct
 

1. VALID
 

EXTENDED Q(100, 100, 100), S(100, 100, 100)
 

LOCAL RI(100, R2 (100), "CONST
 

GLOBAL JL, JK)
 

DOALL, J=1,JL; K=IKL
 

R(1)=6.0
 

R(100)=10.0
 

DO 1 I = 2, 99
 

RR=1.0/Q(I, J, K)
 

RI(I) = Q(I+1, J, K) - Q(I-1, J, K) 

R2 (I) = Q(I, J, K+l) - Q(I, J, K-i) 

CALL TEST (I) 

S(I, J, K) = RR * R(I-1) * R2 (I+I) * CONST 

1 CONTINUE 

ENDDO; 

SUBROUTINE TEST(I)
 

LOCAL R1(100), R2(100), CONST
 

IF (R1(I). GT. R2(I)) CONST=R(I)
 

RETURN
 

END
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2. INVALID
 

EXTENDED Q(100, 100, 100), S(100, 100, 100) 
LOCAL RI(100), R2 (100) 

GLOBAL JL, JK 

DOALL, J=1,JL; K=1,KL 

R(1) = 6.0 

R(100) = 10.0 

DO I I = 2, 99 

RR=I.0/Q(I, J, K)
 

RI(I) = Q(I+I, J, K) - Q(I-1, J, K) 

R2 (I) = Q(I, J, K+L) - Q(I, J, K-1) 

CALL TEST(I)
 

S(I,J,K) = RR*Rl(I-I)*R2(I+I)*CONST 

1 CONTINUE
 

ENDDO;
 

Using the identical SUBROUTINE TEST above would cause an undefined
 
reference to CONST because the LOCAL declaration does not contain.
 

the variable CONST. Naturally, TEST could have been defined with
 
two parameters I and CONST. which would have been valid.
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3.2 HAND COMPILATION FOR SAM
 

3.2.1 Overview
 

The 	methodology of hand compilation for the SAM will be described
 

through a series of examples each of which will be transformed in
 

a series of stages from original FORTRAN to ASSEMBLER CODE.
 

References will be made to Appendbx (A) which discusses
 

preliminary compiler alogrithms for setting the transposition
 

network.
 

In each example the following code steps will be taken:
 

1. 	Or.iginal NASA-AMES FORTRAN
 

2. 	Extended FORTRAN for SAM
 

3. 	Compiler output including code reorganization (written in
 

a Pseudo FORTRAN
 

4. 	Compile output showing Transposition Network and Memory
 

Module computations (again in a pseudo FORTRAN or META
 

ASSEMBLER)
 

5. 	ASSEMBLER CODE
 

The example chosen from the Explicit Code was the SUBROUTINE
 

TURBDA because it demonstrates the ability of SAM to operate in a
 

concurrent manner and provides a vehicle for demonstrating the com­

piler's ability to handle control statements through a "mimicking"
 

technique and also provides an example of why it is felt that an
 

ASSIGN statement could cause programmer error. The second example
 

is the major LOOPS of the SUBROUTINE STEP including the subroutine
 

calls and the called SUBROUTINES BTRI and XXM. One loop (DO 20)
 

will be discussed in detail while the other two (DO 30) and (DO
 

40) will show the differences in the transposition network
 

settings ahd the memory module accesses for the different memory
 

accessing. (DO30 & D040 discussion to be supplied later).
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3.2.2 SUBROUTINE TURBDA
 

3.2.2,.1 Original Code and SAM Extended FORTRAN
 

In Figure 3-2 the original NASA-AMES version of the SUBROUTINE is
 

shown. The FMP Extended FORTRAN as written by the programmer is
 

given in Figure 3.3. In both cases the common declarations were
 

modified slightly to remove extraneous variables from this
 

specific example. As you will note, the programmer wrote a two
 

dimensional DOALL-loop with a serial inner DO loop. Because there
 

is no data depending on I it could have been written as a three
 

dimensional DOALL.
 

3.2.2.2 Preliminary Code Analysis
 

Figure 3-4 shows the preliminary compiler code analysis. Within
 

the DO 1 loop the compiler determines what array elements stored
 

in Extended Memory must be fetched through the Transposition
 

Network. For agiven I, J, K, EI(I, J, K) must be fetched.
 

However, only for J=l must the element EI(I, J+l, K) and for K=1
 

must the element EI(I, J, K+1). The compiler will be capable of
 

recognizing these accesses to extended memory and will "mimic" the
 

branch structure. It also will be able with this mirroring of the
 

otiginal structure be able to access only the requisite elements
 

and prohibit out of bounds access of the array even if those
 

elements are not subsequently used. This protection is even more
 

critically necessary when accesses occur in the negative sense
 

rather than the positive one as in this example.
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SUBROUTINE TURBDA
 

COMMON/A12/ RHOW(31,31,31),E(31,31,31),EI(31,31,31)
 

COMMON/A5/ IL,JL,KL,CV
 

COMMON/A6/ RMUL(31,31,31)
 

cvi- i./cv 

DO 1 K=I,KL
 

DO 1 J=I,JL
 

DO 1 I=I,IL
 

TEMP=ABS(EI(I,,J,K))*CVI
 

IF(K.EQ.1) TEMP=.5*ABS(EI(I,J,1)+EI(I,J,2))*CV
 

IF(J.EQ.1) TEMP=.5*ABS(EI(I,I,K)+EI(I,2,K))*CV
 

RMUL(I,J,K)=2.207E-08*SQRT(TEMP**3)/TEMP+198.6)
 

1 CONTINUE
 

RETURN
 

END
 

Figure 3-2. Original NASA-AMES FORTRAN 

SUBROUTINE TURBDA
 

EXTENDED/A12/ RHOW(31,31,31),E(31,31,31),E(31,31,31)
 

GLOBAL/A5/ IL,JL,KL,CV
 

EXTENDED/A6/ RMUL(31,31,31)
 

Cv1=1./CV
 

DOALL, J=1,JL;K=I,KL
 

DO 1 1=1,IL
 

TEMP=ABS(EI(I,J,K))*CV1
 

IF(K.EQ.1) TEMP=.5*ABS(EI(I,J,1)+EI(I,J,2))*CVI
 
I
 

IF(J.EQ.1) TEMP=.5*ABS(EI(I,1,K)EI(I,2,K))*CV
 

RMUL(I,J,K)=2.270E-08*SQRT(TEMP**3)/TEMP+198.6)
 

1 CONTINUE
 

ENDDO;
 

RETURN
 

END
 

Figure 3-3. Extended FORTRAN for SAM 
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SUBROUTINE TURBDA
 

EXTENDED EI(31,31,31),RMUL(31,31,31)
 

GLOBAL CV,JL,KL,IL
 

DOALL, J=I,JL;K=I,KL
 

CVI = 1.0/CV
 

DO 1 I=I,IL
 

El -EI(I,J,K)
 

FOR(J,NEQ.l) null fetch next line
 

E2 =EI(I,J+I,K)
 

FOR(K.NEQ.l) null fetch next line
 

E3 =EI(I,J,K+)
 

IF(J.EQ.l) GO TO 3
 
IF(K.EQ.1) Go TO 2
 

TEMP=ABS(El )*CVl
 

GO TO 4
 
2 TEMP= 0.5*ABS(El+E3 )*CVl
 

GO TO 4 

3 TEMP=0.5*ABS(El + E2 )*CVI 

4 RMUL(I,J,K) - 2.270E-08*SQRT(TEMP*3)-/(TEMP I98.6) 

1 CONTINUE 

ENDDO
 

RETURN
 

END
 

Note: The expression "Null fetch next line" implies that the
 

transposition network will be set to fetch all the elements for
 

EI(I,J+I,K) for given I. However only those for which J=1 will in
 

fact be passed from Extended Memory to the Processors.
 

Figure 3-4. Compiler Code Analysis 
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As one can see in this example all processors for which J3l & K3l
 

all execute TEMP=ABS(El*CVl. All processors for which J=l
 

(including K=l) compute TEMP=0..5* ABS(E1+E2)*CV1. All processors
 

for which K=l and J=l form TEMP=0.5*ABS(El+E3)* CVI. These three
 

cases occur for a given I concurrently.
 

3.2.2.3 Computer Programmatic Transformations Including
 

Transposition Network Calculations
 

Figure 3-5 shows the Control Unit and Processor Element code
 

streams in a FORTRAN like language or META ASSEMBLER. The
 

compiler recognizing the two dimensional DOALL on J,K, which are
 

the second and third indices of Extended arrays EI and RMUL and
 

calculates the number of cycles to be performed (the DO 10 loop)
 

i.e. 	NMAX = (ISECONDSIZE*THIRDSIZE + Nprocessors-l)
 

Nprocessors
 

= (31*31 + 512-1) = 2
 

512
 

Similiarly the compiler recognizes that ISKIP=IFIRSTSIZE=31. Note
 

that all accesses to EI and RMUL are of type 1 as described in
 

Appendix A.
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CU INSTRUCTIONS 	 PE INSTRUCTIONS
 

ENTER TURBDA 	 1 ENTER LRBDA
 
2 CVI=I.0/CV 

DO 10 N=1,2 	 3 DO 10 N=1,2
 
IVV=512*N-512 	 4 IVV=512*N-512
 

5 IV= IVV+PENO
 
6 KMI=IV/31
 
7 K = KMI+l
 
8 J = IV-KMI*31 l
 

= 
IN IVV*31 9 IN= IV*31
 
IA0I=IBSET+IN 10 IA01= IBSEI+IN
 
IA02=IA01+31 11 IA02- IAfI+31
 
IA03=IAO+961 12 IA03=IAO+961
 
IA04=IBSRM+IN 13 IA04= IBSRM+IN
 
DO 1 I=l, IL 14 DO 1 I=1,IL
 
II=I-i 15 II=I-i
 
OFFSETI=MOD(IA l+II,521) 16 MADDl= (IA0+II)/521
 

17 SYNCH
 
18 FOR (J.NE.l) MODE=O
 

OFFSET2=MOD(IA0I+II,521) 	 19 MADD2= (IA02+II)/521
 
20 SYNCH
 
21 FOR (K.NE.l) MODE=0
 

OFFSET3=MOD(IA03+II,521) 	 22 MADD3= (IA03+II)/521
 
23 SYNCH
 
24 IF (J.GT,JL) GO TO 8
 
25 IF (K.GT,KL) GO-TO 8
 
26 IF (J.EQ.l) GO TO 2
 
27 IF (K.EQ.l) GO TO 3
 
28 TEMP=ABS(El)*CV1
 
29 GO TO 4
 
30 2 TEMP=0.5*ABS(El+E3)*CV1
 
31 GO TO 4
 
32 3 TEMP=0.5(ABS(EI+E2)*CVI
 
33 4 R=2.27OE-08*TEMP
 
34 *SQRT(TEMP)/(TEMP+198.6)
 

OFFSET4=MOD(IA04+II,521) 35 MADD4=(IA04+II)/521
 
36 8 CONTINUE
 
37 SYNCH
 

1 CONTINUE 38 1 CONTINUE
 
10 CONTINUE 39 10 CONTINUE
 

EXIT 	 40 EXIT
 

Note: The Expression Mode 90 is merely a device used to imply that for those
 
values of the variable not equal to 1 fetches through the Transposition
 
Network do not occur.
 

Figure 3-5. Compiler Output with Transposition Calculations 

ORIGINAL PAGE L9 
OF POOR QUALIM 
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On entering the subroutine (line 1) of Figure 3.5 each processing
 

element calculates Vl (line 2). Loop 10 is then initiated which
 

represents the number of times the array must be cycled as
 

mentioned above (line 3). Next IVV is calculated which repre­

sents the number of processors that have been utilized to that
 

cycle number. Obviously the compiler does not perform 512*N-512
 

but rather start from zero and increment by 512, however, FORTRAN
 

usage was utilized here. The processing elements then perform a
 

number of calculations (line 4 - line 8). IV=IVV+IPENO represents
 

the address in J,K space that each processing element has. From
 

that number its J and K value is determined (line 7 and line 8).
 

KMl (line 6) which represents the K value minus 1 which is used in
 

the J calculation is calculated separately.
 

Lines 10 thru 13 represent address calcuations. For the control
 

unit one is calculating the address of the array element which is
 

to.go into processing element 0 for each transposition network 

setting, i.e. THE OFFSET. The processing element it is performing
 

and address calculation on the specific array element. This is
 

why line 9 has different determinations for IN. Lines 10 thru 13
 

are address calculations for EI(I,J,K) (line 10) EI(I,J+I,K) (line
 

11), EI(I,J,K+l) (line 12) and RMUL(I,J,K) (line 13). Note line
 

10 and 13 start from the base address IBSET of EI and IBSRM of
 

RMUL. The CU instructions are computing the address calculation
 

for the array element which is to go to processor =0 while the
 

processors are calculating the address of the array element to go
 

to Processor = IPENO.
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Note all these index computations are performed only for the outer
 

loop. They do not occur for the inner DOlI=l,IL loop (line 14).
 

Next the I index is decremented by 1 .(line 15), again a FORTRAN
 

antifact, which would not occur in the ASSEMBLER code but this is
 

FORTRAN. The memory module address, MADDI (line 16) is computed
 

in the processing element while the offset, IFSETl (line 16) is
 

computed by the mod function in the control unit. The array and
 

the control unit now SYNCHRONIZE. In a similar fashion in the
 

offset and memory module address are calculated for each of the
 

next two array access and synchronized accordingly (lines 18 thru
 

28). Note that for (J.NE.l) (line 18) a mode bit is set which
 

turns off the array fetch. Similarily for (K.NE.l) (line 21).
 

The next step the compiler takes is to skip computations for those
 

values of J between JL+l and 31, the value declared for the array
 

in the EXTENDED declaration (line 24). This is the way the
 

preliminary compiler is going to handle the one dimensional vector
 

length/declared extent problem at this juncture. Alternative
 

algorithm are known; however teaching the algorithms and
 

subsequent hand compilation would require Burroughs more effort
 

than the possible machine performance degradation, that might occur 

during simulation.. For (K.GT.KL) a similar branch, is performed
 

(line 25). Note that 8 CONTINUE must be above the next
 

synchronization point. Next the branches for sections'of code
 

which will be computed 'for (J.EQ.l), ((K.EQ.l). AND (J.NEQ.l))
 

and for ail other J and K values less than JL and KL. (lines 26
 

thru 32) All processors except those that have J or K values
 

greater than JL or KL then process lines (33,34). The OFFSET
 

calculation for RMUL is then made in the Control Unit and the
 

Memory Module address in the processors (line 35). Synchroni­

zation occurs and the transfer of RMUL (I,J,K) from Processor to
 

Extended Memory occurs. Lines 14 to 37 are looped until IL is
 

reached and then the second cycle, line 3 to 38 are executed
 

before the subroutine is EXITed.
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Earlier it was mentioned that this piece of code could have been
 

executed as a three dimensional DOALL loop. As can now be seen,
 

this would probably not be advantageous in terms of performance
 
for two reasons. First, due to the branches on J and K (lines 24
 

thru 27) each processor would have to perform the index cal­

culations of lines 6, 7, and 8 for all I values if one did a 3-D
 
DOALL-loop. Second, since IL< 31 one only needs to execute this
 
loop with the preliminary compiler IL times with a 2-D DOALL-loop.
 

In a 3-D DOALL loops I would have to be computed and a branch
 
similar to lines 24 and 25 would also have to be made. At this
 

time this appears less efficient in highly branched code and where
 

the array fit is good - i.e., on cycle 1, all 512 processors are
 

utilized while in cycle 2, 88% of the processors are utilized. If
 
the array size were instead EI(25,25,25) then 100% would be used
 

on cycle 1 while only 113 or 22% would be used on cycle 2. With a
 
3-D DOALL one would have 31 cycles of which 30 would be 100% busy
 

and 1 cycle of 50% busy. In that case the additional indexing com­

putations would be masked in the total execution time.
 

3.2.2.4 Assembler Code for TURBDA
 

This code is shown in Figures 3-6 and 3-7.
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L 
1000 IDENT 
1001 CODESEG
 
102 ENT 
I003 START CILIT 

150 CILIT 
1005 L3 CTiM 
100 (SN
1002 MULL 
1008 (FETCH

1009 FILIT 
ICG LiL (TX 
1011 CIADDL 

1012 'IADDP 

1013 NOD521 
1014 (ILIT 
1(15 LOADEN 
1016 CIADDL 

1017 CIADOR 

1018 NOD521 

I019 LOADEMC 

1020 CIADDL 

1021 cIADP 
1022 MOD521 
103 LOADEIC 
lo2s CIADDL 

1025 CIRDDP 

1 6 NOD51 
102? STOPEN 
1(28 JUMP 
1029 LI JUMP 
1030 LLt RETURN 
1631 END 

CUI'IMPLICIT 'rTLPFDA 

START 
cp1.0
CR2,1 
CRI.C2.LL
 
CPS.CPI- 9 
CP6.CR3, 3 1 
rRe.IL 
cP7.1 
LU?.P LI 
CI9.CP...IESEII 
CPS.CP7.CP?
 
CR9 
0RI.31 
CP9.CRIO 
(P9GRCR6. ISEI2 
CR-.CP?.(P9 
CR9 
GR9,(RPI(
CP9,CP6 ,ISEI3 
CRP9.CR?.CR 
CR9 
C F,RIO 
CR9,(R6.ISRJI 
CR9,CP.CP9 
CR?
 
CP9.CRIO 
L1
 
L3
 

Figure 3-6. Handcompiled Control Unit Code 

Subroutine TURBDA 
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L 
1006 
1616 

1020 

1030 STRPT 

10+0 

IC50

I1CA C 

I070 L3 

10ff 

190 
1160 

1110 

1120 

1130
I Il4C 

1150 

116,0 

1170 

11,( 

1193 LI" 

1200 

1 105 
1210 

12 0 
1230 

IA3 

ILto 

1256 

1260 

1270 

1 56 
1;90 LIGO 

3IRD6 

1305 

131r 

1013 

1730 

13 CEO 

135 ­
,1360 L26 

1376 

1375
1376 


13$0 

1390 

POO 

1405 

I10 

1 20 
1430 

I140 

1450 

I±60 
14701490 

IIIDEHT 
CODESEG
 
ElIT 

FLIT 

FDIL 

ILIT 

ILIT 


ITIX 

SHFL 

PErHO 
]InDD 

IDIWL 

ISTOPE 

I'ILILL
IILIE., 

ISTORE 

MULL 

IFETCH 

ILIT 

ITIN 

IRDM 

IRDO 
10521 

LOAOEN 
IRDON 

IRDO 

10521 

IT 

IFETCH 

lEO 

ILIT 

LOADEIC 


RDD 

105 1 

ILI 

IFETCH 


ILIT 

LOROEI'IC 

IFETCH 

IFETCH
ISUIL 


IGT 

IFETCH 

IFETCH 

ISUBL 

IGT 

lEO 

lEO 

FFETCH 

ABS 

FIL 
FSTOPE 

dUHiP 

PE,'IIPLICIT TUFREIA 

STRRT
 
FPII.1
 
FPRIFF1C01
 
IP2.1
 
IF'I,6
 

IF1I.IR2,Lr
 
IR3,IR2,-9
 
IR"
 
IP4,IF3,IR4
 
IR5,IR4,31
 
IR5.UMI
 
IP6.1R5.31
IP6, IR4 ,1IR:
 

IR6,JHI
 
IP 6 .IP . 3 1 
IPSIL
 
1R.71
 
IR7.IP,LI
 
IRS,1R6,IBSEII
 
IPSIF'81R7 
IRS
 
IRe.E1 
IPS.IR6.IBSEI2
 
IP6,IR$,IR7
 
IRS
 
IpIO.I
 
IF'I I .JII
 
PIII.O.LICO
 

1P10.0 
IP8E2,IRIO
 
IRS.IR6.IRSEI3
 
IFSIP8,IRX
 
IRI
 
IRI0.1-

IRI I.11411
 

L20C
 
IRI1,
 
IR.E3,IRIO
 

IRI 61,1 


IP12.J1Il
 
IF1..JL
IRI13,R3,1
 

IRI2,I1JLU0
 
IPISkHI
 
IPI4.KL
 
IRI4,IF.I4,I
 

L8CIPI
,LC
 
I,'hUL0 

IPI3,6,L2F
 
FP2,EI
 
FP2
 
FP2,FPI .FP2 
FP2,TEMF
L L7C, 

Figure 3-7. Handcompiled Execution Unit Code 
Subroutine TURBDA 
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3.2.3 SUBROUTINE STEP (LOOP DO 20)
 

The next portion of code to be examined is STEP (loop DO 20) which
 

includes CALLS to BTRI and XXM. A number of Figures have been
 

made of the code and they are listed below with a brief
 

description.
 

Figure 3-8 The oiiginal NASA-AMES FORTRAN Of Subroutine 

STEP. 

Figure 3-9 SAM Extended FORTRAN for Subroutine STEP 

Figure 3-10 A comparison file of Figures 3-8 and 3-9 showing 

R(Replacements), I(Insertions) - (Deletions) 

Figure 3-11 Preliminary Compiler Code Reorganization for 

S6broutine STEP 

Figure 3-12 A comparison of the Figures 3-9 and 3-12 

Figure 3-13 Compiler programatic transformations including 

Transposition Network Settings for Control Unit 

Subroutine STEP 

Figure 3-14 Same as above for Processor - Subroutine STEP 

Figure 3-15 Implicit/Steppiece NSS3CU Assembler Code 

Figure 3-16 Implicit/Steppiece NSS3PE Assembler.Code
 

Additionally the SUBROUTINES BTRI and XXM are examined. The
 

related Figures are:
 

Figure 3-17 Original NASA-AMES Code for Subroutine BTRI
 

Figure 3-18 SAM Extended FORTRAN for Subroutine BTRI
 

Figure 3-19 Comparison of Figures 3-17 and 3-18
 

Figure 3-20 Original NASA-AMES Code for Subroutine XXM
 

Figure 3-21 A modified version of XxMl which will produce
 

improved performance on the CDC7600 and SAM
 

Figure 3-22 SAM Extended FORTRAN for SUBROUTINE xxMI
 

Figure 3-23 Comparison of Figures 3-21 and 3-22
 

ORIGINAL PAGE IS
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18410). SUBROUTINE ST P
 
154200" C3MMON/BASE/N/AXJMAX,( AXLAX,JM, KM, LFDTGAIA.GA- ISMUFS4ACH 
184300 1 ,OXIOY1,OZIND,N2,'V(5).FD( -) -HDALO,GD.UEGA.HDX,HJY,HCZ
11 4400 2 ,RM, CNBRP I, ITR,IrNVISC. LAM1NNPINTI,INT2.INy,
154500154500 COMMON/GEO/NBI,NB?,RFR)NT RM X AXRXAX, DXCDRAD. 
184600 COMMON/READIIREAO ,I WRIr .NG RI
 
134700 COMM ON/V IS /RE,P, rMUE. K 
184900 CDM4ON/VARS/Q(T20,6,30)

184900 COMMON/VARO/S(720,5,30)

185000 COION/VARI/X(72030),I (720,30),Z(720,3')

185100 COMMON /VAR3/P(120,30),XX(60,4),YY(60,4 ),ZZ(6'4)
 
185200 C LEVEL 2,0,S,X,y,Z
 
18530 COXMON/COUNT/NCNCI

155400 COMMON/BfTRID/A(60,5 5). 8(61.5.)C(60,5,5).0c63., s).r(6 0 .c)
1855 00 C 
155600 C
18820') C 
188309 R4 = SMU 
188400 C8 = 1.+2.*RM 
188500 GAM2 = 2.-GAMMA 
.188600 0D 20 L = 2,LM

188703 DO 20 K = 2,KP 
188500 C 
188902 C***FILTRX 
139000 C
159100 KL = (LMI)*NO+K
 
159209 JA=2
 
119309 JB=JMAX-1
 
1R9400 CALL XXM(K,L,I.JMAX)

189500 D0 12 J=,JMAX

199603 RI =XXCJ,1)*HX

189700 R2 =XX(J,2)*H0x
 
189100 R3 =XXCJ,3)*HDX

15990 R4 =XX(J,4).HDX

19000 C
 
19010 Ct*.**.*ANATR X
190 0^D 
1R= l8/Q(CL,lRJ)

190400 U = O(KL,2,J)*RR
 
1'050l V = Q(KL,3,J)*RQ
19060S1 W = Q(KL,4,J)*RP
19070' UU = U*RI+V*R?+W*Q3
190300 UT = U*2+V**2+**2
 

190900 CI = GAMI*UT*.5 
191009 C' = Q(KL,5,J)-RR*GAM4
191100 C3=C2-CI
 
191203 C4=R4+UU
 
1?1303 CS=GAMI*U
 
19140s C6=GAMI*V 
19150' CT=GAMI*V,

19160) D(J,1=,I) = R4
19-1700 D(J,1,2) = R1
191801 D(J,1,3) = R2
 
191909 D(J,1,3) = R3
 
192000 0(J,1,5) = 0.
 
I32100 OCJ,2,1) R*.1-U-UU
192200 D(J,2,2) = C4+RI*GAM*J
 
192301 D(J,2,3) = -RI*C6+R?*U
 
192400 D(J,2,4) =- RI*CT+R3*U
 
192500 DCJ,2,5) = RI*GAMI
 
192600 D(J,3,1) = R2*CI-V*UU

192700 0(J, 3,2) = RI*V-R2*C5


,192800 D(J, 3,3) = C4+R2"GAM2*I
192900 D(J,3,4) = -R2*CT+R3*V 
193000 0(J,3,5) = R2*GAMt
 
193100 D(J,4,1) = R3*CI-0*UU
193200 DCJ,4,2) = Rl*-R3*C5 
193300 
 DCJ,4,3) = RZ2W-R3tC6
193400 
 D(J,4,4) = C4+R3*GA42*4
193500 0cJ,4,5) = R3*GAMI 

Figure 3-8. Original Piece of Subroutine STEP 
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O(J;;j = j-C?+2..*.C1.3kUU 13P88 DJ 3-­
193800 D(J,5,3) = R2*CS-C6*UU
19 900 OIJ, 5,4 ) = R3-C3-CT*UU
 
194000 D(J,5,5) = R4+GAMMA-UU
 
194100 C 
194200 C*****END OF AMATRX 
194300 C
 
Dk4400 12 CONTINUE
 
194500 D0 25 J=JAJB
 
19460n RJ = 1./QCKL,6,J) 
194700 RMJ=RM*RJ
 
194803 RR = RMJQ( IL,6,J-)
 
194900 RF = RMJ*Q(KL,,+J1)
1 9 5000 00 23 N=l,5
 
45100 AIJN,1I = -O(J-1,N,l)
195200 ACJ,N,2) -D(J-1,N,2)
 
19530) A(J,N,3) = -(J-1,N,3)
 
195400 A(J,N,4) = -(J-1,N,4)
 
195500 A(J,N,5) = -D(J-1,N,5)

195600 BCJN,1) = 0.0
 
195700 B(JN,2) = 0.0
 
195800 B(JN,3) = 0.0
 
195900 5(J,N,4) 0."
 
196000 B(JN,5) 0.0
1961DA CIJ,N-I] = (J¢I,N,I)
 
'196200 C(JN,2) = D(J+1,I,2).
196300 C(J,N,35) = O(J+IN, 3) 
196400 C(J,N,4) = D(J+1,N,4)
196500 C(JN,5) = D(J+1,N,5) 
196601 A(J,NN) = A(J,N,N)-RR
 
96703 8(JN,N) = C8
 
96800 C(JN,N) = C(J,N,N)-RF

19690C 23 F(JN)=S(KL.N,J)

197000 25 CONTINUE
 
197100 C
197200 C.****END OF FILTRX 
197300 C 
197400 C 
"197500 C S MUST BE ZERO ON B.C.
 
197600 C
 
1977,03 CALL STRI: 2,JM)

197803 00 21 J = 2,JN
 
197900 S(KL,IJ) = F(J,1)

19B00" S(KL,2,J) = F(J,2;
 
195100 S(KL,3,J) = F(J,3)
 
198203 S(KL,4,J) = F(J,4)

19830n 21 S(KL,5,J) = F(J,5)
198403 20 CONTINUE 
21860. RE TURN 
218700 END 

Fligure 3-8. Original Piece of Subroutine STEP (Cont)" 
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15410) SUBtOUTINE STrP 

184200 GLOBAL/BASE/NHAX, JMAX( PAX.LPAAX,JM, KM,LPGAMMApqAmISRUFSP-CH
154300 1 ,DX1,DY1,DZ1,NOND02,zV(5),FD() HD,ALPGOOMEGA ,HX ,4YPOZ 
184400 2, RM, CNBR ,P I, INV ISC, LA44 N,NP 
184509 GLDBAL/GED/NB1NB2,RFR]NT,RMAXXRXMAX,DRAD.DXC 
184600 GLOBAL/READ / IRE AO, IWRIt, NGRI 
184700 GLOAL/V IS /RE,' R,RMUE, I K 
154800 EXTENDE)/VAR S/0 (720,.S1, 6)
184903 EXTENDED/VAROIS(T20,30. 5)
11500 EXTENOED/VARIIX(720.30),Y(72C.30),Z(720,3))
15100 LOCAL/VAR3/P(120,30),X (60 ,4),YY(60,4),.ZZ(6% 4)
 
185200 C LEVEL 2•Q•S.X.Y,Z

185300 Cl NT ROL/CD UN T/NC,NCIDr
 
185400 LOCALIBTRID/A(60,55),3(63,sS5),C(60,5,5),0(60,5,5).F(6',5)

185500 C
 
185600 C
 
188200 C
 
188300 R4 = S4U
 
188400 C8 = 1.,2.RM
 
188500 GAM2 = 2.-GAMmA
 
188600 DoAL L,K=Z, KM;L= 2, LM
 
188900 C
 
188900 C***FILTRX
 
189000 C
 
159100 KL = (L-1)'ND+K

159200 
18930i 
159400 INCLUDE XXMI(K,L' ,JMA)
 
189509 DO 12 J:1,JMAX

189501 QI=Q(KL,JI)
 
159502 Q2=Q(KL,J,2)

189-503 03=Q CKL,J, 3)

159504 Q4=0Q(KL,J,4)
 
189535 05=0(KLJ,5)

189600 RI =XX( J,1)tHDX 
159700 R? =XX(J,2)*HDX

189500 R3 =XX(J,3)*HDX
 
159900 R4 =XX(J,4)*HDX
 
190003 C 
190100 C*t*****AMATRX
 
190200 C

190300 RR= 1./1

190400 U = Q2*PR
 
190500 V = Q3*RR

190600 W = Q4tRR
190700 UU = U*RItV*R?+W*Q3 
19-0500 UT = U**2 V**2+I*2
 
190900 C1 = GAMI*UT*.5
 
191000 C2 = 05*RR*GAm4A
 
191100 C3=C2-CI 
191200 C4=R4.UU
 
)190 CS=GAMI*U
 
191400 C6=GAMI'V

191500 C?=GAHI*W 
19160 DCJ.1,1) = R4
 
191700 DCJ,,12) = R1 
191800 D(J,1,3) R2
 
191900 D(J,1,4) = R3
 
192000 D(J,1,5) = 0.
 
192100 D(J,2,1) = RI*C1-U*UU
 
.192200 D(J,2,2) = C4+R1*GAM2*J
 
192300 D(J.2,3) = -Rt*C6,R2*U
192400 D(J,2,4) = -RItC?+R3.U
 
192500 0(J,2,5) = RI*GAMI
 
192600 D(J.3,1) = R2"C1-V*UU
 
192700 D(J,3,21 = RI"V-R2*C5
 
192800 0(J.3,3) = C4+R2*GAM2*
 
192900 D(J,3,4) = "R2*CTR3*V
 
193000 D(J,3,5) = R2-GAMI 
193100 0(J,4.1) = R3.,C1-W*UU 

Figure 3-9. Identical Piece of Subroutine STEP in SAM 
Extended FORTRAN 

ORIGINAL PAGE IS 
flP 1flfl1 nTTATTrV 3-31 

http:C4=R4.UU
http:EXTENOED/VARIIX(720.30


0019300011 
00193400 
00193500 
00103600 

00193700 
0019390') 
00193900 

00194009 
0014 4100 
00194202 

00194300 

00194400 
00194500 
00i94501 
00V4502 
00194503 
00194504 
00194505 
00194506 
00194510 

00194511 
0014512 

00194600 

00194700 
00194800 

00194900 
00194901 
00194902 
00194903 
00194904 

00194905 

00195000 
00195100 
0019520'0 
03195300 
0014540 
00195500 
00195600 
00195703 
00195800 
00195900 
00146000 

00196100 
00196200 

00196300 

00196400 

00196500 
00196600 

00196700 
00196800 

00196903 
00196901 

00196902 
00196903 

00196904 

00196905 

00197009 

00197100 
00197200 
00197300 

0019740') 
00197500 
00197601 
0019 7703 
00147800 
00197900 
0019 800) 
00198100
00198200 
0089301 
0,198311
001953-2 
00148303 

00198304

0019 535 
00198316 
00198400 
0021860)

00218700 

Figure 3-9. 

B(J,4, RR ,-RB0(J;4, = WR3.' 

O(J.4,4) = C4*R3*GAM2*W
 
DJ,4.5) = R3*GAMI
 
D(J,5,1) = (-2+2.CI)-UU

D(J.5,2) = R1*C3-C5*UU
 
D(J,5,3) = RZ ..3-C6*UU
 
O(J,5,4 ) R*C3-C*UU
 
O(J,5,5) = R4+GAMA*UU 

C
 
C******ENO OF AMATRX
 
C
 

12 CONTINUE 
D 25 J=2,JMAX-1
 
IF (J.GT.2) GO TO 777

06=Q(KL,J,6) 
QTM=Q(KLJ-1,6)


GO TO 778 
777 QM = RX
 

06= Rf
 
778 Q6P=0(KL,J+1,6)


RX = 06 
RY = 06P
 

RJ l./05
 
RNJ=RM*RJ
 
RR = RMJ*06M
 
RF = RMJ*06? 

S1 = S(KL,J,1} 
S2 = SCKLJ,2)

53 = SCL,J,3) 
$4 = S(KLJ,4)
S5 = S(KL,J,5) 

09 23 N=1,5
A(J,NI) = -D(J-1,N,1)
 
ACJ,N,2) = -D(J-1,N,2)
 
A(JN,3) = -O(J-1,N,3)

At J,N,4) = -D(J-1,N,4) 
A(JN,5) -D(J-1,N,5) 
B(J,N,1) = 0.0
B(JN, 2) = 0.0
 
B(J,N,3) = 0.0
 
B(J,N,4) s 0.0 
B(J,N,5) = 0.0 
CCJNI) = DCJ+INI)
C(JN,2) = O4J+1,lN,2)

C(J,N,3) = D(J+I,N,3)
 
C(JN,4) = D(J+I,N,4)

CCJN,5) = D(J ,N, )
 
A(JN,N) = A(J,N,K)-RP
 
B(JN,N) = C8 
CCJNN) = CCJNN)-RF 

23 CONTINUE
 
F(J,1) = SI
 
F(J,2) = 52
 
FCJ,3) = $3
 
F(J.4) = S4
 
F(J.5) = S5 

25 CONTINUE
 
C 
C.*.**END OF FILTRX
 
C
 
C
 
C S MUST BE ZERO ON B.C.
 
C 

CALL BTRIfZ.JM) 
00 21 J = 2,JM
SI = F(J,1)
 
'S2 = F(J,2) QTJAL,'
3 = F(J,3) OF POO1YS4 = F(J,4 ) 
S5 = F(J,5)
 
S(KL,J,I) = SI
 
S(KL,J,2) = 52
 
S(KL,J,3) = S3
 
S(KLJ,4) = 54

S(KLJ,5) = S5
 

21 CONTINUE
 
ENOO;ENOO0

RETURN
 
END 

Identical Piece of Subroutine STEP in SAM 
Extended FORTRAN (Cont) 
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3.2.3.1 Sam Extended FORTRAN for SUBROUTINE STEP (LOOP DO 20).
 

Figure 3-10 shows the changes made in the original NASA-AMES
 

program to produce SAM Extended FORTRAN. As can be seen, the
 
greatest number of changes occur in the declarations. Only the
 

named COMMON blocks, VARS, VAR0, and VARI need to be put in
 
Extended Memory. Note for simplicity in accessing the last two
 

extents on the S and Q matrices were inteichanged.
 

The Named Common Blocks VAR3 and BTRID are put in LOCAL Memory.
 
It should be noted that in another portion of the program,
 
SUBROUTINE METOUT, the arrays XX, YY, and ZZ are written out after
 

the subroutine calls. This would not be permitted and an
 

additional copy to Extended Memory Arrays, say XXI, YYl, and ZZ1
 

would be needed. Also, the P array is used in a variety of ways
 

including an EQUIVALENCE statement in other portions of the code.
 

However, for this specific portion of the code the P array is not
 

accessed in any way and so for convenience was left in LOCAL for
 
the example. Copies of all data in GLOBAL memory are assumed to
 

be in Processor Memory.
 

The only other changes to the program were the replacement of the
 
DO 20 loops with the two dimensional DOALL loop (and ENDDO
 

statement) and the replacement of the CALL statement in line
 
189700 to an INCLUDE since the PROCEDURE XXMI has Extended Memory
 
References. (Further discussion of this will be supplied later.)
 

ORIGINAL PAGE is 
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1 R V0420 

2 R 184400 

3 R 18450) 

4 R 184600 

5 R 184703 
6 R 18480) 
7 P 184900 
8 P 13500) 
9 R 185101 

I0 R 135303 
11 R 185401 
12 R 138600 
13 - 1!8701 
14 R 18940)

15 R 198401 


Figure 3-10. 

LJ 'AX K 5.SUAC?GLOBAL/BSENIAX t MAX.LNAXJM.r 'L 4.5AM4 vAGA P I l. S 

2, RNCNBRPIIqVISC,LAhMINNP XR X A X D R A X
2 F R O N T M A X 
 4 -.-
GLOBAL IGEO/N3,NR , 

;LOBAL IREADIf1 EAD. IbRT, h5RT
 
GLOBAL/VIS/REPPRRME,RK
 
EXTENDED/VARS' C(723,30,6)
 
EXTENDED/VAROf S1(720,30,5) " Z ( 7 2 0
 
EXTE OED/VARI'X(?20,30),Y 720 30). 31)
 
LOCALIVAR3/P(i20,30),XX(61.,4),YY(60,4),ZZ(6),4)
 
CONTROL/CDUNT'NCNC1,DT

LOCAL/BTRID/At 5 B(65.5)8(655),C(6C,5,5) E(6)5.5),F(60,5)
 
DOALL, =2,KM;-.=2,LM
 

INCLUDE XXM1C(,L,1,JMAX)

ENDD9;END'O
 

Comparison of Original and SAM Extended 
FORTRAN - Subroutine STEP 
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3.2.3.2 Preliminary Code Analysis and Code Reorganization for
 

STEP.
 

Figure 3-11 shows the preliminary code reorganization that would be
 

performed by the compiler. The DO loop variablesin line 19450$
 

have been modified so that they now read DO 25 J=2, JMAX-l. This
 

was done so that the initial and terminal values are composed of
 

literals or Global variables that would exist both in Processor
 

and 	Central Memory.
 

The 	code only accesses the arrays Q and S from Extended Memory.
 

The 	accessing of the Q array is shown in lines 189501-189505 and
 

in lines 194501-194510. The notation for this data movement from
 

Extended Memory to Processor Memory is with the FORTRAN statement
 

Ql=Q(KL, J, 1). (This notation is used for clarity and is not
 

meant to be an implied ASSIGN statement.) The accessing of Q(KL,
 

J-l, 6) is only necessary of J=2 for the other values exist in
 

Processor Memory, hence, the IF test and branch at line 194501.
 

Since the DO 25 loop exists in both the Processor and Control Unit
 

Code the execution pattern is:
 

1. 	Set J=2
 

2. 	Synch for fetch-Q(KL, 2, 6)
 

2. 	Synch for fetch Q(KL, 1, 6)
 

3. 	Synch for .fetch Q(KL, 3, 6)
 

4. 	Set J=3
 

5. 	Synch for fetch Q(KL, 4, 6) (2 and 3 already in Processor
 

Memory)
 

6. 	Set J=4
 

7. 	Synch for fetch Q(KL, 5, 6) (3 and 4 already in Processor
 

Memory)
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INPLICIT/STEPPIECENSSI (12/127TI)
 

184100 SUBROUTINE STEP
 
184200 GLO8ALfBASEtNAX.JMAXKAXLHAX,JM.KNPLM.GAMAIGAI.SMUFSACH

184300 1 .Xl1DYl0Z1.N0.NDZFV(5).FD(5),HD.ALPGDOEGANOX.HDY.HDZ

184400 2.R?'CNBR,P!INVI SCLAHIN.NP

184500 GLOBALIGEON81,N82.RFRONT RMAXXRXNAXpDADDXC

184600 GLOBALIREAOIIREAD.IIRITNGRI
 
184700 GLOBALIVISIRE.PR.RNUERK
 
154800 EXTENDED VARS/Q(TZO,30.6)

184900 EXTENDED/VARO/S(F2O,30.5)

185000 EXTENDED/VARI/X(TZO,3OY(720,30),Z(720. 30)
185100 LOCALIVAR3P(120S3OXX60,),YY(60,4),ZZ(60,4)
185200 C LEVEL 2?0.S.XtY,Z
185300 CONTROL/COUNT/NC.NCI.DT
185400 LCALIBTRID/A(60,5.5).8(60,5,5).C(6.5p5).DC60,5.5),F(60,5)
18550 C 
185600 C
188200 C 
188300 RM = SHU
 
188400 C8 = 1.t2o*RM 
188500 GAKZ = 2.-GMMA
 
188600 DOALLPK=ZPKM;L=ZLM
 
188803 C
 
188900 C***FILTRX
 
189000 C
 
189100 KL = (L-1)*N+K
189200
 
189300
 
189400 INCLUDE XXNICKL.I.JNAX)

189500 00 12 J=1,JAX
189501 O1 9(KL,J.1)
 
189522 92=Q(KL.J,)

189533 93=Q(KL,.3)

189504 04=Q(KL.JA)
 
189535 Q5=Q(KL.J.5)

189600 Ri =XX(J,1)*HDX

189T00 R2 =XX(J.2)*HDX
189800 R3 =XX(4J3)*HDX

189900 R4 =XX(J,4).HDX

190000 C
 
190100 C***-***AMATRX
 
190200 C
 
190300 RR= 1.101
 
190400 U = 02*RR 
190501 V = Q3*RR
 
190600 W = Q4*RR

193700 U = U*RI*V*R2+W*R3
 
190800 UT = U**2.V**2*W**2
 
190900 CI = G&MI-UT*.5
 
191000 C2 = Q5*RR*GAMMA
 
191100 C3=CZ-C1
 
191200 C4=R4*UU
 
191300 C5=GAKI*U 
191400 C6=GAfII*V

19150 CT=GAMI*. ORIGINAL PAGE IS
191603 D(J,l1) = R4
 
191700 0(J,1.2) = R1 OF POOR QUALITY
191800 D(JL,3) = RZ
 
191900 0(J,1,4) = R3
 
192000 0(J,1.5) = 0.
 
