
(NASACFZ-1s2/ot
(1'AS-C-121~fPRELIMAINARY STUDY FOR A
 N78-19052
NUMERICAL AERODYNAMIC SIMULATION FACILITy.

PHASE 1: EXTENSION Control Data Corp., St.

Paul, Minn.) 434 p HC A19/MF A01 CSCL 01A Unclas

G3/02 08630

PRELIMINARY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

SUMMARY REPORT - PHASE 1 EXTENSION

By: N. R. Lincoln

FEBRUARY, 1978

Distribution of this report is provided in the interest of information
exchang'e. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9457 by:

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street
St. Paul, Minnesota 55112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

R EPVED
ItA SI FACULWM

SUMMARY REPORT - PHASE I EXTENSION

Phase I of the NASF study which was completed in October 1977 produced several conclusions about the
feasibility of construction of a flow model simulation facility. A computer structure was proposed for the
Navier-Stokes Solver (NSS), now called the Flow Model Processor (FMP), along with technological and
system approaches. Before such a system can enter an intensive design investigation phase several tasks
must be accomplished to establish uniformity and control over the remaining design steps, as well as clarifying
and amplifying certain portions of the conclusions drawn in Phase 1.

In order of priority these were seen as:

1. 	 Establishing a structure and format for documenting the design and implementation

of the FMP facility.

2. 	 Developing 'a complete, practically engineered design that would perform as claimed

in the Phase 1 report.

3. 	 Creating a design verification tool for NASA analysts, using a computerized simulation

system.

4. 	 Identifying key elements of the flow model three-dimensional codes to be used as
metrics for verifying the progress of FMP design against a set of predefined system
objectives.

S. 	 Developing a programming language specification for a proposed FMP language to be

tested by Ames and RADL personnel.

6. 	 Coding of the key elements in the experimental language.

7. 	 Hand compilation of the encoded program segment.

8. 	 Submission of the hand-compiled elements to the FMP simulator for timing and data

flow analysis.

9. 	 Documentation and "packaging" of the resulting simulator and input code to permit

NASA personnel to continue experiments and analysis.

10. 	 Development of sufficiently detailed functional descriptions as to permit NASA personnel

to develop their own simulations where necessary.

11. 	 Refinement of Reliability Analysis to include realistic estimates of component counts.

These tasks were attacked with all of the Phase I personnel plus three additional designers and mathematicians.
The major expenditure of time was in the revision and re-revision of the computer design and the production
of a CPU Instruction Specification and Functional Specification which are included as appendices to the
Final Report, and which were fundamental to all but the first task listed. An outline of the form and
desired content of the basic specifications for software and hardware were produced as guidance and structure

skeletons for future contract phases. The 3-D code analysis and language specification were not completed
in this phase, as the language direction was changed several times in this admittedly preliminary study phase
of the project.

S-1

PROJECT STATUS AND CONCLUSIONS

Most of the tasks undertaken in this extension phase were continuations of work initiated in Phase 1 of
the NASF study. All of the tasks are expected to continue in some form as the full NASF architecture
is defined in detail, and finally designed and implemented in subsequent phases of this project. The "best
effort" engaged by Control Data Corporation has resulted in the following task status:

1. 	 Hardware description

a. 	 Performance metrics - The three-dimensional implicit code was analyzed to determine
if extrapolations from the two-dimensional code done in Phase I were still valid. It
was found that the Ames guidance regarding the extrapolations were sound, and
conclusions about the computational load invoked by the 3-1) code still hold from the
Phase 1 report.

No time was spent on the explicit code beyond determining the FMP instruction
requirements for data dependent processing that differs in part from the implicit code
behavior. The result was a decision to retain the APL vector operations of vector
search and compare and the corresponding operations .of compress, mask and merge.
Bit string operations on long strings were eliminated as an unnecessary complication
to the hardware and supplanted by a scalar (non vector) form of handling bit string
operations. The performance degradation due to this change was estimated at less
than 1 percent for the entire code execution.

Pertinent segments of the implicit code were identified for further study. The sequence
of subroutines or subprocesses used in forming the tridiagonal matrices from sweeps in
the three mesh directions, and the tridiagonal solver constitute the obvious key computa
tional burden of the implicit code, while the memory accessing patterns for both Main
Memory and Backing Store can be derived from the examination of the AMATRX,
FILTRX, FILTRY, FILTRZ sequences. The conclusion is that for a "first-cut" validation
of the FMP hardware architecture, a minimum of these subprocesses and the BTRI/
LUDEC (Block tridiagonal solver and LU decomposer for the solver) should be pro
grammed, hand-compiled and simulated on the block-level simulator. In addition, the
mathematical behavior of these sequences should be analyzed to determine if, in all
practical cases, the arithmetic can be done in 32-bit mode to improve the throughput
characteristics of this code in the 64/32-bit pipelines of the proposed FMP.

A hand compilation of a segment of the beginning of the J sweep for the left
hand-side solution was accomplished. The limited code generated was constrained
by the time remaining after decisions were finalized on the FORTRAN extensions
to be proposed. This region of the code is critical to the performance of the
FMP since it exercises the memory system in the most inefficient manner possible
in the implicit code. Data cannot be streamed directly into vector arithmetic
operations, but first must be GATHERED from discontiguous columns of data in
the original mesh. With the minimal resources remaining, it was decided that this
sequence was the most interesting to hand-compile and block-model with the GPSS
simulator.

The sequence of instructions was submitted to the Version 1 FMP model, with the
result that a floating-point rate of 933 megaflops was achieved under these worst-case
conditions. The implication (which will be explored more thoroughly in the next
study phase) is that, in fact, this small segment is truly the worst worst-case and
thus the average computation rate will be well in excess of the one-gigaflop thresh
hold sought by NASA.

S-2

At the time of this writing, the hand compiling and block simulation have not been
completed, but should be available at the time of submission of the final report.

b. 	 Functional design - Design of the originally proposed Control Data FMP was revised and
a preliminary set of functional and instruction specifications was produced for the FMP.
The major design changes involved two main thrusts:

* 	 Reduction of complexity of the Map Unit and Vector Unit by
constrainingthe generality originally proposed for those units.

* 	 Improvements in reliability by increasing the amount of Single Error
Correction Double Error Detection encoding throughout the Vector
Units and associated buffers, the addition of more checking logic, and
an additional pipeline for "instantaneous" swapping into the vector
arithmetic ensemble as failures are detected.

The technological risks of using a new circuit family in the FMP which were strongly
emphasized in the Phase I report were re-examined and the decision was made to
proceed on two concurrent paths in the development of the FMP. These were to
pursue the new technological developments aggressively while at the same time, assessing
the configurations and reiabilities of the FMP as if it were to be built out of
existing ECL LSI as used in the STAR-100 program. It was decided to take an
approach to the newer generation LSI that would not invalidate all of the
architectural or block-level design, so that those tasks could proceed somewhat
independently of the technology development. This decision thus permits Control
Data 	 to postpone the recommendation for logic family until much later in the
design cycle, and thus delay consideration until more firm commitments can be
made 	 regarding the risks and schedules for a new logic family. It has been deter
mined as a bottom line that an FMP can be built, and operated with acceptable
reliability, from the existing ISI family being employed on the STAR-100A.

The block-level simulation system required by Ames personnel to permit an ongoing
verification of the design and the overall performance objectives is under development.
A last minute decision was made to base the first, highest-level design model on the
readily available General Purpose Simulation System (GPSS) so that it could be easily
installed at any site performing FMP analysis.

The first version of the simulator has been completed and is being delivered under
separate cover to NASA Ames with the submission of this Final Report. The
simulator provides a substantial amount of statistical data about the behavior of the
various FM!P units (Swap, Map, Memory, Scalar, Vector) when executing code sequences.
This 	data permits the designers to evaluate alternate strategies for organization and
implementation of the major components of the FM. NASA analysts can use the
data 	to verify that the internal characteristics of the FMP as documented in the
Functional and Instruction Specifications are truly represented by the current version
of the GPSS model.

Test 	 runs of the model immediately prior to completing this report have disclosed
that 	there is need for refinement in some areas, thus the model is not complete
to the extent needed by the design engineers. It is adequate in current form,
however, for NASA analysts to evaluate the behavior of these initial FMP designs.

c. 	 Reliability assessment - A reliability analysis was conducted of the revised FMP
design, using experimental statistics from existing logic family data, expectations of
the LSI and memory characteristics of componentry borrowed from the STAR-100A
project, and projections made by our technological team for as yet untried technological
developments. The key conclusion was that the total FMP including Backing Storage
would suffer an expected rate of failure of 4 per operating month, if a reasonable
maintenance schedule was followed to clean out single errors that are automatically
corrected by the SECDED networks. This failure rate is expected from the existing
technology family of LST. The failure rate is almost halved if a newer technology
can be utilized for the FMP.

S-3

Since the major rates of failure (system interruption) revolve around the Vector
Units, the additional (ninth) unit was designed into the FMP to permit quick restart
capability, thus improving the overall machine availability.

2. 	 Software description

a. 	 Programming language - A software description was developed, providing a "straw-man"
FORTRAN language to be tested by Ames and Control Data programmers, and a
description of the fundamental operating system properties required by the NASF,
constructed in a format suitable for evolving into an operating system specification.

The FORTRAN dialect was created after much thought about automatic vectorization of
standard FORTRAN constructs led Control Data to the conclusion that the compiler
writers and compilers need a little assistance in the generation of optimum object code
for parallel machines. Ames staff comments on the original extensions to FORTRAN
based on the STAR FORTRAN compiler, led RADL researchers to abandon the multitude
of extensions therein and concentrate on the definition of a CODO (Concurrent DO loop)
structure, within which all operations are explicitly vector.

The minimization of language enhancements reduces the risks attendant to retraining
programming personnel, as well as major compiler developments, to implement new
syntax. This simplification is accomplished at the cost of more intensive effort on
compiler optimization of source code. The optimization techniques are not unique
to the FMP in that they have their direct counterparts in the scalar optimization
performed in most product compilers available in 1978. The risk of providing a
mature compiler with this capability is reasonably low compared to the alternatives
of creating a wholly new language and compiler system from scratch.

b. 	 Operating system - The operating system description attempts to reduce to a bare
minimum those functions which must uniquely be implemented in the FMP. Further,
every attempt must be made to utilize existing system software on the non-FMP
processors, which will be procured essentially off-the-shelf, in order to minimize the
software risks highlighted in the Phase 1 report.

The operating system document is intended to evolve into formal specification form in
later phases of this project, as are all portions of the NASF project. A system should
be created to handle the updating and editing of these documents as a central means
for coordinating the total project. To this end, outlines for the specification of language
structure and compiler structure should have been completed in this study phase.
The prototypes originally intended to be used for this function (the ANS 77 language
specification, and the STAR FORTRAN internal maintenance specification) proved
insufficient (and in some cases unnecessarily complicated) to fill this role. The outline
of these specifications should be done at the earliest possible moment in the next
project phase.

FINAL WORD

The achievement of the original NASF project goals appears at this point to be more possible than when
the feasibility was first examined at the beginning of Phase 1. Continued study of the code requirements
and refinement of the design have led to simplifications in the FAP that reduce the software and hardware
risks below those originally derived for the NASF. A major factor in reducing risks and meeting the
performance and schedule goals for the FMP rest in the willingness of the algorithm developers to bend
their thinking somewhat toward a more intimate knowledge of the hardware for which they are creating
programs. This flexibility in adapting thought and code to a special machine architecture has been a major,
positive characteristic of the Ames flow model mathematicians and programmers, with their experience on
ILLIAC IV and the 7600 on which to draw. Thus the success of the FMP seems assured if the intimate
marriage of code developers, hardware designers, and technologists can continue for the life of the project.

S-4

PRELIMINARY STUDY
. FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

FINAL REPORT - PHASE 1 EXTENSION

By: N. R. Lincoln

Contributions By: D. R. Resnick

F. M. Green

FEBRUARY, 1978

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9457 by:

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street
St. Paul, Minnesota 55112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

PREFACE

This Final Report presents additional findings resulting from an extension of the Preliminary Study for a
Numerical Aerodynamic Simulation Facility (NASF) as determined by Control Data Corporation. The
document consists of five sections. Other than Section 1, Introduction, each section addresses a specific
aspect of the Control Data study.

Section 1 is a background of the Phase I study and what has been achieved since the issuance of the
study. Section 2, Hardware Description, presents a more detailed definition of the FMP than that provided
in the Phase I report. Section 3, Reliability Assessment, gives information on the methodology and
analysis used to estimate failure of hardware components plus the estimated failure rate data. Section 4,
Software Description, expands previous discussions of proposed FMP software. Section 5, Appendixes,
presents both the Instruction and Functional Computer FMP Specifications plus appendixes bn a Programmed
Device Controller and Serial Trunk Controller Procedures.

In addition to this Final Report, a separate Summary Report presents the salient findings of this prelim.
inary study and summarizes the extension of the first phase of a program for the development of a
Numerical Aerodynamic Simulation Facility.

ii

TABLE OF CONTENTS

SECTION 1 	 INTRODUCTION !-1

Phase I Extension Description 1-2

Relationship to Overall Project 1-3

SECTION 2 HARDWARE DESCRIPTION 2-1

Performance Metrics 2-1

Analysis of Vectorized 3-D Models 2-1

Conclusions of Analysis in This Interim Phase 2-25

Functional Design 2-25

Block Diagrams 2-26

Comparison With/Differences From Phase 1 Design 2-26

Instruction Specification 2-27

Functional Specification 2-27

Rationale for Design Approaches 2-27

Block-Level Simulation 2-29

Simulation with GPSS vs LSISYS 2-30

Methodology for Simulation 2-31

Relationship to Future Simulation 2-31

Results of Simulation 2-32

SECTION 3 RELIABILITY ASSESSMENT 3-1

Introduction 3-1

Methodology 3-1

Reliability Analysis 3-1

Model PC Assembly 3-1

Reliability Projection by Functional Unit 3-2

Effects of LSI-II on Reliability 	 3-4

FMF Availability Assessment 	 3-5

SECTION 4 SOFTWARE DESCRIPTION 4-1

The Programming Language 4-1

The Language Proposal 4-2

Base Language 4-2

The Extensions 4-2

Buffered Input and Output 4-9

The Specification 4-13

Operating System Functional Requirements - FMP 4-14

System Philosophy 4-14

Distribution of Functions 4-14

Hardware Interconnection 4-15

Software Interconnection 4-17

Messages, Structure and Discipline 4-17

The FMP Monitor 4-21

Allocation of FMP Resources 4-21

PDC Communication with the Monitor 4-23

User/Monitor Communications 4-24

Monitor/System Communications 4-25

Maintenance Interface 4-28

The System Functions 4-29

Input/Output for the FMP 4-29

Job Scheduling for FMP 4-30

Exception Handling for FM 4-31

Input/Output Handling for Other Attached Processors 4-31

Operating System Structure and Implementation 4-31

Programming Language 4-31

Modularization 4-32

v

SECTION 4"(Continued) Configuration Flexibility
Extensibility

RAM (Reliability, Availability, Maintainability)

4-32
4-33
4-33

Documentation 4-33
Stability 4-34

SECTION 5 APPENDIXES
Appendix A

CDC Flow Model Processor Instruction Specification
Appendix B

CDC Flow Model Processor Functional Computer Specification
Appendix C

Programmed Device Controller Description
Appendix D

Serial Trunk Control Procedure

vi

Section 1

INTRODUCTION

Section 1

INTRODUCTION

Since early in the year 1977, the Ames Research Center of the National Aeronautics and Space
Administration (NASA) and the Research and Advanced Design Laboratory (RADL) of Control Data
Corporation have been conducting a cooperative research program in the investigation of the feasibility
and applicability of extremely high performance computers to the process of airframe design. The first
phase of this effort culminated in a Final Report produced by Control Data for NASA in October 1977.
Like the first phase investigations themselves, that report attempted to answer several questions posed by
Ames researchers such as:

"How much compute power is necessary to achieve the design and engineering goals of

NASA aerodynamacists?" Answer: "Some computing power in excess of one-billion

floating-point computations per second."

"Can such a computer be built for operation in the early 1980s, with acceptable reliability

and availability?" Answer: "Yes."

"What are the architectural alternatives for such a computer?" Answer: "Either a pipeline

or array processor of the SIMD variety is best suited to the task."

"What technologies are available for implementing such a high powered machine?"

Answer: "In practical supply or operating parameters, very few technologies. The computer

should be built with the mature and still extendable silicon emitter-coupled logic for speed."

"What system architecture is suitable for the entire computational facility?" Answer: "A

distributed processing system similar to that implemented for the STAR-100 family."

"What are the programming considerations for such a machine?" Answer: "FORTRAN

should be the computational programming language with extensions to permit specific access

to hardware parallelism, when necessary."

The Phase 1 report consciously included much tutorial material to assist Ames personnel in perceiving the
state of the computer design and construction art at the same level as Control Data deals with new
computer developments. Included in the report were preliminary designs and descriptions of a possible
candidate machine architecture, installation design, and programming approaches for the review and
commentary of the Ames project staff. Discussions between Ames and Control Data researchers during
the preparation of draft material for the Final Report led to substantial revisions in the technical design
of the language and machine structure. Subsequent to the publication of that report, similar discussions
have led to even more changes in the implementation of the algorithm, language, and computer hardware.

Since this initial effort was intended to be a part of an ongoing development project leading to the actual
design of all system components and to the construction of a facility to perform the aerodynamic simula
tions, an extension of the study was indicated, preliminary to launching more refined design and simulation
of the system.

1-1

This study extension was intended to bridge the gap between the completion of the feasibility phase and

the second, detailed specification 'phase of the research effort.

PHASE 1 EXTENSION DESCRIPTION

An examination of the state of the project after the Final Report for Phase 1 was conducted and the

apparent needs for the Phase 2 stage were outlined. Several desirable tasks became evident from that

analysis, from NASA commentary regarding the true feasibility of the proposed approach, and from NASA
questions regarding the broader applicability of the system being considered. In addition, a three-dimensional

form of the Ames "Implicit code" (whose 2-D form was used in the Phase 1 Final Report to evaluate the

design) became available. Thus a form of the solution methodology closer to what is expected to be used

in the final facility was at hand for analysis with the proposed system architecture.

These factors led to the establishment of a formal "Phase 1 Extension" whose purpose was to continue

the Phase I work in several areas and to provide the springboard for the Phase 2 work on detailed

design, analysis, and specification of system components. To this end several tasks were identified:
I. 	 Analysis of the three-dimensional model operating on the proposed computer

architecture.

2. 	 Development of a proposed programming language form.

3. 	 A more detailed description of the computational engine structure so that timing

and storage estimates could be made.

4. 	 Development of tools to provide verification of:

a. 	 the ability of'a given, design to perform the calculations in the time required;

b. 	 the reality of creating hardware that will perform as described in (a.) above.

5. 	 Description of the overall operating system function to support the computational workload.

6. 	 Refinement of reliability estimates for the computational hardware.

With the resources available, and the brief three-month period for completion it was decided that all of

the tasks could not be completed to the point of detailed specification, or final structural design of either

hardware or software. Instead the Phase I Extension -was conceived as a means for providing the structure

within which all subsequent phases would be carried out, and as a period when a number of proposed

language and hardware schemes could-be reconciled with Ames staff members. Past experience indicates that

the most appropriate means for structuring and controlling a development project of this magnitude has been

most effectively achieved through the identification and implementation of "standard" specifications for each

system component.

The basis for the report which follows is thus a skeleton structure of specifications for the computational
hardware, the operating system, the language and -its processor, and its reliability. In some cases sufficient

detailed work was completed to permit the beginning of a complete specification. For example, since much
of the STAR-100A Scalar Unit and maintenance philosophy were to be employed in Control Data's

proposed architecture, the STAR-100A specification was used as a basis for the FMP hardware specification.
This specification will be modified and updated as design continues through the Phase 2 and final construc

tion portions of this project.

1-2

An outline for an operating system specification was generated and used as the basis for a preliminary
system description of the overall operating system. In subsequent phases 6f the project, each of the
paragraphs in the outline will be replaced by specification information rather than the functional require
ment or preliminary design data as provided in this report.

Although it was intended to provide a full specification for the language and compiler in this phase, the
effort was beyond the means of RADL to accomplish in the three months allowed. This is partly due to
the changes in direction for the language that have resulted from interaction with Ames staff and with
Control Data's language specialists. An initial attempt to base a specification on the ANS FORTRAN 77
specification was abandoned as approval of that standard has been delayed, and as it became apparent that
the specification as written could not be easily used as a guide for experimental programming. The use
of the STAR-100 FORTRAN compiler documentation proved to be undesirable as Ames personnel insisted
on abandoning some of the artificial constructs for vector processing that were felt to be difficult to use,
or to understand. The result then, in this first pass, is a presentation of a "strawman" proposal for a
FORTRAN language based on ANS FORTRAN 77, with several extensions designed for the flow model
computations to be done at Ames.

The process of providing tools for architectural and hardware verification has proceeded down divergent
paths also. At the time of submission of this report, a tape is being provided to Ames which will allow
them to perform computerized evaluations of the behavior of the overall computational segment of the
installation with varying forms of machine language coding.

The report that follows then presents further proposals for the hardware architecture and is, in essence, a
proposal for the form and content of specifications to be generated in full in the next phase of this project.
It is expected that these proposals will lead to discussions between Control Data and Ames within the
coming months to arrive at a final architectural project structure and project management and control format
based on documentation methodology and management.

Unlike the Phase 1 report, this report contains no major answers to major questions. However, the feasibility
of construction of the desired facility appears greater now than it did in Phase 1. Further design attempts
to reduce the size and complexity of the major processor have improved chances of its being built with
existing technology, thus reducing one of the significant risks highlighted in the Phase I study. The direction
for the continuation of design and implementation of the total facility is becoming clearer and more practical
as the cooperative study continues.

RELATIONSHIP TO OVERALL PROJECT

In the initial study phase, the computational engine was referred to as the NSS (Navier-Stokes Solver). The
existence of such a massively powerful system, with the attendant major investments in facilities, money, and
personnel mandate an examination of the broader applicability of such a system. Thus, to symbolize the
more catholic potential of this facility, the computational engine has been renamed the Flow Model Processor
(FMP). The other computers in -the system (regardless of computational capability) are called Front-End
Processors (FEPs) to eliminate the need f6r identifying-a particular brand or architecture, and the intelligent
(programmable) communications equipment and attachment devices are called Programmable Device Controllers

(PDCs). Regardless of the shape and content of the final system, these major components will exist in some
form and thus the use of this terminology pervades this report.

1.3

As stated in the previous section, the outlines of documentation in specification form are to establish- the

structure for documentation for following stages of the project. If a fixed form of specification can be

agreed upon for each component (language, compiler, FMP monitor, and FMP hardware) then a rigorous

control system can be established in Phase 2 wherein all design changes are referenced to their particular

area of specification and an automated audit trail provided for each specification update, thus tracing the

evolution of the system, and fixing responsiblity (by designer) for any given change in the specifications.

It is at this stage- of the project wherein such management devices must be created lest the project be

faced with virtual chaos in Phase 2 and later phases of the effort.

Thus the interaction with NASA project managers is essential concerning the form (not the content) in
which all technical matters are submitted for review and decision from this point forward. As stated in

the previous section, the outlines or specification skeletons offered here are not expected to be all inclusive

but to form the basis for detailed discussions at a later time.

1-4

Section 2

HARDWARE DESCRIPTION

Section 2

HARDWARE DESCRIPTION

PERFORMANCE METRICS

For this study the three-dimensional forms of the implicit and explicit codes were submitted to Control
Data for additional evaluation of the FMP design that has evolved since Phase 1. The Phase 1 effort of
code analysis was primarily directed to the implicit form because its computational behavibr was easier to
estimate since the number of times arithmetic is performed is fixed rather than somewhat data dependent,
as happens in the explicit form of the Navier-Stokes solution. The emphasis in this study was extended
to the three-dimensional code primarily because of the data already derived for the two-dimensional model
described in the Phase 1 study.

ANALYSIS OF VECTORIZED 3-D MODELS

The analysis of the current FORTRAN codes undertaken in this phase was intended to accomplish the
following items:

A. 	 Updating of statistical data on computational behavior of the code for the three
dimensional versions to contrast with the data taken from the STAR-100 in

Phase 1 of this study.

B. 	 Identification of the key areas of the codes to isolate benchmark tcandidates for

measuring performance.

C. 	 Experimentation with various forms of source language coding to produce vectorization.

D. 	Develop segments of code that could be 'hand-compiled' for the FMP t illustrate

the machine-language-level execution of portions of the computation.

E. 	 Analysis of memory access patterns induced by the code in three dimensions.

An inordinate amount of project resources were quickly absorbed in the redesign of some portions of the
FMP and in pursuing several alternatives for the programming language. Thus the objectives of this section
of the study became redirected to match the time available, and to answer some more pressing questions.
The results of each original objective are as follows:

A. 	 No statistical counting was done for either the three-dimensional implicit or explicit
codes on the STAR-100. Computational counts for the implicit code which were projected
for three dimensions in the Phase 1 report, appear to be roughly matched to the 3-D
implicit version now in hand.

B. It is obvious to the casual analyst that the region of code in the 3-D implicit program
containing the AMTRX, FILTRX, FILTRY, FILTRZ and three subroutine calls to the
metric computations XXM,YYM, ZZM constitute the critical area for analysis of the model.
From Table 5-40 of the Phase I report, the 'left-hand-side' calculations including
those code sequences account for 19,779,456 operations out of a total of 24,666,130
operations, or about 80 percent of the total operations. In addition, the 'sweeps' made
in this code in the three directions of the matrix create all of the expected access
patterns that need to be analyzed for the FMP. No effort was expended on a similar
analysis of the explicit code due to lack of resources and time. The original scalar
coding in FORTRAN of these segments is given again in Figure 2-1.

2-1

DO
R1
R2
R3
R4

C

12 J = 1JMAX
= XX(J,1)*H)X
= XX(J,2)*HDX

XX(J,3)*/BDX
= XX(J,4)*HDX

C*******AMATRX
C

RR = 1./Q(KL,1,J)
U = Q(KL,2,J)*RR
V = Q(KL,34J)*RR
W = Q(KL,4j)*RR
UU = U*RI+V*R2+W*R3
UT = U**2+V**2+W**2
C1 = GAMI*UT*.5
C2 = Q(KL,5,J)*RR*GAMMA

C3 = C2 - C1
C4 = R4+UU
C5 = GAMIU
C6 = GAMI*V
C7 = GAMI*W
D(J1,1)
D(Jl,2)
D(J,1,3)
D(J,1,4)
D(J,1,5)
D(J,2,1)
D(J,2,2)
D(J,2,3)
D(J,2,4)
D(J,2,5)
D(J,3,1)
D(J,3,2)
D(J,3,3)
D(J,3,4)
D(J,3,5)
D(J,4,i)
D(J,4,2)
D(J,4,3)
D(J,4,4)
D(J,4,5)
D(J,5,I)
D(J,5,2)
D(J,5,3)
D(J,5,4),
D(J,5,5)

C

=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

R4
RI
R2
R3
0.
RI*Ci - U*UU
C4+RI*GAM2*U
-RI*C6+R2-U
-RI*C7+R3*U
RI*GAMI
R2*Ci-V*UU
RI*V-R2*C5
C4+R2*GAM2*V
-Rl*C7+R3*V
R2*GAI
R3*CI-W*UU.
RI*W-R3*C5
R2*W-R3*C6
C4+R3*GAM2*W
R3*GAMI
(-C2+2.*C1)*UU
Rl*C3-C5*UU
R2*C3-C6*UU
R3*C3-C7*UU
R4+GAMMA*UU

C******END OF AMATRX
C

12 CONTINUE

Figure 2-1. Scalar Code Taken From STEP of 3-D Code

2-2

DO 25 J=JA,JB

RJ = 1./Q(KL,6,J)

RMJ RM*RJ

RR = RMJ*Q(KL,6,J-1)

RF = "RMJ*Q(KL,6,J+I)

DO 23 N=1,5

A(J,N,1) = -D(J-1,N,1)

A(J,N,2) = -D(J-1,N,2)

A(J,N,3) = -D(J-1,N,3)

A(J,N,4) = -D(J-1,N,4)

A(J,N,5) = -D(J-1,N,5)

B(J,N,1) = 0.0

E(J,N,2) = 0.0

B(J,N,3) = 0.0

B(J,N,4) = 0.0

B(J,N,5) = 0.0

C(J,N,1) = D(J+IN,1)

C(JN,2) = D(J+IN,2)

C(J,N,3) = D(J+IN,3)

C(J,N,4) = D(J+l N,4)

C(J,N,5) = D(J+IN,5)

A(J,N,N) = A(J,N,N)-RR

B(J,NN) = Cs

C(,N,N) = C(JNN)-RF

23 F(JN)=S(KL,NJ)
25 CONTINUE
C
C*****END OF FILTRX
C
C
C S MUST BE ZERO ON B.C.

CALL BTRI(2,JM)
DO 21 J = 2,JM
S(KL,1,J) = F(J,I)
S(KL,2,J) = F(J,2)
S(KL,3,J) = F(J,3)
S(KL,4,J) = F(J,4)

21 S(KLSJ) = F(J,5)
20 CONTINUE

Figure -2-1. Scalar Code Taken From STEP of 3-D Code (Cont.)

2-3

COMMON/VARO/S(720.5,30)
COMMON/VARI/X(720,30),Y(720,30),Z(720,30)
COMMON/VAR3/P(120,30),XX(60,4),YY(60,4),ZZ(60,4)
LEVEL 	2,Q,S,X,Y,Z
COMMON/COUNT/NC,NC1
COMMON/FLSH/DX2,DY2,DZ2

C
C XI METRICS FORMED FOR A K,L LINE IN J
C
C
C SYMMETRY
C

K=M
L= LA

J3=JIA

12=J2A
KI = (L-I)*ND+K
DO 10 J = J1J2

RJ = Q(KL,6,J)

IF(K.EQ.1) GO TO 50

IF(ICEQ.KMAX) GO TO 51

XK = (X(KL+IJ)-X(KL-1,J))*DY2

YK = (Y(KL+I,JYY(KL1,J))*DY2

ZK = (Z(KL+IJ)-Z(KL1,j))*DY2

GO TO 72

50 	 CONTINUE
XK = (-3.*X(KLJ)+4.*X(KL+I ,J)-X(KL+2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(KL+IJ)-Y(KL+2,J))*DY2
ZK = (-3.*Z(KLJ)+4.*Z(KL+1,I)Z(KL+2,J))*DY2

GO TO 	 72
51 	 CONTINUE

XK = (3.*X(KL,J)4.*X(KL-1,J)+X(KL-2,4))*DY2
YK = (3.*Y(KLJ)-4.*Y(KL-1,J)+Y(fL2,J))*DY2
ZK = (3.*Z(KLJ)-4.*Z(KL-1,J)+Z(KL-2,J))*DY2

72 	 CONTINUE

IF(L.EQ.1) GO TO 52

IF(L.EQ.LMAX) GO TO 53

XL = (X(KL+ND,J)-X(CL-ND,J))*DZ2

YL = (Y(KL+ND,J)Y(KL-NDJ))*DZ2

ZL = (Z(KL+ND,J)-Z(KL-ND,J))*DZ2

GO TO 	 60

52 	 CONTINUE
XL = (-3.*X(KLJ)+4.*X(KL+ND)-X(KL+2*NDJ))*DZ2
YL = (-3.*Y(KL)+4.*Y(KL+ND,J)-YtKL+2*NDJ))*DZ2
ZL = (-3.*Z(KLJ)+4.*Z(KL+NDJ)Z(KL+2*ND,J))*DZ2
GO TO 60

53 	 CONTINUE
XL = (3.*X(KLJ)4.*X(KL-ND,J)+X(KL-2*ND,J))*DZ2
YL = (3.*Y(KLJ)-4.*Y(KL-ND,J)+Y(KL-2*NDJ))*DZ2
ZL = (3.YZ(KLJ)-4.*Z(KL-ND,J)+Z(KL-2*ND,J))*DZ2

60 	 CONTINUE
XX(J,I) = (YK*ZLZK*YL)*RJ
XX(J,2) = (ZK*XL-XK*ZL)*PJ
XX(J,3) = (XK*YYK*XL)*RJ
XX(J,4) = -OMEGA*(Z(KLJ)*XX(J,2)-Y(KLJ)*XX(J,3))

10 	 CONTINUE

RETURN

END

Figure 2-1. Scalar Code Taken From STEP of 3-D Code (Cont.)

2-4

REPRODUCIBILYPf OF THE
01?JGTAL PAGE IS POOR

SUBROUTINE BTRIQLAJUA)
COAIMON/BTRID/A(60,5,5),B(60,5,S),C(60,5,5),D(60,5,5),F(60,5)
DIMENSION H(5,5)
REAL LIIL21,L22,L31,L32,I.33,L41,L42,L43,L44,L51,L52,LS3,L54,LS5
IL-ILA
IU=IUA
IS=IL+l

IE=IU-I

C 	 INSERT LUDEC
LI1=1./B(IL,1,I)
L21=B(IL,2,I)
U12=B(IL,1,2)*Lll
L22=1.J(B(IL,2,2)-L21*UI2)
U13=B(IL,1,3)*Lll
U14--B(IL,1,4)*Lll
U15=B(IL,1,5)-Lll
131=B([L,3,I)
132=B(IL,3,2)-131*UI2

'U23=(B(IL,2,3 L21*UI3)*L22

L33=1./(B(IL,3,3 U13*L31-U23-L32)

U24--(B(IL,2,4 L21*UI4)*L22
U25=(BC[L,2,5yL21*UI5)*L22
IAI B(IL,4,1)
L42=B(IL,4,2)-L41-UI2
LAL3=B(IL,4,3)-IAI*UI3-L42*U23
Uz;4--(B(IL,3,4)-131*Ul4-L32*U24)*L33
L44--l.[(B(IL,4,4 U14-L41-U24*142-U34*L43)
U35=(B(IL,3,5 L31*UI5-L32*U25)*L33
L51=BqL,5,1)
L52=B(IL,5,2)-L51*UI2
L53 BqL,5,3)-L5I*U13-L52*U23
L54-B([L,5,4)-L51*UI4-LS2*U24-LS3*U34
U45=(B(IL,4,5 L41*UI5-LA2*U25-L43*U35)*L44
L55=1./(B(IL,5.5 L51*UlS-L52*U25-L53*U35-LS4-U45)

C 	 COMPUTE LITrLE R S
DI=LII*F(ILl)
D2=L22*(F(IL,2)-L21*Dl)
D3=L33*(F(IL,3)-131*Dl-L32*D2)
D,4--L44*(F(IL,4)-L41*Dl.L42*D2-IA3*D3)
DS=LSS*(F(IL,5).L51*DI-L52*D2-L53*D3-L54*D4)

C 	 COMPUTE BIG R S
F(IL,5)=D5
FI:U,,4)=D4-U45*D5
F(IL,3)-D3-U34*F(IL,4 U35*D5
F(IL,2)=D2-U23*F(IL,3)-J24*F(IL,4yU25*DS
F(ILI)=DI-Ul2*F(IL2 U13*F(IL,3yUl4*F(IL,4)-UIS*D5

Figure 2-1. Scalar Code, Taken From STEP of 3-1) Code (Cont.)

2-5

C 	 COMPUTE C PRIME FOR FIRST ROW
DO.,12 M=1,5S DI-L11*C(IL,1,M)

D2=L22*(C(IL,2,M)-L21*D1)
D3=L33*(C(IL,3,M)-L31 *D1-32*D2)
D4=L44*(C(IL,4,M)-L41 *D1.L42*D2-L43*D3)
DS=LS5*(C(IL,S,M)-LS1*D1 L52*D2-L53*D3-L54*D4)
B(IL,5,M)=DS
B(IL,4,M)=D4-U45*D5
B(IL,3,M)=D3-U34*B(IL,4,M)-U35*DS
B(IL,2,M)=D2-U23*B(IL,3,M)=U24*B(IL,4,M-U25*D512 	 (BIL,1,M)=D1-U12*B(IL,2,M)-U13 *B(IL,3,M)U14*B(IL,4,M)-U15"D5

DO 13 I=IS,IE
C COMPUTE B PRIME*BIGR

DO 14 N=1,5
14 F(I,N)rF(I,N)-A(I,N,1)*F(I-1,1)-A(QN,2)*F(I-1,2)-A(I,N,3)*F(I-1,3)

I)-A(IN,4)*F(I-1,4)-A(I,N,5)*F(I-1 ,5)
C COMPUTE B PRIME

DO 11 N=1,5
DO 11 M=1,5

11 H(NM)=B(I,N,M)-A(IN,I)*B(-1,1 ,M)-A(IN,2)*B(I-1,2,M)-A(IN,3)*
1 "B(I-1,3,M)-A(IN,4)*B(I-1,4,M)-A(IN,5)*B(I-1,5,M)

C 	 INSERT LUDEC AGAIN
LI I=I./H(1,1)
L21=H(2,1)
U12=H(1,2)*L11
L22=1./(H(2,2)-L21 *U12)
U13=H(1,3)*L11
U14=H(1,4)yL11
U15=H(1,5)*Lll
1.31=H(3,1)

L32=H(3,2)-L31*U12

U23=(H(2,3)-L21 *U13)*L22

.33=1./(H(3,3)-U13*L31-U23*L32)

U24=(H(2,4)-L21 *UI4)*L22
U25=(H(2,5)-L21*UI5)*L22
L41=H(4,1)
L42=H(4,2)-L41*U12

L43=H(4,3)-L41*U13-L42*U23

U34=(H(3,4)-L31 *U14-L32*U24)*L33

L44=l./(H(4,4)-U14*L41-U24*L42-U34*L43)

U35=(H(3,5)-L31 *UI S-L32*U25)*L33

LS1=H(5,1)

L52=H(5,2)-L51*U12

L53=H(5,3)-L51*Ui13-L52*U23
L54=H(5,4)-L51 *U14-L52*U24-L53*U34
U45=(H(4,5)-L41 *UI 5-L42*U25-J43*U35)*I44
L55=./(H(5,5)-L5 1*U15-L52*U25-L53*U35-L54*U45)

C 	 COMPUTE LITTLE R" S
DI=Lll*F(I,1)
D2=L22*(F(I,2)-L21*DI)
D3-L33*(F(I,3)-L31 *D-I.32*D2)
D4-L44*(F(I,4)-L41*Dl-IA2*D2-L43*D3)
DS=L55*(F(I,5)-L51*DI-L52*D2-L53*D3-L54*D4)

Figure 2-1. Scalar Code Taken From STEP of 3-D Code-(Cont.)

2-6

C

C

Is
13

C

17

C

18

C

COMPUTE BIG R' S
F(I,5)=D5
F(I,4)--D4-U45*DS

F(,3)=D3-U34"F(,4-U35*D5

F(1,2)=D2-U23*F(I,3)-U24*F(I,4)-U25*D5

F(It)=D1-U12*F(,2)-UI3*F(,3)-U14*F(I,4-U15*D5

COMPUTE C PRIMES

DO 15 M=1,5

DI=L1I*C(I,1,M)
D2=L22*(C(I,2,M)-L21*D1)
D3=L33*(C(I,3,M)-L31*D1-L32*D2)
D4-L44*(C(I,4,M)-L41*D-L42*D2-L43*D3)
D5-L55*(C(I,S,M)-L51*D1-L52*D2.L53*D3-L54*D4)
B(I,S,MrD5
B(I,4,M)=D4-U45*D5
B(I,3,M)=D3-U34*B(I,4,M)-U35*D5
B(I,2,M)=D2-U23*B(I,3,M)-U24*B(,4,M)-U25*D5
B(I,! M)=DI -U12*B(I,2,M)U13 *B(1,3 ,M)-U14*B(I,4,M)U15"D5
CONTINUE
I=1U

COMPUTE B PRIME*BIG R FOR LAST ROW
DO 17 N=I,5

F(IN)-F(I,N)-A(IN,1)*F(I-1,1)-A(IN,2)*F(I-1,2)-A(I4N,3)*

•*F(I-1,3)-A(IN,4)*F(I-1,4)-A(IN,5)*F(I-1,5)
COMPUTE B PRIME
DO 18 N=1,5
DO 18 M-1,5
H(N,M)=B(INM0-A(IN,1)*B(I-I,1 ,)-A(IN,2)*B(I-t,2,M)-A(I,N,3)*
*B(I-1,2,M)-A(I,N,4)*B(I-1,4,M)-A(IN,5)*B(I-I,SM)

INSERT LUDEC AGAIN

L11=1./H(1,1)
L21=H(2,1)
U12=H(1,2)*L11
L22=.I(H(2,2)-L21*U12)
U13=H(1,3)*L11
U14=H(1,4)*L11
U15=H(1,5)*L11
L31=H(3,1)
L32=H(3,2Y-L31*U12
U23=(H(2,3}-L21*U13)*L22
L33-1../(H(3,3)-U1 *L31-U23*L32)
U24=(H(2,4-L21 *U14)*L22
U25=(H(2,5)-L21*U15)*L22
L41=H(4,1)
L42=H(4,2)-L41*U12
L43=H(4,3-L41 *Ol 3-L42*U23
U34=(H(3,4)-L31 *U14-L32*U24)*L33
L44-1./(H(4,4)-U14*L41-U24*L42U34*L43)
U35=(H(3,5)-L31*U15-L32*U25)*L33
L51=H(5,1)
L52=H(5,2):L51*U12
L53=H(5,3)-L51*U13-L52*U23
L54=H(5,4)-L51*UI4-L52*U24-L53*U34

U45=(H(4,5)-L41*U!5-L42*U25-L43*U35)*L44

L55=1 ./(H(5,5)-L51*U15.L52*U25-L53*U35-L54*U45)

Figure 2-1. Scalar Code Taken From STEP of 3-D Code '(Cont.)

2-7

C COMPUTE LITTLE R- S
DI=L11*F(I,1)

D2=L22*(F(I,2)-L21*Dl)

D3=L33*(F(I,3)-L31 *D 1-32*D2)

D4=4I4*(F(I,4)-L4l *DI-L42*D2-L43*D3)

D5=L55*(F(0,5)-L51*D1-L52*D2-L53*D3-LS4*D4)

C COMPUTE BIG R v S

F(I,5)=D5

F(1,4)=D4-U45*D5
F(I,3)=D3-U34*F(Q,4)-U35*D5
F(I,2)=D2-U23*F(I,3)-U24*F(I,4-U25*D5
F(I,1)=D1-U12*F(,2)-U1 3*F(I,3)-UI4*F(I,4)-UI 5*DS
I=IU

20 1=I-I
DO 19 N=1,5

19 F(IN)=F(I;N)-F(I+1 ,1)*B(IN,1)-F(+1,2)*B(IN,2)-F(I+1,3)* B(IN,3)
1)-F(O+1,4)*B(IN,4)-F(I+1,5)*B(IN,S)

IF (I.GT.IL)GOTO20
RETURN

END

Figure 2-1. Scalar Code Taken From STEP of 3-D Code (Cont.)

C. 	 The segments of code referred-to in B. above were subjected to coding in a variety
of FORTRAN dialects. The result was the proposal for a set of FORTRAN extensions
which are found in Section 4 of this report. Figure 2-2 presents a moderate recoding
of the first of three sweeps of the left-hand-side code being analyzed as an example of
how such code might appear to the applications programmer. The implicit code,
admittedly, is structurally simple, and creates no data dependent vector operations of
any magnitude. The vector coding of the implicit code can therefore be done in a
very straightforward manner, using the CODO constructs (see Section 4) almost exclusively
to provide optimum processing on the FMP.

D. 	 An effort was initiated late in this phase to hand -compile the entire key segment of the
implicit code. The delay in initiating this effort arose from several fruitless attempts at
over enrichment of the FORTRAN syntax to support the FMP. The result has been that
only a small segment could be prepared for publication in the time remaining. Figure 2-3
gives the hand compilation example for lines 100 through 170 of the code shown in
Figure 2-2.

2-8

AjVOMjB IY OF Ia
Q2'8NAL PAGE raW -,

i00= DO 20 L=2,LMAX-l

110= C***FILTRX

120= C

130= COD J=1,JMAX;K=2,KMAX

140= RJ=Q(K,L,6,U)

150= XK=(X(K+1,LiJ)-X(K-1,L,J))*DY2

160= YK=(Y(K+I.LJ)-Y(K-1,LJ))*DY2

170= -ZK=(Z(K+IL,.J)-Z(K-1,LJ))*DY2

180= XL=(X(K,L+I,J)-,X(KL-1,J))*DZ2

190= YL=(Y(jL+I.J)-Y(FL-1,J))*DZ2

200= ZL-(Z(K.L+IJ)-Z(KL-.J))*DZ2

210= D(J,1,2)=HDX*((YK*ZL-ZK*YL)*RJ)

220= D(U,1,1)=HDX*(-OMEGA*(Z(K,LJ)*(RJ*(YK*ZL-ZK*YL))

230= 1 -Y(K,L,J)*RJ*(XK*YL-YK*XL)))

240= D(J, 1,4)=HDX*((X *YL-YK*XL)*RJ)

250= DCJ,1,3)=HDX*((ZK*XL-XK*ZL)*RJ)

260= C

270= C****l * *AMATRX
280= C
290= RR= 1./Q(KL,1,j)

300= U = G(K,L,2,J)*RR
310= V = Q(K,L,3,J)*RR
320= W = Q(K,L,4,J)*RR
330= UU = LI*D(J,1,2+V*D(J,1,3)+W*D(J,1,4)
340= UT = U**2+V**2+W**2
350= Cl = OAMI*UT*.5
360= C2 = O(KL,5,J)*RR*GAMMA
370= C3=C2-Ct
380= C4=D(J,1,1)+UU
3 0= C5=GAMI*U
400= 06=GAMI*V
410= C7=GAMI*W

420= D(J,1,5) = 0.

430= D(J,2,1) = D(J,1,2)*CI-U*UU

440= D(J,2,2) = C4+D(J,1,2)*GAM2*U

450= D(J,2,3) = -D(J,1,2)*C6+D(J,1,3)*U

460= D(J,2,4) = -D(J,I,2)*C7+D(J,1,4)*U

470= D(J,2,5) = D(WJ,1,2)*GAMI
480= D(J,3,1) = D(J,1,3)*C1-V*UU
490= D(J,3,2) = D(J.1,2)*V-D(J,1,3)*C5
500= D(J.3,3) = 84+D(J,1,3)*GAM2*V
510= D(J,3,4) = -D(J,1,3)*C7+D(J,1,4)*V
520= D(J,3,5) = D(J,1,3)*GAMI
530= D(U,4,1) = D(J,1,4)*CI-W*UU
540= D(J,4,2) = D(J,I,2)*W-D(J,1,4)*C5
550= D(J,4,3) = D(J,1,3)*W-D(J,1,4)*C6
560= D(J,4,4) = C4+D(J,1,4)*GAM2*W
570= D(J,4.5) = D(J,1,4)*GAMI
580= D(J,5,1) = (-C2+2.*C)*UU
590= D(J,5,2) = D(J,1,2)*C3-C5*UU

600= D(J,5,3) = D(J,1,3)*C3-C6*UU

610= D(J,5,4) = D(JI,4)*C3-C7*UU

620= D(J,5,5) = D(J,1,1)+OAMMA*UU
630= C
640= C****1 * END OF AMATRX
650= C
660= ENDCD

Figure 2-2. Proposed Recoding of Scalar 3-D Code Taken From STEP

,2-9

670= C

=

680= CODO J=2,JMAX-1N=1,5;K
2 4'MAX-1

690= A(J,N,I) = -D(J-1,N,I)

700= A(J,N,2) = -D(J-1,N,2)

710 = A(J,N,) = -T(J-IN,3)

=
720 A(J,N,4) = -D(J-1,N,4)

730= A(J,N,5) = -TD(J-1,N,5)

740= B(J,N,I) = 0.0

750= B(J,N,2) = 0.0

=
760 B(JN,3) = 0.0

770= B(J,N,4) = 0.0

780= B(J,N,5) = 0,0

790= C(W,N,I) = E(J+IN,1)

800= C(J,N.2) = D(J+-,N,2)

=
810 C(J,N,'3) = D(J+I,N.3)

820= C(J,N,4) = D(J+I,N,4)

=
830 C(J,N,5) = L(J+1,N,5)
840= ENDCD
850= C
860= CODO J=2,JMAX-I;N=1,5;V,=2,MAX-1
870= RMJ=RM/RJ

=
880 A(W,NN)=A(J,N,N)-RMJ*(Q cK.,L,6,J-1)

890= B(J,N,N) = CO

900= C(J,NN)=C(J,NN)-RMJ*O(KL,6,J+1)

910= F(JN)=S(KL,N.J)

920= ENDCD

930= C

Figure 2-2. -Proposed Recoding of Scalar 3-) Code Taken From STP (Cont.)

2-10

REPRODUCIBILITY Op THft

0-NOAI -PAGE IS PoOp,

940= C
950= C****l END OF FILTRX

A= C

70= C

980= C S MUST BE ZERO ON B.C.
990= C INSERT LUDEC.
1000= CODO N=2KMAX-1

1010= LI1=1./B(2,1,I)

1020= L21=B(2,2,I)

1030= U12=B(2,1,2)*L11

1040= L22=1./(B(2,2,2)-L21*U2)

1050= U13=B(2,1,3)*L11

1060= U14 = B(2,1,4)*L1J

1070= U15=B(2,1,5)*L11

1080= LSI=B(2,3,1)

1090= L32=B(2,3,'2)-L31*U12

1i00= U23=(B(2,2, 3)-LZ1*U1S)*L22

1110= L33=I./(B(2,3,3)-U13*L31-U23*L32)

1120= U24=(B(2,2,4)-L21*UI4)*LZ3

1130= U25=(B(2,2,5)-L2I*UIS)*L2

1140= L41=B(2,4,1)

1150= L42=B(2,4,2)-L41*U12

1160= L43=B(2,4,3)-L41*U13-L42*U23

1170= U34=(B(2,3,4)-L31*U14-L32*U24)*L33

1JSO= L44=1./(B(2,4,t)-UI4*L41-U24*L42-U34*L43)

1190= U35=(B(2,3,5)-L31*UIS-LS2*U29)*L3R

1200= L51=B(2,5,I)

1210= L52=B(2-5,2)-LS1*U12

1220= L53=B(2,5,3)-L51*UI3-L52*U23

1230= L54=B(2',5,4)-LS1*UI4-L52*U24-L53*U34

1240= U45=(B(2,4,5)-L41*U!5-L42*U25-L43*U35)*L44

1250= L55=1./(B(2,5,5)-L5I*UI5-L52*U25-L53U35-L54*U45)

1260= C COMPUTE LITTLE R S

1270= D1=L11*F(2,1)

1280= D2=L22*(F(2,2)-L21*D1)

1290= 3=L33*(F(2,3)-L31*fl-L32*02)

1300= D4=L44*(F(2,4)-L41*DI-L42*D-L43*D3)

1310= DS=L55*(F(2,5)-LS1*D1-L52*D2-L53*D3-L54*D4)

1320= C COMPUTE BIG R S

1330= F(2,5)=D5

1340= F(2,4)=04-U45*D5
1350= F(2,3)=D3-U34*F(2,4)-U-*D5

1360= F(2,2)=2-U23*F(2,3)-U24*F(2,4)-U25*D5

1370= F(2,1)=DI-UI2F(,LI)-U13*F(2,3)-L14*F(2,4)-ISa5D

1380= ENDCD

1390= C

Figure 2-1 Proposed Recoding of Scalar 3-D Code Taken From STEP (Cont.)

2A1

UEPRODUCIBILT OF TE
o PAGE IS POOR

1400= C COMPUTE C PRIME FOR FIRST ROW

1410= C.