192100 D(J2.1) = RI*CI-U*UU 
192200 O(J,2.2) = C4'RI*GAM2*U
 
192300 D(J.23) = "R1*C6R2*U

192400 D(J,?,4) = "RI*CT*R3*U
 
192500 =J,2,5)RIGANI
= 

192600 i(J3:1R2-CI-VUU
= 
19ZTO0 D(J3.2) = RI*V-RZ*C5

192800 0(JP3.3) = C4*R2*GANZV
 
192900 0(J,3.4) = -R2*CTtR3*V
 
193000 D(J,3,5) = RZ*GANI
 
193100 D(J,4I) = R3*CL-W*UU
 
193200 0(J,4,2) = RI*W-R3*C5
 
193300 0(J,4,3) = R2-W-R3*C6
 
193400 0(J,4,41 = C4*R3*GAPLZ*W193500 D(CJ4,5) = R3-GAMI
 
193600 D(J.5,1) = C-C2*2.*C1)*UU

193700 D(J,5,2) = RI*C3-C5*UU
 
193800 D(J.5,3) = RZ*C3-C6*UU
 
193900 0(J.5.4) = RI*C3-C7*UU
 

Figure 3-11. Preliminary Compiler Code Reorganization 
Subroutine STEP 
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194000 0(J5,5) = R4+GAMNA*UU 
194100 C 
194200 C******END OF ARATRX 
194300 C
 
194400 12 CONTINUE
 
194500 Do 25 J=zJHAX'l
 
194501 IF (J.GT.2) GO T0 7??
 
194502 06=G(KLJ,5)

194503 8 61=0(KLJ1,6

1
 

194534 80 TO 778
 
194505 77T 06N = RX
 
194506 06= RY
 
194510 778 06P=Q(KLJtI,6)
194511 RX = 06 
94512 RY = Q6P

194600 RJ = 1.Q6 
194700 RMJ=RN*RJ
 
194802 RR = RNJ*0SM
 
194900 RF = RJ*QP
 
194931 S1 = S(KLJ.I)
 
194902 S2 = SCKL.J.2)

194903 S3 = SCKL.J,3) 
194904 54 = S(KL.J,4)

194905 55 = S(KL.J.5)
195000 DO 23 N=1.5 
195100 A(JN.1) = -D(J-1.N.1"
 
195200 A(J,N,2) = -0CJ-1.N.2) 
195300 A(J.N.3) = -DCJ-1lN.3)
 
195400 A(JN.4) = -D(J-IN,4) 
195500 A(JN,5) = -D(J-1.N.5)
 
195600 B(J.N,1) = 0.2
 
195700 B(J.N.Z) = 0.2 
195800 8(JN,3) = 0.: 
195900 B(J.N.4) = 0.0
 
196000 8(JN,5) = 0°9
 
196100 C(J.N,I) = D(4J1,N!,) 
196200 C(J.N.2) = D(J+IN.2) 
196300 C(J.N.3) = 0(J1,N,3) 
196400 C(J.N,4) = D(J+1.N.4) 
196500 C(J.N,5) = 0(J+I.N,5)
 
196600 A(JN.N) = A(J.NN)-RR
 
196700 8(JN.N) = CS 
196800 C(JNN) = C(J.NN)-RF 
198900 Z3 CONTINUE
 
196931 F(J.1) = Si 
19693Z F(J.2) = S2
 
1969)3 F(J,3) = S3
 
196934 F(J,4) = 54 
196935 F(J,5) = S5
 
197000 25 CONTINUE
 
197100 C 
197200 :*****END OF FILTRX
 
197300 C
 
197400 C
 
197500 C S MUST BE ZERO ON B.C.
 
197600 C
 
197700 CALL BTRI(Z4JM)
 
197800 DO 21 3 = 2.4J
 
197900 SI = F(J.1) 
198000 S2 = FCJZ) 
198100 53 = F(3,3) 
198200 54 = F(J,4)196300 S5 = 'F(J,51 

ORIGINAL PAGE IS 198301 S(KL,J,l ) = S 
198332 S(KL,J,2) = S2
 

OF POOR QUA y1933 198304 S(KL,J,3)$(KLJ,h) 	= S3=S4 

198335 S(KLJ,5) = S5 
198400 ENDDO;ENDDO 
218600 RETURN 
218700 END 

Figure 3-11. Preliminary Compiler Code Reorganization 
Subroutine STEP (Cont) 
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In SUBROUTINE TURBDA branches on the DOALL variable were
 

demonstrated. This example demonstrates branching capability in
 

fetching on inner nested DO loop variables.
 

Finally the fetching and storing of the array S is shown in lines
 

194901-194905 and 19830-1-198305. Because of the notation chosen,
 

i.e., Si = S(KL, J, i) the statements were removed from the DO
 

LOOP (23) on N. This is not a requirement. An array, say SS with
 

subscripts could have been declared~with a simple DIMENSION
 

statement.
 

Figure 3-12 shows the lines of code that have been replaced (R),
 

inserted (I), or deleted (-).
 

3.2.3.3 Programmatic Transformations by the Compiler and
 

Transposition Network Calculations for STEP Portion
 

Figure 3-13 and 3-14 shows explicitly the address calculations for
 

setting the Transposition Network Offset (3-13) and the Memory
 

Module address (3-14) for each access from Extended Memory.
 

Considering the Control Unit Code first in a line by line basis:
 

188600 Hidden loop N has 2 cycles 

188601 Calculation of # of PE's used to that cycle 

188601 Address of Q(IVV+I,,I) in memory which is in PE#=S. 

i.e., on cycle 1 the address of Q(l,l,1) is equal to 

the base address of Q in memory. On cycle 2 the 

address of Q(513,1,1) is the base address of Q plus 

512. 

188602 Address of Q(IVV+l,1,2) is 42,600 greater than 

Q(IVV+I,1,I) 

188603 - 188639 Similar other calculations for S and Q 
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1 R 18920)
 
2 R 189300
 
3 I 189501 Q1=Q(KLJ1) 
4 I 189502 Q2=(Ktj,2) 
5 I 189503 03=0(KLJ,3)
6 I 199504 94=Q(KL.J,4)
7 I 189505 05=0(KL,J,5) 
a R 190301 RR= 1./01 
9 R 190400 U = Q?-RR 

10 R 19050) V = Q3"R:
 
11 R 190600 W = 04*R
 
12 R 191001 C2 = Q5RR*GMA
 
13 R 19450) DO 25 J=IJMA-1
 
14 I 194501 IF (J.GT.2) G3 TO 777
 
15 I 194502 Q6=9(KLJ.6)
 
16 I 194503 06M=Q(KL,J-1,)
17 I 194504 30 TO 7T8 
18 1 194505 777 26K = RX 
19 1 194506 06= RY 
20 I 194510 778 06P=Q(fL,J+1I,
21 1 194511 RX = 06 
22 I 194512 RY =6P 
23 R 194600 RJ = I./06 
?4 R 194800 RR = R$J*O6M 
25 R 194900 RF = 'YJ*Q6P 
26 I 194901 S1 = S(KLJI) 
27 I 194902 S2 = S(KL,J,!) 
28 I 194903 S3 = S(KL,J,) 
29 I 194904 54 = S(KL,Ji)
30 I 194905 S5 = SKL.J.i 
31 R 196901 23 CONTINUE 
32 I 1-96901 F(J,1) = SI 
33 I 1969a2 F(J,2) = S2
 
34 I 196903 F(J,3) = S3
 
35 1 196904 FfJ,4) = 54 
36 I 196905 F(J,5I = S5 
37 R 197900 S1 = F(J.1)
38 R 198C03 S2 = F(J,2) 
39 R 198100 S3 = F(J,3)
 
40 R 198200 54 = F(J,4) 
41 R 198300 S5 = F'(J,5) 
42 I 198301 S1 KL,J,I) = St 
43 1 198302 S(KL,J,2) = S? 
44 I 198303 S(KL,J,3) = 'S3 
45 1 198304 SCKLJ,4) = U
 
46 1 198305 S(KLJ,5) = S)
 
47 I 198306 21 CONTINUE
 

Figure 3-12. Comparison of SAM Extended FORTRAN and Compiler 
Reorganized Code - Subroutine STEP 
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00194001 C THE COMPILER WILL HAVE DET ERMINED 
00184002 C OF THE HIDDEN LOOP 
00154003 C 
00184004 
00184005 
00134006 
00184007 

C 
C 
C 
C 

IE. NHIDDEN = (720/ND*LMAX+N-1)/N = 

ALS( THAT ISKIP=I 

00184100 SUBROUTINE ST-P 

THE NU'43ER OF CY'LES 

2 CYCLES 

00134200 
00184300 
00194400 
00184500 
00184600 
00154700 
00184800 

GLOBAL/BASE/NMAX,JMAX.(MAXLPAX, Jf'KM,LVGAMP.,3;4ISMLFS AC 
1 .DX1,DY1,DZ1,NDND2,7V(5),FO(5)r4O,ALPGD. OMEGCHDX,fCYHCZ 
2,RMCNER.PIINVISC.LAMIN,NP 
GLOBAL/GEONBI,NB?.RFR)NTRAX.XR.XNAXDRAD.OXC
GLOBAL/REAO/IREADIWRI .NGRI 
GLOBAL/VIS/REPR,RMUEIK
EXTENDED/VARSI(T20,30,6) 

00194900 
00185000 
001i5100 
00125200 
00155300 

EXTENDE0/VAROIS(720,30,5)
EXTENDED/VARIIX(720,30),Y(TC,30).Z(? 0,30)
LOCAL/VAR3/P(120,30),XC(63,4),YY(60,4),ZZ(6 ,4)
LEVEL 2,QSXYZ 
CONTORL/CnIUNTINC,NC1,Or 

00185400 LOCAL/BTRIOIA(6O5,5)d3 (£0,5.5),C(6O,5 5).D(60. 55),r(6%,5) 
00185500
00135600 

C
C 

00188200 C 
-001M8300 
00185400 
00188500 
00158600 
00188601 

03 20 N=1,2
IVV=512*N-512 

00188630 
00188631 

11OQ1=IBS1 + IVY 
IAOO0=IAOQI + 42600 

00188632 IAOQ3=IAOQ2 + 42600 
00138633 IA004=IAOQ3 + 42600 
00188634 
00188635, 

IAOQ6=IAOQ5
IAOSI=IBSSI 

+ 42600 
+ IVY 

00188636 IAOS2=IAOS1 + 42600 
00188637 IAOS3=IA052 + 42600 
00138632 IAOS4=IAOS3 + 42600 
00188639 IAOSS=IAOS4 + 42600 
0018S640 IAOXM = 
00188641 IAOXP = 
00188642 IAOXNN= 
"00188641 IAOXPN= 
00158644 * IAOYM = 
.00188645 IAOYP = 
00188646 IAOYIN= 
00188647 IAOYPN= 

00188646 IAOZM = 
00188649 IAOZP = 
00188650 IAOZHN= 

00188651 IAOZPN= 

00188900 C
 
00185900 C.*.FILTRX
 
00189000
 
00199100
 
00139200 C
 
00189300
 

IBSX +IVV'1
 
IBSX + IVV + I 
IBSX *IVV-ND 
IBSX *IVV+ND, 
IBSY +1IVV-I 
IBSY + IVY + 1 
IBSY +IVY-ND
 
ISSY +IVV+NO
 
IBSZ +IVV-1
 
I8SZ + IVY * I 
IBSZ IVV-NC
 
IBSZ *IVV*ND
 

00139404 KL = (L-I)*ND+K

001S9405 00 10 J = 1JMAX
 
00169406 JJ= CJ-1)*T20
 
00159407 IFSETO6 = OD((IAOO6JJ ),521
 
00189408 SYNCH
 
00189409 IFSETYN = xOD((IAOXM+Ji).521)
 
00139410 SYNCH
 
00189411 IFSETXP = MOD(( IAOXPJJ),521)

00189412 SYNCH
 
00189413 IFSETXMN= MOD(CIAOXMN JJ),S21)
 
00129414 SYNCH
 
00139415 IFSETXPN= MOD((IAOXPN *JJ),521)

00189416 SYNCH 

Figure 3-13. Control Unit Code for SAM - Subroutine STEP 
(META Assembler) 
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189417 

159418 

189419 

189420 

159421 

189422 


.9423 

.189424 

139425 

199426 

189427 

139428 

189429 

159430 

139431 

159432 

189450
 
189451
 
159453
 
139454
 
189455
 
189457
 
139458
 
159459
 
159460
 
139461 

189500 

189501 

13950' 

159503 

159504 

189505 

139506 

169537 

159505 

169509 

199510 

1%9600
 
189700
 
13990'
 
190000
 
140100
 
1Q 0 00 
19 030)

.19 0400
 
Jq 0500
 
19 0600 
19 0 00 
190300
 
191000
 
191100
 
191200
 
19 1300
 
191400
 
191500
 
191600
 
191?00 
191600
 
191900
 
192000
 
192100
 

'192200 
192300
 
192400
 
192500
 
192600
 
192700
 
192300
 
192900
 
193000
 
193100
 
193201
 
19 330)
 
.19 3400
 
19 3500
 
193600
 
1 370)

193800
 
193901
 
19 4000
 
194100
 

IFSETfM = MCD(( IAOY.*JJ }),521) 
SYNCH
 

IFSETYP = MOO(CIAOYP+JJ),521)
SYNCH
 

IFSETYMHN= MOD(UIAOYMN iJJ),521)

SYNCH
 

IFSETYPN= MOD(( IAVYPN F JJ) .521) 
SYNCH
 

IFSETZM = MOD(CIAOZM+JJ),521)
SYNCH 

IFSETZP = MOD(( IAOZP+JJ ).52!) 
SYNCH
 

"IFSETZMN= NOD(( IAOZHN IJJ),521)
 
SYNCH
 

IFSETZPN= MODa( IAOZPN IJJ)521)

SYNCH
 

10 CONTINUE
 
03 12 J=1,JMA-X 
JJC(J-1)*720
 
IFSETQI = MOC(CIAO01+JJ).521)

SYNCH
 
IFSET02 = MOD((IA0Q2+JJ), 521) 

SYNCH 
IFSETQ3 = OD((IA0Q3+JJ),52)

SYNCH 
IFSETO4 = MOD((IAOQ4.JJ),5Z1) 

SYNCH 
IFSETQ5 = MOD((IAOQS.JJ),521) 

-Figure 3-13. Control Unit Code for SAM - Subroutine STEP 
(ILETA Assembler) (Cont) 
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94 SO 12 CONTINUEDO 25 J=2, JMAX-1J1 450C 
94501 Jd= (J-I).720


194503 IF(J.GT.2) Go TO 77' 
1Q4520 IFSETQ6 = MO0(CIAOQ6+JJ),-5" I) 
194521 SYNCH
 
1945?3 IFSET16M MOO((IAOQ6+JJ-720),5?1) 
194524 SYNCH
 
194525 GO TO 778 
194526 777 CONTINUE 
194527 778 IFSE TQ6P =MOD(CI IAO0 +JJ +720),52 )
 
194528 SYNCH
 
194529 IFSETS1 = MOD(( IAOS1+JJ1.,52119 4530 SYNCH194531 IFSETS2 = OD((IAOSZ+JJ ),521I 

194532 SYNCH 
19 4533 IFSETS3 = MOD(( 1AOS3 JJ ).521) 
194534 SYNCH 
194535 IFSETS4 = .MOD((IAOS4+JJ),521 ) 
194536 SYNCH 
194537 IFSETS5 = MOD(( IA0SS+JJ ),S521 ) 
194538
 
194600
 
194700
 
19 4500 
194900
 
195000
 
195100
 
195200
 
195300
 
195400
 
195500
 
195600
 
195700
 
195800
 
195900 
196000
 
196100
 
196200
 
196300
 
196400
 
196500
 
196600
 
196700 ORIGINAd PAGE'1
196300 O n,-001 QUALM
196900 OF R 
196901
 
196902
 
196903
 
196904
 
147000 25 CONTINUE
 
197100 C 
197200 C*...*END OF FILTRX 
17300 C 
197400 C
 
197500 C S MUST BE ZERO ON B.C. 
197600 C
 
1?7700 CALL BTR I( 2,JN) 
197800 00 21 J=2,JM

197801 JJ= (J-1)*720
197900 
198000 
198100 
198200 
198300 
193301 IFSETS1 = NOC(CIAOS1JJ),521) 
198302 SYNCH 
198303 IFSETS2 = NOD(( I'AOS2+JJ),521 
198304 SYNCH 
198305 IFSETS3 = MO(CIAOS3+JJ),521) 
198306 SYNCH
 
198307 IFSETS4 = NOD((IAOS4.JJ),521) 
198308 SYNCH 
198309 IFSETS5 = MOO(CIAOSS+JJ).521) 
198310 21 CONTINIF
 
198400 20 CONTINUE 
218600 RETURN 
218700 END
 

Figure 3-13. Control Unit Code for SAM - Subroutine STEP 
(META Assembler) (Cont) 
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184001 C THE COMPILER NILL HAVE DETERMINED THE NUM3ER OF CY'LES 
134002 C OF THE HIDDEN LOOP 
134003 C 
184004 C IE. NHIODEN = (720/ND*IUX+N-1)/F = CYCLES 
184005 C 
184006 C ALS THAT ISKIP=l 
154007 C 
194008 C
184009 C ***** NOTE ALL SYNCHS IN THE PE CIDE ARE KIT TH­

.18401c PROVISO THAT THY Do KOT FETCH FOR K.LT. ,OR
0134011 C K.GT. NM OR L.LT. , R L.GT.LM 
,184012 C 
184013 C IE SYNCH SHOULD BE REPLACED WITm AN EXPRESSICN 
184014 C 
164315 SYNCH WITH MODE:O FOR K.LT., K.ST.KML.LT.',L. T.LM 
114016 NOTE THE IF BRAI CHES IN EACi DO LOOP AFTE' THI 
184017 C SYNCH CODE 
134100 SUBROUTINE ST'P 
184200 GLOBAL-BASE/NNAX,.RAX, 'PAX,LPAX,JR, M,LYGAMO ,GA. ,SMU-FSW CH 
184300 1 .DXI,DY1,DZ1,ND,NO2,V(5),FD(5),HD,ALP,GD,CPEGA,HLXH.Y,"Z
194400 2,RM,CNBR,PI,INVISC,LA[N,NP 

" 

184500 GLOBAL/GEO/NB1,NBRFRINT,R$AX,XRAMAX,DRADCXC
154600 GLOBAL/READ/IREAD,IRITN3R 
184700 GLOBAL/VIS/RE.PR,RMUEaK
154500 EXTENDED/VARSIQ(72O,3),6) 
164900 EKTENDED/VARO/S(720,30,5) 
135000 EXTENDED/VAR1/X(T20,30),YT2C30),Z(720,3)
185100 LOCAL/VAR3/P(1ZO,30),X((6),,4,YY(60.4),ZZ(61,4) 
155200 C LEVEL 2,Q,S,X,Y,Z
185300 CONTROL,C3UNTNCO, C1,Or
185400 LOCAL/BTRID/A(h0,5,5),3(6,5,5),C(60,5,5),D(6Z,5,5),FC6h,5) 
185500 C 
185600 C 
185200 C 
188300 RM = SMU 
188400- C8 = Io+2°*RP 
185500 GAM2 = 2.-GAMMA 
18 86"0 0 20 N=1,2 
158601 IVV=512*N-512 
188602 IV = IVV + IPND 
188603 LM1 = IV/ND
188604" L = LMI + 1 
188605 K$1 = IV-LMI*ND 
188606 K = KMI + 1 
188607 IAOO1=IBSO1 + IV 
158608 I&0QZ=IAOQ1 * 42600 
188609 IAOO3-IAOQZ 4 42600 
188610 IAOQ4=IAOQ3 + 42600 
188611 IA006=IAOQ5 + 42600 
188612 IAOS1=IBSS1 + IV 
188613 IAOS2zIAOS1 * 4Z600 
188614 IAOS3=IAOS2 + 42600 
188615 IAOS4-IAOS3 * 42600 
188616 IAOS5=IAOS4 + 42600 
188617 IAOXM = IBSX +IV-1 
188618 IAOXP = IBSX V IV 1 
188619 IAOXMN= IBSX +IV-NO 
188620 IAOXPN= ISSX +IV+ND 

,138621 IAOYM = ISY +IV-1 
188622 IAOYP - IBSY * IV + 1 
188623 IAOYHN= IBSY +IV-KD 
158624 IAOYPN= ISY +IV+ND 
158625 IAOZN = ISSZ *IV-I 
188626 IAOZP = IBSZ + IV + 1
18862' IAOZMN= 18SZ IV-ND 

PAGE ISaTL 18868 IAOZPN= IBSZ +IV KD188800' C 

O oOROF 00'TJM ' 188900 C.**FILTRXl19000 C 
169100 NL = (L-1)NDK 

Figure 3-14. Processor Code for SAM - Subroutine STEP 
(META Assembler) 
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= 

19330 D(J,4,3), = 


9 58V0J, 

192600 

192700 

192500 

192900 

193000 

193103 

193200 


J F,4)3
()K ,5 


D(J3,1) 
0J(,3,2 )
D(J.3,3) 

D(J,3,4) 

D(J,3,5)

OXSJ,4, 1) 

D(J,4,2) 


193400 D(J,4,4)

193500 0(J,4,5) 

193600 D(J,5,1)

19370 D(J,5,2)

193300 D(J.5,3) 

193900 0(J,5.4) 

194000 0fJ.5,5)

19 4100 C
 
19400 C******ENO OF 

194301 C
 
194400 12 CONTINUE
 

-RI-C7,R3.U
-) R.GAM
 

= R2-It-V-UU 
RIV-R?*C5
 
C4+R2*GAM2"l
 

=R2-CTR3-V
 

= 

= 
= 

= 
= 

= 
= 


RZ*GAMI
 
R3*I-W*UU
 
R1-W-R3*C5
 
R2*W-R3*C6
 
C4+R3-GAH2-4
 
R3*GAHI
 
(-C2+2.*CI)tUU

RI*C3-CSUU
 
R2Z*3-C6*UU
 
R3*C3-C7*UJ
 
R4+GAMA*UJ
 

AMATRX
 

194500 D0 25 J=2,JMAX-1

194501 JJ= (J-1)-720

194502 IF (J.GT.2) GO TO 777 
194512 KADDQ6 = (IAOg6+JJ)15? 1 
194513 SYNCH
 
194514 MADOQM = (IA006+JJ-72))/521 
194515 SYNCH
 
194516 G TO 778
 
104517 7?7 QM =RX
 
194518 G6 = RY 
194521 778 MADDQ6'P =(IAOQ6+JJ+72O)/521
194522 SYNCH 
194523 MADOSI = (IAOSI+JJ)/53L 
194524 SYNCH
194525 MADDS2 = (IAOS2+JJ)/521
194526 SYNCH 
194527 MADOS3 = : IA033+JJ)/52t 
194528 SYNCH 
194529 MADDS4 = t IAOS4+JJ)/5[
194530 SYNCH 
194531 MADOS5 = IAOSS+JJ)/51
19453? IF (K.LT.2 ).OR. (i.GT. m), 0

194538 RX=06 
194539 RY = 6' 
194540 RJ = Q(KL,6.,J)
194600 RJ = 1./05
194700 RMJ=RN.RJ 
19'4800 RR = RHJ*Ot6
 
194900 RF = RMJ*26P
 
195000 00 23 N=1,5 

196700 B(JNN) = C8 
1960, C(J,NN) = CCJNN)-RF
196900 23 CONTINUE 
196901 F(J,1) = SI 
196902 F(J,2) = S2 
196903 F(J,3) = S3 
196904 -(J,4) = 54 
196905 F(J,5) = S5
197000 '5 CONTINUE
 
197100 C
 
197200 C****ENO OF FILTRX 
197300 C 

= -D(J-1,N,1) 
= -D(J-1,N.2) 
= -D(J-1,N.3)
 
= -0(J-1,N.4)
 
= -0(J-1,N.5)
 
= 0.0
 
= 0.0 
= 0.0 
= 0.0
 
= 0.0 
= D(J+1,NI)
 
= D(J+,N,2) 
= D(J+I,N,3) 
a D(J+I,4) 
= D(J+IN,5)
 
= A(JN,N)-RR
 

q.(L.LT. 2). iR.(L.GT.LMY ) 0 T025
 

195100 

195200 

19530) 

195400 

195500 

195600 

195700 

195300 

195900 

196000 

196100 

196200 

196300 

196400 

196500 

196600 


A(J,N,.1) 

A(J,N,2)

A(J,N,3)

A(J,N.4)

A(J,N,5) 

8(J,N.1) 

B(J,N,2) 

B(J,N,3)

B(J,N,4)

B(J,N,5)

C(J,N,1)

C(J,N,2)

C(J,N,3) 

C(J,N,4)

C(J,N,5)

A(J,NN) 


Figure 3-14. Processor Code for SAM - Subroutine STEP 
(META Assembler ) (Cont) 
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119405 
1194n 6 
189407' 

D1 10 J = IpJ.MAX
JJ= (JI)-?20
MADDQ6 = (TA006*JJ)/5? 1 

189408 
189409 
15941f 

SYNCH 

SYNCH 
MADDXH = (IAOXM JJ)/5? 1 

lq9411 
199412 SYNCH 

MADDXP = (IAOXP+JJ)/5? I 

139413 HADDXHN= ttIAOXN *JJ)f521 
189414 SYNCH 
19415 
189416 
189417 
159415 

SYNCH 

SYNCH 

MADDXPN= 

MADDYM = 

I IAOXPN +JJ)'521 

CIAOYM+JJ)/5 
?1 

189419 
1 9420 
159421 

SYNCH 
IADDYP = 

MADDYHN= 

(IAOYP+JJ)/5?1 

(IAOYMN +JJ)f'21 
139422 'SYNCH 
189473 
1394?4 SYNCH 

MADOYPN= IAOYPN +JJ)f521 

18945 
159426 
139427 
189428 

SYNCH 

SYNCH 

MADOZM 

HADDZP 

= 

= 

CIAOZM+JJ)/5?1 

I IAOZP+JJ)/5 - 1 

18949 MADODZMN= CIAOZMN +JJ)' 521 
139431 SYNCH 
1-9431 
18943? SYNCH 

HADDZPN= CIAOZPN *JJ)f521 

189433 
189450 
189451 
15945? 
11945' 
199454 
139455 
189456 
139457 
18945 
189459 
189460 

IF((K.LT. 2).OR.(K.1GT.(4).OR.(L.LT.2).fR(L." 1.L' 
RJ = O(KLe6,J) 
XK = (XP-XM)*DYZ 
YK = CIP-YM)*OY?
ZK = CZP-ZH)*DY? 
XL (X0 N-XNN)WDZ_
YL = (PN-YNN)*DZ2
ZL = (ZPN-ZMN)*DZ?
X.X(J,1) = (YK*ZL-ZK-YL)*RJ
XX(J,2) = (ZKtXL-XK*ZL)*RJ 
XX(J,3) = CXK*YL-YK*XL)*RJ
XX(J,4) = -OEGAt(ZCKL J)*XX(J,2)-Y(KL.J)*XY(JC')) 

G3 TO 10 

189461 10 CONTINUE 
119500 
189501 

DO 12 J=1,JMAX 
JJ=J-1 

199532 MAODD1 = CIAOQ1+JJ)/5- 1 
13950 SYNCH 
119504 
139505 
189506 

SYNCH 
M4DD92 

1AOOQ3 

= 

= 

CIAOQ*2JJ)/5-1 

C IAOO3+JJ)/5? 1 
119507 
159508 

SYNCH 
HADDQ4 = (IAO4+JJ)/5? 1 

"139509 
139510 
189550 
159600 
159700 
189300 
189900 
190000 

SYNCH 

C 

MA0005 = ( I'A005+JJ)/5? I 
IF((K.LE.2).0R.('.GT. M).O

RI =XX(J,1*HDX 
R2 =XXCJZ)HDX 
R3 =XX(J,3)*H X 
R4 =XX(J,4 )*HDX 

.(L.LE.?).JR.(L.GT.LMI A0 TO 12 

190100 C****..*AATRX 
19'0200 C 
190300 RR= 1.101 
190400 U = 02*RR 
190500 
190600 

V 
0 

- 03*RR 
= 04*RR 

190700 UU = U*RI+V*R2+W*R3 
190300 UT = U**2+V*2+W.**2 
190900 C1 = GAMI*UT*.5 
191000 C2 = 05*RR*GAH4A 
191100 C3=C2-C1 
191200 C4=R4+UU 
191300 CS=GAMI*U 
191400 C6=GAMI*V 
191500 
191600 
191T00 
-191800 
191900 
142000 
192100 

CT=GAMI*W 
l(J,1,1) = 

DJ',1,2) = 
DCJ,1,3) = 
DCJ,1,4) = 
D(J.5,) = 
DCJ,2,1) = 

R4 
R1 
R2 
R3 
0. 
R1*C1-U*UU 

Figure 3-14. Processor Code for SAM - Subroutine STEP 
(META Assembler) (Cont) 
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9 5 o S MUST BE ZERO ON P.r. 

19 76 0 IFC(K.LE.2).OR.(K. GT.KMLOR.( L.LE.2).OR.(L.GT. LM) GO T0666 
1977 0 CALL STRI: 2, JM)
197809 666 DO 21 J = 2,Jm 
19790D) Si = FrJ,1)
198000 S2 = FtJ,2) 
198100 S3 = F(J,3) 
198200 S4 = F(J,4)
198301 S5 - F(J,5)
198301 HADOSI = I IAOSI+JJ)/521 
198302 SYNCH
 
198303 MADDS? = I IAOSZ J.J)/521 
198304 SYNCH 
198305 MADDS3 = C IAOS3+JJ)J52
198306 SYNCH 
198307 HADDS4 = (IAOS4+JJ)/521
198308 SYNCH 
198309 MADDS5 = I IAOS5+JJ)/52 
198311 21 CONTINUE 
19840 20 CONTINUE 
218600 RETURN 
218700 END 

Figure 3-14. Processor Code for SAM - Subroutine STEP 
(META Assembler) (Cont) 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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188640 	 Since the PROCEDURE XXM1 has been INCLUDED it is
 

necesary to perform address calculations for the X,
 

Y, Z arrays. In a similar fashion IAOXM represents
 

the address of X(KL-l,J) or rather X(01) on cycle 1
 

and x(511,1) on cycle 2. It appears that at this
 

juncture that one is accessing outside of array
 

bounds. Note that in the original FORTRAN (Figure
 

3-6) the L and K loops go from 2 to LM and KM
 

respectively while the hidden N loop of this Figure
 

does not indicate this. Line 189433 of Figure 3-12
 

is an IF branch meant to indicate that the code will
 

not be executed. In fact a transposition network
 

calculation will be made for PE#=0 on an address one
 

less than the base address in order to calculate the
 

OFFSET. However, because of the K,L calculations
 

done in the PE code those specific accesses are not
 

performed. i.e., for this case those PE's whose K or
 

L value is less than 2 or greater than KM or LM will
 

not perform the computation.
 

188641-18850 Similar computations for X(KL+ND,J) etc. with J
 

always set equal to 1.
 

189405 First inner J loop which has been included from
 

procedure XXMI.
 

189407-189432 Synchronizations and OFFSET computations by
 

MOD (Address,521)
 

189500-19440 DO 12 loop with attended accesses of Q matrix
 

values 1-5.
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194500-197000 DO 25 loop with the fetches to Q(KL,J,6),
 

Q(KL,J=l,6) and Q(KL,J+1),6). For simplicity
 

additional computations were not made in the N loop
 

initiation to specify an OAOQ6P(plus) + IAOQ6M(minus)
 

equivalent to the J+l and J-1 but rather left the
 

addition and subtraction to be done in the MOD function
 

expressions of line 194527 and 194523. This would infact
 

be inefficient as it would be performed for each J.
 

The IF branch spanning 194503-194527 has been
 

explained in 3.2.3.2.
 

197800-198310 DO 21 loop
 

198400 End of DO 20 loop - The cycle loop
 

In an early analogous manner the Processor Element Code is
 

generated. In this case however each processor performs a
 
calculation to determine relative address as a function of cycle
 

and PE#.
 

188602 Calculation of relative address 

188604 Calculation of L value 

188606 Calculation of K value 

188607-188628 Calculation of array addresses in Extended
 

Memory
 

189405-189461 DO 10 loop included from XXMI procedure. Note
 

as the J index increases the array address increases
 
by 720. Also line 189433 indicates the "non­

computation" for undesirable K and L values
 

189500-194400 DO 12 loop
 

194500-197000 DO 25 loop
 

197700 	 CALL BTRI a SUBROUTINE in the normal FORTRAN sense.
 

Its modification into SAM Extended FORTRAN is shown
 

in Figure 3-21 to be few indeed. (Abranch around
 

BTRI should be explicitly shown similar to line
 

189433)
 

197800-198311 DO 21 loop
 

198400 	 End of N loop for number of cycles
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3.2.3.4 Assembler Code for STEP 

To be supplied in Phase II 

3.2.3.5 Subroutine BTRI - SAM Extended FORTRAN
 

As can be seen in Figure 3-19 the comparision of the original
 

FORTRAN (Figure 3-17) and the SAM Extended FORTRAN (Figure 3-18)
 
only one change had to be made in the code. This was the LOCAL
 

declaration for Named COMMON/BTRID/. Since no extended variables 

are fetched or stored in this piece of code it runs entirely 

internal to the processor as written. 

3.2.3.6 SUBROUTINE XXM and XXMl.
 

It was noted in examining the IMPLICIT code that the majority of
 

calls to the SUBROUTINE XXM occurred in loops whose initial and
 

terminal members precluded taking the branches which occurred in
 

this code. (Lines 245800, 245900, 247500, and 247600.) Since
 

this reduces the performance of the whole code on both the CDC7600
 

and on SAM the code was modified into two SUBROUTINES. One, XXM,
 

to be used when the calling loop had initial and terminal values
 

and XXMl for those calling loops in which K never equal to 1 or
 

KMAX and L never equal to 1 or LMAX. See Figures 3-20 and 3-21.
 

Figure 3-22 shows XXMI written in SAM Extended FORTRAN and 3-23
 

shows the differences.
 

Since this code was brought into STEP via the INCLUDE statement,
 

further discussion is not necessary.
 

ow peoR QIJMf-49
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42300 SUBROUTINE RTRI(ILA. IUt)

-4230 n LOCAL/BTRID/A (605,5),3 (6) 5,5).C(S 0,5 5),D(60, 5,5), F (67.5)

'42400 DIMENSION H(5.5)

42500 REAL L11,L21,L22,L 31.L52,L33,L41,L42,L43,L44,L5I5L52,L53,L54,L55 
'42600 IL=ILA
 
42700 IU=IUA
 
42901 IS=IL+
 
4290. IE=IU-1
 
43001 C INSERT LUDEC
 
43100 L1=I./B(IL,1,1)

43203 L2I=B(IL.2, I) 
43300 Ul2=B(IL,1,2)*Lll

43400 L22=1./(BIL,2,2)-L21*)12)
-43500 U13=B(IL,.,3)*LlI
43603 U14 = B(IL,l,4)*LlI
43700 U15=B(IL,1,5)Lll 
,43q03 L31=B(IL,3,I) 
,43900 L32=8(IL,3,2)-L31*UI2
144000 U23=(B(IL,2,3)-L21*UI3)*L22
144100 L33=Z./(BIL,3,3)-U13*.31-U23*L32)
'44200 U?4=(B(CL,2,4)-L21*U14)-L?2
44300 U25=(B(IL,2,5)-L21*U15)*L22 
44401 L41=BIL,4,1)
44509 L42=9(IL,4,2)-L41*U12

44600 L43=B(IL.4,!)-L41*UI3-_42*U23

4470n U34=8( IL,3.4)-L31U14-L32*U24)*L33

44800 L44=1./c B IL,4.4)-U14*.41-U24*L42-U34*LA3)
4490 n US=(B(IL,3,5)-L31*U1i"L3*U25)*L3S 
45000 L51=B(IL,5,l)
45103 L52=B(IL,5,2)-L51'UI2
45200 L53=B(IL,5, 3)-L51*UI 3-L52U?2 
45309 L54=B(IL,5,4)-L51*U14-.52*U24-L53*U34
45400 U45=C9( IL,4,5)-L41*U15"L4?U25-L43*U35) -L44 
45503 L55= 1./( B IL-5, )*L51-J 15"L52*U25L53*U 35.-54*U 5)
45600 C COMPUTE LITTLE R S 
45700 DI=LII*F(IL,1)

45900 02=L22-(F1IL,2)-L2I*OI)

4590.1 D3=L33*(F(IL,3)-L3I-DIL32*D2) 
4600C D4=L44*(FIIL,4)-L41*DIL4?.*2-L43*33)

4610) DS=L55*(FIL,5)-L51*01-L5?*32-L53*O3-L54*3)
 
46200 C COMPUTE BIG R S
 
46300 F(IL,5)=D5

46400 F(IL,4)=D4-U45*D5

46500 F(IL,3)=D3-U34*F(IL.4)- U35-D5
 
46600 F(IL,2,)=D2-U23*F(IL,3)U24*F(IL,4)-U25*05
46701 F(IL,1)=O1-U12*F(IL,2)-UI3*F(rL,3)-U14*F(IL,4)-,J'5*D5 
46800 C COMPUTE C PRIME FCR FTIST R0 
46900 DO 12 M=1,5
47000 01=L11*C(IL,I,)

47ro0) D2zL22*(CEIL,2, M)-L21*] I,
 
47209 03=L33-(CIL,3,M)-L31*)I-L32-D2)

47309 D4=L44*(C(IL,4,M)-L41*)1-L4*12-L43*D3)

47400 95=L55-(Cf IL,5.H)-L51) 1-L52*DZ-L53*D3-L54941
 
47500 B(IL,5,M)=95

47600 8(IL,4.M)=D4-U45fD5

47700 B(IL,3,M) = D-U34*8(1.,4,M)-U35*D5

47800 B(IL,2,M) = D2-U23*B(IL,3.M)-U4*(IL,4,i)O-U5*05

47909 12 (IL,1,1M) = D-UI2-(I.,2,M)-UI3*B(IL,3,f-U14*9(!L,4,M)-UI5C5

48000 00 13 I=IS,IE

48100 C COMPUTE B PRIME*BIGR
 
4200 DO 14 N=1,5
 
48300 14 F(I,N)=F(I,N)-A(I,NI).F(I-1,1)-A(I,N,2]*F(I-,2)-A(I,N,3)*F(I-1,

43400 *)-A(I,N,4)*F(I-1,4)-A[[,N,5).F(I-1,5)

48500 C COMPUTE 2 PRIME
 
48600 DO 11 N=1,5

48700 00 11 M=1,5

48800 11 H N M = C , ,) AI NI * C *,,M -( ,, ) B II B M -( , , ) 
48900 *B(I-I,3,M)-A(I,N,4)*B(1-1,4,P)-A(I,t,,5)-B(I*1IS M)
 
49000 C INSERT LUDEC AGAIN

49100 L11=1./H(1,i1)
 

Figure 3-17. Original FORTRAN - Subroutine BTRI 
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49 0 

49400 L22=1./(Hr2,2)-L21*UI2)
49500 U13=HC1,3)*Ll I 
49600 UI4=H(1.4)*L11
49T00 U15=H(1,5)*Lll 
49500 L31=H(3,1)
49900 L32=R(3.2)-L31*UI2
50000 U,3=(H(2,3)-L21*U13)*L!2
 
501O0 L33=1./,H3,3)-UI3*L31"U23*L!2)
50200 U24=(H(2,4)-L21*UI4)*L?2 
50300 U25=(H(2,5)-L21-UI5)*L?2
50400 L41=H(4, 1) 
50500 L42=H(4,2) -L41*UI2 
50600 L43=H(4,3)-L41.U13-L42'U?3 
50700 U34=(H(3,4)-L31.UI4-L3?*U24)*L33

50800 L44=1./(H 4,4)-U14*L41U24*L42"U34*L4')
,5090) U35=(H(3.5)-L31*U15-L3?.U25).L5 
51000 L51=H(5,1)
 
51100 L52=H(5,2)-L51-U12

51200 L53=H(5,3)L51*U1 5L52kU23 
51300 L54=H(5,4)-L51*U14-L52U24-L53*U34 
51409 U45= (H(4,5)-L41*Ul5-L4? *U25-L43*U35)*L4 
51500 L55=1./(H( 5,5)-L51*UI"L52.U25-L53U35-L54U,45) 
51600 C COMPUTE LITTLE RIS
 
51700 DO=LI1*F(I,I)


'51800 OZ=L2Z*(FCI,Z)L21*D1) 
51900 03=L33*(FrI,3)-L31*I-. 32-D2)
52000 04=L44-(F I,4)-L41*D1-42D2-L43*D)
 
52100 D=L55*(FI1,5)-L51*01-.52*2-L53*D3-L54*D4)
 
.52200 C COMPUTE BIG RIS
 
52300 F(1,5)=05
 
52400 F(1,4)=04-U45-D5

5250-1 F(I.3)=D-U34F(I,4)-US5*D5

52600 F(I,2)=02-U23*F(1,3)-U?4-F(T,4)-U'5*05
 
5270( F(1,.1=D1-U12*F(1,2)-UI3F(I,3)-U14*F(I,4)-I15*95
 
52500 C COMPUTE C PRIMES
 
52900 00 15 M=1,5
 
53000 DI=L11*C(I,I,M)

53100 D2=L22*(C(I,2,M)-L21*:)

53200 D3=L33*(CI1,3,M)-L31.91-L32.D2) 
15330) D4=L44*(CC 1,4,M)-L41*3I-L42-C-L43*D3)
153400 D5=L55*(C I.,5,1-L51*01-L52*C2"L53D3-L54*,)
53500 B(,5,M)=05
 
15360 P B(I,4,M)=D4-U45*fD

53700 B(I.3,M) = 03-U34*8(IiM)-U35-95
53s0n B(I.2,M) = 02-OJ23*8(I,3,M)-U24.8(I.4,M)-?5*05
 
53900 15 B(I,1,M) = 01U12*B(IH)-U3*8(I,3,M)-L14B(I,4,M)-UIS*D5
 
54000 13 CONTINUE
 
54100 I=IU
 
54200 C COMPUTE B PRIME*3IG R FOR LAST ROW
 
54300 DO 17 N=1,5
 
,54400 17 F(1,N)=r(IN)A(I,N,1)kFC,-,1)A(1,N.2).F(I-,2)A(I.N.3)*
 
154500 * F(I-1,3)-A(I,N,4)*F(I'I,4)-(I,N.5 )*F(1-1,9)

54600 C COMPUTE B PRIME
 
54700 DO 18 N=1,5
 
'54800 00 15 M=1,5

54900 18 H(NN)=B(INet)-A(I.N.1).(II,1,x)-Ac,N2).acr-l,2,u)-Arr.N,3).