1420= CODO M=1, 5=F=2,TMAX-1

1430= DI=LIl*C(2,1,M)
1440= DZ=L22*(C(2,2,M)-L21*D)
1450= t3=L33*(C(2,3,M)-L31*D1-L32*D2-)
1460= D4=L44*(C(2,4,M)-L41*DI-L42*D2-L43*D3)
1470= D5=L55*(C(2,5,M)-L51*D1-L52*D2-L53*D3-L54*D4)
1480= B(2,5,M)=D5
1490= B(2,4,M)=D4-U45*D5
1500= B(2,3 M) = D3-U34*5B(2,4,M)-U35*D5
1510= B(2,.2,M) = D2-U23'*B(2,3,M)-U4*B(2,4,M)-U25DS.
1520= B(2,1 ,M) = DIU *B(2,2,M)-UIS*B(2,3,M)-U14*BC2,4,M)
1530= 1 -U15*D5
1540= ENDCD
1550= C
1560= DO 13 I=3,JMAX-2

1570= C COMPUTE B PRIME*BIGR

1580= C

1590= CODO N=1,5;R=2,fMAX-1

1600= F(IN)=F(I,N)-A(I,N,1)*F(I-1,1).-A(I,N,2)*F(I-1,2)

1610= 1 -A(I,N,3)*F(I-1)-A(I,N,4)*F(I-1,4)-A(I,N,5)*F(I-1,5)

1620= ENDCD

1630= C

1640= C COMPUTE B PRIME

1650= C

1660= CODO N=1,5;M=1,5;f.=2,IMAX-1

1670=H(M)B IN)-(N,)B -,IM -(N,)B -,,M

1680= 1 -A(IN,3)*B(I-1,3,M)-A(IN,4)*B(I-1,4,M)-A(I,N.5)*B(I-I,

1690= 2 5,M)

1700= ENDCD

1710= C

Figure 2-2. Proposed Recoding of Scalar 3-D Code Taken From STEP (Cont.)

2-12

REPRODIBILITY OF THEOORORIGNAIPGEIS1720= C INSERT LUDEC AGAIN
1730= C ORIGINAL PAGE IS POOP
1740= CODO K=2,MAX-i

1750= LII=I./H(I,I)

1760= L21=H(2,1)

1770= U12=H(1,2)*LI1

-1780= L22=I./(H(2,2)-L21*UI2)

1790= UI3=H(1,3)*Lll

1800= IJ14=H(1,4)*L11

1810= U1=SH(1,5)*L11
1820= L31=H(3,1)

1830= L32=H(3S,2)-L31*UI2

1840= U23=(H(2,3)-LI*UI3)*L22

1850= L33I./1(1H(3,3)-UIS*L31-U23*L32)

1360= U24=(H(2,4)-L21*UI4)*Lt2

1870= U25=(H(2,5)-L21*U15)*L22

1880= L41=H(4,1)

1890= L42=H(4,2)-L41*U12

100= L43=H(4,3)-L41*UIJ-L42*U23

1910= U34=(H(3,4)-LS1*UI4-L32*U24)*L33

1920= L44=1./(H(4,4)-UI4*L41-U24*L42-U34*L43)

1930= U35=(H(3,5)-L31*UIS-L32*U25)*L33

IQ40= L51=H(5,I)

1950= L52=H(5,2)-LS1*U12

1960= L53=H(5,3)-L51*U13-L52*U23

1970= L54=H(5,4)-L51*UI4-L52*U4-L53*U34

=
1q80 U45=(H(4,5)-L41*U15-L42*U25-L43*U35)*L44

I 0= L55=1./(H(5.5)-L51*UI5-L52*U25-L53*U35-L54*U45)

2000= C COMPUTE LITTLE R!S

2010= D1=LI*F(I,1)

2020= D2=L22*(F(I,2)-L21*DI)

2030= D=L33*(F(I,3)-L31*l1-L32*D2)

21f40= D4=L44*(F(I,4)-L41*DI-L42*D2-L43*D3)

2050= D5=L55*(F(I,5)-L51*D1-L52*D2-L53,*D3-L54*D4)

2060= C COMPUTE BIG R!S

2070= F(I,5)=D5

2080= F(I,4)=D4-U45*D5

2090= F(I,3)=D3-U34*F(I,4)-U35*D5

2100= F(I,2)=D2-U23*F(I,3)-U24*F(I,4)-U25*D5

2110= F(I,1)=DI-UI2*F(I,2)-U13*F(I.3)-UI4*F(I,4)-UIS*D5

2120= ENDCD

2130= C

2140= C COMPUTE C PRIMES

2150= C

2160= CODO M=1,5;r=2,VMAX-1

2170= EI=LII*C(II,M)

2180= D2=L22*(C(12,M)-L21*DlI)

21 0=D3=L33*(C(I,3,M)-LS1*DI-L32*D2>

2200= D4=L44*(C(I,4,M)-L41*U1-L42*D2-L43*D3)

2210= ED=L55*(C(I,5,M)-LZ1*Dl-L52*D2-L53*D3-L54*D4)

2220= B(I,9.5M)=D5

22-30= B(I,4,M)=D4-U45*D5

2240= B(I,3,M) = D3-U34*B(I,4,M)-U35*D5

2250= B(I,2,M) = 02-U2a*B(I,3,M)-U24*B(I4,M)-U25*D5
2260= B(I,1,M) D1-U12*B(I,2,M)-Ul13*B(I,3,M)-UL4*B(I,4,M)

2270= 1 -UI5*D5

2280= ENDCD

22,'0= C

Figure 2-2. Proposed Recoding of Scalar 3-D Code Taken From STEP (Cont.)

2-13

REPRODUCIBILITY OP THE

DJUGINAL PAGE IS POOR

2300= 13 CONTINUE
2310= C
2320= I=JMAX-1
2330= C COMPUTE B PRIME*BIG R FOR LAST ROW
2340= C
2350=. CODO N=1,5;f=2,KMAX-1
2360= F(IN)F(IN)-A(INI)*F(I-1,I)-A(I,N,2)*F(I-1,2)
2370= 1 -A(I,N,3)* F(I-1,3)-A(I,N,4)*F(I-1,4)-A(I,N,5)*F(I-I,5)
2380= ENDCD
2390= c
2400= C COMPUTE B PRIME
2410= C
2420= CODO N=1,5M=1,5K=2,KMAX-1
2430= HCN,M)=B(IN,M)-A(I,N,1)*B(I-1,1,M)-A(IN,2)*B(I-1,2,M)
2440= 1 -A(IN,3)*B(I-,3,M)-A(IN,4)*B(I-1,4.M)-A(I,N,5)*B(1-1,
2450= 2 5,M)
2460= ENDCD
2470= C

Figure 2-2. Proposed Recoding of Scalar 3-D Code Taken From STEP (Cont.)

2-14

250

2480= C INSERT LUDEC AGAIN

2400= C REPRODUmBhITy OF THE
2500= CODO K=2,KMAX-1
2510= L11=1./H(1-1) ORIGINAL PAGE IS POOR
2520= L21=H(2,1)

2530= U12=H(1,2)*LA1

2540= L22=1./(H(2,2)-L21*U12)

2550= U13=H(1,3)*L11

2540= U14=H(1,4)*L11

2570= U15=H(1,5)*Lll

2580= L31=H(3-1)

=
25Q0 L32=H(3,2)-L31*U12

2600= U23=(H(2,3)-L21*U13)*L22

2610= L33=1./(H(3,3)-U13*LS1-U23*L32)

U24=(H(2,4)-L21*UI4)*L22

2630= U25=(H(2,5)-L21*UIS)*L22

6440= L41=H(4,1)

2650= L42=H(4,2)-L41*UI2

2.60= L43=H(4,3)-L41*U13-L42*U23

670= U34=(H(3,4)-L31*UI4-L32*U24)*L33

2680= L44=1./(H(4,4)-UI4*L41-U4*L42-U34*L43)

26QO= U35=(H(3,5)-L31*Ui15-L32*U25)*L33

2700= LSI=H(5,1)

2710= L52=H(5,2)-L51*UI2

720= L53=H(5,3)-L51*UI3-L52*U23

2730= L54=H(5,4)-L51*U14-L52*U24-L53*U34

2740= U45=(H(4,5)-L41*UI5-L42*U25-L43*U35)*L44

2750= L55=1./(H(5,5)-L51*U15-L52*U5-L53*U35-L54*U45)

2760= C COMPUTE LITTLE R!S

2770= D1=L11*F(I,1)

27Sf= D2=L22*(F(I,2)l-L2I*D1)

2790= D3-L33*(F(I,?)-L31*DI-L32*D2)

2500= 1D4=L44*(F(I,4)-L41*DI-L42*D2-L43*D3)

2810= D5=L55*(F(I,5) -LS1*D1-L52*D2-L53*D3-L54*D4)

:820= C COMPUTE BIG R!S

2__30= F(I,5)=D5

2840= F(I,4)=D4-U45*D5

2850= F(I, 3)=D3-U34*F(I,4)-U35*D5

2860= F(I,2)=DO-U23*F(I,3)-U24*F(I,4)-U25*D5

2870= F(I,1)=01-U12*F(I,2)-U13*E(I.3)-U14*F(r,4)-U15*D5

2880= I=JMAX-1

28I0= 200 11=
2,-00l C
210= CODO N=1,5;K=2,KMAX-I
2,?20= F(IN)=F(I,N)-F(I1+1, 1)*B(IN, 1)-F(I+1,2)*B(I,N.2)
2-30= 1 -F(I+1,3)*B(I,N)-F(II1,4)*B(I,N,4)-F(I+1,5)*B(I,N5)

=
2q40 ENDCD
= 2P50 C

2f60= IF (I.GT.2)30T0200

2q70= C

2 q80= CODO J=2,JMAX-1 =E2, IMAX-1
=
2"90 $(V,L,,J)=F(J,1).

3000= S(, L,2, J)=F(j, 2)
3010= -S(K, L, 3, J)=F(,3
3D20= S(.,L,4,J)=F(J,4)
0.0= S(I,L,5,,)=F(J.5)

3040= ENDCD

3050= C

3060= 20 CONTINUE

:,370= C

Figure 2-2. Proposed Recoding of Scal r 3-D Code Taken From STEP (Cont.)

2-15

DIMENSION O(100,100,6,100),X(100,100,100),Y(100,100),

I Z(100, 100,100),D(100,5,5),A(100,5,5),B(100,5,5),

2 C(100,5,5),S(100,100,5,100),F(100,5),H(5,5)

DO 20 L=2,LMAX-1

RLOADI L,2 STARTING VALUE

SUBX LMAX,ONE,&SOOO1

CODO J=1,JMAX;K=2, KMAX

MPYX KMAX,JMAX,&S0002 FORM VECTOR LENGTH MAXIMUM

RJ=Q(K,L, 6, J)

PACK KMAX,&&DQI,&SO003 &&DQ1 CONTAINS DIMENSIONS OF Q
PACK &SO002,&&DSP,&0003 FORM'TEMP VECTOR AT DYNAMIC SPACE
SHIFTI &S0001,6,&SO004 ITEM COUNT CONVERT TO BIT ADDRESS
ADDX &&DSP,&SO004,&&DSP UPDATE DYNAMIC SPACE POINTER
MPX &&Dn2,SIX,&S00O4 COMPUTE SKIP DISTANCE IN Q
MAP,F=C4ATHR,R1=&SO003,R3=&S004,W1=&0003.

XK=(X(K+IL,J)-X(K-l,L,J))*DY2

YK=(Y(K+I,LJ)-Y(K-1,L,J))*DY2

ZK=(Z(K+IL,J)-Z(K-1,LJ))*DY2

'PACK&&XL,&&DSP,&DO003

SHIFTI &&XL,6,&SOO05

ADDX &SOOOS,&&DSP,&&DSP UPDATE DSP

PACK HUNDRD,&DX,&DO004 RECORD LENGTH

MAP,F=GATHR,R1=&D004,R3=TNTHSND,W1=VDOOO3.-

PACK &&YL,&&DSP,&D0005

SHIFTI &&YL,6,&SO005

ADDX &S0005,&&DSP,&&DSP UPDATE DSP

MAP,F=GATHR,RI=&DO000, R3=TNTHSND,W1=&DO005

PACK &&ZL,&&DSP,&D006

SHIFTI &&ZL,6,&SO005

ADDX &SO0O5,&&DSP,Z&&DSP UPDATE DSP

MAP,F=GATHRR1=D006,R3=TNTHSND,W1=&DO006

MAP,R2=&DDY2,D=BCAST.

BUFFWB1=S2,E=8,F=OO0.- SETUP BROADCAST OF DY2 IN BUFFER

(Continued)

Figure 2-3. Hand-Compiled Example of a Segment of FORTRAN Code

2-16

A MUoIiLrrv OF THE

6Q1W*t PAGE ISPOOR

PACK TNTHSND,&DXK,&DXK

PACK TNTHSND,&DYK,&DYK

PACK TNTHSND,&DZK,&DZK

ADDX SIXFOUR &DOOO3,&DO007

SUBX &DOOO3,TWOWDS,&DO008

PACK TNTHSND,&D0007,&IJOO7

PACK TNTHSND,&DOOO8,&00O8

ADDX SIXFOUR,&DOOO5,&U0009

SUBX &DO005TWOWDS,&DO010

PACK TNTHSND,&DOOO9,,&DO00

PACK TNTHSND,&DOO1O,&DO010

ADDX SIXFOUR,&DO00O6,&DOO11

SUBX &DO006,TWOWDS,&DO012

PACK TNTHSND,&DOOl1,&D0011

PACK TNTHSN,&OID0012,&L0012

MAP,R1=&DO007,R2=&DOOOS,W1=&DXK=VU.

BUF,A=RBI,B=1,E=O,F=O00. BROADCAST FROM BUFFER

VEC,F=(A-B)*D,A=Sl-,B=52,D=RB1,WI=ARI.

MAP,RI=&DO009, R2=&DOOIO, Wi=&DYK=VLI.

BUF,A=RBI,-B=1-,E=O-,F=000. BROADCAST DY2 FROM BUFFER

VEC,F=(A-B)*DA=S1,B=S2,D=RBIW1=ARI.

MAP,RI=&DOOII,R2=&DO012, W1=&DZK=VU.
BUF,A=RBI,B=I,E=OF=O00. BROADCAST DY2 FROM BUFFER
VEC,F=(A-B)*D,A=SIB=S2,D=RB1,WI=AR1.

XL=(X(K,L+1,J)-X(KL-1,J))*DZ2

YL=(Y(K;L+I,J)-X(R,L-i,J))*DZ2

ZL=(Z(K,L+I,J)-Z(8L-1,J))*DZ2 "

Figure 2-3. Hand-Compiled Example of a Segment of FORTRAN Code (Cont.)

2-17

Figure 2-4 provides some summary information about the 'assembly language' form
in which the FMP code is presented, as compiled by a 'pseudo compiler'. Some of
the conventions such as using a special character "&" to delineate compiler-generated
variables, descriptors and arrays has been taken from the STAR FORTRAN compiler
scheme. A brief description of the code follows.

The .operation RLOADI stands for the scalar function LOAD REGISTER with
IMMEDIATE dita! The value '2'will appear as part of the actual instruction. The
register called L will be defined as a permanent register out of the 256 available to
the programmer in the Scalar Processor.

SUBX is the operation SUBTRACT INDEX (or address). The register called ONE
is canonically defined as register 16 in all scalar units of the STAR family. The
temporary register &SOOO1 is set up to be used at the DO loop termination sequence
(not shown in Figure 2-3).

MPYX stands for Multiply Index value (non floating point). The result will be the
vector length to be processed for the metric arrays X, Y and Z. The CODO statement
permits the compiler to generate a series of GATHER RECORD operations to form a
long vector which makes the vector arithmetic more efficient. Figure 2-5 gives a
visualization of the matrix as it would be stored in memory if the dimensions of
X, Y, Z and Q were (10,10,10) and LMAX, KMAX and JMAX were each 10. The
numbers in the blocks indicate their sequential storage addresses. Thus Q(1,1,1) would be
block 00, Q(2,1,1) would be block .01, Q(1,10,1) would be block 90, and Q(1,I,2) would
be block 100.

The CODO statement creates a vector operation that, for each J, removes from memory
a vector of length KMAX-2. This action will result in a new vector consisting (referring
to Figure 2-5) of block 00 through 09 followed by blocks 100 through 109, blocks 200
through 209 and so on up to block 909. The GATHER RECORD operation makes a
random reference to memory for the first element addressed (J=1,2,3 . . . JMAX) and
then retrieved the data following (K72,3 . ..KMAX) at 'near-pipeline rates' of eight
64-bit operands per minor cycle. The columns of data gathered in this manner are
stored sequentially in memory.

A series of scalar instructions preceding the GATHER instruction forms the descriptors
to be used by the Vector and Map Units. The instruction PACK merges the rightmost
sixteen bits of a register into the sixteen-bit length field of another register (which normally
contains the array base address) and places the result in another register (in-this case
temporary, compiler-assigned descriptors).

Temporary vectors (which will never be transmitted to Backing Store) are assigned
dynamically in the same manner as used on the STAR-100 computers. A fixed register,
called the Dynamic Space Pointer (DSP) contains the address of the first available
location in free (unused) memory. Temporary vectors are allocated and dealocated in
this region of Main Memory by using the DSP, and then updating the DSP to the next
free location.

The operation SHIFTI (shift register immediate) shifts the field length (which is an item
count of 64-bit words) left six places to form the bit address with which the DSP can
be updated.

The MAP instruction sets up the READ 1 trunk with the base address of Q and a
record length of KMAX (number of words in each column or record), and the READ 3
trunk with the increment used to proceed through memory for every J (refer to previous
discussion of Figure 2-5 where J=,block=00,J--2,block=-100; then the memory increment
would be 100). The WRITE 1 bus, WI, is set up with the address of the temporary
vector, which will later be assigned to the variable R. The function code GATHR
indicates a GATHER operation. The presence of a field length in the READ 1 setup
indicates that the operation is to to be a GATHER RECORD.

2-18

RIPRODUCIB]hITY OF THE
ORIGINAL PAGE IS POOR

" 	 Scalar code uses mnemonics identical to those implemented for the STAR-100

Computer family

* 	 Form for vector machine code is:

Unit name (Vector, Map, Buffer, or Swap, or the first letter of those

names . . V, M, B, S)

Subfunction field name (Ri . . means READ 1 setup-)

An = sign followed by the value for that field

All internal scalars created by the compiler are given sequential names beginning
with '&S'. Thus the first scalar temporary created by the compiler would be
&S0001.

* 	 All internal vector temporaries created by the compiler are given sequential names
beginning with '&V'. Thus the first vector temporary would be named &V0001.

* 	 Descriptors (register file pointers to vectors and arrays) are assigned internal names
which begin with '&D' and followed by the array name. Thus a vector declared
by the programmer as in a DIMENSION statement:

DIMENSION AAA(100)

would have a descriptor assigned to it with the name &DAAA. Likewise an inter-.
nal vector temporary created by the compiler with the name &V0001 would have
a descriptor assigned with the name &D0001.

* 	 An example of the form of the language, a memory-to-memory vector addition

operation, is given as:

MAP,Rl=&DAAA,R2=&DBBB,WI=&DCCC =VU.
VECTOR,F=A+B,A=RBI,B=RB2,WI=AR1.

The READ 1, READ 2, WRITE 1 setups take their base addresses and vector
lengths from the register file-contained descriptors &DAAA (for array AAA),
&DBBB (for array BBB), and &DCCC (for array CCC). The WRITE 1 setup
statement includes the expression =VU, which indicates the WRITE I data is
to come from the Vector Unit (VU).

The Vector Unit instruction indicates a function code of a simple add (see
3.2.1.160 of the functional specification for complete list of codes and their
representation). The A operand stream will come from Si (Source 1 from the
Map Unit) and the B operand stream will come from S2 (Source 2 from the
Map Unit). The WRITE 1 bus output will come from the AR1 trunk (Arith
metic Result 1).

EPRODUCIBILITY OF THE
RIGINAL PAGE IS POOR

Figure 2-4: Explanation of Machine Language Coding
for FMP Produced by FORTRAN Compiler

2-19

O0~~~~~~0 07 102 0904
01 ~~ ~ 19 ~ 213 ~ ~ 9 Y115 17

94~ 94204 ~~~ 4 47 49 ~
06 16 236 4656 62768929

07 17 i27 37 47 57 67 77 87 9

08 18 '28 38 48 58 68 78 88 98~~9

09 19 29 39 49 59 69 79 89 99

Figure 2-5. Storage Allocation for Flow Variables in Mai Memory Allocation

220

At the conclusion of the MAP operation, a vector of length 10,000 (if JMAX,KMAX and
LMAX=100) will be formed in memory and assigned the descriptor &D0003, which will be
changed (by code not shown) to &DRI.

The machine coding which follows basically repeats the descriptor setup sequence just
depicted for the elements of Q, but for the metric array elements X, Y, Z. After forming
the temporary vector &DO006, the compiler generates the MAP function and BUFFER
function which together use the READ 2 stream (112) to transfer the quantity DY2 to the
Buffer Unit as a broadcast operand. Since the GATHER operations use only READ I and
WRITE 1, this operation can proceed concurrently with the MAP operation preceding it.

The setup of temporary descriptors &D0007, &D0008, &D0009, &DO010, &D0011, &D0012
essentially offsets the starting addresses of the X, Y and Z vectors that have been gathered
previously by + and - one word (adding 64 to a bit base address is the same as offsetting
the address by one word).

The MAP, BUF and VEC instruction sets that appear at the end of Figure 2-3 accomplish
the vector subtraction of the near-adjacent elements (K+I, K-i) of vector X, Y, and Z.
The result of the subtraction is multiplied by the broadcast value of DY2 which has been
preloaded into the buffer, producing two floating-point operations per pair of input X
operands. In 32-bit mode this process. would yield 32 floating-point operations per minor
cycle 	 for a computation rate of 3.2 gigaflops. Note that this operation is memory-to-memory
since 	 the vectors are too long for the buffer (except for the broadcast quantity DY2).

The next sequence of code would be the formation of the XL, YL and ZL components.
A 'dumb' compiler would produce two GATHER RECORD operations for each metric
array 	 (X(KL+IJ) and X(K,L-1,J) instead of remembering that the X(K,LJ) gathered for
the XK, YK and ZK metrics computations could be retained in memory and used in
the next step of L to provide the LA elements.

The amount of 'smarts' necessary to accomplish the retention of previously gathered vectors
in X, Y or Z is no different than the intelligence needed to retain the counterpart scalar
values between one computation or iteration in a DO loop.

E. 	 Examination of the implicit code in light of memory accesses required revealed that two
distinct approaches were dictated. First the assumption that the entire code could be
performed in 32-bit mode gave hope that the total data base and all temporary vectors
could be held resident in Main Memory. Thus it was necessary to determine first whether
this was true, given the explosion of temporaries, when long vectors are created for efficiency
masons. Secondly, the potential need for 64-bit accuracy in the calculatiops made it obvious
that a 64-bit version could not be held in Main Memory; thus access patterns for the
Backing Store had to be examined. Finally, it had to be determined if the calculations them
selves could be done in the required time given for desired FMP responses to customers.
First, consider the 32-bit case. Using the example of left-hand-side coding given in Figure 2-2,
the basic memory requirements are:

1. 	 Flow variables Q(100,100,6,100)=6,000,000

2. 	 Metrics X(100,100,100), Y(100,100,100),Z(100,100,100)=3,000,000

3. 	 Update matrix S(100,100,5,100)=5,000,000

In 32-bit mode this would require 7,000,000 64-bit words of the 8,000,000 proposed for
the FMP.

To make the GATHER and subsequent vector computations more efficient by using long
vectors, it is desirable to gather planes in the J direction for this segment of the code.
Thus 	there would be resident in Main Memory at any one time in left-hand-side solution,
a number of planes of data, each 10,000 32-bit words in length (5000 64-bit words):

2-21

1. 	 Six planes of Q flow variables -30,000 words.

2. 	 Three planes of metric data (to keep the L,L+I, and LI planes available
for the next step in L), each in the X, Y and Z directions for a total of
nine planes -45,000 words.

3. 	 A plane's worth of A, B, C and D data with 25 elements for each point

in the plane (five by five block) -500,000 words.

4. 	 A plane of the update array S, in gathered form -25,000 words.

5. 	 A plane each for the H and F intermediate matrices used in the BTRI
sequences (5 by 5) -375,000 words.

The grant total of large data temporaries is then 975,000 words plus the 7 million words
for major variables equals 7,975,000 words.- An 8 million (nominal) word FMP actually
contains 8,388,608 words of memory. The operating system requires 65,536 thus leaving
8,323,072 words for useful storage. The remainder after allocating known temporaries
and flow variables is then 8,323,072 - 7,975,000 = 348,072 words. Since the BTRI
sequences will use the vector buffers for intermediate storage, this remainder seems adequate
at this time to hold a 32-bit version of the three-dimensional implicit code, in the form
available for this study.

It is 	 obvious from this example that a 64-bit version would substantially overflow the Main
Memory capacity. If the major portion of the data base for the 64-bit version must reside
in Backing Store (flow variables and metrics plus the S array) then the capability must exist
to transfer the data required by the calculations at a sufficiently high rate to match the
computation rate, in order to achieve the performance objectives of the FMP. The scheme
proposed by NASA Ames personnel consists of storing data in the Backing Store matrix in
a manner different from that used in the 32-bit mode. In this 64-bit mode case, a basic
transfer block of 32,768 for the Backing Store has packed in it all of the variables needed
for a given point in the mesh. Thus the six Q values and three metric (X,Y,Z) values
would be stored in a single physical block. The vector lengths for each of the nine vectors
'in the block would be 32,768/9=3640 elements maximum, which is efficient for the Vector
Unit 	and Map Unit to process memory-to-memory or within the vector buffer (which is
8192 	words long).

If the dimensions of the mesh are 100,100,100 (referring again to the storage scheme of
Figure 2-5) a non-integral number of columns of data from the mesh will reside in a block.
Since the intent is to move data from the Backing Store in 'slabs' (see Figure 2-6), it would
be better to always allocate integral rows-and columns to physical storage blocks. Thus for
a 100,100,100 mesh, 30 columns of each of the major variables would be stored in each
physical block. This means that Q(1,1,1,1) through Q(99,3,1,1) would be stored contiguously,
followed immediately by Q(1,1,2,l) through Q(99,3,2,1). The last flow variable in the
physical block Q(99,3,6,1) would be followed by the first metric X(1,1,1).

The computational sweep in the J direction would then require the transmission of the first
physical block, the nth physical block, the 2nth block, and so on until a 'slab' in the J
direction is completely transferred to Main Memory. Figure 2-6 shows such a slab for a
mesh of 10,10,10, for a single variable. The physical blocks in this case contain the
following:

Physical Block 1 = blocks 00-29

Physical Block 2 = blocks 30-59

Physical Block 3 = blocks 60-89

Physical Block 4 = blocks 90-99
Physical Block 5 = blocks 100.129

2-22

J0

L - 0

K000 10 20 30 40150 68 78 80 90
01 11 21 1 41 151 6 "1 '81 91 j , q O4

02 12 22 32 42 52-6 72, 82 92Ab

03 13 23 33 43 53 63 73183 93 v g

04 14 24 34 44 54 64 74 84 94 1

05 15 25 35 45 55 65 75 85 95 9 5 _

06 16 26 36 46 56 66 76 86 96

07 17 27 37 47 57 67 77 87 97 g

08 18 28 38 48 58 68 78 88 981

09 19 29 39 49 59 69 79 89 99

Figure 2-6. Slab Slicing of Matrices for Backing Store Transfers

2-23

Proceeding to input a slab in the J direction for Figure 2-6 then would transfer

physical block 1,6,11,16 and so on.

Note 	 two effects of this storage system:

1. 	 A certain percentage of the physical block transfers contain no useful data.
Thus the transfer efficiency is affected by that amount.

2. 	 The maximum length vectors without performing a GATHER operation are
an integral number of columns in length, and the GATHER operation in any
direction is now aperiodic since the data for J=1,2.3 is not stored at regular
memory intervals because of the 'holes' left in some physical blocks, and
matrices are no longer homogenous (elements of other matrices are stored
sequentially imbedded in other matrices in actual physical storage).

The programming of this technique utilizing BUFFER IN/BUFFER OUT and CODO
constructs (see Section 4) remains as a great challenge to enliven the next phase of
this study.

A slab in the J direction would require the transfer of one hundred physical blocks
(or ten blocks if the dimensions were as in Figure 2-6) between Main Memory and
Backing Storage. This would mean the allocation of 100*32,768 or 3,276,800 words
of Main Memory for buffering of the slab. In the J direction, computation (and the
necessary SCATTER/GATHER operations) cannot proceed until all data is in place in
Main Memory. To keep the computational rate up, a slab must be moved- into a
buffer while calculations are being performed on a different slab in another buffer.
This would then require 2*3,276,800-6,553,600 words of Main Memory, with no room
to hold the S matrix. Thus the S matrix may have to be combined with the Q and
X, Y, Z matrices in physical blocks. It appears that sufficient Main Memory capacity
exists to support this scheme, however.

If this allocation and transfer scheme is feasible then the transfer rates must be
investigated. The method employed by this 'slab' technique implies a full transfer of
,all mesh, metric, and update matrix variable into and out of Main Memory during the
J direction sweep. It then appears possible to bring in physical blocks constituting the
full plane at J=1 and to solve both sets of equations (K,L sweep) while the plane
remains in Main Memory. Referring to the example in Figure 2-6, this would mean
holding blocks 00 through 99 in Main Memory for the solution in the columnar and
row-wise directions. The amount of data transferred would be one full -transfer of all
variables for a single K,L sweep of the mesh. Total data would then be 14 million
words (9 million for flow variables and metrics and 5 million for S update array).
If all the metric, mesh and update data is intermingled in physical blocks, then all
data must be moved both ways (to and from the Backing Store) even though many
variables such as the X, Y, Z metrics are not updated, and thus would not otherwise
find their way back to Backing Store. Taking the two sets of transfers then, 14 million
words would be transferred to Main Memory for the I sweep, 14 million for the K,L
sweep, and the entire 14 million transferred back at the end of that particular processing.
Four transfers (counting both directions). of 14 million words equals £6,000,980 words
per time step. If 256 time steps is a representative example then 1.434*10 words
would be transmitted for a single problem solution taking about eight minutes.

This volume of data transfer would require 30,000,000 words per second to be moved
at sustained rates. This becomes .3 words per clock cycle. The Backing Store is capable
of providing .2 words per clock cycle with the present design at a sustained rate. The
conclusion to be drawn is that a different physical block allocation scheme should be
devised which reduces the total data transferred by at least 10 percent, since the volumetric
efficiency of the physical block storage (because of the holes left in the blocks) is not
100 percent, and the transfer rate is slower than desired. Alternative transfer rates are
possible with the Backing Store, but should be decided on quickly since they affect the
major structure of the Backing Store design.

2-24

With the limitations just discussed it appears that the memory access patterns for
Backing Store transfers are sustainable for the known 3-D code. The 32-bit mode
version exhibits similar access difficulties, but recent analysis (see results of simulation
in this section) indicates that the Map Unit can support the computational rate
required under worst-case conditions - in 32-bit mode.

CONCLUSIONS OF ANALYSIS IN THIS INTERIM PHASE

A great deal is being learned about the behavior of the implicit three-dimensional code when programmed
for the FMP. It appears that more analysis must be done involving the tradeoffs between cost, performance,
size and bafidwidth of the memory systems when concentrating on the implicit code. F6r example, it is not
altogether clear that a much lower-cost, higher-capacity Main Memory would not be more desirable than the
system presently proposed for the FMP. Programmability and compiler optimization are severely impacted by
the need for clever slicing schemes to move data between Backing Store and Main Memory.

The GPSS model that is being developed may provide the necessary tool for trying different forms of Main
Memory and Backing Store. The next phase will provide the opportunity to hand-compile the balance of
the key segments to determine the best memory approaches.

The major analytical effort in this phase ended up focusing on storage capacity and bandwidth, and to a
minor degree on the capability of performing non-sequential access to memory for the J sweeps. These
have emerged as first-order effects on the performance of the FMP. In the next study phase, the second
order effects must also be analyzed more closely to determine if the pipelines and Map Unit can be over
lapped efficiently (and without great programming difficulty), and whether they are properly matched to the
problem.

FUNCTIONAL DESIGN

The Phase 1 Extension effort produced a proposed, structure for the FMP and the overall system in which it
is to be imbedded. In this report all hardware design has been focused on the FMP and in particular those
parts which are newly designed and not borrowed to some extent from the STAR-100 family. Thus con
siderable effort has been applied to the Vector and Map Units which are the key to the arithmetic bandwidth
of the FMP. The description of the resulting design may be found in hardware specification form in
Appendices A and B of this report. The Instruction Specification gives the summary of how the FMP
performs each pperation, whilst the Functional Specification illuminates such material as the behavior of the
particular arithmetic system chosen, transfer and clock rates, and maintenance interface data.

2-25

-BLOCK DIAGRAMS

The revised block diagrams of the FMP can be found in the Functional Specification. More detailed
design work has been done on the Map Unit, but the level of block description given in the specification
represents that in which confidence can be placed at this time. Formal specifications for the Programmable
Device Controller are currently under way, with completion due by summer 1978. Detailed specifications
for equipments already in place in standard systems, such as the high performance disks, have been omitted.
An unscheduled and extraordinary amount of the total project effort has been expended on the analysis
and redesign of the FMP and its instructions. This factor led to other portions of this study being reduced
in scope over what was originally planned. This was essential, since the programming and timing estimates
and the block simulation efforts had to await the creation of a workable engineering design of the new
components.

Comparison With/Difference From Phase 1 Design

Examination of the block diagrams and description in the Functional Specification will reveal several major
changes in design since the release of the Phase 1 Final Report.

The most significant change is the more detailed structure of the Vector Unit, wherein there are three sets
of identical functional elements (two front-end adders, two multipliers and two back-end adders) and three
checking elements instead of the two called out in the Phase 1 plan. Further, the fully general interconnection
scheme of Phase 1, wherein any element could be connected to any other, has been reduced to a more
practical (from an engineering and parts count point of view) set of interconnections. This constraint then
led to the definition of explicit interconnections called out by the allowable arithmetic instructions. The
result of this redesign is a significant reduction in hardware, and a substantial increase in the checking of
results. This is due to the fact that although there are six separate arithmetic elements, the front-end adder
is not a full floating-point adder, but contains only the prenormalize networks needed for initiating a
floating-point addition, and the back-end adder has only the post-normalize network, and is shared by the
multiply element for forming the final sum of all partial sums and carries generated by the multiply element.
Although this back-end adder is shared by the multiply element, an auxiliary port (which required very little
hardware) has been provided to bring in another operand to be added to the product. Checking probabilities
are enhanced since at any one clock cycle two of the six elements will be idle (and thus possibly checking

their partners) because of the constrained instruction set that permits a maximum of three floating-point
operations to be called out at a time (for example At(C*D) leaves one multiplier and one back-end adder
free).

SECDED is now carried within the Vector Unit on all trunks not imbedded in arithmetic elements, rather
than parity bits.

The vector buffer, while still physically contained within a Vector Unit, is programmed separately with its
own instruction (9E).

SECDED is now carried within the Buffer Unit, instead of simple parity.

The Buffer Unit has only two READ ports instead of four. This reduces the hardware parts count and
also the risk of not being able to get fast enough RAMs for this unit by 1980.

2-26

Nine Vector Units (vector pipelines) form an arithmetic ensemble instead of eight, as described in the
Phase 1 report. A simple method for providing ports for the nine units in the Map Unit, and a method
for switching one pipeline off-line and another on-line, made it possible to provide for quick recovery in
the event of a pipeline failure.

All bit addressing has been eliminated from the Map Unit. All bit strings used for control vectors and
order vectors must begin on a 32-bit boundary. Alignment of bits strings to these boundaries can be

done by the Scalar Processor with its copious idle time. To facilitate string logicals and alignment, the
Scalar Processor has added to it two double-length shift instructions (operation codes 20 and 21 hex) which
are not available on the STAR-100.

The Swap Unit has been given a Backing Store imp table to enable setting regions busy for monitor
purposes, or to permit explicit input/output in a limited form to be performed by the job mode program.

Instruction Specification

The instruction specification may be found in appendix A of this report. This specification gives the
behavior of all FMP instructions. To permit using portions of the actual STAR-100 design and its docu
mentation system, the FMP Instruction Specification was designed to not overlap the STAR-100 features,
but to appear to be a mutually exclusive functional entity. Thus instead of changing an existing instruc
tion (such as Vector Add Upper, op code 80) to become the Swap Unit instruction, the FMP defines
such an instruction as illegal, and uses one of the STAR-100 illegal instructions as the SWAP instruction
(56 op code). The purpose in this is to permit future expansion of the FMP instruction set to embody
desirable STAR instructions, but more importantly to open the avenue of STAR-100 simulation of the

FMP and vice-versa, since all instruction decode and control on both machines is done with microcode.

Functional Specification

The Functional Specification may be found in appendix B of this report. Certain functions have not yet
been defined, and are indicated by the phrase "to be defined", or "designed at a later time", or some
similar disclaimer. Certain other functions which correspond to their STAR-100 counterparts have not yet
been designed, but the STAR-100A feature is described to give the "flavor" of the function. An example
would be the description of microcode loading and diagnostic control for the FMP which is, as an interim,
taken directly from the STAR-100A Functional Specification.

Rationale for Design Approaches

After a year of consideration, analysis, design and redesign, it is felt that the FMP structure given in the
included specifications represents a reasonable engineering approach to providing computations in excess of
one billion per second. As the design undergoes more detailed study some changes are made, and in other
cases convictions grow stronger regarding the approaches taken. Several items that were examined following
the release of the Phase 1 report, and in response to commentary on that report are presented here.

2-27

Logic Family

A second-generation logic family of high-speed ECL LSI was proposed as a means for keeping the "real
estate" and the parts count for the FMP down to a reasonable level, not to mention the reduction of
power and cooling requirements. As was pointed out, this choice of a non-existent but promising tech
nology was the leading technological risk for the project. RADL personnel still feel that pursuit of this
goal of a denser LSI parts (LSI-U is important to the project but not essential to meeting the stated goals
of performance and reliability). This can be achieved by continuing the reduction in complexity of the
FMP hardware as understanding of its behavior with the actual mathematical codes improves. Efforts

are underway to carefully analyze the design and construction of the FM! with existing LSI chips and
packaging.

On the other hand, the desirability of a cooler, smaller, faster LSI system for the FM! has motivated the

pushing of semiconductor manufacturers to pursue the next-generation technology. For the purposes of
this study, all estimates of space, power, and speed are based on the currently pursued parameters for this
new generation. In future reports such quantities will be stated in terms of construction with either family

of logic.

Parts Count vs Performance Tradeoffs

One of the major engineering concerns regarding the buildability of a machine as powerful as the FMP is
the sheer numbers of parts, and hand-tooled interconnections as they affect reliability and maintainability.

The nine pipelines proposed for the FMP are felt to be the limit of the number of parallel functional
units that should be assembled in one place with the existing technologies. At present, these pipelines can
produce 4800-million 32-bit floating-point results per second (at a 10 nanosecond clock cycle), peak rate.
If studies indicate that 32-bit mode only could be applied to codes using the FMP, and if code analysis
proves that the FMP could sustain computations at 50 percent of peak rate, then half as many pipelines
would be needed (actually 5 instead of 9) with a consequent major reduction in hardware parts and a
commensurate improvement in reliability.

Pursuant to this parts reduction, the original generalized Vector Unit, with four read ports from the Buffer
Unit and total interconnectability, created larger parts counts per unit than was felt desirable. Based on

an analysis of the 3-D implicit code, it was discovered that a 20 percent reduction in parts in those areas
would affect the performance of the FMP on that code (counting only vectorized processes) by less than
3 percent (thus yielding an overall affect much less than 3 percent). It is in areas such as these that
continued analysis of the codes, and their match with the hardware, is beginning to pay off.

Choice of Instructions

The basic instruction set for the FMP was ,derived from the STAR-100A. This provides leverage on the

generation of diagnostics and utilities which can be executed in the Scalar Processor alone. Thus when the
FMP is first powered up .nd in checkout, the wealth of software and checkout experience gained from

the STAR-100A project can be applied to the FM!. With a completely checked out Scalar Processor and
input/output system, checkout and maintenance of the remaining units can be greatly facilitated.

2-28

Instruction extensions to the Scalar Processor were minimized to reduce the need for new scalar diagnostic
development, and to limit somewhat the functions accessible by the monitor operating system. The two
monitor instructions for setting up the Swap Unit, Map Unit ard for communicating with the PDC were
considered the basic minimum necessary to support the operating, system. A vector SWAP counterpart to
the STAR-100 register file SWAP, then was included for Backing Store interchange, Finally, by limiting
the actual VECTOR and MAP instructions to three, the remainder of the STAR instruction set could be
made illegal or legal depending on needs of the software implementors (for simulation purposes) without
supplanting from the instruction set the unique FMP instructions. Note that the 9D and 9E are variable
length instructions depending upon how many individual streams are being set up, while the 9F is a fixed
length vector instruction executed by the Vector Unit. In effect, each of the FMP vector instructions
(Map, Buffer and Arithmetic) are somewhat microcoded versions of the original STAR vector operations.
This ability to "build your own vector" is useful when generating object code for computations such as
the Navier-Stokes solutions.

The choice of a microcoded level of instruction also somewhat simplifies the engineering since, in many
instances, a single bit in an FMP vector instruction controls a single gate or single fanout in the processor
without the need for extensive decode and timing controls.

Extensibility

As noted above, at the discretion of the system developers, other STAR-type instructions could be invoked,
either to be implemented by simulation or by additional hardware as the particular case warrants. Within
each FMP instruction extra room has been left for extensions to 'be defined later. For example, all
address fields are larger than the maximum allowable memory space requires today. Thus, although 8-million
words of bipolar RAM appears to be the practical limit at this time for ,main memory construction,
addressing has been retained for 32-million words. Likewise, the Backing Store addressing permits addressing
1-billion words of data, while only 256-million words seems practical or necessary at this time.

Finally, a number of instructions have been left undefined for both the STAR-100A-and the FMP, both
in the 32-bit scalar class and in the 64-bit vector class. As a function comes to light that would be
desirable for STAR, a similar function might be included in the EMP.

BLOCK-LEVEL SIMULATION

One of the methods considered best for measuring the behavior of a particular design is to develop a
computerized model of that design, submit to that model characteristic code sequences, and extract the
predicted execution of those code sequences in the face of conflicts for resources such as memory,
functional units, and input/output buses. To provide NASA with a tool which can be used to measure
various kinds of computations on the FMP, a simulation model could be built which could then be run
by NASA personnel at their initiative on whatever computers were available. Thus, various analytical
teams could examine machine performance in their areas of interest.

The purpose of this task was to supply a package containing the necessary materials to permit Ames
researchers to create input decks of programs that might be run on an FMP and then run these programs
through a model (provided as part of the package). The resultant data could provide timing information,
location of significant bottlenecks, and storage access patterns for review of the Backing Store and

2-29

input/output strategies. At the time of this writing the package is not yet in a form which can be used
by NASA, but it should be ready by the time of submission of the final draft of this report.

Simulation With GPSS vs LSISYS

The large-scale computer development operation of Control Data (STAR-100 and FM? being examples)
bases its design and construction cycle on a series of automated design and documentation tools, which
utlimately produce magnetic tapes that are then used to automatically (or nearly so) fabricate the silicon
chips and main cifcit boards for the object computer systems.

Three levels of simulation of a design provided in this system, called LSISYS (Large Scale Integration

Simulation System), are General Block-Level Simulation, Detailed Block-Level Simulation, and Gate-Level

Simulation. The first, and most general, of these consists of writing FORTRAN subroutines representing
the behavior of a given block of logic (say the entire Swap Unit), and integrating them into the LSISYS
main program. The second level, which can only be started when actual machine design is underway,
consists of utilizing a library of basic logic blocks (for example, a basic 32-bit wide adder network. among
others), selecting the desired building blocks, placing them on "pseudo-boards", and interconnecting all

data trunks and controls as groups of wires. The third and most detailed level of simulation consists of
placing actual arrays on actual boards (with software) and routing all real signals (by software). This final
stage represents a complete verification of the design with the hardware as it will actually be built.

Each level requires a certain amount of resource to prepare, with the least resource required by the highest,
most coarse model for the machine aid the most resources required by the gate-level simulation. Machine time
requirements can be as high as 150 times greater for the gate-level simulation than for the same functions
modeled at overall block level. The major advantage in using this LSISYS implementation is that any block
or group of blocks may be replaced with their counterpart detailed block or gate models, and the entire

assemblage -run as one whole unit. Thus as design of various components proceeds at different speeds, the
entire ensemble can be simulated to validate a particular gate design without requiring the remainder of
the machine to be at the same level of gate design. The running time advantages of running in this mixed

mode are also quite substantial over running the entire computer simulation at the gate level.

The disadvantage of LSISYS is that one must be quite familiar with the inner structure of the simulator
in order to write generalized block models which can be incorporated. -Further, the intimate interconnection

of simulator flags, variables, and parameters makes integration a lengthy affair of compilations involving the
entire simulator. For more detailed design verification and analysis this disadvantage is outweighed by the
amount of discrete information thht can be obtained from the general level of simulation, while detailed
block and gate simulation are easier to submit to simulation in all cases.

At the same time as RADL investigators began to discover the amount of resources needed to integrate a

basic block model of the FMP into the LSISYS simulator, Ames personnel disclosed their most immediate
needs for simulation data. It became obvious that the level of detail required at this point in the FMP
project was even more superficial than planned for the LSISYS block model. In particular, general statistics

about the performance of the Main Memory and Backing Store under different loading conditions is a key
concern of both RADL and NASA. Such a general, statistical model could be provided by more readily
available, standard simulation systems such as ASPOL, SIMULA, or GPSS, which have been in existence on

a variety of computer systems for many years.

2-30

The peripheral disadvantage of using the LSISYS mechanism for this evaluation function by NASA analysts
was that the system is not a standard, supported Control Data product, which is generally available. Instead,
it is used and supported by the STAR Development Division, and can only run on a fully-configured 7600
system. Choosing a general-purpose simulator such as GPSS could then make the basic block simulator
system available on a more general class of computers.

A brief examination of the simulators available to RADL via CYBER services and a survey of simulator
experience among the project staff led RADL to select GPSS (General Purpose Simulation System) since it
and a resident expert were readily available. Its availability on the general CYBER computers as well as
IBM machines housed at Ames further justified the choice.

It is expected that as design continues the GPSS model will be refined, and selected simulation analysis of
throughput conducted in that system. As the detailed block-level design proceeds however, input will be
prepared for LSISYS so that the actual hardware design can be verified for functional, as well as perform
ance, characteristics.

Methodology for Simulation

The FMP has been subdivided into, the components of Main Memory, Backing Store and processing unit
models, which are linked together. While the models for the memories are developed to represent as close
as possible the actual hardware construction, the balance of the processor model consists of an instruction
interpretation and decode, and execution timing segments for the swap, vector and map functions invoked
by the decoded instructions. This elementary model does not process actual data, although vector addresses
and lengths are examined from the input source code.

The input to the model is a series of machine instructions, memory-contained descriptors for vectors, and
initial register file contents. The simulator assumes that it is dealing solely with a job mode computational
program and is able to time the execution of sequences of instructions, and to produce the memory access
patterns resulting from various influences. While the model is running, input/output activity can be simulated
by either random, or block sequential accesses. Output data is limited to execution time by instruction
and memory activity at this time.

The simulation package to be delivered under separate cover with the final draft of this report will also
include an itemized list of the regions of source input (to GPSS) where CYBER/IBM incompatibilities exist,
and necessary corrective actions to be taken if the system is to be run on IBM equipment.

After delivery of the simulator, and for thd duration of any subsequent phases in which RADL is involved,
design updates will be provided for the simulator. To this end some form of documentation and simulator
update control system will be devised.

Relationship to Future Simulation

The GPSS level simulator is intended primarily for the use of analyst teams outside RADL to evaluate the
ability of the FMP to meet project objectives. It is not capable of being utilized as a verification that
the specified hardware is capable of being built. That function still rests with LSISYS which is the primary
design tool for the RADL FMP designers. Thus' GPSS can be viewed as a management tool, while LSISYS

2-31

is the designers tool. Since the input forms and even the amount of detail submitted to the systems

differ widely, some form of controls will need to be introduced to ensure that the LSISYS model and

the GPSS model actually represent the same FMP, for as long as GPSS is used by NASA personnel to
validate the FM? approach. Since LSISYS is capable of yielding the same data with a higher degree of
refinement and more closely represents the hardware being designed, it is suggested that, despite its stated
disadvantages, LSISYS be used as the continuing design review mechanism by NASA.

In short, GPSS provides a well-documented and expeditious means of getting some simulation results for

NASA use, but LSISYS is the long-run solution to ensuring that the real design meets XAes objectives.

Results of Simulation

Development of the hand coding of the implicit code, and the .GPSS model to reflect accurately the design
of the FMP to date, has severely restricted the amount of data that could be obtained before the conclu
sion of this phase. It was decided to encode a small portion of the J sweep that is intensively 'memory

limited', as data must be gathered for each J in the K,L planes. The computation of the metric differen
ials and formation of the RHO variables into a long vector were hand coded for Figure 2-3. The results
of performing 34 scalar operations, 3 GATHER operations and 3 vector arithmetic operations .over a 100,
100,100 mesh is the achievement of a 933-megaflop. computational rate. This sequence was chosen as the
worst case, since memory is being accessed in the most inefficient way.

The same computations in the L direction would achieve close to 3.2 billion floating-point operations per

sedond, while those in the K direction would attain a rate of 1.8 billion floating-point operations per
second..

A listing of the GPSS output is too voluminous to include in this report and is being delivered to Ames

under separate cover. This listing contains many statistical counts to illustrate the internal behavior and,

in particular, the bottlenecks encountered by a given code sequence.

In the next phase of this study effort, the complete left-hand-side calculation will be coded in extended
FORTRAN, hand-compiled, and passed through the simulator.

2-32

Section 3,

RELIABILITY ASSESSMENT

Section 3

FMP RELIABILITY ASSESSMENT

INTRODUCTION

The Phase I study for this project produced some reliability projections of a general nature as part of the
Final Report. That phase did not include design beyond a conceptual stage and, therefore, reliability data,
particularly for the FMP, was primarily subjective. One of the tasks for the Phase I contract extension was

to carry the FMP design to a point which would permit making preliminary parts count estimates. These,
in turn, could then be used for a reliability assessment with more credibility since it possesses a sounder
base.

METHODOLOGY

Since the FMP design proposed by Control Data is based on the STAR-100A, its technologies, and extensions

of them, considerable actual detail exists and could be exploited. The basic technology, that of the
STAR-100A, is ECL LSI-I, 168-gate army integrated circuits in 52-pin leadless carriers, packaged up to 150
per printed circuit board.

The reliability analysis of the FMP was done by functional unit. Some of the units are anticipated to be
the same as those of the STAR-100A (or very nearly so). For these units actual parts counts were used
for printed circuit (PC) assemblies already designed. In addition, sufficient data was available to define an

average PC assembly (or model). The units to be developed uniquely for the FMP were then defined
sufficiently to determine an estimated number of assemblies (or boards) per unit. The model was then
applied to these board counts for a failure rate per functional unit.

RELIABILITY ANALYSIS

MODEL PC ASSEMBLY

The model, or, typical PC assembly mentioned above, was derived from existing designs. The items which
contribute virtually all the failure mechanisms for this assembly are stated in Table 3-1 with counts and
failure rates.

TABLE 3-1. MODEL PC ASSEMBLY

Component Counts and Failure Rates

Component Count Expected Failure Rate (per million hours)

Board Vias 18,500 0.00005
LSI Connectors 8,468 0.0014
Solder Joints 660 0.0003
Capacitors (ceramic) 300 0.014
Omega Resistors (buried in board) 1,323 0.0004
LSI ICs 147 0.2

3-1

By extending these counts and rates and summing the results, a failure rate of 0.0465 per thousand
hours is obtained for the model, or average, board (assembly).

RELIABILITY PROJECTION BY FUNCTIONAL UNIT

The current STAR-i OA Scalar Processor was used after deleting the associative memory portion. The STAR-IOOA
memory module was used but with substitution of an anticipated 4K memory chip for the present 1K chip. This
resulted in using 0.2 x 10.6 failure rate in place of 0.1 x 10-6 which is the rate for the 1K chip. This module was
also used for the input/output buffer.

The existing design for the PDC and 50-Mbit data set have also been directly applied to the FMP. This is also true
for the memory fanout, so for these three items, actual parts counts with their expected failure rates could be used.

The remainingunits, or items, required estimation based on the level of design to date. These are the Map Unit,
Memory Interchange, Vector Unit (9), Input/Output Distributor, and Backing Store. The Backing Store design is
based on 65K CCD chips, 128 per board. The other units, or items, are new designs and have progressed to a reason
able block-level. Board count estimates were made and the above model board was used as basis for reliability analysis.
Table 3-2 lists all the above units, their estimated board (PC assembly) counts, and approximate chip (IC) counts/board.