55000 *B(11.3.H)-A(I,4)*8(11,4v)A(I,N,5}*BtI-1,5,)
 
,55100 C INSERT LUDEC AGAIN
 
.55200 LlI=I./H(1,1)

,55300 L21=H(2,1)

155400 U12=H(1,2)*L1I
 
155500 L22=1./(H8,2.2)-L21*UIZ)
 
155600 UI=H(1,3)*Ll1

-55T00 U14=H(1,4)*L11

55800 U15=H(1,5)*Lll
 
55900 L31=H(3,1)
 
'56000 L32=H(3,2)-L31*U12

'56100 .UZ3=(H(2,3)-L.Z1-LJ13)*L?2 ORIGINAL PAGE IS 
56200 L33=1./( F3,3)-U13*L31-U23*L!Z) 
56300 U24=(H(2,4)-L21*UI4)*L!2 OF POOR QUALY
56400 U25=(H(2,5)-L21*U15)*L?2
 
56500 L41=H(4,1)

96600 L42=H(4,2)-L41*U12

56700 L43=H(4,3)-L41tU13-L42.U23
 
56809) U34 (K(3,4 )LfllU14-L3?.U24) L33

56900 L44=I.f( H'4,4)-U14*L41I'U24L42-U34*L4 i 
57000 U35=(H(3,5)-L31*UI5-L3?*U25)*L33
 
57100 L51=R(5,1)
 
57200 L52=H(5,2)-L51*UI
 

Figure 3-17. Original FORTRAN - Subroutine BTRI (Cont) 
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57300 53=H ,3)"L5*U 3- -'U'3 
57400 154=H(.4)-5*U4-2U4-L3*U34 
57503 U45 (H(4H5)- 41-UI5- *U25-43*U35)*L41
57600 L5 =1./(HC 5 )-L51*U5"-L5 U5-L53- U35-L54-U45)
 
57700 C COMPUTE LITTLF RIS
 
57900 01=LI*F(II)

58900 D2=L22*(F[I,2)-LZ1*01) 
58000 D3=L33*(F(I,3)-L31*D1-.32*0')

58400 04=L44*(F(I,4)-L41*D-_42*DZ-L43*D3)
58300 D5=L55*(F[I,5)-L51*Dl-52*02-L53*03-L54 *Q ) 
5530 C COMPUTE BIG RIS 
58400 F( o5)=D5
5850) F(I,4)=D4-U45*D5 
58600 F(I.3)=O3-U34*F(I.4)-U35*f5 
58700 F(I,2)=D2-U23*F(I,3)-U4F(I,4)-U?5*05

58500 FcI,1)=Di-UI2*F(I,2)-Ut3*F(I,3)-U14*F(rI.4)-UI5*5 
58900 I=IU 
5900 20 I1I-1 
59100 DO 19 N=1,559Z00 19 F (I,N})=F( I,N)-F (I + ,1),8( I,N ,1) -F( I + ,2) -B( I N ,?)-F 1 1 3) 5(1 N 3 
59300 * )-F(It1,4)*B(I,N,4)-F[I*1,5)*B(IA,5)
59400 IF (I.GT.IL)GOTO2O
 
59500 RETURN
 
59600 END
 

Figure 3-17. Original FORTRAN - Subroutine BTRI (Cont) 
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42200 
42300 

SUBROUTINE BTRI(ILA, IU)
COMMON/STRID/AI60,5,5),0B(,5,5),C(-0,5,50,0(60,5,5).F(60,5) 

42400 
42500 

DIMENSION H(5,5)
REAL LlIL21.L2'131,LS 2,L33,L41,L42,L43,L44,L5IL52,L53,L54 L55 

42600 IL=ILA 
42700 IU=IUA 
42800 IS=IL1 
42900 IE=IU-1 
43000 
43100 
4320043300 
43400
43500 

C INSERT LUDEC
111=1./8(IL,1.l 
L21=B(IL,2,I)UI2=B(IL,1,2)*Lll
L22=./(B1IL,2,2)-L21*J12)
U13=B(IL 1,3)*LI1 

43600 
43700 
43601 
4390 
44000 
44100 
44200 
44300 
44400 
44500 
.44600 
44T00 
,44800 
.44900 
45000 
45100 
45200 
45300
45400
4550) 

U14 = BIL,1,4)IL
U15=B(IL,1,5) LI 
L31=8(IL.3,1)
L32=B(IL,3,2)-L31*UI2
U23=(B(IL,2,3)-L21U3)*L22
L33=1./(B IL,3,3)-U13L31-U23*L32)
U?4=(B(IL, 2,4)-L21-UI4)*L22
U25=(B(IL,2,5)-L21*U5)*L22
L41=(IL,4,1)
L42=B(IL,4,2)-L41*UI2
L43=BIL,4,3)-L41*U13--42*U?!
U34=(B(IL,3,4)-L31.U14-L2*U24)*L3
L44=1./(B IL,4,4)-U14*41-UZ4*L42-U34*L43)
U35= C( IL ,3,5-L3 1*U15- L 32*U25)*L 33 
L51=B(IL,5,1)
L52=B(IL,,2)-LSI*UI2
L53=B(IL,5,3)-L51.UI3-_52*U? I 
L54=8(IL,5,4)-L51*U14-2*UZ4-L53*U34
U45=IB(IL,4,5)-L41*UI5"L4*U25-L43*U35)*L44
L55=1./(B IL,5,5)-L51JI5-L52*U25-L53.U35-L54*U.5) 

45600 C COMPUTE LITTLE R S 
45700 
Y.5800 
45900 
46000 
46100 

Dl=L11*F(ILl)
D2=L22.(FIL,2)-L2I.D)
03=L3*(FIL,3)-L31*D1L3?*O2)
04=L44*(F( IL4)-L41*D1-L42*D2-L43-DI ) 

D9=L55*(FIIL,5)-L51*DlPLS2*D0-L53*3-L54*0.) 
46200 C COMPUTE BIG R S 
46300 
46400 
46500 
46600 
46700 
46800 C 

F(IL,5)=05 
F(IL,4)=D4-U45*D5
F(IL.3)=D3-U34*F(IL,4)-U35*D5
F(IL,2)=D0-U23*F(IL,3)-U24*F(IL,4)-U25.05
F(IL,I)=DI-UIZF(IL,2)-U13tF(1L,3)-UI4*F(IL,4)-'5*05 
COMPUTE C PRIME FOR FIRSI ROh 

46900 
47000 
47100 
47200 
4T300 
47400 

DO 12 M=1,5 
Ol=L11*C(IL,I,M)
02=L22*(CEIL,2,B)-L21*)I)
D3=L33*(CrIL,3.B4-L31*)1-L32*0?)
D4=L44*(CIL,4, M)-L41* 11-L42*D2-L43*D3)
05=L55*(CCIL,5, 4)-L51*)I-L52*D2-L53*03-L54*D4) 

47500 
47600 

B(IL,5,M)=05
B(1L.4M)=D4-U45*O5 

41700 
47800 
4T900 1,2 

B(IL,3,M)
B(IL,2,M)
B(1L,I,) 

= 
= 
= 

03-U34*B(IL,4,M)-U35*O5
D2-U23*1(I.,3,M)-U24S(IL,4,P)-5*5
DI- U2*3(IL. 2,M)-U13-E(IL. ,$P)-UI4*9(L,4, ')-UI5 5 

48000 
40100 C 

DO 13 I=IS,IE
COMPUTE B PRIME*BIGR 

48200 
48300 
4840n 
48500 

14 

C 

00 14 N=1,5
V(IN)=F(I.N)-A(IN,)fF(I-,1)-A(I.N.2)*FI-,)-A(,N,3)*('-I, 

*)-A(I,N,4)*F(I-1,4I-AC[ ,N,5)*F(I-1,5) 
COMPUTE B 'RIME 

48600 
4870 
48800 
48900 
49000 

11 

C 

00 11 N=1,5
00 11 M-1,5
HCNMB(I,N,N)-AI,N,L)*8C1.1.IP)-AIIN,2).3Ct-1,2,M)-A(I,$.3). 

*(I1,3,X)A(I,N,4)*BC['1.4,I)A(I.N,5)*B(I-1,5,M
INSERT LWEC AGAIN 

49100 Ll=.IH(1.I) 

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI 
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49200 L)1=H(2,1)

49300' U12=H(1p2)-L11
 
49400 L22=1./(H[2,2)-L21*UI2)
 
49500 Ul3=H(1,3)*L11
 
4960- U14=H(1,4)*Lll

4970" UIS=H(1,5)*L11

49800 L31=H(3. 1) 
49900 L32= HE3.2)-L31*UI2
 
50000 U?3=(H(2,3)-L21'*U13)*t?2
 

- 50100 L33=1./C H 3, 3)U13*L 31 U23*L !2)
50200 U24=(H(2,4)-L21*UI4).LU2
50300 U25=(H'(2.5)-L21-U!5,)-L?2
 
50400 L,41=14(4,1)
 
50500 'L42H(42)-L41-U12
 
50600 L43=H(4,3)-L41*U13-L42*U23

SOTO0 U34=(HC3 .4)-L31*U14-L3?*U24 )*L33
 
50600 L4=1./1H(E 44)-U14*L4I"U24AL42-U34*L4 1 
50900 U35=(H(3.5)-L31.U15-L3?*U25)*L33
 
51000 LS1=H(5,1)

511001 L52:H(5,Z)-L51*U12

51200 L53=H(5,3)-L51-UI3-L52-U23
Sf1300 L54= M 5.4) -L51*U14-L52* U24'-L53*U34
 
51400 U45=(H(4,5)-L41*U15-L4?-U25-L43*U35)*L44
 
51500 L55=1./(H 5,5)-L51.UI5L52*U'25-L53*U35-L54*U45)

51600' C COMPUTE rLITTLE RIS
 
51700 DI=LII*F(t,1)
 
51800 D=L22*(F,2)-L21.DI)
 
51900 'D3L33*tf I, 3)-L31*Dlt 32*D2)
 
52000 04=L44*(F:I.4)-L41*nD-.42*D2-L43.03)
 
52100 05=L55*(FEI,5-LSI*D1-.52*D2-L53*D3-L54*0D)
 
52200 C COMPUTE, BIG RIS
 
52300 F(I,5)=D5
 
52400 (I,4W=D4-U45*05
52500 F(I.,3)=!3-U34*F(I,4)-U;5*D5
 
52600 F(I,2)=02-U23*F(1,3)-IJ?4*F(I,4)-U25*D5

52700 F(I,1)=OI-U12*F(I,2)-Ut3FCI,3)-U14FEI,4)-1515
 
52500 C COMPUTE C PRIMES
 
52900 DO 15 M=1,5
 
53000 0IL11*C(I,-1,M)

53100 02=L22*(CEI',2,M)-L21*0V)

53?00 U3=L33*(CI1,3,M)-L31*31-L32*C?)
 
3300 D4=L44(C I,4,M]-L41*91-L42*C2-L43*D3)


53403 D5=L55*(C(I,55,)-L51*91-L52*C2'L53*D3-L54*T)' 
53500 BCI5,M)=05
 
53600 B(1,4.M)=D4-U45*D

5"3700 BI,3,M) = 03-U34*(I,.,M)-U!5*D5

53800 B(1.,2,M) = 02-J23*8('13,M)-U24i3(I,4,M)-U5*O5
 
53900 15 ) =1-U12*B(I,?,M)-U13*9(1,-3,M) 14 *(I-,4 ,)-15*D 5
=(1,1, 
54001 13 CONTINUE
 
54100 I=IU
 
54200 C COMPUTE B PRIME*8IG R FOR LAST ROn
 
54300 DO 17 N=1,5
 
54400 17 FCI,'N)=F(1,N)-A(I N,I)*F(1-1)-A(IN,?)?F( I-,2)-A(1,N, 1)
 
54500 * (I-1,3)-A(I,N,4,)*F(I- V,4)-ACI,N,5)*F(I-1,5)

54600 C COMPUTE E PRIME
 
54700 DO 18 N=1,5
 
54800. DO 18 M=1,5
54900 18 HCN,M)=B(I,N,M).A(I,N,1)*B( I1.1.M)-ACI,N.2).S(!-1,,M)-A(1,N,3) 
55000 *B(I-1,3,M)-A(IN,4")iB(-I,4,'-ACI,N,5)*8(T-,5,4
55100 C INSERT LUDEC AGAIN
 
55200 L1V1'l./H(l.,)
 
55300 L21=H(2,1)
55400 U2=M(C1,2)*LI1
55500' L22=1./(HC2,2)-L21*UI)
55600 U13=H(1,3)*LIl
 
55700 U14=H(1,4)*L11

55800 U15=H(IC5)'L1

55900 L31=H(3,1)
 
56000 L32=H(3,2)-L31*U12

G61O0 U23=(H 2,3)-L2*U13)*L?2

56200 L33=1./(H(3-,3)-UI3*L31-U23*Lf?) 
56300 U24=(H(2,4)-L21*UI4)*L?2

56400 U25=(H(2,5)-L21.UI5)*L?2

56500 L41=H(4,t)
 
'56600 L42=H(4,2)-L41*UZ
 
567 00 L43=H(4,3)-L41*U13-L42 U23 
56800 U34=(H(3,4)-L31*U14-L3Q*U24 )*L33 
56900 L44=1./(Hf4,4)-UI*L41"U24L42-U34*L43)

57000 U35=(H(3.5)-L31.Ul5-L3A*U25*LS3
 
57100 L51=H(5,1)
 
57200 L52=H(5.2)-L51*U12
 

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI (Cont) 

ORIGIN A ?P LGr Is 

OFpooRT 

http:04=L44*(F:I.4)-L41*nD-.42*D2-L43.03
http:D=L22*(F,2)-L21.DI


[4=H( , 4) 1 .U 4- ,U24 -L 53*US4 

57500 U45= (H(4 5 )-L41 *U15-L4- *U25-L4 * U35 )*L4.
 
57600 L55=1. /( H' 5.5 )-L5 I* U15" L52*U25-L5 3-U 35-L54*1k 5 )
 

57700 C COMPUTE LITTLE RIS
 
57800 DI,=L11-F(I,1)
 

73007400 L3=H(;,3):-HL3-fl U23 

57900 D2=L22*(F I,2)-L21*D1)
 
5800.C D3=L33*(FCI,3)-L3I*D-. 32*02)

58100 D4=L44*(FtI4)-L41*01-.42*O2L43*Di)

15B00 05=L55*(F1 I,5)-L51*01-.52.O2-L53*O3-L54*04) 
56300 C COMPUTE BIG RIS
 
58400 F(I,5)=05 
58500 F(I,4)=D4-U45*)5

58600 F( 1,3)=D3-U!4F( 1,4)-U35*05 
58700 F(I,2)=D2-U23*F(I,3)-U.4F(I4 )-U5*D5 
.58800 F(I.1)=D1-UI2*F(I.2)-U[ 3*F(I.3)-U14*F(I,4)-U15*95
 
58900 I=IU
 
59000 20 1=1-1 
59100 DO 19 N=1,5 
59200 19 F(I,N)=F(IN)-FCI+1,1)'B(I,NI)-F(I+1. ?)*B(T1,,?)-P(I+13)*E(I. N 
59300 * )-F(I+l,4)*B(I,N,4)-F:I1,5)*q(IN,5)
59400 IF (I.GT.IL)GOTO2" 
59500 RETURN 
5960') END 

Figure 3-18. SAM Extended FORTRAN Subroutine BTRI (Cont) 

1 R 42300 LOCAL/8TR 10/ AC( 0,5,5 ),1(60,5,5), C(6 ',55) D(6O) 5 ,5 ) F (6' 5) 

Figure 3-19. Comparison of Original FORTRAN and SAM Extended 
FORTRAN - Subroutine BTRI 
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243203 SUBOUTINE XXM(MLAJ1k JZA)
 
c


243301 COMPN/BASE/NM4X, JXAX.(OA,LVAX.J.Km, LPOT,GAMA. GA MIPIL,rSMAG
 
4


2434C 1 ,OX1,9Y) Z1,NON)l2,V(5), F(-)1DAL 'G0DCEGA,1 3XHPY pFCZ

T


243501 2,RM,CNBRPI,ITRI VISC.LAMIN,NP,INTIINT2,!f ; 
243609 COMXON/GEj/NIN8' ,RFR]NT,RhAXXRXuAX,DRA9, OYC 
243709 COMON/READ/IREAO-IWRIT- K NGRI 
243800 COM4ON/VIS/RE'R,qMUE 1 
243901 COMON/VAPS/Q(720,6,3))
244001 COHMON/VARO/S(7?0,5,3J) T ? ,
24410, C3MICN/VARIfX(?ZO,30),r(T20 2

o )4(0 ,5 )
 
24420A COM'CN /VAR3/'(120,30). XX(6l,4),YY(60,4),22(6 ,4 
24430) C LEVEL 2.0,SXY.Z 
244403 COMMONI/COJNT/NC.N-I 
244500 COMMON /FLSH/'X2,DY2,Jr 
2446O C
 
24 470n C XI METRICS FORME' FOR A 4-L LINE IN J
 
244800 C 
24490C C
 
245000 C SYV$ETRY
 
245100 C 
245200 K = M 
2453;0 L=LA 
245400 JI=JIA 
24550^ J2=J2A 
245601 KL = (L-)tNOtK 
24570' DJ 10 J = JI,J2 
245801 RJ = 0(KL,6,J)
 
245903 IF(K.EQ.I) GO TO 50
 
24600) IF(K.EQ.KMAX) GO TO 51
 
246102 XK = (X(KL+I,J)-X(KL-I.J))*9Y?
 
246206 YK = (f(KL+1,J)-Y(KL-1. J))*OY2
 
24630 7'K= (ZCKL+IJ)-Z(KL-1.J)*0Y2 
24640' G0 TO 72 
246500 Sn CONTINUE 
24660; X'( (-3.*XC L,J)+4.*XZL ,.3-X( Lt 2J).' 2 
246701 YK = (-3.*Y(KLJ)+4.*Y: KL+1,J)-Y(L+2J))*'' 
24 50" ZN = (2K .*Z( LJ)+4.*Z:NL+ ,2)-Z(KL2,J))* YI 
24690 G0 TO 72 
24700? 51 CONTINUE 
247102 XK = C3.*XLJ)-..*X((L-lrJ)+X(K-2.J)*tV 
247200 YK = (3.*Y(KL,J)-4.*Y(L-,J+YC(L-2,J))tfY"
247303 Z, = (3.*ZKLJ)-4.*Z(UL-J)+Z(KL-,J))*DY'
 
247401 T? CONTINUE
 
247500 IF(L.EQ.1) GO TO 52
 
247600 IF(L.EQ.LHAX) GO TO 5;
 
247700 XL = (X(KL+ND,J)-X(CL-4DJ'))CZ2
 
247900 YL = (r(KL+ND,J)-Y(KL-vD,J))*2Z?
 
24T900 ZL = CZ(KLNDJ-Z(L-YDJ))-LZ?

248000 GO TO 60
 
240100 52 CONTINUE
 
248200 XL = C-3.*X(KL, J)+4..X KL+NOeJ)-X( L+"NO,J))'C*
 
245300 YL = (-3.*Y(KLJ)+4.*YL+NO,J)-Y(KL+?*N9,J)).*
 '
 
24840, ZL = (-3.*Z( KLJ)4.*ZCKL+NDJ )-Z(NL+?,NCJ)*C 
24350' GO TO 60 
248600 53 CONTINUE
 
248701 XL =
 
248900 YL = (3.*Y(L,J)-4.*Y((L-ND,.)eY(KL-2*N,J))*fl?

248902 ZL = (3.*Z[KLJ)-4.*Z((L-NO J) Z(KL-2* O J))*E!'
 
24900-' 60 CONTINUE 
249109 XX(J,1) = (YK.ZL-ZK*YL).RJ 
249200 XX(J,2) = (ZK*XL-XK.ZL)*RJ
24930" XY(J,3) = CXK*YL-YK*XL)*RJ 
24940' XX(JP42 -OMEGA*(Z(CKL,J)*XX(J,')-Y(KLJ).XY(J,:))

24950^ 1 CONTINUE 
249603 RETURN 
249703 END 

Figure 3-20. Original FORTRAN - Subroutine 1X0M 

ORIGfm PAGE 1$ 
oF Poor QUALM3 
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24320-' SUBROUTINE XXM(),LA, JIk J2'A)
243300 COMMON fASE/NMAX,JMAX,( MAX ,LPky JM, KM.L MDT,GAM'4AG4TI,S-U.F SU&CH 
'243400 1 ,DXI,DY1,DZ1,tDND2, V(5 ),FD(3),H,ALO,GD,CEGHfMX,H'YdZ 
243500 ?,RMCNBR.PI, ITR INVISC LAMIN.NP.INTI.I T2,TNTI
 
24360C CQMMON/GEO/NB1,NB,RFR)NT,RAX.XRXPAXDRAD. DYC
 
243700 COMMON/READ/IREAD,IWRIT,NGRI

243103 CGMMON/VIS/RE,PR,RMUEIK
 
243900 COMMONIVARSI(720,6,30)

244000 COMMCN/VARO/S(T20.5,30)

244101 COMMCN/VAR1IX(720,30,),ft(720!O),Z(T2O,3;)
 
244200 COMMON /VAR3/ 0 (120,30). XX(69,4),YY(60,4),ZZ(6^ , 4'
 
244300 C LEVEL 2,Q,SXYZ

244400 CDMMON/COUNT/NC.NC1

24450( COMMON /FLSH/DX2,DY2,.!?
 
244600 C
 
244100 C XI METRICS FORMED FOR A KL LINE IN J
 
244303 C
 
244900 C
 
245000 C SYMMrTRY
 
245100 C
 
245 K = M
2 0 3  

245300 L=LA
 
245400 JI=J1A
 
245503 J2=J2A
 
245600 KL = (L-I)*ND'
 
245709 03 10 J = JlJ2 
24S00 RJ = O(KL,6.J)
 
245901 XK = (X(KL+1,J)-X(KL-1,J))-[Y2

246000 YK = (Y(KLt1,J)-Y(KL-1 J))*CYZ
 
246100 ZK = (ZCKL+1,J)-Z(KL-IJ))*DY2

246200 XL = (X( KL+NDJ )-X( KL-4DJf))[Z?
246309 YL = (t(KL+NDJ)-Y(KL-O.J)1-'Z2
 
246400 ZL = (Z(KL*ND,J)-Z(KL-iD,J))*CZ2

246500 XX(J,1) = CYIZL-ZK*YL)*RJ
 
246600 XX(J,2) = (ZK*XL-XK*ZL)*RJ

246700 XX(J,3) = CXI*YL-YK-*XL)*RJ

24600 XX(J,4) = OMEGA*(Z(KbJ)XXCJ,?)-Y(KL,J)*X%(J.))

246900 10 CONTINUE
 
247000 RETURN
 
2 O4710 END
 

Figure 3-21. Modified Version of Subroutine XXM1 for Improved Performance 
on Serial or Parallel Machine 
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243200 PROCEDURE XXM(M,LAJ1A. J2A)
243300 GLOBALIBASEIN'4X,JMNXA MAX,LAXJM,KMLIIGAMdAGAMI.SUU.FSCH
243400 1 .OXI,DYIOZI.ND.ND2, VC5),FD(5),DALP,GD,MEGA,HOX.HOY,1CZ
243500 2,RM.CNBR,'I,INVISCLA4IN.NP

243600 GLOEAL/GEO/NBI,NB?,RFR)NTRMDX,XRXMAX,DRAD.DXC

243700 GLOBAL/READ/IREAD,IWRITNGRI

24390) GLO8AL/VIS/RE. R.RMUEd K
 
243900 EXTENDED/VARS/9(T?0,30.6)
 
244000 EXTENDEO/VARO/S(720,3,5)

24410! EXTENDEDIVAR/X(720,30),Y(T2C,30),Z(720.30)
 
244200 LOCAL/VaR3/P(1ZO, 30),X((60,4),YY(60,4),ZZ(6',4)

244300 C LEVEL 2,QS.XY.Z
 
244400 CONTROL/COUNT/NCNC1,DT

244500 GLOBAL/FLSH/DX2,DY2,DZ!
 
244600 C
 
244700 C XI METRICS FORMED FOR A K.L LINE IN J 
244800 C 
244900 C 
245000 C SYMMETRY 
245100 C

245200 K = M 
245300 L=LA 
Z45400 JI=JIA
 
245500 JZ=JZA
 
245600 KL = (L-I)*ND K
245700 DO 10 J = JI,J2
 
245800 RJ = QC(KL,6.J)

245900 XK = (X( KL+I.J)-X(KL-, J))*DY2
246000 YK = (t(KL+1,J)-YCKL-.J))*Y2246100 ZK = (Z(KL.I1J)-Z(KL-1,J)).DY2 
24620') XL = (X(KL+NDJ)-X(KL-4D,J))CZ2
246300 YL = (t(NL*ND,J)-Y(KL-IDJ)):DZZ 
246400 ZL= (Z(KL4ND,J)-Z(KL-1DJ))*OZ2
246500 XX(J,1) (YK*ZL-ZK-YL)*RJ246600 XX(J,2) = ZK*XL-XKtZL) *RJ 
246700 XXCJ13) = (XK*YL-YK*XL)*RJ246500 XX(J,4) = -OMEGA*(Z(KL. J)*XX(J,2)-Y(KLJ)*XX(J, ))
246900 10 CONTINUE
 
247000 

247100 


Figure 3-22. 

I R 243200
2 R 243303 

3 R 243500 

4 R 243600 

5 R 243700 

6 R 243R00
7 R 24390)

8 R 244CO0 

9 R 244101 


10 R 24420) 
11 R 44400 
12 R 24450 

RETURN
 
END
 

SAM Extended FORTRAN for Subroutine XXM1 

PROCEDURr XXM: FLA,JIA,J?A)
GL BAL/BASE/N4AX, JMAX, KMAXLMAX,JM,FM,LMGAMxA,GAPI,SL,FSACti

2.RN,CNnR,PIIIVISCLAUINNP

GLOBL/GEO/N9, N92,FFRONT,RAX,XRXMAXDRAl.,DXC

GL0SAL/READ/I1EAO,IORIT,NSRI
 
GLOBAL/VIS/RE.PR, RMUE.,RK
EXTENDEO/VARSFV(T2O30,6)
 
EXTENDED/VAROS(TZO,30,5)
 
EXTENDED/V&RI' X(720,30),YC 720, 30),2(720,3)

LOCAL/VAR3/P(120,30),XX(63,4),YY(60,4),ZZ(6',4)
 
CONTROL/COUNT'NC,NCIDT
 
GLOBAL/FLSHI/DX2,DY2,DZ2
 

Figure 3-23. Comparison of Modified FORTRAN and SAM Extended 
FORTRAN for Subroutine XXMI 
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3.2.4 Subroutine STEP (Loop DO 30 & DO 40)
 

The arrays Q and S which have been declared to exist in Extended
 

Memory have the following extents
 

Q(720,30,6)
 

S(720,30,5)
 

A partitioning in effect of the first extent of 720 into 2 parts
 

occurs at run time with the variable ND. The first index then has
 

an extent ND and the second index has an extent equal to LMAX.
 

This means that if ND*LMAX 720 certain memory locations are not
 

utilized. This causes some degradation in performance for the SAM
 

in all three access modes.
 

Each of the three types of accesses of the Q & S arrays which are
 

required by the DO 20, DO 30 and DO 40 loops in SUBROUTINE STEP
 

will be discussed. Because of a complex first order linear
 

recurrence the index J in the DO 20 loop must be done serially
 

while the K&L indices are parallel (see example below). Similarly
 

for the DO 30 loop K is the serial index while J&L are the
 

parallel ones. For DO 40 L is the serial index and K&K the
 

parallel ones.
 

An example of the structure of the program is given below.
 

DO 20 L=2,LM-O R !G A L
 

DO 20 K=2,KM Opp J A S
 

DO 18 J=l, JMAX
 

KL = (L-I)*ND+K
 

RR = 1.0/Q(KL,J,6)
 

(plus many other statements including a complex first order
 

recurrence in J)
 

18 CONTINUE
 

20 CONTINUE
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This is a Case I access as described in Appendix A. The ISKIP=ND.
 

For ease in handling this generality of splitting the first extent
 

it is assumed that 720/ND is integral with value ND. The number
 

of cycles necessary to access the L's and J's is equal to
 

No. of Cycles = (LD*30+512-l)/512
 

For the specific case given in the benchmark where ND is equal to
 

15 then LD is equal to 48 and the No. of cycles equal to 3.
 

On cycle 1 one is accessing all L's from 1 to LD and J's from 1 to
 

10 and for the llth J one is accessing L's from 1 to 32. This is
 

done for each K from 1 to ND. Figure 3-26 maps this accessing of
 

indices from Extended Memory into the processors.
 

The last loop, the DO 40 Loop has the L index as the serial index
 

for the recurrence relation and the K&J indices as the parallel
 

ones. The structure is
 

DO 40 J=2, JM
 

DO 40 K-2, KM
 

DO 38 LI, LMAX
 

LK = (L-I)*ND+K
 

RR = 1.0/Q(KL,J,6)
 

(plus many other statements including a first order linear
 

recurrence in L)
 

38 CONTINUE
 

40 CONTINUE
 

This can be considered to be a Case II or Case V accessing pattern
 

as discussed in Appendix A. Since the accessing of Q & S is
 

identical a "semi smart" compiler can chose which of the two cases
 

it wishes to consider this. I.e., Q(KL,J,6) can really be
 

represented as Q(K,L,J,6) with K varying from 1 to ND, L from 1 to
 

LMAX and with J varying from 1 to 30. Since both J&K are totally
 

parallel and all access to Q&S are in the same sense of K,L,J the
 

"semi smart" compiler can pick which way to do it. In this case
 

because ND is unknown at run time it would pick Case II.
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The memory layout is shown in Figure 3-24. The accessing pattern
 

is described in Appendix A as being of Type 3. This means that
 

the SAM will access 512 elements of the Q array at one time for
 

J=l, then 512 for J=2 etc., until J=30. This would mean all K's
 

would be accessed from 1 to ND up to an L value L(last) such that
 

512 values are accessed.
 

For example if ND=I0 then 52L values would be accessed each for K
 

values 1 to 10 except for L=52 which would only access K=l & K=2.
 

On the next complete cycle those remaining K and L values would be
 

accessed up to a maximum of 720. Figure 3-25 shows thus.
 

As can be seen this could be inefficient if ND*LMAX < 512 and
 

these parameters were set at run time. A more efficient procedure
 

could be worked out which would have the same flexibility, either
 

by recompiling with compile time parameters or else with more
 

efficient coding to permit compaction of the Q array (see Appendix
 

C).
 

The next loop DO 30 has the K index as the serial index for the
 

recurrence relation. Its structure is
 

DO 30 J-2,JM
 

DO 30 L=2,LM
 

DO 28 Kl,KMAX
 

KL-(L-l) AND +K
 

RR = 1.0/Q(KL,J,6) GLi IS 
(plus many other statements including a firo5.
 

recurrence relation on K)
 

28 CONTINUE
 

30 CONTINUE
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L=I L=2 L=3 L=LMAX
 

K=1--> ND K=1- K= ND* -ND
KND - K=I J=l 

ND+l 720 

L=1 L=2 L=3 L-LMAX 

C I C=11-eND IK=1 ->ND K=1 -HJD K=1 - ND J1-2 

721 1440 

L=1 L=2 L=3 L=LMAX 

K-i -CND K=i -JND K-i -- ND K1 -- ND -3 

1441 2160 

L=1 L=2 L=3 L=LMAX
 

I K=l -N4 K=I -- ND K=1 -ND IK= - N
 

504721 
 505440
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Figure 3-27 shows how the indices will appear in the various
 

processors. This case requires subiterations of the cycles as on
 

page A-10. The number of cycles is equal to (ND*30+512-I)/512
 

which for an ND of 10 means only one cycle. ISKIP=720.
 

3.2.5 Functions and Macros)
 

Functions on the FMP will include not only the mathematical
 

intrinsics, such as ARCTAN, LN, EXT, and SQRT which are expected
 

of any compiler, but also a family of functions that are brought
 

about because of the parallel nature of the FMP.
 

Math Intrinsics
 

Math intrinsics (ARTAN, LN, EXP, SQRT) are well understood. Some
 

will be in-line code, some are subroutine calls. All execute
 

locally to the processor. Since there is nothing new or different
 

for the FMP, we need not digress to discuss them at this point.
 

Global Intrinsics
 

A form of intrinsic function seen in a parallel language, for
 

which there is no analog in a serial machine, is that function
 

which operates across the declared parallelsim. A global sum is
 

the sum of all the elements specified by all the instances of the
 

index set of the DOALL. A global maximum is the largest element
 

across the entire DOALL.
 

To reduce compiler complexity, and to eliminate user programmers'
 

doubts as to whether parallel operation has been achieved as a
 

result of compiler analysis, global intrinsics will be supplied.
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I 

To replace the following serial FORTRAN 

A = 0.0
 

DO 1 J = 1,1000
 

A = A + B(J) 

CONTINUE
 

the language will allow: ORIGINAL PAGE IS 

OF POOR QUALITh
DOALL, J=1,100
 

A = GLOBALSUM(B(J))
 

ENDDO
 

The global operations will presumably include all of the fol­

lowing. Assume that we are inside a DOALL loop expressed as
 

DOALL, J=JSTART,JEND.
 

Function Definition
 

JEND
 

GOLBALSUM(A(J)) : A(J)
 

J=JSTART
 

JEND
 

GLOBALPRODUCT(A(J)) IT A(J)
 

J=JSTART
 

GLOBALMAX(A(J)) Largest of A(JSTART,
 

A(JSTART+1), ... A(JEND)
 

GLOBALMIN(A(J)) Smallest of all A(J)
 

JSTART -J JEND 

Global functions are logarithmic in efficiency, that is, it takes
 

nine steps to produce the 512-way sum across the 512 processors in
 

one cycle. When the result (such as "A"), is a LOCAL variable, it
 

is produced across the entire extent of the DOALL.
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An extension of the global operation is the formation of a
 

parallel linear recurrence in nine (= 1og2512) steps as demon­

strated by Shyh-Ching Chen in his doctor's thesis at the U. of
 

Ill. In Fortran, consider
 

DO 1 J=1,1000
 

A(J+l) = B(J)*A(J) + C(J)
 

1 CONTINUE
 

This takes 1000 steps, each with one multiply, and one add. A
 

parallel algorithm exists that produces the same result in 10
 

steps. The parallel algorithm can easily be implemented on the
 

FMP.
 

-With the inclusion of the parallel linear recurrence as a function
 

in the language, the programmer has two ways of writing his linear
 

recurrences. For example, given the serial FORTRAN
 

DO 1 J=l,1000
 

DO 1 K=1,1000
 

A(J,K+I) = A(J,K) * B(J,K) + C(J,K) 

1 CONTINUE
 

there are two ways to write it in FMP FORTRAN given that the order
 

of nesting the loops is irrelevant otherwise. Namely:
 

ORIGINAL PAGE IS
 
OF POOR QUALITYI
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Method I:
 

DOALL, J=1,1000
 

DO 1 K=l,1000
 

A(J,K+l) = A(J,K) *B(J,K) + C(J,K)
 

1 CONTINUE
 

ENDDO
 

Method II:
 

DOALL, K=1,1000
 

DO 1, J=1,1000 

A(J,K+I) = RECURRENCE( A(J,K) * B(J,K) + C(J,K))
 

1 CONTINUE
 

ENDDO
 

Method I, which executes the recurrence setially in an inner loop,
 

runs about nine times as fast as method II, which executes each
 

one of the recurrences in parallel across each value of J in turn.
 

That is, method I is 512 times as fast as a serial machine, while
 

method II is 57 times faster than a single serial processor. The
 

RECURRENCE function is included only for those cases where method
 

I is not an available option.
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CHAPTER 4 

SIMULATION 

4.1 SIMULATION GOALS 

The simulation effort during this extension of the feasibility study has two 

distinct goals. The first is the requirement of the statement-of-work for 

this extension that a simulation of the FMP be prepared, and at least one 

simulation run. The second, is to get a head start on those simulations needed 

for phase I, and described in Chapter 6 as the mechanism for settling various 

trade-offs. The statement of work also calls for the selection of "metrics" 

that is, selected portions of the benchmark programs to be.used as inputs to 

the simulations to measure the performance of the projected FMP. 

Detailed instruction by instruction timing of code execution in CU and EU is 

necessary to ensure that the required throughput can be achieved. The design 

of major system components must be specified in sufficient detail to provide 

structure, logic, and timing parameters for system simulation. This infor­

mation is in Chapter 2. 

Compilerfunctioning, including FORTRAN extensions for the FMP, are also 

needed and are found in Chapter 3. Hand compilation methods must be specified. 

In the case of the current extension, a single metric, subroutine TURBDA, has 

been selected and hand compiled for this purpose. Further definition of hand 

compilation is needed for phase I. In particular, how much compiler sophistication 
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will be achieved in the first version affects hand compilation, and this is still 

a subject for discussion. At this time it is best to make conservative assump­

tions, again in order to reduce the element of risk in the simulated system 

performance predictions. 

The design details and design choices outlined above have been made definite 

thoUgh at this time for the first of the detailed simulations which are required 

to establish confidence in the feasibility and throughput capability of the SAM 

architecture. Any or all of the details may be changed as a result of further 

study or the availability of more advanced components. Of course, all such 

changes would be supported by simulation studies to maintain or increase 

confidence in the correctness of the system design. 

4. 2 SELECTION OF METRICS 

It is Burroughs understanding that the final selection of metrics will be the 

Government's. Metric selection is a function of the architecture that is to 

be measured. For example, in a conventional serial uni-processor, the 

distinction between "serial" and "parallel" streams of code is irrelevant, 

and should have no bearing. With parallel processors such as the two designs 

being proposed for the FMP (NAS2-9456 and NAS2-9457 final reports) the 

arrangement of data in memory affects the efficiency of parallelism, and metrics 

should be selected such that all "directions" of access of that data are represented. 

What is important is that the metrics selected be "representative", both with 
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respect to the operations being performed by the target architecture, and the 

codes that will be run on the FMP. Some "representative" of every kind of code 

that the FMP will run is wanted, but the results should be weighted according 

to the expected frequency of each "kind. " "Kind" refers to the sort of inter­

action with the architecture that is represented, whether parallelism is two 

dimensional or one-dimensional, the direction of accessing, presence or absence 

of branches in inner loops, and so on; all the things that may have an affect on 

the way the selected architectures behaves. 

The metric that has been selected as the one that shall be used in the single 

simulation that will be run during the extension of the contract is SUBROUTINE 

TURBDA. Like most of both the implicit and explicit codes, it exhibits a 

great deal of parallelism, but with some operations conditional on subscript, 

so that different things are being done at different subscripts. It thus tests 

the architecture's ability to do different things at different grid points. It 

includes fetches from, and stores to, the program's data base (in extended 

memory), exercising the data transfer paths from the program data base to 

the processing resource proper. It contains sufficient arithmetic manipulation 

to exercise that aspect of the FMP (although probably less than a "typical" 

subroutine). It contains significant. amounts of index computation both on 

loop controls and on subscripts. For the FMP design of Reference 1, it exer­

cises the synchroni ation, which is an essential feature of that design. 

AL ?UGMG 
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4. 3 SIMULATION MODELS 

The NASF system simulation modeling will be done at three levels of detail, 

with results from a detailed model being used to determine parameter values 

for the next higher level model. 

The most detailed level of modeling is the instruction timing model for CU 

and processors. For example, the model for the processor has as resources 

the PDM, PPM, instruction registers and decoding, multipliers, adders, data 

and index registers, etc., corresponding to the detailed processor design. A 

metric for this model is a sample code sequence generated by hand compilation 

of a FORTRAN section typical of the Navier-Stokes codes. Each instruction 

is modeled by a sequence of tasks, each requiring one or more of the resources, 

and executing for the specified number of clocks. Instruction fetch and decode 

is such a task sequence and the extent of overlap with instruction execution is 

modeled. Similarly, the extent to which instructions can overlap is modeled 

by the use of queueing for resources, or by logic tests, in exact correspondence 

with the processor design. The output reports from running this model can be 

used to determine parameters for the next level model. An important perfor­

mance factor to be determined is the extent to which the address calculations 

for EM accesses can be interlaced with, and overlapped. by the floating point 

calculations. The next level of simulation will be the flow model processor, 

including the CU, processor, EM, and DBM. The interactions to be measured 

are the CU and processor code execution times (previously determined), and 
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data transfers between EM and DBM. The metric will be a sequence of code 

executions and data transfers approximating the main body of computation in 

a Navier-Stokes code. The results will show the throughput performance of the 

FMP, together with the utilizations of EM and CU, which interface with DBM 

and the rest of the system. 

When we wrote the simulation model, we found that the instruction level .model 

needed to include the interaction between CU and EU, combining the first and 

second levels. The lowest level simulation model therefore is detailed to the 

instruction level, but includes CU, a number of processors, and access and 

data transmission timing of the Extended Memory and Transposition Network. 

Simulation of a number of selected code sections on this model will provide 

the paranieters required to model the execution of complete jobs and sequences 

of jobs through the Facility. 

The overall system model will include the host, File Memory, Data Base 

Memory and their interfaces with each other and CU and EIV. The metrics 

will be presumed scenarios of. user requests for NSS jobs. The sequence of 

scheduling, initialization, NSS operation, and output will be modeled. Impor­

tant functions to be modeled are data base and program transfers from File. 

Memory to DBM to EM, CUM, and PDM, allocation of DBM space, the 

sequence of FlIP operations, including data and program input, computation,' 

snapshot and data outputs, and changeover to the next job. Only the FMP 
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scheduling and control load on the host will be modeled; the amount of host 

capacity available for other necessary work can be measured, or the host can 

be loaded to any desired level by undefined "background" jobs and the effect 

on NASF throughput measured. 

The overall simulation effort will have two functions: first to support the validity 

of the SAM architecture by modeling all essential system functions and inter­

faces in sufficient detail and demonstrating proper function of the model, and 

second to show.the throughput capability of the system for aerodynamic simulation 

jobs by tracing the throughput step-by-step from the instruction level to the 

user interface. 

Simulations will be written in Burroughs Operational System Simulator (BOSS) 

a discrete-events simulator whose input language is the flow-graph of the pro­

cess being simulated. The instruction level simulation of Section 4. 5 is written 

in BOSS, the second and third level simulations of Phase II will be written in 

BOSS. In Phase II, the instruction-level simulator may be rewritteh in ALGOL, 

since substantial improvement in similation execution time is expected. 

4.4 BOSS SIMULATOR 

The BOSS simulator was used for the simulations because of the relative ease 

of modeling with BOSS' and the -short,time available. Special timing simulator 

programs for EU and CU code execution probably could have been completed in 

three months. Simulations at different levels of detail will be used to 'get perfor­

mance predictions ranging from the EU instruction execution to the user interface 

level. 
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A discrete events simulator, such as BOSS, models the activity of a system 

as a definite sequence of states. The model changes state only at discrete points, 

called events, which occur at definite instants of time. Every event can be 

predicted at the occurrence of some prior event, and the new state of the 

system model resulting from each event can be completely determined from 

that event and the prior state. In practice the event prediction and state change 

calculations are often probabalistic, because the real system is too complex 

to be modeled in full detail. The state variables of the model are mostly binary 

logic variables such as busy/hot busy or happened/not happened, and processing 

of an event involves the accessing of state tables and evaluation of binary 

decision functions. Arithmetic operations rarely occur except in the evaluation 

of continuous probability functions where they are used in the binary decisions 

or in predicting the times of future events. 

The BOSS simulator program runs on a B 6700 or B 7700 Burroughs computer. 

It is a general purpose discrete events simulator, witl emphasis on ease of 

modeling and efficiency in execution, in exchange for some restrictions on the 

size and generality of models. BOSS has been used by the Federal and 

Special Systems Group at Paoli mainly for simulating the hardware and software 

functions of data processing systems, and improvements and enhancements over 

several years have made it especially useful for this purpose. 

*OF POO)R QiTYhJC
ORIGINL -"" IS 
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In a BOSS simulation the element of model activity is a TASK, A task is 

characterized by its requirement for resources and by the algorithm -specified 

for predicting its execution time. A task is initiated upon completion of its 

predecessor requirement, which is usually a logical combination (AND or OR) 

of one or more prior task endings., The task may wait iri queue until the required 

resources are available; the selected resource units are then made busy for 

the execution time. At the task ending ,event, resources are released, queues 

are served, and the predecessor requirements ofany successor tasks are 

tipdated. Several kinds of test-and-branch constructs are available to cause 

conditional selection of one out of two or more successor tasks. 

The direct interaction of tasks is restricted to structures of tasks grouped 

together and called PROCESSES. When a process is initiated, one or more 

"Starting tasks" within it are initiated without predecessors, and the activity 

within it passes from tasks to task until such time as there is no further task 

activity, when that active version of'the process ends. Except for competition 

for resources,, and certain special constructs, there is no,interaction betwe~n 

the active tasks in separate active processes. 

The static structure of a BOSS model is described by the structures of the tasks 

and their interactions within processes and by the numbers and kinds of 

resources available. The'dynamic state of activity is described by the states, 

of,activity of processes and tasks. Every task is a member of some process, 

and there is no activity in the system model until some process is initiated. 

ORIGINAL PAGE 13 
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Initiation of processes at specified times corresponds to external loads causing 

activity in the system. Processes can also be initiated as subroutines, or by 

task endings in other processes. Many processes can be active concurrently, 

including multiple but distinct and independent versions of the same process. 

Similarly, within a process, many tasks may be active in parallel, including' 

multiple independent versions of the same task. Thus, it is easy to model a' 

highly parallel system with many concurrent activities, including cases where 

many of the parallel activities are very similar in structure. 

The basic BOSS structure described above is sometimes in'adequate or 

inconvenient for modeling some parts of the system. Therefore, there is 

available a superposed structure of local and global variables upon which 

arithmetic operations can be performed at task endings. 'These variables can 

be addressed directly or indirectly, ahd their values can be used to control 

branching at task endings or to modify the resource reqidrement or executiori 

time of specified tasks. This extension permits a certain amount of programming 

of capabilities not available in the basic BOSS structure. In this way, for 

example, the activity in one process can be influenced by actions occurring 

in another process. 

Figure 4-1 shows graphically the process of implementing and debugging 

simulations in BOSS, showing the various steps that the simulation programmer 

and the BOSS simulator go through in achieving the final result. 
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4. 5 SIMULATION MODEL FOR THE CURRENT STUDY 

The overall structure of the model is shown in Figure 4-2. The Control Unit 

and Processor models are driven by code files prepared by hand compilation 

of a selected FORTRAN code segment. All the operators of CU and EU are 

modeled in detail so that any code may be simulated. Additional operators 

may be easily added if needed. Conditional branching cannot be modeled in 

complete detail since the model is a timing model, and does not simulate 

- the processing of data. Such branches are therefore modeled by specifying
 

the number of times one path is taken for each time the other is taken. The
 

count can be specified probalistically. For most branches this will do well
 

enough; The cases where branching depends on the Processor Number, will
 

be handled by a later extension.
 

The Control Unit model includes its processor, a single memory (CUM), and
 

seven of the control functions interacting, with the processor EU's, as shown.
 

Any desired number of processors -can be modeled, but the number actually
 

used will be small (4 to 10) to avoid excessive machine time to run the simulations. 

Details of instruction overlap in the CU are not modeled; instruction execution 

times are not allowed to overlap, but CUM data fetches or stores can overlap 

this execution time of prior or following instructions. A data fetch of one 

instruction must come after a data store (if any) of the preceding instruction., 

In case of contention for CUM by program fetches, the data accesses have 

priority, but do not abort program fetches already in progress. The program 

look-ahead stack has a capacity of four code segments,, which is two memory 

words for opcode formats using 24-bit segments. 
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Each Processor consists of an Execution Unit (EU) and separate program and 

data memories (PPM and PDM). The EU is 'modeled in some detail in order 

to-properly simulate instruction overlap, as shown in Figure 4-3. The 

operation is as follows: 

4. 5. 1 Program Fetch. The Program Counter (PCR) addresses the next 

instruction, which is available at PPM three clocks after the address is available; 

As soon as a full word of program stack is empty, the next code word is read 

to the stack from PPM, and PCR is incremented. When a branch occurs, the 

program stack is emptied and the new code word is available threeclocks after 

the new PCR is set. 

4. 5. 2 Scoreboard. Each instruction records in the scoreboard the times at 

which it will release each resource that it will use. The next instruction must 

wait in stack until -all resources that is will need, will be available when needed. 

The Scoreboard arid Decoding are modeled logically, but not as resources for 

which-there could be queueing. 

4.5. 3 Holding Registers. Ifany resource is required at a time later than 

instruction start,, that instruction must wait in the corresponding Holding 

Register. If that Holding Register, is tied up by the previous instruction, then 

the current instruction must wait, even though it could otherwise start, 
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4. 5.4 Integer Processing, Floating Point Processing, PDM (]P, FP, DiV). These 

are modeled as resources, although the Scoreboard should assure that there 

will be no queueing for them. The utilization of these resources will give in­

formation about the efficiency of overlap and the fraction of elapsed time that 

the FP is in use. 

4. 5. 5 Synchronizing Controls. The timing of synchronizing controls is assumed 

to take 3 clocks for a round trip from CU to EU and back to CU. This is modeled 

as no delay from CU to EU since the control signal arrives at the same time as 

the corresponding clock pulse from the central clock. The 3 clocks delay is then 

all in the return path from EU to CU. The actions of the Synchronizing Controls 

are as follows: 

4. 5. 5. 1 READY. The CU raises the ready at the proper time in synchronized 

instructions where the EU's must wait for CU action before proceeding (LOADEM, 

STOREM). Any EU which reaches such an instruction before CU waits for the 

READY level. CU will wait for (IGH and EN) and then turn off the READY level. 

4. 5. 5. 2 (IGH + EN). This is level equivalent to a logic function generated as 

follows: When an enabled (EN) EU comes to the proper point in a synchronized 

instruction it raises the output line corresponding to I Got Here (IGH). This 

same level is raised all the time an EU is disabled (EN), hence (IGH + EN). 

IGH is turned off by GO from CU. The (IGH + EN) lines for all EU's are ANDed 

at the CU to procude its (IGH + EN) input. In the model this logic function is 

performed by maintaining separate counts of the number of EU's enabled 

(#EN) and in the I Got Here state (#IGH). (IGH + EN-) is true when #EN = #IGH. 
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4. 5. 5. 3 EN. EN is ture when #EN=O (no EU's are enabled). 

4. 5. 5. 4 GO. When (IGH + ENI becomes true at the CU, it raises the GO 

level for one clock. All enabled CU's, on receipt of this signal, turn off the 

IGH level and continue the instruction in which they were waiting. 

4. 5. 5. 5 Wait GO. When CU sends this signal (one clock), a! enabled EU's 

enter the IGH state (waiting for GO) in place of the next instruction start. The 

current instruction is or will be finished. 

4. 5.'5. 6 Disable. When CU sends this signal (one clock), all enabled EU's 

enter the disabled (EN) state -inplace of the next instruction start. The eurrent 

iristruction is or will be finished6 

4. 5. 6 Extended Memory and Transposition Network, The EM and TN are not 

modeled as resources that may be busy; thus it is assumed that during execufion 

of CU-EU code, the EM is never in use for DBM transfers. The EM access 

time and data transmission time through TN are properly modeled in the 

execution time of the LOADEM and STOREM instructions. 

4. 5. 7 Code Simulated. The hand-compiled TURBDA assembly codes are 

given in Table 4-1 and 4-2, together with an assembly coded SQRT, which 

is a simplified version omitting the tests and'Stanches for negative argument 

and for negative exponent. 

4.,5. 7. 1 Processor Code. The large amount of integer computation at the 

beginning of each pass through the TURBDA loop would give a low utilization 

of the Floating Point unit, were not for the large block of FP calculation in 
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Table 4-1. TURBDA Processor Code Simulated by Model 

(ICALL not simulated) 
FL 
iFbiVM 

1GT (No Branch) 
IEQL (No Branch) 
IEQL, L20 

LI 

I4 

JUMP L3 
(Jump to L3) 
SlOP 

IL 
IL 

(Jump to L20) 
FFETCH SQRT IUPK3 

LS ITIX, L4 (Drop through 2 times, FABS IADDL 
then exit to L4) FMUL Never IADL 

ISHL FSTORE Executed ISHL 
IPNO IJUMP, L40 ISUB 
IADD L20 FFETCH IADDI 
IDIVL FFETCH IANDL 
ISTORE FADD ISU1B 
IMULL FABS ISHL 
IFETCH FMULL IADh 
IL FrMUL IADDL 

L14 ITIX. LI (Drop through 20 times, FSTORE IPAK3 
then exit to LI) JUMP, L40 FADD 

IADDL (Jump to L4O) FNEG 
ID521 L30 FFETCH FL 
LOADEM FFETCH FMUL 
IADDL FADD Never FMAD 

-o ' 1fl521' 
IL 

FANBS 
FMULL Executed 

FMUL 
FMUL 

IFETCH FMUL EMAD 
IEQL (No Branch) FSTORE FMUL 
IL L40 IrL FMUfl 

LIOO LOADEM FFETCH FMAD 
IADDL FMUL FMUiL 
ID521 
IL 

ENTER SQRT
F MUL "FMAD 

F'MUL 

IFETCH FL FMUL 
IEQL (No Branch)IL ,FDIV FADD FNGDFMUL 

L200 LOADEM IADDM IIETURN 
IFETCH ID521 
IGT (No Branch) STOREM 
IFETCH JUMP L14 
IFETCH (Jump L14) 



the SQRT routine which is called once per loop. ICALL and IRETURN are 

both estimated at 23 clocks, which may be pessimistic and considerably 

reduces the FP utilization of SQRT. In an inner loop such as this, SWRT 

should probably be written in-line, since it will occupy no more than 20-30 

'words, and about 50 clocks are saved. 

Note that the outer loop, starting at L3, is executed twice, and each time 

the inner loop, starting at L14, is executed 20 times. This is a sufficiently 

large sample of code execution to give valid statistics. Within the inner 

loop, in the actual code, each EU will executeone of three branches, de­

pending on the index states. n-the simulation, only the branch starting at L20 

(the longest of the thjee) is executed. The other two are hever executed, as 

indicated.
 

In the actual code, two of the LOADEM's are conditional (LOADEMC). However, 

only the EM address and 'EM data input are conditional, the timing being the 

same, so the simulator makes no distinction. 

4. 5. 7. 2 Control Unit Code., The Control Unit code of Table 4-2 begins with 

LOOP, because the model starts with all EU's waiting for GO. When, (IG + EN) 

is true, LOOP causes both CU and EU's to branch to specified addresses by the 

LOOP instruction, and this is a convenient way to get the simulator to jump 

to ,the desired addresses in the simulated code files. 
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L3 

L14 

Li 

L4 


Table 4-2.. TURBDA Control Unit Code Simulated 

LOOP 
CL 
CL 
CTIX, L4 (Drop through 2 times, then Branch L4) 
CSHFN 
CMULL 
CFETCH
 
CL 
CTIX, Li (Drop through 20 times, then Branch LI) 
CADDL 
CADD 
CMD521 
CL 
LOADET 
CADDL 
CADD
 
CMD521 
LOADEM 
CADDL 
CADD
 
CMD521 
LOADEM 
CADDL
 
CADD
 
CMD521 
STOREM 
CJUMP, L14 (Jump to L14) 
CJUMP; L3 (Jump to L) 
CRETURN 
END SIMULATION 
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The only synchronization instructions in this code sample (aside from LOOP) 

are the.three LOADEM's and the STOREIVL 

The CU and its synchrnoizing action are simulated in some detail to determine 

two things: 

(1) 	 How much do processors wait at sync points for other processors 

to catch up? 

(2) 	 Do processors ever wait at sync points for CU to catch up, and . 

if so, how much? 

4. 6 SIMULATION RESULTS 

The simulation runs were made with a model having the Control Unit and 

four processors. The code driving the model was the TURBDA code shown 

in Tables 4-1 and 4-2, except that the outer loop was reduced to one iteration 

and the inner loop to 10, in order to reduce machine time for these first trial 

runs. Under these conditions the simulation indicates that the abbreviated 

TURBDA runs 4600 clocks on 184 microseconds assuming a-25-megahertz clock. 

The full size TURBDA-with two iterations in the outer loop and 31 in the inner 

loop would run about six times as long, or 1100 microseconds (27, 600 clocks). 

The parallelism is 31x3l = 961, compared with 1024 possible in two iterations; 

so, the efficiency of array use is 93. 8 percent in this case; 

In the simulated, TURBDA run, each processor performs 281 floating point 

operations lasting a total of 2407 clocks, for an average of 8. 6 clocks per FLOP. 

The elapsed time of 4600 clocks yields an effective throughput of 1. 53 iVIFLOPS 

OPGI l4b-
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per 	processor. The array throughput would, then be 782 MFLOPS, or 733 at 

93. 8 percent array efficiency for the 3lxSlx3l problem. As expected for 

TURBDA, these rates are considerably lower than 1000 MFLOPS. This 

reduced throughput has three causes: 

(1), There are 40 EM accesses with the 281 floating point ops, or a 

ratio of only 7 to 1. The, EM accesses themselves do not cause 

appreciable delay, but the integer operations required to calculate 

the EM addresses do causedelay. 

(2) 	 The floating point operations of TURBDA contain more than the 

normal proportion of multiplies and divides, raising the average 

duration fromh the nominal 7. 3 clocks to 8. 6 clocks per floating 

point operation. 

(3) 	 The function SQRT was simulated as a subroutine, with entry 

and return opei-ators.. It is likely that the -compiler will put 

simple functions like SQRT in-line. If so, the total time would 

be only nine tenths that shown, for an 11 percent increase in 

measired throughput. 

Some other conclusions of interest are: 

(1) Control Unit processing causes essentially no delay (less than 

0. 5 	percent of the total time) 

(2) 	 Extended memory accesses occupy 11. 5 percent of the time, 

including all synchronizing delays. 
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(3) Program fetches cause little or no delay. The model does not 

measure such delays exactly, and should be modified to do so. 

Program memory is-in use 42 percent. 

(4) 	 The utilization of the integer unit is 47 percent, data memory 

10 percent and floating point unit 58 percent, for a total of 

115 percent, indicating the approximate degree of overlap. 

(5) 	 The inner loop takes 450 clocks, of which 197 are in the SQRT 

routine. Two thirds of the floating point operations are in the 

SQRT routine. 

Figure 4-4 is an example of one of the output tables of one of the simulation 

runs. The unit types represent various system resources as indicated by 

the row headings typed in on the left. In some cases the resource is used for 

internal control purposes in the model and does not represent a real system 

component, so is unlabelled. Some of the resources represent logic levels 

and signals such as READY, GO, IGH+EN, EN=0. A processor or CU waiting 

for such a level or signal is modeled as queueing for the resource, which is 

created to represent the presence of the level or signal. 
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UNIT UI1LIZATION STATISTICS 

UNIT 
TYPE 

UNIT 
ID 

?UMB 

TOTAL 
TIMES 

USED 

..... PERCENT OF ACTIVE TIME...... 

... IN-USE... DEPENDENT.. FREE 
DELTA TOTAL DELTA TOTAL TOT'AL 

CUM 
CUPROC 
CPSTAK 

24 
25 
20 
20 

3 
4 
5 
6 

173 
233 
171 
173 

11.27 
9f.89 
11.86 
11.40 

11.27 
98.89 
11.86 
11.40 

0,00 
0.00 
0.00 
0.00 

C.00 
0.00 
0.00

.00 

88.73 
1.11 

88.14
88. 14 

20 
19 
23 

7 
8 
9 

171 
170 

1 

11.92 
11.62 

C.07 

11.92 
11.62 
0.07 

0.00 
0.00 
'0.00 

0-00 
0.00 
0-00 

88.08 
88.38 
99.93 

READY 
60 

(tGH+EN) 

28 
15 
17 
21 

10 
11 
12 
13 

186 
24t 
246 
82 

C.91 
C.87 
C.00 
C,; 00 

0.91 
0.87 
0.00 
0.00 

0.00 
0.00 
0.00 
-0;00 

0.00 
0.00 
0.00 
o.-o0-

99.0-9 
99.13 

100.00 
I-0.co-­

#EN=O 
IU 

FPU 
PDM 

26 
3 
4 
5 

14 
15 
16 
17 

1 
506 
364 
154 

C-00 
47.01 
57.74 
5.97 

0.00 
47.01 
57.74 
9.97 

0.00 
0.00 
0.00 
0.00 

0.00 100.co 
0.00 52.99 
C.00 4'2.26 
C.00 90.C3 

©m PPM 7HOLD) 8 
REGIS-S 9 

TERS.lQ 10 
QUEUED' 13 

18
19 
20 
2! 
22 

13481 
53 
52 

558 

42.37(.00 
9.60 

10.18 
77.55 

42.37
0.00 
9.60 
10.18 
77.55 

0.00
0.00 
0.00 
0.00 
0.00 -

C.00
0.00 
C.00 
0.00 

57.E3
100.CO 
90.40 
89.828002.45­

c: PPSTAK 12 2"3 
S12 24 

12 25 

862 
862 
860 

35.50 
3 .53 
4C.69 

35.50 
35.53 
40.69 

0.00 
0.00 
0.00 

C.00 
0.00 
0.00 

64.50 
64.47 
59o-l 

Figure 4-4. Sample of Simulation Output 



CHAPTER FIVE
 

RELIABILITY
 

5.1 INTRODUCTION
 

This chapter presents two major aspects of the NASF reliability
 

and trustworthiness; (1) an availability prediction of the FMP and
 

(2) further development of the error detection and correction
 

techniques to the various FMP elements. These topics are covered
 

in sections 2 and 3 of this chapter, respectively.
 

The system availability design goal for the B7800 host system and
 

the Flow Model Processor (FMP) is 90 percent or better. Also, it
 

is desired that the probability of success for completing runs of
 

ten minutes and one hour be 'equal to or greater than 98 percent
 

and 90 percent, respectively, The following is the conventional
 

formula for computing availability
 

A= MUT
 
MUT + MDT
 

where, 

A Availability 

MUT Mean Up Time
 

MDT = Mean Down Time. 

Up time is the duration during which the system is continuously
 

up. Down time is the interval between up timep. It can be seen 

that a system MUT = 9 hours or longer combined with a system MDT = 

1 hour or less satisfies the availability goal. These values also 

satisfy the desired reliability, or probability of success, as 

evidenced by the following formula 
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R(t) = e- t/SMUT 

where,
 

R(t) = The probability of successfully completing a run as 

a function of t 

t = Duration of the run (hours) 

SMUT = System Mean Up Time (hours) 

5.2 AVAILABILITY PREDICTION
 

The following methods were employed in preparing the FMP avail­

ability pnedictions d-iscussed below.
 

- Standard component part failure rates were predicted using
 

the reliability stress analysis prediction method of MIL-HDBK­

217B.
 

- Potential improvements in reliability through the use of 

Single Bit Error Detection and Correction and Double Bit 

Error Detection (SECDED) in the FMP memories, fanout tree, 

and transposition network were analyzed using a mathematical 

model developed specifically for the proposed design-of these 

elements. 

- System Reliability, Availability, and Maintainability (RAM) 

characteristics were analyzed using Program DESIGN, which was 

developed by the Burroughs Corporation to aid in designing 

fault-tolerant-computer systems. 

MIL-HDBK-217B is used extensively throughout the electronics
 

industry to predict the failure rates of electronic component
 

parts. Since the prediction methods of MIL-HDBK-217B are quite
 

detailed and documentation describing these methods is readily
 

available, only the general aspects of component part failure rate
 

predictions are discussed in this report.
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Append-ix B contains a description of the SECDED mathematical
 

model, including the underlying assumptions associated with the
 

development of this technique. 'A similar-description of the
 

mathematical model employed in Program DESIGN is in preparation.
 

5.2.1 OVERVIEW
 

The proposed Flow Model Processor (FMP) design will be implemented
 

using state-of-the-art technology of today and currently proposed
 

state-of-the-art technology for the time frame during which 

manufacturing of the FMP will be initiated. Obviously, accurate
 

reliability projections for some of the LSI component parts re­

quired to implement the proposed machine are difficult at this
 

point in time. Likewise, projections -with respect to gains in
 

-reliability through the use of techniques such as Single Bit Error
 

Detection and Correction and-Double Bit Er-ror Detection (SECDED)
 

can only be hypothesized based on assumed failure modes until the
 

design is completed, built, and tested.
 

Recognizing that the above and additional considerations must be
 

seriously addressed to ensure meeting the specified system
 

availability requirements of 90 percent, an analysis has been
 

conducted to bound the potential availability of the current FMP
 

design. Both optimistic and conservative points of view have-been­

considered for those conditions which can not be accurately
 

projected at this point in time. In addition, sensi'tivity
 

analyses .have been conducted within the upper and lower projected
 

availability bounds to determine where design attention must be
 

concentrated in order to achieve the stated availability require­

ment and reap the greatest reliability and availability gains for
 

the effort expended.
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The results of this preliminary availability analysis serves two
 

purposes. First, the analysis shows specific failure, recovery,
 

and repair time reliability and maintainability estimates at the
 

subsystem, module, And component part levels that are consistent
 

with overall system availability of 90 percent and MTBF of 9 hours
 

or better. Second, the analysis numerically bounds achievable
 

Mean-Up-Time (MUT), Mean-Down-Time (MDT) and Availability
 

estimates within the broad range of reasonably optimistic and
 

pessimistic assumptions.
 

The following paragraph summarizes the results of this preliminary
 

availability and the rationale for the assumptions made. As the
 

FMP design progresses, the availability analysis will be iterated
 

to further refine specific reliability and maintainability
 

estimates to narrow the.bounds of uncertainty associated with
 

these preliminary projections.
 

5.2.2 Summary of Results
 

The first step in this analysis was to develop an overall
 

Availability block diagram of the FMP (Figure 5-1). The estimated
 

parts counts for all major elements, considering the types of
 

component parts currently envisioned, were then prepared. For
 

standard component parts, failure rates were predicted using the
 

reliability stress analysis prediction method of MIL-HDBK-217B.
 

Consideration was then given to the failure rates of-large memory
 

packages (16K, 64K, 256K) of the future. It was hypothesized that
 

the best that could be expected in terms of reliability is
 

achieving failure rates equivalent to those achievable today for
 

4K memory packages (approximately 0.1 Failures Per Million Hours
 

(FPMH)). The worst reliability that one could expect to encounter
 

was judged to be equivalent to the series failure rate build up
 

for the number of 4K parts required to make up the larger memory
 

packages; i.e. for 16K: 0.4 FPMH, for 64K: 1.6 FPMH, and for
 

256K: 6.4 FPMH. Using these component part failure rates for
 

each of the major elements provided the upper and lower bounds
 

with respect to projected device reliability.
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must be operating for the system as a whole tothe system, 1W - - - - - - - - ---- ----5 ­

be operating. 

Figure 5-1. Availability Block Diagram of the F MP 
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Next, a mathematical model was developed to study the potential
 

improvements from SECDED. Using this model, it was found that
 

gains could vary from a lower bound factor of 2 to upper bound
 

factors of 164 for 16K, 327 for 64K, and 653 for 256K memory
 

packages.
 

Finally, redundancy was considered. In this case, the ability to
 

automatically detect, isolate, and decommit failed elements
 

without noticeable interruption was investigated. As an upper
 

bound on reliability, perfect recovery was considered. The lower
 

bound was established for a situation where no recovery without
 

interruption could be achieved. In this portion of the analysis,
 

both permanent type failures which require a repair action and
 

intermittent type failures which only require a recovery action
 

were factored into the computations.
 

Using the previously discussed upper and lower bound values, it
 

was determined that the design potential availability for the
 

currently proposed FMP is,:
 

* Upper Bound: AFMP = 0.9995 (see Fiqure 5-2) 

* Lower Bound: AFMP = 0.9554 (see Figure 5-3) 

Both these optimistic and conservative forecasts indicate a high
 

degree of confidence in the ability of the proposed design to meet
 

the overall system availability requirement of 90 percent. Using
 

the above upper and lower bound availabilities for the FMP, it can
 

be shown that the required availability of the B7800 host system
 

to meet the 90 percent system availability is:
 

* AB7800 = .9004-for the Upper Bound FMP Requirement 

* AB7800 = .9420 for the Lower. Bound FMP Requirement 
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The above required availability values for the B7800 host system
 

are currently being exceded by Burroughs B7700 systems operating
 

in the field today. Since the B7800 system is expected to be even
 

more reliable and maintainable than currently available B7700
 

systems, the overall system availability requirement for the FMP
 

and the B7800 host system appears to be reasonable and achievable.
 

The data used to obtain these results are presented and discussed
 

in the following sections.
 

5.2.3 THE BOUNDS OF FMP AVAILABILITY
 

This sectio shows the bounds of the failure rates of all packages
 

and 	subsystems. The bounds of MUT (Mean-Up-Time), MDT
 

(Mean-Down-Time) and availability of the FMP are the highlights.
 

The failure rate of the system is significantly reduced with
 

judicious design and the following factors:
 

1. 	A ground-based benign environment, where there is nearly
 

zero environmental stress with optimum engiheering
 

operation and maintenance
 

2. 	Use of high quality parts, MIL-M-38510, class B level
 

commercial parts being strongly suggested
 

3. 	On-line processor spares
 
4. 	Error correction techniques, including SECDED.
 

5. 	'Adequate maintainability, as reflected in time to repair.
 

5.2.3.1 PACKAGE FAILURE RATES
 

The circuit packages are the basic elements in the FMP and accom­

panying the-reliability of the FMP is a function of the failure
 

rates of these packages. As mentioned in the previous section',
 

the 	failure rates of digital circuit packages are predicted with
 

the 	guidelines of MIL-HDBK-217B. Table 5-1 shows the predicted
 

failure rates and the operating environmental conditions of the
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control or logic packages used in the FMP. For the memory
 

packages, the lower bound of those failure rates is 0.1 FPMH. The
 

assumed upper bound of the failure rate of an m-bit memory package
 

(m>4,000), denoted as Xm, may be computed with the following
 

formula; representing the failure rate of the same memory built of
 

4k-bit parts.
 

Nm = m X UPPERBOUND F.R. FOR 4K MEMORY FPMH
 

4K BIT
 

5m = m X 1 FPMH =*M X 2.5 X 10 - FMPH
 

4,000
 

Table 5.2 shows the upper bounds of the failure rates of a variety
 

,of memory packages.
 

5.2.3.2 THE FAILURE RATES AND MTBF OF SUBSYSTEMS
 

A subsystem contains the packages listed in Tables 5-1 and 5-2.
 

The failure rates of the subsystems of the FMP are predicted by
 

parts count method. the memory subsystems failure rates are
 

modified by the SECDED reilability improvement factor which is
 

defined as the ratio of the subsystem MTBF With SECDED to that
 

without SECDED. The factor is discussed in detail in appendix B.
 

It can vary from two to six hundred and more, depending on the
 

size of the memory package. Table 5-3 presents the list of the
 

packages, the failure rates and MTBF of the control or data
 

processing subsystems. Table 5-4 and 5-5 show the bounds of the
 

failure rate and MTBF's of the memory subsystems. The upper
 

(lower) bounds of the failure rates (MTBF's) are predicted with
 

the SECDED reliability improvement factor of two and the failure
 

rates of the memory packages at their upper bounds. The lower
 

(upper) bounds of the failure rates (MTBF's) are generated when
 

the SECDED improvement factors are at their upper limits and the
 

failure rates of the memory packages are on their lower bounds.
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Table 5-1. The Predicted Failure Rates of the Control or Logic Packages 

PART NUMBER 

.1000 0001 
100C 0002 

10 0003 

1000 0004 

100C COO5 

1000 C006 

*PART DESCRIPTION 

ECL CONTROL'SSI-I 
ECL CONTROL-SSI-1I 

ECE CONTROL-SSI-III 

ECI CONTRCL-SSI-IV 

ECL CONTROL-PSI 

EC. CONTROL-LSI 

*TYPE*G,/jB*PINS*TEHF*ENV*GLAL*GtAIT*INOIV[DUAL FR* 

DIG 4 16 45 GE 8 1 0.0C622 
DIG 6 16 45 GE B 1 0.0O778 

DIG 15 16 45 G6 9 I 0.CI3CT 

DIG 22 16 45 GE a 1 0.01633 

DIG 4C 16 60 GE 8 1 0.C60E2 

DIG 130 16 60 GE 8 1 0.13000 

Table 5-2. The Upper Bounds of the Failure Rates of Memory Packages 

cC 

PART NUKDEF 

2000 c00 

2000 C002 

2000 C003 

PAFT DESCRIPTION 

HOS 16K RAN 

3OS 64K RAY 

N05 256K HAM 

*TYPE*GJT/B*PINS*TEPPIENV*QUAL*aUANT*INCIVIVUAL FF* 

SAH 16000 22 60 7B B 1 0.4000C 

RAM 64000 22 6o G8 1 1.600CC 

RAN2"6000 22 60 6EB B 6.40000 

C' 
t:4 
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Table 5-3. The Predicted Failure Rates and MTBFs of the Control Subsystems' 

LEVEL 1 DESIGNATION: PE 
PART NUMBER *PART DESCRIPTION 

1000 0006 ECL CONTROL-LSI 

MTBF= 76924.16 12.9998 

LEVEL I DESIGNATION: -U
 
PART NUMBER *PART DESCRIPTION 

1000 0001 ECL CONTR&L-SS I-! 
1000 0005 ECL CONTROL-MSI 

MTEF= 13;49.15 73.'647 

LEVEL I DESIGIATION: FOT 
PART NUMBER *PART DESCRIPTION 

1000 00 2 ECL CONTROL-51-II 

MTBF= 64287.32 15.5552 

LEVEL I DESIGNATION: TN 
PART NUMBER *PART DESCRIPTION 

1000 0004 ECL CONTROLASS I-IV 


MTBF= 5843.59 171.1278 

LEVEL 1 DESIGNATION: TNC
 
PART NUMBER *PART DESCRIPTION 


1000 0001 ECL CONTRUL-SS I-


*TYPE*G/TIB*PINS*TEMP*ENV*QUAL*QUANT*INDIVIDUAL FR* 
 TOTAL FR* 

DIG 130 . 16 60 GB B 100 0.13000 12.99982 

FAILURES PER MILLION HOURS 

*TY'E*$/T/3*PI4S*T MP*ENV*QUAL *CtUAN T*INDIVIDUAL FR- TOTAL FR* 
iIC 4 16 45 GS R 2CO0 0.00622 12.44043 
'IG 40 16 6' Gr9 1C0 0.06082 60.824?3 

FAILURES 0R PILLION HOUR S 

*TY'E*G/T/B*PINS*TEMP*ENV.QUAL*QUANT*INDIVIDUAL 
t R* TOTAL FR* 

D1 6 16 45 G) 5 2000 O.OOT8 15.55517 
FAI LURES PER SILLION HOURS 

*TY E*G/T/j*PINS*T P*ENV*QUAL*CUANTINOIVIDUAL FR- TOTAL, FR* 
DIG a2 16 45 GB 8 1OABe 0.01633 171.12T79 

FkILUQES PER MILLION HOURS 

TY'*E*G/T/q*PINS*T'MP*ENV*QUAL*CUANT*INDIVIDUAL FR* TOTAL FR*
 

DIG 4 16 45 GB 5 500 0.00 622 3.11011 
MTEF; 321532.40 3.11 1 F&ILU9ES PER MILLION HOURS 

PART 

IOOC 

NUMBER 

003 

LEVEL 1 DESIGNATION: FM-C 
*PART DESCRIPTION 

ECL CONTROL-SS I-Ill 

*TY E*rIT/3*PINS*TvMP*E V-QUAL*GUANT*TNDIVIDUAL FR* 

IG 15 16 45 G9 R 30 0.01307 

TOTAL FR* 

0.39214 
MTBF= 2550138.28 0.3921 FAILURES PER ILLION HOURS 

LEVEL I DESIGNATION: CBM-C 
PART NUMBER *PART DESCRIPTION *TYE*G/TI*PINS*TFMP*EV*QUAL*CUANT*INDIVIDUAL FR* 
1000 0033 ECL CONTROL-SSt-III jIr 15 16 45 09 1000 0.01307 

MTBF= '76504.15 13.0712 FAILURES PER WILLION HOURS 

TOTAL FR* 

13.07119 

http:64287.32
http:13;49.15
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Table 5-4. The Lower (Upper) Bounds of the Failure Rates (MTBF) of the 
Memory Subsystems 

LEVEL 1 DESIGNATION: PEN
 

PART NUMBER *PART DESCRIPTION *TYPE*G/T/B*PINS*TEMP.ENV*QUAL*QUAhT*INIVIDUAL FR* TOTAL FR* 

1000 0001 ECL CONTROL-SST-I DIG 4 t6 45 GO 8 15 0.00622 0.09330 

2000 0001 4OS 16K RAN RAM 16000 2? oo (5 E 55 0.00061 0.03353 

MTBF= 7884153.75 0.1268 FAILURES PER MILLION HOURS
 

LEVEL 1 DESIGNATION: PEPM
 
TOTAL FR*
 

PART NUMBER *PART DESCRIPTION *TYPE*GTB*PINS*TEMPENV*QUAL*QUAT-INDIVIDUAL FR* 


0.00061 0.01707
 
2000 0001 MOS 16K RAN RAM 16000 22 ;O ,B a 28 

0.00622 0.09330 
000 0001 ECL CONTROL-SSI-I DIG 4 16 45 GO- a 15 


MT F= 9060039.53 0.1104 FAILURES PER MILLION HOURS
 

LEVEL 1 DESIGNATICN: CLP 
FF- TOTAL FV*

PART NLPBES *PART OESCRIPIION *TYrE*G/T/B*PINS*TEF*EV*QAL*CLAI'1INCIVICUAL 

GB 55 o.COOel 0.03353
CS 1§K RAP RAP 16COC 2222CCC COOl 

PITEF= 2582C925.34 O.0335 FAILURES FES PILLION HOURS
 

LEVEL 1 CESIGNATICN: Et-M 
PART NLPEEF -PART DESCRIPTION *rYPE*G/TJB.PINS*TEPFEV*QLAL*LA T*INEIVILAL Fi* TOTAL FR* 

ZCC CC02 MCS 64K RAP RAP 6400C 22 GO 48 .5 0.co030 0.01676 

0TEF= 55,651E34.45 C.01E0 FAILURES PES PILLION HOLRE 

LEVEL 1 CESIGNATICN: 0E2t-M 
PAT hLMSEF *PART DECSIPTICN *TYPE*G6Tjd*PINS*TEPFEhV*ccAL*.LATyINCIVICUAL F* TOTAL FR* 

2CCC C03 MOS 256K RAP RAP aSo00 22 Go GC 5 55 0.0015 O.OG 42 

ITEF=I?57?53.48 C.OOe4 FAILURES FEF ILLION HGURS 

cn

I. 