TABLE 3-2. BOARD COUNT BY UNIT

Estimated Approximate

Unit Board Count Chips/Board

Scalar Processor 14 147

Main Memory 1216 181

Memory Interchange* 4 '147
Memory Fanout 6 112

I/O Unit - PDC**(8) 144 150
I/O Buffer
I/O Distributor

38
2

181
147

Map Unit 6 147

Vector Unit***(9) 72 147

Backing Store 2100 143

*Includes Swap Unit
**Includes Data Set

***Includes Buffer Unit

3-2

The Memory and Input/Output Buffer consist of high-speed, bipolar chips packaged in a stack configuration; each

stack is 32,768 39-bit words (includes SECDED). The above board counts are for 8 million 64-bit words (plus SECDED)

of Main Memory and 4 million 64-bit words (plus SECDED) of Input/Output Buffer.

The PDC and data set comprise somewhat different technology in that the PDC consists primarily of TTL circuits and

the data set is basically an analog device. In addition, these units are packaged differently and employ air cooling.

The Backing Store design, for this analysis, assumes a 65K-bit CCD chip. It also would be packaged differently than

the LSI logic of the FMP. The above board count is for a Backing Store of 268 million 64-bit words (plus SECDED).

The results of the analysis are presented in Table 3-3 which gives both raw failure rate and an expected

rate after taking SECDED into account. In addition, the mean time between failures (MTBF) by unit

are shown.

TABLE 3-3. EXPECTED FAILURE RATE BY FUNCTIONAL UNIT

Expected, Failure Rate

Unit

(per thousand hours)

Raw With SECDED"

Percent
Checked

by SECDED

MTBF
(hours)

with SECDED

Scalar Processor 0.9319 0,8387 10 1,192

Main Memory 21.2448 0.0212 99.9 47,170

Memory Interchange*
Memory Fanout

0.1860
0.2244

0.0930
0.1122

50
50

10,753
8,913

I/o Unit - PDC**(8)
I/O Buffer

0.2896
0.6639

0.2896
0.0007

0
99.9

3,453
1,428,571

I/O Distributor 0.0930 0.0650 30 15,384

Map Unit 0.2790 0.1674 40 5,974

Vector Unit***(9) 3.3480 3.0132 10 332

Backing Store 67.6500 0.0677 99.9 14,771

Overall 94.9106 4.6687 214

*Includes
**Includes

Swap Unit
Data Set

***Includes Buffer Unit

3-3

A factor of 1000 improvement was used for SECDED correction in the memory functions which seems
conservative because of the size of the memory (assuming good memory maintenance). This is because
one chip contains only one bit of a word and two failing chips have low probability of being in the
same word. However, if this assumed SECDED correction improvement is off by a factor of 10, the
total rate with SECDED would only change from 4.6687 to 5.4740; SECDED effectively removes memory
as a large contributor to the system failure rate.

The raw failure rate indicates a system failure roughly twice a day with over 90 percent of these failures
being memory circuit chip failures (4K bipolar and 65K CCD). SECDED improves this to an expected
failure rate of about 3.4 per month. The majority (2/3) of the remaining failures with SECDED included
are in the Vector Units. Because of the great difficulty in providing correction of results in high-speed
arithmetic pipelines, a 9th functional pipe line has been added to the 8 required for operation. This, along
with the self-checking features built into the pipe, means that'a failure in a pipeline can cause the
Maintenance Control Unit to replace the failing pipe. The job that was running at the time of the pipeline
failure is lost but no further time is lost. The failing pipe is connected to the maintenance processor to

be fixed off-line.

EFFECTS OF ISI-H ON RELIABILITY

There are two circuit developments that can have an effect on system reliability using LSI-I circuits: going
to a new generation of ECL, LSI circuits and using a 256K CCD chip. It is hoped that a -circuit density
improvement of 4 times can be achieved. This development should reduce the number of logic boards by
a factor of three (not four because it is expected that the number of coax connections on a board will
not increase by a factor of 4 but perhaps by a factor of from 1.5 to 2). The number of boards in a
pipeline is then expected to be reduced from 8 boards to 3 with reliability improving by a factor of
approximately 2.

The 256K CCD chip enables the Backing Store to be built with about 550 boards instead of 2,100. A
reliability improvement of about 2 can also be expected here. (The boards become slightly more complex,
the SECDED improvement factor decreases slightly, and the more complex chip will have a-higher failure
rate.)

These changes can be expected to yield the failure rates per thousand hours shown below:

Raw Failures
Failure Rate

With SECDED
MTBF (hours)
With SECDED

Logic boards 2.68 2.290 437

Memory

Backing Store

22.57

33.83

0.023

.034

43,487

29,412

Overall 59.08 2.347 426

The raw failure is improved by 38 percent and the SECDED failure rate by 50 percent.

3-4

FMP AVAILABILITY ASSESSMENT

Admittedly, some of the above material is subjective; this is of necessity at this early design stage. Detailed
design is lacking on most elements of the FMP, component and board counts are estimated, effects of
SECDED are speculative since sufficient data are not yet collected, and device failure rates and modes are
not yet established for devices of the future.

Since the failure rates previously mentioned show that raw failures are dominated by Main Memory and
Backing Store, and since these FMP units are ideally suited for the application of SECDED, a more objective
analysis of maintenance strategy for failures covered by SECDED is presented. Ideally', over 90 percent of
the raw failures in the FMP could be essentially eliminated from the overall failure rate if SECDED could
effectively cover the failures by correcting single-bit failures. The improvement factor of 1,000 used above
for SECDED results in MTBF of about 5.4 years for Main Memory and about 1.7 years for Backing Store.
This leaves the overall MTBF of 214 hours dependent mostly on the Vector Units which have a spare unit
that can be switched off-line for repair.

The computer -industry, throughout its history, wherein memories without error correction have been utilized,
has developed a cultural habit of immediately removing all symptoms (intermittent or solid) of memory
failure. With the advent of error correction (SECDED) in a memory system, single-bit memory failures are
corrected automatically, thus deferring the necessity of removal until a more convenient time. Allowing
single-bit failures to accumulate in the memory eliminates the consequent emergency maintenance time and
reduces remedial maintenance time. This not only increases the time available to the customer but reduces
the cost of memory maintenance.

To realize these benefits a memory maintenance strategy must be developed which allows the accumulation
of single-bit failures, with sufficiently low risk of system (double-bit) failures. This is-.done by exploring
the risks involved with accumulating single-bit failures in the memory until a planned periodic remedial
maintenance period. Such failures are corrected by the SECDED mechanism making the system appear to
have no failures, thereby improving the effective failure rate (or MTBF).

In memory systems having parity checking, all failures are considered fatal because the information stored
or read has no credibility. The term "Fatal" is used because usually operation is halted, and emergency
diagnosis and remedial action is taken to restore confidence in the memory. A memory system utilizing
SECDED corrects single-bit failures and detects double-bit errors which are considered fatal for the above
reason. It follows, then, that single-bit failures can be accumulated until a double-bit failure occurs. At
that time the memory could be swept clean of lI failures restoring confidence in the system.

Such a memory maintenance strategy may be acceptable in some circumstances. However, since the double
bit error like the parity error could occur at any time during customer use, its occurrence could be quite
costly.

On the other hand, fatal failure can be predicted as likely to occur at or beyond some specified time in
the future, given that the failure rate of the storage devices is specified. The probability, PF' of such an
occurrence may be chosen so that it is quite likely that no fatal failure would occur during use (the
maintenance interval) if maintenance were scheduled at or before that time to remove all single-bit failures.

This strategy calls for removing all storage device failures every maintenance interval, M, such that the
probability of a fatal failure is no greater than PF"

3-5

The probability, PF, of a fatal failure (double-bit) occurring during a maintenance interval is one minus
the probability of success, no fatal failures, during the maintenance interval. This probability of success
is the product of the probabilities that the next failure will not be fatal for each interval between failures
within the maintenance interval. These latter probabilities of success are one minus the probability that
the failure will be fatal (double-bit). Thus:

1-PF =[1 1 - . .. PI[l)P1i2(c-1)P]

where c is the number of bits in a SECDED word (including syndrome bits), Pa is the probability that the
two failing devices will have matching failing areas, T is the total number of storage devices in the memory
system, and n. is the number of devices that fail during a maintenance interval. (Note that if devices always
fail in their entirety, Pa = 1; this is worst case.)

Parameters c, Pa' and T are generally known for a given system, based on its design. Using various values
of n, the equation can be solved until a PF is obtained which is below an acceptable ,risk of a fatal failure
occurring during a maintenance interval. -With n established, the maintenance interval, M, can be determined
from:

M=n

where d is the device failure rate. For risk of less than 0.1 (10 percent), PF can be translated into
MTBF (in years) of fatal failures by:

M
MTBF = 8760 PF

This procedure can now be applied to the FMP Main Memory and Backing Store. For this analysis, an
acceptable risk of fatal failure, PF' during a maintenance interval, M, is assumed to be 0.01 (1 percent).
The other parameter which must be assumed for lack of established data is Pa' the probability that failing
-devices will have matching failing areas. For this reason a worst-case value of 1 is used, assuming the
entire device fails. With all other parameters known for a given design:

Backing
Parameter Memory Store

PF 0.01 0.01

a *1 1
c 39 523
d 2x1O "7 2x10 "7

T 159,744 267,776

Results:

n 8 3
M 10 days 2 days

MTBF 2.9 yrs 0.5 yrs

3-6

These MTBF figures fall short of those stated earlier, most notably for the Backing Store. The improve
ment factor resulting from this analysis of SECDED can be determined using the raw failure rates (or
MTBF) from Table 3-3 for Main Memory and Backing Store and the MTBF figures determined above with
SECDED.

The improvement factor determined in this manner is somewhat in excess of 500 for Main Memory and
300 for Backing Store. It should be noted, however, that a worst-case value of 1 was assumed for Pa"

Referring back to Table 3-3 and substituting the above values of MTBF for Main Memory and Backing
Store, the overall MTBF for the FMP becomes 207 as opposed to 214 in Table 3-3.

As stated above, Pa = 1 was used since a value is not yet established by statistical data. If this turns out
to be smaller (and it is reasonable to expect this to happen) the results of this analysis are improved
considerably. For example, Pa = 0.3333 for Main Memory produces the factor of 1000 improvement with
SECDED over raw failures.

Backing Store, on the other hand, would require a Pa of 0.12 to obtain a 1,000 times improvement by
SECDED. However, one more parameter deserves consideration; this is c, or the. number of bits in a
SECDED word. Design considerations thus far have established the Backing Store as 512 data bits plus
11 SECDED bits for c = 523. If a data size of 128 is used (c = 128 + 9 = 137), a.Pa of about 0.45
would produce the factor of 1000 improvement. This may become a powerful argument for a 137-bit
SECDED word size for Backing Store as design progresses.

The above consideration of changes in Pa and c for Main Memory and Backing Store also produce improved
values of

below.

n, accumulated failures, and M, maintenance interval.

Main
Parameter Memory

The changes and

Backing
Store

the results are summarized

PF 0.01 0.01

Pa
c
d

0.3333
39

2x10 7

0.45
137
2x10 7

T 159,744 280,576

Results:

n
M

MTBF

15
19 days
5.6 yrs

9
6 days
1.7 yrs

3-7

Section 4

SOFTWARE DESCRIPTION

Section 4

SOFTWARE DESCRIPTION

THE PROGRAMMING LANGUAGE

In the first phase report, the subject of programming languages for the FMP was discussed. The conclusion
was that FORTRAN, despite its technical deficiencies, was the most likely language to be readily adopted
by the applications programmers. The lanmguage, PASCAL, is rapidly becoming the predominant system
programming language and is therefore recommended as the language in which to write operating systems
and compilers for the FMP complex. The specification of the PASCAL dialect should be accomplished
in the third design investigation phase of the NASF project.

The purpose of this particular report is to introduce the FORTRAN language extensions felt to be
essential for the programming of the FMP. After review of several alternatives with NASA investigators
and Control Data FORTRAN specialists, it was determined that the most probable solution to the language
problem was the absolute minimization of new language constructs and syntax. This was deemed necessary
because of the time required to implement wholly new language features in an existing compiler, while at
the same time trying to create new object code output from that compiler optimized for a new architec

ture such as the FMP.

Several key decisions were made. They are:

* 	 Management of the Vector Buffer Unit would be reserved for the compiler, as the
compiler manages the Register File for the CDC STAR computer or the X, A and B

-registers for the CDC CYBER family.

* 	 Management of the Backing Store would be left to the programmer, using the statements
BUFFER IN and BUFFER OUT as modified in this proposal.

* 	 The STAR FORTRAN vector facility requiring explicit descriptions of the vector lengths
in arithmetic statements would be abandoned.

* 	 The programmer must aid the compiler in producing vector operations by describing

regions in which the compiler is to perform vectorization.

* 	 Some facilities must be provided to assist the programmer in moving code which

presently exists in subroutines into in-line sequence, thereby reducing the overhead

attendant to JUMP operations, in order to make vectorization easier.

Compilers have difficulty vectorizing programs containing many subroutine calls since the FORTRAN CALL
doesn't restrict the behavior of such subroutines, thus permitting recursion or vector overlap to nullify the

possibilities of vectorization of the calling routine.

4-1

THE LANGUAGE PROPOSAL

It was originally intended to provide a full FMP language specification in this report. The amount of
time and resources available for this phase made such a detailed specification impossible, particularly after
many man-hours had been consumed in fruitless pursuit of several bankrupt alternatives.

What follows then, is a proposal for a language which would have to be fleshed out in full 'spec' form

in subsequent phases of the NASF study.

Base Language

The basic language for the FMP should be FORTRAN which conforms to the ANSI Standards of 1966,
to be replaced by the 1978 ANS Standard for which approval is expected soon. For the FMP first

installation a FORTRAN based on the 1966 standard would be acceptable since compilers for this version
abound on most standard computer products that might be considered for the Front-End Processors.
Conversion of the NASF to the 1978 standard should await the availability of compilers at least as mature
as those now extant for commercial computers."

The choices available with Control Data Computers are the CDC CYBER FORTRAN Extended compiler with
extensions to permit array dimensions of up to 5 (refer to the CDC FORTRAN Extended Reference
Manual, publication number 60497800) or the STAR-100 FORTRAN compiler (refer to the CDC STAR
FORTRAN Language Reference Manual, publication number 60386200). Obviously, similar compilers are
available on a wider range of equipments, but the Control Data investigations have been directed toward
modification of the CDC compilers for this purpose.

The Extensions

CODO Statement

The CODO (Concurrent DO) statement invokes a block of FORTRAN code terminated by an ENDCD
statement. The form of the CODO statement is:

CODO i = el, e2 (,e3)

or:

CODO i= e1 , e2 (,e3); j = e4 , e5 (e 6)

or:
CODO i = el, e2 (,e3); j = e4 , e5 (,e6); k = e7 , e8 (,e9)

where i, j and k are integer variables, el through e9 are integer expressions, and the terms. (,e3), (,e6),
and (,e9) are optional parameters.

The meaning of the CODO and ENDCD statements is to define a block of code which must meet the

following restrictions:

* 	 No subroutine or function calls are permitted in a CODO block, with the exception of
certain built-in functions (implicit functions) such as SQRT. In the case of allowed functions
the compiler does not generate a generalized subroutine call, but either includes the object
code in-line, or generates a special call to a vector FORTRAN subroutine (if the object time
parameter is of type vector).

4-2

* No branch statements, IF statements, or ASSIGN statements are permitted.

* No input/output statements are permitted.

* The FORTRAN programmer is assuring the compiler that the variables declared in
the CODO block do not conflict in storage, via FORTRAN 'tricks' such as EQUIVALENCE
or overlaid data due to passed parameters in subroutines pointing to conflicting arrays.

In exchange for these restrictions the FORTRAN programmer is assisting the compiler in the generation of
optimal code for the EMP, using vector operations.

Simple CODO Statements

The expression:

CODO I=1,100

A(I)=B(I)+C(I)

ENDCD

results, in the generation of a string of code which, when executed' will perform a memory to memory

vector add of the elements in vectors B and C.

The expression:

CODO 1=1,100;J=1,100

A(IJ)=B(I4)+C(,J)

ENDCD

performs the element by element sum of arrays B and C, placing results in A.

Complex CODO Statements

Many statements in CODO blocks must be analyzed carefully by the compiler to produce optimum code
for the FMP. In the previous examples, the relationship between the source FORTRAN statement and
the resultant object code is clearly seen. In most instances this relationship becomes obscured, and thus
more complex forms of object code are produced.

The expression:

CODO 1=1,100

RR=A(I)+B (I)

ENDCD

forms a one hundred element temporary vector called RR, and places therein the sum of the vectors B
and C. Temporary vectors produced in this manner in CODO blocks cannot be referenced outside of
CODO blocks, although one CODO block may reference a temporary vector produced by another CODO
block. Temporary vectors of this type may not be referenced by subscripts (that is, RR(l)) within the
CODO block.

4-3

The expression:

CODO J=1,100

D(I,K)=A(J,IK)+B(J,I,K)

ENDCD

produces a temporary vector of one hundred elements containing the sum of the columnar elements of A
and B, and stores the result in a sequentially arranged column in the array D at the effective memory
location of D(1,1,). Note however, that D is only defined as a two-dimensional array. Thus the third
columnar dimension is created by the compiler as a temporary region for storage of data. In effect then,
the array D contains a two-dimensional matrix, each element of which is a 100-element vector.

As in the previous case, arrays produced in this way may only be referenced within and among CODO
blocks. Thus they may not be passed as parameters or referenced in COMMON, EQUIVALENCE or
BUFFER IN/BUFFER OUT statements.

This form permits the direct inclusion of existing codes, in their present FORTRAN form, by simply
'blocking' groups of vectorable statements into CODO blocks, without destroying the original form of
computation and associated documentation. Note that this example is equivalent to the use of:

DIMENSION D(100,100,100),A(100,100,100),B(100,100,100)

CODO J=1,100

D(J,IK)=A(JK)+B(JJK)

ENDCD

which would permit the programmer to reference the array D or any of its elements' in any legal FORTRAN
manner. In Section 2, a sample coding is given of the kernel of the left-hand-side calculations. From
Figure 2-2 the following has been extracted to illustrate the use of the principles discussed so far.

1,00= DO 20 L=2,LMAX-1

110= C***FILTRX

120= C

130= CODO J=1,JMAX;I=2,KMAX

140= RJ=Q(K,L,6,J)

150= XK=(X(K+I1,L,J)-X(K-1,L,J)>*DY2

160= YK=(Y(K+1,L,J)-Y(K-1,L,J))*DY2

170= ZK=(ZK+1,L,J)-Z(K-1,L,J))*DY2

180= XL=(X(K.L+1,J)-X(KL-1iJ))*DZ2'

190= YL=(Y(K,L+I,J)-Y(K,L-1,J))*DZZ2

200= ZL=(Z(K,L+I,J)-Z(K,L-1,J),)*DZ2

210= D(J,1,2)=HDX*((YK*ZL-ZK*YL)*RJ)

220= D(J,1,1)=HDX*(-OMEGA*(Z(K,L,J)*(RJ*(YK*ZL-ZK*YL))

230= 1 -Y(K,L,J)*RJ*(XK*YL-YK*XL)))

240= D(J, 1,4)=HDX*((.XK*YL-YK*XL)*RJ)
250= D(J, 1,3)=HDX*((ZK*XL-XK*ZL).RJ)

4-4
REPRODUCIBILITY OF T.U
ORIGINAL PAGE IS POOR

http:ZK*XL-XK*ZL).RJ

1. The CODO block produces vectors by varying both the I and K indices. The K index
is varied first from 2 to KMAX, then the J index is incremented and the K index scanned
through its range again. Lines 140 through 200 in the original scalar code formed a series
of scalar temporaries. Inclusion in the CODO block for this version causes the scalar
temporaries to become vector temporaries. In this case the compiler is capable of generating
a GATHER operation of KMAX-2 elements for each J from the arrays X, Y, Z, and Q. The
result of these GATHER operations is to produce a series of 'invisible' temporary vectors
(known only to the compiler, and unnamed in the FORTRAN source) of length (KMAX-2)*
JMAX.

2. 	 The 'invisible' temporaries are then combined arithmetically according to the FORTRAN source
code to produce 'visible' temporaries (that is, named by the programmer), such as RJ, XK,
YK, ZK, XL, YL, and ZL. As described previously, these scalar-appearing temporaries are
actually vectors. Statements 210 through 250 then combine these temporaries to form the
array segments for D, which will be a three-dimensional array, each clement of'which is-a
vector of length KMAX-2.

3. 	 The truly scalar value OMEGA which is defined in scalar portious of the FORTRAN source
input, is used as a scalar in the CODO block. In line 220, it is broadcast as an operand
in the multiplication operation involving the array Z.

4. 	 The compiler will check all references to ensure that they are conformal (that is, all dimensions
are equal for all operations). - A left-hand-side (of the equals sign) operand can have one
'invisible' dimension provided by the compiler, based on the dimensions of the- operands on
the right-hand side. However all references to that operand must use the same dimensionality.
Thus the expression:

CODO K=2,KMAX

D(I4)=A(K,I,J)

ENDCD

CODO L=,LMAX

D(I,J)=A(L,I,J)

ENDCD

is not allowed, since at compile time, the storage allocation and object code necessary to
assign the array D cannot be determined because LMAX might not equal KMAX at execution
time.

Boundary Conditions

The CODO statement, in the forms discussed previously, causes a uniform application of the CODO indices
to all variables possessing those indices as subscripts (or implied subscripts when the compiler has generated
an internal, 'invisible', temporary vector). The addition of a special operator to each indexing statement
(.CCNT.-concurrent index) permits varying index values with differing results.

The statements:

CODO 1=1,100.CCNT.J=1,100

A(I)=B(I)+C(J)

ENDCD

4-5

are equivalent to:

CODO I=1,100

A(I)=B(I)+C(I)

ENDCD

since the operator .CCNT. indicates that the index J is incremented concurrently with the inlex I. This

feature can be utilized in:

CODO I=1,100.CCNT.J=1,200,2

A(J)=B(I)+C(I)

ENDCD

which forms the element by element sum of the arrays B and C and places the results in every other
element position of the array A (which obviously must be dimensioned at least by two hundred elements).

The .CCNT. operator requires the definition of certain end cases in the use of several concurrent indices:

1. 	 The number of index steps implied by the values of the index limit and index step need
not be identical for all index variables associated by the concurrent operator (.CCNT.). Thus
the statement:

CODO I=1,100.CCNT.J=2,99

permits both the index I and the index J to have different starting and ending values.

2. 	 The use of .CCNT. implies that the two indices are synchronous. In the example in 1.
above, where I and J have different initial values, when I=l, J wbuld be equal to 2, and
vhen 1=98, J would be equal to 99.

3. 	 When the termination values are unequal, each index with the lesser termination value
upon reaching termination takes on values of NULL for each index step of the remaining
index. Thus in the example given, when 1=98, J=99; but when 1-99, J can no longer
be incremented past its termination value of 99 and thus becomes NULL. The result of
this action can be to create a 'bit bucket' into which operands are discarded rather than
stored.

The expression:

CODO I=l,l00.CCNT.J=2,99

A(J)=B(I)

ENDCD

would store 98 values from array B, beginning at element 1, into the array A, beginning
at element 2. A more meaningful example would be:

CODO K=1,100;l=1,100.CCNTJ=2,99

A(J,K)=B(I,K)+C(J,K)

ENDCD

which can generate object code for an ADD vector operation of length 100*100, but where
two elements from each 100 in the J direction are not stored. This particular operation
would result in the creation of a 'Control Vector by the compiler, with two zero bits in

4-6

each 	hundred. Another case is:

CODO K+1,100.CCNT.J=1,200,2

A(K)=B(J)

ENDCD

which would in effect compress out of the vector B every other element, placing the
result in the vector A. In this example the compiler would form an Order Vector
which would be applied in the Map Unit to perform a vector COMPRESS on the array B.
The Order Vector would contain an alternating ones and zeros pattern, and could be
generated at compile time, or at object time, since it is a fixed, non-data-dependent pattern.

As has been stated previously, the object of creating the CODO construct is to permit the insertion of a
minimum number of lines of new code into existing programs to assist the compiler in the vectorization
process. The examples given in this report are only a recommended staring point for subsequent program

mability studies of the FMP.

LEVEL 2 Statement

The form, of the LEVEL 2 statement is:

LEVEL 2 array name 1, array name 2, ,array name n

All arrays specified in a LEVEL 2 statement are assigned to Backing Store. The only references permitted
to these arrays are via the BUFFER IN/BUFFER OUT statements.

This feature permits the assignment of large data blocks to Backing Store by symbolic name. Array name
1 through array name n may appear in other FORTRAN declaratives (such as DIMENSION, INTEGER, etc.)

or may be defined solely in the LEVEL 2 statement as:

LEVEL 2 A(100,100,100),B(100,100)

The compiler attempts to assign arrays greater than or equal to 32,768 words in length to an integral
32,768 word block starting address.

Additional Extensions

The CODO and LEVEL 2 statements discussed above and BUFFER IN, BUFFER OUT, UNIT which follow
represent what is considered to be the minimum essential extensions to the FORTRAN language. They

assume a reasonable extension of the compiling and. optimizing capabilities of known FORTRAN compilers,
such 	 as the STAR FORTRAN compiler. The objective of minimizing extensions is, of course, to reduce
development and testing time for the compiler, and retraining time for programmers. However, the pro
grammers must be trained to understand the relationship of the CODO statement to object code efficiency,

a process which will necessarily be somewhat long and agonizing.

Other suggestions are offered to assist in the programming of the FMP in FORTRAN, but are not as
essential as those few previously mentioned. The other suggestions are:

.	 MACRO facility - Examination of the segment of the three-dimensional code in Section 2,
Figure 2-2, shows that the entire segment has been converted to in-line code. Thus the

4-7

subroutines XXM and BTRI have been included directly and the consequent subroutine
calls eliminated. This serves two purposes. First, in the case of XXM, unnecessary code
and conditional branch statements are eliminated, since when used in the AMATRX segment,
the conditions of the indices are known beforehand, and since the X1M routine is never
processing data on the boundaries in this instance, the overall code can be replaced. The
second purpose served is that by eliminating subroutine calls, the code can be blocked into
CODO segments more efficiently. As in scalar code optimization, the compiler can better
optimize code if it has a larger block of 'uninterrupted' code to deal with.

The scheduling of the GATHER operations, implied by the statements in Figure 2-2, lines
140 through 210, and lines 290 through 360 can be optimized easier over the whole block
of CODO, ending in line 660, than could be optimized of the CODO ended at line 210 (as
if a subroutine call had been made to XXM). In this case, the GATHER operations for
Q(K,L,YJ) could be initiated, immediately after the GATHER operations have been completed
for X, Y, and Z, and can be accomplished concurrently with the calculation of the metric
cross products in lines 140 through 250.

The in-line coding of large segments of computation places a burden on the programmer in
both keypunching (inputting source statements) and maintaining congruence between each of
the inline expansions of what would otherwise be a subroutine. Specifically, if the sub
routine XXM is kept in subroutine format, any changes in the calculations in XXM need be
made only once within the subroutine. If the subroutine is included in-line at the point
where it is called in the main program, then each version would have to be changed. A
means for reducing this problem is the inclusion in the language support system of a powerful
MACRO processor, which can recognize particular constructs, evaluate parameters, and generate
the necessary lines of FORTRAN source code. The most desirable MACRO processor would
be one which is imbedded in the language processor itself, since items such as the variable
attributes and lengths are readily available. However, no such MACRO facility is prescribed
as a standfird for FORTRAN, and no compiler presently possesses such capability. To
minimize ,development cost then, a MACRO preprocessor, based on already operational
systems, should be provided. Two very powerful MACRO systems are available on commercial
equipments; they are called ML-I* (ref. 1) and STAGE-2** (ref. 2). There are a host
of other candidates available on non-CDC equipment.

.f code development is to continue in a reasonably dynamic way through the lifetime of the
NASF, then the value of such a MACRO facility is extremely high. However if the system
code becomes rather static, then the manual labor involved in creation and maintenance of
the code may not justify the inclusion, documentation, training and maintenance of a
sophisticated MACRO facility. At this juncture, Control Data would highly recommend
investigating and including such a MACRO facility (preferably one already in existence) for
the FMP and the front-end processors, operating solely on the front-end processors.

Intrinsic Functions - Certain attributes of codes that may find their way onto the FMP
require the handling of data-dependent vectorization. The FMP hardware provides the
facility for manipulation of array data based on some selection critiria, and to some extent
the CODO statements can cause the compiler to generate operations using these facilities.
In other cases however, the programmer must be aware of the vector nature of a given
conditionalv-executed operation and should have direct access to that facility. This can
be accomplished by defining a set of built-in, intrinsic functions which might be:

VCMPRSS(b,A) - Compress array A by bit vector b
VMRG(A,b,C) - Merge elements of array A and C under control of bit vector b
VMASK(A,b,C) - Produce a vector consisting of elements from A corresponding to

one bits in b, and elements of C corresponding to zero elements
inb

VSEARCH(A.EQ.B) -- Compare elements of A and B, return a scalar index variable
containing the position in the arrays at which the comparison
is:met. Any legal FORTRAN relational operator (.NE.,.GT.,
.LT.,.LR.,GE.,.NOT.) am permitted in the relational expression.

4-8

VCOMPARE - Compare elements of A and B forming vector of integers containing
the index position in the array, where the relation is met.

VSELECT - Compare elements of A and B forming a bit vector, with one bits
in each position wherein the relation is met.

The BIT attribute permitted by STAR FORTRAN, and the logical operators .AND.,,OR.,.XOR.
would be used on bit strings to provide manipulation of the Order and Control Vectors,
explicitly.

.	 Machine Language - Experience with programming portable modules in STAR FORTRAN
has shown that use of the 'escape valve', introducing in-line machine code via the scheme
called Qgmnemonics, has resulted in undecipherable code, which is difficult to optimize by
a compiler since the compiler cannot control the resources of the various functional units
as closely as when no explicit machine code is allowed. Unless the compiler development
cannot utilize an existing compiler system as a base, and unless current optimization techniques
prove to be useless for the FMP (a very unlikely event), the use of machine code escape
mechanism should be prohibited and not implemented in the compiler. If events require
the development of a brand new compiler with massive language changes, then it may be
necessary to introduce this form to provide early access to the FMP facilities while the
compiler is maturing.

Buffered Input and Output

Explicit input and output can be initiated by the FORTRAN programmer for data transfers between the
Backing Store and the network input/output system, and between the Backing Store and Main Memory.
The mechanism for controlling this input/output activity is the use of the FORTRAN BUFFER IN and
BUFFER OUT statements.

The length of the buffer area in which the data is contained in memory should be an even number of
multiple of blocks for all files. Ordering the data in this manner provides the most economical use of
storage.

Any 	unit referenced in a BUFFER statement cannot be referenced in any other input or output statement;
however, such units can be referenced in the unit positioning statements BACKSPACE, REWIND, and
ENDFILE. Once buffered input/output is established for a logical unit in a FORTRAN program, all input
and output for that unit must be buffered.

The ENCODE and DECODE statements are most frequently used to process the data read into a buffer, or
to gather and place data in a buffer for transmission to external files. Status of the peripheral device
involved should be checked by the UNIT function before the buffer operation is begun.

BUFFER IN Statement

The execution of the BUFFER IN statement transfers data from the unit specified, i.n the mode given, to
Level 2 storage locations first to last.

Form

BUFFER IN(unit,mode)(first,last)

unit An integer constant or variable that represents the logical unit number.

4-9

mode An integer constant or variable that specifies the recording mode of the data
being read. The permitted values are:

0 7-track BCD'

I 7-track or 9-track binary

2 CDC 64 character ASCII subset

4 Mass storage (disk)

5 Archive

6 Front-End Processor (FEP)

first 	 A Level 2 array reference defining the first location in the buffer into which
data is to be transmitted. The transmission continues from that point to the
16cation specified by parameter last. The array name used can be type.
character, integer, real, double precision, or complex.

last 	 A Level 2 array reference defining the location in the buffer into which the
last data item is to be transmitted. The location designated by the parameter
first must be less than or equal to the location designated by parameter last;
both must refer to the same array. The array name used can be type character,
integer, real, double precision, or complex.

The BUFFER IN statement initiates data transmission from the logical unit to the buffer. Before data in
the buffer can be used, the status of the data transmission must be checked using the UNIT function.

Example

BUFFER IN (5,2) (X(1),X(10))

UNIT Function

The UNIT function is suitable for evaluation in an arithmetic IF statement that causes branching to
appropriate statements as directed by the value returned. Failure to perform a unit status check renders
unpredictable the input that is transferred to the buffer by the preceding BUFFER IN statement.

Form

UNIT (u)

u An integer constant or variable that represents the logical unit number.

The function returns one of the following real values:

-1.0 Unit 	 ready

0.0 Unit ready; end of file encountered

1.0 Unit ready; parity error encountered

BUFFER OUT Statement

The execution of the BUFFER OUT statement transfers data to the unit specified, in the mode given,
from Level 2 storage locations first to last.

4-10

Form

BUFFER OUT (unit, mode)(first.last)

unit 	 An integer constant or variable that specifies the logical unit number.

mode 	 An integer constant or variable that specifies the mode in which the data
record is to be written:

0 7-track BCD
f 7-track or 9-track binary
2 CDC 64 character ASCII subset
4 Mass storage (disk)
5 Archive
6 Front-End Processor (FEP)

first 	 A Level 2 array reference defining the first location in the buffer from which
data is to be transmitted. The array name used can be type character, real,
integer, double precision, or complex.

last 	 A Level 2 array reference defining the location in the buffer from which the
last data item is to be transmitted. One logical record is written for each
BUFFER OUT statement.

Example

BUFFER OUT (6,3) (X(l),X(1O0))

Extensions for Backing Store/Main Memory Transfers

For transfers between Backing Store and Main Memory, the BUFFER IN and BUFFER OUT statements are
extended as follows:

BUFFER IN (Level 2 array reference) (first, last)

BUFFER OUT (Level 2 array reference)Y(first, last)

Level 2 An array name or array reference (subscripted array name) to an
array reference array declared to be in Level 2 memory (Backing Store).

first A Level 1 array reference defining the first location in the buffer into
w which data is transmitted. The transmission continues from that point

to the location specified by parameter 'last'. All transmissions are in
integral number of 32,768-word blocks.

last 	 A Level 1 array reference defining the location in the buffer into which
the last data item is to be transmitted. The location designated by the
parameter 'first' must be less than or equal to the location designated by
the parameter 'last'; both must refer to the same array.

The UNIT 	 function is also extended as follows:

UNIT (level 2 array reference)

which returns the following real values:

4-11

-1.0 transmission to or from referenced array is complete

0.0 	 transmission to or from referenced array not complete

1.0 	 transmission to or from referenced array cannot be completed (Backing Store

locked out, or data not present)

The compiler attempts to assign arrays in Backing Store and in Main Memory to large block (LB)
boundaries (32,768 64-bit word segments). If the BUFFER IN, BUFFER OUT statements reference
integral blocks, the compiler generates direct SWAP instructions. If the block being transferred does not
align to a block boundary, or if less than an integral block is transferred, the compiler generates a SWAP
to an intermediate Main Memory block, then generates 'in-line' code to move the sub-block (or partial'
block) to its appropriate Main Memory location. The same operation is performed in reverse for BUFFER
OUT statements, with sub-blocks being moved to Main Memory intermediate blocks and then a Backing
Store SWAP initiated.

Because of the compiler's attempts at assignment of arrays for optimum transfers, the programmer should
be cautioned that arrays are not necessarily stored sequentially to one another by the compiler. Thus the
statement:

DIMENSION A(100,100),B(100,100)

does not imply that B(1,1) immediately follows A(100,100) in actual memory.

The example:

DIMENSION Q(100,100),R(100,100)

LEVEL 	2 QB(100,100,100),RB(100,100,100)

'BUFFER IN (QB(1,1,1),Q(,1),Q(100,100))

would move 10,000 elements beginning at the first block of QB to the array Q in Main Memory. -To
determine if the final transfer is completed the programmer may use the statement:

IF UNIT (QB(99,99,100)) 110,120,130

to branch to the appropriate statement depending on the condition of the transfers underway. Note that
the FMP hardware maintains status information on SWAPS in 32,768-word blocks, thus for a BUFFER IN
operation on block boundaries for an array X(100000) the UNIT statement:

IF UNIT (X(1))1,2,3

is equivalent in function to the statement:

IF UNIT (X(32768))1,2,3

since the hardware flag tested by the object code is identical in both cases.

4-12

The Specification

The philosophy governing the introduction of the aforementioned language extensions has been to minimize
change in language or compiler. The next phase of this project must produce a full scale programming
language specification which can be used to procure and implement an applications programming language
for the FMP.

The first item that must be resolved in that subsequent phase is a choice of the FORTRAN base language,
FORTRAN EXTENDED, FORTRAN 66 or FORTRAN 78. This decision will have to result from meetings
between staff members from NASA and the RADL investigators, with schedule risk being a preeminent
consideration.

The compiler specification therefore must await this same decision. The only specification possible at this
time being the hand-compiled examples given in Section 2 and the description of probable compiler actions
given in the preceding discussions of CODO and BUFFER IN/BUFFER OUT.

4-13

OPERATING SYSTEM FUNCTIONAL REQUIREMENTS - FLOW MODEL PROCESSOR SYSTEM

SYSTEM PHILOSOPHY

Three factors drive the architecture of the FMP operating system (FMPOS)

* 	 Minimization of new software development,

* 	 Reduction of overhead within the FMP CPU,

* 	 Balance of system resources.

The development schedule for the FMP system precludes a massive development of software to support all
of the functions commonly associated with general-purpose computing facilities. To achieve the level of
total system stability, reliability, and availability implies that a substantially constrained set of functions be
allocated to the FMP CPU operating system, and existing software be exploited in all attached processors
to the maximum extent possible.

The 	main purpose of the FMP is to perform massive amounts of computation on highly vectorized
mathematical codes. The objective of the total system installation, therefore, is to maximize the amount
of time that the FMP is operating at its peak speeds. First and foremost, the language processor and
related documentation must ensure that the actual computations are matched to the hardware architecture.
Secondarily, as little FMP resource as possible should be tied up in the management of internal FMP
functions such as memory allocation. The functional constraints on the FMP serve to reduce both the
space (in main memory) and the time (usually using inefficient scalar code) required by the CPU-based
portion of the operating system.

System balance is an important and obvious consideration as the power of the FMP could be quickly
dissipated by bottlenecks in input or output or in the scheduling of system resources (such as disk space)
by other supporting processors.

The preceeding imperatives point to the need for a system philosophy around which a system design can
be formulated and upon which the total system implementation can be based. The approach taken for
the FMP is an extension of the "distributed system philosophy" originally evolved for the Control Data

STAR computer systems.

Distribution of Functions

The allocation of system functions should be governed by some basic guiding principles which can be
used for both hardware and software implementations. A suggested set of such guidelines are offered
here:

1. 	 System resources consist of storage and processing facilities. Storage can be central memory,
backing store memory, disk drives or magnetic tape devices. Processing resources could be the
FMP CPU, miniproessors handling system control, or other computers providing support
functions.

2. 	Management of resources is performed by computers which can be programmed to make
intelligent decisions, and to perform whatever control and management functions may be
assigned to them.

4-14

3. 	 The management of resources should be placed as close as possible (electronically, physically,
and logically) to the resource being managed. Thus a disk management function should be
allocated to a processor which may actually reside within the disk unit or in the disk
controller which is normally intimately connected to the physical storage units.

4. 	 All such resource management. functions should be moved outward from the central computer
toward the particular resource.

5. 	 Form follows function; the hardware should be built to fit all of the functions' which have been
moved outwards to the resource, rather than to fit as many functions as possible into an
existing unit. In place of the word 'build" here one could say "sized", since many standard
computing elements can be used in distributed fashion, but the tendency to 'go the cheapest
route' usually results in acquiring a processor too small, into which a partial list, of management
functions are then force-fit.

6. 	 An intelligent processor should manage only its own resources and should be ignorant of
(and thus unable to manage) other processors' attached resources.

7. 	 A processor should maintain a list of functions which it is capable of performing. Any
functional requests not in this list should be passed on (if the processor is a communications
node) or not acknowledged (if the processor is part of a network). Thus no processor rejects
requests unless they are patently illegal, and therefore no processor need know what functions
other processors are' capable of performing.

8. 	All communications between processing elements must be through a single, highly structured
message system, with rigorous attention paid to message formats and protocols.

9. 	 All the preceeding principles must be tempered with common sense and technological and
economic realities.

The result of the application of this set of groundrules is manifested in visible system features such as
processors whose sole responsibility is the management of files for all other processors in a given complex.
This is the ultimate extension of the process whereby first a processor and software are created to manage
the motion of a disk arm and the reading and writing of data bits on the magnetic media; thence the
ability is added to that processor (which is nearly imbedded within the disk unit) to handle error
detection, retry and some recovery of the data recorded on the disk; then further diagnostic ability,
management of the disk space, and finally the management of the files on that particular disk are added.

A list of functions to be distributed to a multiplicity of processors then would include:

1. 	 File management - Control of access, security, backup and error handling, space allocation.

2. 	 Communications handling - Management of all remote access trunks, logon validation, recovery,
scheduling of resources activated by the remote devices.

3. 	 Trunk management - Control of the network that interconnects the collection of resources
and processors.

4. 	 Special processor control - Independent management of special resources such as the FMP
graphics processors and archival storage coordinators.

Hardware Interconnection

The most flexible system organization would permit the interchange of data and control information
between any set of processors and resources in the system. As the number and variety of processors
grows, the practical methods of interconnection become taxed by physical limitations such as volume and

4-15

lengths of cables. The FMP system is based on a network trunk technique (reference section 3.5 of
Functional Specification).

In this scheme all intelligent processors are connected together by one or more bit-serial trunks on which
data can be transmitted, or control information interchanged. Each connection is via a programmable
device controller (PDC) which is itself an intelligent processor. Management of the tunk (which is itself a
resource) is distributed among all the PDCs on the trunk which deal with contention and scheduling of
transmissions.

Each PDC is capable of providing for attachment to four different trunks, however, in the interest of
system availability at least two PDCs will be used at each interconnection. Each of the PDCs will have
access to at least two different trunks.

All system resources, disks, tapes, graphics, archival, communications, special FMP CPU and front-end
processors, will be attached uniformly throughout the network, thus permitting the linking of any system
component with any other.

In general, data transfers are direct from resource to resource without intervention (or store-and-forward)
by other processors. Thus a high speed disk unit would transmit data directly to the FM? CPU, without
the data being passed through any other processor (such as the front-end units): The major front-end
processors charged with the file management responsibility in this case would validate the access to the
particular disks, setup the software linkage (so that the FMP knows where the data is physically located),
then step out of the way (logically) while the high-speed data transfers take place.

While the system is on-line, any device or processor can be logically, or even physically, removed from the
network without disrupting operation,, as long as that resource is not required for a particular computation
during the time of removal.

4-16

Software Interconnection

The total interconnectability offered by the-hardware aspects of the network trunk can be constrained
by the software system to appear as a variety of traditional interconnection schemes (such as a STAR
organized network). The choice of constraining the system interconnections must be based on:

1. Desire to eliminate a multiplicity of interface modules to be written; despite a generalized
message structure, the act of linking a PDP-1O graphics computer to the FM? would require
some interface logic different from that needed when linking to a disk or a front-end processor.

2. 	 Format conversion - To produce the most cost-effective system it is desirable to adapt any
number of existing, proven hardware devices to the purposes of the FMP. Raw data, not even
internal arithmetic formats, are rarely identical, thus there exists a need for software to provide
conversions. These impose overheads in space and time and also require programming and
checkout resources, which may be in limited supply. The need to reduce the number and
variety of this type module is great.

3. 	 The need to restrict access to certain resources - For security or system efficiency reasons
it may be desirable to limit certain interchanges. Thus the graphics processor has no need to
speak directly to the FMP for any reason, and vice versa, despite the fact that they may be
attached to a common trunk for purposes of attachment to the high-speed disk units.

The software must provide, via modifiable tables, a means for defining, the apparent interconnection of all
devices on the trunk. The network trunk provides an eight-bit address for each unit attached. At the
basic hardware level, any device can have its address established by manually changing the setting of a
series of keylocked switches. The PDC can have loaded into itself at system startup time a series of soft
ware addresses (or address-like structures). Finally, each attached processor will have its own higher-level
addressee structure.

Messages, Structure and Discipline

To keep any system of cooperating but asynchronous processors from degenerating instantly into a state of
electronic chaos, a rigid set of protocols must be defined and adhered to rigorously. The only (emphasize
the word only) means of intercommunication is through a predefined set of system messages. There
cannot be any sneak paths or extra wires used for that one special case. The rule is simply that if a
function cannot be handled efficiently within the message system, then either the message system must be
revised or the function abandoned. There can be no equivocation on this rule, lest the system totally
collapse from special-casing.

When dealing with the concept of messages, several levels of system consciousness or message envelopes
must be defined:

1. 	 Trunk protocol - Each PDC, when communicating with another PDC on the trunk, builds a
basic trunk protocol envelope around the data being transmitted, and decomposes the envelope
from data received (Reference section 3.5 of the Functional Specification).

2. 	 Processor Protocol - Each processor involved in interchanging information on the trunk places
another level of envelope around the data being exchanged. Whereas the trunk messages involve
hardware-oriented items such as hardware address codes and cyclic error checking, this second
level is defined by the software portion of the operating system. The format and contents
are addressed to the methods wherein the messages are stored, queued, routed, and decoded
within and by each processor. Suggested formats and a list of message types to be imple
mented for the FMP are presented below.

4-17

3. 	 The highest level messages are those exchanged between job-level programs executing in the
major computer processors (FMP, front-end, graphics and archival store manager). These
messages are primarily for control purposes rather than for the exchange of quantities of data.
An example would be the chit-chat between the interactive graphics processor producing the
displays, and a mesh generation and stretching program residing in the front-end processor
during a session wherein the aerodynamacist is interactively modifying a mesh structure.
Specification of this set of messages will have to await further phases of the FMP development
project.

Message Formats and Types

User programs may issue messages which result in the performance of system functions. To issue a
message, the user presets a 2- or more word block according to the Alpha and Beta conventions described
below, and performs an Exit Force instruction (09) that transfers control to the operating system monitor
mode.

Immediately following the exit force instruction in the instruction stream is either a 32-bit indirect or a

64-bit direct message pointer. Hexadecimal format of an indirect message pointer is:

OOEEOOrr

'rr 	 Register containing the address of the message.

The hexadecimal format of a direct message pointer is:

OOFFaaaaaaaaaaaa

a's 	 Address of the first full word of the message.

The message has a two-part standard format. The Alpha (first) portion specifies the function to be per
formed, length of parameter list, and where to proceed for error processing. The Alpha portion has the

same general format for all messages.

The Beta (second) portion contains the parameters. The format of the Beta portion depends on the

function, as described later for each function code. Alpha and Beta words must start on full-word

boundaries and must exist in space which has read/write or write temporary access.

When a message is processed without error, the operating system returns control to the next half or
full word immediately following the message pointer. Thus, calls can be chained by placing one message
pointer directly behind another.

Alpha format:

Alpha 	(1) r len c
16 	 18 16 16

Alpha (2) n eea
16 48

Alpha (3)

(optional) bl b

4-18

r 	 Hexadecimal response code returned by the operating system when message has been processed.
If no error occurred, the response code is zero (exceptions: f=0013, f=0016 and f=0017).
The significance of a non-zero response code varies as described for each function code.

len 	 If len = FFFF, Alpha (3) contains the length and bit address of the Beta portion. Other
wise, Beta is assumed to begin at Alpha (3) and len is the length of the Beta portion.

c 	 This field varies with the message; usually, it specifies function -options or controls.

f 	 Specifies function to be performed (hexadecimal message code).

n 	 May specify option or control, may contain a parameter for the message, or may be a
parameter returned during message processing.

eea 	 Bit address that receives control if error occurs. This address must lie within the program
issuing the message. If eea = 0, the error is considered fatal to the further execution of this
user process.

bl 	 If the Beta and Alpha portions are not contiguous (len = FFFF), this parameter indicates
Beta length in full words.

ha 	 If Beta and Alpha portions are not contiguous (len = FFFF), this parameter indicates address
of Beta portion's first full word.

The terms controller and controilee have specific meaning relative to FMPOS. For example, a batch
processor also controls actions of a user program; the former becomes the controller and the latter,
controllee. This relationship between programs can exist in other ways as well: one program can
initialize and/or direct the actions of another.

Since 	FMPOS is a file-oriented system, file management is an important aspect of the operating system.
Although FMPOS takes a little direct responsibility for action on a given file, a set of user messages allows
a fair degree of latitude in directing FMPOS processing for a given file. Standard messages also transmit
information between programs operating in controller-controllee mode. The messages are calls to the
system; they are shown in the following table by the alphabetical name of the message.

MESSAGE FUNCTION CODES

Message 	 Function Codet

CHANGE FILE NAME OR ACCOUNT NUMBER OB

CLOSE FILE 05

CREATE FILE 01

DESTROY FILE 02

EXECUTE OPERATOR COMMANDtt 21

EXECUTE PROGRAM FOR USER NUMBERtt 22

EXPLICIT 1/0 50

GET MESSAGE FROM CONTROLLEE 17

GET MESSAGE FROM CONTROLLER 16

4-19

Message Function Codet

GET PACKLABEL AND PFI 11

GIVE FILE 08

GIVE TAPE ACCESS TO CONTROLLEE 0C

GIVE UP CPU UNTIL I/O COMPLETES 52

INITIALIZE CONTROLLEE CHAIN 1D

INITIALIZE OR DISCONNECT CONTROLLEE 1B

KEEP 28
LIST CONTROLLEE CHAIN 13

LIST FILE INDEX OR SYSTEM TABLE 09

MAP 04

MESSAGE CONTROL 18
MISCELLANEOUS 24

OPEN FILE 03

POOL FILE MANAGER 26

PROGRAM INTERRUPT 1C

RECALL 25

REDUCE FILE LENGTH OA

REMOVE CONTROLLEE FROM MAIN MEMORY 19'
RETURN FROM INTERRUPT 51
ROUTE AND FILE'DISPOSITION OD
SEND MESSAGE TO CONTROLLEE 15
'SEND MESSAGE TO CONTROLLER 14
SEND MESSAGE TO OPERATOR IA

SET ALL PERM FLAGtt 2A
TERMINATE 06

UPDATE USER DIRECTORYtt 23
USER/ACCOUNTING COMMUNICATION OE

t Reserved for future use:
07 ADVISE
20 ABNORMAL TERMINATION INTERRUPT
27 LINK SYSTEM CALL
29 SEND MESSAGE TO DAYFILE

IE, iF, EO-FF Reserved for installation use

tt Available to a privileged task only

4-20

THE FMP MONITOR

The FMP CPU hardware is being designed with a particular mode of system operation in mind. The
distribution of functions to the other processors attached to the network trunk frees the FMP from many
of the conventional operating system chores. Thus the hardware design permits a total of 65,536 64-bit
words to be utilized by the monitor. Since there is no direct input or output to the main memory and
since the user has dominion over all the remaining memory, there will be no (repeat - no!) operating
system overlays. The absolute maximum is 65,536 words. Certain hardware instructions have been
provided to assist the monitor in its resource management functions; other instructions have been
consciously omitted to inhibit the desire to add one more feature to the system.

Allocation of FMP Resources

In keeping with the distributed system philosophy, the FMP monitor need only manage the storage
available to it (Main Memory and Backing Store, - the register file and vector buffers are the responsibility
of the compiler system), and the computing resources (or which job is to be loaded and executed next).

Backing Store

The 256-million-word Backing Store is managed in units of 32,768-word blocks. All data transmissions are
accomplished in that same size block, however, the input/output channel PCDs may decompose the blocks
to smaller increments for transmission on the trunk.

In the initial configuration, there are 8192 blocks of 32,768 words that can be managed. Any program
executing in monitor mode can address any block in the Backing Store. Programs operating in job mode
can reference a contiguous band of Backing Store as established by the monitor. The monitor then must
be able to provide the following facilities:

* 	 Allocation of Backing Storage for the entire program and data base for a job being loaded
from the network trunk. This allocation is based on the queued list of jobs submitted by the
front-end processor for execution. Included in the queued information is the space
requirements for the job execution.

* 	 Setup of the base address register and field length register for the job in execution to enable
that job to reference the Backing Store.

* 	 Deallocation of storage as the completed (or aborted) job's data is rolled out onto the network
trunk.

* 	 Allocation of small blocks of Backing Store for on-line diagnostic storage, 1/0 lists (see I/O
Handling, below), and system statistics buffers.

* 	 Freezing of blocks in the Backing Storage when explicit input/output requests involve them,

freeing the same blocks on completion of I/O actions.

* 	 Developing accounting information for billings based on storage useage over time.

* 	 On-line exercise (periodically) of the Backing Store map table (which interlocks the use of
Backing Store) and any other facilities attached to the Backing Store, to verify that everything
is still working.

* 	 When running a series of small jobs that require small amounts of Backing Store, maintaining
a table of space allocation for all such jobs.

4-21

Main Memory

Only one job is intended to reside in the Main Memory at a time, thus the monitor need provide
no special facilities for memory allocation.

The management of Main Memory as a resource coincides exactly in form and content with the
allocation of the computing resource, which follows.

Functional Units

The front-end processors are responsible for the organization, staging, and scheduling of jobs to be
submitted to the FMP. Once a job is fully staged by the FEP (front-end processor) an FEP to FMP

monitor message is transmitted on the trunk. This is a type 2 message, which gives the following data:

Job I.D. (generated by the FEP)

Backing Store and Main Memory requirements

I/O list for the staged job (see I/O Handling, below)

Time limit (if job exceeds the limit - abort -)

Relative priority

I/O list for files to be accessed with explicit I/O

The monitor allocates Backing Store for the I/O lists and queues the remainder of the message in a
sixteen-job queue (maximum allowed is 256 jobs, but that appears to be excessive). When the job
in progress completes, the monitor initiates the roll-out of that job and examines its job queues
(including diagnostics that might be invoked on periodic schedules). The job with the highest priority
that will fit the available memory (in the event that the FMP is operating in degraded memory mode)
will be rolled in:

* 	 Continguous block space must first be allocated to the job coming in. This may involve
collection of disparate groups of blocks that have become diffused in the Backing Store
during explicit I/O or small job executions.

* 	 The file/files containing the job data to fill the block space are physically defined by the I/O
lists. The lists for the incoming job are pointed to by the queued job request held in
monitor's personal area in the 65,536 main memory block reserved for monitor. Monitor
transmits this pointer to the PDCs on the I/O channel which then access the lists and perform
the data loading functions. Prior to initiating the I/O action, monitor sets all affected
blocks 'busy' in the Backing Store map table.

* 	 As blocks are loaded by the PDC, it returns a response to the monitor which verifies that
that portion of the operation was properly completed, and clears the map table busy
flags. Upon completion of the last block, the monitor sets a ready flag in the job queue.

* 	 When a job is in the ready state, monitor transmits a message to the FEPs indicating which
job has been staged to the Backing Store, along with a time stamp. This permits the FEPs
to maintain an.audit trail of the progress of a given job.

* 	 When the job in the CPU completes execution, its entire Main Memory contents are swapped
to its Backing Store blocks. The job in ready state is then swapped into Main Memory, the
Backing Store RA+FL (reference base address and field length) register set, the monitor interval
timer set with dhee'job time limit and an exchange operation initiated which puts the job into
execution.

4-22

* 	 As the exchange operation is initiated the monitor sends another time-stamped system message
to the FEPs to alert them that the job is now executing.

* 	 When the job completes and has been swapped to the Backing Store, monitor alerts the
PDC, gives it the I/O list pointers, and thus initiates the rol out operation after setting all
the respective Backing Store blocks busy.

* 	 On job completion, an end-of-job is transmitted to the FEPs.

* 	 When the roll-out is completed, monitor sets all relevant blocks not busy, updates its own
chart of available memory, sends a final roll-out time-stamped message to the FEPs, and
examines its jobs waiting queue for the next job to be preloaded into the Backing Store.

PDC Communication with the Monitor

Upon completion of requested actions by the PDC, it loads 64 bits of software-defined status information
into the channel status word. The monitor periodically pools each channel with an 02 instruction
(Transmit (R) to Channel (S) and Channel (S) to (T)).

The software definition of the included bits in the status word provides for valid and error terminations
of the Input/Output request, as well as other information. For example, the monitor might request that
it be informed of the completion of each block transfer accomplished in a multi-block input/output
exchange. The PDC would then respond by updating a status word for each transmission.

Since a block transfer at 200 megabits is completed in about 14 milliseconds, the polling rate of once
each 100 microseconds would allow monitor a fairly refined scan of the progress of input/output it has
requested.

4-23

User/Monitor Communications

All communication between the user job in execution and the FMP monitor is through a message

structure identical to the format and style given in the section on Messages, Structure, and Discipline

above. Two methods are used by the user job for pointing to the messages:

1. 	 Direct - The user job executes an 09 (Exit Force) instruction. The 64-bit quantity
immediately following the Exit Force instruction contains a hexadecimal FF in the
leftmost eight bits (bits 0 through 7), indicating that a memory address is contained in
bits 35-63 of that word. Monitor will fetch this word and use the address to acquire the
message. All messages must be stored in Main Memory. Instruction execution will be
continued following the 64-bit word carrying the direct address, after monitor has responded
to the message.

2. 	 Indirect - the user job executes an 09 instruction. The 32-bit quantity immediately
following the Exit Force instruction contains all zeros in bits 0 through 8 indicating that
the rightmost eight bits of the 32-bit quantity contain the register designator of the
register containing the address of the message. Instruction execution continues following the 32-bit
pointer quantity, after monitor has responded to the message.

After interpreting the message and taking appropriate action, the monitor executes an Exit Force (09)
back to the job to restart it at the point it performed its job to monitor exchange (with its own

Exit Force instruction).

Messages

A basic set of messages are required for assisting the executing job:

* 	 Read N blocks from file XXX sequentially into Backing Store beginning at address

AAAAAA from current file position. All transfers are in blocks of 32,768 words.

* 	 Write N blocks to file XXX sequentially from Backing Store beginning -at address AAAAAA
from current file position. All transfers are in blocks of 32,768 words.

* 	 Rewind file to beginning block.

* 	 Skip forward file N blocks.

* 	 Close file (note that the user may not open any files. Thus the Close operation essentially
locks out the file from further use during this job execution.

* 	 Give file to user UUUU with password PW'(used to release an explicit I/O file to tasks on
the front-end processors (FEPs).

* 	 Reduce time limit for this job to TT seconds.

* 	 Reduce Backing Store allocation for this job to/by BB blocks.

* 	 Send message to user UUUU. A user job must be logged on within one of the -other processors,
and enabled to receive messages. The user I.D. is a 16-bit quantity with all I.D.s greater
than 8000 (hexadecimal) reserved for system tasks, and all I.D.s 7FFF (hexadecimal) and
below assigned by the various application programmers.

* 	 Enable message receipt - all other users/users UUUU, YYYY, ZZZZ only. Execute message
processing program at job address AAAAA, save current execution address in job register 01
(data flag branch address).

4-24

* 	 Disable message receiving - all users.

* 	 Set error processor address at job address AAAAA.

* 	 Suspend job temporarily (roll out job until external, actions reactivate job).

* 	 Job complete.

* 	 Job abort, dump following areas of job memory to system error file (normally contains error
messages and error parameters).

Exception Handling

Monitor validates the format and syntax of all messages passed from the user. In the event that a message
is invalid in these areas the job is aborted, the system error log updated, error messages are sent to the
FEPs, and the next job is initiated.

If the function requested is not in the table of monitor capabilities it is automatically passed onto the
network trunk (see Distribution of Functions under System Philosophy above). The message response area
in monitor for this message is set with a real time value from the current clock. After a delay of PPPPP
seconds, if no response is returned, the message is considered unachievable. In this instance the monitor
then enters the job error processing program (if that exit has been set by the appropriate message), or
aborts the job (if the job did not set an error exit address).

If the message is responded to but is not achievable due to system errors or a resource being "down",
the monitor elects to execute the job error processor (if set up) or aborts the job.

In all cases the time of message transmission, response and error conditions are recorded in the master
system log, and the system error log (maintained by the FEPs) is updated. In the event of a continued
failure of the system to achieve a particular function or message type, the monitor will suspend operation
and alert the FEs and the rest of the system.

Monitor/System Communications

Monitor can communicate with the outside world via two avenues: direct control of the input/output
PDCs (programmable device controllers) with word-oriented messages using the monitor mode 02 (Transmit
(R) to Channel (S) and Channel (S) to (T))instruction, or indirect exchange of messages using polling techniques
via the Backing Store. Software in the PDC can interpret the contents of the 64-bit word exchanged by this means
to perform certain functions. In some cases the rightmost 48 bits of this word will contain an address in
Backing Store. In other cases the 64-bit data contains several fields for use by the PDC and monitor for
communicating maintenance, diagnostic, degradation, setup, restart, and other intermil functions. Three major
types of messages are proposed:

* 	 Immediate - The entire message is contained in the one 64-bit word exchanged by the 02
instruction.

* 	 Direct - The function code is contained in the leftmost 16 bits of the exchange word; the
address points to the actual message in Backing Store.

* 	 Indirect - The function code and sequence of system commands are all contained in a list in
Backing Store; the list contains within it the address pointer to the messages to be transmitted.

4-25

Messages

* Acknowledge (receipt of incoming monitor or job message, plus time stamp).

* Reject (cannot perform function requested because it is not in FMP resource table).

* All job mode messages are legal in monitor mode.

'0 Job suspended, rollout complete.

* Job aborted, dayfile and error log information at DDDDD and EEEE respectively.

* Transmit dayfile information from DDDDD.

0 Transmit error fog information from EEEE.

* Transmit maintenance log information from MMMM.

* Job complete, rollout complete.

* Where is file.

* Is file open.

* Degrade available Backing Store to NNN blocks.

* Check real time clock synchronization.

* Perform I/0 operation from I/0 list at IHII

0 Load I/O list at 1M1

* Reject because resource failed, or job addressed not in FMP

e Assign new job, queue information at QQQQQ

Exception Conditions

All incoming messages pass through the PDC which either plants them in Backing Store (in a block reserved for
monitor) or sends them direct upon a 02 instruction poll from the monitor. If the monitor fails to poll after a given
period of time, or the function requested is not performed by some set time, the PDC assumes the FMP to be
disabled and alerts the FEPs.

If -monitor is unable to complete a critical function, such as real time clock synchronization, or if
messages or responses appear garbled, the PDC will allert the FEP. A Maintenance Control Unit function
can then be initiated-to determine the condition of the FMP, and bring everything to a halt if need be

If monitor is unable to get completion of messages, it will first switch to alternate PDCs, alternate FEP
addressees, and fin'ally halt and alert the Maintenance Control Unit.

4-26

Input/Output Handling

Input and output is controlled by communications between the monitor and the PDC. Actual data
transfers always take place from and to the Backing Store, under control of the PDC. The PDC provides
addresses to the input/output interface within the Swap Unit, block counts, and function (read or write).
Data exchange between the PDC and the Swap Unit is monitored directly by the PDC, as its own internal
counter follows the 32-bit half-word transfers across the input/output trunk. When a 512-word block has
been fully transferred to the PDC buffer, a trunk input/output operation is initiated (for output from the
FMP). For input the trunk input/output fills a 512-word buffer in the PDC before the PDC to Swap Unit
transfer is initiated.

For file transfers the PDC receives a pointer to the input/output list for that file. The input/output list

contains the following information:

* Header word containing file identification

* Open status (readwrite,read/write)

* Position pointer into the file map- of cuirent location

" First block of file

* Last block of file

*. Unit numhber and logical block number

* Address of first and last entry in input/output list

* A variable length list of entries giving the disk unit

* Disk block address and number of consecutive blocks for this segment of the file

A file is then a collection of data that may be spread over a number of disks, in noncontiguous chunks.
The file map is kept with the file on the disk and transferred to Backing Store by the FEP (Front-End
Processor) which opened the file for the executing job. Disk unit addresses are 16 bits long with all

addresses of 8000 (hexadecimal) or larger specifying that the disks are multiple units using multiple trunks
and, thus, multiple PDCs for the parallel transfer of data. In the case where monitor detects a multiple
disk drive file (alternate blocks on each drive) a PDC will be alerted for each trunk, and a separate file
list pointed to for each PDC. The set of file lists, either one (for one disk transfer), two (for two parallel
disks transfering alternate blocks), or four (a maximum of four disks can be transferring simultaneously),

are separted into individual input/output lists which define the file. In degraded mode a single PDC can
alternate through the lists, transferring first one block from one disk, the second from another, and so on.

File size is defined by the FEP during job assembly time, and may not be extended by the FMP job or
its monitor.

Input and output of data can be carried on with other system components in the same manner as the
disk system, however, the data transferred need not be in minimum units of 32,768 words, since many

attached processors need not contain that much buffering. Addresses in the file list below 4000 (hexa
decimal) designate other components on the trunk (such as the FEPs, or low-speed devices). The command
word sent to the PDC from the monitor in such cases carries a count of words to be transferred rather
than blocks of words.

4-27

Maintenance Interface

The Maintenance Control Unit (MCU) communicates with the FMP over any one or more designated channels of

the network trunk. Any PDC can have the particular address and password loaded by its software at

autoload time permitting it to accept MCU messages, and toggle the special maintenance control bits

provided in the FMP CPU (see Section 3.6, FMP Functional Computer Specification). These control lines

provide hardware level control and monitoring capability for any permitted processor on the trunk.

Special Lines

The FMP Functional Specification defines a set of lines (established by the PDC acting as the MCU

interface) whose function is to control degradation, configuration, and activity of the FM?. Lines such

as 'stop', 'disable instruction overlap' are needed for system failures and during scheduled maintenance.

The FMP monitor must contain the capability to exercise the options defined by these lines. Until more

detailed CPU design is completed these special functions must be limited to their STAR-100 counterparts

discussed in Section 3.6.1.

Messages

In addition to the messages discussed in Monitor/System Communications above, the monitor can issue a

set of privileged messages to the MCU processor, via the PDC. Included in this set of messages would be:

1. Disable instruction overlap - vector, map, swap, or scalar

2. Disable SECDED error check, leave syndrome bits unmodified (used during diagnostic operation)

3. Force SECDED error on trunk KK (diagnosties only)

4. Help! (Undefined ailment, illogical combination of events discovered by monitor.)

5. New job to be initiated, rotate assignment of pipelines.

Degradation

The only mode of degraded operation permitted for the FMP is a reduction of the Backing Store hardware
to a minimum of 32-million words and a reduction in the Main Memory to a minimum of two-million

words. This degraded mode permits the maintenance of memory units off-line, since they are powered
and cooled in those minimal unit quantities. Memory configuration is specified by a set of control bits

preset by the MCU in a message to the appropriate PDC when the FMP is in the master clear state only.

For purposes of addressing changes when in degraded mode, the memory is first divided into upper and

lower (with each half being able to be the lower half-memory in degraded mode). Thus the first level of

degradation consists of cutting the available memory in half, changing the apparent physical addresses to

take the healthy half of memory into the lower address space and locking out address references to the

sick half memory.

In this mode the maintenance station can enable memory references by the monitor or selected PDCs to

provide diagnostic facilities at various clock rates.

4-28

The Scalar Processor is capable of operating with the Vector and Map Units disabled, and even powered

off.

THE SYSTEM FUNCTIONS

The basic approach in the FMP Operating System is to rely heavily on the utilization of functions already
implemented in existing software and operating on existing computing hardware. To meet this objective

in the time frame established for the FMP installation requires the minimum disruption and redesign of the
standard operating system components. This is accomplished by three techniques:

a. 	 Programming of the PDC to simulate interfaces already known by the existing software
systems. Basic OS drivers can remain intact in most instances. Machines of alien
architecture to each other but with massive entrenched software can be interfaced for
relatively small cost.

b. 	 Constraint of the number and complexity of functions required by the FMP, and
making the FMP responsible for any functions with extremely fast response time
requirements (such as the reading and writing of the major data base disk systems).

c. 	 Providing most FMP services with job mode applications programs written in higher
level languages.

Input/Output for the FMP

Management of all files in the FMP system will be handled by the FEP. Data transfers between elements
of the system and file resources will be conducted directly by those elements, however. The FEPs must

supply the functions normally required of general-purpose computers:

1. 	 Open file, verify access, set access mode (read, write, read/write).

2. 	 Close file, dispose of files (destroy, archive, keep in place).

3. 	 Allocate file, and file space.

4. 	 Expand and contract file space.

5. 	 Move files.

6. 	 Search, and retrieve files.

7. 	 Assemble files from subfiles.

8. 	 Build file maps for FMP disk transfers.

These functions can be provided by most known operating systems, such as the CYBER NOS and NOS/BE
systems. By judicious programming of the attached PDC it should be possible for the FEP operating
system to deal with attached peripherals (for which software is already in place) in the same manner as
if the peripherals were directly attached in today's customary manner.

Interface for the FMP can be provided by an FMP message handler operating in job mode. This message
handler can perform file searches and retrievals using the structured access file software native to the FEPs,
and transmit data to the FMP, or its high-speed disks, using only one specially developed trunk driver
which would have to operate in the CYBER PPU.

4-29

Job Scheduling for FMP

The FEP complex must perform the scheduling of sequences of jobs to be executed on the FMP.

The decision on when and what to execute from the queue given to the FMP by the FEPs still remains
for the FMP monitor as described in Allocation of FMP Resources above.

For purposes of scheduling, the high performance disk system is considered part of the memory resources
that belong to the FMP and must be allocated by the FEP. Taking the FEPs' scheduling responsibilities
for a job in order:

1. 	 Assesment of available system resources (tabulating amount and location of high

performance disk, low performance disk, central FMP memory, Backing Store,

available terminals, archive, and jobs already queued for FMP).

2. 	 Choice of next job to be assembled for the FMP - based on incoming requests

for service

a. 	 priority,

b. 	 resources required,

6. 	 time limit (quick interactive or full run),

d. 	 availability of components of the job (programs and data).

3. 	 Reservation of high performance disk space.

4. 	 Layout of contiguous job space to be rolled into main FMP memory.

5. Layout of contiguous storage area for the job to be allocated in the Backing Store.

t6. Building of file map for job and data files on the high-speed disks.

7. 	 Creation of file entity with security and modes of permitted access.

8. 	 Storage of file header, file map on selected disk.

9. 	 Movement of program file from local storage to job file.

10. 	 Movement of data base to job data files.

11. 	 Closing of data and program,files.

12. 	 Transmission of queue request to FMP.

13. 	 Logging of all the above activities.

14. 	 On close file from FMP, evaluate the disposition code and perform required operation

(note that only FEPs can destroy or otherwise dispose of files).

15. 	 Maintain job status from submission to FMP to job completion.

16. 	 Provide job mode programs for accounting.

17. 	 At job mode completion, follow through on disposition codes.

4-30

Exception Handling for FMP

The frorit-end processors provide two functional entities which deal with system exceptions:

1. Maintenance Control Unit (MCU) processing.

2. Front-end system management.

Programs representing the MCU functions will be prepared for at least the FEP computers. These modules
will be given the MCU privileged password for communications with the FMP and control of the special
MCU lines (channels) within the FMP CPU. These functions are defined by the MCU lines available, and
additional monitor communications defined by as yet to be completed design work.

The FEP computers are responsible for recording all errors and determining what disposition to make of
the partial data and remaining program and job data that are salvaged from aborted jobs. Restart,
recovery and retrench functions are programmed in the FEP, and the semi-automated decision to apply
such strategies driven by FEP programs.

Input/Output Handling for Other Attached Processors

In order to maintain full control over all the system resources, the FEPs should perform all file manage
ment functions afforded the FMP. In some instances a particular processor may require a unique attach

ment to a unique peripheral which need not be attached to the trunk. In these cases management of
the attached peripheral resource becomes the responsibility of the processor that "owns" the resource. In
all other cases the FEP or the PDC attached to a resource acts as the resource manager. As in the FMP,
the actual data transfers bypass the FEP and go directly between the processor and the requisitioned

resource.

OPERATING SYSTEM STRUCTURE AND IMPLEMENTATION

Within the limits of the operating system implementations for the front-end processing systems already in
existence, the FMP operating system should conform to certain architectural and implementation ground
rules.

Programming Language

All new components of the operating system should be written in a higher-level language. The same
higher-level language should be used regardless of the processor being programmed. The programmable
device controllers presently are implemented in assembly language because they operate in real-time, and
each machine cycle must be accounted for. This situation may be unavoidable, however some effort

should be expended to see if major portions of PDC programs could be implemented in a higher-level

language.

The choice of higher-level language is not as important as the decision to require the use of one at all,

however, the language PASCAL is becoming a pseudo-standard software programming language which is
implemented on a variety of hardware, and widely taught in computer science courses. At this point

4-31

PASCAL would appear to be the best choice since many language processors are being created and

bootstrap systems produced for it.

A dialect (if not the entire language) of PASCAL should be used as the primary programming language

for the PDCs wherever possible. The compiler system could reside on one particular mainframe producing

system code for the other attached processors, including the FMP. Development of such a system, with

attendant documentation, debugging, and system design control aids should be initiated as soon as possible.

Modularization

One of the outgrowths of the distributed system philosophy is an enforced modularization of the software.

As functions are distributed outward from a central computing facility into a network of ever smaller

computers, the functional portions become the entire program module for the distributed computers. By

enforcing a set of message standards for communications between such programs, a rigid set of boundaries

can be defined for each and every module in a system.

What remains is to break up all system functions into modules of like kind regardless of whether or not

they actually reside together in a large central computer or in fragmented smaller machines. This means

imposing message disciplines and constraints on intermodule communication, even within a common computer.

Thus at some later date, a module could be moved to a different computer, with the identical messages

being passed over the network instead of internally within the memory of a single computer.

A set of module implementation specifications must therefore be created and placed in this portion of

any software specification, at a later phase in the project.

Configuration Flexibility

The FMP system must be capable of functioning even in severe states of degradation. This means that,
as a minimum, the FMP in its most degraded state of memory, at least one FEP, sufficient disk space

to queue one job, plus one interconnecting trunk must be available for completing flow model solutions.

The system must also be able to sustain interactive communications, and to queue jobs on mass storage
during interruptions of service by any of the other system components such as the FMP; archival storage
subsystem, graphics subsystem, or high performance mass storage system.

The operating system must cope with any possible combinations of configurations arising dynamically in

an operating day. Equipments must be able to be taken off-line, without restarting the operating system,
and new equipments installed without reassembly, recompilation, or other massive remapping of the operating

system (the exception to this would be the reassembly of a small portion of the operating system, say the
disk driver, to accommodate a new type of disk system). In most cases of this sort, however, the PDC

(Programmable Device Controller) is expected to insulate the bulk of the operating system from such specific

hardware changes.

4-32

Extensibility

Two factors militate against the creation of an ideal system design and implementation on the first
installation of the FMP complex:

1. 	 The time and resources available to generate the first production system make it

necessary to be ruthless about eliminating all but the most necessary production

system functions from the first system implementations.

2. 	 The operating system must be adapted to the actual production requirements as

learned from operation of the EMP system over an extended period of time.

Decisions such as the location and allocation of system functions according to the

"Distributed System Philosophy" must be reconsidered as actual experience detects

bottlenecks and resource imbalance.

It should be obvious from past computer system experience that these factors require a high degree of
flexibility and adaptability in the operating system, as understanding of the FMP and its participation in
the airframe design process matures. It should be possible to redesign, recompile, load and test experimen
tal functional modules while the total system is on-line. Further, it should be possible to introduce new
functional modules into the system, while the system is on the air in production mode, without fear of
destroying the remainder of the system. Thus if an error occurs, it can only affect the modified or new
modules and functions.

Without this feature it can be expected that, although the hardware availability might be high due to
extensive reliability engineering and the basic software might be reliable for the same reason, new software
development requires so much dedicated system time that actual customer availability is severely affected.
This is of particular concern when it is realized that certain components in the system (such as the FMP)
are one-of-a-kind, as well as the total configuration being unique. Thus final debugging and testing would
have to be done on the actual FMP complex. This consideration alone is so important it must be stressed
with utmost vigor, as experience on the STAR-100 systems has shown. Since few STARs are available for
software checkout, the STAR data center has become a major test and integration facility, substantially
reducing the system availability to general customer utilization.

The operating system architecture then must be defined with this goal in mind, and thence the manner
and means of modularization and message implementation can be dictated.

RAM (RELIABILITY, AVAILABILITY AND MAINTAINABILITY)

The software system for a complex as large as envisioned for the FMP installation is a major factor in
system reliability and availability as is the hardware. A detailed specification of the RAM requirements for
each software subsystem must be developed for the FMP as objectives for the initial and final production
operating systems, and be included in this portion of a software specification. Two items requiring special
care and attention are documentation and stability.

Documentation

Operating systems with many independent nodes, and a variety of functional modules require extensive
documentation in excess of the commonly used listings, flow charts, and module descriptions. There must
be established a set of documentation standards which engage the following issues:

4-33

1. 	 Extensive definition of all terminology in -an alphabetic glossary (for example the term
"message" must be rigorously defined and each of the fields in the message must be
defined in terms of their meaning).

2. 	 A master outline of the operating system documentation must be created with a place
for every single piece of system documentation (including listings of the source language,
job control setups to form the loaded operating system, and any other preparation details).

3. 	 A set of required documentation rules to be used for imbedding thought as well as
technique in the program listings is required. Thus management -ground rules are needed
such as "al term names must be fully spelled out in source language symbols, at the
cost of more typing time at a terminal or more keypunch strokes" (phrases like "message
length" are more desirable than "MSGLNG" for readability).

4. 	 A set of programming ground rules which aid documentation and future comprehensibility
must be established and enforced. The structured programming schemes aided by the
structure of pASCAL are one major example of an enforced technique.

5. 	 A theory of operation manual must be prepared for each component of the distributed
system, as an overview -of the total system.

6. 	 A message dictionary (with every form and every function described) must be dreated
for the whole system.

7. 	 A master library (preferably automated to make updates timely) must be established for
current, and past, versions of the source code, flow charts (or flow descriptions), and all
versions of the software objectives, design and test objectives documentation.

Stability

A detailed breakdown of the stability requirements for each software module must be developed before the

system implementation commences. That specification would, then be placed here. The overall requirement

is that the total software system (including operating system, compilers, and utilities) must have a mean

time to failure no worse than the hardware system.

Obviously a perfect system would be desired, however practical experience shows that some degree of

instability will remain in a system as long as new applications are submitted to it and, in particular, if

new or modified functional modules of the operating system continue to be introduced throughout the

lifetime of the system.

4-34

REFERENCES

1 Brown, P.J.: The ML/I Micro Processor. Communications of the ACM,
vol. 10, no.10, Oct. 1967.

2 Waite, W.: A Language-Independent Macro Processor. Communications
of the ACM, vol. 10, no. 7, July, 1967.

4-35

Section 5

APPENDIXES

APPENDIX A

FMP INSTRUCTION

SPECI FICATION

ICONTROL DATA I E N G I N E E R I N G
I-------------- I
1 Corporation I S P E C I F I C A T I 0 N

NO. 10354636

DATE Dec. J977
PAGE 1
REV. A

--------------------------- R A 0 L- ------------------------

[R]

COC FLOW MOOEL PROCESSOR

INSTRUCTION DESCRIPTIONS

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 2

REV. A

---------------------- RADL

TABLE OF CONTENTS

Page
No._

4 1.0
14 2.0
1,4 3.0

14 3.1
15 3.1.1
15 3.1.1.1

15 3.1.1.1.1
15 3.1.1-1.2
15 3.1.1.1.3

15 3.1.1-1.4
15 3.1.1.1.5
15 3.1.1.1.6

15 3.1.1.1.7
16 3.1.1.1.8
16 3.1.1.1.9

16 3.1.1.1.10
16 3.1.1.1.11
16 3.1.1.1.12

17 3.1.-.1.13
17 3.1.1.1.14
17- 3.1.1-1.14.1

17 3.1.1.1.14.2
17 3.1.1.1.14.3
18 3.1.1.1.14.4

18 3.1.1.1.14.5
18 3.1.1.1.15

19 3.1.1.2
19 3.1.1.2.1
19 3.1.1.2.2

19 3.1?1.2.3
20 3.1;1.2.4

22 3.1.1.2-5

22 3.1.1-2.6
22 3.1.1.2-7
22 3.1.1.2.8

SCOPE

APPLICABLE DOCUMENTS

PERFORMANCE REQUIREMENTS

General Description

Instruction Formats and Types

Formats

N/A

N/A

N/A

Format 4

Format 5

Format 6

Format 7

N/A

Format 9

Format A

Format B

Format C

Format D

Subformats

Format 01 Parcel

Format.D2 Parcel

Format 03 Parcel

Format D4 Parcel

Format 05 Parcel

Format E

Types

Register (RG)

Index (IN)

Branch (BR)

Stream (SM)

N/A

N/A

N/A

N/A

16 Bits

64 Bits

16 Bits

16 Bits

32 Bits

http:Format.D2

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 3

REV. A

---------------------- R A D L-----------------------------

TABLE OF CONTENTS (Cont.)
Page
No. REPRODUOIBHIU OF TH

ORIGINAJJ PAGE IS POOR
22 3.1.1.2.9 Monitor (MN)

22 3.1.1.2.10 Non-Typical (NT)
23 3.1.2 Addressing

26 3.1.2.1 Memory Hierarchy Addressing

26 3-1.2.1.1 Direct Addressing

27 3.1.2.1.2 Indirect Addressing

27 3.1.2.1.3 Illegal Addresses

28 3.1.2.2 Instruction Addressing

28 3.1.3 	 Termination Rules

28 3.1.3.1 Stream Instruction Termination

29 3-1.3.2 N/A

29 3.1.3.3 N/A

29 3.1.3.4 N/A

29 3.1.4 	 Definitions and Rules

29 3.1.4.1 Overlap of Operand and Result Fields

30 3.1.4.2 Self-modifying.Programs, Undefined

Instructions, Illegal Instructions

and Undefined Operands

30 3.1.4.2.1 Self-modifying Programs tA2.0]

30 3.1.4.2.2 Illegal Instructions

30 3.1.4.2.3 Undefined Instructions

30 3.1-4.2.4 N/A

30 3.1.4.2.5 No op Instructions

31 3.1.4.3 Floating-Point Format

31 3-1.4-3-1 32-bit Floating-Point Format

33 3.1.4.3.2 64-bit Floating-Point Format

35 3.1.4-4 End Cases

36 3.1.4.5 Floating-Point Compare Rules

36 3.1.4.5.1 One or Both Operands Indefinite

36 	 3.1.4.5.2 Neither Operand Indefinite but One or

Both Operands Machine Zero

37 3.1.4-5.3 Neither Operand Indefinite nor Machine

Zero

39 3.1.4.6 Upper and Lower Results

39 3.1.4.6-1 Right Normalization

39 3.1.4.6.2 Floating-Point Add

41 3.1.4.6.3 Floating-Point Subtract [A12.01

45 	 3.1.4.6.4 Results of the Floating-Point Multiply

Instruction

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I O N PAGE 4
REV. A

--------------------- RADL -------------------------------

TABLE OF CONTENTS (Cont.)

Page

45 3.1.4.6.5

46 3.1.4.6,6

47 3.1.4.6*7

47 3.1.4.7
47 3.1.4.8
47 3.1.4.9

47 3.1.4.10
47 3.1.4.j1
48 3.1.5

49 3.1.6
49 3-1.6.1
49 3°1.6.2

50 3.1.6-2.1
50 3.1.6.2,2
51 3.1.6.2.3

51 3o1.6-2.4
51 3.1.6.2.5
54 3.1.6.2.6

60 3.1.6.3
61 3.1.7
71 3.1.8

71 3.1.8.1
71 3.1.8.2
72 3.1.8.3

72 3.1.9
73 3.1.10

76 3.2
76 3.2.1

Results of the Floating-Point Divide

Instruction

Normalized Upper Results

N/A

N/A-

N/A

N/A

N/A

Operand Size Definitions

Item Counts [field lengths, offsets,

Indices, etc.]

Data Flag Branch Register [A7.03

General Description

Register Description

Data Flags

Mask Bits

Product Bits

Data Flag Branch Enable Bit

Data Flag Register Bit Assignments

Free Data Flags (A7.01

Data Flag Branch EAT.O]

Register File

Real Time Counters

Free Running Clock

Monitor Interval Timer

Job Interval Timer

N/A

Exchange Operation and Invisible

Package EA6.0

Performance Characteristics

Instruction Descriptions

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
------ I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 5
REV. A

--------------------------- R A D L- ----------------------------

TABLE OF CONTENTS (Cont.)

--- Function Code
--- FormatTvpe REPToDUymmffY aE
1 ORIGINAL PAGE 1S POOR

I ---tNLg.er of Bits in Ooerand

I 1

I I -- a tug inTp

Page I I I I --- Name of Instruction

No. v v V V V

77 o0 4 NA MN IDLE

77 C1 4 64 NT TRANSMIT (R) TO BACKING STORE MAP

REGISTER AND CURRENT BACKING STORE

MAP REGISTER TO (T); SET AND CLEAR

BUSY FLAGS PER (S)

78 02 4 64 MN TRANSMIT (R) TO CHANNEL (S) AND

CHANNEL (S) TO (T)

78 03 ILLEGAL

78 04 4 64 NT BREAKPOINT - MAINTENANCE [AIO.O]

80 05 ILLEGAL

81 06 7 NA MN FAULT TEST - MAINTENANCE [Ajj.l1

82 07 ILLEGAL

82 08 4 NA MN INPUT/OUTPUT PER R

82 09 4 64 BR EXIT FORCE

83 OA 4 64 MN TRANSMIT (R) TO MONITOR INTERVAL TIMER

83 OB ILLEGAL

83 OC ILLEGAL

83 OO ILLEGAL

84 OE 4 64 MN TRANSLATE EXTERNAL INTERRUPT [A9.01

85 OF ILLEGAL

85 10 A 64 RG CONVERT BCD TO BINARY, FIXED LENGTH
85 it A 64 RG CONVERT BINARY TO BCD, FIXED LENGTH
85 i2 7 64 NT LOAD BYTE; (T) PER CS), (R)
85 13 7 64 NT STORE BYTE; (T) PER (S), (R)
85 14 ILLEGAL
85 15 ILLEGAL
86 16 ILLEGAL
86 17 ILLEGAL
86 18 ILLEGAL
86 19 ILLEGAL
86 IA ILLEGAL
86 i-B ILLEGAL
86 IC ILLEGAL
86 iD ILLEGAL
86 IE ILLEGAL
86 IF ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S------ - I DATE Dec. 1977

I Corporation I S P E C I F I CA T I 0 N PAGE 6

REV. A

----------------------------------- R A L--------------------------------

TABLE OF CONTENTS (Cant.)

REPRODY---Fun tion Code cmvhu
---Format Type POAR

I Bits2InXQp&rn
I I II I---INef

Page I I --- Name of Instruction
No. v v V V V

86 20 7 64 RG SHIFT (R) AND CR+i) PER S TO (T) AND

(T+I)

87 21 7 64 RG SHIFT (R) AND (R+±) PER (S) TO (T) AND

(T+i)

88 22 ILLEGAL

88 23 ILLEGAL

88 24 ILLEGAL

88 25 ILLEGAL

88 26 ILLEGAL

88 27 ILLEGAL

88 '28 ILLEGAL

88 29 ILLEGAL

88 2A ILLEGAL

88 2B 4 64 RG ADD TO LENGTH FIELD

88 20 4 64 RG LOGICAL EXCLUSIVE OR (R), CS) TO (T)

88 2D 4 64 RG LOGICAL AND (R), (S) TO (T)

88 2E 4 64 RG LOGICAL INCLUSIVE OR (R), (S), T-O (T)

89 2F 9 1 BR -REGISTER BIT BRANCH AND ALTER

90 30 7 64 RG SHIFT (R) PER S TO (T)

90 31 7 64 BR INCREASE (R) AND BRANCH IF (R) NOT

EQUAL a

91 32 9 1 BR BIT BRANCH AND ALTER

92 33 B I BR DATA FLAG REGISTER BIT BRANCH AND

ALTER

93 34 -4 64 RG SHIFT (R) PER CS) TO (T)

94 35 7 64 BR DECREASE (R) AND BRANCH IF CR) NOT

EQUAL 0

94 36 7 64 BR BRANCH AND SET (R) TO NEXT INSTRUCTION

94 37 A 64 NT TRANSMIT JOB -INTERVAL TIMER TO (T)

94 38 A 64 IN TRANSMIT (R BITS 00-i5) TO (T BITS

00-15)

95 39 A 64 NT TRANSMIT REAL-TIME CLOCK TO (T)

95 3A A 64 NT TRANSMIT (R) TO JOB INTERVAL TIMER

95 38 A 64 BR DATA FLAG REGISTER LOAD/STORE

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S------I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 7

REV. A

--------------------------- R A D L- ----------------------------

TABLE OF CONTENTS (Cont.)

---Function Cofa OOmyo Tmm

---Format TAe,

I I
I I --- Number of Bits in OD-rnd

I I I

I I I --- J.struct ion Tye

I I I

Page I I I I --- Name of Ins l_r in

No. v v v v v

95 3C 4 32 NT HALF-WORD INDEX MULTIPLY (R)*(S) TO

(T)

96 30 4 64 NT INDEX MULTIPLY (R)(S) TO (T)
96 3E 6 64 IN ENTER (R) WITH 1(16 BITS)
96 3F 6 64 IN INCREASE (R) BY 1(16 BITS)

96 40 4 32 RG ADD U; (R)+(S) TO (T)
96 41 4 32 RG ADD L; (R)+(S) TO (T)
96 42 4 32 RG ADD N; (R)+(S) TO (T)
96 43 ILLEGAL
96 44 4 32 RG SUB U; (R)-(S) TO (T)
96 45 4 32 RG SUB L; (R)-(S) TO (T)
96 46 4 32 RG SUB N; (R)-(S) TO (T)
96 47 ILLEGAL
96 48 4 32 RG MPY U; (R)4 (S) TO (T)
96 49 4 32 RG MPY L; (R)*(S) TO (T)
96 4A ILLEGAL
96 4B 4 32 RG MPY S; (R)*(S) TO (T)

96 4C 4 32 RG DIV U, (R)/(S) TO (T)

97 40 6 32 IN HALF WORD ENTER R WITH I(16 BITS)

97 4E 6 32 IN HALF WORD INCREASE R BY 1(16 BITS)

97 4F 4 32 RG DIV S; (R)/(S) TO (T)

97 50 A' 32 RG TRUNCATE; (R) TO (T)

98 51 A 32 RG FLOOR; (R) TO (T)

98 52 A 32 RG CEILING; (R) TO (T)

99 53 A 32 RG SIGNIFICANT SQUARE ROOT; (R) TO (T)

99 54 4 32 RG ADJUST SIGNIFICANCE; (R) PER (S) TO

(T)

±O0 55 4 32 'RG ADJUST EXPONENTS; (R) PER (S) TO (T)
101 56 7 64 SM BSWAP; R-->S or S-->T
102 57 ILLEGAL

102 58 A 32 RG TRANSMIT; (R) TO (T)

102 59 A 32 RG ABSOLUTE; (R) TO (T)

102 5A A 32 RG EXP; (R) TO (T)

±02 5B 4 32 RG PACK; (R), (S) TO (T)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I ------------- I DATE Dec. 1977

I Corporation I 'S P E C I F I C A T I 0 N PAGE 8

REV. A

------------------------------ RADL ------------------------------

TABLE OF CONTENTS (Cont.)

*r--EUflctlofl Code

I --- Format Type

---Number of Bits in Operand

I ~ II

I --- Instruction Type

Page I I I I --- Name of Instruction
No. V V V V V

103 5C A B RG EXTEND; 32-BIT (R) TO 64-BIT (T)
103 50 A B RG INDEX EXTEND; 32-BIT (R) TO 64-BIT CT)

103 5E 7 32 NT LOAD; CT) PER (S), (R)

103 5F 7 32 NT STORE; CT) PER (S), (R)

104 60 4 64 RG ADD U; (R)+(S) TO CT)
104 61 4 64 RG ADD L; (R)+(S) TO CT)

104 62 4 64 RG ADD N; CR)+(S) TO CT)

104 63 4 64 RG ADD ADDRESS; (R)+CS) TO CT)

104 ,64 4 64 RG SUB U; {R)-(S) TO CT)
104 65 4 64 RG SUB L; (R)-(S) TO CT)
104 66 4 64 RG SUB N; (R)-(S) TO CT)

104 67 4 64 RG SUB ADDRESS; (R)L(S) TO CT)

±05 68 4 64 RG MPY U; (R)*(S) TO CT)
105 69 4 64 RG MPY L; (R)4(S) TO (T)
105 6A ILLEGAL
105 6B 4 64 RG NPY S; (R)*(S) TO CT)

105 6C 4 64 RG DIV U; (R)/(S) TO CT)
105 6D 4 64 RG INSERT BITS; (R) TO CT) PER CS)
106 6E 4 64 RG EXTRACT BITS; (R) TO CT) PER (S)

107 6F 4 64 RG DIV S; CR)/(S) TO CT)

107 70 A 64 RG TRUNCATE; (R) TO CT)
108 71 A 64 RG FLOOR; (R) TO CT)
108 72 A 64 RG CEILING; (R) TO CT)

109 73 A 64 RG SIGNIFICANT SQUARE ROOT-; (R) TO CT)

j09 74 4 64 RG ADJUST SIGNIFICANCE; (R) PER CS) TO
CT)

ilO 75 4 64 RG ADJUST EXPONENT; (R) PER CS) TO IT)
111 76 A B RG CONTRACT; 6k-BIT (R) TO 32-BIT CT)

t12 77 A B RG ROUNDED CONTRACT; 64-BIT (R) TO
32-BIT CT)

112 78 A 64 RG TRANSMIT; (R) TO CT)
112 79 A 64 RG ABSOLUTE; CR) TO CT)
I12 7A A 64 RG EXP.; (R) TO CT)
112 7B 4 64 RG PACK; (R), CS) TO CT)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
-------------- I DATE Oec. 1I77

I Corporation I S P E C I F I C A T I 0 N- PAGE 9
REV. A

- A 0 L

TABLE OF CONTENTS (Cont.)

I
I

-Formt
I

Tyeoe
REROf~MLUTI OF T14jj

--- Number of pits in Ooeral. ORIGINAi PAGE is POOR

I I --- Instructton Type

Page 1 I ---tfAnAL,_inauC_tin
No.v v v v

113 7C A 64 RG LENGTH; (R) TO (T)
113 70 7 64 NT SWAP; S-->T, R-->T

114 7E 7 64 NT LOAt (T) PER (SI, (RI
114 7F 7 64 NT STORE; (T) PER (S), (R)

ti4 89 ILLEGAL

114 8j ILLEGAL

8l2 ILLEGAL
lit+ 83 ILLEGAL

114
114

84
85

ILLEGAL
ILLEGAL

114 86 ILLEGAL

uik 87 ILLEGAL

114 g8 ILLEGAL
it4 89 ILLEGAL

t14 BA ILLEGAL

114 81 ILLEGAL

114 8c ILLEGAL
±14 80 ILLEGAL

114 8E ILLEGAL

l14 8F ILLEGAL

114 90 ILLEGAL

l14 91 ILLEGAL

114 92 ILLEGAL

114 93 ILLEGAL
114 94 ILLEGAL

1i5 95 ILLEGAL
115 95 tLLEGAL

1±5 97 ILLEGAL

115 98 ILLEGAL

115 99 ILLEGAL
115 SA ILLEGAL

1±5 9B ILLEGAL

115 90 ILLEGAL

i15 90 0 E SM STREAM MAP
124 9E 0 E SM BUFFER READ/WRITE SETUP
t28 9F E E SM VECTOR ARITHMETIC

--------- --- --

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I.------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 10

REV. A

---------------------------- RADL- ----------------------------

TABLE OF CONTENTS (Cont.-)

--- Function Code

I__ REPRODUCLIf THIM4 TY ()p
--- Formt Type ORIGINAL PAGE ISPooiR

:'I --- Bumber of Bits in Ooerand

I' I ---Instruction Type
I I I I

Page I I I ---fNme of Instruction
No. v v V V V

131 AO ILLEGAL
131 Al ILLEGAL

131 A2 ILLEGAL
131 A3 ILLEGAL
131 A4 ILLEGAL
131 A5 ILLEGAL
131 A6 ILLEGAL
131 A7 ILLEGAL
131 A8 ILLEGAL
31 A9 ILLEGAL

131 AA ILLEGAL

132 AS ILLEGAL

132 AC ILLEGAL

132 AD ILLEGAL

132 AE ILLEGAL

132 AF ILLEGAL

132 SO C E BR INDEX; BRANCH IF (A)+(X) EQ (Z)

32 BI C E BR INDEX; BRANCH IF (A)+(X) NE (Z)

132 B2 C E BR INDEX BRANCH IF (A)+(X) GE Q)

132 83 C E BR INDEX; BRANCH IF (A)+(X) LT (Z)

132 B4 C E BR INDEX; BRANCH IF (A)+(X) LE (Z)

132 B5 C E BR INDEX; BRANCH IF (A)+(X) GT (Z)
139 B6 5 NA BR BRANCH TO IMMEDIATE ADDRESS (R)

+ I (48 BITS)

39 87 ILLEGAL

139 B8 ILLEGAL.

139 B9 ILLEGAL

139 BA ILLEGAL

139 BB ILLEGAL

139 BC ILLEGAL

139 BD ILLEGAL

139 BE 5 64 IN ENTER R WITH 1(48 BITS)

140 BF 5 64 IN INCREASE R BY 1(48 BITS)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 11

REV. A

-------------------------------RADL- ----------------------------

TABLE OF CONTENTS (Cont.) r.

---Function Code

I ---Format Type

I I

I I 1 --- Instruction Tvoe

Page II I I --- Name of Instruction

No. v v v v v

140 Cb ILLEGAL

140 Ci ILLEGAL

140 C2 ILLEGAL

140 03 ILLEGAL

140 C4 ILLEGAL

140 05 ILLEGAL

140 C6 ILLEGAL

140 C7 ILLEGAL

140 C8 ILLEGAL

140 09 ILLEGAL

140 CA ILLEGAL

140 CB ILLEGAL

141 Cc ILLEGAL

141 CO 5 32 IN HALF-WORD ENTER (R) WITH 1(24 BITS)

141 CE 5 32 IN HALF-WORD INCREASE (R) BY 1(24 BITS)

141 CF ILLEGAL

141 DO ILLEGAL

141 01 ILLEGAL

141 02 ILLEGAL

141 03 ILLEGAL

141 04 ILLEGAL

141 05 ILLEGAL

141 06 ILLEGAL

14± 07 ILLEGAL

141 08 ILLEGAL

142 09 ILLEGAL

142 DA ILLEGAL

142 0B ILLEGAL

142 DC ILLEGAL

142 00 ILLEGAL

143 DE ILLEGAL

143 OF ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I ------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 12

REV. A

- -------------------------- R ADL--------------------------------

TABLE OF CONTENTS (Cont.)

--- Function Code

I --- Formatj~.~e

I

I I --- Number of Bits In Operand

I I ---
I I I

Page I
No* v v v v

143 Ea
±43 El
143 E2
143 E3
143 E4
143 E5
143 E6
143 E7
143 E8
143. E9
143 EA
143 EB
143 EC
143 ED
143 EE
143 EF

144 FO
144 F1
144 F2

144 F3
144 F4
144 F5
144 F6
144 F7
144 F8
144 F9
144 FA
144 FB
144 FC
144 FD
144 FE
144 FF

jIstruction Type

--- Name of
.InrucfIton

v

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I ------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE ±3

REV.
A

Page

No.

145 3-2.2

145 4.0

145 5.0

145 6.0

145 6.1

±51

151 AI.O

151 A2.0

152 A3.0

152 A4.0

152 AS.0

153 A6.0

153 A6.1

t53 A6.2

155 A7.O

155 A7.1

155 A7.2

±55 A7.3

156 A8.0

157 AS.o

158 Aio.o

160 A±±.O

161 A12.0

R A D L- ----------------------------

TABLE OF CONTENTS (Cont.)

Instruction Execution Times

TEST REQUIREMENTS (Not Applicable)

PREPARATION FOR DELIVERY (Not

Applicable)

NOTES

ASCII/EBCDIC Reference Charts

APPENDIX A

SCOPE

SELF-MODIFYING PROGRAMS

INSTRUCTION STACK

N/A

VECTOR FORMATS

INVISIBLE PACKAGE

Contents of the Invisible Package

Program Address Register

DATA FLAGS

Soft Interrupt Bit

Free Data Flags - Bits 56, 57

Data Flag Branch

ADDRESS DISCONTINUITIES

EXTERNAL INTERRUPT BIT ASSIGNMENT

04 4 64 NT BREAKPOINT-MAINTENANCE

06 7 NA MN FAULT TEST-MAINTENANCE

FLOATING-POINT SUBTRACT

ICONTROL OATA
I E N G I N E E R I N G NO. 10354636

I------------- I
 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 14

REV.
A

---- R A D L ---------------------------

j.0 SCOPE

This specification for -the CDC FLOW MODEL PROCESSOR

(FMP) is to be used in conjunction with the

CDC STAR-j0a Computer Specifications. It

is assumed that the reader is. familiar with the

concepts and terminology described in those

documents.

This Is NOT a reference manual for user's groups.

This document is written expressly for logic

designers and diagnostic programmers.

2.0 APPLICABLE DOCUMENTS

10354637.
 CDC FLOW MODEL PROCESSOR Functional

Computer Specification

3.0 PERFORMANCE REQUIREMENTS

3.1 General Description

RBIDPODUO'IIJI OF THE
ORGtIAL PAG IS POOR

ICONTROL OATA I E N G I N E E R I N G NO. 10354636

i------------- I CATE Dec. i977

I Corporation I S P E C I F I C A T I 0 N PAGE 15

REV.
A

------------------------------ RADL- ---------------------------

3.1.1 	 Instruction Formats and Types

3.1.1.1 	 Instruction Formats - all fields are 8 bits unless
otherwise specified.

3.1i..1~ 	N/A

3.1.1.1.2 	 N/A

3.1.1.1.3 	 N/A
REPRODUCmmITy OF THE

3.1..1.4 	 Format 4 ORIGINAL PAGE I PooR

I F" I 	 R I S I T I

IFunctionlSource ISourcelOesti- I

I 1 	 j I 2 Ination I

3..1-1.5 	 Format 5

I F I R I 	 I

IFunctionlOesti- I 148 	 1

I Ination I 	 I

I I I 	

3.1..1.6 	 Format 6

I F I R I I
IFunctionl Desti- I I16 I
I
1

I nation I
I 1

3.1.1.1.7 Format 7

I F I R I S I T I

IFunction I I I I

*0escribed where-used

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I O N PAGE 16

REV. A

---------------------- R A 0 L----------------------------

3.1.j.1.8 N/A

3.1.1.1.9 Format 9

I F I G I S I T f

IFunction I Sub- I II

I IFunctiont I I

I I I - -I I

3.1.i.i.I0 Format A

I F I R I I T I

IFunction IRegisterl I2 Register I

I I I I I

Described where used

3..1.1.,1 Format B

" Unused areas must be
.......................- cleared to zeros
I F I G I I I T I
IFunction I Sub- I1 I I Base I

I IFunctionI 1 6 I Address I

3.1.1.1.12 Format C

0 4567

I F I IIII X I A I Y I B I Z I C I

IFunctionl*lllllRegisterlRegisterlIndexl Base IRegisterlRegistert

I I fiIII I I lAddressl I I

Unused area must be cleared to zeros.

http:3.1.1.1.12
http:3.1.i.i.I0

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
! - ---I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N 	 PAGE 17

REV. A

---------------------- R A D L----------------------------

3.1.1.1.13 Format D

IV IIPCI Parcel it 	 JJd~ PAGE 18 FOMt -
IFunctioni I I I
1 1414 I 16 1

* Unused area must be cleared to zeros.

3.1.1.1.14 Subformats

3.1.1.1.14.1 Format Di Parcel 16 Bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I A I81C 0 1 E I

3.i.1..14.2 Format 02 Parcel 64 Bits

0 1 2 3 4 5 6 7 8 9 ll 11 12 13 14 15 16 ------------------->31

I A 18C 0 1 Z I E I

32 -- >59 60 61 62 63

I F 1 G I

3.1.1.1.14.3 Format 03 Parcel 16 Bits

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I A I B I C I

http:3.i.1..14
http:3.1.1.1.14
http:3.1.1.1.13

----------------- -------------------------------

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I -------------I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 18
............... REV. A

--- ---------------------- R A D L- ---------------------------

3.,1.1.1.14.4 Format 04 Parcel 16 Bits

0 _ 2--32-4- 5 -6--7- 8 -9-1-O-i-- 1-2: 1-3- -4t-15-

I A I B I C 1 U 1 E I

3.1.1.1.14.5 Format 05 Parcel 32 Bits

0 1 2 3 4 5 6 7 8 9 10 i1 12 13 14 15 16 17 18 19

I A BICl D I E I

20 21 22 23 24 25 26 27 28 29 30 31

! F I

3.1.1.1.15 Format E

0 7 8 15

I 	 A I B I

7
16 17 18 ig 20 21 22 23 24 25 26 27 28 29 30 31

I C I D I E I F I GI HI JI Ki Lt MI N I

http:3.1.1.1.15

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 19

REV. A

---------------------------- R A 0 L- ---------------------------

3.1..2 Instruction Types

3..1.2.1 Register Instructions (RG)

In the register instructions, all operand sources

and all result destinations are registers. R, S,

and T each designate the contents of one of 256

registers.