01 

http:ITEF=I?57?53.48
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http:7884153.75


Table 5-5. The Upper (Lower) Bounds of the Failure Rates (MTBF) of the 
Memory Subsystems, 

LEVEL I DESIGNATION: PEN 
PART NUMBER *PART DESCRIPTION *TTPE*G/T/B*PINS*TENP*ENV*QUAL*CUANT*INDIVI9UAL FR* TOTAL FR* 
1000 0001 EGL CONTROL-SSI-T DIG 4 16 45 GO a 15 0.00622 0.09330 
2000 0001 OS 16K RAM - RAM .16000 ' 22 0 rB R 55 0.20000 11.00000 

"TfBF= 90144.48 11.0933 FAILURES PER MILLION HOURS 

LEVEL I DESIGNATION: PEPH 
PART NUMBER *PART DESCRIPTION *TYPE*G/T/B*PINS*TENP*EV*QUAL*QUAT*INDIVIDUAL FR TOTAL FR* 

2000 0001 NOS I6K RAM RAM 16000 22 60 28 0.20000 5.60000 
1000 0001 ECL CONTROL-SSI-I DIG 4 t6 45 G8 B 15 0.00622 0.09330 

MTS= 175644.96 5.6933 FAI'LURES PER MILLION HOURS 

LEVEL I DESIGNAIICN: CUM 
PART NUMBER *PART DESCRIPTION *TYPE*G/TIJB*PINSITEHP*ENV*QUAL*CUAI*INCIVGbAL FF* TOTAL FR* 

2CO GC1 MOE 16K RAM RAP 16CO0 22 60 13 55 0.20000 1.OCGQQ 

1T2iF 50509.05 11.o0000 FAILURES PER PILLION HOURS 

LEVEL I OESIGNATIONt EM-N 
PART NIMBER *PART DESCRIPTION WIYPE*GITOB*PINS*TE'f-*EAV*QLA*CLAAI*IhCIVID AL FR* TOTAL FR* 
2000 0c02 5MOS64K RAM RAM 64000 22 6,0 P 55 0.000C6 44.0C,00 

PITEF= 22727.27 44.000 FAILURE! PER PILLION HOURS 

LEVEL 1 DESIGNATION: OBP-M 
PART NUMBER - 'PART DESCRIPTION *TYRE*G/TJB*PINS*TEMP*EV*QUALtCUAhA*INDIVIOUAL FR*' TOTAL FR* 

200C C003 NO! Z566 RAM RAM 2 .O0O 22 60 B 55 3.20000 176.00000 

PTEF= 5681.02 176-0000 FAILURES PER PILLION HOURS 

00 

cr 

1 , 



The legends of these and following tables are defined as:
 

TYPE - Integrated circuit type
 

G/T/B Number of gates, 6r of transistors, or of bits
 
TEMP - Junction temperature predicted with MIL-HDBK-217B
 

ENV - Environment (GB - ground-based benign or standard office
 

environment)
 

QUAL - quality/screening level (B-MIL-M-38510, class B) 

QUANT - not listed in table 5-1 or 5-2 

INDIVIDUAL FR - individual faiure rate (per million hours) 

Some of the other terminology in these and following tables and 

figures is as follows. Mnemonics representing elements of the FMP 

are the same as those shown in Figure 5-1, such as "FOT" for 
"fanout tree" or "TNC" for the "control portion of the transposi­

tion networfk". "MRT" has been used for "mean down time"; the
 
programmer was thinking that all down time was repair time. "RE"
 

recovery efficiency is the fraction of the time that a retry is
 

successful. For example, for a single bit failure in memory
 

covered by SECDED, RE is 1.000. For a catastrophic "single point"
 

failure, RE is 0.000. "Single point" identifies those portions of
 

the system where a failure at a single point disables the system.
 

5.2.3.3 AVAILABILITY OF THE -FMP
 

The major task of this section is to assess the bounds of MUT, and
 

availability using the program DESIGN. Using the program we can
 
thoroughly investigate critical factors pertinent to the failure,
 

repair, and recovery processes. As required, the following
 

determinants of system interruption and downtime have been
 

included:
 

-5-13 



* Permanent and Intermittent Hardware Failure land Repair 

Rates
 
* System Automatic Secovery Features 

* System Manual Recovery Rates 

Sufficient data have been collected for design new systems
 

successfully. With these data and all informations from the
 

previous sections, the program provides an output with all salient
 

input data and analytical results. The computer printouts used
 

designations matching thoseon the block diagram of Figure 5-1.
 

Corresponding to Table 5-4, Figure 5-2 shows a print-output which
 

points out the upper bounds of MT, and availability of the FMP
 

are 1,032 hours, 0.43 hours, and .9995, respectively, as the MTBF
 

of the hard failure is the same as the MTBF of the intermittent
 

failure. Similarly corresponding to Table 5-4, Figure 5-3
 

presents an output which shows the lower bounds of MT and avail­

ability are 3.5 hours and .9554 respectively, when the MTBF of the
 

hard failure is ten times of the intermittent failure.
 

5.2.3.4 SENSITIVITY ANALYSIS
 

Since some factors shown in the previous sections are uncertain,
 

and the failure rates of the memory packages are unknown, a
 

sensitivity analysis has been made to study how those factors
 

affect MUT, MDT, and availability of the FMP. Here we perform an
 

experiment with respect to all the factors. In the experiment,
 

some wide range varieties are considered, as in the following:
 

1. 	Two levels of the failure rates of the-memory packages,
 

namely the upper bounds and the lower bounds as shown in
 

Section 2.1
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VAME R N 4TBRP) NTqF(I) SPFM DRI SRT RE(P) RE(M) DMT HUT MRT AVAIL' 
CU 1 1 1364j 13649 0.000 1.00 0.00 0.000 0.000 0.10 6824.5 0.550 0.999919 
CUM 2 2 9000000 - 0.00 0.25 0.00 O.OCC 0.000 0.10 NO EFFECT ON PERFORPANCE 
TNC 1 1 321532 321532 0.000 0.50 0.00 0.000 04030 0.10 160766.0 0.300 0.999998 
.FIT 1 1 64287 - -7.000 0.25 0.00 0.000 0.000 0.10 64287.0 0.250 0.999996 

TN 1 1 5843 - 3.000 0.25 0.00 0.000 0.000 0.10 5843.0 0.250 0.999957 
EM-c 521521 2550138 2550138 3.000 1.00 0.00 0.000 0.003 '0.10 2447.3 0.550 0.999775 
EM-M 521521 9000000 - 3.000 0.25 0.00 0.000 0.000 0.10 1724.5 0.250 0.999986 
DBMC I 1 t6504 76504 -3. ,000 1r.00 0.00 0.000 0.000 0.10 38252.-0 0.550 0.999986 
DSM 512512 9000000 -- 000 0.2 0.0 0.000 0.00 0.10 17578.1 0.250 0.999986 
PROC-1 128129 75545 75545 3.005 i.00 '0.25 1.000 1.00 0.10 50162.4 0.222 0.999995 
PR3C-2 128129 T5545 75545 0.005 1.00 0.25 1;0c0 1.000 0.10 50162.4 0.222 0.999996 
PROC-3 1281Z9 75545 75545 3.005 1.00 0.25 1.000 1.000 0.10 50162.4 0-222 0.999996 

O-- PRC-4 128129 75545 75545 0.005 1.00 0-25 1.000 1.003 0.10 50162.4 0.222 0.999996 

LEGEND 
F 
N 

Numberof DavcesReqoatedtobeOperttmlgfOrSCCeSS 
Number of Devicet Available 

FMP TOT AL= 1032.1 0.43 0.9995854'- 9 
MTBF(P)i Mean TimeBetween Failures - Permanent 
MTSF (I) Mean Tini Betv.een Failure, - Intermttent 
SPFM 
ORT 
SRT 
RE P) 

Percentage of Failures tbi' armSingle Point Failures 
DeviceRepal. Time - Pe-marneit Failures 
Single Point Failure Rep-ir Time - Permanent Failures 
Rcccve'y Efficiency - Permonent Failures 

RE (I) 
OMRT 

Recovery Effiiency - lniemieni 
Device Manual Recovery Time 

Failures 

Figure 5-2. Print Output of the Upper Bounds of MVUT, MRT and Availability of the FMP 

C, 
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iAME R N MTBF(P) MTeF(I) SPFM ORT SRT RE(P) R (I) OMRT MUI RT AVAIL 

CU 1 1 13649 1365 3.000 1.00 0.00 0.000 0.000 0.10 1240.9 0.182 0.99985 

:UM 2 2 90909 -- .000 0.25 0.00 OOCO 0.003 0.10 45454.5 0.250 0.999995 

FOT 1 1 64287 0.000 0.25 0.00 0.000 0.000 0.10 642.87.0 0.250 0.999996 

TNC t 1 321532 32153 ).000 0.50 0.00 0.000 0.00) 0.10 29230-0 0.136 0.999995 

TN 1 1 5843 - 0.000 0.25 0.00 0.000 0.000 0,.10 5343.0 0.250 0.999957 

EM-C 521521 2550138 255 14 2.000 1.00 0. G0 0.000 0.003 0.10 445.0 0.182 0,99959P 

EM-M 521521 22727 -' 3.000 0.25 6.00 0.000 0.000 0.10 43.6 0.250 0.994302 

OBMC1 1 76504 7651 3.000 1.00 0.00 0.00 0. 00 0.10 6955.4 0.182 0.999974 

D01M 512512 5652 -- 3.000 0.25 0.00 0.000 0.000 0.10 11.1 0.250 0.977969 

PROC-1 128129 33572 3357 3.005 1.00 0.25 0.000 0.000 0.10 23.7 0.100 0.99578 

PROC-2 128129 33572 3357 0.005 1.00 0.25 0.000 d.000 0.10 23.7 0.100 0.99578-

PROC-3 128129 33572 3357 3.005 1.00 0.25 0.000 0.000 0.10 23.7 0.100 0.99518 

PROC-4 128129 33572 3357 0.005 1.00 0.25 0.000 0.000 0.10 237 0.100 0.99578' 

LEGEND 
F 
N 
MTBF(P)
MTBF Il)
SPFM 
DRT 
SRT 
RE W) 
RE (I)
DMRT 

Number of Devices Required to be Operating for SUCCesS 
Number of Devics Available 
Mean Time Between Failures - PefriaFent 
Mean Time Batweul Falures - Intermittent 
Percentage of Failuris that are Single Point Failures 
Device Repair Time - Permanent Failures 
Single Point Failure Reoair Time - Permanent Failures 
Rlecovery Efliciency - Permanent Failures 
Recovery Efficiency - Intermittent Failures 
Qevice Manual RecOvery Time 

F /p TOT AL= 3.5 0.16 0.9554e497 

Figure 5-3. Printout Output of the Lower Bounds of MUT and Availability of the FMP 
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2. 	Two levels of SECDED improvement factors, taking "two" as
 

the lower bound level while the upper level corresponding
 

to the upper limit of different memory packages stated in
 

Section 2.2
 

3. 	The ratio between the MTBT of intermittent failure to the
 

MTBT of permanent failure are 1, 5 and 10.
 

4. 	The recovery efficiencies are chosen from 70% to 100%
 

with 10% increment.
 

The results are summarized in.Table 5-6. From the results we
 

learn the availability changing only from 96.13 to 99.96% is not
 

significantly affected by those factors. If the memory packages
 

are of a low reliability level and SECDED improvement factors are
 

low, MUT and MDT are affected slightly by them. On the other
 

hand, if the memory packages are highly reliable and SECDED im­

provement factor is large, the MUT is increased by 200% to 300%
 

and the MDT is decreased by 25% to 30% as the ratio between the
 

MTBF for permanent failures (MTBF(P),) and the MTPF for
 

intermittent failures (MTBF(I)) changes from 1 to 5. Under the
 

same conditions- the MUT increases very rapidly as the recovery
 
efficiency is close to 100%. Finally it can be pointed out that
 

the MUT is significantly affected by the reliability quality of
 

the memory packages as expected.
 

5.3 ERROR DETECTION AND CORRECTION
 

5.3.1 Error Control Coverage
 

In the baseline system there are a number of mechanisms for error
 

detection and correction. These include error detection and
 

correction on all memories, with sufficiently powerful codes to
 
guarantee uncorrected error rates lower than a specified require­

ment, and undetected error rates below an even lower required
 

rate.
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Table 5-6. Sensitivity Analysis of the MUT, ,MRT 
and Availability of the FMP 

RUN PACKAGE felabili4 p 
NQ. FAILURE I HIBF-APrve~Mn2t (I) 

RATE Factor 

I .1 f]1b * 1 


2 ft 1 


3 	 1 


4 	 1 


5 	 5 


6 5 


7 5 


ft 5 


9 " 	 10 


10 " 	 10 


11 -	 10 

12 	 10 


13 " 2 1 


14 	 22 1 


15 "2 1 


16 " 2 1 


17 2 5 


18 2 5 


19 2 5 


* 20 2 5 


21 2 10 


22 * . - 2 10 


23 2 10 


24 2 10 


Note*: 6K RAM-- 164** 16K RAM--
64K RAIlH-- 327 64K RAM--

256K RAm-- 653 256K RAk--

RECOVERY 
EFFICIENCY 

W); 

70 


80 


90 


100 


70 


80 


90 


100 


70 


80 


90 


100 


70 


80 


90 


100 


70 


80 


90 


100 


70 


80 


90 


100 


.4 f/Mh 
1.6 f/Mh 
6i4 f/h 

HUT 

194.3 


263.9 


411.4 


1032.1 


68.5 


95.0 


155.1 


421.5 


37.8' 


52.7 


87.1 


249.2 


109.1 

135.3 


'178.2 

260.9-


52.1 


68.9 


101.7 


194.0 


27.9 

37.8 

60.0 


145.4 


-MT 	 AVAIL-
ABILITY 

.16 .9992
 

.18 .9993
 

.23 .9994
 

.40 .9995
 

.12 .9982
 

.13 .9986
 

.15 .9990
 

.23 .9994"
 

.11 .9971
 

.12 .9974
 

.13 .9985
 

.18 .9993
 

.18 .9984
 

.20 .9985
 

.23 .9987
 

.29 .9989
 

.14 .9974
 

.15 .9978
 

.17 .9983
 

.24 .9988
 

.12 .9957
 

.13 .9966
 

.14 .9976
 

.21 .9986
 

ORIGINAL PAGE IS
 
OF POOR QUALITY
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The mechanisms fall into three classes. First, there are errors
 

such that immediate correction is done, even if there is'a single
 

hard error in the machine. Error correction in memory is such.
 

Second, there are errors that are detected immediately when they
 

occur. Third, there is a repertoire of checks which is intended
 

to detect as many as possible of those errors not detected
 

immediately. For example, memory Words are initialized to
 

"invalid". As long as a substantial amount of memory is in the
 

"invalid" state, there is a substantial chance of detecting a
 

memory addressing error because of the "invalid" word fetched in
 

response.
 

Table 5-7 shows the pecentage of the total chips in the FMP that
 

are covered by each made of error correction. There are
 

approximately ninety-eight thousand chips (49% of the machine)
 

that have error Correction capabilities applied to them in the
 

baseline system. These are the memory chips. In addition there
 

are about twelve thousand additional chips that are involved in
 
data transfer paths of sufficient parallelism that the addition of
 

.error-correcting check bits in parallel would represent a modest
 

(20% to 40%) increase in parts count. There are one hundred eight­

teen thousand chips in the baseline system that have immediate
 

error detection. This includes all the memory chips plus the
 

transposition network which has the EM error detection code on all
 

data passed through it and parity on microcode ROMs. We could add
 

about nine thousand,-chips to this total by putting a modulo-3­

check digit on all arithmetic-units and adding parity or SECDED to
 

the parallel path from CU to processors. Additional chips would
 

be required by such additional error detection.
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---

Table 5-7. Error Control Methods and Applicability 
Table 5-7. Error Control Methods and Applicability 

UNIT Error Control Methods Available at 

No. Chips 


PE 7k arith 


PDM/ 38k mem. 

PPM 


TN 10k 


EM 31k mem 


Fanout 2K in paral-

lel paths 


CU h mem. 


DC 


OEM 29k mem. 


TOTAL 127k 

possible 


TOTAL 118k 

as per 

baseline 


Ierror 


Error Detection 


mod-3 check digit 

for arith. parity 
on microcode.
 

yes (Note 1). 

SECDED will work. 


EM's SECDED catches 

hard errors(Note 1)
 

SECDED or better if 

needed. Note 1 


Can add parity 


Same as PDM 


SECDED or stronger. 

Note 1. 


127k chips have 

error detectible at 

same clock that 

error occurs
 

118k chips have 

error detectible 

at same clock that 


occurs
 

Reasonable Redundancy 


Error Correction 


Retry on error(?) 


yes (Note 1). SECDED 

will work. 


Under investigation 


SECDED or better if 

needed. Note 1
 

Can add SECDED at 25% 


Same as PDM 


SECDED or stronger 

code. Scrubbing of
 
errors. Note 1.
 

120k chips have error 

correctible even if 

hard failure exists 


108k chips have error 

correctible even if 

hard failure exists 


Error Control Methods Obscure
 

No. Chips 


34k non-arith. 


14k control 


16k control 


1k single 

signal
 

3k 


lk 


2k control 


71k 


80k 


Comments
 

(Note 2)
 

Many errors will be
 
address errors, also
 

Note 2
 

Note 2
 

Random logic Note 2
 

DC not used during
 
user program
 

Note 2
 

Dominated by PE logic,
 
and memory controls.
 
41% of NSS.
 

Dominated by PE logic,
 
and memory controls.
 
45% of NSS.
 

Note 1. This error detection/correction is 
report. 

included in the baseline system as described in the final 

Note 2. Consistency checks, initialization to "invalid", confidence tests, etc. are designed 
to forestall any error from going undetected for too long. Undetected transient failures 
are the primary concern. 
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5.3.2 Improvements over Reference 1
 

IReference 1 lists a large number of reasonableness checks that
 

attempt to monitor the errors in that 40% to 44% of the FMP for
 

which direct error correction and error detection cannot be
 

implemented simply. These include tests for "invalid", the code
 

to which memory is initialized. These include a check for illegal
 

opcodes, or memory addresses out of bounds, including bounds
 

checks on index calculations. Unnormalized numbers should never
 

be fetched for a floating point operation. The list goes on. All
 

of these are helpful. None, obviously, gives absolute protection.
 

Three items should be added to the design of reference 1 in the
 

area of error detection and correction. These follow.
 

5.3.2.1. On-line Processor Spares. An on-line spare processor is
 

extremely effective in eliminating repair time, or postponing
 

actual repair until convenient. Appendix C describes the imple­

mentation in detail. One spare per cabinet is provided.
 

5.3.2.2. Error Detection, Error Correction in PDM, PPM, and CUM.
 

These memories, whose memory chips account for 19% of all the
 

circuit packages in the FMP, are to be provided with error
 

correction. The final report seems to have obscured this
 

requirement by laying stress on an error correction method which
 

quite possibly may not work. Likewise, error detection for
 

uncorrectible errors is to be provided. SECDED is being provided
 

in the baseline system, as of this report.
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5.3.2.3. Error Correction in the Transposition Network. The
 

error correction code of the EM provides error detection against
 

hard failures in the transposition network and error correction
 

against single transient failures. This is included already in
 

the baseline system design, even though reference 1 failed to
 

emphasize it. It is possible to provide a TN design which
 

corrects for single hard errors in the TN, just as SECDED corrects
 

for single hard errors in memory. The best code for this purpose
 

has yet to be determined. One design adds three signals to the
 

already nine-wide TN path. Four Hamming check bits are applied to
 

the eight data bits in each byte. The OR of all twelve bits can
 

serve instead of the strobe, since all parities are odd. The
 

byte-correcting code is in effect concatenated with the SECDED
 

code used in EM, so no overall parity is needed for error
 

detection; the SECDED takes care of that.
 

5.3.3 Duplexed Computation
 

For an almost 100% check on the computation, one can repeat the
 

user program, using a different set of 512 processors for the
 

second run. Using the processor switching of Appendix C, one can
 

run-the problem first with the spare at the right end, and then
 

second with the spare at the left end. If the answers agree, the
 

answer is presumably free of any hardware error. Note that this
 

method is-simpler, from a hardware implementation point of view,
 

than operating the processors in pairs which shadow each other,
 

but, like having pairs of processors do the same computation, it
 

also cuts the throughput in half.
 

5-22 



5.3.4 Hard Error Tolerance
 

The habitual use of confidence and diagnostic checks, together
 

with all the above error detection-, assures that a hard failure
 

cannot remain undetected for long in the FMP. Repair time is
 

essentially zero for failures in that 82% of the chips in the FMP,
 

where either error correction allows the FMP to continue to run in
 

spite of the error, or processor switching switches in a spare
 

processor while the bad processor is removed and replaced at
 

leisure. For the remaining 18% of the components, repair is
 

needed before the FMP can continue to run. Thus, detection of
 

hard failure is more than adequately done and availability is
 

aided by having-82% of the failures associated with "zero" repair
 

time, or postponable repair.
 

5.3.5 Transients
 

60% of the packages, if involved in some transient error, will
 

produce effects that are immediately detected and usually
 

corrected, leaving 40% not covered. Obviously, it is better to
 

include tests that have some chance of detecting error than not to,
 

have such tests. However, it is difficult to guarantee that all
 

transient errors will- be caught before the run ends for 99.9% of
 

the runs. Even if we add mod-3 check digits in arithmetic, and
 

parity in the CU-to-processor fanout tree, 36% of the packages
 

remain in this category. part of the machine where detection
-The 


of transient error is less than perfect consists of the memory
 

control and proecessor logic, primarily not the arithmetic portion
 

of the processor, but instruction decoding, register addressing,
 

shifting, and miscellaneous logic.
 

The main-defense against transient error is, and always has been,
 

proper electrical and logic design. Wiring rules, noise budgetsr.
 

crosstalk calculationsr maximum delay calculations, and so on, are
 

all part of the design.
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CHAPTER 6
 

TRADEOFFS DELINEATED
 

6.1 INTRODUCTION
 

The design of the FMP will result from tradeoffs among a number of
 

factors
 

* 	 Performance 

* 	 Reliability 

* 	 Availability 

* 	 Programmability 

* 	 Spectrum of Applications
 

Cost
 

* 	 Schedule 

* 	 Risk 

The first four factors are explicitly mentioned in the statement
 

of work for the extension to this study contract. The fifth, the
 

spectrum of applications for which the FMP is to be designed, is
 

mentioned here as it has a direct bearing on the results of some
 

of the tradeoffs. For example, a scalar processor would probably
 

not be included if the applications were strictly limited to
 

aerodynamic flow and meterological problems. Yet the scalar
 

processor will be necessary for some other applications and will
 

interfere only slightly with the other desiderata.
 

Programmability covers two distinct aspects. First, is the system
 

one with which the compiler writer can successfully contend?
 

Second, is the system presented to the user, including its
 

FORTRAN, an easy one?
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Following are short discussions of specific issues where the
 

result is a trade between factors. In many cases, simulation
 

using test cases taken from the intended spectrum of applications
 

is the appropriate tool to resolve the tradeoffs.
 

6.2 LANGUAGE DEFINITION
 

A part of the language definition in the extended FORTRAN to be
 

used for the FMP in an exercise of trading off throughput vs.
 

programmability. Proper language design finds some point 'where
 

almost the maximum throughput of the machine can be applied to the
 

desired spectrum of applications with little difficulity from
 

language restrictions or awkard constructs. That is, the language
 

restrictions necessary to ensure throughput do not interfere much
 

with one's ability to write programs for the selected set of
 

applications.
 

However, we note that programmability for all applications will
 

interfere greatly with throughput, and that absolute maximum
 

throughput for all applications is likely to require a depth of
 

analysis beyond that feasible in the compiler.
 

6.3 MATCHING THE COMPILER AND THE INSTRUCTION SET
 

Hardware capabilities that are unused by the compiler are a waste
 

of money and represent a flaw in the design. Capabilities in the
 

language, that would be commonly and frequently used, for which
 

the hardware provides no convenient way for the compiler to
 

implement, result in awkward and inefficient code, and are also a
 

flaw. However, the hardware, once specified, is not likely to
 

6-2 



have its instruction set expanded much during the life of the
 

machine, while the compiler presumably will continue to evolve
 

during that same period. Therefore, it is the capabilities of
 

that eventual hoped-for compiler, not the simplicity of the first
 
one, against which the instruction set is to be judged. An
 

example is the loading of PPM conditional on the "enable" bit.
 

Our first compiler has no use for such a conditional capability.
 

However, the capability costs almost nothing, since loading memory
 

must be conditional on "enable" anyway, while the capability
 

allows a type of concurrency between processors which we expect to
 

be useful in the long run.
 

6.4 WORD FORMAT
 

In reference 1, a word format of 1 bit sign, 8 bits exponent, and
 

39 bits fraction part is suggested as ideal for the FMP. The BSP
 

uses 1 bit sign, 11 bits exponent, and 36 bits fraction. The
 

format with 7 bits exponent was determined as adequate for the
 

Navier-Stokes application. The BSP format was arrived at after
 

judging the precision and range requirments of a wide variety of
 

applications. Thus, the BSP word format is more likely to be
 

-suitable for a wider variety of applications, some-of which will
 

require the additional range on the exponent, while the re­

quirement of 10 decimal digits precision for the Navier-Stokes
 

equations will be satisfied with either format.
 

Therefore, for the purpose of being adaptable to a wider range of
 

applications, and not incidentally, for the additional purpose of
 

being format-compatible with an existing commercial product, it is
 

* proposed to standarize on a word format containing 1 bit sign, 11
 

bits exponent, and 36 bits fraction part.
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6.5 INSTRUCTION FORMATS
 

There is a well-known tradeoff between code file size and ease of
 

decoding the individual instruction. For example, a full-length
 

address field in the instruction allows the use of absolute
 

addresses where appropriate, whereas if the instruction has a
 

short address field, it must always be with respect to some base
 

address held in the hardware.
 

In the present instance, a variation which we wish to test by
 

simulation, during phase II, is the use of 32-bit and 16-bit
 

instructions. The 16-bit instruction has room for only two
 

register addresses; the 24-bit instruction contains three.
 

Therefore the use of 16-bit formats will speed up instruction
 

fetching while interfering with the optimization of the use of
 

registers in the processor. According to one example tested, the
 

instruction fetching is already faster than arithmetic execution,
 

and 24-bit instructions will be preferred.
 

6.6 SECDED
 

Rigid requirements were set up for main memory in the FMP,
 

consisting of PDM, PDP, and CUM. Less than one bit in 1016 is to
 

be in error uncorrected, and less than one bit in 1018 is to be
 

undetected. To satisfy these requirements, a single-error­

correction, double-error-detection code is proposed. However, at
 

this writing the actual error rates and failure mechanisms of the
 

memory chips to be used are unknown. When these error rates and
 

failure mechanisms become known, the SECDED should be reevaluated
 

to make sure that it is neither too weak to cope with the error
 

rates actually occurring, nor an overkill causing unnecessary
 

cost. Since SECDED may permit the scheduling of repair while the
 

system continues to run in degraded mode, it produces savings in
 

maintenance cost while improving availability. The memory chips
 

would have to be unbelievably reliable before SECDED did not pay
 

for itself.
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6.7 TRUSTWORTHINESS VS. THROUGHPUT
 

In considering error correction and detection, we credit the FMP,
 

not with the total number of right answers it produces, but with
 

the amount of answers that a rational user can use with
 

confidence. One approach to trading off error correction and
 

detection against raw throughput is to maximize this effective
 

throughput. With no error correction at all, it is determined
 

that most answers are probably wrong, and the effective throughput
 

is practically zero, even though reams of so-called answers might
 

be coming off the printer. With triple redundancy and voting on
 

every element in the system, the throughput would be a fraction of
 

the raw throughput with no error correction, but the answers would
 

be very trustworthy. Somewhere between these extremes is an
 

optimum. As explained in the last part of section five, the
 

existing baseline system design has sufficient error detection
 

that there is little chance for a hard error to go undetected for
 

long. A more severe problem for the FMP is the defense against
 

transient errors.
 

In the baseline system design described in reference 1, 54% of the
 

packages in the system have single error correction, so that any
 

single error produced in these packages is corrected during the
 

run, which, continues to produce correct answers. 11% of the
 

packages have immediate detection of any errors in them, so the
 

run terminates immediately if errors occur in them. The other 35%
 

of the packages are covered by a variety of error checks, which
 

are intended to eventually detect any errors. However, the
 

detection is indirect and not immediate, and some transient errors
 

will remain undetected.
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If we apply additional error checks, throughput is reduced, but
 

trustworthiness of the results is improved. Figure 6-1 is an
 

oversimplified graphical representation of the effect. At some
 

reasonable amount of error control circuitry, the effective
 

throughput is maximized., Using f to represent the fraction of the
 

total hardware devoted to error control (assuming total hardware
 

remains constant), we can plot To, the "raw" throughput, equal to
 

the number of inches in the pile of printoutper.hour, and T, the
 

effective throughput which is the amount of useful answers
 

produced. To decreases with f. In fact, To decreases faster than
 

linearly with f, since (1-f) of the hardware is devoted to producz
 

ing useful output, and the fraction f that checks for errors can
 

only interfere. We can write:
 

T=(T 0 x (l-f))/G(f)
 

ThL functio-n G(f) can only increase with f, for any rational
 

design.
 

Finding the form of the funtion G(f) is probably not feasible.
 

What can be done, however, is to estimate the effect on the
 

detected and undetected error rates for any particular proposed
 

error detection/correction technique, together with its effect on
 

parts count or raw throughput. Each proposed error control
 

mechanism costs a certain percentage of the equipment, has a
 

certain throughput reduction associated with it, and catches some
 

percentage of otherwise uncaught errors.
 

As an example, consider the addition of a modulo .3check digit to
 

arithmetic computation. Generating the check digit takes almost
 

as much additional logic as is already in the adders -being
 

checked. Thus, adding -7% to the chip count of the machine catches
 

almost all errors occurring in what is now 6bout 7% of the
 

machine. In addition, the 7% new packages create errors of their
 

own, which will usually be detected as arithmetic errors, so they
 

do not add to the undetected error rate, but do create false
 

alarms.
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Is a 7% false alarm rate added to the rate of detected error, a 7%
 

increase in parts count and power, plus the throughput reduction
 

due to the extra clocks used for checking, a fair price to pay for
 

the X% decrease in the rate of undetected error? When the actual
 

percentages are determined, perhaps the question can be answered.
 

6.8 Parity within Processors
 

Data transfers within the processor have been designed on the
 

expectation that the reliability and accuracy of digital oper­

ations in logic circuits can be made as perfect as desired at the
 

design stage, using worst-case design. Whatever the error require­

ments, careful design can ensure that the performance exceeds
 

them.
 

Parity checks on inter-register transfers could be implemented,
 

including transfer to the memory address registers. Such parity
 

checks will add about five chips to the processor logic for each
 

parity check required. Four parity checkers, or twenty chips, may
 

be needed. In addition, one clock, for the parity checking, will
 

be added to many operations, including most of the operations that
 

are now one clock long. Although 'no careful study of the situ­

ation has yet been done, it is apparent that parity checking
 

internal to the processor will add 20% to the component count of
 

the PE, will add errors of its own, and will degrade raw through­

put significantly, while failing to check any of the processor
 

logic operations, only the transfers.
 

6.9 INSTRUCTION FETCHING MECHANISM
 

In section two, the equipment description, a particular scheme for
 

overlapping the execution of noninterfering instructions, and for
 

doing some anticipatory instruction fetching was described. This
 

scheme has not been validated in simulation to see how well it
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works in real program streams as emitted by the compiler.
 

Simulation studies to determine how simple an instruction fetching
 

and overlap mechanism we can have and still maintain thioughput
 

would be desirable. Fortunately, most of the processor design
 

details are independent of these decisions.
 

6.10 LOADEM AND STOREM BLOCK FETCHING
 

The baseline system as described in Chapter Two of this report
 

omits from the LOADEM and STOREM instructions the ability to
 

stream N words out of each EM module in parallel for a total of
 

512N words per instruction. Initial work on handcompiling from
 

FORTRAN source for the NSS indicates that almost all fetching from
 

EM is with N=l. (Example: SUBROUTINE TURBDA, See Ch. 3) If this
 

turns out to be true in general, the block fetching capability is
 

not worth the complexities it costs. Simulation, using test cases
 

taken from real code, with multiple word fetches allowed and
 

disallowed, can be used to evaluate the effect on throughput. If
 

N greater than 1 is necessary, the following changes to the
 

baseline system of Chapter Two are seen:
 

" Rearrangement of data on DBM-EM transfers is required, as
 

described in the final report, so that, for N >1, data in
 

EM-along the index in which streaming is taking place are
 

all found in the same EM module. Rearrangement is neither
 

needed or desirable when N=l.
 

* 	 The requirement for rearrangement of data disallows most 

equivalencing on EM arrays, a restriction on normal FORTRAN 

that need not be imposed if N=l. 

* 	 EM module design becomes more complicated. To keep up with 

the TN streaming rate, the EM module is divided into two
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submodules, as a side effect making the SECDED code less
 

effective. A need to increment the EM address per word
 

while streaming also adds complexity, especially since the
 

increment is a large integer, not unity.
 

* There is additional compiler complexity, 

Enforcing the restriction that N must be 1 thus enhances relia­

bility and availability, while simplifying compiler and operating
 

system, and having an undetermined effect on throughput.
 

6.11 OVERLAPPABLE EM ACCESS
 

A fourth instruction execution station could be added to the
 

processor which would handle the EM access independently of the
 

integer and floating point units at the expense of requiring two
 

units contending for PDM, namely this EM unit, and the previously
 

identified memory control. Having issued an EM fetch to this
 

unit, no fetches from PDM would be allowed.
 

The amount of' increased overlap obtainable is dependent on the
 

compiler's being able to insert the EM fetches ahead of the place
 

wheie the data is required. In some of the loops in the benchmark
 

programs, this requires the insertion of the EM accesses for the
 

next iteration inside the current interation. The question to be
 

answered by a tradeoff study is whether the increased compiler
 

complexity required to exploit such an addition to the design
 

produces enough increased throughput to be worth the difference.
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6.12 SINGLE PROCESSOR MEMORY
 

Processor memory is separated into two separate memories for the
 

sake of increased throughput. Data fetching and instruction
 

fetching go on in parallel. Furthermore, no conflict resolution
 

between fetching program and data need be implemented. The tradi­

tional way of getting interlace between two memory modules in a
 

single memory system is to make module number the least signifi­

cant bit of the address. This particular method would not work in
 

the processor, since data is fairly random, and program steps,
 

although sequential, are interspersed with data fetches and
 

stores. Thus, the two-memory design of the baseline system
 

achieves better interlacing than the traditional scheme. However,
 

it has, the drawback that program and data memory is not inter­

changeable; a program just over 8192 words cannot overflow into
 

data memory, and similarly for data.
 

An alternate design for the processor memory is as follows. Two
 

modules of 16384 words each are used to form a single homogeneous
 

address space. Module number is the most significant bit. The
 

compiler assigns all program addresses to the upper module and all
 

data addresses to the lower module, except that, if either module
 

is full, the other module can be used.
 

The alternate design achieves just as good interlace of memory
 

accesses as does the baseline system. When memory sizes are
 

exceeded by either data or program but not by both together, the
 

penalty is a slight slowdown, not an inability to run. Memory
 

controls are slightly more complex, since program and data
 

accesses will interfere whenever either overflows its normal half
 

of the memory.
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6.13 PROCESSOR PROGRAM MEMORY SIZE, CONTROL UNIT MEMORY SIZE
 

The processor program memory (8k words) was chosen to adequately
 

hold the aerodynamic flow model programs. Overlay of code from
 

GUM is easy and quick, and allows PPM to be smaller than the
 

entire code file. However, PPM should be large enough so that
 

overlay is not so frequent as to interfere with throughput.
 

An overlay capability can be provided so that progr-am can overlay
 

into CUM from DMB, via a buffer area in EM. Since such overlay is
 

not needed for the flow model, it was not proposed as part of the
 

initial capabilities of the operating system.
 

For a different spectrum of applications, larger code files and
 

different sequences of execution may be encountered. Hence, the
 

code storage capabilities of the FMP may have to be reevaluated i-f
 

there is a change in the spectrum of applications.
 

6.A4 EXTENDED MEMORY SPEED, TRANSPOSITION NETWORK SPEED
 

The- baseline system extended memory is constructed--of 64k-bit RAM
 

chips, operated at the fastest reasonable cycle time available at
 

the time the FMP is constructed. It was projected for the
 

baseline system that the cycle time would. be on the order of 200
 

to- 250 ns for the chip, and that therefore a cycle time for the EM
 

module of 280 ns was appropriate.
 

If the 64k-bit chip is in fact significantly faster than that, EM
 

would be designed faster to match the chips. But, to go.faster
 

than allowed by the 64k- bit chips will require the use of 16k-bit
 

RAM chips, a four-fold increase in memory chip count from 28,655
 

chips to 114,620, a 43% increase in the chip count in the FMP and
 

a distinctly adverse effect on availability and cost.
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The point to be determined by the tradeoff is whether to increase
 

in throughput from using 16k-bit chips is worth the extra cost,
 

additional failures, and extra power of using 16k-bit chips in the
 

EM modules.
 

The results of this tradeoff will be a function of how much
 

computation is accomplished per fetch from extended memory, which
 

is very dependent on the specified spectrum of applications. It
 

was clear that for the aerodynamic flow problems,, and almost
 

certainly for the meterological problems also, that the 64k-bit
 

chips will have more speed than needed. It also appears
 

(according to the Electronic Times of November 7), that actual
 

64k-bit chips will be faster than those postulated for the
 

baseline system. Simulation, using inputs that represent the
 

entire spread of intended applications, is the appropriate tool
 

for investigating this tradeoff.
 

The TN speed and design will have to be adjusted to match the EM
 

speed. Thus, the revision in TN design will also have to be
 

factored into the tradeoff. An EM made faster by using 16k-bit
 

chips is partially self-defeating, since the wire lengths from EM
 

to processor, now about 40 feet, will get significantly longer
 

when the EM quadruples in physical size.
 

6.15 CONTROL UNIT SPEED
 

The speed of the control unit, including the implementation of
 

specific instructions such as DIV 521, DIV 512, and MOD 521 that
 

are needed for specific CU actions (in this case, calculating EM
 

address and TN settings), is best determined by simulation using
 

test cases that cover the entire spectrum of applications. A very
 

fast MOD 521 instruction has been described by C. R.Vora in U.S.
 

patent 3,980,874. Since there is only one control unit in the
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entire array, the optimum CU design is clearly that one that
 

almost never interferes with throughput. On the other hand, a too
 

fast and hence unnecessairly complex CU will have adverse effects
 

on reliability and availability, and possibly will also make the
 

compiler design more complex if some of the complexities require
 

cooperation from the compiler to be effective. This optimum CU
 

design is a function of the spectrum of applications.
 

6.16 SCALAR PROCESSOR
 

6.16.1 Dependency on Spectrum of Applications
 

The FMP has been described as an array of 512 processors and a
 

control unit. The control unit concerns itself with synchroni­

zation, some address calculation, and loop control. All floating
 

point arithmetic is done .in the array. Aerodynamic flow models
 

are well calculated on this machine. However, there are other
 

applications, which do not have sufficient parallelism almost
 

everywhere in the algorithm to be efficiently computed on this
 

machine. If it is desired to broaden the spectrum of applications
 

of the FMP, it is desirable, for some applications, to furnish a
 

scalar processor to take over those portions of the floating-point
 

calculation where most of the processors are idle'waiting for a
 

few to complete calculations. The term "scalar Processor",. as
 

used here, refers.strictly to floating point scalar computations.
 

Loop control and other program execution control where a single
 

decision controls the processing of the entire array has been
 

accomplished, on other architectures, by the "scalar processor"
 

portion of the equipment. These functions are included as an
 

essential part of the control unit, and in so far as-they are
 

scalar, the control un-it is a scalar processor, whether or not
 

specific equipment for handling floating point scalars is
 

supplied.
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An evaluation of which applications are going to require the
 

addition of a scalar processor for efficient mapping onto the FMP
 

has not been made. It is suspected that the meteorology appli­

cations are like the aero flow models and will not require a
 

scalar processor. Whether a scalar processor is desirable, and
 

which of the several options mentioned below for including a
 

scalar processor in the design, is a function of the intended set
 

of applications, and can therefore be defined properly only when
 

NASA defines the amount and-kind of extensibility of scope that is
 

desired for the FMP. The baseline system as described includes
 

the third of the three design options below.
 

6.16.2 Simple Scalar Processor The simplest recipe for providing
 

a scalar processor capability in the FMP is simply to provide a
 

faster, more powerful processor for processor number 0. The first
 

processor is the one that will be assigned to vectors of length
 

one; and which will be executing processor code when the compiler
 

can find no parallelism. Thus, without doing anything special to
 

the compiler, we gain some scalar capability by simply making the
 

first processor a faster one. During parallel swatches of code,
 

this processor cooperates with the others, and'the program does
 

not know that it is different. Those swatches of code where 512
 

processors are idle take much less tfme because the first
 

processor has been made faster. When short swatches of scalar and
 

vector code alternate, overlapping of scalar and vector operations
 

occurs.
 

6.16.3 Added Processor The simple system does not give the
 

scalar processor any particular speedup for accessing EM. it does
 

not give the scalar processor any faster way of handling those
 

actions that require cooperation with the control unit. At the
 

expense of complicating the compiler, we can add scalar processor
 

hardware that is separately programmed, and which can subsume some
 

of the control unit functions for scalar processing.,
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Suppose we provide a separate, and different processor, which has
 

its own access to extended memory, and which is designed to
 

execute a more nearly independent code stream than that of the 512
 

processors in the array. Figure 6-2 shows a block diagram of the
 

FMP with such a scalat processor represented. Langauge extensions
 

and programming methods for using such a capability will have to
 

be defined.
 

Extended memory is "core" for the FMP. The amount of accessing
 
into extended memory by the scalar processor may be such that
 

extended memory speed will be a bottleneck for those applications
 

that make extensive use of the scalar processor capability.
 