A register may be used to hold one or both source

operands as well as the result. Special case: if

register 00 is des-ignated as a source or result

register, see Section 3.1.7.

Unless stated differently In the instruction

descriotion in all register-to-register operations,

the contents of the source registers are unchanged

and the destination register is cleared before the

result Is transferred into it.

3.1.1.2.2 Index Instructions.(IN)

The index instructions are used primarily in

performing numerical calculations on field lengths

and addresses.

The term, replace, means reDlace only the specified

bits. The phrase, replace theriaht-most 48 bits ...,

implies that the left-most 16 bits are not altered.

3.1.1.2.3 Branch Instructions (BR)

Branch conditions may be determined by examining

single bits, a 48-bit index, 32-bit floating-point

operands or 64-bit floating-noint operands. A

special branch is provided to enter and leave the

monitor program. All item counts in branch

instructions are in half-words.

.Ftjp OiD0B1L1 iTOF T11hI

ORIG UA PAW? IS pOor

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
-------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 20'
....... REV. A

---------------------- A0L L-------

3.1.1.2.4 Stream Instructions (SM)

Stream Instructions operate on ordered sets of data,

executing in either the Swap, Map, Buffer, or Vector

Units. A set of stream instructions consists of a

32-bit header packet (see format D, 3-1.1,1.13) and a

variable number of 32-bit packets containing Parcels

of data to be transmitted from the Scalar Processor

to one of the three stream units (Vector, Map, Swap).

Packets are fixed length (32-bits) while Parcels are

16-bit, 32-bit, or. 64-bit length. The header and its

associated packets of instructions constitute a form

of high level micro-code for the particular function.

Referring to format 0 under section 3.j.j.1.13, the

stream designators are defined as follows:

F - Eight-bit instruction code

PC - Four-bit packet count specifying the

number of 32-bit packets fol lowing the

header packet. Note- that a count of zero

implies that the entire stream instruction

is contained in the first 32-bit packet

containing the header.

The various subformats for the microinstruction

parcels are given in section 3.1.1.1.14, formats D

through DS. The fields take on meanings dependent

upon their use in a given parcel, for a given unit.

In general, the field designators are used as

follows:

A - Subfunction field (for example, Ri

SETUP).

B - Reference mode (immediate for

addresses imbedded in the instruction,

or indirect for addresses in the

specified registers in the Scalar

Processor register file).

C - Word size (32-bit or 64-bit').

(continued)

http:3.1.1.1.14
http:3.j.j.1.13
http:3-1.1,1.13

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
----- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 21
REV. A

-----------------------------. R A 0 L----------------------------

3.1.1.2.4 (Cont.)

0 - Extension code, source field, or
length field depending on the
instruction.

E - Register file pointer, length field,
base address, or source field
depending on the instruction.

F - Memory address in Map and Buffer
instructIons, source field in Vector
Unit instructions.

G - Lower address bits (shift count) for
Map instructions, round flag In Vector
Unit instructions.

H,J - Complement flag for B and 0 trunks in
Vector Unit.

K - Null field.

LMMN - Vector Unit result bus select.

Z - Unused

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------ -------I
 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 22

--------------- REV. A

---------------------- RADL -----------------------------

3.1.i.2.5 N/A

3.1.1.2.8 N/A

3.1.1.2.7 N/A

3.1.1.2.8 N/A

3.i.1.2-.9 Monitor Instructions (MN)

Monitor instructions perform as described only when
in monitor mode. When not In monitor mode, the
monitor instructions perform as an illegal
instruction would (see Section 3.1.4.2.2).

3.i.1.2.1O Non-Typical Instruction (NT)

The format and operation of these instructions are

completely described under the individual instruction

write-ups.

http:3.i.1.2.1O

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. i977
I Corporation I S P E C I F I C A T I 0 N PAGE 23

REV. A

-----------------------------R A D L----------------------------

3.1.2 Addressing

Groups of bits in an address should be thought of as

addressing various units-of storage as illustrated

in the chart below.

16---------- > 54 55 56 57 58 59 60 	61 62 63

-------- \ \---------------------------------

bit position I\ 	 \ I I I I I I I I I i

in a register ---------- \ \-------------------------------I

ora n in- I I I I I

struction I I I I

word I Address of I I I t

<----- Sword----- >1 I I I

I<--Address of Word------- >1 I 	 I
2 2

I<--Address of Half-Word----- >1 	 I

RElpRODU MIGrIy M I0

ORIGN 	 l<-------- Address of Byte---------- >1

<--------- Bit 	 >
Address of 	 .---------------------

I 	 I

Within a word, bits, bytes, and half-words are always

numbered from left to right. The lowest addressed

bit, byte, or half-word is always the left-most bit,

byte, or half-word In the word.

All addresses are 4S-bit quantities and contain

enough information to reference a specific bit.

Depending on the usage of an address, a certain

number of the right-most bits in the address are

ignored. For example, if a byte is being read, the

right-most three bits of the address being used to

reference it are ignored. Depending on the

instruction, operands are counted on a bit, byte,

half-word or word basis.

<------ half'word 0------------ >1<------ half-word ±-------- >1
I I I

II 	 I I I I I
 II

Ibyte 02 byte il byte 2 Ibyte 3 Ibyte 41byte 51byte 61byte 71

bit 0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63

The above figure illustrates the relative locatioh of

each bit, byte and half-word within a 64-bit word.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I
.......... -

S P E C I F I C A T I 0 N PAGE 24
REV. A

--------------------- R A L----------------------------

3.i.2 (Cont.)

If it is necessary to add addresses and item counts

(indices or offsets), the item count Is shifted left

end off until it Is properly aligned with the

address. Binary zeros are attached to the right end

of the quantity being shifted.

The result of the addition always addresses a

quantity having the same unit as the item count, for

instance, if a byte count is added to any address,

the result references a byte. This means that the

right-most three bits of the address will be Ignored.

The following chart summarizes the process of adding

an item count to an address and shows which bits are

ignored in the resulting address.

(continued)

REPRODUOIBIITY OF T

ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 25

REV. A

----------------------------RADL-----------------------------

3.1.2 	 (Cont.) 16 57 58 59 60 61 62 63

Base Address >--------------->1 I I I I I I I

I - I
/ I I I

1 22 I 1 1i6 631
I---I 1
IA. words I I!words I at 0 0 I a 0 0 I
I-------------------------------------- I

item I1 1

counts i 16 21 631 I 1
(indices! I
or off- 18. half- I * Ihalf-words I 0 0 I 0 0 0 1
sets) / words--------------------------- -II

16 19 631

1C. bytes 1l**bytes 	 0 0 8"

16 	 631

ID. bits Ibits 	 I

REPRODTTCm1TATY OF THEBOPR JT BAIS OORTHE 16 	 57 58 59 600RIG F:AW , PA , B IS P001R - - - - - - - - - - - - -61- - -62 63-
II I I I I I I I

I 1I2 I I I
IA. words l<---Bits used-> <------- >1
i I I I I

result- II I I I
ant I. half- I<---Bits used----> <-------- * ->1
address-I words I I I
es I I 2

IC. bytes 	 J<---Bits used---------- > <- * ->!

I 	 I
10. bits 	 I-------- Bits used------------- >I

These bits in the resultant address are ignored.

These bits in the index or offset are shifted off and do not

enter the address calculation.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T 1 0 -N PAGE 26

REV. A

ADL----------------------------- --------------------- R L----

3.1.2.1 Memory Hierarchy Addressing

There are four levels of memory accessible to the

Programmer: Register File, Vector Unit Buffer (VUB),

Main Memory and Backing Store. Each of these

memories can be addressed by Instructions in two

different ways: direct and indirect.

3.1-2..1 Direct Addressing

Memory addresses can be contained within the

instruction Itself, and are therefore called direct

addresses. In the case of the Register File, such

direct addresses are called register designators,

each designator being assigned a name such as R, S,

or T. A direct register file reference in an

instruction can access any one of 256 registers

(64-bit or 32-bit).

Vector Unit Buffers can contain from one to four

thousand words each. Thus a field of twelve bits is

established Isee formats D1 through D5) for the

insertion of the buffer address.

Main memory addresses permit accessing up to 128

million 64-bit words, thus 27 bits are

established as the direct address field for this

format.

Backing store references always access data in

32,768 64-bit word blocks. Twenty-seven bits of

direct address field are allocated to permit

referencing up to 128 million of these blocks, or

12

4.4 X jO words of data.

The actual amount of physical memory present Is

determined by the specific machine configuration.

Memory not actually in existence causes a data flag

branch to occur at the time of reference.

ICONTROL DATA 	I E N G I N E E R I N G NO. 10354636

I D 1977
DATE Dec.

1 Corporation I S P E C I F I C A T I 0 N 	 PAGE 27

REV. A

AA0L----------------------------- --------------------- L----

3.1.2.1.2 Indirect Addressing

The memory addresses can 	also appear in 64-bit

registers in the Register File.. Thus an instruction

can reference 	memory indirectly by giving the

appropriate register file address, which points to

the register containing the 	desired memory address.

The allocation of address bits in the designated

registers are 	as follows:

o 	 Register file address rightmost 8 bits of

the indirect register

(bits 56-63). 	This

allocation Is 	used only

for the SWAP (70)

instruct ion.

o Vector buffer 	 all addresses are bit

unit addresses 	 addresses, thus the

rightmost 21 bits of

the indirect register

are used (bits 43-63).

o Main memory addresses 	 all addresses are bit

addresses, thus the

rightmost 33 bits of

the indirect register

are used (bits 31-63).

o 	 Backing store memory all addresses are bit

addresses, thus the

entire 48-bit address

Is used.

3.1.2.1.3 Illegal Addresses

Main memory addresses 0 through 100000 are

16

reserved for the operating system. Any reference to

this address range by a job 	mode program results In a job

mode illegal abort of the program in execution.

MaIn memory addresses 0 through 4000 are reserved

16

for the storage of the monitor's register file. Any

reference to this area by a monitor mode memory

access will cause a monitor mode illegal abort.

aEPRODUCIBh OF TH "
ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S-----I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 28

REV. A

--- ---------------------- RA L-----------------------------

3-1-2.2 Instruction Addressing

Instructions are addressed on full-word and half-word

boundaries. The Instruction address counter will,

therefore, be incremented by a half-word after

executing a 32-bit instruction and by a full word

after executing a 64-bit Instruction. This allows

instructions to be packed contiguously in storage.

The following chart illustrates the various ways

instructions may be packed within 64-bit words.

bit position

0 31 32 63

32-bit Inst. * I 64-bit Inst. upper I

------------------------------ I--------------------------I

I 64-bit inst. lower I 64-bit inst. uoper I

------------------------------I--------------------------!

I 64-bit Inst. lower I 32-bit inst. *

------------------------------ I--------------------------I

64-bit instruction

- ---------------------------I------------------------
1 32-bit inst. * I 32-bit inst. *

I---I

IlThese could also be 32-bit packets of stream

I instructions.

Note that a branch is possible to any of the

instructions. The lower 5 bits in iny branch address

will always be Interpreted as zeros.

3.1.3. Termination Rules

For instructions which terminate upon exhausting the

lenath of a data field, data string or vector% if

that item is exhausted prior to the first operand

fetch, the instruction becomes a no op; no data is

fetched and no data flags are altered.

3.1.3.1 Stream Instruction Termination

Stream instructions terminate when the result vector

is exhausted. Source vectors which are exhausted

before the result vector is exhausted are extended,

as reauired, with the operand designated In the D

field (extend code).

ICONTROL DATA I E N G I N E E R I N G NO. ±0354636
I------------- I DATE Dec. 1977
I C'orporstion I S P E C I F I C A T 1 0 N PAGE 29
......- REV. A

- --------------------- A3----- -----------------------------
ADL

3.1.-3.2 (N/A)

3.1-3.3 (N/A)

3.1.3.4 (N/A)

3.j.4 Definitions and Rules

3.1.4.1 Overlap of Operand and Result Fields

If the result field overlaps a source field such that

elements of the result are stored in the source field

before elements in this portion of the source field

are read, undefined resultsSay occur. That Is, the

source elements may be the original elements or they

may be the newly-stored elements. The instruction's

results may become undefined. Note that some specific

instructions prohibit any overlao of source and

destination fields. This restriction is included in

the appropriate instruction descriptions.

fUOthILY2Y or MHE

ORIGINAL PAGE 18 POOR

ICONTRoL DATA I E N G I N E E R I N G NO. 10354636

I-------------- DATE Dec. 1977

I Corpor ion I S P E C I F I C A T I 0 N PAGE 30

.....-
 REV. A

--------------------- R A D L----------------------------

3.1.4*2 	 Self-Modifying Programs, Undefined Instructions and

Undefined Ooerands

3.1.4.2.1 	 Self-Modifying Programs EA2.0]

As a general rule, self-modifying programs are not

allowed. .See Appendix A2.0 for further details.

3.-4.2.2 	 Illegal Instructions

An instruction with an unused function code is

termed an illegal instruction and causes the

following:

A. 	 If In monitor mode, an automatic branch to the

address specified by the contents of absolute

register 4 is executed.

B. 	 Itf In job mode, an exchange to monitor mode is

performed with execution beginning at the address

specified by the contents of absolute register 3.

3.1.4.2.3 	 Undefined Instructions

The 	instructions with a defined F code but which

either-have 	undefined bits set or specify an

undefined operation cause undefined results.

3o1. 4 .2.4 	 (N/A)

3.1.4.2.5 	 No op Instructions

The instructions that are defined as No op (no

operation) instructions do not fetch data and do not

alter data flags.

ICONTROL DATA I E N G I N E F R I N G NO. 16354636

I-------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 31

REV. A

--------------------------- R L -------------------------------A

3.1.4.3 Floating-Point Format

3.i.4.3.1 32-Bit Floating-Point Format

-- bit 0, exponent sign bit

_V

I I 	 |

I I 	 I

---------------------- exponent binary point

1
 I ± 77

I-- bit 8, coefficient sign bit

I
V

II I---------------------------------II I
I I I
I I

-coef.
I 9 	 31 I binary

I

I 8-bit signed I 24-bit signed I
I exponent I coefficient I

a 7 8 	 31

bit ___ /

V

32-bit floating-point number

There are two 32-bit half-words in every 64-bit word.
A 32-bit floating-point number occupies a half-word.

A zero is a positive sign bit and a one is a negative
sign bit for both the exponent and the coefficient.

Both the exponent and the coefficient are expressed
as two's complement signed integers. Numbers are of
the form (c) 2x where c is the 24-bit signed
coefficient, x is the 8-bit signed exponent, and the
base is 2.

(continued) 	 REPRODUCIBIITY OF THE
ORIGINAL PAGE IS, POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
!...... I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 32

REV. A

-- ---- R----------------RADL-----------------------------

3.1.4.3.1 (Cont.)

The range of useful coefficients is from 830000 to

16

7FFFFF

16

23

This represents numbers of the range -(2) through

23

+(2 -).

The range of useful exponents is from-9 to 6F

16 16

which is from minus 112 to Plus 11 the

10 10

values of 70 through 8F all fall into a special

16 16

end case range as defined by the following table.

X is any hexadecimal digit.

Element Representation

Machine Zero 8XXXXXXX

16

Indefinite 7XXXXXXX

16

Examples of 32-bit floating-point format represented

in base 16.

+1 g0 000001
+1 normalized EA 400000
-1 00 FFFFFF
-1 normalized E9 800000
+256 Do 000o0o

10

A floating-point number is normalized If the

coefficient sign bit is different from the next bit

to the right,. This condition implies that the

coefficient has been shifted to the left as far as

possible. Note that an alI zero coefficient requires

special attention for normalized operations.

R1]PRODUCIBILTY OF W
ORIGINAL PAGE IS POOR

NO. ±0354636
ICONTROL DATA I E N G I N E E R I N G

DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 33
I ------------- I

REV. A

- ---------------------- R A L-----------------------------

3.1.4.3.2 64-bit Floating-Point Format

--- bit a,exponent sign bit

I

I

_V

I I I

I1 I I

---------------------- exponent binary point

1 15 1

I-- bit ±6, coefficient sign bit

V

I---------------------------------I
I II
I I

II I
- coef.

I ±7 63 t binary
point

I

I I

I ±
I
II

6-bit signed
exponent

I
I

48-bit
coef

signed
ficient

I

I

0 15 16 63

bit ___/

V

64-bit floating-point number

a

64-bit word.

A 64-bit floating-point number is contained in

A zero is a positive sign bit and a one is a negative

sign bit for both the exponent and the coefficient.

Both the exponent and the coefficient are expressed

as twos complement signed integers. Numbers are of

the form (c) 2x where c is the 48-bit signed

coefficient, x Is the 16-bit signed exponent, and the

base is 2.

(continued)

OF TEE

O-RIGW10 P)AGE IS poop'

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I ----- I DATE Dec. 1977

I Corporation I S P E C I FI C A T I 0 N PAGE 34

REV. A

- --------------------- A0L-----------------------------
AL----

3.1.4.3.2 (Cont.)

The range of useful coefficients is from 8000 0000

0000 to 7FFF FFFF FFFF This represents numbers

16 47 16 47

of the range -(2) through-+(2 -1).

The range of useful exponents is from 9000, to

16

6FFF which is from minus 28,672 to plus 28,671

16 10 10

The values of 7000 through 8FFF all fall into a

16 16

special end case range as defined by the following

table. X is any hexadecimal digit.

Element Representation

Machine Zero 8XXXXXXXXXXXXXXX
16

Indefinite 7XXXXXXXXXXXXXXX

16

Examples of floating-point format represented in base

16

+1 000 0000 0000 0001

+1 normalized FFD2 4000 0000 0000
-1 0000 FFFF FFFF FFFF"
-i normalized FFD1 8000 0000 0000
+256 0000 0000 0000 0100

t0

A floating-point number is normalized if the

coefficient sign bit is different from the next bit

to the right. This condition tmplies.that the

coefficient has been shifted to the left as far as

possible. Note that an all zero coefficient reouires

special attention for normalized operations.

!CONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

I Corporation I S -P E C I F I C A T I 0 N PAGE 35

REV. A

- ----------------------- RA DL-------------------------------

3.1.4.4 End Cases

If indefinite is used as an operand In a floating
point instruction, both the upper and the lower

results are Indefinite.

For the cases listed below, a represents machine zero

and N represents an operand which Is neither machine

zero nor indefinite.

a + O = 0 0 0/ 0 = Indefinite
0 N= N O N= O/ N =0
N + a = N N 00 =o N / IIndefinite

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I 	 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 36

REV.
A

-- -------------------- L----
R A0L----------------------------

3.1.4.5 	 Floating-Point Compare Rules

Several of the instructions compare two floating
point operands for:

a. equality 	 (r) = (s)
b. non-equality 	 (r) <> (s)
c. greater 	than or equal to (r) > (s)
d. less than 	 (r) < (s)

For these examples, the first operand is represented

by (r) and the'second operand by (s).

3.1.4.5.1 	 One or Both Operands Indefinite

If one operand is indefinite, no compare condition is

met since indefinite is not: greater than, less

than, equal to, nor not equal to any other operand.

If both operands are indefinite, the (r) = (s) and

the (r) > (s) conditions are met since indefinite is
defined equal to indefinite.

3.1.4.5.2 	 Neither Operand Indefinite but One or Both Operands

Machine Zero

Any non-indefinite, non-machine zero operand with .a

positive, non-zero, coefficient is strictly greater

than machine zero.

Any non-indefinlte, non-machine zero operand with a

negative coefficient is strictly less than machine

zero.

Machine zero is equal only to itself and any number

having a finite exponent and an all zero coefficient.

ORIqfNAj PAE 18, Poop

!CONTROL DATA I E N G I N E E R I N G
 NO. 10354636

-
 DATE Dec.- 1977

Corporation I S P E C I F I C A T I 0 N 	 PAGE 37
REV. A

---------------------------- R A L----------------------------

3.1.4.5.3 Neither Operand Indefinite Nor Machine Zero

A. If the signs of the coefficients of the two

operands are unlike, the operands are unequal

and the operand with the positive coefficient is

the larger of the two.

B. 	 If the signs of the two coefficients are alike, a

floating-point subtract upper is performed;

operand r minus operand s.

Condition met criteria are 	analyzed as follows:

a. 	If the upper 48 bits of the result
coefficient are all zeros (r) = (s)

b. 	 If the upper 48 bits of the result

coefficient are not all zeros (r) <> (s)

c. 	 If the result coefficient is positive

(r) 	Z (s)

d. 	 If the result coefficient is negative

(r) 	< (s)

The above criteria (a and b) for equality and
non-equality do not guarantee that if r = s, that
s = r when the following is true:

a. 	The operands have unequal exponents.

b. 	"" bits exist in any of the right-most bit

positions of the coefficient which will be

shifted off the right during alionment of the

smaller exponent. For example:

o 	 16 63

r = 100041 	 1

100001 	 IXI

REPRODUCImILIT OpTHE
ORIGINAJL PAGE IS POOR Exponent difference = 4

If x = B then r = s implies s = r

If x <> 0 then If r = s, s <> r
or if s = r, r <> s

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I--------------	 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 38

REV. A

-- --------------------- RADL-----------------------------

3.1.4.5.3 (Cont.)

The order of events of the floating-point subtract

upper is first to complement the subtrahend, then

align the coefficient associated with the smaller

exponent and finally to perform a floating-point add
operation. The following is an example of r = s but
s <> r.

Operand r = 0±00 0000 0000 1001
s = 0104 0000 D00 0100

Complement s 0104 FFFF FFFF FF00
Align r 0104 flnOflAann 01on I

Add aligned 0104 0000 0000 00OO ±

r and

complemented s

Since the upper 48 bits of the result coefficient are

all zeros, the pair of operands are considered equal.

However, if the operands are interchanged, the

following happens:

Operand 	r = 0104 0000 0000 0100

s = 0100 0000 0000 ±90

Complement s OjOG FFFF FFFF EFFF

Align s 0104 FFFF FFFF FEFF F

Add r and 0104 0000 0000 0100

complemented, 0104 EFFF FFFF FEFF F

aligned s 0104 FFFF FFFF FFFF F

Since the uDDer 48 bits of the result coefficient are

not all zeros, the pair of operands are considered

unequal.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I ----- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 39

REV. A

--------------------- R A D L-----------------------------

3.1.4.6 Upper and Lower Results

The floating-point add, subtract and multioly

instructions 	generate a result coefficient twice the

length of the source operands" coefficients. The

left and right halves of this result are called the

upper result (U) and the lower result L),

respectively.

The sign bit of the lower result's coefficient Is not

affected in a lower operation and remains at zero in

two's complement arithmetic. The other bits of the

lower coefficient receive no special treatment.

Remember that a lower result is not meaningful alone,

but it mus4t be used in conjunction with its

associated upper result.

Sections 3.1.4.6.1 - 3.1.4.6.4 are written for 64-bit

operands. For 32-bit operands, substitute 47 for 95,

46 for 94. 23 for 47, and 22 for 46 where the latter

numbers appear.

3.1.4.6.1 Right Normalization

When the result coefficient overflows its register,

a right shift of one place Is necessary. In this

case, the entire 95-bit result is shifted right one

pl'ace with sign extension and one is added to the

exponent. This operation is known as

right-normalization and it is done, when necessary,

even if normalization is not explicitly specified by

the instruction. This may cause exponent overflow;

if so, the result is set to indefinite and data flag

bit 42 may be set.

3.1.4.6.2 Floating-Point Add

Regardless of their signs, both operands'

coefficients are extended to 94 bits in length, not

including sign, by adding 47 zeros to the right of

their binary 	points.

The exponents of the two operands are compared and

the 94-bit coefficlent of the operand having the

smaller exponent is effectively shifted right one bit

and its exponent Increased by one, successively until

(continued)]k MUBIL1TYf OF TO
ORJhIMAI IAE IBP0114

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 40
......- REV. A

-------------------- R A D L-----------------------------

3.1.4.6.2 (Cont.)

the two exponents are equal. The sign of the shifted

coefficient is extended from the left to the right

during the shift. Negative coefficients approach a

minus one and positive coefficients approach zero as

they are shifted.

The add Is a 94-bit operation, not including sign.

Right normalization takes place, if necessary. The

coefficient for the U result is the left-most 47 bits

and the coefficient for the L result is the

right-most 47 bits of the 94-bit result.

The 	exponent for the U result is equal to the larger

of the two operand exponents. Right-normalization

will increase this val-ue by one', if it occurred.

The ex-ponent for the L result is 47 less than the

10

U result's exponent for all cases except three:

a. 	Right-normaltzation causes the U exponent to

overflow; the U result is set to indefinite; the

L exoonent will be 6FD1 (59 in -the 32-bit

16 16

case).

b. 	 If the U result's exponent minus 47 causes

10

exponent underflow, machine zero is stored as

the L result.

c. 	 If-either or both operands were Indefinite, the U'

and L results are indefinite.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

.............-I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 41

REV. A

--------------------- R A D L-----------------------------

3.1.4.6.3 Floating-Point Subtract 	 [Ai2.0]

The floating-point subtract operation is performed by

comolementing the coefficient of'the subtrahend and

performing a floating-point addition operation. The

comolementation Is a 48-bit, two's complement

operation and is performed before the operands are

extended to 94 bits.

The hardware used for Floating Add or Subtract

operations has an extra (or extended) coefficient

sign bit. This means that the complementation

of an 8000 coefficient is handled without the

right shift of one and increase of the exponent

by one as'used elsewhere. This~will cause a

result (although not mathematically incorrect)

which may differ from the result obtained when a

right shift of one with increase of one is used, when

the following conditions are met:

j. 	 The operand of the pair having the large

exoonent (OR either of the two operands if their

exponents are equal) must have a coefficient of

8000 --

2. 	This operation must require this same operand to

be complemented due to

a. 	being the subtrahend in a subtract operation

OR

b. 	 sign control in either a subtract or an add

operation --

3. 	The "other" operand must have a negative

coefficient.

OF THEREPRODUCIBILITY
ORIGINAL PAGE IS POOR

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 42
REV. A

-------------------------- R A D L- ----------------------------

3.1.4-6.3 (Cont.)

Examole I A - B

A 60 F F F 0 0 0
B 64 8 0 0 0 0 0

Instruction

CDMFMPI Specification

Extra Sign Bit I

v
Complement B B 1-64 (1) 8 0 0 0 0 0 1 64 8 0 0 0 0 0

I I
B ->64 (0) 8 0 0 0 0 0 1 65 4 0 0 0 0 0

Align operand 1-60 (1) F F F 0 0 0 1-60 F F F 0 0 0
with smaller I
exponent ->64 () F F F F C 0 ->65 F F F F 8 0

Add A plus A 64 (1) F F F F a 0 1 65 F F F F 8 a
compl ement I
of B +B 64 (0) 8 0 0 0 0 0 I 65 4 0 0 0 0 0

------------------------- I-----------------
6 (0) 7 F F F 0 0 1 65 3 F F F 8 0

64 7 F F F 0 1 65 3 F F F 8 0

Example I.. A - B

A 50 F F F 0 a 0
B 6F 8 0 0 0 0 0

Instruction

LMLO__ll-P I S2ci icat ion

Extra Sign Bit I

I IvI

Complement B B 1-6F (1) 8 9 0 0 a0 1 6F 8 0 0 0 00
II

8 ->6F (0) 8 0 0 0 0 0 1 70 4 0 0 0 0 0

Align onerand 1-50 (I) F F F a 0 0 I 5o F F F 0 0 0
with smaller I
exponent ->6F 1) F F F F F F 1 70 F F F F F F

Add A plus
complement
of B

A

+8

6F

6F

(1) F F F F F F

(0) 8 0 0 0 0 0

1 70
I
1 70

F F F F F F

4 0 0 0 0 0
-------- -------------

6F (0) 7 F FE FF 1 70 3 F F F F F

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S-----I OATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 43

REV. A

- ---------------------- R A L-----------------------------

3.1.4.6.3 (Cont.)

If this operation Is a Subtract Upper, the specified

result is indefinite (with the appropriate data

flags) while the COC FMP result did not overflow. If

this operation were a Subtract Normalized, note the

following:

.Instruction
COO E~E Soecification

Result of 6F (0) 7 F F F F F 1 70 3 F F F F F

Subtract

Uoper

Normalize the 6F 7 F F F F F I 6F 7 F 'F F F E

Upper Result

shifting zeros 1

in from the right

Note that the subtract operation is not always

commutative. In other words it is not always true

that (A-8) = -(B-A), This characteristic will be

observed If the following is true of A and B:

a. The exponents of A and B are not equal.

b. 161" bits exist in any of the ri~ht most bit

positions of the coefficient which will be shifted

off the right during alignment of the smaller exponent.

Example of (A-8) <> -(B-A):

A = 0104 6FCB 807E 89F2

8 = 0100 6FAC 3F50 A5FA <--

These two 1 bits will be shifted off during

exponent alignment.

(continued)

REPRODUCmImny Op
ORIGINAL PAGE94 POOX

ICONTROL DATA I E N G I N E E R I N G NO. J0354636
......... .--I DATE Dec. i977
I Corporation I S P E C I F I C A T I 0 N PAGE 44
--------------- REV. A

---- RAD-L .----------------------------

S-i4.6,3 (Cont.)

Complement B:

-B = 0190 9053 COA2 5Ao6

Align B:

-B = 0104 FS05 3COA 25A0 6

A-Bt
A = 0j04 6FCB 807E 89F2

-O = 0104 F5.fl 3CnI ?Af 6
O014 6890 BCBB AF92 6

A-B = 0j94 6800 BC83 AF92

Allgn Bt

B = O34 06FA C3F5 OAsr A

Complement A:

-A = 0Q(4 9034 7FB] 76CE

-(B-Alt

B 0124 06FA C3F5 OAF A
-A = 0104 903h 7FB I 760E

0104 972F 4377 5060 A
-(B-A)= D104 68DO 8088 AFS.3

This differs from A-B in the last bit

position.

0RUNAL 'PAGE 1S Pooji

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 45

REV. A

---------------------R A D L-----------------------------

3.1.4-6.4 Results of the Floating-Point Multiply Instruction

When two floating-point numbers are multiplied, the

lower result retains the 47 least significant Product

bits generated. The sign bit of the lower result Is

always set to zero and the exponent of the lower

result is the sum of the two source operands'

exponents with the exceptions listed below:

The upper result retains the 47 product bits

immediately to the left of the bits retained by the

lower product. The sign of the upper product's

coefficient follows the normal rules of algebra. The

exponent of the upper result is the sum of the two

source operands' exponents plus 47 with the

following exceptions:

a. 	 The sum of the source ooerands" exponents (olus
47 , if upper result) exceed 6FFF for which

i0 16

case the result exponent is set to indefinite.

b. 	 The sum of the source operands' exponents (plus
47 , if upper result) is less than 9000 for

to 16

which case the result exponent is set to

machine zero.

c. 	 Either or both operands ape indefinite for which

case the result exponent Is set to Indefinite.

d. 	 Neither operand is indefinite but either or both

operands are machine zero, for which case the

result exponent is set to machine zero.

If either ooerand has a coefficient of 8000 0000 0000

and an exponent of X, the operand will be treated as

though its coefficient were COon 000 000 and Its

exponent were X+j.

3.1.4.6.5 The Floating-Point Divide Instruction

/

The quotient from the divide operation is the result

of dividing the prenormalized, integer coefficient of

the divisor into the integer coefficient of the

dividend generating a 47-bit quotient (2--bit

quotient for 32-bit divide). If either operand has a

(continued)

ICONTROL DATA I E N G I N E E R I Nt NO. 10354636
S-----I DATE Dec. 1977
I Corporation I S P E C I F I C A T I d N PAGE 46

REV. A

-- --------------------- RADL-----------------------------

3.1.4.6.5 (Cont.)

coefficient of 8000 0000 0000, the operand will be

handled as though Its coefficient were C000 0000 0000

and Its exponent Increased by one. When the divide

hardware normalizes the divisor coefficient, the

number of places shifted left is added to the

exponent of the quotient as defined below.

The exponent of the result will be given by the

following equation:

Exponent of Quotient = 	 (Exponent of Dividend)
(Exponent.of Divisor)
(46 - NC)

10

where NO is the number of places shifted left

to prenormalize the divisor. For the 32-bit

divide operation 22 is subtracted rather than

i0

46

jo

The right-most bit of the quotient is neither rounded

nor adjusted. The remainder is not retained. The

sign of the quotientas coefficient follows the normal

rules of algebra.

3.1.4.6.6 Normalized 	Upper Results

The normalized add and 	subtract instructions generate

an intermediate result 	identical to the final result

of the Add U and the Subtract U instructions.

Normalization of the intermediate, 48-bit resul-t then

takes place as follows:

The 48-bit coefficient Is shifted left one bit

and its exponent is decreased by one, successively,

until the sign bit and the bit immediately to the

right of the sign bit are different. During this

shift, zeros are attached to the right end of the

48-bit coefficient. If reducing the exponent by one

causes exponent underflow, the result of the

normalization operation is defined as machine zero.

http:Exponent.of

ICONTROL DATA I
 E N G I N E E R I N G NO. 10354636

I------------- I
 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N 	 PAGE 47

REV.
A

--------------------- R A D L ----------------------------

3.1.4.6.7 (N/A)

3.1-4.7 (N/A)

3.1.4.8 (N/A)

3.1.4.9 (N/A)

3,i,4.iO (N/A)

3.1.4.11 Operand Size Definitions

The following definitions are implied throughout the

specification.

Word - A 64-bit quantity, the address of
the left-most bit always being a
multiple of 64

180

Half-word" - A 32-bit quantity, the address of

the left-most bit always being a

multiple of 32

±0

Byte - An 8-bit quantity, the address of
the left-most bit always being a
multiple of 8

10

Digit 	 - A 4-bit binary coded decimal number
or sign. One digit per byte in zoned

format and two digits per byte in

packed BCD format.

Sword 	 - 512 bits (or 8 64-bit words).

REPRODUCIBILMy OF TIM
ORIGINAL PAGE IS POOR

http:3.1.4.11
http:3,i,4.iO

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S------ --- - DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 48
--------------- REV. A

-------------------- R A D L-----------------------------

3.1.5 Item Count (field lengths, offsets, indices, etc.)

All field lengths, offsets, indices, shift counts,

etc., are item counts which sDecify. a number of

bits, digits, bytes, half-words or words.

Where an item count other than an index is

contained in a 48-bit field, there shall be at least

32 consecutive and identical sign bits. Sign bits

must always be extended to the left to fill the

16-bit or 48-bit field containing it.

The item count unit is specified by the instruction

title line code (see arrow).

V

3.2.1.67 42 4 32 RG ADD N; (R)+(S) TO CT)

The 32 Indicates that field lengths and indices are

expressed in 32-bit half-words. Any deviation from

this method of specifying the units for the various

item counts would be indicated in the instruction

description or in the description of the instruction

type. The instruction type refers to RG (register),

SM (stream), etc.

An index may be either positive or negative in sign.

The maximum magnitude of an index is a function of

its usage. The Index is shifted to the left end-off

zero/three/five/six places before the addition to the

base address when the unit for the index is

bits/bytes/half-words/words. Digits are not used as a

unit for indices.

A field length must be positive in sign and have a

16

magnitude of less than 2 ; the use of a negative

field length causes that length to become strictly

undefined. Offsets are subtracted from the field

length In stream instructions, but note that for a

negative offset, this amounts to increasing the

length specification since subtracting a negative

quan+ity is addition.

R1 qx7 E O Fo I n

ORICTWA PACE ls "poo

http:3.2.1.67

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S------------- i DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 49
REV. A

--- ---------------------- RA L-----------------------------

3.1.6 Data Flag Branch Register 1A7.03

3.1.6.1 General Description

The data flag register is designed to give the

programmer an automatic branch to a special

routine for certain operands, results, conditions,

etc., without his having to Day the time penalty of

explicitly checking these conditions in his program.

If a condition which has been previously selected to

cause an automatic branch occurs during an

instruction, the instruction is completed, the

address of the next instruction which would have been

executed is stored into the address portion of

register 0± and a branch is made to the address

contained in register 02. The state of the data flags

in the invisible package is defined only if the

prooram was interrupted between instructions.

3.1.6.2 Register Descripti-on

PRODUCT MASK -DATA

FIELD FIELD FLAGS FREE FLAGS
II I I I

I 16 bits 1 16 bits I ±6 bits I j6 bits I

I * 13 i51 * 119 311 * 135 471 * 151 581 * I

0 2 16 18 32 34 48 50 59 63

*Bits a through 2, J6 through 18, 32 through 34, 48

through 50, and 59 through 63 of the data flag

register are undefined. Any attempt to sample, set

or clear these bits is meaningless and the result

of any instruction trying to do so is undefined.

An additional register providing bits 64 through 127

has been added for the expanded vector capabilities.

Bit assignments, and location in the invisible

package, have not been made as yet.

RL RoDUCIB'LlOF TEM

ORtY\hALPAGEIs POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
-------------- I

I Corporation I S P E C I F I C A T I 0 N
DATE Dec.
PAGE 50

1977

....- REV. A

------------------- R A D L ----------------------------

3,1-6.2.1 'Data Flag Bits

Data flags 35-47 Indicate conditions that have

occurred. Bits 35-47 are cleared only by the Data

Flag Register Bit Branch and Alter, and the Data Flag

Register Load/Store instructions.

3.1.6.2.2 Mask Bits

A mask bit is associated wi'th each of the data flags.

The mask bits have the function of selecting the

conditions for which the programmer wishes an

automatic data flag branch.

It is important to note that the assoclated mask bit

need NOT be set in order to set a data flag bit. The

mask function is solely one of enabling a particular

data flag to cause a bit to set in the product field,.

The order in which the mask bit and its associated

data flag bit are set is immaterial, as the result is

the same; that is, their associated product bit is

set.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------
1 Corporation

I
I S P E C I F I C A T I 0 N

DATE Dec.
PAGE 51
REV. A

1977

- --------------------- L----
AA0L----------------------------

3.1.6.2.3 Product Bits

Each product bit Is the dynamic logical product of a

data flag bit and its associated mask bit. Data flag

branches are performed when there Is at least one o

in the product register and the data flag branch

enable bit is set.

3.1.6.2.4 Data Flag Branch Enable Bit

The data flag branch enable bit, bit 52, must be set

for an automatic data flag branch (OFB) to occur.

Bit 52 is automatically cleared by the hardware when

a DFB takes place. It must be reset with a Data Flag

Register Bit Branch and Alter or a Data Flag Register

Load/Store instruction to re-enable the DFB.

3.1.6.2.5 Data Flag Register Bit Assignments

Product Bit

I Mask Bit

-tl

1 I -Data Bit

I I I

V V V
3-19-35

Soft Interrupt. Monitor software can set bit 35 oJ

a job's Data Flag Branch register while the register

is stored in the Job's invisible package. If, after

exchanging back to job mode, bit 35 and Its

corresponding mask b'it (bit 19) are set, a normal

data flag branch occurs following completion of the

current instruction.

4-20-36

Job Interval Timer

5-21-37

N/A

(continued)

-ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 52

REV. A

---------------------P A D L ----------------------------

3.1.6.2.5 	 (Cont.)

6-22-38

N/A

7-23-39

47

The binary result exceeds the range of + (2 -1).10.

8-24-40

Bit 40 is the inclusive OR of bits 37, 38 and 39.

Bit 24 mass bit 40. Bit 8 is the logical product

of bits 24 	and 40.

(cont inued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
------------- DATE Dec. 1977

I Corporation 1. S P E C I F I C A T I 0 N PAGE 53
REV. A

--------------------- R A 0 L-----------------------------

3.1.6.2.5 (Cont.)

9-25-41

Floating-point divide fault: The divisor has an all

zero coefficient or the divisor as read from the

register file or from central storage is machine

zero.UIf the divisor and/or the divldend is

indefinite, no divide fault exists. If a divisor

causes a divide fault, the quotient is set to

indefinite. The exponent overflow and result machine

zero data faults are not set by a divide whose

divisor caused a divide fault.

10-26-42

Exponedt overflow, The exponent of the result is

larger than 6FFF (6F for 32-bit arithmetic).

16 16

Results are not checked for exponent overflow until

after the exponent adjustment for normalization or

significance has taken place. In the adjust exponent

instructions, if a left shift exceeds the number of

places required for normalization, this data flag is

set. Exponent overflow causes the result to be set to

indefinite; therefore, the indefinite flag will

always be set on an exponent overflow. This exoonent

overflow data flag Is not set if either source

operand from central storage or the register file is
indefinite or by a divide instruction whose divisor

causes a divide fault.

1±-27-43

Result Machine Zero: The exponent of the result

returned to Main Memory or to the Register File

is less than 9000 (90 for 32-bit arithmetic).

16 ±6

Result Machine Zero may be caused by exponent

underflow or by one or more of the input operands

being machine zero. The Result Machine Zero data flag

bit is not set by a divide whose divisor causes a

divide fault.

REPRODUCBIITY F. T
ORIGINAL PAGE IS POOR

(continued)

ICONTROL DATA I E N G I N E ER I N G NO. 10354636

....... - I DATE Dec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE 54

REV.
A

-------------------- R A D L-----------------------------

3.1.6.2.5 (Cont.)

12-28-44

Bit 44 Is the inclusive OR of bits 4:, 42 and 43.

Bit 28 masks bit 44. Bit 12 is the logical product

of bits 28 and 44.

13-29-45

A negative source operand was encountered in a square

root instruction. The square root of the absolute

value of the operand is formed; and the two's

complement of this square root is stored as the

result.

14-30-46

An Indefinite result was placed Into central storage

or into the Register File.... or either or both

operands of a floating-point compare were Indefinite.

An indefinite result may be caused by one or both

operands of a floating-point arithmetic operation

being indefinite or by the occurrence of either a

divide fault or an exponent overflow.

15-31-47

Breakpoint. See section 3.2.1.5.

3.1.6.2.6 Free Data Flags

Bit 51 	is the dynamic inclusive OR of the product

field. This bit is set if any of bits 4

through 15 are set. Bit 51 cannot be cleared

directly; bits 4 through 15 must be cleared to

accomplish this.

Bit 52 	is the data flag branch enable bit. If bit 52

is a one and bit 51 becomes a one (or vice

versa) a data flag branch occurs at the end of

the current instruction. See 3.1.6.3 for

additional information. Bit 52 is

automatically cleared by the execution of a

data flag branch.

(continued)

ICONTROL OATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec.. 1977
I Corporation I S P E C I F I C A T 1 0 N PAGE 55

REV. A

R A0L----------------------------- --------------------- L-----

3.1.6.2.6 (Cont.)

Bits 53, '54 and 55
There are no product or mask bits associated

with bits 53, 54, and 55. Bits 53, 54, and 55

are cleared out automatically during the

initial phases of the instructions (unless the

instruction is a no op -- see Section 3.j.3)

which may set any of them. Thus, if pertinent,

these bits must be sampled before executing

another instruction which would clear their

previous state. The setting of bits 53, 54,

and 55 does not cause a data flag branch.

Bit 56 	- A CPU gate associated with the Maintenance

Station monitoring counters (See Functional

Computer Specification listed in Section 2.0).

Bit 57 	- A 'CPU gate associated with the Maintenance

Station monitoring counters (See Functional

Computer Specification listed in Section 2.0).

Bit 58 	- N/A

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I-------------- I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 56

REV? A

--------- --- --- --- --- R A D L - - - - - - - - - - - - - -

3.1.6.2.6 (Cont.)

OP OP

CODE 53 CODE 53

I CATA FLAG BITS 54 I DATA FLAG BITS 54

V 37 38 39 41 42 43 45 46 47 55 V37 38 39 41 42 43 45 46 47 55

100 1 2 1 1 1 1 2 I 212 0 1 2 2 2 2 2 2 2 2 1 1
[Oil 1 : 1 1 1 I 2 2 1 22112 2 I I I I I I I
1021 2 I 1 1 I I 2 2 21221 1 1 1 1 1 2 I 1 22
203 1 1 1 1 1 1 1 2f 21231 I 2 1 I I 1 2 I 1 2
I l-l--I--:--l--:--:--I--- i I -l--I--i--I-ii-- .I--I--i-:

1041 I 2 1 2 I I 1 I X 1 2 241 1 1 2 2 1 1 2 22
205 1 2 2 1 1 I I I I 11251 1 2 I I I 2 21 2
106 1 I 2 1 I I 1 1 1 1 1126 1 1 2 1 I I I 2 1 1
I07 1 I 2 1 1 I 1 2 I 1 27 1 I 2 1 2 1 2 I I

2081 1 2 1 1 2 1 1 1 1 281 1 1 1 1 I I 1 1 1I
109 1 1 1 I 2 I 2 2 I 29 1 I 1 1 2 1 2 2 1 1 1

1082 I I 2 2I 128AI 2 2 I I 2 22O0 2 2 1 1 11 1 1 1 II1 I1 1 I 12I I I I I 21
I 1 1- 1 2 1 2 1 I - 11201I - 2 '1 I I I- I 1 1

IOC I 1 2 1 1I I 1 I I 2 1I 21 1 1 1

IO2 22 2 11 I 11 122II201 1 1I 11 I1 1 I
!OI I I I I 2 I 122 1 2I I I I I 2 2
SODt0 II 21 22 2 11 2 I 1 1I . I 21 I 2 21

II F I± I I I I-I 1 I I 2 2 1I-I--I ..-- 2----2--I--21 I 21132I-I--,--,--,--,2--,--,--,--,-,II I 1 12
l1 2l 1 2 1 2 2 1 I I 2 1134 1 I I I I I I I I I

l1152 I I I 1 1 1 1 1 113312 2 1 1 1 2 1 2 121

1141 1 1 I 1 1 I I 1 2 2 13 1 12 1 2 I 1 1 I I

21 221 I I I II I I I 1 I I 2 311 1 1I 21 12 I 12 I1I2 I IIlI1 1 3 1
±1161 I 1 I I I I 113811 2 I 2 2 I 2 1 1

li511I7 221 1 I I 1 2 1 2 1 1 2 2398 I 2 2 1 2 2 2 2I I I I I 1 I 1 I7 I I I I I I I I
2 I-2-- I----....2I--I-----.-I--2 III-I-....-I--I-- 1--2I--I2....I-2
l19l 1 1 I 1 1 2 1 t 1 1139122 1 1 1 1 I 2 1 122
2 82 I I I I I I I I 2 382 1 I I I I I I f I I

I18 I I I I I I I I 1230I I 1 2 1 I 2 22
1191 2 2I I1 3 I21 I13 I I I I II - ,-- ,--,--,--,--,--,-- -- ---- , - - , -I-- -- -- -- - II
IIA I I I I I I 2 1 113E I 2 2 I I I I I I f I
lIF I 2 1 1 2 1 1 1 1 I 213F 2I I I I I I I

(continued)

SIp0DUO1BhIM OF THE
ORIGIN PAG IS P00R

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I DDATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 57
REV. A

---------------------------- R A L- ----------------------------

3.1.6.2.6 (Cont.)

OP 	 OP

CODE 53 CODE 53
I DATA FLAG BITS 54 1 DATA FLAG BITS 54
V 37 38 39 41 '2 43 45 46 47 55 V 37 38 39 41 42 43 45 46 47 55

401 1 1 1 IX IX I IX 1 1 1 601 1 1 IX IX I IX I I

4il I I I IXIXX I I Iteill ,t IX IX I IX I
1421) 1 1 IX IX I IX I 11621 I IX IX I IX I I 1
1431 1 I 1 1 1 I 1 1 1 11631 I 1 I 1 1 I 1 1 1

I ------------------------------ I 1---------------------------
1441 1 1 i. IX ix :x: I I641I I IX1X I IX I I
1451 t I 1 IX IX I IX 1 ties: I i x Ix I Ix 1 I
1461 1 I XiXIXI IX I 116611 1 IX IX I lX I I
14.7 11 I I I I I 1 I I 11671 I 1 1 I I I I I

I 	 . ---------------------------- I I---------------------------
1 IX 1168 I I1481 f l IX I IX I 1 1 :IX IX IX I

1491 I I I IX IX I IX i I 1169 1 I I X Ix I IX I I I
14AI I I I 1 1 I I I I I6AI I I 1l i I I I I
14811 1 I IXIX I IX I I 116811 1 IX IX I IX I 11
1 I------------------------------ !I I-----------------------------I

'
14CI 1 I X IX IX I IX 1 I I16C I I lX IX IX IX I I :
1401 1 1 I 1 I I" I I 601 I I 1 1 1 I 1 I
14E I I I I I 1 1 I I I IElI I I 1 1 1 I I
4F! 1 1 IX IX IX I IX I 1 I16FI I I IX IX IX IX I II

150 1 I 1 I 1 I I IX I I 1170 1 I I1 1 I IX I 1 1
151 1 1 I I 1 I IX I 1 11711 I I I I I I IX I I I
1521 1 1 I 2 1 I IX I I 11721 1 1 I I I IX I I 1
15311 1 I IX IXiXI 1 . 117311 I I I IX IX IX I I

I 	 - I f II
i i---------------------- I! I-----------------------------!
541 1 1 IX IX I lX 1 I I1741 I I IX IX I ?X I I

.1551 I 1 IX 1 x 1 1 1 751 I 1 IX 1 I IX I I
1561 I I I I I 1 1 I 11761 1 I IX X I IX I I
1571 1 1 I I I 1 1 1 1 11771 1 I I IX IX I IX I I

I 	 . I ---------------------------- ,I----------------------------I

1581 1 I I I I 1 1 I I 117811 I 2 I I I 1 I 1
i591 1 1 IX IX I IX I 1 1791 1 I IIIX I Ix I II
15A I I I I I I I I I I 117A1 I I I 1 1 I 1 1 1 1
153 1 I I I I 1 I I 1 I 117 9 1 I 1 I I 1 I I 1 I I

I I----------------------------i----------------------------I
5C ! I 1 1 1 IX I !X I I 117Cl 1 1 I ! I I i I I

1 1 1I I IX 1x 1
15011501 I I I i IX:I IX I I 117012IIZDi I II I1 1I 1I 1I 11 11 1 1Ii

15EI I I I I I I I I 117EI I I I I I I I
15F I I I I I I I I I I II7F I I I I I I I I I I

(cont inued)

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I ------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 58

REV. A

-------------------- R A D L

3.i.6.2.6 (Cont.)

OP OP

COD 53 CODE 53

i DATA FLAG BITS 54 I DATA FLAG BITS 54

V 37 38 39 41 42 43 45 46 47 55 V 37 38 39 41 42 43 45 46 47 55

180 1 I 2 1 1 2 1 2 1 IIA01 I 'I I I I I I I 1 2
1811 1 1 I A I I I .1 1 1 - I I 1 I
182 1 1 1 2 1 1: IIA21 I I I I I I I I 1
183 1 1 1 1 1 1 I 1 2 1 IIA31 I I I 1 1 1 1 1 I

1341 1 I 1 I I I 1 1 IIA41 I 1 1 I I I I I 1 I
1851 1 IIA51 I 2 I 2 2 1 1 1

136 1 1 1 1 I I 1 1 1 1 IIA6 1 I I 1 1 I I I 2 I 1

187 1 I 1 I I I 1 1 1 IA71I I I I I 2 I I I

8 I-I- - I -- I I 1 1 2 I II 8 I 2 I I I- I I I I

1 1 I II 2 IIII2 1 lIIAAA9 11 II II I II 2 I1 I II II189189 11 I 1 II I 1 I I I I

18 I 1 1 1 1 II IA I I 1 1 1 1 I I I 1

1808 1 1 1 1 1 2 1 1 I2A 1I I I I 1 1 1 2 I 1
1801 2 1 I I I 2 I 1 I 1fA I I I I I I I I I I I
18E I 1 1 I I I I IIAE I I I I I I I I I

18F I I I I 12 1 - 12 I I AFI I I 2 I I I I I I 2

19022 1 2 I 2 I 1 1 11 0I I I I I 1 I I I I I

I I - I I I 2- -1 1 1. I 1 1 . 2 .2 .18I I I I - I -

1921 1 1 , 2,- 1 1 1 1 118212t I I I I I I
193 1 I 1 I I 2 I I 1 1 1IB31 I I 2 I I I I I 2 I

1941 2 I 21 I 1 2 2 1IB41 2 I I I I I I 1 1
1951 1 -1 I 1 2 1IB521 I I I I I2 I2 1I 1

1962 1 1 1 1 2 2 1 I 1 I 21I I I I I II I
1972 I I-- 1 1 I 1 -- -- I I I . I I I .I2. I

198 1 2 1 2 2 2 1 2 I 1IB8 1 I 1 I 1 1 I I 1 1 I

19A1 I I 1 2 I 1189$ I I 1 I 1 t
197 1 II II I II II I I I1 BT1I I I II I I II 11

1981 I 2 I 2 1 I 1188! I 1I 2 I I1901 2 II II II I 2 I 121 1 II 2 1I

290 1 2 1 I 1 1 2 I I I 118 l 2 I I 2 I 2 I I I I

19E I I I I I 2 2 I I I IBEII I I I I I I I 1

19F12 II I I 1 1 1 2 IIBF I 1 1 I 2 I 1 1 1

I...--

(cont inued)

I

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

------I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 59

....-
 REV. A

--------------------------- R A 0 L- ----------------------------

3.1.6.2.6 (Cont.)

OP OP

CODE 53 COOE 53

DDATA FLAG BITS 54 1 DATA FLAG BITS 54-

V 37 38 39 41 42 43 45 46 47 55 V 37 38 39 41 42 43 45 46 47 55

1C0l I 1 2 I I I I I IIEoI I I I 1 1 I I I I I

toil I I I I I I I I llE I I 1II I I t I I

IC2 1 I I I I I I 1 I I i E21 I I I I 1 I I 1

1031 I 1 1 I I I I I I IIES II I I I I I

IC411 1 I I I I I I I IE41 I I III I I I I I
1051 I I I I I I I I IIESI I I I I I I I 1
106 1 1 I 1 I I I I I I I I
IC 7 1 I I I I I I I I IIE9 1 I I I 1 1 1 1I I I
I - -- 1--,--,---,--, - ,-- - , I-I I--I--I-I-- I-I-I-I
1081 I I I I I I I I I IIEB I I 1 I 1 1 I I I 1 1
10911 I I I I I I I I IIEgS I I I I 1 I I I I I
ICA I I I I I1 1 I IEAl I I I I I I 1
ICBI I I I I I I I I I fIEEl I I I I I I I I
1 I-I-- I-- I-- I--:-- I---I-- I-- I-- II I-I-...I--I--I-- 1I--I--S

ICC1 I I I I I1 I I I I IEOt I1 1 I I I 1

100 1 1 I I 1 1 1 I I IIEDI I I I I I I I I I

ICEI I I I I I I I I I IlEE I I I I I I I I I

IC 1I I I I I I I I I I II I I I
1IF41 I

I I-I--I--i--I--:I--I--I--I--I--II I-I-....-I-...-I--I--I--I--I--l

1 I- I-- I-- I--I --t--I--I--I-- I-- I II I--I--I-- I-- I-
100 1 I I I 1 I I I I I SIW oK I I I I I I I I I

1061 1 1 I I I I I I I IIFi I I I I I I I f 1 I

10211 1 I I I 1 1 I I 1IF21 I I I I I I I I I I

103 1 I I I I I I I I I IIF81 I I I I I I I I I

10 9 1 1 1 1 1 I I I I 1IF I I I I I I I I I I I

105 I I I I I I I I 1 IIF I I I I 1 I I 1 1 I I

1061 I I I I I I I I I lIFGII I I I I I I I I I

1071 I I , 1 I I I 1 I hIF7h1 I I I S I I I I I

I I- I-- I--I--I--I..-I--I--I--I--IlI I-I I--I!-- I--iI--I-..I--I

1081 1 I 1 I I 1 1 1tF81 I 1 I 1 1 1I I I

1091 1 I I I I I I I 11F91 I I I I I I I I I I

IDAS I I I 1 1 1 I I I IIFAI I II I I I I I I

1081B1 I I I I I I fIIF I I I I I I I I I

fOc l I I I I I I I II I IF I I I I I I I I

IDOl I I I 1 I I I- ISF01 I I I I 1 I I I S I

tOE? I 1 I I I I I I I IFEhlI I I I I l I I I

IDF I 1 I I 1 1 I 1 1 1 1IFF: I I I I I I I I I I

ICONTROL DATA : E N G I N E E R I N G NO. 10354636
1------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 60

REV. A

---------------------R A D L----------------------------

3.1.6.3 Data Flag Branch (DFB) (A7.01

If a bit in the mask field is set and its associated

masked data flag bit is set, the associated bit in

the product field becomes a one. Bit 51 in the free

flag field also becomes a one since It is the dynamic

inclusive OR of bits 4 through j5 of the product

field.

If bit 5± is a one from above and If bit 52 is also

set (this is the DFB enable bit), an automatic DFB

occurs. The DFB takes place sometime following the

termination of the instruction which caused the DFB

condition to exist. The execution of the DFB sets

the bit address of the next instruction into the

right-most 48 bits of register 01 and a branch is

made to the bit address contained in the right-most

48 bits of register 92. The DFB enable bit in the

flag mask register (bit 52) is automatically cleared

at this time. The left-most 16 bits of register 01

are cleared to zero by a DFB.

Programmer Note:

DFB's are disabled when bit 52 is cleared. But if

bit 52 is reset before eliminating all the DFB

conditions, another DFB will occur which will change

the return address in register 0$ and the machine may

wind up in a "tight loop" If proper caution is not

taken. Sampling bit 51 for a zero before setting bit

52 will prevent this situation for all.cases except

those involving the job interval timer. When using

the job interval timer, it should be remembered that

the setting of bit 36 in the DFR occurs

asynchronously with respect to Instruction execution

once the job interval timer is loaded. Thus the time

may set bit 36 after the check of bit 51 and before

the branch to the contents of register O1. One method

of handling this situation is to examine the contents

of register 01 upon entering the routine for handling

data flag branches. If register 0± indicates that the

branch occurred outside the DFB routine, then

register 01 could be copied to a temporary location.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. i0354636
S------I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 6±

REV. A

- --------------------- 0----- -----------------------------
R ADL

3.1.6.3 (Cont.)

If register 01 indicated that the branch had occurred

within the OFB routine, then register 'aj would not be

cooed to the temporary location. At the conc-lusion

of the OFB routine, a branch would always be taken to

the contents of the temporary location.

A simpler method is to combine the setting of bit 52

and the branch to the contents of register O1 into a

single 33 Instruction (3360,3401).

3.1.7 Register File

For register operations, the 8-bit Instruction

designators directly address the 256 registers of

t0

the Register File. During program execution (monitor

or job), these registers reside in the Register File.

When an exchange operation occurs, the registers are

stored into 256 memory locations beginning at bit

10

address zero if in monitor mode and bit address

4000 If In job mode. The registers may not be

16

referenced as memory by their associated monitor or

,ob program. The only exceptions to this rule are

the B7 and BA instructions with G-bit 7 set. (The B7

and BA instructions are illegal in the CDC FMP).

REPRODUCIBILITy OF TB

ORIGINAL PAGE IS POOR

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. ±0354636
I--
I Corporation I S P E C I F I C A T I 0 N

DATE Dec.
PAGE 62
REV. A

1977

-- -------------------- L----
R ADL----------------------------

3.1.7 (Cont.)

Figure j shows a map of the Register File and the

relationship between the register, its storage

address for monitor mode and Its 8-bit designator.

The number on the right represents the bit address

and the number on the left Is the value of the 8-bit

designator for the 64-bit register case. The number

inside the register represents the value of the 8-bit

designator for the 32-bit operand case. Note that any

reference to 32-bit register one is undefined'

,8-bi, Designator Monitor Mode

Bit Addres

Bit

0 31 32 63

I-----------------I-----------------// /6

I-- - - - - - - -- - - I- - - - 16

1 I 2 I 3 IO...00O40

i---------------- I--------------- I 16

2 1 4 2 5 10...0080

-------------------------------I 16

- /

I--------------------------------I

7FI FEI6 I FF16 I0...IFCO

I -- -- -- -- -- - -- -- -- -- - 1 16

801 I0O... 2D00

I------------------------------- I 16

FF I ------------------------------- I

161 I0... 3FCO
...........- 16

Figure i. Register File

(continued)

ICONTROL DATA I E N G I N E E R I N G 	 NO. 10354636

I-	 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N 	 PAGE 63

REV. A

- ---------------------- RA0L-----------------------------

3.1.7 (Cont.)

Recister RileRestrictions

A. 	Register Zero (Job or Monitor Mode)

I. 	 During an exchange operation the contents

of the trace register and the appropriate

memory location for register zero are

exchanged (swapped).

Monitor to Job:

IBefore I After I

lExchangel Exchange)

I--------- I

lAbsolute Address Zero I A I C I

I----------------------------	 ---------

ITrace Register 	 I C I A I

Job 	to Monitor:

IBefore I After I

IExchangel Exchange'

--------------------------------------- I---------
lAbsolute Address Zero I A I A I

I---------------------------- I-------- I--------- I

ITrace Register I C I A I

(continued)

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I O'N PAGE 64

REV. A

----------------------	RADL ------------------------------

3.1.7 (Cont.)

During a 7D (Swap) Instruct ion Involving register
zero as Dart of the register field, note a

required peculiarity. Although the current

contents of the trace register are sent to

the 	appropriate memory location for register

zero, the current contents of the trace register

are 	not altered.

IContents IContents I

IBefore 70 !After 70 1

---------------------------------- ----------------------I

Ilemory location for I I
Iregister zero I' A I B
S.-------------------------- I-----------------------

ITrace register I 8 1 B I

2. 	 Register zero when referenced by.a designator

will provide machine zero as an operand

exceot when used as a source register for

a base address or other description for a

stream instruction, in which case register

zero will appear to contain 64-zero bits. The

use of a zero address may cause the

instruction to be treated as an illegal

instruction as defined in Section 3.1.10. The

use of a zero field length may cause the

instruction to become undefined such as the

3B instruction. If register zero is specified

as the destination register, the instruction

typically performs normally with data flags

being set, if warranted, but no data is

stored. Some instructions become undefined if

register zero is specified as a destination

register.

The 	following tables are intended to define what

operand is obtained when register zero is

specified for a source operand. To simplify

this chart, specifying of register zero as a

(continued) 	 REPRODUCIBTITY OF THE
ORIGINAL PAGE IS POOR

------------------- ---------

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 65

REV. A

~--------------------- ADL L------

3.j.7 	 (Cont.)

destination register has been ignored. A blank

in the chart indicates where it is either not

possible to specify register zero or it may only

be soecified as a destination register. The

designators R, S, T, G, X, A, Y, B, Z and C are

used for convenience although they do not aoply

to all instructions. Utilization of the following

symbols Is made.

Result When Register Zero is Referenced

Sfor &n Operand

M Machine zero is provided.

8000 0000 0000 0000 64-bit mode

16

8000 0000 32-bit mode

16

A All zero Is orovided.

Z 	 All zero in the used portion.

In this instance the left-most bit

is not used thus machine zero and

all zeros are indistinguishable.

N 	 Instruction performs as a no op.

C 	 No control vector is used.

0 	 A mask of all ones is provided.

(continued)

------------------------------- ------------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

- DATE Dec. ±977
------------- I
I Corporation I S P E C I F I C A T IO N PAGE 66
......... -
 REV. A

S-- L .-----------------------------
R-A

3.1.7 (Cont.)

Instruct ion Instruct ion
Op
Code

Designator
R S T

Do
Code

Designator
R S T

II
*I
IIII
I

*-----

I I
I I

I I

I

I----
I

:
-- I

I

I-----

I 1
I

I I
I

1
I1

I
--- I---

1 04 1 Z I I' 1 I I

I I I I I I
1 09 I I I 1 2 I I 1I

---------------------- I----------------------- I
1091 I I 1 I I I
IA 7 I 0 I I I

i I I 2E I M I 2 I

II I 101 M I I
I I I 1 2 1 H I z I

I------------------------2 -----------------------1DE Z I Z 12E M I z I
I I I , I 2FI 1 2 Z I

101 I I I 1301 H1 I I
-2± - 7Z- - -1 I 3 1 - I 2 I 7 I

12 Z I Z I 1 Z I321
I Z 1 3I Z I I I I

I I I I 13 N 121
I I37 1 I I

I II38 1 M I I 7

I I \I I 3A I Z I I I
I I 1 13Z8 I I

I ----------------------

I 1 I I 3C I Z I Z I I
I I I I Z I Z I I
I I I I 3 I 2 I
I I 1 I Z22 2 I

(continued) REPRODUCIBILITY OF. TO

ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 67

REV. A

--------------------------- R A 0 L- ----------------------------

3.1.7 (Cont.)

Instruction. Instruction

Op Designators Op Designators

Code R S T Code R S T

140 1 M I M I. 160 H I H I
141 1 HMI 161 H I H 1
142 2 M I H 2 2 162 1 H I M I
I I 1 1631 H 3 Z I
I--!---....I----I---- I---I -I----

2443 H I M *1 164 1 MI M
145 1 M I H 3 I 165 M I H 1
146 1 M I M 1661 I 1 I
I I 1 2 167 1 M I Z 1 I

- -- - - --------..I - -- ..- I1---- -- --.- --.-.- --
248 1 M H I 1 168 2 H I H I
1491 I M 1 1691M IM
I I I I 1 1 1
14B I M I H I I 16B I M I H I

I---I------...... I---- ----.....-

34C02 I M 1 H M I IsCI MI
1402t 1 3 22 601I MI 2
14D I I I I 6D M 1 Z I I
14E I Z III 16E If M 1 Z

14F I I H I 1 16F I HIM I I
I-----------II1---I----I-----.---
---------..I------.. ----- 2 I---I----------...-

150 1 M I 1 270 1 M I 1
1511 M I 1171 1 I 1 1
1522 I 1 172 1 MI 1
153 1 M I 1 173 1 M I I

------- 2--------.------- 2---I----------..--

154 M I Z 1 1 174 1 M I 2Z
155 M I M 1 275 MI Z 1
156 Z 2I Z I 1 761 I I
I I I 1 I 1772 H I I I

-------.. I---------- I---I----------.----

158 1 MI I 178 1 MHI
159 2 MI 1 179 1 MI
15A I M I I 17A1 M I I
15B I Z I Z I 2 7B Z I Z 2 I

15-------I .I I I ..I... M.. --

350 1 M I 1 1 270 1 A I I A I
5E I 2 Z I I 7E 1 Z Z
15F I Z 2 Z I m I 17F I Z I Z I m I

*See, Section 3.1,7.tA.

(cont inued) REPRODUCIBIITY OF THEORIGINAL PAGE IS POOR

http:3.1,7.tA

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i-------------- DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 68

REV. A

RADL

3.1.7 (Cont.)

Instruction Instruction
Op Designators Op Oe-si-gnators
Code G X A Y B Z C Code GX A Y B Z C

I II 2 32I I 2 I 2 1 I 2 I I I 2 I I

III I 1 I2 I1 I III 2 2 I I

I I I I II I 2I I 2

2I II2I 2 2 I 1 2 2 I I I I
I I2 I

2------------------------t 2-----------------------

tI :I i2 0
II : e 1 I I I

S . 2 I2 I II 22 I2 I I 2 I I

2------------------------I--- -----------------------

I III I il I ZI MI zI I ZI I
I .I I I I I 2 I I I I II I

I I I I I I I 2IIMI I I I

i I I I I I I I I 1 IZ IM IZ IZ I I

-------- ------------------2 2-------------------------I

I I I I I I I I IB I I I I I I

I I I I I I I I I I I I I I I I I

I I I I I I I I B1 IZI IZ IZ IZI I

--------------------------- I I--------------------------I2 I I I I 2 III I I I IMIZIZ IZI I

I I I I I I I I I28 I IZ IM IZ IZ IZ II I I I I I I I I I zI IZ IM IZ I IZ I
-------------------------I I-------------------------II I I I I I II I I I I I I I I

I 1 2 I I 2 I I I I I I I 2 I I

* I IIII III

I I I I I I2 2 1I I I I I I2 I I2

I-------------------------- I--------------------------

I-----------------I I----------------

19E1 II I I 1 -1I I I 2 I I 1

ISFI I I2I III 2 2 2 I I I I

(continued)

R foUdxPAEy op TU"TNaINAL PAGE IS,pooR?

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I ------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T 1 0 N PAGE 69

REV. A

----------------------------- RADL ----------------------------

3.1.7 (Cont.)

Instruction Instruction

Op Oesignators Op Designators

Code G X A Y B Z C Code G X A Y B Z C

2 I I I 1 I I I I 1I II 2 2 I
II I 2 II 1 1 2 2 2 2 I I II I

I I I I I I I I I2 I 1 I I I I I I 2

I I I I I I I I I 2 I I

I Eo I I I I I I I I I I I I I I
I I I I. I I 2 I I I I I I

I I I I I 2 I I I I I I I I I I I

IZ-- -- - -- - -- - -- - -- - -ll - - - - - lI- -I- 1
I f I I I I I I II I j I I I I

I-------------------------- I-------------------------- I
~~ :~ I I I 1 I221 2 1 I I fi

~c2,I I 1 I I I 2 2 i I I i I 2 1 1 1

I I I I I I I I I I I I

I ZII II I f I I I I
I------------------------- I--------------------------

I I I I I I I 2 2 I I I 2 I I I 2

I I I I 2 I I I I I I 1 I I I II
I-------------------------I I--------------------------I
I I II I2ntI II I I I

I I I I 2 I 1 2 I I II2 I 1 I I

I 2 I 1 2 I I I II I I I I I I 1 1

I I 1 I I I I I I I I I I I
I-------------------------- I--------------------------

I I I 2 I I I I I I I I2 2 I I I I

I I I I I I I I I I I I 2 I I I

I Il l l llIlI I I I I I I I

II I I anI n IuIIdI I

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S--- DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 70
PEV. A

--------------------- R A D L--:--------------------------

3.1.7 (Cont.)

B-	 64-bit registers one and two (32-bit registers 2

through 5)

If data flag branches are being used, 64-bit

registers one and two must be reserved

exclusively for that use. Register one is the

da-ta flag branch exit address and 	register

two 	holds the data flag branch entry address.

C. 	 Monitor's 64-bit registers a-F (32-bit registers

16

0-IF

16

Registers zero, one and two have the restrictions

listed in A and B above. Registers 3 through 7

are used for the illegal instruction, exit force,

and external interrupt entry points.

0. 	 32-bit register one (right-most half of 64-bi't

register 0)

Any 	reference to 32-bit register one is undefined.

REPRODUCIILITY OF T

ORIGINAL PAGE IS POOR

!CONTROL OATA 1 E N G I 9 E E R I N G NO. 10354636

I ------ I DTE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N -PAGE 71

PEV.
A

-- ---------------------- RADL-----------------------------

3.1.8 Real-Time Counters

3.1.8.1 Free Running Clock

This clock consists of a free-running 47-bit counter

and a positive sign bit for a total of 43 bits. It

can be stored into register T using a "Transmit Real-

Time Clock to T" (39) instruction. This counter

increments at a one MHz rate.

3.1.8.2 Monitor Interval Timer

The monitor interval timer is a 24-bit timer that

decrements at a one MHz rate.

This timer can be loaded from register R using the

"Transmit (R) to Monitor Interval Timer" (OA)

instruction, when the computer is in monitor mode.

The timer can be activated by loading it with

anything but all zeros. Once it is activated,

it will decrement until it reaches zero or is

deactivated. When the timer is decremented to zero,

it will cause an external interrupt on channel 16

which must be processed like any other external

interrupt.

The timer is deactivated by the following methods:

1. Master clear

2. Loading with all zeros

3. Decremented to all zeros (when it is decremented

to all zeros and caused an external interruot,

it will be Inactive until loaaed with some value

other than zero).

orF1V

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

-------------- I DATE Dec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE 72

--- REV. A

----------------------R A D L-----------------------------

3.1.8.3 Job Interval Timer

The job interval timer is a 24-bit counter

decrementing-ae- -a-one ,MHz--rate.

This clock can be loaded (in lob mode) only from

register R using a 3A (Transmit R to Job Interval

Timer) Instruction. Once loaded, the timer continues

to decrement until either an exchange to monitor

mode occurs, the timer decrements to zero, or the

timer is loaded with a value of zero, If an exchange

to monitor mode occurs, the decrementing of the job

interval timer is stopped and the current contents

of the timer are stored in the invisible package.

When the execution of that job is resumed, the job

interval timer is loaded from the invisible package

and resumes decrementing.

When the timer decrements to zero, bit 36 of the

data flag branch register will be set. Thus, if

the corresponding mask bit is set, a data flag

branch would then occur during the next RNI.

The timer may be deactivated by loading it with a

value of zero. This does not cause bit 36 of the

data flag branch register to be set. Master clear

will also deactivate the lob interval timer.

The timer is deactivated by the following methods:

j. Master clear

2. Loading with a value of zero

3. Decrementing to zero

The contents of the Job interval timer may be

samoled by use of the 37 instruction (Transmit

Job Interval Timer to T). This does not

deactivate the counter.

3.1.9 N/A

RBEPRODUCIBILITY-OF TIE

ORIGINAL PAGE IS PdOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
----- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 73
REV. A

-------------------- RADL L-------- ----------------------------

3.1.10 Exchange Operations and Invisible Package [A6.01

The purpose of the exchange is to change the prime

role of the CPU from monitor mode to]db mode or

from job mode to monitor mode.

The exchange operation from monitor to a job is

always accomplished with an exit force Instruction.

This causes the contents of the invisible package to

be loaded into the appropriate registers; the mode to

be changed from monitor to job enabling interruots;

and execution to begin as specified by the invisible

package. Note that this may be the restarting of a

previously interrupted program.

The Exit Force instruction and the channel interrupt

are the two normal ways of getting from a job in job

mode to the monitor Program in monitor mode.

Attempting to execute a monitor-type instruction in

job mode or by attempting to execute an undefined

op-code comprise the third way into- the monitor.

Except for the starting point in the monitor program,

the operation performed in getting to the monitor are

identical for the three. Sufficient information to

restart this job is stored into the invisible package

and the mode is changed from lob to monitor. The

monitor program is executed starting at the absolute

address contained in the right-most 48 bits of the

monitoros register 3, 5, or 6.

(continued)

ICONTROL DATA I E N G I N E E R I N G 	 NO. 10354636

I-------------- I 	 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N 	 PAGE 74

REV. A

-------------------- R A D L ----------------------------

3.1.10 (Cont.)

Monitor register, the
Method of getting con-tents of- wh-ich Is
to the Monitor used to set P.

j. 	Attempt to perform an Register 3

illegal instruction or a

monitor-type Instruction

in Job mode

2. 	 Attempt to perform an Register 4

illegal Instruction in

monitor mode

3. 	 Exit force Register 5

4. 	 External interrupt Register 6

The 	right-most ten -bits of the absolute starting

address of the invisible package must be zeros.

The monitor must set uo an invisible package for

each job. There is NO invisible Package for the

monitor program itself.

To start a job Initially, the monitor must clear

the entire invisible package area except for the

proqram address areas.

For a more detailed description of t'he exchange

operation, see the apolicable computer specification

as listed in Section 2.0.

(continued)

-- - - - - - - -- - - - - - - -- - - - - - - -

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 75

REV. A

- --------------------- A0L-----------------------------
U----

3.1-i0 (Cont.)

Absolute

INVISIBLE PACKAGE Word Address

I///////// Proaram Address IXXX---X0

-- - - - - I--- -- - -- - - --- -- - -- -- - -- -- I

//////////I Breakpoint IXXX---X1

I --- I

i I IXXX---X2

I - - - - - -I- - - - - - - - - - - - - - - - --I

---------- I--------------------------------------

III/I//////I Data Flag Register IXXX---X4

I- - - - - -I- - - - - - - - - - - - - - - - --I

----------- I ----------------------------------
I/I/ll/I/llil //////I////////////////I ////////IXXX---X6

------- I--------------------------------------

I/l--- ll- llll- III-- I-I-- I-- III/--I--I--I--I-I---X----

IASCII Mode Bit (Clear bit for ASCII Mode -

V Set bit for EBCDIC Mode)

I////////I I////////////////IJob Interval TimerlXXX---X8

I---

t--I

Current Instruction IXXX---XA

--- I

I--

I--

--------- ---- --- ----- -- ------- -- --------- -- --- - X ---X

IXXX---XE

IIIIIIIIIIIIIII//I/IIIIIIIIIIIIIIIIIIXX---XF

The comouter returns the information in the

non-crosshatched areas except as noted in ADoendix A6.0.

For specific detail in the cross-hatched areas see the

applicable machine specification as listed in Section 2.0.

3.2

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i-------------
! Corporation
....-

I
I S P E C I F I C A T I 0 N

DATE Dec.
PAGE 76
REV. A

1977

-------------------- R A D L-----------------------------

Performance Characteristics

3.2.1 Instruction Descriptions

The instruction titles (3.2.1.1 - 3.2.1.256) are

written in the following format:

3.2 .. XXX AA B CC DO NAME OF INSTRUCTION [AX]

where AA = the function code (00-FF

16

B = the format types, i-E

CC = the number of bits in the operand

I single bit

32 half-words

64 words

E either 32 or 64-bit

B both 32 and 64-bit

NA operand size not applicable

DO = the instruction type

- Blank Undefined
BR Branch
IN Index
MN Monitor
NT Non-Typical
RG Register
SM Stream

lAX] = 	 The section in the Appendix which gives
further informat-ion.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

i------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 77

REV.
A

--------------------- RRA0L L--------

3.2.1.1 00 4 NA MN 	 IDLE

When in monitor mode, enable the external interrupts

and idle until an external interrupt occurs. The R,

S and T designators are undefined and must be set to

zero. r

3.2-1,2 Ot 4 64 NT 	 TRANSMIT (R) TO BACKING STORE MAP

REGISTER AND CURRENT BACKING STORE

MAP REGISTER TO (T); SET AND CLEAR

BUSY FLAGS PER (S)

The Backing Store contains 8192 blocks, each of

32,768 64-bit words. All or any portion of this

Backing Store can be assigned to the user presently

residing in the CPU by setting the Block Base
Address (BBA) and Block Field Length (BFL) in the
backing store map register. When in job mode, all
backing store addresses sent to the Swao Unit have
the BBA added to their values to form an absolute
backing store address. All monitor mode and I/O
references are made as absolute references without

the addition of the BBA.

The BSA is contained in bits 48 through 63 of

register R, while the BFL is contained in bits 32

through 47 of register R. RegisterT at the

completion of this insruction contains the current

values of BBA'and BFL transmitted from the backing

store man register in bits 32 through 63, while the

uoer bits (0 through 31) contain the block number

and number of contiguous blocks that have been set

busy in the Backing Store (as a result of an I/O
operation, SWAP operation or monitor mode force busy
operation). Bits 0 through 15 contain the number of
contiguous blocks while bits 16 through 31 contain
the block number of the first block found busy in the
Backing Store, beginning at the block number found in
bits ±6 through 31 of register R.

If 	the contents of bits a through 15 or bits 32

through 47 of register S are non-zero the
instruction also force-sets or force-clears groups

of block busy flags in the 	 Backing Store as follows:

o 	 Bits 0-15 = number of blocks to be forced busy in
the Backing Store,

o 	 Bits-16-31 = block number of first block of group

to 	be set busy

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 78

REV. A

- ------------------- RADL

3.2.1.2 (Cont.)

o 	Bits 32-47 = number of blocks to be forced not

busy in the Backing Store

o 	Bits 48-63 = block number of first block of qroup

to be forced not busy

If a force busy and force not busy is attempted on

the same block, or blocks, the result is undefined.

Note that the busy flags for each block can be set

or cleared by the I/O channel and monitor by

software, and by the Swap Unit during BSWAP

transfers. If a BSWAP operation from job mode

specifies a busy block, the BSWAP operation

terminates, setting data flag 96.

The full execution of this 	instruction as described

is 	possible only when it is executed In monitor mode.

If 	the instruction is executed in job mode, only

the block busy information 	is transferred to bits 0

through 31 of register T with bits 16 through 31 of

register R specifying the beginning,block number in

finding the first busy block.

3.2.1.3 	 02 4 64 MN TRANSMIT (R) TO CHANNEL (S) AND

CHANNEL (S) TO (T)

Register S contains the number of an I/O channel.

The contents of 64-bit register R are transmitted to

the specified I/O channel (between 0 and 15), at the

same time the specified I/O channel transmits a

64-bit ouantity to be stored in register T. The

data being exchanged consists of control information

passed between the monitor 	mode program and the I/O

channel intelligent processor (POC). The meaning of

any combination of bits in 	these exchanged control

words is solely defined by 	the software protocols

established for the monitor and the PDC.

3.2.1.4 03 ILLEGAL

3.2.1.5 04 4 64 NT 	 BREAKPOINT-MAINTENANCE

The breakpoint instruction 	transfers R to the

breakpoint register. The breakpoint register is

used as a maintenance and program debugging aid.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i ----- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 79

REV. A

--- ---------------------- RADL-----------------------------

3.2.1.5 (Cont.)

Note: 	 Breakpoint will not be sensed on any scalar

memory references in the CDC FMP.

I 	 [Usage I 1

I-	 IBits I Breakpoint Address I

0 8 9 t5 16 	 58 59 63

Bits 0-8 and 59-63 are not used.

The breakpoint address is compared with various

addresses such as the current instruction address,

READ I and READ 2 operand addresses, etc. If the

breakpoint address matches one of these addresses

and the proper usage bit is set, bit 47 of the data

flao branch register is set indicating a breakpoint.

Any 	combination of usage oit is permissible;

therefore the breakpoint address can b'e checked
against any or all of the addresses listed below.
The breakpoint register is part of the invisible
package of a lob.

Breakpoint Usage Bits

Bits 9-15 are breakpoint usage bits where if:

a. 	 Bit 9 is set, breakpoint on half-word contents

of the Program address register (P) lust after

the execution of the instruction at that

location.

b. 	Bit jo is set, breakpoint on the READ I operand

address for stream, or the read operand on

random addressing instructions.

c. 	Bit it is set, breakpoint on the READ 2 operand

address for a stream instruction.

d. 	 Bit 12 is set, breakpoint on the WRITE 1 address

for a stream instruction or the write operand on

a random addressing instruction.

e. 	 Bit 13 is set, breakpoint on the READ 3 control

vector or operand address (mask) for a stream

instruction.

f. 	Bit 14 is set, breakpoint on the READ i order

vector address.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I 	 DATE Dec. :977

I Corporation I S P E C I F I C A T I 0 N PAGE 80

.....-
 REV. A

...--------------------
RADL-----------------------------

3.2.1.5 (Cont.)

g. 	 Bit j5 Is set, breakpoint on the READ 2 order

vector address.

Breakpoint Compares

1. 	 When in Job mode, addresses are compared with

breakpoint.

2. 	When in monitor mode, absolute addresses are

compared with breakpoint. Since the monitor

Program does not have an invisible Package, the

breakpoint register must be set up each time the

monitor program is entered. The breakpoint

register is automatically cleared to zero during

the exchange to the monitor.

3. 	Program address compares are made on half-word

boundaries, and all other compares are made on

sword b6undaries.

Data flag* bit 47

3.2.1.6 .05 ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354,636
I- ------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 81

REV. A

RA0L
-------------------- RO-------- ----------------------------

3.2.1-7 06 7 NA MN FAULT TEST - MAINTENANCE (AIj.Q]

This instruction 	is used to complement checkword

bits on the scalar write bus in order that the read

SECOED circuitry 	may be checked out. It can also

be used to disable the error correction circuitry on

all read buses. 	 This allows data to be passed

through the SECDED hardware without any correction

taking place.

This instruction 	is always enabled during monitor

mode. In lob mode it becomes a no op unless bit 13

of word 8 in the 	Job's invisible package is set.

The modes are set up by executing this instruction

with a "j'" in the appropriate R designator bit and

are cleared by 	executing the instruction with a

"0" in the same bit location.

The R designator 	bits are defined below:

R DESIGNATOR BIT

8 	 Disable error correction on all

Read buses.

9-15 	 Checkword bits to be

complemented.

Programmer Note: These bits must be set to zero

before any mon-itor to lob exchange operation. If

these bits are not set to zero via an 06 instruction,

the connection network could produce invalid data on

the read and invalid data could be written into

memory.

The S and T designators are undefined.

A description of 	each of these faults can be found

in specification 	10354637,- CCC FMP Functional

Computer Specification.

SECOED FAULTS

The test is initiated by executine an 06 instruction

with bits 9 through J5 selected of the P designator

to complement the respective checkword bits of

hajf-w.ords 0," 1, 	2, and 3 on the write scalar bus to

Main Memory. By 	appropriate selection of data

pits and complementation of checkword bits when

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 82

REV. A

-- ---------------------- RADL-----------------------------

3.2.1.7 (Cont.)

writing in memory, one should be able to generate

SECDED faults on all read buses. This should allow

complete checking of the read SECDED hardware and

also the fault recording hardware for type and

address of the fault.

The forced complementing of the checkword bits is

discontinued by executing an 06 instruction with

pits 9 through 15 of the COC FMP.

This description explains the way the 06 instruction

is executed on the CDC FMP.

3.2.1.8 07 ILLEGAL

3.2.1.9 08 4 NA MN INPUT/OUTPUT PER R

When in monitor mode: Activate the channel flag,

designated by the R designator and exit to the next

sequential instruction. If the R designator

specifies a non-existent channel, the operation

of this instruction is undefined..

The S and T designators are undefined and must be

set to zero.

3.2.1.10 09 4 64 BR EXIT FORCE

From a Job to the monitor: Exchange to the monitor

program. A hardware branch is then taken to the

address defined by the right-most 48 bits of the

monitors register S. For this case, the R, S and T

designators are undefined and must be set to zero.

From the monitor to a Job: Exchange to the job

whose invisible package is located starting at the

absolute bit address contained in register T. For

this case, the R designator is undefined and must be

set to zero. If either the S designator or the

contents of register S are equal to zero, the job's

register file and the monitor's register file are

identical.

http:3.2.1.10

- --------------------- -----------------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. i977
I Corporation I S P E C I F I C A T I 0 N PAGE 83

REV. A

A0L L-----

3-2-..11 	 oA 4 64 MN TRANSMIT (R) TO MONITOR INTERVAL

TIMER

When in mor*itor mode, transmit b.its 40 through 63 of

64-bit register R to the monitor interval timer

(see Section 3.1.8). The left-most 40 bits of

register R are ignored. The S and T designators are

undefined and must be set to zero.

3.2.1.12 	 08 ILLEGAL

3.2..13 	 0C ILLEGAL

3.2..14 OD 	 ILLEGAL

http:3.2.1.12

ICONTROL DATA I E N G I N E E R I N G 	 NO. 10354636

i ---------- I 	 DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N 	 PAGE 84

REV. A

--------------------- R A D L-----------------------------

3.2.1.15 OE 4 64 MN TRANSLATE EXTERNAL INTERRUPT (A9.O)

Each bit in the external interrupt register (EIR is

associated with an external I/O channel, or the

monitor interval timer.

External Interrupt Register Bit Assignment

0 I/O Channel a
i A i
2 2
3 3
4 4
5 5
6 6
7 	 7
8 	 1 8

9 	 t 9
illO 	 10

il-	 i

12 	 12

13 	 13
14 v 14
15 I/0 Channel 15
16 Monitor Interval

Timer

Translate the lowest numbered bit set in the EIR

into Its associated four-bit code and transmit this

code to the right-most four bits of register T. The

left-most 60 bits of register T are cleared to zero.

Examine the EIR and if only one bit is set, the

branch condition is met. The branch, if taken, is

to (S) + (R) where (S) is an index in half-words and

(R) is the base address.

The exit, be it a branch or not, clears the bit (and

only that bit) in the EIR corresponding to the

channel designator which was transmitted to

register T.

If the T and S designators are equal, the

interrupting channel designator will also be

the branch index.

Bit zero of the EIR will never: be set as it is

reserved for maintenance purposes.

If no bit in the EIR is set, this instruction sets

T to all zeros and no branch is taken.

http:3.2.1.15

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 85

REV. A

- --------------------- L----
AADL----------------------------

3.2.1.16 oF ILLEGAL

3.2.1.17 10 A 64 RG CONVERT BCD TO BINARY, FIXED LENGTH

Convert the oacked BCO number in register R to a

signed (two's complement) binary number and place

the result into the right-most 48 bits of register

T. The conversion is undefined for binary results

47 47

greater than 2 -1 or less than (2 -J); thus the

largest decimal number that may be converted is

±140,737,488,355,327. The ASCII/EBCOIC sign code

for the BCD number is in bits 60-63 of register R.

Data flag bit 39 will be set for numbers outside

this range.

If the input number is not a valid BCD number, the

results are undefined. Bits 0-15 of register T iill

be cleared to zero.

3.2.1.18 1i A 64 RG CONVERT BINARY TO BCD, FIXED LENGTH

Convert the right-most 48 bits (twoss complement

binary number) of register R to a packed BCD number

and place the result in register T. The result is

a number having 15 digits (4 bits per digit plus the

sign in th lower bits - bits 60-63). The binary

47

range is ± (2 -1). During job mode, the sign bits

generated are conditioned by the ASCII/ESCDIC bit

in the job's invisible oackage. During monitor mode,

only ASCII codes will be generated.

3.2.1.19 12 7 64 NT LOAD BYTE; T) PER (S), (R)

3.2.1.20 13 7 64 NT STORE BYTE; CT) PER (S), (R)

Load/store a byte from/into the address specified by

(R) + (S), where (R) is the base address and (S) is

an item count of bytes, info/from bits 56 through 63

of register T. The remaining bits of T are cleared

on a load and ignored on a store.

3.2.1.21 14 ILLEGAL

3.2.1.22 15 ILLEGAL

http:3.2.1.22
http:3.2.1.21
http:3.2.1.20
http:3.2.1.19
http:3.2.1.18
http:3.2.1.17
http:3.2.1.16

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
----- I DATE Dec. 1977

I Corporation I S.P E C I F I C A T I 0 N PAGE 86
REV. A

--------------------- R A D 	L

3.2.1.23 16 ILLEGAL

3.2.1.24 17 ILLEGAL

3.2.1.25 18 ILLEGAL

3.2.1.26 19 ILLEGAL

3.2.1.27 jA ILLEGAL

3.2.1.28 IB ILLEGAL

3.2.1.29 IC ILLEGAL

3.2.1.30 1D ILLEGAL

3.2.1.31 JE ILLEGAL

3.2.1.32 IF ILLEGAL

3.2.1.33 	 20 7 64 RG SHIFT (R) AND (R+i) PER S TO T) AND

(T+I)

This instruction shifts the 128-bit operand formed by

-catenating the contents of register R and register

R+I (bit 0 of register R+1 follows bit 6-3 of register

R) and stores the results into the register

designated by T and the next sequential register

(T+I). The S designator specifies the type and

amount of shift. If the S designator is in the

rance from 0 through 7F (0 through 127 1, the

16 10
128-bit operand is shifted left end-around the
specified number of places. If the S designator is
in the range from FF through 81 (-1 through -127),

16 10

the 128-bit operand is shifted right with sign

extension. For this case, bit zero of the operand

(continued)

http:3.2.1.33
http:3.2.1.32
http:3.2.1.31
http:3.2.1.30
http:3.2.1.29
http:3.2.1.28
http:3.2.1.27
http:3.2.1.26
http:3.2.1.25
http:3.2.1.24
http:3.2.1.23

[CONTROL DATA I E N G I N E E R I N G NO. 10354636
! ------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 87

REV. A

----------------------- R A D L------------------------------

3.2.1.33 (Cont.)

from register R is considered to be the sign bit of

the shifted operand. The number of right shifts is

equal to the two's comolement of the S designator.

If for examole, S is equal to FE , the operand

16
shifts right two places. If the S designator is
greater that 7F or less than 81 , the results

16 16
of this instruction are undefined. The R designator

must specify an even register number. If the R

designator is equal to zero, register zero will

provide -machine zero. This instruction does not

test for machine zero or indefinite or set any data

flags.

3.2.1.34 21 7 64 RG SHIFT (R) AND (R+±) PER (S) TO (T)

AND (T+i)

This instruction shifts the 128-bit operand formed by

catenating the contents of register R and register

R+i (bit 0 of register R+U follows bit 63 of register

R) and stores the results into the register

designated by T and the next sequential register

(T+1). The contents of the register designated by S

determine the type and amount of shift. If the

right-most byte of register S is in the range from 0

through 7F (0 through 127), the 128-bit

16 ±0
ooerand is shifted left end-around the specified
number of places. If the right-most byte of
register S is in the range from FF through 8±

16 16
(-I through -127), the 128-bit operand is shifted

±0
right with sign extension. For this case, bit zero

of the operand from register R is considered to be

the sign bit of the shifted operand. The number of

right shifts is equal to the two's complement of the

right-most byte of register S. If the right-most

byte of register S is greater than 7F or less

i6

than 81 the results of this instruction are

16

undefined. The left-most seven bytes of register S

are ignored.

The R designator must specify an even register

number. If the R designator is equal to zero,

register zero will provide machine zero. This

instruction does not cause a test for machine zero or

indefinite or set any data flags.

http:3.2.1.34
http:3.2.1.33

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 88

REV. A

--------------------- R A D L

3-2.1.35 22 ILLEGAL

3.2.1.36 23 ILLEGAL

3.2.1.37 24 ILLEGAL

3.2.1.38 25 ILLEGAL M-RODU[BILCT OF THW

3.2.1.39 26 ILLEGAL fRIGINAL PAGE I POOR,

3.2.1.40 27 ILLEGAL

3.2.1.41 28 ILLEGAL

3.2.1.42 29 ILLEGAL

3.2.1.43 2A ILLEGAL

3.2.1.44 28 4 64 RG ADD TO LENGTH FIELD

Add bits 00 through 15 of register R to bits 48

through 63 of S and store the result in bits 00

through 15 of register T. Bits 16 through 63 of

register R are transferred to bits 16 through 63 of

register T.

3.2.1.45 2C 4 64 RG LOGICAL EXCLUSIVE OR (R),(S), TO (T)
3.2.1.46 2D 4 64 RG LOGICAL AND (R),(S), TO (T)
3.2.1.47 2E 4 64 RG LOGICAL INCLUSIVE OR.(R),(S), TO-(T)

These in aructions perform the indicated logical

functions listed below. The function occurs bit by

bit on the 64-bit operands contained in the registers

designated by R and S. The result in each case is

stored in the register designated by T.

EXCLUSIVE OR AND INCLUSIVE OR

o 0 0 0 0

00 ± 0 1

10 1 0 1

ii 0 1 i

If'the R or S designators equal zero, register zero

will contain machine zero.

http:3.2.1.44
http:3.2.1.43
http:3.2.1.42
http:3.2.1.41
http:3.2.1.40
http:3.2.1.39
http:3.2.1.38
http:3.2.1.37
http:3.2.1.36
http:3-2.1.35

ICONTROL DATA I E N G I N E E R I N G NO. 0354635

------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 89
REV. A

---------------------- R A 0 L------------------------------

3.2.1.48 2F 9 J BR REGISTER BIT BRANCH AND ALTER

As
This instruction examines bit 63 of register T.

specified by the G designator a branch is made to

the address contained in the right-most 48 bits of

register S. The branch is made according to G bits

0 and I as follows:

GO G$

0 0 do not branch
a ± branch unconditionally
1 0 branch if the object bit was a one

± ± branch if the object bit was a zero

After the branch decision has been made and

the object bit
regardless of what that decision was,

is altered according to G bits 2 and 3 as follows:

G2 G3

0 0 do not alter the object bit
0 ~toggle the object bit to the other

state
0 set the object bit to a one

± clear the object bit to a zero-

RFJPU~C~h OF, TI-IMf
ALO)A0_is

http:3.2.1.48

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 90

REV. A

------------------------- R AOL--------------------------------

3.2.1.49 30 7 64 RG SHIFT CR) PER S TO (T)

This instruction shifts the 64-bit operand from the

register designated by R and stores the result into

the register designated by T. The S designator

specifies the type and amount of the shift. If the

S designator is in the range from 0 through 3F (0

16

through 63), the operand from register R is shifted

left end-around the specified number of places and

then stored in register T. If the S designator is

in the range from FF through Ci f-i through

±6 16
-63), the operand from register T is shifted

1O
right with sign extension and then stored into

register T. For this case, bit zero of the operand

from register R is considered to be the sign bit of

the shifted operand. The number of right shifts is
equal to the two's complement of the S designator.
If for example, S is equal to FE , the operand

- 16

from register R shifts right two places. If the

S designator is greater than 3F or less than

16
Ci , the results of this instruction are-undefined.

16

If the R designator is equal to zero, register zero

will provide machine zero. This instruction does not

test for machine zero or indefinite or set any data

flags.

3.2.1.50 31 7 64 BR INCREASE(R) AND BRANCH IF(R) <> 0

Increment the contents of the right-most 48 bits of

register R by one. The uoper 16 bits of register R

are not altered and arithmetic overflow is iqnored.

If the result from above is 48 zeros, go to the next

sequential instruction. If the 48-bit result from

above is non-zero, branch to (S) + (T) where (S) is

an item count of half-words and (T) is the base

address. The resulting address for the branch Is

undefined if the R designator is equal to either the

S designator or the T designator.

http:3.2.1.50
http:3.2.1.49

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE 91.

REV. A

----------------------- R A D L------------------------------

3.2.1.51 32 9 ± BR BIT BRANCH AND ALTER

Register S contains the address of the object bit.

This instruction reads up the word containing the

object bit and examines the bit. The branch is then

made according to G bits 0 and j:

GO Gi

0 a do not branch

o i branch unconditionally

I a branch if the object bit was a one

i i branch if the object bit was a zero

After the branch decision has been made and

regardless of what that decision was, the object bit

is altered according to G bits 2 and 3 as follows:

G2 G3

a a do not alter the object bit

O jtoggle the object bit to the other

state

0 set the object bit to a one

± clear the object bit a zero
I 	 to

NOTE: 	If GO and G2 and G3 = 0, do not reference the

object bit at all

If (GO = 1) and (G2 and G3 = 0) read, but do

not write the object bit

G bit 5 = 0 	 Register T contains the branch

address

G bit 5 = ±1 Branch address is formed by
I- adding the T designator, used as

G bit 6 = fJ a half-word item count to the
program address register

G bit 5 = il Branch address is formed by
I- subtracting the T designator,

G bit 6.= 1 used as a half-word item count,
from the program address register

http:3.2.1.51

ICONTROL OATA I E N G I N E E R I N G NO. 10354636
:------------I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 92

REV. A

--- ----------------------- RADL------------------------------

3-2.i.52 33 8 ± BR DATA FLAG REGISTER BIT BRANCH AND ALTER

I Is a six-bit designator specifying an object bit in

the data flag register.

The object bit In the data flag register is examined

and the decision to branch is made according to G

bits 0 and 1.

GO Gi

0 0 do' not branch

0 1 branch unconditionally

i U branch if the object bit was a one

± branch if the object bit was a zero

After the branch decision has been made and

regardless of what that decision was, the object bit

is altered according to G bits 2 and 3 as follows?

G2 G3

o 0 do not alter the object bit
0 1 toggle the object-bit to the other

state

1 0 set the object bit to a one

± i clear the object bit to a zero

Programmer Note: It Is meaningless to try to alter

bits in the product field (bits 0-i5) since the

product field is strictly a function of the

appropriate data flag and flag mask bits.

Since the 33 instruction begins execution without

waiting until the machine has completed al.l

operations, the data flag bits may set on any minor

cycle during execution of the 33 instruction.

Therefore, the object bit is sampled 2 minor cycles

after the 33 instruction is loaded into IRO. This

sampled object bit, rather than the actual object

bit, is used to control the decision to branch, and

the altering of the actual object bit in the data

flag register. Consequently, any data flag bits

that set after the object bit is sampled will not

affect the decision to branch7 Also, If the sampled

object bit is a zero, any dat'a flag bits that set

afterwards will not be cleared nor toggled to a zero.

(continued)

http:3-2.i.52

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S--- DATE Dec. 1977

I Corporation 	I S P E C I F I C A T I 0 N PAGE 93

REV.
A

- ---------------------- L-----
AA0L-----------------------------

3.2.1.52 (Cont.)

G bit 5 = o 	 Register T contains the branch

address.

G bit 5 = E1 Branch address is formed by

I- adding the T designator, used as

G bit 6 = fl an item count, in half-words, to

the program address recister

G bit 5 = it Branch address is formed by

I- subtracting the T designator,

G bit 6 = 11 used as an item count, in

ha-if-words, from the program
address register.

3.2.1.53 34 4 64 RG SHIFT(R) PER (S) TO (T)

This instruction shifts the 64-bit operand from the

register designated by R and stores the result Into

the register designated by T. The register

design-ated by S specifies the type and amount of the

shift. If the right-most byte of register S is in the

the range from 0 through 3F (0 through 63),

16 	 10

the operand from register R is shifted left

end-around the specified number of places and then

stored into register T. If the right-most byte of

register S is in the range from FF through Ci

±6 ±6

(-1 through -63), The operand from register R is

t0

shifted right 	with sign extension and then stored

into register 	T. For this case, bit zero of the

operand from register R is considered to be the sign

bit of the shifted operand. The number of right

shifts is equal to the two's complement of the

right-most byte of register S. If the right-most byte

of register S 	is greater than 3F or less than Cl ,

16 16

the results of this instruction are-undefined.

The left-most seven bytes of register S are ignored.

If the R designator is equal to zero, register zero

will provide machine zero. This instruction does not

cause a test for machine zero or indefinite or set

any data flags.

http:3.2.1.53
http:3.2.1.52

!CONTROL DATA E N G I N E E R I N G NO. 10354,636
S- -DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 94

REV. A

--- ----------------------- RADL------------------------------

3.2.1.54 35 7 64 BR 	 DECREASE (R) AND BRANCH IF (RI <> 0

Decrement the contents of the right-most 48 bits of

register R by one. The upper 16 bits of register R

are not altered and arithmetic overflow is ignored.

If the result from above is 48 zeros, go to, the next

sequential instruction. If the 48-bit result from

above is non-zero, branch to (S) + (T) where CS) is

an item count of half-words and (T) is the base

address. The resulting address for the branch is

undefined if the R designator is equal to either,

the S designator or the T designator.

3.2.1.55 36 7 64 BR 	 BRANCH AND SET(R)TO NEXT INSTRUCTION

After storing the address of the next sequential

instruction into register R, branch to (S) + (T)

where (S) is an item count of half-words and (T) is

the base address. Bits 0 through J5 of register R are

forced to zeros. Bits 59 through 63 of register R are

undefined. If the R designator is equal to the S

designator the results of this instruction are

undefined.

NOTE: If S=0, and R=T, this Instruction sets

register R to the half-word address of the next

instruction and the program continues at the next

instruction. This is a way to sample the program

address register (P).

3.2.1.56 37 A 64 NT 	 TRANSMIT JOB INTERVAL TIMER TO (T)

Transmit the contents of the Job interval timer into

bits 40-63 of register T. Bits 0-39 are cleared to

zero. The R and S designators are undefined and must

be set to zero. This instruction does not deactivate

the time.

When executed in monitor mode, the operation of this

instruction is undefined.

3.2.1.57 	 38 A 64 IN TRANSMIT (R BITS 00-i5) TO (T BITS

00-15)

Replace the left-most 16 bits of register T with the

left-most 16 bits of register R.

http:3.2.1.57
http:3.2.1.56
http:3.2.1.55
http:3.2.1.54

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 95-

REV. A

- ----------------------- R A L------------------------------

3.2.1.58 39 A 64 NT TRANSMIT REAL-TIME CLOCK TO(T)

Transmit the contents of the real-time clock to bits

16 through 63 of register T. Bits 00 through j5 are

cleared. R and S must be zero.

3.2.1.59 3A A 64 NT TRANSMIT(R)TO JOB INTERVAL TIMER

When executed in job mode, this instruction transmits

bits 40 through 63 of 64-bit register R to the Job

interval timer. S and T must be zero. (See Sections

3.1.6.3 and 3.1.8.3).

When executed in monitor mode, this instruction

performs as a no op.