Hence, for some range of applications, a faster extended memory
 

(and hence one with fewer bits per chip), must be provided. Using
 

16k-bit chips instead of 64k-bit chips, for more "IMspeed,
 

increases from 29,176 memory chips to 116,704 memory chips, an
 
increase of 44% of the package count of the entire NSS.
 

The added processor has LOADEM and STOREM instructions in its
 

instruction stream which do not require the cooperation of the CU,
 

merely contend with it for access to the extended memory. The
 

synchronization between the added processor and the CU is thereby
 

reduced, while requiring the compiler to determine when synchroni­
zation is required for correct execution of the program. Scalar
 

processing and vector processor on the same data must be done in
 
the correct order.
 

6.16.4 Enhanced Control Unit It has been suggested that scalar
 
processor capability can be achieved by adding floating point
 

instructions to the control unit. This also may imply that the
 

control unit be speeded up from its no-scalar-processor design so
 

it has the free time to perform as a scalar processor. The
 

discussions about accessing EM apply to this option as well as
 

they apply to the previous one.
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6.16.5 Recommendation Simulation of various programs across the
 

entire spectrum of applications is recommended a s means of
 

determining which of the several recipes for providing a scalar
 

processor is to be adopted, if any. The budget for compiler
 

writing is also to be consulted, since the sekarate processor
 

requires additional decisions on the compiler's part, as well as
 

additional language extensions perhaps.
 

6.17 MARGINAL CHECKING
 

A strategy for weeding out incipient failures in electronic
 

equipment is to vary some parameter up and down from its nominal
 

value, measure the margins, and determine when those margins are
 

deteriorating, and what the faulure mode is at which they fail.
 

The parameter being varied can be supply voltage, clock frequency,
 

temperature, or anything else that appears to affect operation.
 

It has been determined that marginal checking is useless for
 

worst-case designed digi-talicitcuits. However, as noted in the
 

final report, LSI cannot be worst-case designed in the conven­

tional sense, and marginal checking may be valuable for weeding
 

out those low-margin.LSI packages that have a higher than normal
 

transient error rate.
 

6.18 COMPONENT TECHNOLOGY
 

The speed of any given system architecture is ultimately limited
 

by the performance of the circuit from which it is assembled. The
 

final component choice for the FMP will weigh carefully the trade
 

off of speed (and power) consideration against the risk and cost.
 

The inital procurement cost of a more advanced technology pro­

viding more desirable performance is easily measured. It is
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usually shown that the initial cost of more advanced circuit are
 

easily justified in overall system performance improvements.
 

(Thus reducing the cost per operation.) However, the risk in
 

selecting a more advanced and higher performance circuit
 

invariably may be considerable, with potential for affecting the
 

production of system being built in a number of ways:
 

* 	 The delivery may be slow due to low yields. 

* 	Failure rates may be higher than anticipated. 

* 	The performance characteristics of devices made in pro­

duction may be degraded from the original developmental
 

samples and design goals.
 
* 	 Low usage may discourage development of second sources, and 

result in continued elevated prices. 
* 	Unforeseen application problems discovered only during
 

system checkout could require redesign or retrofit.
 

It would be very desirable from a system performance point of view
 

to be able to use the fastest circuits possible. However, the
 

possible risks that accompany this choice make it imperative that
 

a very careful tradeoff analysis be conducted given the choice of
 

a mature, slow (but adequate) speed technology and an advanced
 

faster speed technology.
 

6.19 EXPANSABILITY
 

By expansibility we mean generalizability and expandability. The
 

NASF design has many features allowing an upward compatible second
 

copy, as well as features allowing the upgrading of the NASF
 

itself. This section lists some of the areas in which
 

expansibility is found.
 

6.19.1 Address Sizes The address sizes are uniformly larger than
 

the memories they address, allowing the memories to be replaced by
 

larger ones.
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Data Base Memory holds 134 million words (227 and is
 

addressed by the control unit whose register size is 32 bits.
 

Extended memory holds 34 million words (just over 225) and is
 

addressed by processor (32-bit integers) and control unit (32
 

bits).
 

Control unit memory holds 32k words (215) and is addressed b~y
 

the control unit whose integers are 32 bits long. Care jtDi3]
 

be exercised not to insert 16-bit address register that
 

cannot be expanded.
 

Processor data memory holds 16k words (214) and has a 16-bit
 

address. A four-times expansion of PDM is thus permitted.
 

Processor program memory holds 8k words (213) and has a
 

16-bit address.
 

Upgrades by replacing the memories with larger ones are therefore
 

very feasible.
 

6.19.2 Transfer Rates There are a number of options for
 

increasing the transfer rates between portions of the FMP. Many
 

of these are discussed in other paragraphs in this section, and
 

clearly, new transfer rates could be chosen for any new design,
 

depending on the results of tradeoff studies. As a retrofit, the
 

easiest area to increase transfer rates is in the DBM-EM
 

transfers. This is fortunate , since if some virtual memory
 

scheme is implemented,this is the area of the baseline design that
 

may have to be improved. Each EM module has a one-word buffer, so
 

no EM changes at all are required for increased transfer rates,
 

just increased parallelism is the accessing of these buffers. The
 

DBM would have to be reconfigured for increased parallelism,
 

assuming that current projections about CCD shift rates are
 

correct.
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6.19.3 Memory Size The address space allows increased memory
 

size. The need for increased memory size could arise from a
 

number of causes. CUM is required to hold enough program (both.CU.
 

and array processor program) to keep the array busy for a,
 

reasonable amount of the time between program overlays from DBM.
 

Thus, complex programs may require increased CUM. size,
 

PDM size is the result of the reguirement for temporary variables,
 

and sometimes, for buffering data fetched from EM. The required
 

PDM size is therefore applications-dependent. We believe that the
 

aerodynamic flow problem requires a larger-than-typical PDM, and
 

that larger PDM's are unlikely. However, the expansion opportu­

nity is there.
 

PPM, on the other hand, must hold enough program to keep the
 

processors busy for a reasonable time between overlays from CUM.
 

For problems, like the aerodynamic model, where there is an inner
 

loop, this implies that at least the inner loop be contained
 

within the PPM. Overlay from CUM is fast, and this will allow
 

reasonable efficiency even when this is not true.
 

DBM, the window in the computational envelope, must be large
 

enough to hold results from the last job, space for the current
 

job, and the objects being assembled for the next job. If job
 

sizes are to grow, expandability of the DBM is a requirement.
 

6.19.4 Upgrades via Software Upgrading capability, by adding
 

features to the software, can be accomplished without any hardware
 

changes. The initial software is configured around the
 

areodynamic flow model requirements. A number of features, not
 

required by the aerodynamic flow models, can be added to handle a
 

broader range of requirements, including:
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* 	Windowing of data for executing jobs whose files exceed 

the size of EM. 
* 	Language extensions, including such things as subscripted 

subscripts, linear recurrences on the parallel subscript, 

and so on. 
* 	Vectorizer, to analyze nonparallel FORTRAN and produce FMP 

FORTRAN for operation on the parallel machine. 
* 	Multiprogramming capability on the FMP. Proper implemen­

tation of multiprogramming may require hardware additions 

as well. 
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APPENDIX A
 

Preliminary Compiler Algorithms for Setting the Transposition
 

Network
 

Definition of the FORTRAN extensions and restrictions for the NASF
 

requires rigorous definition of the algorithms for setting the
 

SKIP and OFFSET of the transposition network and matching them
 

closely to the FORTRAN constructs.
 

The 	issues to be addressed in this memo are:
 

1. 	Matching of FORTRAN DOPARALLEL to EM accessing.
 

2. 	Requirements for multiple accessing within a DOPARALLEL
 

construct.
 

3. 	Optimization of accessing for single access types.
 

As a preliminary step in addressing these issues a more complete
 

definition of the DOPARALLEL statement needs to be formulated.
 

The DOPARALLEL statement cannot be nested for this results in
 

possible programmer error. Rather the DOPARALLEL statement is
 

defined to have multiple increment sets.
 

i.e. DOPARALLEL J=Jl,J2,J3; K=Kl,K2,K3 ...
 

where 	 Jl = initial value most rapidly varying index 

J2 = final value most rapidly varying index 

J3 = skip distance most rapidly varying index 

K1 = initial value next most rapidly varying index 

K2 = final value next most rapidly varying index 

K3 = skip distance next most rapidly varying index 

(...) ellipses indicates further increment sets 

ENDDO;ENDDO
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1. Matching Fortran DOPARALLEL to Extended Memory Accessing
 

Since the entire set of multidimensional DOPARALLEL statements is
 

difficult to discuss, the specific example of three dimensional
 

accessing with a 2 dimensional DOPARALLEL and a single dimensional
 

inner loop will be described in detail. For this three
 

dimensional case there are 6 possible access patterns for any
 

given array corresponding to the possible permutation of the
 

indices,
 

A(I,J,K) Case I 

A(K,I,J) Case II 

A(J,K,I) Case III 

A(I,K,J) Case IV 

A(J,I,K) Case V 

A(K,J,I) Case VI 

It is necessary for the compiler to determine the SKIP distance
 

and the OFFSET of the transposition network for any of these
 

accesses for the given DOPARALLEL construct. i.e.,
 

EMARRAY A(IFIRST, ISECOND, ITHIRD)
 

DOPARALLEL J=l, JLIM; K=, KLIM
 

DO 1 I=l ILIM
 

S(i) = Access Case (i)
 

1 Continue
 

ENDDO; ENDDO
 

The equations for setting the Transposition Network (SKIP and
 

OFFSET) are given in Tables 1A through IC. Table ID provides a
 

table for determining index parameters. It is assumed, of course,
 

that the array has been laid out in memory in the FORTRAN sense.
 

To clarify these equations a complete example is worked out in
 

detail in Figures 1-7. The chosen array; A(5,3,7) has extents
 

less than the number of memory modules (11) and processing
 

elements (10) in a manner similar to that of the NASF problems.
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Equations for
 

Transition Network OFFSET Calculations
 

Given Quantities
 

N = Number of processors
 

M = Number of memory modules
 

IAO = Base address of array having index parametersr, J0, Ko
 

IFIRST = extent of first parameter in array
 

ISECOND = extent of second parameter in array
 

ITHIRD = extent of third parameter in array
 

Determined Quantities from Figure 1 

ICLIM = Total number of cycles 

IDEL Skip distance associated with I parameter 

JDEL = Skip distance associated with J parameter 

KDEL = Skip distance associated with K parameter 

ILIM = Array extent assciated with I parameter 

JLIM = Array extent associated with J parameter 

KLIM = Array extent associated with K parameter 

Defined 	quantities
 

IC = cycle number 

NN = subiteration number 

K1 = (N*(IC-I))/(JLIM) + K0 = least rapidly varying index* 

Jl = (N*(IC-I) - (K-KO) * JLIM + J0 = most rapidly varying index* 

IA00 = IAO + (J-J0)*JDEL + (K-K0)*KDEL 

Transposition Setting SKIP distance = JDEL 

*Jl, K1 	 values for processing element 0
 

1st ,subiteration
 

Table 1A
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=
-OFFSET Calculation for Transposition Network (Subiteration 1)
 

for given I value
 

IADD(IC,l) = IA00 + (I-T0) * IDEL (address of first element
 

to be fetched)
 

OFFSET (IC,l) = (IADD(IC,l)) MOD(M)
 

-OFFSET Calculation for Transposition Network (all other subiterations*)
 

for given I value
 

IADD(IC,NN) = IA0 + (I-I0)*IDEL + (KI-K0 + NN-I) *KDEL 

(address of first element to be 

fetched on this iteration) 

IP (IC,NN) = (NN-I)*JLIM -Jl+J0 

(processor that needs to obtain 

this first element on this iteration) 

OFFSET (IC,NN) = (IADD(IC,NN) - IP(IC,NN)*JDEL) MOD(M) 

*Subiterations 2 4 NN LNX 

where NX = 2N+1+(JLIM-Jl) +1 i-
N 

If (NN.EQ.NX). AND (K(NN).EQ.KLIM) further subiterations do not need to be
 

performed. K(NN) is the K index value of the 1st element of the NNth
 

subiteration.
 

Table lB
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Parameter Assignments for Arbitrary Array Extents 
and Number of Processors 

CASE ILIM JLIM - KLIM IDEL JDEL KDEL ICLIM 

1 FIRST 
r,J,K) 

2 ISECOND 
[K,I,J) 

3 ITHIRD 
(J,K,I) 

4' IFIRST 
I,K,J.) 

5 ISECOND 
'Jr,I,K) 

ISECOND 

ITHIRD 

IFIRST 

ITHIRD 

IFIRST 

ITHIRD 

+ 

ISECOND 

ISECOND 

ITHIRD 

1 

IFIRST 

IFIRST*ISECOND 

1 

IFIRST 

IFIRST 

'IFIRST*ISECOND 

1 

IFIRST*ISECOND 

1 

IFIRST*ISECOND 

1 

IFIRST 

ISECOND 

IFIRST*ISECOND 

(ISECOND*ITHIRD 
+N-l)/N 

(IFIRST*ITHIRD) 
+N-1)/N 

(IFIRST*ISECOND 
+N-IN 

(ISECOND*ITHIRD 
+N-I)/N 

(IFIRST*ITHIRD)
+N-1)/N 

6 [THIRD 
K,J,I)+N-IN 

ISECOND ITHIRD IFIRST*ISECOND IFIRST 1 (IFIRST*ISECOND 

EM ARRAY A(IFIRST, ISECOND,ITHIRD) 
Number of Processors = N 

Table iA 

oo 
I=J 



Index Value Determination
 

TEMP = IADD(IC,NN) - IA0) - (I-1)*JDEL 

J K IVAL JVAL KVAL
Case TEMP 


1 NO J K I J K
 

2 YES TEMP/JDEL+I (TEMP-(J-l)*JDEL) K I J
 

/KDEL+I
 

J K I
3 NO J K 


4 YES TEMP/JDEL+I (TEMP-(J-l)*JDEL) I K J
 

/KDEL+I
 

5 YES TEMP- (K-1)*KDEL) TEMP/KDEL+1 J I K
 

/JDEL+l
 

6 YES TEMP/JDEL+I (TEMP-(J-i)*JDEL) K I
 

/KDEL+l
 

Table l
 

ORIGINAL PAGE IS
 

OF pOOR QUALXIX
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Figure 1 details the memory layout, assuming an arbitrary starting
 

point for the first element. The remaining Figures show the six
 

possible cases.
 

Utilizing the equations of Table 1 one can determine all the
 

parameters and the-SKIP and OFFSET for any case. For example
 

taking CASE II (since it is more complex with access A(K,I,J)) the
 

parameters are:
 

Given Quantities (Table IA)
 

N=l0
 

M=l 1
 

IA=19
 

IFIRST=5
 

ISECOND=3
 

ITHIRD=7
 

Determined quantitites (Table IC)
 

ICLIM = (IFIRST*ITHIRD N-I)/N (5*7+10-1)/10 =4
 

IDEL=5
 

JDEL=15
 

KDEL=l
 

ILIM=5
 

JLIM=7
 

KLIM=3
 

.0 JO, 1(=1 

Assume that one wishes to determine the SKIP and OFFSET and
 

subsequently the IVAL, JVAL & KVAL of the indices for the second
 

cycle, second subiteration, inner loop index number 3 - i.e.
 

transposition setting #12
 

Defined Quantities (Table 1A)
 

IC=2 
= 2NN

I=3 
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Memory Layout for Array A(5,3,7)
 

11 337 347 537
 

10 217 317 417 517 127 227 327 427 527 137 237
 

9 126 226 326 426 526 136 236 336 436 536 117
 

8 525 135 235 335 435 535. 116 216 316 416 516
 

Address 7 434 534 115 215 315 415 515 125 225 325 425
 

within 6 314 414 514 124 224 324 424 524 134 234 334
 

'Memory 5 223 323 423 523 133 233 333 433 533 144 214
 

4 132 232 332 432 532 113 213 313 413 513 123
 

3 531 112 212 312 412 512 122 222 322 422 522
 

2 411 511 121 221 321 421 521 131 231 331 431
 

1 x x x x x x x x 111 211' 311
 

0 x x x x x x x x x x x
 

0 1 2 3 4 5 6 7 8 9 10
 

Memory Modules
 

No. Memory Modules = 11
 

No. Processing Elements = 10
 

Absolute address AO 19
 

Memory Module No. M# = 8 =.(19) MOD 11
 

Address in MOdule A# = 1 = (19) DIV 11
 

Address of any element AE# = Address A(L1, L2, L3)
 

*A0 + (LI-I) + 5x(L2-1) + 5 x 3(L3-1) 

Figure 1 
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Case I
 

EMARRAY A(5,37)
 

DOPARALLEL J=1,3; K=1,7
 

DO 1 I = 1,5
 

Sl = A(IJ,K)
 

1 CONTINUE
 

ENDDO
 

ENDDO
 

SKIP = JDEL = 5 

Setting Sub PE NUMBER
 

Number Cycle Iteration OFFSET 0 1 2 3 4 5 6 7 8 9 ADD
 

1 1 1 8 111 121 131 112 122 132 113 123 133 114 19 

2 1 1 9 2111 221 231 212 222 232 213 223 233 214 20 

3 1 1 10 311 321 331 312 322 332 313 323 333 314 21 

4 1 1 0 411 421 431 412 422 432 413 423 433 414 22 

5 1 1 1 511521 531 512 522 532 513 523 533 514 23 

6 2 1 3 124 134 115 125 135 116 126 136 117 127 69 
7 2 1 4 224 234 215 225 235 216 226 *236 217 227 70 

8 2 1 5 324 334 315 325 335 316 326 336 317 327' 71 

9 2 1 6 424 434 415 425 435 416 4.26 436 417 427 72 

10 2 1 7 524 534 515 525 535 516 526 536 517 527 73 

11 3 1 9 137 119 

12 3 1 10 237 120 

13 3 1 0 337 121 

14 3 1 1 437 122 

15 3 j 1 2 537 123 

Figure 2
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'Case II 

EXl ARRAY A(5,3,7) 
DOPARALLEL J'l,7; K=1,5 
,DO 1 I = 1,3 
S2 = A(K,I,J) 
1.CONTINUE 
;ENDDO 
:ENDDO 

SKIP = JDEL = 15 

Setting Sub PEM Number Assigned 
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 '9 ADD PE# 

1 1 1 8 11 112 113 114 115 116 117 19 0 
2 1 1. 3 =211 212 213 20 7 
3 

4 
1 1 2 

8 
121 122 123 124 125 216 217 

)22__222 223, 
25
26 7 

5 7
6 1 

1
2 

7
2 

[=3,132 133 134 135 136 137 
23 232 233 

3
31 

0
7 

7 2 1 10 11 215 216 217 65 0 
8 2 2 5 1311 312 313 314 315 316 31 7 

9 2 1 4 22 225 226 227 70 0 
02 2 10 - 32 322 323 324 325 326 26 4 
11 2 1 9 12311235 236237 75 0 
12 2 2 4 31 332 333 334 335 336 27 4 
13 3 1 1 13171 111 0 
14 •3 2 7 411] 412 413 414 415 416 417- 22 1 
15 3 3 2 511 512 23 8 
16 3 1 6 1327 _- 116 0 
17 3 2 1, 422 423 424 425 426 427 - 27 1 

18.9 33 31 70 L-3 3] 2 2,441521J 522 28121 80° 
20 
21 

3 
3 

2 
3 1 

4 432 433 4-34 435 436 437 --­
15311 53,2 

2 
33 

1 

19- 43 1 16575 12 0 
2% 4 1 513514 51551575 

23 4. 1 3- 524 525 526 527 58 0 
24 4 1 8 1-5-33 53A4 535 53!5 537 63 0 

Figure 3 
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Case III
 

EM ARRAY A(5,3,7)
 

DOPARALLEL J=1,5; K=I1,3
 

DO 1 I = 1,7
 

S3 = A(J,K,I)
 

1 CONTINUE
 

ENDDO
 

.ENDDO
 

SKIP = JDEL = 1 

Setting Sub PEM Number Assigned
 

Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 9 ADD PE4
 

1 1 1 8 111 211 31ii 1 1 121 221 321 421 521 19il 0
 

2 1 1 1 112 212 312 412 512 122 222 322 422 522 34 0
 

3 1 1 5 113 213 313 413 513 123 223 323 423 523 49 0
 

4 1 1 9 114 214 314 414 514 124 224 324 424 524 64 0
 

15 1 1 2 115 215 315 415 515 125 225 325 425 525 79 0 

6 1 1 6 116 216 316 416 516 126 226 326 426 526 94 0 

7' 1 1 10 117 217 317 417 517 127 227 327. 427 527 109 0 

8 2 1 7 131 231 331 431 531 29 0 

9 2 1 0 132232 332 432 532 44 0 

10 2 1 4 133 233 333 433 533 59 0
 

11 2 1 8 134 234 334 434 534 74 0
 

.12 2 1 1 135 235 335 435 535 89 0
 

13 2 1 5 136 236 336 436 536 104 0
 

14 2 1 9 137 237 337 437 537 115 0
 

Figure 4
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Case IV
 

EM ARRAY A(5,3,7)
 
DOPARALLEL J=l, 7; K=I, 3
 
DO 1 I = 1,5
 
S4 = A(I,K,J)
 
1CONTINUE
 
IENDDO
 

*ENDDO
 

SKIP = JDEL = 15 

Setting Sub PEM Number Assigned
 
Number Cycle Iter OFFSET 0 1 2 3' 4 5 6 7 8 9 ADD PE#
 

1 1 f1 112 113 114 115 116 117 19 0
 
2 1 1 7 -- 121 122 123 24 7
 
3 1 1 9 [ 21221324215216217 20 0
 
4 1 2 8 1221 222 223 25 7
 
5 1 1 0 3112 313 314 315 316 317- 21 0
 
6 1 2 9 -- 2 26
31 322 323 7
 
7 1 1 0 W 412-413 414 415 416 417 22 0
 
8 1 2 10 421 422 423 27 7
 
9 1 1 1 W512 513 514 515 516 517t 23 0
 

10 1 2 0 5 522 523 28 7 
ii 2, 1 3 11241 125 126 )27 _ 69 0 
12 2 2 2 jI3B 132 133 134 135 136 29 4 
13 2 1 4 224 225 226 227 70 0 
14 2 2 3 23 232 233 234 235 236 30 4 
15 2 1 5 IM 325 326 327 3 71 0 
16 2 2 433 33233 334 335 336 31 4 
17 21 1 6 f424 425 426 427 . 72 0 
18 2 2 5 I4K 432 433 434 435 436 32 4 
19 2 1 7 524 525 526 527 
20 2 2 6 5 ,7 532 533 534 535 536 33 4 
21 3 1 9 137. 119 0 
22 3 1 10 237 120 0 
23, 3 1 0 337 121 0 
24 3 1 1 43fl 122 0
25 3 1 2 f53[ 123 0
 

Figure 5
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Case V 

EM ARRAY A(5,3,7) 
DOPARALLEL J=l, 5; K=7 
DO 1 I = 1,5 
S5.= A(J,I,K)(Qt44 
1 CONTINUE 

ENDDO 
ENDDO 

SKIP = JDEL = 1 

Setting Sub PEI* Number Assigned 
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7' 8 9 ADD PE# 

1 1 1 8 111 211 311 411 511 19 0 
2 1 2 7 112 212 312 412 512 34 5 
3 1 1 2 1 221 321 421 521 24 0 
4 1 2 1 1022 222 322 422 522 39 5 
5 1 1 7 131 231 331 43-1 531 44 0 
6 1 2 6 11321 232 332,432 532 59 5 
7 2 1 5 11131 213 313 413 513-- 49 0 
8 2 2 4 14 214 314 414 514 69 5 
9 2 1 10 123 223 323 423 523 - 54 0 

10 2 2 9 i2324 224 324 424 524 69 5 
11 2 1 4 233 333 433 533- 59 0 
12 2 2 3 1341234 334 434 534 69 5 
13 3 1 2 11151215 315 415 515 79 0 
14 3 2 '1 j 216 316 416 516 94 5 
15 3 1 7 11251 225 325 425 525 84 0 
16 3 2 6 -­ 126 226 326 426 526 99 5 
17 3 1 1 1A 235 335 435 535 -- 89 0 
18 3 2 0 1136]236 336 436 536 104 5 
19 
20 
121 

4 
4 
4 

1 
1 
1 

10 
4 
9 

[I171217 317 417 517 
[127 227 327 427 527 
1137 237 337 437 537 

109 
114 
fi19 

0 
0 
0 

Figure 6 
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Case -VI
 

EM ARRAY A(5,3,7)
 
DOPARALLEL J=l, 3; K=,
 
DO 1 I = 1,7
 
S 6 A(K,J,I)
 
1 CONTINUE
 
ENDDO
 
ENDDO
 

SKIP = JDEL = 5 

Setting Sub PEM Number 'Assigned
 
Number Cycle Iter OFFSET 0 1 2 3 4 5 6 7 8 9 ADD PE#
 

1 1 1 8 1111121 131 19 0
 
2 1 2 5 211 221 231 20 3
 
3 1 3 2 131 1 321 331 21 6
 

1 4 10 f4-T 22 9 
5 1 1 1 1121122 132 34 0 
6 1 2' 9 21- 222 232 . 35 3­
7 1 3 6 312 322 332 36 6 
8 1 4 3 4 37 9 
9 1 1 5 1173 123 133 49 0 

10 1 2 2 21 223 233 50 3
 
11 1 3 10 313 323 333 51 6
 
12 1 4 7 413 52 9
 
.1.3 1 1 9 114 124 134 64 0
 
14 1 2 6 1214 24 234 65 3
 
15 1 3 3 f31 324 334 66 6,
 
16 1 4 0 414, 67 9
 

11, 1 1 .2 l15 125 135 _ 79 0. 
18 1 2 10 215 2,25 235 80 3 
19, 1 3 7 13151 325 335 81 6 
2f0 1 4 4 - 82 9 
21 1 1 6 W 126 136 94 0 
22 1 2 3 1 226 236 95 3 
.23 1 3 0 - 316 326 336 96 6
 
24 1 4 -8 416 97 9
 
25 1 1 10 1 127 137 109 0
 
2'6 1 2 7 217 227 237 110 3
 
27 1 3 4 317 327 337 i l 6
 
28 1 4 1 17 112 9
 
29 2 1 5 1422 431 27 0
 
30 2 2 24 [ 521 531 23, 2
 
31 2 1 9 42432 42 0
 
32 2 2 6 4 512 522 532 38 2
 
33 2 1 2 L 433 57 0
 
34 ,2 2 10 - 13523 533 53 2
 
35 2' 1 6 14241 434 -ORIG64AL W ' 72 0
 
36 2 2 3 , 51]524 532 yPWgi62
 
37 2 1- o 425 435 oF POOR Q4'I87 2
 
38 2 2 7 515 525 535 83 2
 
39 2 1 3 1426436 102 0
 
40 2 2 0 1516526 536 98 2
 
41 2 1 7 L27 437 117 0"
 
42 1 2 2 4 fl 7 527 53,7 ii3 2
 

Figure 7
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KI=(10+1)/7+l=2
 

Ji=10-1*7+1=4
 

SKIP=JDEL=15
 

Using the OFFSET calculation equation for NN=2 in Table 1B one
 

obtains
 

IADD(2,2)=19 + (3-1)*5 (2-1 + 2-1)*1 

= 19 + 10 + 2 = 31 

IP (2,2) = (2-1) * 7-4+1 4 

OFFSET (2,2) = (IADD(2,2) - IP(2,2)*15) MOD (11) 

= (31-4*15) MOD (11) 

= (-29) MOD (11) = 4 

This OFFSET calculation may appear strange at first glance. SInce 

one wishes this element to be produced in processing element 4 one 

needs to determine what the "virtual" address of the array element 

would have been to put an element into processing element $. 

i.e. *-Address1 Address 16 Address 31
 

411511 121,21 321 2151131 231 3431 
x x x x x x x x 111 211 311 

x Kx x X x x x x x x x 

0 -o 0 0 0 0 0 0 0 0 0 
o0 0 0 0 0 0 0 0 0 0 Virtual 
0 0 0 0 0 0 0 0 0 Addresses 

Ars= (-29) Address = (-14) 

PE=P PE=I 

.A-15 



Mode bits for PE's #0,1,2,3 will produce null fetches.
 

Having now determined the SKIP and the OFFSET one may wish to
 

determine the specific indices of the element. This is done by
 

means of Table ID.
 

Temp = (31 - 19) - (3 - 1) *5
 

= 12 - 10 = 2
 

J = 2/15 + 1 = 1 

K = (2 - (1-1) *15)/1 + 1 = 3 

A(IVAL, JVAL, KVAL) = A(K,I,J) = A(3,3,1)
 

In a, similar fashion one can determine the SKIP and OFFSET for any
 

setting number for any of the six possible cases. Additionally
 

Table II gives a listing of a computer program which performs
 

these computations.* Representative output is given in the appendix
 

for the set of cases listed below.
 

IAO Mem Mod #PEs IFIRST ISECOND ITHIRD
 

19 11 10 5 3 7
 

19 11 10 9 5 6
 

19 11 10 6 2 8
 

27 13 11 6 2 8
 

2. Requirements for Multiple Accessing within DOPARALLEL
 

Construct.
 

The compiler will recognize if a variety of access types occur
 

within a given DOPARALLEL and will modify the basic access
 

algorithm. For example given
 

*Note this is a very preliminary algorithm and should not be considered
 

"proven" software in any sense.
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Table II
 

$SET LIST
 
$RESET FREE


FILE 5=COMP ILER/D ATAP LN I T=D IS KFECORD=l4 PBLCK ING= 30 

FILE 6=FILE6pLNIT=PRINTER 

C 
C 
'C
 
C BURFOUGH' S COFP CRA7ION 
C CCMPILEF ALGORTkirn FCP DETERMIN4ING-
C TFANSPOSITI-C. NETh.OFK SETTI-NGS 
C OFFSET AND SKIP DISTANCE' FOR 3-C ARFAYS 
C 
.C 
C 

DIMENSICN IADD(lOp1O) ,IP( 10,10),ISET (O,10) 

C 
C INPLIT VARIABLES 
C ITYPE ="ARRA'NGEMENT OF AR.FAY INCICES 
C ITYPE 1 (IJK )
C IYPE = 2 (K.I,J)
C ITYPE 3 (J,K,I)
C ITYPE 4 (.IK,JI
C IYPE 2 5 (JtIK)'
C ITYPE = 6 (KJ, I I
C IAO = BASE ADDRESS OF' ARRAY A WITH INDICES IO.JO,KO
C M NLMBEF CF MEORY MOCULES
C N = NUMBE'F F PFOCESS ING ELE-MENTS
C IFIRST= ARRAY EXTENT OF FIRST DIMENSICN OF A'FAY
C ISECND= ARRAY -EXTENT OF SECCNE EIMENS ION EF AFRAY
C ITHIRD= ARRAY EX-TENT OF THIRD DIMENSIEN OF ARFAYC JO = INDEX VALLE OF BASE ACDESS 
C K-O = INOEX VALUE OF BASE ADDRESS 
C 
C 

REAC(5,IOO.) I TYPEIAOM, NIFI RST P ISECND, IT HIRE, KO, JO 
WRITE(6,11 1l.ITYPEIAOPMN,IF IRSTP ISECNCPITHI:FDPKO;,J3

C 
C 

C SET UP CF INITIAL PFOBLEM PARKMETERs INDEPENDENTC OF CR CEDING. ,C. I'DELJDELKDEL = SKIP DISTANCES 

C ILIMPJLIMPKLIM = ARRAY EXTENTS
C ICLIM = NUMBER OF CYCLES
C 
C 

IF(ITYPE.EQ.1) GO TC 1
 
IF(IjYPE EQ 2) GO TG 2
 
IF'ITYPE.EQ.3) GO TC 3
 
IF(ITYPE.EQ.4) GO TC 4

IF(ITYPE.EQ,.5.) GO TO 5
 
IF(ITYPE.EQ.6) GO To -6
 
IF(ITYPE.LT.1) GO TE 7

IF(IT'TPEGT.6) GO TO 7 pLGE1 " TIEEL = I OR%1 qn ,GT I 
JCEL = IFIRSI " ,
KEEL = IFIRS *I SECNDC Op Pop.T'TL
ICLIM= ( ISECNC*ITHIFD 'N-1 I/(N)
JLIm = ISECND 
ILIM = IFIRSTKLIM =ITHIRD
 

GC' TO B 
.2 IDEL = IFIRST 

JEEL = IFIRST*ISECNC 
K.DEL = 1 
ICLIN= (IFIRST*ITHIRDN-I)/(N)

JLIH = ITHIRD 
ILIM, = ISECND A-17 



KL I =IF IRST 

3 IICEL = IFIRST*ISECNC 
JOEL 
KOEL 

= 
= 

I
IFIRST 

ICLIM= (IFIRST*ISECNDON-1)/(N)
JLIM = IFIRST 

4 
ILIM = ITHIRD 
KLIM = ISE'CNDGo TO, 8ME= 1 
KEEL 

= 
= 

IFIR-ST*ISEC.NC,
IFIRST 

ICLIM= (ISECNC*ITHIF04N1I3/(N)
JLIM = ITHIFD 
ILIM = IFIRST 
KLIM = 'ISECND 
GE TO 8 

5 IEL 
JCEL 

= 
= 

IFIRST
1 

KEEL = 
ICLIM= 
JLIM= 

IFIRST*I SEC NC 
( I FIRST* I*II RD 4N-I)/(N)
'IF IRST 

ILIM 
KLIM 

= 
= 

ISECND 
ITHIRD 

6 
GC TO- 8
J'EEL = IFIRST 
KEEL = IO " 
I*CEL = IFIRST,*1SECNC
ICLIM= (IFIRST*'ISECND4N-1)/(N)
JLIM = ISECND 
ILIM = ITHIRD 
KLIM = IFIRST 
GO TO 8 

7 
0I 

WRITE'( 6,101 1 
FORMAT(Z-X,IYOL
GC TO aa 

HAVE' AN ERFOF I-N ITYFE') 

C 

e WRITE(6,1123
WRITE(C6,1 14 

IDELJCEL,KOEL.,ICLIMJLIM, ILIM 

C 
C 
C START OF CYCLE LOOP 
C 
C 
C 

00 10 IC = IICLIM 
IWV= N*(IC-1)
K=(IVV)/(JLI4) # KO 
K1= K 
J=(IVV)'(K',I)*(JLIM)
J1=J 

* JO 

C 
C 

IAOL= IAO*(J-1)*JCEL+(K1)-*DEL
WRIT'E(6,'13) ICIVVPJK 

C 
C 
-C S--ART OF INNERMOST LOOP INCEX I-
C 
C 
C 

00 20 I '=IILIM 

C 

IADO(IC.I)
IP(IC,13 = 

= 
0 

IACO0 +(l-1)*IDEL 

C, 
C 
C 
C 

SUBITERATICN LCOPS 

C 

DO 30 NN= 1sN 
-N2=NN-1 

C 
9 

IF (NN.E0.1) GO TC 9 
IAOC(ICNN,) = IAO+(I-l)*ICEL + (K1-1+N2)-*KDEL
IP(ICNN) = NZ*JLIM-J1,1 
CONTINUE 
'WRITE(6,100) ICNNIA(O(ICNN.,IP(ICNN)
IF(IP(ICNN).GT.-'I) GO T] 20 
ISET(ICNN)= (IADC(ICNN)eIP(I.CNN)*JCEL) A-18 



C 
C 
C 
CC 

ADJUSTING ISET TE POSITIVE NUMBER 

C 
40 

50 

DC 40 KAP= 1.100 
IF(ISET(IC.NN).GE.O) GO T 50 
ISET(ICNN) = ISET(ICNN) + 
CCNTINUE 
WRITE(6,100) ICNNISET(ICPNN)
ISET(ICPNN) = MCD(ISET(IC.NN),M) 

C 
C 
C 
C 

CETERMINATION CF 
NOT REQUIRED FER 

INDEX VALIES FIRST ELEMENT OF 
OFFSET AN[ SKIP DETERMI ATICNS 

SET-

C
 
C
 
C
 

IF(ITYPE.E.1) GE TO 201
 
IF(ITYPE.EQ.2) GC TO 202
 
IF(ITYPE.EQ.3) GE TO 203
 
IF(ITYPE.EQ.5) GE TO 205
 
IF(ITYPE.EQ.6) GC TO 206 

201 IVAL= I 
JV AL=J
 
-KVAL=K 
GO TO 207 

02 TEMP (0IAC(ICNN)-IAO -1 
J=TEMP/JCEL 4 1 
K= (TEMP -(-1 )*JEL)/KOEL
IVMALK 
4W AL=I 
NVAL=J
 
Go TO 207
 

203 IVAL=J
 
JVAL=J

NVAL=I
 
GO TC 201 

IELI
 

+ I 

204 TEN (IACD(ICNN)IA 0 (11)*IDELI
J=TEP/JCEL 4 1 
K= (TEMP -(J1 )tJDEL)/KEL + 1 
IV=1 
KV AL= J 
KW AL=K 
GO TO 20? 

205 TEMP=( IA E7 IC NN)-IA0
2TEMP/KCEL *I 
J=(TEMP-(K-ItOEL)/JOEL 
IVPAL=J 
JVAL=I 
KV AL=N 
Go TO 201 

1-1 IOEL 3 

*I 

206 TEMP=(IACD(ICNN :lAO - (I-1)*IDELJ
J=TEMPI/JCEL 4 1
 
K= (TEMP "(J'1)*JDEL)/KDEL + I
 
IV AL=K
C t*ttt**********I***t*************************t****C 

C
 

C END OF JNCEX COMPUTATIONS
 
C
 
C 

JVAL=J
 
KVAL= I
 

207 NUM = NUM 4 1 
IF(NN.EQ.1) GO TO 31
 

IF((IADC(IC.NN)-IAflO(ICI)).EQ.JDEL*JLIM*N2) GO Tt 20
 
31 WRITE(6,115) NLMICsNNtISET( IC NN ),IVALJVALKVAL
 

IF((ITYPE.EQ.1).OR.(ITYPE.EQ.3)) GO TO 20 
IF((IC.1).EQ.ICLIM) GE TO 0
 
IF(K.EQ.KLIM) GC TO 20
 

30 CCNJINUE
 
20 CON INUE
 
10 CENTINUE 
100 FCRMA T(ZX, 1215)
1l1 FORMAT(5X.ITYPEO'. IAO *,tMEMCDO'.' PES ', IFIRSTOP 

C' ISECOND*,' ITHIROl,' KO go JO',//5Y,415.1h17,l 3I7//) 

A-19
 



112 F'ORMAT (5X, IDEL 0 PO JCEL*% KDEL*P* ICLIMP', JL Im't 
C' ILI tI 5X.616/)


113 F ORNA T (5XP'CYCLE'.'SU BX TER'., J * , KI/5X.4 162 
114 FCRIArC5XP' NUP'P CYCLE'#' SUeITER',' CFFSEI'O, IVAL'P 

C 0 JVALO,* KVAL' )
115 FCRtAT(5X, 215, 19P 17,3X9 3I)

aO CONTINLE
 

END
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DOPARALLEL J=l, JLIM; K=l, KLIM
 

DOO 1 I=l, ILIM
 

S1 = A(I,K,J) * A(K,I,J-)
 

1 Continue
 

ENDDO: ENDDO
 

it is obviously required that for a given J,K pair that a specific
 

processing element must receive both of them. If one considers the
 

previous example and determines the assigned processing element
 

for
 

Type I A(3,2,5) PE# 3
 

Type II A(2,3,5) PE#1
 

But this is wrong. Both of these accesses must go to the same
 

processing element. The solution to this apparent dilema is to
 

expand the array size at compile time by "'squaring" it if one of
 

these type accesses occurs, anywhere in the program, i.e. given
 

the array A(5,3,7)>with extents 5,3,7
 

one expands it to square by increasing all extents to the largest
 

one, i.e., 7 and accessing the array as though it were of size
 

A (7,7,7).
 

This is demonstrated in detail in Figure SA&B for all 6 accessing
 

patterns. The I index, the innermost, is not iterated for each
 

cycle. As is obvious one obtains the correct J,K pair in each
 

processing element as is required. The appendix contains the
 

examples listed below.
 