3,2.i.60 3B A 64 BR DATA FLAG REGISTER LOAO/STORE

Transfer the contents of register R to the data flag

register and the original contents of the data flag

register to register T. The S designator is

undefined and must be set to zero. The R and T

designators may be the same and this will swap data

flag packages.

NOTE: An immediate data flag branch results at the

termination of this instruction if the new

contents of the data flag register meet the

appropriate conditions.

3,.2.1.61 3C 4 32 NT HALF-WORD INDEX MULTIPLY(R)4 (S) TO (T)

The right-most 24 bits of registers R and S contain

signed, two's complement integers. Their product is

formed and stored into the right-most 24 bits of

register T. The left-most 8 bits of register T are

cleared to zeros.

If the product or either operand exceeds the value,

23

±(2 -1) the result is undefined.

http:3,.2.1.61
http:3,2.i.60
http:3.2.1.59
http:3.2.1.58

m----m---------

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
-

Corporation
I
I S P E C I F I C A T I 0 N

DATE Dec.
PAGE 96
REV. A

1977

- ---------------------- ADL------------------------------
O----

3.2.1.62 30 4 64 NT INDEX MULTIPLY (R)4 (S) TO (T)

The right-most 48 bits of registers R and S contain

signed, two's complement integers. Their product is

formed and stored into the right-most 48 bits of

register T. The left-most 16 bits of register T are

cleared to zeros.

If the product or either operand exceeds the value,

47

±(2 -1) the result is undefined.

3.2.1.63 3E 6 64 IN ENTER(R) WITH I (16 BITS)

Clear register R and transfer the right-most 16 bits

of this instruction to the right-most 48 bits of

register R (the sign of the 16-bit immediate operand

is extended through bit 16).

3.2.1.64 3F 6 64 IN INCREASE(R) BY I (16 BITS)

Replace the right-most 48 bits of register R by the

sum of those bits and the right-most 16 bits of this

instruction (the sign of the 16-bit immediate operand

is extended through bit 16 for the addition).

Arithmetic overflow is ignored.

3.2.1.65 40 4 32 RG ADD U; (R)+(S) TO (T)

3.2.1.66 41 4 32 RG ADD L (R) (S) TO (T)

3.2.1.67 42 4 32 RG ADD N: CR)+(S) TO (T)

3.2.1.68 43 ILLEGAL

3.2.1.69 44 4 32 RG SUB U; (R)-(S) TO (T)

3.2.1.70 45 4 32 RG SUB L; CR)-(S) TO (T)

3.2.1.71 46 4 32 RG SUB N; (R)-(S) TO (T)

3.2.1.72 47 ILLEGAL

3.2.1,73 48 4 32 RG MPY U; (R)*(SI TO (T)

3.2.1.74 49 4 32 RG MPY L; (R)4 (S) TO (T)

3.2.1.75 4A ILLEGAL

3.2.1.76 4B 4 32 RG MPY S; (R)*CS) TO (T)

3.2.1.77 4C 4 32 RG DIV U; (R)/(S) TO (T)

These instructions perform the Indicated floating
point arithmetic operation on the 32-bit floating
point operands contained in the registers designated

by P and S. The result in each case is stored in the

register designated by T.

(continued)

http:3.2.1.77
http:3.2.1.76
http:3.2.1.75
http:3.2.1.74
http:3.2.1.72
http:3.2.1.71
http:3.2.1.70
http:3.2.1.69
http:3.2.1.68
http:3.2.1.67
http:3.2.1.66
http:3.2.1.65
http:3.2.1.64
http:3.2.1.63
http:3.2.1.62

!CONTROL DATA : E N G I N E E R I N G NO. 10354636
S-----I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 M PAGE 97

REV. A

- ---------------------- L----
R A0L-----------------------------

3.2.1.77 (Cont.)

U signifies that the upper result of the operation is

returned; L signifies the lower result; S signifies

the significant resultl and N signifies the

normalized upper result.

Data flags: bits 41, 42, 43 and 46

3.2.1.78 40 6 32 IN HALF-WORD ENTER R WITH 1(16 BITS)

Clear register R and transfer the right-most j6 bits

of this instruction to the right-most 24 bits of

register R (the sign of the 16-bit immediate operand

is extended through bit 8).

3..2.i.79 4E 6 32 IN HALF-WORD INCREASE R BY I(16 BITS)

Replace the right-most 24 bits of register R by the

sum of those bits and the right-most ±6 bits of this

instruction (the sign of the ±6-bit immediate operand

is extended through bit 8 for the addition).

Arithmetic overflow is ignored.

3.2.1.80 4F 4 32 RG DIV S; (R)/(S) TO T)

This instruction performs a divide significant

operation on the 32-bit floating-point operands

contained in the registers designated by R and S.

The result is stored in the register designated by T.

Data flags: bits 41, 42, 43 and 46

3.2.1.81 50 A 32 RG TRUNCATE; (R) TO (T)

Transmit to destination register T the nearest

integer whose magnitude is less than or equal to the

32-bit floating-point operand in origin register R.

This integer is represented as an unnormalized 32-bit

floating-point number having a positive exponent.

If the exponent of the source operand is positive

(greater than or equal to zero), the operand Is

transmitted directly to the destination register.

(continued)

http:3.2.1.81
http:3.2.1.80
http:3.2.1.78
http:3.2.1.77

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S -DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE

REV.
98
A

- ---------------------- L----
AADL-----------------------------

3.2.1.81 (Cont.)

If the exponent of the source operand Is negative,

the magnitude of the coefficient is shifted right end

off, and the exponent is increased by one for each

bit position shifted until the exponent becomes zero.

Zeros are extended on the left during the shift. If

the coefficient of the source operand is positive,

the shifted coefficient with zero exponent is entered

into the destination register. If the coefficient of

the source ooerand Is negative, the two's complement

of the shifted coefficient with zero exponent is

entered into the destination register.

If machine zero is used as an operand, 32 zeros are

returned as a result.

Data flag: bit 46

3.2.1.82 51 A 32 RG FLOOR; (R) TO (T

Transmit to destination register T the nearest

integer less than or equal to the 32-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 32-bit floating-ooint

number, having a positive exponent.

If- the source operandss exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination register.

If the exponent of the source operand Is negative,

the coefficient is shifted right end off and the

exponent is increased by one for each bit position

shifted until the exponent becomes zero. Sign bits

are extended on the left during the shift. The

shifted coefficient with zero exponent is entered

into the destination register.

If machine zero is used as an ooerand, 32 zeros are

returned as a result.

Data flag: bit 46

3.2.1.83 52 A 32 RG CEILING;(R) TO T)

Transmit to destination register T the nearest

integer greater than or equal to the 32-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 32-bit floating-point

number having a positive exponent.

(continued)

http:3.2.1.83
http:3.2.1.82
http:3.2.1.81

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
' -DATE Dec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE 99
REV. A

- ---------------------- A0L------------------------------
O-----

3.2.1.83 (Cont.)

If the source-Qperand's exponent is positive (greater

than or eaual to zero), the operand is transmitted

directly to the destination register.

If the exoonent of the source operand is negative,

the two's complement of the coefficient is shifted

right end off and the exponent is increased by one

for each bit position shifted until the exponent

becomes zero. Sign bits are extended on the left

during the shift. The two's complement of the shifted

coefficient with zero exponent is entered into the

destination register.

If machine zero Is used as an operand, 32 zeros are

returned as a result.

Data flag: bit 46

3.2.1.84 53 A 32 RG SIGNIFICANT SQUARE ROOT; (R) TO (T)

Transmit to 32-bit register T the square root of a

32-bit floating-point operand in register R.

Data flags: bits 43, 45 and 46

3.2.1.85 54 4 32 RG ADJUST SIGNIFICANCE; (R) PER (S) TO

(T)

Adjust the significance of the floating-point ooerand

in register R and transmit it to result register T.

A signed, two's complement, integer is contained in

the right-most 24 bits of register S. The absolute

value of this integer is a shift count.

If the shift count is positive, shift the operand's

coefficient left the number of places specified by

the shift count or by the number of shifts needed to

normalize the coefficient, whichever is smaller. In

either case, the exponent of the operand is reduced

oy one for each place actually shifted. An all zero

coefficient will be shifted left the number of places

specified.

(continued)

http:3.2.1.85
http:3.2.1.84
http:3.2.1.83

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
-- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE I00
REV. A

- ---------------------- A0L------------------------------
O-----

3.2.1.85 (Cont.)

If the shift count is negative, shift the ooerand's

coefficient right the number of Places specified by

the shift count and increase the exponent of the

operand by one for each place shifted. If R is

indefinite, T will be Indefinite and data flag bit

46 is set. If R is machine zero, T will be machine

zero and data flag bit 43 will be set.

This instruction Is undefined if the absolute value

of the shift count is greater than 23 • Note that

i0

the addition of the shift count car cause either

exponent overflow or exponent underflow.

Data flags: bits 42, 43 and 46

3.2.1.86 55 4 32 RG ADJUST EXPONENT; (R) PER (S) TO (T)

Transmit the adjusted operand from register R to

result register T. The exponent of the result is set

egual to the exponent of the operand in register S.

The coefficient of the result is formed by shifting

the coefficient of the operand from register R.

The shift count used is the difference between the

exponents in registers R and S. If the exponent In

register R is greater/less than the exponent in

register S, the shift is to the left/right,

respectively. For zero coefficients in register R,

the exponent from register S is copied to register

T with an all-zero coefficient.

If a left shift exceeds the number of places required

for normalization, the result is set to indefinite,

and data flag bit 42 is set. If either-or both

operands are indefinite or machine zero, the result

is set to indefinite. In this case, data flag bit 46

is set and data flag bit 42 is not set.

Data flags: bits 42 and 46

http:3.2.1.86
http:3.2.1.85

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S------I DATE Dec. 1977
I Corporation I S P E C I F I C A T 1 0 N PAGE 161

REV. A

---------------------- RRA0LO-------------------------------------

3.2.1.87 56 7 64 SM BSWAP: R-->S or S-->T

Move data from the Backing Store (specified by source

field R) to Main Memory (specified by S), or move
data from Main Memory to the Backing Store (specified

by T). When moving data from the Backing Store to

Main Memory the T field must be zero! when moving

data from Main Memory to the Backing Store the R

field must be zero.

Bits 8 to J5 of register S specify the number of

blocks to be transferred from one memory to another;

one block is 32,768 64-bit words. Only an integral

number of blocks may be transferred. A value of zero

for transfer length makes the instruction a No op.

The maximum length transfer is 255 blocks.

Bits 0 to 7, 16 to 34, and 43 to 63 of register S are

unused. Bits 35 to 42 specify the block base address

for the start of the transfer from/to Main Memory.

Bits 0 to 13, 16 to 29, and 43 to 63 of registers R

and T are unused. Bits 14 and i5 are used only in

monitor mode to manipulate the backing store block

busy flags. A one In bit 14 means the blocks of

Backing Store accessed by the BSWAP instruction will

remain busy after completion of the swap (normally

the Backing Store blocks are made busy at the issue

of the BSWAP instruction and the busy flags are

cleared block by block as the data transfer

comoletes. A one in bit J5 is essentially an override

of busy flags for blocks accessed by the aSWAP

instruction. This allows monitor mode to lock down

blocks by making (and leaving) them busy, yet allows

monitor access to them. In lob mode bits 14 and 15

are not used and a BSWAP proceeds as though both bits

were zero -- blocks must not be busy at the start and
are left not busy at completion.

Bits 30 to 42 of registers R and T specify the block

base address for the start of the transfer from or to

the Backing Store, resDectively.

If the length of the transfer is such that the Swap

Unit attempts to read or write oast the end of

either memory, instruction results are undefined.

(continued)

http:3.2.1.87

ICONTROL DATA I E N G I N E E R I N G NO. ±0354636
i --------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 102

REV. A

- ---------------------- A0L------------------------------
O----

3.2.1.87 (Cont.)

Examples of 56 useage:

Register 10 --- 00i01000010000000

Register 11 --- 00001000200000000

56111000 Move 10 blocks of data from the

16

Backing Store beginning at address

200000000 to Main Memory beginning

at address j0000000.

56001011 Move 10 blocks of data from Main

16

Memory beginning at address 10000000

to the Backing Store beginning at

address 200000000.

3.2.1.88 57 ILLEGAL

3.2.1.89 58 A 32 RG TRANSMIT; CR) TO (T)

Transmit the operand in 32-bit register R to 32-bit

register T.

3.2.1.90 59 A 32 RG ABSOLUTE; (R) TO CT)

Transmit the absolute value of the 32-bit floating
point operand in register R to register T.

3.2-1.91 5A A 32 RG EXP.; (R) TO (T)

Transmit the exponent from the left-most 8 bit

positions of the origin register R to the right-most

8 bit positions of destination register T. The sign

of the exponent is extended through bit 8 of

destination register T, the left-most 8 bits of the

destination register are cleared to zeros.

3-2.1-92 5B 4 32 RG PACK; CR), (S) TO (T)

Transmit a 32-bit floating-point number to the

destination register T. The exponent of the number

is obtained from the right-most 8 bit positions of

register R and the coefficient is obtained from the

right-most 24 bit positions of register S.

http:3.2-1.91
http:3.2.1.90
http:3.2.1.89
http:3.2.1.88
http:3.2.1.87

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S- !DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE t03

REV. A

------------------------------- R AD L-------------------------------

3.2.1.93 5C A B RG EXTEND; 32-BIT(R) TO 64-BIT(T)

Extend the floating-coint number from 32-bit register

R into a 64-bit floating-point number and transmit

the result to 64-bit register T. The value of the

resulting 16-bit exponent is 24 less than that of

the origin operand's exponent. The coefficient is

obtained by transmitting the right-most 24 bits of

the origin register into bits 16 through 39 of the

destination register. The right-most 24 bits of the

destination register are cleared to zero.

If R Is indefinite, T will be indefinite and data

flag bit 46 will be set. If R is machine zero, T

will be machine~zero and data flag bit 43 will be set.

Data flag: bit 43 and 46

3.2.1.94 50 A B RG INDEX EXTEND; 32-BIT(R) TO 64-BITCT)

Extend the floating-point number from 32-bit register

R into a 64-bit floating-point number and transmit

the result to 64-bit register T. The value of the

resulting 16-bit exponent is the same as the origin

ooerandos exponent. The coefficient is obtained by

transmitting the right-most 24 bits of the origin

register Into bits 41 through 63 of the destination

register. Bits 16 through 39 of the destination

register are set to the sign of the origin

coefficient.

If R is indefinite, T will be indefinite and data

flag bit 46 will be set. If R is machine zero, T

will be machine zero and data flag bit 43 will be set.

Data flag: bit 43 and 46

3.2.1.95 5E 7 32 NT LOAD; (T) PER (S), (R)

3.2.1.96 5F 7 32 NT STORE; (T) PER (S), (R)

Load/store 32-bit register T from/into the address

soecified by (R) + CS) where (R) is the base address

and (S) is an item count of half-words. Note that S

and R are 64-bit registers and that the item count

is shifted left five places before the addition.

Overflow from this addition is ignored, if it occurs.

t3

http:3.2.1.96
http:3.2.1.95
http:3.2.1.94
http:3.2.1.93

ICONTROL DATA I E N G I N E E R I N'G NO. 10354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE J04

REV. A

--- ----------------------- RA0L------------------------------

3.2.1.97 60 4 64 RG ADD U; (R)+(S) TO (T)
3.2.1.98 61 4 64 RG ADD L; (R)-(S) TO (T)
3.2.1.99 62 4 64 RG ADD N; (R)+(S) TO (T)

These instructions perform the indicated floating
point arithmetic operation on the 64-bit floating
point operands contained in the registers designated

by R and S. The result in each case is stored in the

register designated by T.

U signifies that the upper result of the operation is

returned; L signifies the lower result; and N

signifies the normalized upper result.

Data flags: bits 42, 43 and 46

3.2.±.iOO 63 4 64 RG ADD ADDRESS; (R)+(S) TO (T)

This instruction adds bits J6 through 63 of register

R to bits 16 through 63 of register S and stores the

result in bits 16 through 63 of register T. Bits J6

through 63 are treated as 48-bit, positive, unsigned

integers. Arithmetic overflow is ignored. Bits 0

through ±5 of register R are transferred without

modification to bits 0 through 15 of register T.

3.2.1.101 64 4 64 RG SUB U; (R)-(S) TO (T)

3.2.1.102 65 4 64 RG SUB L; (R)-(S) TO (T)

3.2.1.103 66 4 64 RG SUB N; (R)-(S) TO (T)"

These instructions perform the indicated floating
point arithmetic operation on the 64-bit floating
point operands contained in the registers designated

by R and S. The result in each case is stored in the

register designated by T.

U signifies that the upper result of the operation is

returned: L signifies the lower result; and N

signifies the normalized upper result.

Data flags: bits 42, 43 an 46

3.2.1.104 67 4 64 RG SUB ADDRESS; (R)-(S) TO (T)

This instruction subtracts bits 16 through 63 of

register S from bits 16 through 63 of register R and

stores the result in bits 16 through 63 of register

T. Bits 16 through 63 are treated as 48-bit, positive

unsigned integers. Arithmetic overflow is ignored.

Bits 0 through j5 of register R are transferred

without modification to bits 0 through 15 of

register T.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 105

REV. A

----------------------- R A O L------------------------------

3.2.1.105 68 4 64 RG NPY U: (R)*(S) TO (T)

3.2.1.106 69 4 64 RG HPY L; (R)'(S) TO T)
3.2.1.107 6A ILLEGAL
3.2..108 68 4 64 RG MPY S; (R) 4 (S) TO (T
3.2.1.109 6C 4 64 RG DIV U; (R/CS) TO (TI

These instructions perform the indicated floating
point arithmetic operation on the 64-bit floating
point operands contained in the registers designated

by R and S. The result in each case is stored in the

register designated by T.

U signifies that the upper result of the operation is

returned; L signifies the lower result; S signifies

the. significant result.

Data flags: bits 41, 42, 43 and 46

3.2.1.110 6D 4 64 RG INSERT BITS; (R) TO (TI PER (S)

This instruction inserts the right-most bits of the

register designated by R Into the register

designated by T.

I 	 i m I

Reg R 	 I f<--------- >1

I I bits I

I

INSERT 	 v

V
v

III 	 m I

Reg T I 	 l<-------- >1

I I bits I

A These bits are unaltered
I

bit n

* S 	 1

Req S 0---0 I m I 0 ----------------------- nI 	 0 I I
I I 1 	 1 a

a 9 10 15 16 	 57 58 63

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i------------- DATE Dec. ±977
I Corporation I S P'E C I F I "C A TI 0 PAGE 06

REV. A

----------------------RADL

3.2.1.i10 (Cont.)

Bits i through 15 of register S contain the number

(m) of right-most bits to be inserted. The right-most

6 bits of register S soecify the the bit number (n)

in register T where the leftmost bit of the inserted

data will be placed., Bits 0 through 9 and 16 through

57 of register S are undefined and must be set to

zero.

If the R designator is equal to zero, then register

zero will provide machine zero. If m Dlus n is

greater than 64 , or if m Is equal to zero, the

I0

results of this instruction are undefined.

3.2.1.1i 6E 4 64 RG EXTRACT BITS; (R) TO (T) PER (S)

This instruction extracts bits from register R and

stores them into the right-most portion of register

T. Register T is cleared before receiving the

extracted bits.

I I I m I I
Reg R I <-------- >1

I 	 I I bits I

A I
I v EXTRACT

bit n -------------------------------
I
v

I 	 I m IReqT-- ----------

Reg T 	 I a0 - - - - - - - - -- - - - - - - - - 0 l<- - -->I

I I bits I

Reg S I O---l I "I 0..-------------------------- I n
I I I I I

Re S m - - - - - - - - - - -

0 9 10 15 16 57 58 63

(-continued)

http:3.2.1.1i

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 107

REV. A

- ---------------------- A0L------------------------------
O-----

3.2.i.iit (Cont.)

Bits 10 through J5 of register S contain the number

(m) of bits to be extracted from register R. The

right-most 6 bits of register S specify the left-most

bit number of the extracted bits. Bits a through 9

and 16 through 57 of register S are undefined and

must be set to zero.

If the R designator is equal to zero, register zero
will provide machine zero. If m plus n is greater
than 64 , or if m Is equal to zero, the results of

jo

this instruction are undefined.

3.2.1.i11 6F 4 64 RG DIV S, (R)(S) TO (T)

This instruction performs a Divide SIgnificnt

operation on the 64-bit floating-point operands

contained in the registers designated by R and S.

The result is stored in the register designated by T.

Data flags: bits 41' 42, 43 and 46

3.2.i.113 70 A 64 RG TRUNCATE; (R) TO (T

Transmit to destination register T the nearest

integer whose magnitude is less than or equal to the

magnitude of the 64-bit floating-point operand in

origin register R. The Integer is represented as an

unnormalized 64-bit floating-point number having a

positive exponent.

If the exponent of the source operand is positive

(greater than or equal to zero), the operand is

transmitted directly to the destination register.

If the exponent of the source operand is negative,

the magnitude of the coefficient Is shifted right

end off and the exoonent is increased by one for each

bit position shifted until the exponent becomes zero.

Zeros are extended on the left during the shift. If

the coefficient of the source operand is positive,

the shifted coefficient with zero exponent is entered

into the destination register. If the coefficient of

the source ooerand is negative, the two's complement

of the shifted coefficient with zero exponent is

entered into the destination register.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 108

REV. A

---------------------- R A D L------------------------------

3.2.1.113 (Cont.)

If a machine zero is used as an operand, 64 zeros are

returned as a result.

Data flag: bit 46

3.2.1.114 71 A 64 RG FLOOR; (R) TO T)

Transmit to destination register T'the nearest

integer less than or equal to the 64-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 64-bit floating-point

number having a positive exponent.

If the source operand's exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination register.

If the exponent of the source ooerand is negative,

the coefficient is shifted right end off and the

exponent is Increased by one for each bit position

shifted until the exponent becomes zero. Sign bits

are extended on the left.during the shift. The

shifted coefficient with zero exponent is entered

into the destination register.

If a machine zero is used as an operand, 64 zeros are*

returned as a result.

Data flag: bit 46

3.2.1.±5 72 A 64 RG CEILING; (R) TO (T)

Transmit to destination register T the nearest

integer greater than or equal to the 64-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 64-bit floating-point

number having a positive exponent.

If the source operand's exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination regIster.

If the exponent of the source operand is negative,

the two's complement of the coefficient Is shifted

right end off and the exponent is increased by one

for each bit position shifted until the exponent

becomes zero. Sign bits are extended on the left

during the shift. The two's complement of the shifted

coefficient with zero exponent is entered into the

destination register.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S-----I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 109

REV. A

----------------------- R A 0 L------------------------------

3.2.1.115 (Cont.)

If machine zero is used as an operand, 64 zeros are

returned as a result.

Data flag: bit 46.

3.2.1.116 73 A 64 RG SIGNIFICANT SQUARE ROOT: (R) TO (T)

Transmit to register T the square root of the 64-bit

floating-point operand In register R.

Data flags: bits 43, 45 and 46

3.2.1.117 74 4 64 RG ADJUST SIGNIFICANCE, (R) PER (S) TO (T)

Adjust the significance of the floating-coint oDerand

in register R and transmit it to result register T.

A signed, two's complement Integer is contained in

the right-most 48 bits of register S. The absolute

value of this integer is a shift count. The left
most ±6 bits of register S are ignored.

If the shift count is positive, shift the operand's

coefficient left the number of places specified by

the shift count or by the number of shifts needed to

normalize the coefficient, whichever is smaller. In

either case, the exponent of the operand is reduced

oy one for each place actually shifted. An all zero

coefficient will be shifted left the number of places

specified.

If the shift count is negative, shift the operand's

coefficient right the number of places specified by

the shift count and increase the exponent of the

operand by one for each place shifted.

This instruction is undefined if the absolute value
of the shift count is greater than 47 * Note that

±0

the addition of shift count can cause either exponent

overflow or exponent underflow.

If R is indefinite, T will be definite and data flag

bit 46 will be set. If R is machine zero, T will be

machine zero and data flag bit 43 will be set.

Data fI lags: bits 42, 43 and 46

-- -- -- - -- -

ICONTROL DATA I
I - I
I Corporation i

E N G I N E E R I N G

S P E C I F I C A T I 0 N

NO.
DATE
PAGE

10354
Dec.
i±O

636
1977

REV. A

------------------------------RADL- ------------------------------

3.2.1.iiB 75 4 64 RG ADJUST EXPONENT; (P) PER (S) TO (T)

Transmit the ad]usted operand from register R to
result register T. The exponent of the result Is set

equal to the exponent of the operand in register S.

The result is formed, by shifting the coefficient of

the operand from register R.

The shift count used is the di'fference between the

exponents is register R and S. If the exponent In

register.R is greater/less than the exponent in

register S, the shift is to the left/right,

respectively. For zero coefficients In register R,

the exponent from register S is copied to register T

with an all-zero coefficient.

If a left shift exceeds the number of places

reauired for normali-zation, the result is set to

indefinite and data flag 42 is set. If either or

both operands are indefinite or machine zero, the

result is set to Indefinite. In this case, data flag

bit 46 is set and data flag bit 42 is not set.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S-----I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE i1

REV. A

- ---------------------- A0LL-----

3.2.1.i19 76 ,A B RG CONTRACT- 64-BIT (RI TO 32-BIT CT)

Contract the 64-bit floating-point number from

register R into a 32-bit- floating-point number and

transmit the result to 32-bit register T.

Input Exponent Result

7FFF 	 Result Indefinite

Indefinite Data Flag 46

7000

6FFF 	 Result Indefinite

Data Flag 42, 46

0058

0057 	 Result exoonent 24 larger

than input exponent

*Copy left-most 24 bits of

* input coefficient

FF78

FF77 Result machine zero-

Data Flag 43

8000

The 24-bit result coefficient is copied from the

left-most 24 bits of the 48-bit source coefficient

(bits 16 through 39). This has the effect of

contracting all negative source coefficients, whose
absolute values (neglecting the exponent) were less

24
than or equal to 2 , to a minus one.

Data flags: bits 42, 43 and 46

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
Corporation I S P E C I F I C A T I 0 N PAGE 112.

REV. A

---------------------- R A D L------------------------------

3.2.1.120 77 A B RG ROUNDED CONTRACT; 64-BIT (R) TO 32-BIT

(T)

Perform a rounded contract operation on the 64-bit

floating-point number in register R and transmit the

32-bit floating-point result to 32-bit register T.

A positive one Is added to the origin operand in bit

position 40. If overflow occurs the exponent is

increased by one and the coefficient is shifted right

one place. The left-most 24 bits of this 48-bit sum

are then transmitted to the 24-bit coefficient

portion of register T. Each non-endcase result

element's 8-bit exponent is 24 (25 is overflow

I0 10

occurred) greater than the corresponding source

element's exponent.

Data flags: bits 42, 43 and 46

3.2.1.121 78 A 64 RG TRANSMIT; (R) TO (T)

Transmit the 64-bit operand in register R to

register T.

3.2.1.122 79 A 64 RG ABSOLUTE; (R) TO (T)

Transmit the absolute value of the 64-bit floating
point operand in register R to register T.

Data flags: bits 42, 43 and 46

3.2.1.123 7A A 64 RG EXP.; (R) TO (T)

Transmit the exponent from the left-most J6 bit

positions of origin register R to the right-most

16 bit positions of destination register T. The sign

of the exponent is extended through bit 16 of

destination register T. The left-most 16 bits of the

destination register are cleared to zeros.

3.2.1.124 7B 4 64 RG PACK; (R)-, (S) TO (T)

Transmit a 64-bit floating-point number to

destination register T. The exponent of the number

is obtained from the right-most 16 bit positions of

register R, and the coefficient Is obtained from the

right-most 48 bit positions of register S.

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354636
! -I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE i13

REV. A

----------------------- R A D L------------------------------

3-2.1.125 7C A 64 RG LENGTH4 (R) TO (TI

Transmit the left-most 16 bit nositions of origin

register R to the'right-most 16 bit positions of

destination register T. The left-most 48 bits of the

destination register are cleared to zeros.

3.2-1.126 70 7 64 NT SWAP; S----->T AND P------>S

Move to destination field T, a portion of the

Register File beginning at the 64-bit register

specified by the right-most eight bits of register S.

Transmit source field R to the Register File

beginning at the 64-bit register specified by the

right-most eight bits of register S.

The left-most 16 bits of register R and T specify

the field length in words for the source and

destination fields, resoectively. The field lengths

of the source and destination fields may be different

but each must be even. A zero field length indicates

no transfer for that field. Any transfer of words

into or out of the Register File that becomes

exhausted of registers (i.e., beyond the bounds of

the Register File), causes the instruction to become

undefined.

The right-most 48 bits of registers R and T soecify

the base address of the source and destination

fields, resoectively. These addresses must specify

an even 64-bit word in Main Memory. Bits 57

through 63 of register R and T are undefined and must

be set to zero. Overlan of the source and destination

fields is allowed only if the base addresses for both

fields are equal.

Registers R, S, or T, may be in the range of the

registers being swapped.

The starting register in the file soecified by the

right-most eight bits of register S must be an even

register or this instruction will be treated as an

undefined instruction. For additional material see

Section 3.1.7 on the Register File.

R ODUOCTh1TY OF THE

ORIGiNAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
...... - ! DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 114
.......- REV. A

------------------------R AU0L---------------------------------

3.2.1.:27 7E 7 64 NT LOAD; CT) PER (S), (R)
3.2.1.128 7F 7 64 NT STORE; (T) PER (S), (R)

Load/store 64-bit register T from/into the address
specified by (R) + (S) where (R) is the base address
and (S) is an item count of words.

3.2.1.129 80 ILLEGAL

3.2.1.130 81 ILLEGAL

3-2-1.131 82 ILLEGAL

3-2.1.132 83 ILLEGAL

3.2.1.133 84 ILLEGAL

3.2.1.134 85 ILLEGAL

3.2.1.135 86 ILLEGAL

3.2.1.136 87 ILLEGAL

3.2.1.137 88 ILLEGAL

3-.2.1.138 89 ILLEGAL

3.2.1.139 8A ILLEGAL

3.2.1.140 BB ILLEGAL

3.2.1.141 8C ILLEGAL

3.2.1.142 8D ILLEGAL

3-2.1.143 BE ILLEGAL

3-2.1.144 8F ILLEGAL

3.2.1.145 90 ILLEGAL

3.2.1.146 91 ILLEGAL

3.2.1.147 92 ILLEGAL

3.2.1.148 93 ILLEGAL

3.2.1.149 94 ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I I DATE Dec. ±977

' Corporation I S P E C I F I C A T 1 0 PAGE 115

REV.
A

-- ----------------------- RADL-------------------------------

32.1i.150 95 ILLEGAL

3.2.1.151 96 ILLEGAC

3.2.1.152 97 ILLEGAL

3.2.1.153 98 ILLEGAL 	 REPRODUCmILITY OF THE
3.2.154 99 ILLEGAL 	 ORIGINAL PAGE IS POo

3.2.1.155 9A ILLEGAL

3.2.1.156 9B ILLEGAL

3.2.1.157 9C ILLEGAL

3.2.1.158 90 D E SM STREAM MAP

Depending on the value of the four-bit subfunction A,

the Mao Unit performs the functions described.

Subformat Di 	 Register File Reference Mode (16-bit

parcel)

Field 	 Code Operation

A i 	 READ i Setup

2 READ 2 Setup

3 READ 3 Setup

4 WRITE i Setup (WIA) source

from READ i

5 WRITE-i Setup (Wig) source

from READ 2

6 WRITE i Setup (WIC) source

from Comoress/Mask/Merge Net

7 WRITE i Setup (WiD) source

from Gather/Scatter Net

8 WRITE ± Setup (WiE) source

from Vector Unit

B 0 	 Register File Reference Mode

(Subformat O1)

C 	 0 64-bit Mode

i 32-bit Mode

(continued)

-- - -------

ICONTROL DATA I
I------------- !
I Corporation I

E N G I N E E R I N

S P E C I F I C A T I

G

0 N

NO. 10354
DATE Dec.
PAGE 116

636
1977

REV.- A

------------------------ R A D L------------------------------

3.2.1.158 (Cont.)

D (for A code

0

I

5.

rrrfUIBLi 	 OF THEf
,3

NB 	IGS POO"

0 (for A code

0

±

1-3, 	READ Setup)

Extend indefinite on input vector

Extend floating-point zero on

input vector

Extend floating-point one on

input vector

Repeat input vector (for

64-bit mode, lowest three

bits of field length must be

zero* ft 32-bit mode, l.owest

four bits of field length

must be zero; if field length

is zero, operand is broadcast)

= 4-8, 	WRITE Setup)
Order vector operates on ones
Order vector operates on
zeros

2, 3 Not defined

E 00-FF Register file designator

Subformat D2

Fi.j Code

A I
2
3
4

5

6

7

B

B 	 ±

C 	 0

1

Immediate Reference Mode (64-bit parcel)

Operation

READ I Setup

READ 2 Setup

READ 3 Setup

WRITE i Setup (WiA) source

from 	READ 1

WRITE i Setup (WiB) source

from READ 2

WRITE I Setup (WiC) source

from Comoress/Mask/Merge Net

WRITE i Setup (WID) source

from Gather/Scatter Net

WRITE I Setup (WiE) source

from Vector Unit

Immediate 	Reference Mode

(Subformat D2)

64-bit Mode

32-bit Mode

(continued)

- ----------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10.354636
S------I DATE Dec. 1977
ICorporation I S P E C I F I C A T I 0 N PAGE 117

3.2.1.158 (Cont.)

D 	(for A code

0

I

2

3

REPRODUC$]]l OF -

ORIGINAL PAGE IS POOR

D (for A code

0

$

REV. A

RJ-----	 ------------------------------
A0L

= i-3. 	READ Setup)
Extend indefinite on inout
vector
Extend floating-Doint zero

on input vector

Extend floating-point one on

Input vector

Repeat input vector (for

64-bit mode, lowest three

bits of field length must be

zero; for 	32-bit mode, lowest

four bits of field length

must be zero; if field length

is zero, operand is

broadcast).

= 4-8, 	WRITE Setup)
Order vector ooerates on ones
Order vector operates on
zeros

2, 3 Not defined

E

F

G

2

Subformat 04

Fi e I d

A 9

8, 0

0
i
2
3

4

±6-bit 	field length

28-bit 	sword address

Lower address bits (used for

shift count)

.Unused

Si, S2 	Connection Setup (64-bit Parcel)

o terai on

S1, S2 	Connection setup

Destination code (B for

Si, 0 for S2)

No change

Vector Unit

Buffer Unit

Both Vector Unit and Buffer

Unit

Internal to Map Unit

(cont inued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
i------------- I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 115

REV. A

- ---------------------- A0L------------------------------
AO----

3.2.1.158 (Cont.)

C1 E Source Code (C for Sit E for
$2)

0 No change
1 R1
2 R2
3 Compress/Mask

4 Merge

5 Gather

Subiormat 	03 Map Unit Functions (16-bit" parcel)

F.ejd 	 Code" Operation

A 	 0 No op

A Map Unit functions

B Clear

B (For A code = A only, otherwise Ignored)
I Gather

2 Scatter

3 Compress

4 Mask

5 Merge

6 	 Form Order Vector

C (For A code = A) C field bits specify the

following:

7
2 = J, 	 order vector test greater than

6
2 = j, order vector test not equal

5
2- = 1, 32-bit operands (=0, 64-bit)

4
2 = 19 move records (=0, move words)

3
2 = 1, order vector operates on zeros

(=O, on ones)

2 1 0

2 , 2 1 2 not defined

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i -------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE ji9

REV. A

- ---------------------- A L----A0L-----------------------------

3.2.1.158 (Cont.)

C (For A code = B) C field bits each soecify a
unit to be cleared as follows:

7
2 READ t

2
2 READ 2

5

2 READ 3

4
2 WRITE i

3
2 Compress/Mask/Merge

2
2 Gather/Scatter

1

2 Si

0
2 S2

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I i DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 120

REV. A

----------------------- RA L

3.2.1.158 (Cont.)

With a string of subfunction parcels taken from the

previously listed functions, one can perform a number

of operations within the Map Unit, or link the Map

Unit to the Vector Unit to provide operand streams or

to take result operands from the Vector Unit. Some

examples of this linkage aret

Vector Transmit 10 64-bit words from memory

16

address 10000000 to address 1000000.

Assume 	that the register file is setup as follows:

Register 10= 00101000010000000

Register 11= 0010i000001000000

and the instruction buffer holds the following:

(All quantities in hexadecimal)

Total command: 900110104012B028

Header 	(indirect mode for both vector references)

900 	 90 directs the operation to the Hap Unit,

the J indicates that one 32-bit packet

follows the header packet.

First parcel: 1010 	 Function code 1 in first

four bits indicates that this

is a READ I setup.

The next four bits are zero,

Indicating that:

B field= -- indirect reference mode
C field=o -- 64-bit mode operation

D field=O --	 Extend A field (if
shorter than C field)
with Indefinites.

The next 8 bits=10, the

register designator pointing

to register 10

16

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 121

----------------------- R A O

3.2.1.158 	 (Cont.)

Second parcel'4012

Third carcel: 8028

REV. A

L-------------------------------

Function code ifln first four
bits indicates a WRITE ±
setup with source from READ J,
B, C, 0 fields all zero

indicating 64-bit mode,

indirect reference to the

register file, and extension

mode is innored, the

remaining 8 bits contain the

register designator 12

pointing to the register

containing the starting

address and length of the

output stream to be written

from WRITE 1.

Function code 9 Indicates

CLEAR operation; 28 specifies

that R3 is to 	be disconnected

(no order vector) and

Compress/Mask/Merge is to be

cleared (from any previous

operation).

The same function could be programmed using the

instruction itself to contain the field lengths and

base addresses:

90048028180000±0i00000004800001001000000

which could be broken down into the following fields:

Header Sf04 Function sent to Map Unit,
32-bit packets follow to
describe the operation.

4

First oarcel: B028 Clear R3 and
Compress/Mask/Merge

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 18354636
I----- --------I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 122

REV. A

----------------------R A L -----------------------------

3.2.i.58 (Cont.)

Second parcel: ±8000OOo000000

First four bits = I meaning a READ I

setup, next four bits = 8 meaning that

this is an immediate instruction

(memory address and length to come

directly from the instruction

itself), 64-bit mode, extend

indefinites, the next 8 bits

are unused for the 9D

instructions; the next 16

bits contain a 0010 or field

length of 16 elements; the

io

remaining 32 bits contain the

bit base address of the source field.

Third parcel: 4800001001000000

First four bits = 4 meaning a WRITE J
setup with source from READ J, the
next four bits = 8, meaning that 8=1
or the memory address and length are
contained in the instruction, the next
eight bits are unused, and the

remaining 48 bits contain the ±6-bit

field length and 32-bit base address

of the destination field.

Note that one" field could be described by an

immediate parcel and the other by an indirect

reference to the Register File thus a

9D021010480000i00i000000 would have an indirect

reference to register 10 for the source field while

the destination field address of 1000000 would be

contained in the instruction itself.

(continued)

http:3.2.i.58

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

i- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 123

REV.
A

----------------------- RADL-----------------------------

3.2-1-158 (Cont.)

A gather operation which would retrieve every fifth

element from memory beginning at address 10000000

would require an additional parcel to be sent to the

Map Unit to direct the gather operation. In this

case, let register 05 contain: 00001000000500000 and

location 500000 contain: O00Ol000000000s. Then

the instruction would appear as:

9002101033057012A1000000

which can be broken down as follows

header 9002 --	 Send function to Map Unit, 2

32-bit packets follow
Parcel 1t in4o -- Setup READ I with register 10

(base address of vector)
Parcel 2: 3305 -- Setup READ 3 from register 5

(pointer to increment), repeat
vector (increment)

Parcel 3: 7012 --	 Setup WRITE i with source from
Gather/Scatter Network, base
address of output from register
12

Parcel 4: Aj00 --	 A=functional control of Map Unit
internal modules,
1=Gather operation,
00=64-bit elements

Parcel 5: 0000 --	 No op to fill packet

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 124

REV. A

----------------------- R A 0 L------------------------------

3.2.1.i59 9E 0 E SM BUFFER READ/WRITE SETUP

This instruction provides individual setup for each

of four ports in the Buffer Unit. A buffer

address and vector length can be provided for RBi

and RB2 (Read Buffer i and Read Buffer 2) and for

WBI and WB2 (Write Buffer I and Write Buffer 2).

Subfunctians are specified by the A field of the

instruction'subformats.

Subformat 	Di Register File Reference Mode (16-bit

parcel)

Field Code Operation

A 	 0 No oo

I Set up RB Port

2 Set up R82 Port

3 Set up WBI Port

4 Set up WB2 Port

B 0 Register File Reference Mode

(Subformat D)

C 	 0 64-bit Mode

i 32-bit Mode

D (for write setup, WB± and WB2 source)

o Si (Source 1)

i S2 (Source 2)

2 ARt (Arithmetic Result 1)

3 AR2 (Arithmetic Result 2)

D (extension form for nonconformal vectors, RBI

and RB2 setup)

0 Extend this stream with

indefinites

± Extend this stream with

machine zero

2 Extend this stream with

floating-point ones

3 Repeat this stream from the

beginning

E 0O-FF 	 Register File Designator (for

base address and field length)

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 1T354636

I-- DATE Dec. 1977

I 	Corporation I S P E C I F I C A T I 0 N PAGE 125

REV. A

--------------------------------- RA 0JL-------------------------------

3.2.1.159 (Cont.)

Subformat 05 Immediate Reference Mode (32-bit

parcel)

Field 	 Code Oneratlon

A i Set up RBI Port
2 Set uo RB2 Port

O iLyOF U14 3 Set up-WBJ Port
R.flRODGW1LfhY 4 Set up WB2 Port

B 	i Immediate Reference Mode

(Subformat D5)

C 0 6-bit Mode

. 32-bit Mode

o (for write setup, WB and W82 source)

0 Si (Source I)

i. S2 (Source 2)

2 ARt (Arithmetic Result J)

3 AR2 (Arithmetic Result 2)

O (extension form for nonconformal vectors, RBI and

RB2 set up)

0 Extend this stream with

Indefinites

± Extend this stream with

machine zero

2 Extend this stream with

floating-point ones

3 	 Repeat this stream from the

beginning

E 	12-bit field length of vector in words (if C

field is zero) and half-words (if C field is a

one); the right-most three (or four) bits of the

field length are ignored, thus all vector

functions from and to the buffer ooerate on

groups of 8 words (or ±6 half-words).

F 	12-bit buffer base address in swords (eight-word

groups). Thus a base address of 000 would

16

address words 0 through 7 of the vector and base

address 001 would reference words 8 through 15

±6

of the buffer.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I----------: - I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE ±26

REV. A

-- ----------------------- RADL -----------------------------

3.2.1.159 	 (Cont.)

Base addresses taken from the Reglster.File are

bit addresses, however the low order nine bits

are ignored, effectively making the address to

the buffer a sword address.

Example: to perform a simple add of two vectors

contained in the buffer with the result returned to

the buffer would require three buffer setup

commands and a Vector Unit command. The buffer

instructions would appear as follows:

9E03 Instruction header for Buffer Unit

setup, 3 packets to follow.

Parcel If i81o0o0o 	 A field =it Setup RBi

B field =J, Immediate Reference

C field =0, 64-bit Mode

D field =0, Extend with indefinites

E field =100 ,number of similar

16

elements to be

processed (field

length)

F field =000 ,elements start

16

at buffer address 000

16

(base address)

Parcel 2 28100100 	 A field =2, Setup RB2

B field =1, Immediate Mode

C field =0, 64-bit Mode

D field =0, 	Extend stream with

indefinites

E field =100 ,number of elements

1~6

to be Processed (field

length)-

F field =100 ,elements start at

16

buffer address 00

16

(base address)

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 127

REV. A

---------------------- R A L------------------------------

3.2.1.159 (Cant.)

parcel 3: 3A100200 A field =3, Setup WBi Port

B field =j, Immediate Mode

C field =0, 64-bit Mode

C field =2, Select ARI bus for

results from Vector

Unit

E field =100 ,number of elements

16

to be stored in the

buffer

F field =200 ,start at base

16

address 200

1-6

Thus the sequence 9E03000018100000280OiGO3AiO200 would
deliver two streams of data to the Vector Unit via
RBi (Read Buffer 1) and R82 (Read Buffer 2) starting at
addresses 000 and l0 , resoectively, and continuing

16 16
for £0 elements. The results from the Vector Unit

16
would be stored into the buffer beginning at base address
200 for 108 elements. Note that a no op (0000) was

16 16
inserted after 9EOS3 to fill out the header packet.

REPRODUCIBILITY OF THE

ORIGINAL PAGE-IS POOR

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
-- I DATE Dec. 1977
Corporation I S P E C I F I C A T I 0 N PAGE 128

.-------------- REV. A

---------------------------- R A D L-----------------------------

.2.1.160 	 9F .E E SM Vector Arithmetic

This 32-bit instruction controls the operations, and

selection of input and output data busses, for the

Vector Unit. Referring to instruction format E, the

fields are 	defined as follows:

Field Function Codes and Meaning

A Operation Code 9F Vector Arithmetic

B Suboperation Code ARBuA 	 u

(Suboperations 00

00-17 are 01

performed with 02

normalized 03

arithmetic) 	 04

05

06

07

08

09

GA

as

OC

go

OE

oF

10

ii
12

13

14

15

16

17

18

j9

(continued)

A C

B 0

A+B C+D

A+B C*D

A4 8 C#D

(A+B)D A+B

(A+B)*(C*D) C#D

(A+B)*(C D) A+B

(A+B)*(C+D) Expand

32-bit C

to 64 bits

A+B+D A+B

(A+B)+C 4 D C*D

(A+B)*C+D (A+B)*C

(A*B)+(C*D) C*D

A4(B+C*D)

(A+B)D

(*AC)+D

(A4 B)+D

(A*B)+D

DIVIDE I

DIVIDE 2

Sum of

products

Product of

sums

Sum

Product

A+B Upper

Sum

AB Lower

Sum

B+(C*D)

(A+B)#C

(A4 C)+B

C*D

C+D

C+D Upoer

Sum

C+D Lower

Sum

ICONTROL DATA I E N G I N E E R I N G NO. ±0354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 129

REV.
A

---------------------- R A D 	L -----------------------------

3.2.1.160 (Cont.)

FieILI 	 Function- Codesand_ ann

Code ARBus A2

iA A+B Upper CNO Unoer

Sum Product

iB A+B Lower C*D Lower

Sum Product

iC A*B Upper C*O Upoer

Product Product

10 A*8 Lower C4 D Lower

Product Product

C,D,E,F 	Source busses o Source ± (Sj)\

for AB,C&t i Source 2 (S2)/from

streams Mao

Unit

2 Read Buffer i (RBi)--
3 Read Buffer 2 (RB2)--I

v

from

Buffer

Unit

G Round/No round 	 0 No round results

I Round results

H,J 	 Complement B,0 0 No comlement

j. Complement operands

K 	 Null field must be zero

LM Select result 0 0o not select
busses to buffer arithmetic result to

buffer
(L=ARi select, ± Select arithmetic
M=AR2 select) result to buffer

N Write Bus i select 0 No select

i Select ARJ to Write

Bus 1

2 Select AR2 to Write

Bus 1

3 Illegal

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 130

REV. A

-- ----------------------- RADL------------------------------

3.2.1.160 (Cant.)

Example:

The Vector Unit has four inout busses and three

output busses associated with it.

The busses are:

S1 Source I from the-Map Unit

32 Source 2 from the Mao Unit

RB1 Read Buffer J from the Buffer Unit

R82 Read Buffer 2 from the Buffer Unit

AR1 Arithmetic Result J --to the Buffer Unit

AR2 Arithmetic Result 2 --to the Buffer Unit

W1 WRITE j --to the Map Unit

(either output AR1 or AR2 can be selected

into the write bus trunk)

The contents of the internal busses ARt and AR2 are

defined by the suboperation field B in the

instruction. A simple vector add utilizing data from

Main Memory (via the Map Unit) and placing results

back into Main Memory (via the Map Unit) requires a

suofunction code of 2, with source operands into A

and B selected from Si and S2 respectively and with

the AR output sent to Wi. The resulting instruction

would appear as:

9F021101 with the fi"elds broken down as

follows:

A=SF Vector arithmetic

B=02 Select AB and C+D to ARt and AR2

respectively

0=0 A source from Si

0=j B source from S2

E=0 C source from Si

F=j D source from S2

(C and D are unused In this

example but necessary to activate

the error checking)

G,H

J=0, No complement, no rounding

K=O Must be zero

L9M=0 Do not select ARt

or AR2 to buffer ports

N=j Select ARt (which will contain

A+B) into WRITE ±

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
I '- DATE Dec. 1977
I Corporation I S P E C I F I C A TI O N PAGE 131

REV. A

---------------------- R A O L--:---------------------------

3.2.1.i60 (Cont.)

Note that identical input selections into the A,C and

B,D operands, and identical functions A+3 and C+D,

cause an automatic checking of the two adder outputs.

In addition, the outputs of the multipliers, though

idle, are compared for error checking during the

processing of the addition operations.

3.2.1.161 AO ILLEGAL

3.2.1.162 Al ILLEGAL

3.2.1.163 A2 ILLEGAL

3.2.1.164 A3 ILLEGAL

3.2.1.165 A4 ILLEGAL

3.2.1.166 A5 ILLEGAL

3.2.1.167 A6 ILLEGAL

3.2.1.168 A7 ILLEGAL

3.2.1.169 A8 ILLEGAL

3.2.1.170 A9 ILLEGAL

3.2.1.171 AA ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. ±0354636

I ------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 132

REV. A

--------------------- R A D L

3.2.1.172 AB ILLEGAL

3.2.1.173 AC ILLEGAL

3.2.1.174 AD ILLEGAL

3.2.1.175 AE ILLEGAL

3.2.1.176 AF ILLEGAL

3.2.1.177 Bo C E BR COMPARE-INTEGER, BRANCH IF (A)

+ (X) EQ (Z)

(A)
3.2.1.178 81 C E BR COMPARE INTEGER, BRANCH IF

+ (X) -NE (Z)

3.2.1.179 82 C E BR COMPARE INTEGER, BRANCH IF (A)

+ (X) GE (Z)

3.2.1.180 63 C E BR COMPARE INTEGER, BRANCH IF (A)

+ (X) LT (Q)

3.2.1.181 B4 C E BR COMPARE INTEGER, BRANCH IF (A)

+ X) LE (Z)

3.2.1.182 85 C E BR COMPARE INTEGER, BRANCH IF (A)

+ (X) GT (Z)

If bit 0 of the G designator Is cleared/set,

registers A, X, C and Z are 64/32 bits respectively.

Registers B and Y are always 64 bits.

G bits J and 2 must be set to zero.

(continued)

ICONTROL DATA I E N G I N E E R I N G 	 NO. 1035463,6

I------------- I 	 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N 	 PAGE 133

REV. A

----------------------- R A 0 L------------------------------

3.2.1.182 (Cont.)

These instructions are executed in the following 5

steos;

1. 	Form the sum of the 48-bit (24-bit if G bit 0 =
j) integers from the right-most portion of
registers A and X, ignoring overflows. If
designators A and/or X equal zero, machine zero
will be supplied.

2. 	 Read register Z. If the Z designator is equal to

zero compare against 48 zeros (24 zeros if G bit

O = j) may be made.

3. 	Store the following in register C:

o 	The sum from step ± is stored into the

right-most 48 bits (24 bits if G bit 0 = 1) of

register C.

a 	 The left-most 16 bits (8 bits if G bit 0 = 1)

of register A are copied into the left-most

portion of register C.

4. 	Compare the sum formed in step i with register Z

as follows:

o 	G bit 3 = 0 The integers compared are the
48-bit (2.4 bits if G bit 0 = E)
result of step 1 and the

right-most 48 bIts (24 bits if G

bit 0 = 1) read from register

in 	step 2.

o 	G bit 3 = 1 The integers compared are the 64
bits that are stored into
register C in step 3 and 64 bits
read from register Z in sten 2.

This compare is defined only for
the 80 and BE instructions (EQ
and NEI.

When both G bit 0 and G bit 3 are
± the instructions are undefined.

(continued)

REPRODUOcmILny op.V
ORIGINAL PAGE 1S POOR

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 134

REV. A

-------------------- R A D L -----------------------------

3.2.1.182 (Cont.)

o 	 G bit 4 = 0 The integers compared are

interpreted as signed twoos

complement numbers.

o 	 G bit 4 = I The integers compared are

interpreted as unsigned numbers.