IA0 Mem Mod #PEs IFIRST ISECOND ITHIRD
 

19 11 10 3 3 3 

19 11 10 5 5 5 

27 13 11 6 6 6 

19 11 10 7 7 7 
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Extended Accessing
 

of Array A(5,3,7)*
 

P.E. Number Specific Examples 

Case I 0 1 2 3 4 5 6 7 8 9 (i,2,3) 

(I,J,R) ilh& 131 141 151 161 i71 112 122 132 (i,2,1) 

a 	 113 i33
 

* 	 i14 i24 i34 i44 i54 ±64 14 i15 i25
 

35 i45 i55 165 i75 i16 i26 i36 i45-i56
 

.Fi; 	 6i17 i27 i37 i4-7--5-7 -7 -7-4-­

(i indices 6&7 also suppressed)
 

Case II 

kI,JI) m @ li3 li4 li5 i6 i7 (3,i,2) 

2122 2i3 (1,i,2) 

214 2i5 2i6 217 

1311 Q 3i3 3i4 3i5 3i6 

411 4i2 	4i3 4i4 4i5 4i6 47
 

[l1 5i2
 

513 5i4 5i5 5i6 517
 

7 	 67 2 6i 6 6i-5 

(i indices 4,5,6 & 7 also suppressed)
 

Case III
 

(J,K,I) 	[j t311 411 51i 63A97i 121 221 32i (2,3,i) 

14211 521 6-2-421 131 C(3 331 431 531 4i (2,1,1)=< 

732 141 241 341 44i 4 4 4 1.5i 25i 
j~Its-----st51 75 1G- ---26 i--3E4-464--­

271 371 47i 571-6-7-7-74i
 
(no i indices suppressed)
 

*I index indicated by i, assuming iteration
 
deleted elements indicate null fetches
 

Figure 8A
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P.E. 	Number Specific Examples
 
5 9
Case IV 0 - 2 3 4 6 7 8 


0i,3,2)
(I,K,J) i l 3 

(ii l i22 i23 (i,1,2) ='Q 

i24 i25 i26 ii33 i34 i35 i36 

* 	 i56 i57­

7 -i!2 i:73 
 i74 i!75 i76 i7-7
 

(i indices 6&7 also suppressed)
 

7i 	 (2,i,3) =Case V 1ili F-3il 4i1 51l 

112i2i2 3i2 (2,il) = (J,I,K) 

4i2 512 i (i 313 413 5 i 

11 2i4 3i4 4i4 5i4 .i64-M-i2
 

3154i5 515 64-5- -7i
 
li6 2i6 316 4i6 5i6
 

117 27 37 4i7 517 64--44
 
(i indices 4,5,6 & 7 suppressed)
 

Case VI
 
=C
151i 161 171; 	 (3,2,1)(K,J,EI 11i 2> 13 i 14 i 	 f21- '22i 23i (1,2,i) 

* 2 3 Q 3 3 i 34i 35i 36i 

kll5 42i 43i 44 45 461 47i2i
 

S5 55iq 56i 57-i
 

.---- 73i 71 736 f i i
n 	_i 27i 


(no i indices suppressed)
 

Figure 8B
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3. Optimization of accessing for Single Access Type
 

If a single type of access occurs within a DOPARALLEL construct and
 

is one of the less favorable ones then the compiler will reverse
 

the order of the DOPARALLEL construct. Case I and ITT are already
 

optional. Case IV and VI would be inverted, i.e., the construct
 

would be DOPARALLEL K=l, KLIM; J=l, JLIM.
 

Cases III and V would reamin as written with a warning to the
 

user.
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'ITYPE. IA MEMOD #PES 'IFIRST tSECON{ ITIIRO KO .JC
 

1 19 11 1c 3 7 1 

IOEL JOEL KDEL ICLI'1 JLIM ILI'
 
1 5 15 3 3
 

NUM CYCLE SUBITER OFFSET IVAL JVAL K AL 
1 1 1 8 1 1
2 1 9
 
3 1 1 10 1' I
 
4 1 1 a 4 1 
5 1 1 1 1 1 
6 2 1 3 1 4 
7 2 1 4 2 ? 4 
8 2 1 5 3 4
 
9 2 1 6 4 . 4 
10 2 1 7 5 2 ,4
 
V! 3 1 9 1 7 7

12 3 1 i0 2 3 7
 
13 3 1 c 3 3 7
 
14 3 1 1 4 
 7
 
15 3 1 2 5 7
 

ITYPE IAO MEMOC #PES IFIRST ISECOND ITIqRC KO .C
 

2 19 11 I[ 5 3 71 1 

TOEL JOEL KCEL ICLIM JLIM ILIM
 
5 15 1 4 7 3
 

NUM CYCLE SUEITER OFFSET IVAL JVAL KVAL
 
1 1 1- 8 1 1 1
 
2 1 2 3 2 1 1
 
3 1 1 2 1 2 1
 
4 1 .2 8 2 2 1 
5 1 1 7 1 3 16 1 
 2 2 2 3 1 
7 2 1 10 2 1 4 
6 2 2 c 3 1 1 
9 2 1 4 2 ? 410 2 2 10 3 2 1 
1 2 1 9 2 4 
12 2 2 4 3 i 1
OIGllp PAGE IS 13 3 1 1 3 1 7 

.- 1". 3 2 2..7 4 1 1ofpOOR 15 3 62 5 1 116 3 1 6 3 7 
17 3 
 2 1 4 2 1
 
18 3 3 7 5 
 2 119 3 1 0 3 7
20 3 2 6 4 1
 
21 3 3 1 5 3 1

2? 4 1 9 5 1 3
23 
 4 1 3 5 2 3

24 4 1 E 5 3 3
 

ITYPE lAO MEMOD *PES IFIRST ISECONO ITHIPD KO JC
 

3 19 11 IC 5 .3 7 1
 

ICEL JOEL KCEL ICLIM ILIM ILl'
 
15 1 2
5 7
 

NUM CYCLE SUEIIER OFFSET IVAL JVAL K AL
 
1 1 1 8 1 1
 
2 1 1 1 1 1
 
3 1 1 5 1 1
 
4 1 1 9 1 1
5 1 1 2 
 1 1
6 1 
 1 6 1 1 6
 
1 1 1 1c 1 1 7
 
8 2 1 7 1 3 1
 
9 2 1 C 1 3 2 

10 2 1 4 1 3 3
 
It 2 
 1 8 1 3 4
12 2 1 1 1 3 5

13 2 1 5 1 3 
 6

14 2 1 9 1 3 
 7
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1 

IhYPE IAO MEMOD SPES IFIRST ISECOND IT4HIRD KO JC
 

4 19 11 1c 5 3 7 1 


IDEL JOEL KEEL ICLIM JLIM ILIM
 
1 15 5 3 7 5
 

NUM CYCLE SUEITER OFFSET IVAL JVAL KqAL
 
1 1 1 a 1 1 1
 
2 1 2 7 1 1 1
 
3 1 1 9 2 1 1
 
4 1 2 e 1 1
 
5 1 1 it 3 1 1
 
6 1 2 9 3 1 1
 
7 1 1 0 4 1 1
 
8 1 2 1C 4 1 1
 
9 1 1 1 5 1 I
 

1i 1 2 'C 	 1 1
 
11 2 1 3 1 4 2
 
12 2 2 2 1 4 ?
 
13 2 1 4 2 4
 
14 2 2 3 2 4 2
 
15 2 1 5 3 4
 
16 2 2 4 3 4
 
17 2 1 6 4 4
 
18 2 2 5 4 4 2
 
19 2 1 7 5 4 2
 
20 2 2 6 5 4 2
 
21 3 1 9 1 7 3
 
2'2 3 1 IC 2 7 3
 
23 3 1 0 3 7 3
 
24 3 1 1 4 7 3
 
25 3 1 2. 5 7 3


ITYPE IAO MEMOE #FES IFIRST ISECOND I'THIRD KO JC
 

5 19 11 ic 5 3 7 1
 

IDEL JDEL KDEL ICLI JLIM ILI"
 
1 	 15 4 5 3
 

NUM 	 CYCLE SUEITER OFFSET IVAL JVAL K AL
1 	 1 2 1 1
 
2 	 1 2 7 13 1 1 2 1 1
 
4 1 2 1 1 2
 
5 1 1 7 1
 
6 	 1 2 6 1 3
 

22 1 5 1 1 3
 
8 2 2 4 1 1
 
9 2 1 1c 1 2 3
 

10 2 2 9 1 .4
 
11 2 
 1 4 1 3 3

12 2 2 3 1 1 4
 
13 3 1 2 1 1 5
 
14 3 2 1 1 1 6

15 3 1 7 1 2 5
 
16 3 2 6 1 2 6
 
17 3 1 1 1 3 5

18 3 2 G 1 3 b
 
19 4 1 10 1 1 7
 
20 4 1 4 1 2 7
 
21 4 1 9 1 3 7
 

A _97 



KO JC
APES IFIRST ISECOND ITHIRD
IHYPE IAO MEMOD 


6 


IDEL 

15 


NUN 
1 

2 

3 

4 

5 


7 

8 


I. 

11 

12 

13 

14 

15 

16 

11 


1-

20 

21 

22 

23 

24

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

!7 


38 

39 

40 

41 

42 


19 


JOEL 

5 


CYCLE 

1 

1 

1 

1 

1' 

1 

1 

1 

1 

1.
 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 


11 Ic 5 


KDEL ICLIM JLIM 

1 2 3 


SUBItER OFFSET 

1 e 

2 5 

3 2 

4 IC 

1 1 

2 9 

3 6 

4 3 

1 5 

2 2 


i
lC 

4 7 

1 9 

2 6 

3 3 

4 C 

1 2 

27e 10 


7 

4 4 

1 6 

2 3 

3 0 

4 8 

1 1C 

2 7 

3 4 

41 

1 5 

2 2 

1 9 

2 

1 2 

2 iC 

1 6 

2 3 

1 1c 

2 7 

1 3 

2 G 

1 7 

2 4 


3 


ILIM
 
7
 

IVAL 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 


4 

4 

5 

4 

5 

4 

5 

4 

5 

4 

5 

4 

5 

4 

5 


JVAL 

1 

1 

1 

1 

1 

1 

1
 
1 

1
 
1
 
1 

1
 
1 

1 

1 

1 

1
 
1
 
1 

1
 
1
 
1 

1 

1
 
1 

1 

1 


2 

1 

2 

1
 
2
 
1 


1 

2
 
1 

2 

1 


1 


7 1
 

KVAL
 
1
 
1
 
1
 
1
 
2
 
2
 

2
 

3
 

4
 
L
 
4
 
4
 

5
 

6
 
6
 

7
 
1

7
 

1
 
1
 
2
 

3
 
4
 
4
 

5
 
1
 
5
 
7
T
 
7
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IhYPE IAO MEMCD IPES IFIRST ISECCNE ITI4IRE KO JO 

1 19 11 10 9 5 6 1 

IOEL JOEL NOEL ICLIM JLIM UII
 
1 9 45 3 5 9
 

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL
 
1 1 I 8 1 1 1
 
2 1 1 9 2 1 1 
3 1 1 10 11 
4 1 1 0 4 1 1 
5 1 1 1 5 1 1 
6 1 1 2 6 1 1 
7 1 1 3 7 1 1

51 4 E 
9 1 1 5 9 1 1
 

10 2 1 10 1 1 A
 
11 2 1 0 2 1 
12 2 1 1 3 1 3 
13 2 1 2 4 1
 
14 2 1 3 5 1 3
 
15 2 1 4 6 1
 
16. 2 1 5 7 1 3 
17 2 1 6 E 1 
1 2 1 7 9 1 "
 
19 3 1 1 1 1 5
 
20 3 1 2 2 1 5
 
21 3 1 3 3 1 5
 
22 3 1 4 4 1 5
 
23 3 1 5 5 1 5
 
24 3 1 6 6 1 5
 
25 3 1 7 7 1 5
 
26 3 1 8 F 1 5
 
27 3 1 9 9 1 5 

ORIGINAL PAGE IS 

OF POOR QUALxTl 
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ITYPE IAO ME14CD #PES IFIRST ISECCNX ITHRO KO JO
 

2 19 11 10 9 5 6 1
 

IDEL JDEL KDEL ICLIM JLIM ILIM 
9 45 1 6 6 5 

NUM CYCLE SUBIIE OFFSET IVAL JVAL KVAL
 
1 1 1 8 1 1 1
 
2 1 2 3 2 1 1
 

3 1 62
4 1 12 1 
5 1 1 4 1 11 
6 1 2 10 2 3 1> 

1 1 2 1 4 1 
8 1 2 8 2 4 1 
9 1 1 0 1 5 1 

10 1 2 6 2 5 1
 
2 1 2 2 1 5
11 


12 2 2 8 1 1 1
 
1
13 2 3 3 4 1 


14 2 1 0 2 2 5
 
1,5 2 2 6 3 2 1
 
16 2 1 4 2 1
 
17 2 1 9 2 3 5
 
18 2 2 4 3 3 1
 
19 2 3 10 4 3 1
 

1 7 2 4 5
 
21 2 2 2 3 4 1
 
20 2 


1
22 2 3 8 4 4 

23 2 1 5 2 5 5 
24 2 2 0 3 5 1 
25 2 3 6 4 5 1 
26 3 1 2 4 1 3 
27 3 2 8 5 1 1 
2E 3 1 0 4 2 i 
29 3 2 6 5 2 1 
30 3 1 9 4 3 3 
31 3 2 4 5 3 1 
32 3 1 7 4 4 3 
33 3 2 2 5 4 1 
34 3 1 5 4 5 3 
35 3 2 0 5 5 1 
36 4 1 2 6 1 1 
37 4 2 8 7 1 1 
38 4 1 0 6 2 1 
39 4 2 6 1 2 1 
40 4 1 9 6 3 1 
41 4 2 4 7 3 1 
42 4 1 7 6 4 1 
43 4 .2 2 7 4 1 
44 4 1 5 6 5 1 
45 4 2 0 7 5 1 
46 5 1 T 7 1 5 
47 5 z 2 e 1 1 
48 5 3 8 9 1 1 
49 5 1 5 7 2 5 
50 5 2 0 E 2 1 
51 5 3 6 9 2 1 
52 5 1 3 7 3 5 
53 5 2 9 e 3 1 
54. 5 3 4 9 3 1 
55 5 1 1 7 4 5 
56 5 2 7 E 4 1 
57 5 3 2 9 4 1 
58 5 1 10 7 5 5 
59 5 2 5 e 5 1 
60 5 3 0 9 5 1 
61 6 1 7 9 1 3 
62 6 1 5 9 2 3
 
63 6 1 3 9 3 3
 
64 6 1 1 9 4
 
65 6 1 10 9 5 
 3
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ITYPE IAO MEMCD APES IFIRST ISECCNC ITA4IRO KO JO 

3 19 11 10 9 5 6 1 

IOEL JOEL DEL ICLIM J IM ILtIM
 
45 1 9 5 9 6
 

NUM CYCLE SUB'ITEF OFFSET IVAL JVAL KVAL
1 1 1 8 1 1 1 
2 1 1 9 1 1 2
3 1 1 10 1 3 
4 1 1 0 1 4
5 1 1 1 1 1 5
6 1 1 2 1 1 6

7 2 1 7 2 2 1

8 2 1 8 2 2 2

9 2 1 9 2 2 1
 

10 2 1 10. 2 2 4
 
11 2 1 0 2 2 5
 
12 2 1 1 2 2 6
 
13 3 1 6 3 3 1
 
14 3 1 7 3 3 2
 
15 3 1 8 3 3 3

16 3 1 9 2 3 4

17 3 1 10 5 3 5
 
18 3 1 0 3 3 6
 
19 4 1 5 4 4 1

20 4 1 6 4 4 2
 
21 4 1 7 4 4 
22 4 1 8 4 4 4

23 4 1 9 4 4 5

24 4 1 10 4 4 6,

25 5 1 4 5 5 1
 
26 5 1 5 5 5 2

2? 5 1 6 5 5 3
 
2E 5 1 7 5 5 4
29, 5 1 8 5 5 5
30 5 1 9 5 5 6
 

1'ORGI AL PAGE 

OF, pooR QUAUVYX 
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ITYPE IAO NEMCD #PES -IFIR'ST ISECCN( ITHIRE KO .jo 

4 19 11 10 9 5 6 1 

IDEL JDEL KOEL ICLIM JLIM ILIM 
1 45 9 3 6 9 

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL 
1 1 1 8 1 1 1
2 	 1 2 0 1 1 1 

1 1 22 1 1 
1 1 2 1 1 

5 1 1 10 3 1 1 
6 	 1 2 2 3 1 1
1 	 1 1 0 5 1 1 
a 	 1 2 3 4 1 1 
9 	 1 1. 1 5 1 1

10 1 2 4 5 1 1 
11 1 1 2 6 1 1 
12 1 2 5 6 1 1
 
13 1 1 3 7 1 1 
14 1 2 6 7 1 1 
15 1 1 4 E 1 1 
16 1 2 7 e 1 1 
17 1 1 5 9 1 1 
la 1 2 8 9 1 1
 
19 2 1 10 1 5 2 
20 2 2 2 1 5 2 
21 2 3 5 1 5 2 
22 2 1 0 2 5 2 
23 2 2 3 2 5 2 
24 2 3 6 2 5 2 
25 2 1 1 3 5 2 
26 2 2 4 3 5 2 
27 2 3 7 2 5 2 
28 2 1 2 4 5 2 
29 2 2 5 4 5 2 
3'0 2 3 8 4 5 2 
31 2 1 3 5 5 2 
32 2 2, 6 5 5 2
 
33 2 3 9 5 5 2 
34 2 1 4 6- 5 2 
35 2 	 7 6 5 2
 
36' 2 	 10 6 5 2 
31 2 1 5 7 5 2 
38- 2 2 8 7 5 2
 
3'9 2 3 0 7 5 2 
40 2 1 6 E 5 2 
41 2 2 9 E 5 2 
42 2 3 1 e 5 2 
43 2 1 7 9 5 2
44 -2 2 10 9 5 2' 
45 2 3 2 9 5 2 
46 3 1 4 1 3 4
47 3 2 7 1 3 4 
4E 3 1 5 2 3 4


ORIGINAL PAGE IS 49 3 2 8 2 3 4 
OPOR50 5 o 33 11 '67 43 33 4 

OPORQUALITY 	 5 3 2 9 3 3 4
 
53 3 2 10 4 3 4
 
54 3 1 8 5 3 4 
55 3 2 0 5 3 4 
56 3 1 9 6 3 4 
57 3 2 1 6 3 4 
58 3 1 l 7 3 4 
59 3 2 2 7 3 4 
60 3 1 0 f 3 4 
61 3 2 3 e 3 4 
62 3 1 1 9 3 4 
63 3 z 4 9 3 4 

A-32 



ITYPE IAO MEMCD SPES IFIRST ISECCNE IT14IRC KO J.3
 

5 


[DEL 
9 


NUN 
1 

2

3 

4 

5 

6 

7 

8 

9 


10

11 

12 

13 

14 

15 

16 

11 

18 

19 

20 

21 

22

23 

24 

25 

26 

2? 
26 

29 

30 

31

32 

33 

34 

35 

36 

3? 
38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

4a 

49 

50 

51 

52 

53 

54 

55 


19 


JOEL 
1 


CYCLE 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1

2 

2 

2 

2 

2 

2 

2 

2 

2

2 

3 

3

3 

3 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5

6 

6 

6 

6 

6 


11 10 9 


KDEL ICLIN JLIM 
45 6 9 


SUBITER OFFSET 
1 8 

2 0 
1 6 

2 9 

1 4 

2 7 


2 

5 


1 0 
2 3

1 10 

2 2 

1 8 

2 0 

1 6 

2 9 

1 4 

2 7 

1 2 

z 5 

1 1 

2 4

1 10 

2 2 

1 8 

2 0 
1 6 

2 9 

1 4 

2 7 

1 3 

z 6 

1 1 

2 4 

1 10 

2 2 

1 8 

2 0 
1 6 

2 9 

1 5 

z 8 

1 3 

2 6 

1 1 

2 4 

1 10 

2 2 

1 8 

2 0 

1 7 

1 5 

1 3 

1 1 

1 10 


5 


ILIM 
5
 

IWAL 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

1

2 

1 

2 

1 

2

1 

3 

1

3 

1 

2 


1 

3 

1 

3 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

5 

1 

5 

1 

5 

1 

5

1 

5o 

1 

6 

6 

6 

6 

6 


JVAL 
1 

1 

2 

2 

3 

3 

4 

4 

5 

5

1 

1 

2 

2 

3 


4
 
4
 
5

5 

1 

1 

z 
2 

3
 
3 

4 

4 

5 

5 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

1 

1 

2 

2 

3 

3 

4

4 

5 

5 

1 

2 

3 

4 

5 


6 1
 

KVAL 
1
 
2
 
1
 
2
 
1
 
2
 
1
 
2
 
1
 
2
 
2
 
3

2
 
3
 
2
 
2
 

2

3
 
3
 
4
 
1
 

4
 

4
 
3
 
4
 
3
 
4
 
4
 
5
 
4
 
5
 
4
 
5
 
4
 
5
 
4
 
5
 
5
 
6
 
5
 
6
 
5
 
6
 
5

6
 
5
 
6
 
6

6
 
6
 
6
 
6
 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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ITYPE . IAO MEMND #PES IFIRST ISECCNE ITI'IRC KO JO 

6 19 11 10 9 5 6 1 

IDEL JOEL KDEL ICLIM JL IM ILIH 
45 9 1 5 5 6 

NUN CYCLE SUBITE6 OFFSET IVAL JVAL KVAL
 
1 1 1 8 1 1 1
 
2 1 2 8 2 1 1 

3 1 9 1 2. 
4 1 9 2 2 
5 1 1 10 1 1 
6 1 2 10 2 1 3
 
7 1 1 0 1 1 4
 
8 1 2 0 2 I 4
 
9 I 1 1 1 1 5
 

10 1 2 1 2 1 5
 
11 1 1 2 1 1 6
 
12 1 2 2 2 1 6 
1 3 2 1 10 3 1 1 
14 2 2 10 4 1 1 
15 2 1 0 3 1 2 
16 2 2 0 4 1 2 
1? 2 1 1 3 1 2 

18 2 2 1 4 1 3 
19 2 1 2 11 4 
20 2 2 2 4 1 4
 
21 2 1 3 3 1 5
 
22 2 2 3 4 1 5
 
2"3 2 1 4 3 1 6
 
24 2 2 4 4 1 6 
25 3 1 1 -5 1 1
 
26 3 2 1 6 1 1
 
27 3 1 2 5, 1 2
 
2t 3 2 2 6 1 2
 
29 3 1 3 5 1 3
 
30 3 2 3 6 1 3
 
31 3 1 4 5 1 4
 
32 3 2 4 6 1 4
 
33 3 1 5 5 1 5
 
34 3 2 5 6 1 5 
35 3 6 5 1 6
 
36 3 6 6 1 6
 
37 4 1 3 7 1 1
 
38 4 2 3 f 1 1
 
39 4 1 4 7 1 2 
40 4 2 4 8 1 2
 
41 4 1 5 7 1 
42 4 2 5 f 1 3 
-43- 4 1 6 7 1 4
 
44 4 2 6 e 1 4 
45 4 1 7 7 1 5
 
46 4 2 7 E 1 5 
47 4 1 8 7 1 6 
48 4 2 8 e 1 6 
49 5 1 5 9 1 1 
50 5 1 6 9 1 2
 
51 5 1 7 9 1 3
 
52 5 1 8 9 1 4
 
53 5 1 9 9 1 5
 
54 5 1 10 9 1 6 
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ITYPE IAO MEMOD IPES IFIRST ISECONC ITHIRD KO iC 

1 19 11 ic 6 "2 8 

IDEL 
1 

JOEL 
6 

KDEL 
1,2 

ICLIM 
2 

JLIM 
2 

ILI%' 
f 

NUN 
1 
2 
3 
4 
5 
6 
1 
8 
9 

t0 
11 
12 

CYCLE 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 

SUEITER 
i 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

OFFSET 
8 
9 

IC 
0 
1 
2 

3 
4 
5 
6 
7 

IVAL 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

JVAL 
1 
1 
1 
1 
1 
1 
1,
1 
1 
1 
1 
1 

K AL 

1 
1 
1 
1 
1 

6 
6 
6 
6 
6 

ITYPE IAO MEMOD #PES IFIRST ISECOND ITHIRD KO JC 

2 19 11 iC 6 2 8 1 

ICEL 
6 

JOEL 
12 

KOEL 
1 

ICLIM 
5 

JLIM 
8 

ILIM 
2 

NUM 
1 
2
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
1T 

"18 

CYCLE 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5
5 

SUBITER 
1 
2
I 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 

OFFSET 
8 
1
3 
7 
0 
4 
6 

10 
3 
7 
9 
2 
6 

10 
1 
5 
2 
8 

IVAL 
1 
2
1 
2 
2 
3 
2 
3 
3 
4 
3 
4 
4' 
5 
4 
5 
6 
6 

JVAL 
1 
1 
2 
2 
1 
1 
2 
1 
1 
1 
2 

1 
1 
2 
? 
1 
2 

KVAL 
1 
1
1 
1 
3 
1 
3 
1 
5 
1. 
-
1 
7 
1 
7 
I 
i 
1 

ITY'PE 

3 

IAO MEMOD 

19 11" 

PES 

I1 

IFIRST 

6 

ISECOND 

2 

ITHIRD 

8 

KO 

1 

Jc 

ICEL 
12 

JDEL 
1 

KOEL ICLIM' JLIN 
6 2 6 

ILIM 
3 

ORIGINALPAGEIS 

OF POOR QUALITY 

NUM 
1
? 
3 
4 
5 
6 

8 
9 

10 
11 
12 
13 
14 
15 
16 

CYCLE 
1
1 
1 
1 
1 
1,
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

SU8ITER 
1
1 
1 
1 
1 
1
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

OFFSET 
e 
9 

10 
a 
1 
2
3 
4 
7 
8 
9 

10 
0 
1 
2 
3 

IVAL 
1 
1 
1 
1 
1 
1
1 

-
5 
5 
5 
5 
5 
5 
5 
5 

JVAL 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

K-AL 
1 

4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 
a 
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ITYPE TAO MEMOD UPES IFIRST 


4 19 11 iC 6 

IDEL JOEL KOEL ICLIM JLIM 

1 12 '6 2 8 


NU4 CYCLE SUEITER OFFSET 

1 1 1 a 
2 1 2 6 
3 1 1 9 
4 1 2 7 
5 1 1 10

1 2 8 
7 1 1 C 

1 2 9 
9 1 1 1 
10 1 2 iC 
11 1 1 2 

1? 1 2 0 

13 2 1 5 

14 2 1 6 

15 2 1 7 

16 2 1 8 

IT 2 1 9 

18 2 1 t0 


ITYPE IA,O MEMOD SPES IFIRST 


5 19 11 IC 6 

OEL JOEL KNEL ICA.IM JL1M 

6 1 12 5 6 


NUM CYCLE SUEITER OFFSET 
1 1 1 a 

1 2 3 
3 1 1 3 
4 1 2 9 
5 2 1 2 

6 2 2 8 
7 2 3 3 
8 2 1 8 
9 2 2 3 

10 2 3 9 

11 3 1 2 

12 3 2 8 

13 3 1 8 

14 3 2 3 

15 4 1 2 

16 4 2 e

17 4 1 8 

1 4 2 3 

19 5 1 7 

20 5 2 2 

21 5 1 2 

22 5 2 8 


ISECOND ITHIPD KO JC
 

2 8 1 

ILIM
 
6
 

IVAL JVAL KVAL 
1 1 1 
1 1 1 
2 1 1 
2 1 1 
3 1 1

3 1 1
 
4 1 1
 
4 1 1
 
5 1 1
 
5 1 1
 
6 1 1
 
6 1 1
 
1 3 2
 
2 3 2
 
3 3 7
 
4 3 2
 
5 3 2
 
6 3 2 

ISECONC ITHIRD KO JC 

2 8 1 

ILI 
2 

IVAL JVAL K AL 
1 1 I 
1 1 2 
1 2 1 
1 2 2 
5 1 ? 
1 
1 

1 
1 

3 
4 

5 2 2 
1 2 3 
1 2 4 
3 1 4 
1 1 5 
3 2 4 
1 
k 

2 
1 

5 
6 

1 
1 

1 
2 

7 
b 

1 2 7 
5 1 7 
1 1 8 
5 ? 7 
1 2 8 
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ITYPE IO MEMO $FES IFIRSI ISECOND ITHIRD KO Jf
 

6 19 11 i 6 2 8 1 V 

IDEL JDEL KOEL ICLIM JLIM ILIM
 
12 6 1 2 2 8
 

NUM CYCLE SUEITER OFFSET IVAL JVAL KVAL
 
1 1 e 1 1
2 1 2 8 2 1 1
 
3 1 3 e 3 1 1
 
4 1 4 8 4 1 1
 
9 1 5 8 5 1 1
 
6 1 1 9 1 1 ?
 
7 1 2 9 2 1 2
 
q 1 3 9 3 1
 
9 1 4 9 4 1
 
10 1 5 9 5 1
 
11 1 1 10 1 1 3
 
12 1 2 10 2 1 3
 
13 1 3 Ic 3 1 3
 
14 1 4 IC 4 1 3

15 1 5 ic 5 1 3
 
16 1 1 C 1 1 4
 
1? 1 2 0 2 1 4
 
1f 1 3 C 3 1 ­
to 1 4 0 4 1 4
 
20 1 5 0 5 1 4
 
21 1 1 1 1 1 5
 
22 1 2 1 2 1 5
 
23 1 3 1 3 1 5 
24 1 4 1 4 1 5
 
25 1 5 1 5 1 5
 
26 1 1 2 1 1 6
 
27 1 2 2 2 1 6
 
28 1 3 2 3 1 b
 
29 1 4 2 4 1 6
 
30 1 5 2 5 1 6
 
31 1 1 3 1 1 7
 
3? 1 2 3 2 1 7
 
33 1 3 3 3 1 7
 
34 1 4 3 4 1 7
 
35 1 3 5- 1 7

36 1 1 4 1 1
 
37 1 2 4 2 1
 
38 1 3 4 3 1
 
39 1 4 4 4 1
 
40 1 5 4 5 1
 
41 2 1 2 6 1 1
 
42 2 1 3 6 1 
43 2 1 4 6 1
 
44 2 1 5 6 1 4
 
45 2 1 6 6 1 9
 
46 2 1 7 6 1 6
 
47 2 1 8 6 .1 7
 
48 2 1 9 6 1
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ITYPE 


1 


IDEL 

1 


NUM 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 

11 

12 


ITYPE 


2 


IDEL 

6 


NUm 

1 
2 

3 
4 
5 

6 
7 
8 

9 


10 

11 

12 

13 

14 

15 

oF 
19 

20 


ITYPE 


3 


IDEL 

12 


NUM 

1 
2 
3 

4 

5 

6 
7

8 
9 


10 
11 

12 

13 

14 

15 

16 


IAO MEMOD $PES IFIRST 


27 13 11 6 


JOEL KCEL ICLIM JLIM 

6 12 2 2 


CYCLE SUBITER OFFSFT 

I 1 1 

1 1 2 

1 1 3 

1 1 4 

1. 1 5 

1 1 6 

2 1 2 

2 1 3 

2 1 4 

2 1 5 

2 1 6 

2 1 7 


IAO MEMOD #PES IFIRST 


27 13 11 6 


JOEL KDEL ICLIM JLIM 
12 1 5 8 

CYCLE SUBIIER OFFSET 

1 1 1 
1 2 IC 
1 1 7 
1 2 3 
2 1 12 
2 2 8 
2 1 5 
2 2 1 
3 1 0 
3 2 6 
3 3 2 
3 1 3 
3 2 12 
3 3 E 
4 1 4 

4 2 6 
5 1 2 

5 1 8 


IAO MEMOC *PES IFIFST 


27 13 11 6 


JOEL KDEL ICLIM JLIM 

1 E 2 6 


CYCLE SLEIER OFFSET 
1 1 1 
1 1 C 
1 1 12 

1 1 11 

1 1 10 

1 1 9 
1 1 a 

1 1 7 
2 1 12 

2 1 i1 
2 1 lC 

2 1 9 

2 1 8 

2 1 7 

2 1 6 

2 1 5 


ISECONC .ITHIRD KO it 

2 8 1 1 

ILIM
 
6
 

IVAL JVAL KVAL
 
1 1 1 
2 1 1
 
3 1 1
 
4 1 1
 
5 1 1
 
6 1 1
 
1 2 0
 
2 2 6 
3 
4 2
 
5 2
 
6 2
 

ISECONE ITHIFD K.. JC
 

2 8 1
 

ILI"
 

IVAL JVAL K AL
 
1 1 

1 1
 
1 1
 
2 "1 1 
2 1 4
 

11 1
 
2 2 4
 
3 ? 1 
3 1 7
 
4 1 1
 
5 1 1
 
3 7
 
4 1
 
5 11
 
5 1
 

6 C1 
6 1
 
6 2 5
 

ISECOND ITPIRD NO JC
 

2 8 1 

ILIM
 
8
 

IVAL JVAL KVAL
 
1 1 1 
1 1 2 
1 1 3
 
1 1 4
 
1 1 5
 
1 1 6
 
1 1 7

1 1 8 
6 2 1
 
6 2 2 
6 2 3
 
6 2 4
 
6 2 5
 
6 2 6
 
6 2 7
 
6 2 8
 

A- 38 
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ITYPE IAO MEMOD #FES IFIPSI ISECONE II-IR (C J-: 

4 27 13 11 b 2 1 

ICEL 
1 

JOEL 
12 

KDEL 
6 

ICLIM 
2 

JLIM 
8 

ILI" 

NUM 
1 
2 

4 
5 

7 

9 
15 
11 
12 
13 
14 
15 
16 
1? 
16 

CYCLE 
1 
1 
1 
1-
1 
1 
1 
1. 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 

SUBITER 
1 
22 

2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 

IFFSET 
1 

2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
4 
52 
E 
7 
8 
9 

IVAL 
1 
1 
? 
2 

4 
4 
5 
5 
6 
b
1 

3 
4 
5 
6 

JVAL 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1
4 
4 

4 
4 
4 

t AL 

1 
1 
1 
1 

1 
i
1 

t 
2 

2 
I 

ITYPE IAO MEMOC $FES LFIST ISECONO IT.HIRD KO J( 

5 27 13 '11 6 2 6 1 1 

IrEL 
6 

JOEL 
1 

KOEL 
12 

ICLIN 
5 

AIM 
6 

ILIM 
2 

NIM 
1 
2 
3 
4 
5 
6 
7 
a 
9 

10 
11 
12 
13 
14 
15 
16 
17
18 
19 
20 
21 
E2 
23 
24 

CYCLE 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4. 
4 
5 
5 

SUEITER 
1 
2 
1 
2 
1 
2 
3
1 
2 
3 
1 
2 
3 
1 
2 
2 
1 
2 
3 
1 
2 
3 
1 
1 

OFFSET 
1 
7 
7 
c 
5 

11 
4

11 
4 

IC 
2 
e 
1 

1 
7 

12 
5 

11 
c 

11 
4 
9 
2 

IVAL 
1 
1 
1 
1 
5 
1 
1
6 
1 
1 
5 
1 
1 
5 
1 
1 
4 
1 
1 
4 
1 
1 
3 
3 

JVAL 
1 
1 

2 
1 
1 

- 1
2 
2 
2 
1 
1 
1 
2 
2 
2 
1 
1 
1 
2 

" 
2 
1 
2 

KVAL 
1 
2 
1 
2 
2 
3 
4
2 
3 
4 
4 

C 

4 

b 

7 

3 
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Appendix B
 
Extended or Squared Accessing
 

A-40
 



ITYPE IAO MEMOC #PES FIRST ISECON ITFIRD KC J
 

6 27 13 11 6 2 8 1 

IDEL JOEL KEL ICLIM JLTM IL'
 
12 6 1 2 2
 

NLM CYCLE SLEIIER OFFSET IVAL JVAL K AL
 
1 1 1 1 1 1 
2 1 2 3 1 1
 
3 1 3 5 1 1
 
4 1 4 7 4 19 1 9 1 
6 1 6 it 6 1 i
 
7 1 1 0 1 1 2
 

1 2 2 2 1 ­
1 - 4 3 1 ?)


10 1 4 6 A 1
 
11 1 5 e 5 1 /

12 1 E 1C 6 1
 
13 1 1 12 1 1
 
14 1 2 1 2 1
 
15 1 3 - 3 1
 
16 1 4 5 4 1
 
17 1 5 .1 5 1
 
18 1 E 9 6 1 s
 
19 1 1 11 1 1 4
 
20 1 e C 2 1 4
 
21 1 3 2 3 1 4
 
22 1 4 4 4 1 4
 
23 1 5 E 5 1 4
 
24 1- 6 E 6 1 4
 
25 1 1 10 1 1
 
26 1 2 12 2 1
 
27 1 3 1 3 1
 
26 1 4 3 4 1
 
29 1 5 5 5 1 5
 
0 1 6 7 6 1 5
 

31 1 1 9 1 1
 
32 1 2 11 2 1 6
 
33 1 3 c 3 1 ,

34 1 4 2 4 1
 
315 1 5 4 5 1
 
36 1 6 E 6 1 6
 
37 1 1 - e 1 1
 
38 1 a Ic 1 7
 
39 1 3 12 3 1 1
 
40 1 4 1 4 1 7
 
41 1 ' 3 5 1 7
 
42 15 6 1 7
 
43 1 1 7 1 1
 
£4 1 2 9 2 1 ,
 
45 1 *3 11 3 1 .
 
46 1 4 c 4 1
 
47 1 5 2 5 1
 
46 1 E 4 6 1 5
 
49 2 1 12 6 1
50 2 1 11 6 2 
51 2 1 !1C 6 2 3
 
52 2 1 9 6 4
!3 2 1 e 6 2 5 
54 2 1 7 6 2 6
 
55 2 1 6 6 c 7
 
56 2 1 5 6 2 F
 

ORIGINAL PAGE IS
 
OF POOR QUAITY
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ITYPE IAO MEMD #PES IFIRST ISECENt ITHIRD NO J9 

1 19 11 10 3 - 3 3 1 

IOEL JOEL NOEL ICLIM JLIM ILIM
 
1 3 9 1 3 -3
 

NUN CYCLE SLBITEF O FF SET IVAL JVAL KVAL
 
1 1 1 8 1 1 1
2 1 1 9 2 1 13 1 1 10 3 1 1 

ITYPE IAO MEMED #PES IFIRST ISECCNC ITHIRC KO JO 

2 19 11 10 3 3 1 

JOEL JOEL NOEL ICLIM JAIN ILIH
 
3 9 1 1 3 3
 

NUN CYCLE SUBITER OFFSET IVAL JVAL KVAL
 
1 1 1 8 1 1 1

2 1 2 4 2 1 13 1 3 0 3 1 1
4 1 1 0 1 2 1 
5 1 2 7 2 2 1
6 1 3 3 3 2 1 
1 1 1 3 1 3 18 1 2 10 2 3 19 1 3 6 3 3 1 

ITYPE IAO MENCO #PES IFIRST. -ISECCNE ITPIRI KC Ja 

3 19 11 10 3 3 3 1 

IDEL JOEL NOEL ICLIM JIM IL I
 
9 1 3 1 3 3
 

NUN CYCLE SUBITER OFFSET IVAL JVAL KVAL1 1 1 8 1 1 1
2 1 1 6 1 1 2
3 1 1 4 1 1 3. 

ITYPE IAO MENCO #PES IFIRST ISECCNE ITHIRC KO JO. 

4 19 11 10 3 3 3 1 

IDEL JOEL NOEL ICLIM JLIM ILIM
 
1 9 3 1 3 3
 

NUN CYCLE SUBITEF OFFSET IVAL JVAL KVAL
 
1 1 1 8 1 1 1
2 1 2 6 1 1 I

3 1 3 4 1 1 1

4 1 4 2 1 1 1
5 1 ,1 9 2 1 1
 
6 1 2 7 2 1 1
 

32 1
4 3 2 1 1
9 1 1 10 3 1 1

10 1 2 8 3 1 1
11 1 3 6 3- 1 1 
12 1 4 4 3 1 1 A-41 



ITYPE IAO MENCD #PES 'IFIRS-T ISECENE ITIRC KO jo 

5 19 11 10 - 3 3 3' 1 

IOEL JOEL KOEL ICLIM JLIM ILIH

3 1 9 1 3 3
 

NUM CYCLE SUBITER OFFSET IVAL JVAL KV&L
 
1 11 8 1 1 1

2 1 2 3 1 1 2
3 1 3 1 1"
4 1 1 0 1 1­
5 1 2 6 I 2 26 1 3 .1 1 2 3

1 1 1 3 1 1
 e 1 2 9 1 3 2
9 1 341 

ITYPE IAO MENLD #PES IFIRST ISECCN, *IT hIRC KO J3 

6 19 11 10 3 3 3 1 

JOEL JOEL KOEL ICLIM JLIM ILI 
9 3 1 1 3 3-

NUN 'CYCLE SUBITER O.FF SET IVAL JVAL KVAL

1 1 1 8 1 1 1

2 1 2 0 2 1 13 1 3 3 3 1 14 1 1 6 1 1 2
5 1 2 9 2 1 26 1 3 1 3 1 2
7 1 1 4 1 1 
e 1 2 7 2 1
9 1 3 10 3 1 

ORIGINAL PAGE IS 
OF POOR QUALMY 
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ITYPE IAO MEMOG IPES IFIRST ISECOND ITHIRD KO JC
 

1 19 11 iC 5 5 	 1 1
 

IEL JOEL KOEL ICLIM JLIM ILI.M 
1 5 25 3 5. 5 

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL
 
1 1 1 e 1 1 1
 
2 1 1 9 2 1 1
 
3 1 1 Ic 3 1 1
 
4 1 1 0 4 1 1
 
5 1 1 1 5 1 1
 
6 2 1 3 1 1 3
 
7 2 1 4 2 1 3
 
8, 2 1 5 3 '1
 
9 2 1 E 4 1 3
 
10 2 1 7 5 1 3
 
1 3 1 9 1 1 5
 
12 3 1 Ic 2 i 5
 
13 3 1 c 3 1 9
 
14 3 1 1 4 1
 
15 3 1 2 5 1 5
 

ITYPE IAO MEMOD #PES IFIRST ISECOND ITHIRD KO Jr.
 

2 19 11 iC 5 5 5 1 

IDEL JOEL KDEL I'CL1M JLIM ILl
 
5 "25 1 3 5
 

NUM 	 CYCLE SUEITER OFFSET IVAL. JVAL K AL
 
1 	 1 - 1 1
 

1- 2 5 1 1
 
1 I 2 1
 

4 1 2 10' 2
 
5 1 1 7 1
 
6 1 2 4 2 1
 
S1 1 1 4 1
 

1 2 9 4 1
 
9 1 1 E 5 1
 

11 1 2 3 z 5 1
 
11 2 1 Ic 3 1 1
 
12 2 2 7 4 1 1
 
13 2 1 4 3 1
 
14 2 2 1 4 2 1
 
15 2 1 9 3 3- 1

1,6 2 2 6 4 3 1
 
17 2 1 3 3 4 1
 
18 2 2 c 4 4 1
 
19 2 1 8 3 	 1

20 2 2 5 4 5 1
 
21 3 1 1 5 1 t
 
22 3 1 6 5 2 1

23 3 1 C 5 3 1
 
24, 3 1 5 1 4 1
 
25 3 1 1O 5 5 1
 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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ITYPE IAO MEMOD IPES IFIRST ISECOND ITHIRD KO JC 

3 19 1-1 1C 5 5 5 1 

IDEL JOEL KEEL ICLIM JLIM ILIM

25 1 5 3 5 5 

NUM CYCLE SUEITER OFFSET IVAL JVAL KVAL
1 1 1 e 1 I- 11 1 1 0 1 

3 1 1 3 1 1 3
 
4 1 1 6 1 1 4
 
5 1 1 9 1 1 5
6 2 1 7 1 3 1 
7 2 1 10 1 3 2
8 2 1 2 1 3 3
 
Q 2 1 5 1 3 4
 

10 2 1 e 1 3 5
 
13 3 1 6 1 11
 
12 3 1 9 1 5 2
 
13 3 1 1 1 5 ,

14 3 1 4 1 4

15 3 1 7 1 5 

ITYPE IAO MEMOO $PES IFIRST ISECONC ITHIR.O KO Jc
 

4 19, 11 iC 5 5 5 1 

IDEL JOEL KEEL IC.IM JLIM ILl"
 
1 25 5 3 5
 

NUm CYCLE SUEITER OFFSET IWAL JVAL K AL
 
1 1 1 e .I 1

2 1 2 9 1 1 
3 1 1 9 1 1
4 1 2 I 2 1 1
 
5 1 1 1,0 3 1 1
 
6 1 2 G 3 1 1
 
7 1 1 0 4 1 1
 
a 1 2 1 4 1 1
 
9 1 1 1 5 1 1
 

10 1 2 2 5 1 1 
11 2- 1 7 1 1 1

-12 2 2 8 1 1 3

13 2 1 e 2 1 3


.14 2 2 9 2 1 3 
15 2 1 9 3 1 3
 
16 2 2 10 3 1 3
 
17 2 1 10 4 1 3
 
1 2 2 c 4 1 3 
19 2 1 C 5 1 3
 
20 2 2 1 5 1 3
 
21 3 1 6 1 1 5
 
22 3 1 7 2 1 5
 
23 3 1 8 3 1 5
 
24 3 1 9 4 1. 5
 
25 3 1 tO 5 1 5
 

SALA Q 
ORII~iLPAGE IS 
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ITYPE IAO MEMOD APES IFIRST ISECOND ITHIRD KO JC
 

5 19 11 1C 5 5 5 1 

IDEL JOEL KDEL ICLIM JLIM ILIM
 
5 1 25 3 5 5
 

NUM CYCLE SUBITER OFFSET IVAL JVAL KVAL 
1 1 1 8 1 1 1 
2 1 2 6 1 1 2 
3 1 1 2 1 2 1 
4 1 2 a 1 2 2 
5 1 1 7 1 3 1 
5 1 2 5 1 3 2 
7 1 1 1 1 4 1 
8 1 2 10 1 4 ? 
9 1 i 6 1 1 
I1 1 2 4 1 5
 
II 2 1 3 1 1 3
 
12 2 2 1 1 1 4 
13 2 1 e 1 2 3 
1 2 2 6 1 ? 4 
15 2 1 2 1 3 3
 
16 2 2 C 1 3 4
 
1? 2 1 7 1 4 3
 .
1 2 2 5 1 4 4 
19 2 1 1 1 5 
20 2 2 IC 1 5 4 
21 3 1 9 1 1 5 
22 3 1 3 1 2 5 
23 3 1 8 1 3 5 
24 3 1 2 1 4 5 
25 3 1 1 1 S S 

ITYPE IAO MEMOD IPES IFIRST ISECOND ITHIkD KO JC
 

6 19 11 iC 5 5 5 1
 

IDEL JOEL KDEL ICLIM JLIM IL I, 
25 5 1 3 5 

NUN CYCLE SUEITER OFFSET IVAL JVAL K AL
 
1 1 1 8 1 1 
2 1 2 6 1 1 
, 1 1 0 1 1 
4 1 c 9 2 1 ? 
5 1 1 3 1 1 3 
6 1 2 1 2 1 3 
7 1 1 E 1 1 4 
8 1 2 4 2 1 4 
9 1 1 9 1 1 5 

10 1 2 7 2 1 5 
11 2 1 1c 3 1 1 
12 2 2 8 4 1 1 
13 2 1 2 3 1 "2 
14 2 2 0 4 1 2 
15 2 1 5 3 1 3 
16 2 2 3 4 1 3 
17 2 1 e 3 1 4 
18 2 2 6 4 1 4 
19 2 1 C 3 1 9 
20 2 2 9 4 1 5 
21 3 1 1 5 1 1
 
22 3 1 4 5 1 2
 
23 3 1 7 5 1 3
 
24 3 1 IC 5 1 4
 
25 3 1 2 5 1 5
 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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ITYPE IAO MEMOC PES IFIRST ISECOND ITHIRD KO .JC
 

1 27 13 11 *6 6 6 1 

ICEL JOEL KDEL ICLIM JLIM ILIM
 
1 6 36 4 6 6
 

NUM CYCLE SUEITER OFFSET ]VAL JVAL IVAL 
1 1 1 1 1 1 1 
2 1 1 2 2 1 1 
3 1 1 3 3 1 1 
4 1 1 4 4 1 1 
5 1 1 5 5 1 1 
6 1 1 E 6 1 1 
7 2 1 2 1 6 2 

1 3 2 6 2 
9 2 1, 4 3 6
8 2 

10 2 1 5 4, 6 2
 
11 2 1 6 5 6 ?
 

2
12 2 1 7 6 6 

13 3 1 3 1. 5 4
 

4
 
15 3 1 5 3 5 4
 
16 3 1 6 4 5 4
 
.17 3 1 7 5 5 4 

14 3 1 4" 2 q 

4
18 3 1 e 6 5 
19 4 1 4 1 4 6
 
20 4 1 5 2 4 6
 

6
 
22 4 1 7 4 4 6
 
23 4 1 8 5 4 6
 
24 4 1 9 6 4 6
 

21 4 1 E 3 4 


OF POOR QUAUM
ORLIGAL~ PAE 1­
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ITYPE IAG MEMOD #PES IFIRST ISECOND ITFIRD 1(0 -JC
 

2 27 13 11 6 6 6 1
 

ICEL JOEL KOEL ICLIM JLIM ILI'
 
6 3-6 1 4 6
 

NUM CYCLE' SUEITER OFF5ET IVAL JVAL ?('AL 
1 1 1 1 1 1 
2 1 2 7 1 1 
3 1 1 7 1 11 
4 1 2 0 2 ? 1 
5 1 1 c 1 3 1 
6 1 2 6 2 3 1 
T 1 1 6 1 4 '1
 
8 1 2 12 2 4 1
 
9 1 1 12 1 5 1
 
13 1 z 5 2 5 1
 
11 1 1 5 1 6 1
 
12 1 2 11 2 6 1
 
13 2 1 C 2 1 6
 
14 2 2 6 3 1 1
 
15 2 3 12 4 1 1
 
16 2 1 6 2 2 6
 
1? 2 2 12 3 1
 
18 2 3 5 4 1
 
19 2 1 12 2 3 6
 
20 2 2 5 3 3 1
 
21 2 3 11 4 3 1
 
22 2 1 5 2 4 6
 
23 2 2 11 3' 4 1
 
24' 2 3 4 4 4 1
 
25 2 1 11 2 5 6
 
26 2 2 4 3 5 1
 
27 2 3 Ic 4 5 1
 
28 2 1 4 2 6 6
 
29 2 2 10 3 6 1
 
30 2 3 4 6 1
 
31 3 154 1 5
 
32 3 2 11 5 1 1
 
33 3 3 4 6 1 1
 
34 3 1 11 4 2 5
 
35 -3 2 4 5 1
 
36 3 3 I 6 2 1
 
37 3 1 4 4 3 5
 
38 3 2 10 5 3 1
 
39 3 3 3, 6 3 1
 
40 3 1 Ic 4 4 5
 
41 3 2 3 $ 4 1
 
42 3 3 9 6 4
 
43 3 1 3 4 5 5
 
44 3 2 9 5 5 1
 
45 3 3 2 6 5 1
 
46 3 1 9 4 6 9
 
47 3 2 2 5 6 1
 
48 3 "A a 6 6 1
 
49 4 1 iC 6 1 4
 
50 4 1 3 6 ? 4
 
91 4 1 9 6 3 4
 
5c' 4 1 2 6 4 4
 
53 4 1 8 6 5 4
 
54 4 1 1 6 6 4
 



ITYPE 


3 


IDEL 
36 


NUM 

1 
2 

3 
4 
5 
6 

7 

8 
9 

10 

Ii

12 

13 

14 

15 
16 

17 
18 

19 
20 
21 
22 

23 

24 


IAO MEMOD aPES IFIRST 


27 13 11 6 

JOEL KEL ICLIM JLIM 
1 6 4 6 

CYCLE SUEIIER OFFSET 
1 1 1 
1 1 11 
1 1 8 
1 1 5 
1 1 2 
,11 1 12 
2 1 12 

2 1 9 

2 1 6 

2 1 3 

2 1 a

2 1 IC 
3 1 i 
3 1 7 
3 1 4 
3 1 1 
3 1 11 
3 1 .2 

4 1 E 
4 1 5 

' 1 2 
4 1 12 
4 1 9 
4 1 6 

ISECUND ITHIRD KO JC
 

16 6 

ILIM 
6
 

IVAL JVAL KVAL
 
1 1 1 
1 1 2
 
1 1 3
 
1 1 4
 
1 1 5
 
1 1 6 
6 2 1
 
6 2 2
 
6 2 3
 
6 2 4
 
6 2 5
 
6 2 6 
5 4 1 
5 4 ?
 
5 4 3 
5 4 4
 
5 4 5 
5 4 6
 
4 3 1 
4 6 2 
4 6 3 
4 6 4
 
4- 6 5
 
4 6 6
 

ORIGINAL PAGE IS
 

OF pooR QUALITY
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IFIRST. I-SECOND ITHIRD- KO Je
ITYPE IAO MEMOD #PES 


4 27 13 A11 6 6 6 1
 

IDEL JOEL KOEL ICLIM JLIM ILIM
 
1 36 6 4 6 b
 

NUM CYCLE SUEIIER OFFSET IVAL JVAL KAL 
1 1 11 1 1 
2 1 2 12 1 1
 
3 1 2 1 

4 1 2 0 1 1 
5 1 1 3 3 1 1 
6 1 2 1 3 1 1 
7 1 1 4 4 1 1 
8 1 2 2 4 "1 1 
9 1 1 5 1 1 

10) 1 5 1 1 
1 6 6 1 111 1 


12 1 2 4 6 1 1
 
13 2 1 5 1 6 2
 

1 2
14 2 2 3 6 

15 2 3 1 1 6
 
16 2 1 6 2 6
 
17 2 2 4 2 6 2
 
13 2 3 2 2 6 2
 
19 2 1 7 3 6 2
 

2
20 2 2 5 3 6 

21 2 3 3 3 6 2
 

1 e 4 6 2
 
23 2 2 6 4 6 ?

22 2 


24 2 3 4 4 6
 
25 2" 1 9 5 6 2 
26 2 2 7 5 6 ? 

5 6 ­27 2 3 5 

28 2 1 iC 6 6 2 
29 2 2 e 6 6 2 
30 2 3 6 6 6 2 
31 3 1 7 1 5 4 
'2 3 2 5 1 5 4 

3 3 1 , 433 3 

34 3 1 8 2 "5 4
 
35 3 2 6 2 5 4
 
36 3 3 4 2 5 4
 
17 3 1 9 3 5 4 
18 3 2 7 3 5 4 
39 3 3 5 3 5 4 
40 3 1 lc 4 5 4 
41 3 2 e 4 5 4 
42 3 3 6 4 5 4 
43 3 1 11 5 4 
44 3 2 9 5 5 4 

4
 

46 3 1 12 6 '5 4
 
45 3 3 7 5 5 


4? 3 2 10 6 5 4
 
48 3 3 8 6 9 4 

6
49 4 1 9 1 4 

50 4 1 1C 2 4 6
 
51 4 1 11 3 4 6
 
2 4 1 12 4 4 6
 

53 4 1 0 5 4 6
 
54 4 1 1 6 4 6
 

A-49
 



#PES IFIRST ISECOND ITHIRD KO JC
1TYPE IAO HEMOC 


I5 27 13 11 6 6 6 


IDEL JOEL KDEL ICLIM JLIM ILIM
 
6 1 36 4 6 6
 

IVAL KVAL
NUM CYCLE SUEITER OFFSET JVAL 

1 11 1 1 1 1 

2 1 2 5 1 1 2 
1 2 13 1 1 7 

4 1 11 1 2 2
 
5 1 1 c 1 3 1 
6 1 2 4 1 ,3 2 

1 11 6 1 4 1 
8 1 2 IC 1 4 2 
9 1 1 12 1 5 1 

2
10 1 2 3 1 5 

11 1 1 5 1 6 
 I"
 

?
 
13 2 1 3 6 1 2
 
12 1 2 9 1 6 


1 1 3
14 2 2 7 

1 1 4
15 2 3 11 

1 6 2
16 2 9 2 

17 2 2 0 1 2 3
 

3 1 4
18 2 4 ? 

1 6 2
19 2 2 3 


6 3
20 2 2 1 3
 
21 2 3 10 1 3 4
 

2 1 e 6 4 2
22 

23 2 2 12 1 4 3
 

3 3 1 4 4
24 2 

25 2 1 1 
 6 5
 
26 2 2 5 
 1 5 3
 

1 5 4
2? 2 3 9 

28 2 1 7 6 6 2
 

329 2 2 11 1 6 
3 1 4
30 2 2 6 


4
!1 3 1 9 5 1 

C 1
32 3 2 1 5
 

1 6
33 3 3 4 1 

34 3 1 2 5 2 4
 

1 2 5
35 3 2 6 

1 Z 636 3 3 10 

37 3 1 8 5 3 4 
1 3 5
38 3 2 12 

3 1 1
39 3 3 3 

1 5 4 4
40 3 1 


5
-2 1
41 3 5 4 

3 1 6
42 3 9 4 


7 5
43 3 1 5 4
 
44 3 2 11 1 5 5
 

3 2 1 5 6
45 3 

1 ( 5 6 4
46 3 

2 4 1 6 5
47 3 


1 6 6
48 3 3 8 

1 4 6
49 4 2 1 


6
50 4 1 e 4 2 

1 4 6
51 4 1 3 

1 4 6
52 4 7 4 

1 4 6
53 4 C 5 


6
.1 4
54 4 6 6 
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ITYPE IAO MEMOD NPES IFIRST ISECOND ITHIRD KO JC
 

6 27 


IDEL JOEL 

36 6 


NUM CYCLE
1 1 


2 1 

3 1 

4 1 

5 1 

6 1 

7 1 

8 1 

9 1 


10 1 

11 1 

1? 1 

13 2 

14 2 

15 2 

16 2 

17 2 

18 2 

19 2 

20 2 

21 2 

22 2' 

23 2 

24 2 

25 2 

26 2 

27 2 

28 2 

29 2 

30 2 

31 3 

32 3 

33 3 

34 3 

35 3 

36 3 

37 3 

38 3 

39 3 

40 3 

41 3 

42 3 

43 3 

44 3 

45 3 

46 3 
47 3 

48 3 

49 4 

50 4 

51 4 

52 4 

53 4 

54 4 


13 11 6 


KEEL ICLIM JLIM 

1 4 6
 

SIJBITER OFFSET
1 1 

2 5 

1 11 

2 2 

1 8 

2 12 

1 5 

2 9 

1 2 

2 6 

1 12 

2 3 

1 6 

2 iC 

3 1 

1 3 

2 7 

3 11 

1 C 

2 4 

3' 8 

1 ic 

2 1 

3 5 

1 7 

2 11 

3' 2 

1 4 

2 e 

3 12 

1 2 

2 6 

3 10 

1 12 

2 3 

3 7 

1 9 

-2 C 

3 4 

1 E 

2 IC 

3 1 

1 3 

2 7 

3 11 

1 0 

2 4 

3 8 

1 11 

1 e 

1 5 

1 2 

1 12 

1 9 


6 


ILIM
 

IVAL
1 


i 

2 

1 

2 

1 

2 

1 

2 

1 

2 

2 

3 

4 

2 

3 

4 

2 

3 

4 

2. 

3 

4 

2 

3 

4 

2 

3 

4 

4 

5 

6 

4 

5 

6 

4 

5 

6 

4 

5 

6 

4 

5 

6 

4 

5 

6 

6 

6 

6 

6 

6 

6 


6 


JVAL
1
 
1 

I
 
1 

1 

1 

1 

1 

1 

1 

1 

1 

6 

1 

1 

6 

1 

1 

6 

1 

1 

6 

1 

1 

6 

1 

1
 
6 

1 

1 

5 

1 

1 

5 

1 

1 

5 

-1 

-1 

5 

1 

1 

5 

1 

1 

5 

1 

1 

4 

4 

4 

4 

4 

4 


1
 

K AL
 

1
 

2
 
3
 
3
 
4
 
4
 
5
 
5
 
6
 
6
 
1
 
1
 
1
 
2
 
2

? 
3
 
3
 
3
 
4
 
4
 
4
 
5
 
5
 

6
 
6
 
6
 
1
 
1
 
1
 
2
 
2
 
2
 
3
 
3
 
3
 
4
 
4
 
4
 
5
 
5
 
5
 
6
 
6
 
6
 
1
 
2
 
3
 
4
 
5
 
6
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ITYPE lAG HEMOD SPES IFIRST ISECOND ITHIRD KO JC 

1 19 11 1C 1 7 7 1 

IDEL JOEL KEL ICLIN JLIM ILIM
 
1 7 49 5 7 7
 

NUN CYCLE SEITER OFFSET IVAL JVAL KVAL 
1 1 1 8 1 1 1 
2 1 1 9 '2 1 1 
3 1 1 10 3 1 1 
4 4 1 0 4 1 1 
5 1 1 1 5 1 1 
6 1 1 2 6 1 1 
7 1 1 3 7 1 1 
8 2 1 1 '1 4 
9 2 1 2 2 4 
10 2 1 3 .3 4
 
11 2 1 4 4 4
 
12 2 1 5 5 4 2
 
13 2 1 6 6 4 2
 
14 2 1 7 7 4 2
 
15 3 1 5 1 7 3
 
16 3 1 6 2 7 3
 
17 3 1 7 3 7 3
 
18 3 1 e 4 7 3
 
19 3 1 9 5 7 3
 
20 3 1 1C 6 7 3 
21 3 1 a 7 7 3 
22 4 1 9 1 3 5 
23 4 1 10 2 3 5 
24 4 1 0 3 3 5 
25 4 1 1 4 3 5
 
26 4 1 2 5 3 5 
27 4 1 3 6 3 5 
28 4 1 4 7 3 5
 
29 5 1 2 1 6 6
 
30 5 1 3 2 6 6
 
31 5 1 4 3 6 6
 
32 5 1 5 4 6 6
 
!3 5 1 6 5 6 6
 
34 5 1 7 6 6 6
 
35 5 1 8 7 6 6
 

ITYPE IAO HEMOC *PES IFIRST ISECOND ITHIC K) Jr
 

19 11 1C 7 7 7 1 

IDEL JOEL KCEL ICLIN JLTH ILIm 
1 49 1 5 7 7 

NUN CYCLE SCEIlER OFFSET IVAL JVAL K AL 
1 1 1 8 1 1 i 
2 1 2 7 1 1 
3 1 1 4 1 1 

OR O t 4 1 2 3 2 

O)FBO Q l 65 11 12 100 2
1 3

3 
1
11 

1 11 7 1 4 1 
8 1 2 6 2 4 1 
9 1 1 3 1 j I 

10 1 2 2 2 5 1 
11 1 1 10 1 6 1 
12 1 2 9 2 6 1 
13 1 1 6 1 7 1 
14 1 2 5 2 7 1 
15 2 1 2 2 1 4 
16 2 2 1 3 1 1 
17 2, 1 9 2 2 4 
18 2 2 E 3 2 1 
19 2 1 5 '2 3 4 
20 2 2 4 3 3 1 
21 2 1 1 2 4 4
 
22 2 2 0 3 4 1
 
23 2 1 8 2 5 4
 
24 2 2 7 3 5 1
 
25 2 1 4 2 6 4 A-52
 
26 2 2 3 3 6 1
 



27 2 i c 2 7 4
 
z8 2 2 10 3 7 1
 
29 3 1 7 3 1 7
 
30 3 2 6 4 1 1
 
1 3 3 5 5 1 t
 
32 3 1 3 3 2 7
 
33 3 2 2 4 2 1
 
34 3 3 1 5 ? 1
 
35 3 1 1o 3 3 7
 
36 3 2 9 4 3 1
 
37 3 3 8 5 3 1
 
38 3 1 6 3 4 7
 
39 3 2 5 4 4 1
 
40 3 3 4 5 4 1
 
41 3 1 2 3 77
 
42 3 2 1 4 5 1
 
43 3 3 0 5 5 1
 
44 3 1 9 3 6 7
 
45 3 2 e 4 6 1
 
46 3 3 7 5 6 1
 
47 3 1 5 3 7 7
 
48 3 2 4 4 7 1
 
49 3 3 3 5 7 1
 
!0 4 1 C 5 1 3
 
51 4 2 1o 6 1 1
 
52 4 1 7 5 2 3
 
A3 4 2 6 6 2 1
 
54 4 1 3 5 3 3
 
55 4 2 2 6 3 1
 
56 4 1 1C 5 4 3
 
57 4 2 9 6 4 1
 
58 4 1 6 5 5 3
 
59 4 2 5 6 5 1
 
IO 4 1 2 5 6 3
 
61 4 2 1 6 6 1
 
62 4 1 9 5 7 3
 
E63 4 2 8 6 7 1
 
64 5 1 5 6 1 6 
65 5 2 4 7 1 1
 
66 5 1 1 6 2 6
 
67 5 2 0 7 2 1
 
68 5 1 8 6 3 6
 
69 5 2 7 7 3 1
 
70 5 1 4 6 4 6
 
71 5 2 3 7 4 1 
72 5 1 0 6 5
 
7,3 5 	 110 T 5 1 

6 6 6
 
75 52

74, 5 1 7 


6 7 6 1
 
76 5 1 
 3 	 6 7 6
 

7 7 1
77 5 2 2 

I1YPt IAO MEMOD #PES IFIRST ISECOND ITHIRD KO JC 

3 19 	 11 10 7 7 7 1 

IDEL JOEL KDEL ICLIM JIN iL14
 
49 1 7 5 7 7
 

NUN CYCLE SUEITER OFFSET iVAL JVAL K AL 
1 1 1 8 1 1 1 
2 1 1 2 1 1 
3 1 1 7 1 1 3 
4 1 1 1 1 1 4 
5 1 1 6 1 99 
6 1 1 0 1 1 6 
7 1 1 5 1 1 7 
8 2 1 7 4 ? 1
 
9 2 1 1 4 2 2
 

10 2 1 6 4 2 3
 
11 2 1 0 4 2 4
 
12 2 1 5 4 2 5
 
13 2 1 10 4 2 6
 
14 2 1 4 4 2 7
 
15 3 1 6 7 3 1
 
16 3 1 0 7 3 z
 
17 3 1 5 7 3 3
 
18 3 1 1C 7 3 4 A-53
 
19 3 1 4 7 3 5
 
20 3 1 9 7 3 6
 
21 3 1 3 7 3 
 7
 



22 4 i 5 3 5 1 
23 4 L le 3 5 2 
24 4 1 4 
 3 5 3
 
25 4 1 9 
 3 5 4
 
26 4 1 3 
 3 5 5
 
2F 4 1 8 3 5 6
 

1 2 3 9 7
28 4 

1 4 6 6 1
 

!0 5 1 9 6 6 2
 
29 5 


1 5 1 3 6 6 3 
33 5 1 2 6 6 5 
34 5 1 1 6 6 6 
35 5 1 1 6 6 7 

ITYPE IAO MEMOD #PES IFIRST ISECONO ITHIRD hO JC
 

4 19 11 iC 7 1 7 1 

IDEL JOEL KOEL ICLIM JLIn IlM
 
1 49 7 5 • 7 7
 

NUN CYCLE SUBItER OFFSET IVAL JVAL KVAL 
1 1 1 e 1 1 1 
2 1 2 2 1 1 1 
3 1 1 9 2 1 1 
4 1 2 3 2 1 1 
.5 1 1 10 3 1 1 
6 1 2 4 3 1 1 
7 1 1 0 4 1 1 

11 2 5 4 1 1 
9 1 1 1 5 1 1 

10 1 2 6 5 1 1
 
11 1 1 2 6 1 1
 
12 1 2 7 6 1 1 
13 1 1 3 7 1 1 
14 1 2 e 7 1 1 
15 2 1 a 1 4 2 
16 2 2 2 1 4 2
 
17 2 1 9 2 4 ?
 
1 2 2 3 2 4 2
 
19 2 1 10 3 4 2
 
20 2 2 4 3 4 2
 
21 2 1 0 4 4 ?
 
22 2 2 5 4 4 
23 2 1 1 5 A 2 
24 2 2 6 5 4 2 
25 2 1 2 6 4 2 
26 2 2 7 6 4 2
 
27 2 1 3 1 4 2
 
28 2 2 8 7 4 2 
29 3 1 8 1 7 3
 
30 3 2 2 1 7 3
 
31 3 3 7 1 7 3 
32 3 1 9 2 7 3
 
33 3 Z2 3 2 7 3 

0 of 35 3 3 10 2 7 3 
3 3 I 2 7 3
 

37 3 3 9 3 7 3
 
38 3 1 0 4 7 3
 
39 3 2 5 4 7 3
 
40 3 3 10 4 7 3
 
41 3 1 1 5 7 3
 
42 3 2 6 5 7 3
 
43 3 3 0 5 7 3
 
44 3 1 2 6 l 3
 
45 3 2 7 6 7 3
 
46 3 3 1 6 7 3
 
47 3 1 3 7 7 3
 
48 3 2 8 7 7 3 
49 3 3 2 7 7 3
 
50 4 1 2 1 3 5
 
51 4 2 1 1 3 5 
52 4 1 3 2 3 5 
53 4 2 8 2 3 5 
54 4 1 4 3 3 5 
55 4 2 9 3 3 9 
56 4 1 5 4 3 5
 
57' 4 2 10 4 3 5
 .a 4 1 6 5 3 5 A-54
 
59 4 2 0 5 3 5
 



60 4 i 7 6 3 561 4 2 1 6 3 5
 
62 4 1 8 7 3 5
63 4 2 2 7 3 5
 
64 5 1 2 1 6 6
 
65 5 2 7 1 6 
 6
 
66 5 3 1 1 6 6 
E7 5 I - 2 6 668 5 2 t 2 6 6

69 5 3 2 66 6
 
70 5 1 4 3 6 6
 
r1 5 2 9 3 6 6 
72 5 3 3 6 6
73 5 1 5 4 6 
 6

74 5 2 10 4 6 675 5 3 4 4 6 6
 
76 5 1 6 5 6
 
77 5 2 0 5 6
 
78 5 3 5 5 6 4
 
79 5 1 7 6 6
 
80 5 2 1 6 6 •
 
f1 5 2 6 6 6

e2 5 1 6 7 6
 
63 5 2 2 7 6
 
84. 5 3 7 7 6
 

ITYPE IAO EHO IPES IF[RST ISECONt ITHIRD K0 JC
 

5 19 11 IC 7 7' 1 1 

IOEL JOEL KDEL ICLIM JLI ILIM
 
7 1 AS 5 7 7
 

NUN CYCLE SU61IER OFFSET IVAL JYAL NVAL

1 1 1 8 1 1 1 
2 11 2 6 1 1 2 
3 1 1 4 1 ? 1
 
4 1 2 2 1 2 2

5 11 0 1 3 1

6 1 2 9 1 3 2
 
7 1 1 7 1 4 1

8 1 2 5 1 4 2 
9 1 
 1 3 1 5 1

10 I - 1 1 5
11 1 1 10 1 6 
 1
 
12 1 
 2 a 1 6 2
 
13 1 1 6 1 7 1
 
14 1 2 4 1 7 ?
 
15 2' 1 5 4 1 2 
16 2 2 3 1 1 3
 
17 2 1 1 4 2 2

1e 2 2 10 1 2 3 
19 2 1 6 4 3
 
20 2 2 6 1 3 
 3
 
21 z 1 4 4 4 2
22 2 2 2 1 4 3
 
23 2 1 C 4 5 2
 
24 2 ? 9 1 5 3
 
25 2 1 7 4 6 2

26 2 
 2 5 1 6 3

27 2 1 3 4 7 2
 
28 2 2 1 1 7 3
29 3 
 1 2 7 1 3
30 3 2 C 1 1 4
 
31 3 3 9 1 1 5
 
3 3 1 77 2 3
 
33 3 2 7 1 2 4
34 3 3 5 1 2 S
 
35 3 1 5 7 3 3

36 3 2 3 1 3 4
 
37 3 3 1 1 3 5
 
38 3 1 t 7 4 3
 
39 3 2 10 L 4 4

40 3 3 a 1 4 5
 
41 3 1 f 7 5 3
 
4 3 2 6 1 5 4 
43 
 3 3 4 1 544 3 1 4 7 6 3 A-55 

. 5 3 p 2 1 6 4 



1 6 546 3 3 0 
3 1 0 7 7 347 

9 748 3 2 1 4 
1 549 3 3 7 7 

50 4 1 8 3 1 5 
51 4 2 6 1 6 
52 4 1 4 3 2 

z . 653 4 2 2 
554 4 1 0 3 3 

59 4 2 9 1 3 6 

6? 4
 
58 4 1 3 5 5
 
59 4 2 1 5 6
 
60 4 1 10 3 6 5
 

661 4 2 8 1 6 
1 6 3 7 5
 

63 4 2 4 1 7 6

62 4. 

64 5 1 5 6 1 6
 
65 5 2 3 1 1 7
 

666 5 1 1 6 2 
67 5 2 10 1 2 7
 
68 5 1 8 6 3 6
 
69 5 2 6 1 3 7
 
70 5 1 4 6 ,4 6
 
71 5 2 2 ,1 4 7
 
72 5 1 0 6 5 6
 
73 5 2 9 1 5 7
 
74 5 1 7 6 6 6 

2 5 6 775 5 

76 5 1 3 6 7 6
 
7( 5 .2 1 1 7 1
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APPENDIX B 

SECDED RELIABILITY IMPROVEMENT MODELS 

B. 1 INTRODUCTION
 

The reliability of a computing system can be significantly improved by employing
 

single bit error correction and double bit error detection (SECDED) technology,
 

which is thus used by the FMP to increase its reliability.
 

The report presents a model of reliability improvement assessment of a module 

operated with SECDED. It can be easily embedded in the system reliability 

prediction model. The final result is shown in a mathematical expression. The 

bounds of the reliability and the improvement factor are studied. A computer 

program coded on FORTRAN is also developed and validated, with double 

precision computation. 

B.2 MODEL 

There are n chips in a module; a chip has m bits. A word which consists of n 

bits can be stored in this module by addressing each bit to a different chip. 

Without SECDED a bit failure induces the chip failure and the module failure as 

well. Assume the time to failure of a bit is exponential distributed, then the 

time to failure of a chip and that of a module are also exponential distributed. 

ORIGINAL PAGE IS 

OF POOR QJAITY
 

B-I 



In some cases, a bit hard failure could cause a chip failure with probability 

(I-S). We call it 	 a catastrophic bit failure. Otherwise a bit failure is called 

non-catastrophic 	bit failure with probability S. Assuming the MTBF of the 

chip as a time unit, we have that the MTBF of a bit is m time units and the 

bit failure rate is I/r/. The MTBF and the failure rate of a module are I/n 

and n respectively. The expected time between (i-1)th and ith bit failure, the 

expected time to 	ith bit failure, the probability of no two-bit failure in one 

word and the probability of two-bit failure in one word are stated in Table B-i. 

The module fails at the ith bit failure only when there is neither catastrophic 

failure nor two-bit failure in the same word before the ith bit failure, but 

there is a catastrophic failure or two-bit failure in the same word when the 

ith bit failure occurs. Since the transient and catastrophic failures of a module 

at the ith bit failure are mutually exclusive, the MTBF of a module with 

SECDED is given by 

n-i}MTBFm = (1 -S) 4I + 

+ 	 m M i-1 n(rn-(k--l)) si)____i 

m nn-(k-l)ra -1 ) S ) + mn(i-1) 

n-1-Ltjni­

B-2 



Table B-i. Expected Times and Probabilities 

ith bit failure 1 2 iI i m m+ 

Expected time 
between the (i-i)th 
and ith bit failure 

m 
mn 

m 
rn-i 

m 
-­ 62) 

m 
mn-(-

m 
mn-(m-1) 

m 
mn-rn 

Expected time 
to the ith bit 
failure 

m 
mn 

m 
mn-1 

+ In 
mn 

i-1 
E 
k=i 

m 

mn-(k-i) 

i 

k=i 

m 

mn-(k-1) 

m 
z 
k-1 

m 

mn-{k-1) 

m+1 

k=1 

m 

mn-(k-I-

Prob. of the ith 
bit failure being 
non-catastrophic 
failure 

S S S S S S 

00 

Prob. of the ith 
bit failure being 
catastrophic 
failure 

1-S 1-S i-S 1-S 1-S i-S 

pProb.
8 of no. two 

bit failure in 
one word 

1 n(m-1) 
n-i 

n(m-(i-2)) 
mn-(i-2) 

n(m-(i-1)) 
mn-(i-1) 

n-1 
mn-(m-1) 

0 

Prob. ot two 
bit failure in 
one word 

0 n-1 
mn-1 

n-(i-2) 
mn-(i-2) 

n)i-1) 
mn-(i-1) 

n(m-1) 
mn-(m-1) 

CA 

I 



From the above expression, the reliability improvement factor can be shown as 

n. MTBF m . When S=l, we have the upper bound of the factor' and MTBFm As. 

S=O, we have the lower bound of the factor and MTBF m , if m is large enough the 

lower bound of the factor is 2. 

If the expected time between the (iPl)th and ith failure is fixed as n time units the 

expected time to th6 ith bit failure is i. n. The M/fTBF of a module with SECDED 

is given by: 

(1 - S) 2MTBF 
m 	 n 

+ 	 i jL n(m-(k-1)) S(i-1) S Sn(i-1) 
in (i-1)i=2 k=l mn-(k-i) 

+mm 	 . 
n LS mn-(k-1) 

[k= 1
 

Similarly as S=1 or 0, we have the upper bound or the lowerbound of the factor 

and MTBFm, respectively. When m is large enough the diff rence between the 

MTBF 's of the two models is negligible and so is that between the factors. The 

program for computing the reliability improvement factor are given in the 

Table B-2. 
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CARD #0001 

CARE #00o2 

CARD #0003 

CARt #0004 

CARD 50005 

CARE 50006 

CARC #0007 

CARC #0008 

CARD #0009 

CARD #0010 

CARE 10011 

CARE #0012 

CARE #0013 

CARE #0014 

CARD #0015 

CARC #0016 

CARD #0017 

CARE #0018 

CARD #0019 

CARO #0020 

CARD 10021 

CARE #0022 

CARD #0023 

CARE #0024 

CARE #0025 

CARE 50026 

CARC #0027 

CARD #0028 

CARD #0029 

CARD #0030 

CARE #0031 


o 0 CA #0032 

S#ARD 0033 


itc CARE #0034 

CARE #0035 

CARE #0036 

CARE #0037 

CARE #0038
d CARE #0039CARD #0040 


CARD #0041 

CARD 50042 

CARD 50043 

CARE #0044 

CARE #0045 

CARE #0046 


SUJROUTINE SECFAC(MvNvSrFAC)

C
 
C
 
C THE PROG. COMPUTES THE SEEDED RELIABILITY IMPROVEMENT FACTOR.
 
C N # OF BITS IN A CHIP. ---- (INPLT)

C N S OF CHIPS IN A NODULE. ALWAYS EQUAL TO 5 OF BITS IN A WORD 
C 

C S THE PROS. OF A NON-CATASTROPHIC BIT FAILURE. 

C FAC SECOED RELIABILITY IMPROVEMENT FACTORy

C DEFINED AS MTBF OF IHE MODULE WITH SECEED
 
C DEVIDED BY MTBF OF THE MODULE WITHOUT SECOED
 
C
 
C
 

IMPLICIT REAL*8(A-HO-Z)
 
FK=FLOAT(N)

FN=FLOAT(N)

FfIFN=FN*FN
 
SEDVI=I./FN

1=1
 
PI=I.
 

C COMPUTING EXPECTED MTBF GIVEN THE 1ST 

SUM=CI.-S)*(SED*,.i/(FN1I.))

SIml=l.
 
SI=SEDH
 
00 100 1=2.p+l

SIHI=SINZ*S
 

C STOP COMPUTING NEGLIGIBLE QUANTITY

IF(SINt.LE. 1.E-10) GO TO 200
 
FI=FLOAT(I)

FIMI=FLOAT(I-1)


C COMPUTING PROS. OF NO 2-BIT FAILUR IN ONE WORD tP 

PI=PI*CFM-(FI hI-i))*FN/(FMIFN-(FIlH-1.))


C COMPUTING EXP C ED TIHE UP TO THE ITH BIT FAILURE
 
SI=SI+FM/(FMTFN-FIMI)
 

---- (INPLT)

"--(INPLT)
 

--(OUTPLT)
 

C COMPUTINGSPROB. OF THE MODUtE.FAILURE AT THE ITH BIT FAILURE
 
S . S*(FIMI*FN)/(FNTF FIMl)

FPROB=SIMI*PI*S3
 

C STOP COMPUTING NEGLIGIBLE QUANTITY
IF(FPROB .LE. 1.E-20) GO TO 200
C COMPUTING EXPECTED PTBF GIVEN THE MODULE FAILED BEFORE OR
 
C AT THE 1 TH BIT FAILUR
 SUN UMSI*FPROB
 
100 CONTINUE
 
200 FAC=SUM*FN
 

RETURN
 
END
 

BIT FAILURE 
IS CATASTROPHIC CNE
 

TO THE ITH BIT FAILURE
 

Cr 

http:IF(SINt.LE


APPENDIX C 

SPARE PROCESSOR 

INTRODUCTION
 

In Chapter 5, the reliability and availability -calculations make use of the
 

switching of spare processors. This appendix presents the method of
 

switching in more detail, to support the claims made in Chapter 5. First,
 

a discussion of the hardware that needs to be added to support the switching,
 

and second, the implications for processor number are given.
 

SWITCHING
 

Figure C-i shows a switching network, which amounts to one additional level
 

of logic at the processor side of the transposition network. This network there­

fore increases the depth of the transposition network from ten levels to eleven
 

levels of logic. Switching is electronic, under software control. The
 

spare processor can occur at any location from processor 0 to processor 128
 

in the cabinet. Figure C-i shows the first cabinet; the others are similar.
 

No switching is needed inthe connections to and from the control unit. All
 

outputs from the control unit to processors are broadcast to all processors;
 

the inputs from processors to CU are either ANDed together with a 512 -way
 

AND, or ORed together with a 51 2 -way OR in the fanout boards. The fanout
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TRANSPOSITION NETWORK 
3 OTHER 
CABINETS 

128 
PER 

CABINET 

PROCESSORS 
NUMBERED: 0 1 2 3 4 H 2 2 

BELOW SPARE ABOVE SPARE 

Figure C-I. Switching of Spare Processor in One Cabinet 



board needs appropriate input from the spare processor to form the correct 

51 2 -way result. For example, in forming "all processors ready", or in 

forming "any processor enabled", the correct result will be achieved by 

having the spare processor's "enable" bit in the FALSE state. 

PROCESSOR NUMBER 

The PNO instruction produces processor numbers from 0 through 511 in the 

512 processors that are switched into the system, independently of which ones 

are spare. Each processor in the cabinet has wired into its backplane a 

number from 0 through 12a Each cabinet has a number (0, 1, 2, or 3) set by 

a switch at the cabinet Yanout board. If it were not for the spare processor, 

the cabinet number would be concatenated with the hard-wired number in the 

backplane to form the processor number. As it is, processors above the spare 

processor subtract 1 from their hard-wired number before concatenating it with 

the cabinet number to form the programmatic processor number as part of the 

PNO instruction. Thus, there are ten poles on each switch shown in Figure C-1. 

The eight data lines plus one strobe make nine poles for transposition network 

use, plus this bit for the PNO instruction to use in calculating the processor 

number. 

SETTING THE SPARE PROCESSOR SWITCH 

The setting of the spare processor switch is done only at a time when the array 

has halted. Switching is controlled from the diagnostic controller in response 

to commands from the host. Hence, the FMP programs are never aware of 

C-3 



which processor is spare, and as explained above, the FMP programs will 

always have an FMP of 512 processors, numbered from 0 through 511, on 

which to run. 
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