The following table indicates the ordering of numbers

from largest to smallest as controlled by G bit 4.

1 0 	 1 ±
I 	 0 I I

ILargest I7F -------- FF IFF -------- FF

I I 7F -------- FE 1FF -------- FE I

I 00 -------- 0i 1 80 -------- 01 I

I I -------- 0 80 -------- 00 1
1 00 an

1 FF -------- FF I7F F--------F'

ISmallest 80 -------- 01 1 0 0--------01

I I80 O0 00 1
O----------00-------

5.. 	 If the specified compare condition is met the

instruction performs as followst

a G bit 5 = 0 	 Branch to the address formed by

adding the half-word item count

from register Y left shifted 5

places-to the base address from

register B.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S-- !DATE Dec. ±977

I Corporation I S P E C I F I C A T I 0 N PAGE 135

REV. A

----------------------- R A D L------------------------------

3.2.1.182 (Cont.)

o 	 G bit 5 = I Branch to the address formed by
adding (G bit 6 = 0). or
subtracting (G bit 6 = J) the
half-word item counts from the B
and Y designators (16 bits),
left shifted 5 places, to the

program address of this

instruction.

If the specified compare condition is not met, the

instructions will continue execution at the next

sequential instruction.

If any of the following conditions occur, the

operation of these instructions is undefined.

o G bit 0 = 1 and G bit 3 = i

o G bit 3 = 1 for 82, B3, 84 and 85

" G bit 5 : 0 and G bit 6 = I

The CDC FiP has exoanded caoabilities for the BO

through 85 instructions implemented by means of G

bit 0 through 3 combinations.

Bo C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) EQ (Z)
B C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) NE (Z),
92 C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) GE (Z)
83 C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) LT (Q)
B4 C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) LE (Z)
B5 C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) GT (Z)

If bit 0 of the G designator Is cleared/set,

registers A, X, Y, C and Z are 64/32 bits

respectively. Register B is not used and must be

set to zero.

G bit i = 0 and 	GSbit 2 = I

These instructions are executed In 5 steos of which

the first four (compare) steps are identical to the

first four steps described for 80 through B5

instructions with G bits 1 and 2 equal to zero

(comoare branch)

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S ------ I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 136

REV. A

------------------------------RADL -----------------------------

3.2.1.182 (Cont.)

If the specified compare condition Is, met the

instruction performs as follows:

Store into register Y and 64-bit quantity
(32-bit if G bit 0 =) 000---001 and
continue execution at the next sequential
instruction.

If the specified compare condition js not met, the

instruction oerforms as follows:

Store into register Y and 64-bit quantity

(32-bit if G bit 0 = J) 000---000 and

continue execution at the next sequential

Instruction.

If any of the following conditions occur, the

operation of these instructions is undefined:

o G bit 0 = i and G bit 3 = ±

o G bit 3 1 for 82, B3, B4 and B5

o G bit 5 1, G bit 6 = ± or G bit 7 = I

o The C designator is equal to the Z designator

BO C E BR COM 0 ARE F.P., BRANCH IF (A) + (X) EQ (X)
B C E BR COMPARE F.P., BRANCH IF (A) + (X) NE (X
82 C E BR COMPARE F.P., BRANCH IF (A) + (X) GE (X
83 C E BR COMPARE F.P., BRANCH IF (A) + (X) LT (X)
B4 C E BR COMPARE F.P., BRANCH IF (A) + (X) LE (X)
B5 C E BR COMPARE F.P., BRANCH IF (A) + (X) GT (X)

If bit 0 of the G designator is cleared/set,

registers A and X are 64/32 bits respectively.

Registers B and Y are always 64 bits. Registers C

and Z are not used and must be set to zero.

G bit I = I and G bit 2 = 0

These instructions compare the to floating-point

operands from registers A and X according to the

floating-point compare rules in Section 3.1.4.5.

(continued)

O ffrN MAOF T"
ORIGINAL PAtAE IS POMl-b

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
S-----I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 137

REV. A

- ---------------------- A0L L-----
A -----------------------------

3.2.i.182 (Cor,.)

If the specified compare condi'tion .1a met, the

instructions perform as follows:

o G bit 5 = 0 Branch to the address formed by
adding the half-word item count from
register Y, left shifted 5 places,
to the base address from register B.

" G bit 5 = j Branch to the address formed by
adding (G bit 6 = 0) or subtracting
(G bit 6 = j) the half-word item
counts from the 8 and Y designators
16 bits), left shifted 5 pl'aces, to
the program address of this
instruction.

If the specified compare condition ja not met, the

instructions will continue execution at the next

sequential instruction.

If any of the following conditions occur, the

operation of these instructions is undefined:

o G bit 3 = 1, G bit 4 =-I or G bit 7 = 1

o Designator Z and/or C not equal to zero

o G bit 5 = a and G bit 6 = 1

Data Flag! bit 46.

BG C E NT COMPARE F.P, SET CONDITION IF (A) + (X) EQ Q)

BE C E NT COMPARE F.P, SET CONDITION IF (A) + X) NE (Z)

82 C E NT COMPARE F.P, SET CONDITION IF (A) + (X) GE (Z)

83 C E NT COMPARE F.P, SET CONDITION IF (A) + (X) LT (Z)

84 C E NT COMPARE F.P, SET CONDITION IF (A) + (X) LE (Z)

95 C E NT COMPARE F.P, SET CONDITION IF (A) + (X) GT (Z)

If bit a of the G designator is cleared/set,

registers A, X, and Y are 64/32 bits resoectively.

Registers B, C and Z are not used and must be set to

zero.

(continued)

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I -------------I DATE Dec. 1977

I Corporation I S P E C I FT1 C A T I 0 N PAGE 138

REV. A

- ------------------------ R A D L-------------------------------

3.2.1.182 (Cont.)

G bit 1 = I and G bit 2 = 1

These instructions compare the two floating-point

ooerands from registers A and X according to the

floating-point compare rules in Section 3.1.4.5.

If the specified compare condition is met the

instruction performs as- follows:

Store into register Y and 64-bit quantity

(32-bit if G bit 0 = 1) 000---000 and continue

execution at the next sequential instruction.

If the specified compare condition iL not met, the

instruction performs as follows:

Store into register Y the 64-bit quantity
(32-bit if G bit 0 = j) 000---091 and continue
execution at the next sequential instruction.

If any of the following conditions occur, the

operation of these instructions is undefined:

o Any one of G bits 3 through -7 is set

o Designators 8, Z and/or C are not equal to zero

Data Flag? bit 46.

ICONTROL DATA I E N G I N E E R I N-G NO. 10354636

I------------- I GATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 139

REV. A

---------------------- R0L--R 	 ----------------A D-------------

3.2.1.183 	 B6 5 NA BR BRANCH TO IMMEDIATE AODRESSU(R)+I(48

<BITS)

The right-most 48 bits of register R contain an item

count of half-words. The right-most 48 bits of the

instruction word contain an immediate operand which

is used as a base address. An unconditional branch

is taken to the branch address formed by adding the

item count to the base address (the item count is

shifted left 5 places before the addition and

overflow, if any, is ignored).

A direct branch is taken to the base address from the

instruction word if the R designator is zero or if

the right-most 43 bits of register R are zeros.

3.2.1.184 B7 ILLEGAL

3.2.1.185 B8 ILLEGAL

3.2.1.186 B9 ILLEGAL

3.2.1.187 BA ILLEGAL

3.2.1.188 BB ILLEGAL

3.2.1.189 BC ILLEGAL

3.2.1.190 BO ILLEGAL

3.2.1.191 BE 5 64 IN 	ENTER (R) WITH 1(48 BITS)

Clear register R and transfer the right-most 48 bits

of this instruction to the right-most 48 bits of

register R.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 140
.....- REV. A

------ --------------- R A O L -----------------------------

3.2.1.192 BF 5 64 IN INCREASE (R) BY 1(48 BITS)

Replace the right-most 48 bits of register R by the

sum of those bits and the right-most 48 bits of this

instruction word. Arithmetic overflow is ignored.

3.2.1.193 CO ILLEGAL

3.2.1.194 Cj ILLEGAL

3.2.1.195 C2 ILLEGAL

3.2.1-196 C3 ILLEGAL

3.2.1.197 04 ILLEGAL

3,2.1.198 05 ILLEGAL

3.2.1.199 C6 ILLEGAL

3-2.1.200 C7 ILLEGAL

3.2.1.201 C8 ILLEGAL

3.2.1.202 C9 ILLEGAL

3.2.1.203 CA ILLEGAL

3.2.1.204 CS ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
i ----- I I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 141

REV. A

--- ------------------- -R A D L------------------------------

3.2.1.205 CC ILLEGAL

3.2.1.206 CO 5 32 IN HALF-WORD ENTER (R) WITH 1(24 BITS)

Cl-ear register R and transfer the right-most 24 bits

of this instruction to the right-most 24 bits of

register R.

3.2.1.207 CE 5 32 IN HALF-WORD INCREASE (R) BY 1(24 BITS)

Replace the right-most 24 bits of register R by the

sum of those bits and the right-most 24 bits of this

instruction word. Arithmetic overflow is ignored.

3.2.1.208 CF ILLEGAL

3.2.1.209 00 ILLEGAL

3.2.1.210 0± ILLEGAL

3.2.1.211 02 ILLEGAL

3.2.i.212 03 ILLEGAL

3.2.1.213 04 ILLEGAL

3.2.1.2i4 05 ILLEGAL

3.2.1.215 D6 ILLEGAL

3.2.1.216 07 ILLEGAL

3.2-.1.217 08 ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I I -------------DATE Dec. 1977
I Corporation i S P E C I F I C A T I 0 N PAGE 142

REV. A

--------------------------- R A O L- -----------------------------

3.2.1.218 D9 ILLEGAL

3.2.1.219 DA ILLEGAL

3.2.1.220 0B ILLEGAL

3.2.1.221 DC ILLEGAL

3.2.1.222 OD ILLEGAL

------- ------------------------------

!CONTROL DATA I E N G I N E E R'I N G No. 10354636
- I DATE Oec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE ±43

3.2.1.223 DE ILLEGAL

3.2.1.224 OF ILLEGAL

3.2..225 EG ILLEGAL

3.2.1.226 El ILLEGAL

3.2.1.2?7 E2 ILLEGAL

3.2.1.228 E3 ILLEGAL

3 .2 .1. 2 2 9 E4 ILLEGAL

3.2.1.230 E5 ILLEGAL

3.2.1.231 E6 ILLEGAL

3.2.1.232 E7 ILLEGAL

3.2.1.233 ES ILLEGAL

3.2.1.234 E9 ILLEGAL

3.2.1.235 EA ILLEGAL

3.2.1.236 EB ILLEGAL

3.2.1.237 EC ILLEGAL

3.2.1.238 ED ILLEGAL

3.2.1.239 EE ILLEGAL

3.2.1.240 EF ILLEGAL

REV. A

RADL

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
...... - I DATE Dec. 1977

I Corporation I S P E C I F I C A 7 I 0 N PAGE 144
.......... - REV. A

------------------------------ RADL -----------------------

3.2.1.241 F0 ILLEGAL

3.2.1.242 F1 ILLEGAL

3.2.1.243 F2 ILLEGAL

3.2.1.244 F3 ILLEGAL

3.2.1.245 F4 ILLEGAL

3,2.1.246 F5 ILLEGAL

3.2.1.247 F6 ILLEGAL

3.2.1.248 F7 ILLEGAL

3.2.1.249 F8 ILLEGAL

3.2.1.250 F9 ILLEGAL

3.2.1.25i FA ILLEGAL

3.2.1.252 -FB ILLEGAL

3-2o.1253 FC ILLEGAL

3.2.1.254 FD ILLEGAL

3.2.1.255 FE ILLEGAL

3.2.1.256 FF ILLEGAL

ICONTROL DATA I E N G I N E E R I N G NO. i0354636

I------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 145

REV.
A

----------------------- R A D L------------------------------

3.2.2 Instruction Execution Times

Instruction execution times are to be included in the

appropriate machine description specifications. See

Section 2.0.

4.0 TEST REQUIREMENTS (not applicable)

5.0 PREPARATION FOR DELIVERY (not applicable)

6.0 NOTES

6.1 ASCII/EBCDIC Reference Charts

The following table defines the control characters used in the

ASCII Reference Chart.

INUL Null IDLE Data Link Escape (CC)

II I
ISOH Start of Heading (CC) lOCI Device Control J
I

ISTX Start of Text (CC) IDC2 Device Control.

I I I

IETX End of Text (CC) 10C3 Device Control 3

IEOT End of Transmission (CC) IDC4 Device Control 4 (Stoc) I

III

lENQ Enquiry (CC) INAK Negative Acknowledge (CC) I

II I

lACK Acknowledge (CC) ISYN Synchronous Idle (CC)

III

IBEL Bell (audible or lETS End of Transmission Block I

I attention signal) I (CC)

II I

IBS Backspace (FE) ICAN Cancel

I I I

IHT Horizontal Tabulation tEM End of Medium

I (punched card skip (FE) I I

I I I

ILF Line Feed (FE) ISUB Substitute

NOTE: (CC) Communication Control
(FE) Format Effector
(IS) Information Separator

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
------------- DATE Dec. 1-977
I Corporation I S P E C I F I C A T I 0 N PAGE 146

REV. A

- ----------------------- R A L------------------------------

6.1 (Cont.')

I I

IVT Vertical Tabulation (FE) IESC Escape-
I I
IFF
I

Form Feed (FE) IFS
I

File Separator (IS) I
I

ICR
*

Carriage Return (FE) IGS Group Separator (IS) I
I

ISO Shift Out IRS Record Separator (IS)
I I I
ISI Shift In IUS Unit Separator (IS) I
I I 1
I :DEL Delete

NOTE: 	 (CC) Communication Control

(FE) Format Effector

(IS) Information Separator

1~

In the strict sense, DEL is not a control character.

(cont inued)

AMERICAN NATIONAL STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII) WITH PUNCHED CARD CODES AND EOCDIC TRANSLATION 	 0 1 I
o~~ 	 ~ o0ID0 1o

A. 	 0 _0 A t I 01 I IV I
O 00 00 1 01 10 0 00 1 0 1] t I

0 I 0 	 0 100 1I a IIC)

13 b, I,0 t 2 3 4 5 a 7 a 9 It It 12 14
RwA (At 'I01 £I soC ICIFC 	 .-

NUL OLE SoP 0 P p

0 0 0 0 0 12-0-0-0-I 12-11-0-0-1 no 1alcI 0 08-4 11- B-I 12 11-1 11-0 9.-I 12-I 0-o
 s-I 12-0-9.1 12-11 9 8 12-11-0-96 12 I11B- 12 II O $1 11 119I 4

NUL DO00LE 	 tO SP 400 FO000 I 0C1 I A
C p 07 7 I , 7 iS 20 30 41 76; -1F on1 i,.

7 i 	 -0 111

0 0 a 2- - 1 1-0- 1287 I 12-t I-8 12-0-1 12-11-11 0.. 9-1 12-0-9-2 I B-I 1211 09.1 111 0 I1 12 II09 I2 I1 9 0.5SO" 010CI II I 4F Fl ACI 00a 811 (90O 0 21 31 42 Is 11 AD 00 Il)
R

SrX 0C2 2 0 1
12-9-2 11 9-2 8 7 2 12-2 I-C 2-0-2 12-11-0 110 1-2 1t-0-2 2 a10, 12 112 1.2 0 i0-9-2 12 0-9) . 11 0 2 "0 ? "

STX 02 DC2 12 71 F2 3 C2 I D'J 822' 9FS 22 CC IA 41 6J2 - AlI IA

E1X 0C3 = 3 C S 1V)

0 0 1 1 3 12-9-3 11-0-3 8-3 3 12-3 0-2 12-0-3 I1-0-2 0 9-3 9-3 .2-0-9-4 1-0 9-3 12-0-U-I 11-041I 3 12-It 0 11 1 12 11 9 0 7

CTX 03 TM 	 13 =-- 70 F3 CC3 , 2 03 42 23 33 44 3 0A0r A fTl
EOT DC4 S 4 D T I

04 00 - 0-4 { t1"8-3 44 12-4 0-3 12-0-4 11-0-a 0-9-4 0-4 12-0-9-6
 11-0-0-4 2.0 u 2 11-0.8 4 12 It10-84 I..0-0 8-2
COT 37 DC4 3C S BE 4 F4 4 T E3 a 84 A BYP 24 PN 34 45 04 BA AC 1C EA Zm
ENO NAK % 5 6 U ,0 I 0 I 5 	 0.9-8-5 98.5 0-8-4 6 12- 0-4 12-0-5 :11-0-4 11-9-5 9.5 12-0-06 I11-0 0-5 12-043-3 11-0.8-5 12-11-0 8-5 11-0-0.3 IC

END0 0 NAK JD I 6C 5 F5 E C5 U E4 85 1* A4 NL 15 HS 35 4C
 65 0B AD 00 CIACK svN 7- 6 T

0 1 I 0 0 	 0-9-8-6 92 12 0 12- 0-0 12-0-6 11-0-1 12-0-0 0012 009 11-0.3 6 12-0-8-4 II 0 06 12-11-0 B-1, 11 0-0814

ACK 2C SN 32 & O 6 F FC6 V E5 S i AS LC IsUC 30 40 66 lIc
 AE BE d E.

BEL T 7 I W 9

0 1 I I 7 0-0-0-7 0-.6 8-5 7 12-7 0-6 12-0-7 -0-0 1-.4 12-0-8 12-0-90B 11-0 0-) 12-0-0-5 1100a 2 11-084 1i0.-90$..

0EL 2F IETD 	 26 70 ? F7 GC7WEG B 7 A :L 17 I.C o0 481 67 01) At Or ED H.
US CAN a, It X 1,011.00 a290-8 I II1-9-8 12.0.5 0R01 2- -7 0.0-0 0.0 12-0-I 11-0-0-S 12.01-. 12-11-0-8-1 12 0-0-82 It 0-9 0-6OS 16, CN 	 10I 40 8 Fi NCR E7 88 AI 28 3 40 ED 6 IlII n0 CA CE '1
HT EM I I r

1 0 9 	 12-9-5 0 11-9G-'I 11-0-5 0 12-0.1-8 2-0-0 t10-0 0-0-0-I 9.8-I 12-11-91 0 B-I1 12.0-0. 12 11-0-1 12.0 98-3 11.0-9-B-7
HT 06 EM 19 1 50 9 Fe I CO Y ED , 89 A 29 39 51 60 or cI Elco

0 09-b00 I F 9.0-7 11--4, 0-2 Il- 0-0 12-Il-I 11-0-0 0-0-0-2 9-8-2 12-11 6-2 12 11-0 12-11-8-1 12-11-0-2 12 0-0-8]-4 12-11-0-0 0-2At LF 26 WIT F 5c 7A 3 D, 2 ED 91l As0 SM 2A 3A 52 10 90 B2 CCIncc] V&D FA

I 0 I l 	 12-0-0-3 0-9-7 12-86 11-- I-2 128 2 12-11-2 2 0 0-0-0-3 0 -3 17-11-9-3 12-II-0.9-t 12-11-02 12-11 0-3 12-0-0.0-5 12-110-.-a-3

VT 0 ESC 27 4 6 It2 4A k 02 g CO LU2 2B CU3 30 53 71 9A U3 Cu ro0
 a)
FF FS < L L {

I I 0 0 12-0-8-4 	 119-0-4 0--3 12-0-4 11-3 0-8-2 12-11-3 12-11I 0-0--4 12-0-4 12-11-9-4 12 1I 0-0-2 12 11-11-3 12-11-0-4 12 0-0-0- 12 1t-0-04 z

IFS - L03 I 0193 6A S PF 4 -290 CC rC

CRPFr aC 	 IC 6 < 4C 12 E05 II CO 2C - 04I 04 Y

) 12-908-5 1-0-1- II 86 11-4 110 2 12-.114 II 0 129--.I 11-0-4 12-11 9-6 12-11-0-93 12-11-0-4 t-t1-0-5 11-0-9 8-7 12-11 0-9-8 59 4
E 0D 0 n 	 10 - 60 - 7EM M004A 5A', 4 0 1RES '14 15 53 Cj B., CF CO

0 14 	 so 12-8-3 0-8-5
6

i t-5 11 B 7 12 11-5 110-1 12-9-0-2 9-8-6 ___ 12-11-9-6 12-11-0-9 4 12-11-0 5 12-I1 0-6 12-II.0-0-2 12 11-0-0 0-0CI 1 20-9-86 11-0-0
0 01 1E 40 > 6E NO5 F 95 . Al SMM OA 3E so 54 01U 0D

15 S,
- 9 - 8 	 ISLUSUS /1 1 11- 6.8- 712-1.6 010I 0 -V 0 .. *1. ...- 0Z1 2 0) 7 0-3 V0.--1 0-.-7 1 I6 0-8-6G 2.,, 0 12-0-7 11-90-0 3 ,1-0.0- 1 12-11-09 1 12-11 - -11-0 -7 12, -9-8-3 2 11 -- 7 , OF iU) 	 P 61 F 000G 0 01E 0 CUI is LI-0 	 07 57 0o al 0 r> I > 0

___ __ ______I CCITT_ -- -

LEGEND ASCII Ch.ractor

td0

CBCCUC
Char Cr

EBCDIC
Code -r

IN dm1
11-8-2~-~td

I I- I-') I
I 1I 10 1

EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE (EACDIC) WITH PUNCHED CARD CODES AND ASCII TRANSLATION I 1O. I

o oB ° I 	 ° 1_00 	 0
0 6 ° 0 0 0I 0 t 	 I 1010I0 	 I 0 0 1 I1I i" rI

BIS10 0 ,a o 	 0 I 09o 2 9 ,I 0 0 0 I I00 I 1,00o 0, too0 I i I Id ~II-,
02TS 1ST

2EX 0 1 2 3 4 5 0 7 0 A a C 0 0 r 9

4 5 0 7 2NO 10) 111 021 (31 (141 (151 1 01-41

NUL OLE us S0 &

a000 0 12-099I1-198I1---- 1108 po 2.
09.8.I 1 1 1 11-0-9-0;1 -o lut'h 17 it 12-11-0 120--I 12-11-8-I 11-0-8- 0 11-0 0.0-2 a	 ~>12-11 0-8-1 12.0SUL.O DLE 0 80 00SP 20 26. 20 BA C3 CA DI DO 7D SC 0 Josn

50l DCI SOS
 A I

0 129-1 11-0- I 092 I 91 1209-1 12-11-0-1 0-I 12-11-09-1 12-0-1 i-, A 11-0-I 12-11-0-I 12.1 1-_ 11-0-9.1

II 01 	 00 USA 412 44 9, I 31504 01 00t 81 /20 AS' 21' 61 A 7
STX 002 VS SYN 12-11-0-9-2 12-0 2 12-11-2 11.0.2 12-11-0-2 8 I1.- 0-2 2

STX 02 0C2 12 825YN 16 Al AA 02 BO b 62 k Gos 73 DA B 47 K 4HS

00 0 2 	 12-0 .3 11-9-2 0-9-2 9-2 12-0-0-2 2-11-0-2 11-0-9-2 2.

53 2 32
T)X Tat
 o I 	 C L T 30 0 I I 3 	 12-0-3 11-9-3 0.-3 9-3 12-0-0-3 12-11.-03 11-0.93 12-11.0-9-3 12-0-3 211-3 -0-3 12-11-0-3 12-3 11-3 0-3 3 I
STY 03 DC3 13 83 93 A2 AD 83;De 63 00
 74 D C 43 . 4C 54 3 33 I
PF 2E0 gyP pM u 0 M U 44 ID m0 I 0 0 4 12-9-4 11.0-4 09-4 0-4 I20-9-4 12-11-9-4 11-0-9.4 12-11-0-9-4 2-0-4 12.11-4 t1-0-4 12-l.0-4 12-4

50 90 84 04 A3 AC 864 E B r4m 60 u 75 tO D 44 m 40 U 55 4 34 1

NTLF asFz	 1 E N v 5 1

0 0 I 5 B 	 120-9-511-0-s 0-9-S 05 22-9-5 1221-95 11-0-9-5 12-11-0-9-5 12-0- 12-11-5 11-0-S 12110-5 12.5 I-IIDnE 5lIT 00 - OS LF 0OA 05 A24 At 85 OF. 5 65n 00' 26 00 45MN 4E V 50 5 35C) 	 C
0 I I 0 8C 00 9C.IC 	 12.0.6 12-116 1100.1 12.11-0-0 12.6 11- 0-6 0

66 CS 08 TB So 120- A AE 0O9-6 66 o w 77 BE F 46 0 4F W 57 6 36

01 I I 7 	 12-9-2 =9.2 0-0-2 9-7 220-0-7 12-11-0-7 11.0-9-7 12-11-0-9-7 12-0-7 12-11-7 11-0-7 12-11.0-7 12-7 22- 0 7 	 11 ZDEL IF 97 ESC BO EOT 04 As AF 0, Cl g 67 p 70 i8 OF O 41 V SO x 5D 37
DE CAN
 I 0 	 1 0 y 812-9-B 11-0-9 0-0-8 0.- 22-0-0-8 12-2 29-S 1I-0-0-8 12-11.0-94 120-08 12-11-. 11-0.8 12-11-0.8 12.8 11.1 04H

910AN 8 81 00 A7 0o 88 C2 h W I I
 79 04 48 51 Y 098 31

0 9 2--- E40-9--I 0--8-2098' B 09-.-.- 12-.-I1.. 0-8-I 8I 22-0-0 12-11-9 11-0-9 12-11-0-0 12.9 ,11 0-9
8 2 099, 	 60 69 , 7 , 7A ElI 49 52 Z SA 30

1010 A SMIM ccOm-152 SM I0 	 --- 1--4 --- 9 - IVSII2 0tI 0 ,110 .2-9-8.2 1-9-8-2 0-.-8-2 9-8-2 12-8.2 11.8-2 12-I I 82 2-0-8-2 12-1.8-2 11-0.8-2 ,2-1-0-8-2 12-0-9-8-2 12-1,-9.8-2 11-0-9-0-2 12.110.9.8-2
CA 	 AC 10 E8 C F4 FA . 48E 02 9/4 I8 5D 3I 04 02 E2

B VT C1Ul 0U2 CU3

2l-' 12-9-8.3 11.9-8.3 0.-0B. 12-8-3 0-8-3 22-0-8-3 22-0-8-3 12-0-0.-3 9-8-3 11.8-3 8-2 12-II-B-S 12-11-0-8-S 12.1-10.0-S 11-00998-3 2-.I-00-o8-S

VT 0 OF 88 90 2E 24 2 23 CS CC 03 C3 CC EF r5 to H z
rF IFS Ra4 < % 0 J, d

I I 0 0 2222 	 12-98-4 119-0-4 0-9-8-4 9.8=4 12-6.4 11-8-4 0-0-4 8-4 12-0-8-4 12-11.84 11-0-4 12-110-9.4 12-0-9-8-a 12-11-9-8-4 11-0-94-4 12-11-0-9-84 I1FF0 oc 'S IC 8COC4 Ia< 3C 2A % 25 9 40 Cc C 04 04 CA 0 o FC

0 CR IGS ENO NArC I I

113 129-8-5 11-940-5 0.9-8.5 98-5 12-8.5 11-8.5 0--5 8.5 2.0-8-5 12-118-5 11-0-8-5 1-11-0-8-5 12-0-9-3.5 12-11-9-8-5 11-0-9-0-S 1211-0-9-8-z

CR 00 05 IO EN 05 NAK .5 2 8 2D Sr - 27 C1 CE 05 E5 to Fl F, F D

C so 	 ts ACK >I0141 129-8-6 11-9.8-6 0.9.. 	 Y9.8-6 12-8-6 11-8.6 0-8-6 8.6 120-8- O11-0--B12-11-0-8-B 12-0-9-3.6 12-11-9-8.G 1?-I•-0-9-B12-I-96 	 _610.9-88
S0 E FI I0 ACK 06 0- 20 30 > 3E - 30 08 CF 06 06 SC P2 - o1-

F. 'US BEL SUBI
VS.

FII 13-0=8"2 11"0"S-I 0-9-8" 9' 1281
 110877 i0-8-7 8- 220-8-, 12=11.8-1 12-•1I0.8l 17-0-9-3-7 -11-- - 8 -- 9
ai OF U5 'FEL 0 018 IA 2t SE I 3r" 22 CEt10-7 	 0 P V.- c 1 r

LEGEMD 	 F00010 Choroolor I'2>X.0
Card Code I <0D-40< -4

IMITI
"]
LEID B l SDrce
 I :

I1

% CA
ASCII ASCII

Chalacter Code

-IH~a~d .,oaI

td

http:12-�1I0.8l
http:12-11.84

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S -------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 149

........- REV . A

---- ---------------------- R A D L--------------------------------

AMERICAN NATIONAL STANDARD CODE FOR INFORMATION INTERCHANGE

(ASCII) WITH PUNCHED CARD CODES AND EBCDIC TRANSLATION

-0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

0 0 1 1 0 0 1 1 0 0 1 I 0 0

0 1 0 1 0 1 0 I 0 1 0 1 0 1 0 1

b8b7 b6 b5i
1 b3 b b ""'---- 0 1 2 3 4 5 6 7 8 9
 10 11 12 13
 14 15

itI I ROWI 0 2 (A) (B) (C) (D) (E) (F)

0 0 0 0 0 NUL OLE SP 0 cc) P p

0 0 0 1 1 SOH DCI 1 IA 0 q

0010 2 STX DC2 2 B R b r

0 0 11 a ETX OC5 # 5 C S C

0 1 0 0 4 EOT OC4 $ 4 D T d t

01 0 1 5 ENQ NAK. % 5 E .U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEL ETS 7 G W q w

1 0 0 0 8 BS CAN (a H X h Ix

1 0 0 1 9 HT EM) 9 1 Y i y

1 0 1 0 10 (A) LF SUB * Z z

1 0 1 1 11 (B) VT ESC + K k

1 1 0 0 12 (C) FF g FS l< L \ I 'R

11 0 1 13 (D) CR GS -- M] }

1 1 1 0 14 (E) SO RS > N A n "

I I I 15(F) SI US ' ? o DEL

LPAO RODUhGN OF '
OlalGINkL P AGE IS POOPR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
... .------2-I DATE Dec. 1977

I Corporatlon I S P E C I F I C A T I 0 N PAGE 15o
....- REV. A

------------------------R A D L-------------------------------

EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE

(EBCDIC) WITH PUNCHED CARD CODES AND ASCII

TRANSLATION

o 0 0 0 0 0 0 0 1 1 1 1 1 I 1 1

0 0 0 0 1 1 I 1 0 0 0 0 1 I 1 1

o 0 1 1 0 0 I 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Dgbh 5 b4 b5b2 bi ' CL.
__ 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0
ROW_

0 NUL OLE
0000

SP & -
(A) (B) (C)

{
(D)
}

(E) (F)

0 0 0 1 1 SOH DCI/ A I

0 0 1 0 2 STX DC2 SYN b k s B K S 2

0 01 1 3 ETX DC3 C 1 t C L T 3

01 0 0 4 d m u D M U 4
0101 5 HT LF e n v E N V 5

01 1 0 6 BS ETB f o w F 0 W 6

0 1 1 1 7 DEL ESC EOT g p x G P X 7

1 0 0 0 8 CAN h q y H Q Y 8

1 0 01 9 EM I r z I R Z 9

1 01 0 10 (A) I

1 0 1 1 II (B) VT $, #p

1 1 0 0 12 (C) FF FS DC4 < * % @

1 1 0 1 13 (D) CR GS ENO NAK (-) I

1 1 1 0 14 (El SO RS ACK + >

I I 1 1 15 (F) SI US BEL SUB ! A ? EO

ICONTROL DATA I E N G I N E E ,R I N G NO. 10354636

-- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 151

REV. A

- ---------------------- A0L------------------------------
AL-----

APPENDIX A

A1.0 SCOPE

The intent of this Appendix is to provide additional

information regarding some of the characteristics of

the CDC FMP. Further information can be found in

other appropriate specifications. (See Section

2.0, Applicable Documents).

A2.0 SELF-MODIFYING PROGRAMS

The use of self-modifying programs is not allowed.

The following rules which would have to be followed

illustrate why this must be true.

The 	following rules apply to all programs:

j. 	The twenty-four 64-bit words before (having

addresses lower than current instruction word)

and the thirty-two 64-bit words after (having

addresses higher than current instruction word)

the current instruction word shall not be

modified by the current instruction.

2. 	 The twenty-four instructions before (in terms of

order of execution) and the thirty-two

instructions after (in terms of order of

execution) the current instruction word shall

not be- modified by the current instruction.

3. The store Into Main Memory for the 13, 5F,

and 7F instructions may not take place before

the execution of the next instruction in

sequence. Therefore, if these instructions are

used to modify code, it is difficult to

guarantee that the store has taken place before

the execution of that code. There are three

Procedures to guarantee that the store has taken

Place prior to execution of the intended

modified code.

a. 	The execution of any Instruction which

references Main Memory with the exception

of the 12, 13, 32, 5E, 5F, 7E and 7F

instructions. These instructions must be

executed between the store instruction which

modifies the code and the use of that

modified code.

(continued) REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I-	 DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N - PAGE 152
....-	 REV. A

--------------------- R A D L

A2.-O (Cont.)

b. 	The execution of the conditional branch

feature of the 32 instruction between the

store instruction which modifies the code and

the use of that modified code.

C. 	Execution of a load instruction (12, 5E, or

7E) followed by a transmit (78) instruction

where the source register for the 78

instruction conflicts with the destination

register for the load instruction. These

instructions must be executed between the

store instruction which modifies the code and

the use of that modified code.

The 	instructions referenced in a., b. and c.

above must be executed from addresses at least

four swords before or at least three swords after

the modified code.

A3.0 INSTRUCTION STACK

Each machine has a different size instruction stack

thus program optimization must-be approached with

different parameters. Further information is

contained in the appropriate execution timing

specification.

Number ofgrds in Instruction Stack

CDC STAR-jB ± 64-bit word

COD STAR-±OO 32 64-bit words

CDC STAR-iOOA 128 32-bit words

CDC FMP ±28 32-bit words

A4.0 N/A

A5.0 VECTOR FORMATS

In the CDC FMP, a vector is defined as a contiguous

set of bits, bytes or floating-noint operands. The

contiguous set of bits or bytes is called a string,

while the contiguous set of floating-Doint elements

is called an array.

(continued)

ICONTROL -OATA I E N G I N E E R I N G NO. 10354636
S------I DATE Dec. i977
I Corporation I S P E C I F I C A T I 0 N PAGE 153

REV. A

- ----------------------- R-A D L------------------------------

AS.0 (Cont.)

Operands are used in the following vector formats:

Array - a counted, variable-length, contiguous,

floating-point operand field. Vector operations

can be performed on defined fields consisting

entirely of 32-bit operands or entirely of 64-bit

operands.

Index List - a counted data array of integer
values in floating-point format.

A6.0 INVISIBLE PACKAGE

A6.1 Contents of the Invisible Package

The CDC FIP performs as specified with an addition.

Bit 12 of word 8 contains the stall bit. The stall

bit is a 'j" if no data was processed during the last

Job time-slice that resulted In the preparation of

the Invisible package.

A6.2 Program Address Register

The only requirement on the program address stored

into the first location of the invisible package

when program interruption has occurred is that the

computer be able to restart the]ob from the same

point at which the interruption occurred.

The following table is included for information only.

OF THEEPRODVOCBILIT
ORIGWNAL PAGE IS POOR

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
I------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 154

REV. A

--------------------- R A D L -----------------------------

A6.2 (Cont.)

I Interrupt Condition I Program Address Stored I

I In Invisible Package

I--I

I Exit force Instruc- I A + 20

I tion at address A I 16

I in Job Mode. I

I Illegal instruction I A

I with function code I

I less than 80 at I

1 16 1

I address A In I

I Job Mode. I I

I---I .

I Illegal instruction I A I

I with function code I I

I greater than or I

I equal to 80 at I I

1 16 1

I address A in I

I Job Mode. I I

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
1 ------ I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 155

REV. A

------------------------------RADL- -----------------------------

A7.0 DATA FLAGS

A7.1 Soft Interrupt Bit

Monitor software can set bit 35 of a job's data flag

branch register while the register is stored in the

jobus invisible package. If, after exchanging back

to Job mode, bit 35 and Its corresponding mask bit

(bit 19) are set, a normal data flag branch occurs

following completion of the current instruction.

A7.2 Free Data Flags - Bits 56 and 57

The following are the definitions for free data

flags 56, 57, and 58.

Bit 56 - A CPU gate associated with the maintenance
station monttoring counters (See Section 3.6.4..1
of Eng. Spec. 10354637).

Bit 57 - A CPU gate associated with the maintenance
station monitoring counters (see Section 3.6.4.1.1
of Eng. Spec. 10354637).

Bit 	58 - Not used on CDC FMP.

A7.3 Data Flag Branch

The 	automatic data flag branch can occur up to 35

instructions after the instruction which caused it.

The point at which the branch occurs can vary between

executions of the same program as a result of the

asynchronous I/O activity affecting the load/store

operations.

The following points pertain to the use of the data

flag register:

j. 	The contents of the DFR as stored into the

register file by a 3B instruction will

reflect all previous activity on it. Also,

activity prior to the 33 instruction will

not 	affect the new contents of the DFR.

2. 	 AOFS's caused by a 38 instruction or any

instruction previous to it may occur

after the next one or two instructions,

but no later.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

-- I DATE Dec. 1977

I Corporation I S P E C I F I C A T 1 0 PAGE 156

REV. A

----------------------- R A O L------------------------------

A7.3 (Cont.)

3. Sampling or altering a data flag bit with

a 33 instruction may occur out of sequence

with a prev-ous pipeline Instruction up

to 35 instructions earlier.

4. 	 If a 33 Instruction alters a bit which

causes an ADFB, the branch may occur up

to two instructions later, regardless

of the fact that all pipeline instructions

previous to it may have finished;

Again, if the ADFB is also contingent on

the completion of a pipeline instruction,

the automatic data flag branch may occur

up to 35 instructions after the

instruction which caused it.

When registers I, 2 or 4 in the FMP register file are

altered by an instruction, and this instruction is

followed by an automatic flag branch or illegal

monitor instruction branch, the store operation may

happen out of sequence with the .branch operation.

Thus, for example, if a 7E instruction loads register

4 with a certain value, and this instrucion is

followed by an Illegal monitor mode instruction, the

automatic branch will 'be to the address specified by

either the old or new contents of register 4,

depending on the timing of the 7E and the instruction

stream.

A8.O ADDRESS DISCONTINUITIES

When addressing'non-existent areas of memory the FMP

will generate an operand abort.

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

S------I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 157

REV.
A

---------------------------- R A O L- -----------------------------

A9.0 EXTERNAL INTERRUPT BIT ASSIGNMENT

The following chart describes the external interrupt

pit assignments.

-- ---- -- - - - - - - - - - - -- - - - - - - - - - -

I Rfl I (1C FlipI
VI I I
1 0 1 I/O Channel 0
1 1 1 1/0 Channel ±
I 2 I I/0 Channel 2 1
I 3 1 I/O Channel 3

1 4 I I/O Channel 4 1
5 I/O Channel 5

I I/O Channel 6
I 7 I/O Channel 7

--------- I-- I
I 8 1 I/0 Channel "8
I 9 I/0 Channel 9
1 ±0 1 I/O Channel ill

11 I/O Channel i.

1 12 1 I/O Channel 12
1 13' I/0 Channel 13
1 14 I I/O Channel 14
I 15 1 I/O Channel 15
-------- I---------
--I
1 16 I Monitor Interval
117 I Non-Existent
I i83 i A
I 19 I

* I I

1 20 1 I 1

21 1 I

22 1 v

1 23 1 Non-Existent

I----------I--
124 Non-Existent

A

I I * v

1 39 1 Non-Existent

--

--

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
I ------ I DATE Dec. 1977
I Corporation I S P E C I F I C A T I O N PAGE 158

--- REV. A

-- ------------------------ RADL-------------------------------

AjO.0 04 4 64 NT BREAKPOINT - MAINTENANCE

The breakpoint instruction transfers R to the

breakpoint register. The breakpoint register is

used as a maintenance and program debugging aid.

I lUsage I I I

I iBits I Breakpoint Address I

0 8 9 15 16 	 58 59 63

Bits 0-8 and 59-63 are not used.

The breakpoint address is compared with various

addresses such as the current instruction address,

READ I and READ 2 operand addresses, etc. If the

breakpoint address matches one of these addresses

and the proper usage bit is set, bit 47 of the data

flag branch register is set indicating a breakpoint.

Any combination of usage bit is permissible.,

therefore, the breakpoint address can be checked

against any or all of the addresses listed below.

The breakpoint register is part of the Invisible

package of a job.

Breakooint Usage Bits

Bits 9-15 are breakpoint usage bits where if:

a. 	 Bit 9 is set, breakpoint on half-word contents of

the program address register (P) just after the

execution of the instruction at that location.

b. 	 Bit i0 is set, breakpoint on the READ i operand

address for vector, or the read operand on random

addressing instructions.

c. 	 Bit Ii is set, breakpoint on the READ 2 operand

address for a stream instruction.

d. 	 Bit 12 is set, breakpoint on the WRITE I address

for a stream Instruction or the write operand on

a random addressing instruction.

e. 	 Bit J3 is set, breakpoint on the READ 3 control

vector or operand address (mask) for a stream

instruction.

(continued)
 REDTUChTLIGE OI THE

n"T1NTALOPAGE1 POOP,

E N 	G I N E E R I N G NO. 10354636
ICONTROL DATA I

DATE Dec. 1977
j------------ I

S P 	E C I F I C A T I 0 N PAGE 159
I Corporation I

REV. A

----------------------- R A D L-------------------------------

AiO.0 (Cont.)

f. 	Bit 14 is set, breakpoint on the READ I order

vector address.

g. 	Bit 15 is set, breakpoint on the READ 2 order

vector address.

BreakDoint Compares

i. 	When in Job mode or monitor mode, addresses are

compared with breakpoint. Since the monitor

program does not have an Invisible package, the

breakpoint register must be set up each time the

monitor program is entered. The breakpoint

register is automatically cleared to zero during

the exchange to the monitor.

2. 	Program address compares are made on half-word

are made on
boundaries, and all other compares

sword boundaries.

REPODUQ~hm Z p
ORjfiTA 'b SPOOR-AE

ICONTROL DATA I E N G I N E E R I N G NO. 10354636.
I - I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 160

REV. A

--------------------- R A O L --------- -------------------

A4l.0 06 7 NA MN FAULT TEST - MAINTENANCE

This instruction is used to set up modes which

modify certain logic functions in the CPU in order

that the fault sensing circuitry may be checked out.

The instruction is only enabled when bit 13 of word 8

in the Job's invisible package is set (Refer to Eng.

Soec. 10354637); If this bit is a zerog the 06

instruction will act as a no op Instruction.

The instruction is always enabled during monitor

mode.

The modes are set up by executing this instruction

with a "j" in the appropriate R designator bit and

are cleared by executing the instruction with a "0"

in the same bit location.

SECDED FAULTS

The test is initiated by executing an 06 instruction

with any combination of ones in bits 9 through 15 of

the instruction (R designator field) to complement

the respective checkword bits of all half-words

stored In Main Memory via the READ 3 bus. By

appropriate selection of data bits and

comolementation of checkword bits when writing in

memory, one should be able to generate SECDED faults

on all Read buses. This should allow,complete.

checking of the Read SECDED hardware and also the

fault recording hardware for type and address of the

fault.

The forced complementing'f the checkword bits Is

discontinued by executing an 06 instruction with

bits 9 through 15 of the instruction (R designator

field) .set to zero.

(contiVued)

ICONTROL OATA I E N G I N E E R I N G NO. 10354636

----- I DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 161

REV. A

----------------------- R A O L-------------------------------

Aii. O(Cont.)

The 	S and T designators are undefined.

No interrupts or I/O memory requests can be allowed

during the execution of these tests.

A12.0 FLOATING-POINT SUBTRACT

The Instruction Descriptions Soecification

(paragraph 3.1.4.6.3) defines the floating-point

subtract operation as "performed by complementing the

coefficient of the subtrahend and performing a

floating-point addition operation". It is further

added "that the complement of an 8000 0000 000

coefficient is 4000 0000 0000 with one added to the

value of the exponent associated with the

coefficient".

The 	hardware used for floating add or subtract

operations has an extra (or extended) coefficient

sign bit. This means that the complementation of an

8000 coefficient Is handled without the specified

right shift of one and Increase of the exponent by

one. This will cause a result (although not

mathematically incorrect) which may differ from the

specified result when the following conditions are

met:

1. 	The operand of the pair having the large exponent

(OR either of the two operands if their exponents

are equal) must have a coefficient of 8000 --

2. 	This operation must require this same operand to

be complemented due to

a. 	 being the subtrahend in a subtract operation

OR

b. 	 sign control in either a subtract or an add

operation---

3. 	The "other" operand must have a negative

coefficient.

(continued)

--- ------------------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

I------------- I DATE Dec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE 162

REV. A

-------------------- R A D L ------------------------------

A12.0 (Cont.)

Examle I A -B A 60 F F F 0o O
B 64 8 0 0 0 0 0

1 Instruction
CCFPI Specification

Extra Sign Bit I
I I
V I

Complement B 8 1-64 (U) 8 0 0 0 0 0 1 64 8 0 0 0 0 0

->64 (0) 8 0 0 0 	0 0 1 65 4 0 0 0 0 0

Align operand 1-60 (i) F F F 0 0 0 l-60 F F F 0 0 0
with smaller I I
exponent ->64 () F F F F 0 0 ->65 F F F F 8 0

Add A plus A 64 (1) F F F F 0 0 1 65 F F F F 8 0
complement I
of B +B 64 (0) 8 0 0 0 0 0 1 65 4 0 0 0 0 0

6 (0) 7 F F F 0 	0 1 65 3 F F F 8 0

64 7 F F F 0 	 0 165 3 F F F 8 0

Examole II A A 50 F F F 0 0

B 6F 8000 	 00

I Instruction
I Specificatiton

Extra Sign Bit 	 I

II
V

Complement B B 1-6F (1) 8 0 0 0 0 0 1 6F 8 0 0 0 0 0
I

B ->6F (0) 8 a 0 	 o 0 0 1 70 4 0 0 0 0 0

Align operand 1-50 (1) F F F 0 0 0 1 50 F F F 0 0 0

with smaller I I

exponent ->6F ($) F F F F F F 1 70 F F F F F F

Add A plus A 6F (1) F F F F F F 1 70 F F F F F F
complement
of B +B 6F (0) 8 0 0 0 0 0 1 70 4 0 0 0 0 0

6F (0) 7 F F F F F 1 70 3 F F F F F

(continued)

--

NO. 10'354636
ICONTROL DATA I E N G I N E E R I N G

DATE Dec. 1977
I - ------ I

S P E C I F I C A T I 0 N PAGE 163
I Corporation I
 REV. A

----------------------- RAOL------------------------------

Ai2.0 (Cont.)

If this operation is a subtract upper, the specified

result is indefinite (with the appropriate data

CDC FlP result did not overflow. If
flags) while the

this operation were a subtract normalized, note the

followingf

I Instruction
CDC FMP I. -Secificatign

Result of 6F () 7 F F F F F I 70 3 F F F F F
Subtract
Upper I

Normalize the 6F 7 F F F F F I 6F 7 F F F F E
Upper Result
(3.1.4.7)
shifting zeros

A A

I
in from the right

,EPRODUCIBIT OF THE
ORIGINAL PAGE IS POOR

APPENDIX B

FMP FUNCTIONAL

COMPUTER SPECIFICATION

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S------I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE ±

REV.

--------------------------- R A D L- -------------------------

(R)

-COC FLOW MODEL PROCESSOR

Functional 	Computer

Speci f ication

!CONTROL DATA I E N G I N E E R I N G NO. 10354637

! ---- I DATE Dec. 1977

Corporation I S P E C I F I C A T I 0 N PAGE 2

--------------- REV.

----------------------- RADL

TABLE OF CONTENTS

1.0 SCOPE

-2.0 APPLICABLE DOCUMENTS

3.0 REQUIREMENTS

3.1 General Functional Descriotion

3.2 Scalar Processor

3.2o1 Scalar Processor Error Checking

3.2.2 SECDED

3.2.3 Associative (N/Al

3.2.4 Instruction Issue/Decode

3.2.5 Register File

3.2.6 Branch/Instruction Stack

3.2.7 Load/Store

3.2.8 Floating Point

3.2.9 Bounds

3.2.10 Trace Register

3.3 Vector Processor

3.3.1 Vector Floating-Point Ensemble

3.3.2 Buffer Unit

3.3.3 Map Unit

3.4 Main Memory

3.4.j Memory Stack

3.4.2 Memory Configuration

3.4.3 Memory Interchange

3.4.4 Memory Degradation

3.5 I/0 Channels

3.5.1 Data Movement

3i5.2 Error Checking

3.5.3 Addressing

3.5.4 The PDC

3,5.5 The Trunk

3.6 Maintenance Control Unit

3.6.1 MCU/CPU Interface

3.6.2 MCU/Microcode Memory Interface

3.6.3 Microcode Memory Channel Programming

3.6.4 Monitoring System Activity by the MCU

E N G I N E E R I N G NO- 10354637
ICONTROL DATA I
S ------- DATE Dec. 1977

S P E C I F I C A T I 0 N PAGE 3I Corporation I
REV.

----------------------- R~J------- --------------------------RA0L

TABLE OF CONTENTS (Cont.)

3.7 Swap Unit

3.7.1 Data Movement

3.7.2 Error Checking

3.7.3 Addressing

3.7.4 Address Queue and Backing Store Map

3.7.5 Control Signals

3-7.6 Microcode Control Terms

3.7.7 Interface Signals

3.8 Backing Store

3.8.1 Data Movement

3.8.2 Error Checking

3.8.3 Addressing

3.8.4 Control Signals

3.8.5 Interface Signals

3.9 Timing Information

3.9.j Scalar Processor Timing

3.9.2 Vector Processor Timing

3.9.3 Map Unit Timing

3.9.4 Swap Unit Timing

4.0 QUALITY ASSURANCE PROVISIONS (Not Applicable)

5.0 PREPARATION FOR DELIVERY (Not Applicable)

6.0 NOTES

6.1 Intercom

6.2 System Startup

pODOIBILI~y OF THE
oR{INaL'i PAGE 1s POOr

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

.............-- DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 4
REV.

----------------------	 RAO'L--------------------------

1.0 SCOPE

The CDO Flow Model Processor (FlP) Functional

Specification is intended to provide intormai-oof

-_--t-he--f-o-l-l-ow-i-ng-t yp-e'-to-iTer t--he user or maintenance
personnel.

o 	 Information that may be obtained abo6t
computer/program operation via the
Maintenance Control Unit (MCU).

o 	 Changes in mode or operation Internal to the
FMP that may be made via the MCU or
program that are not specified in the FMP
Instruction Specification.

o 	 Information concerning computer operation

that is of value in debugging

software/haroware or in program optimization.

This specification Is not intended fo provide

information as to how a unit performs its specified

tasks such as would normally be found in a Theory of

Goeration.

2.0 APPLICABLE DOCUMENTS

10354636 CDC Flow Model Processor Instruction

Specification

3.0 REQUIREMENTS

3.1 General Functional Description

The Flow Model Processor (FMP) is an extremely high

speed computational system designed specifically for

the solution of flow simulations related to the

design and construction of aerodynamic bodies. It is

based, in part, on the Control Data STAR-ian

architecture, with both Main Memory-and Scalar

Processor design taken from the STAR-jog family. The

resulting basic structure Is augmented by a massive

OF 	THEREPRODUCIBILITY(continued)

ORIG]NAL PAGE IS POOR

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 5

REV.

---------------------------- R A 0 L--------------------------

3.1 (Cont.)

Backing Storage capability (up to 256 million words

of COD memory), a Swap Unit (to perform exchanges

between the Backing Store and the Main Memory), a.

Map Unit (for gathering vector data from Main Memory

and storing results), and a Vector Unit (for the

computatinal portions of the problem solution).

Figure 3.1- shows the overall block diagram of the

FMP.

EXCSANGE R

READ,3BACKING SWAP I MEMORY

256	 OUNIA PTERCHANGESTORE

MILLION 	 W1i

WORDS 	 RES2 $

+ E.C C. FREP 	 C

WRITE 1)R1
ZZ

o
RR2

K 5;1024 12

R(STUCORE)l~OFTH

NEM ORY9 	 VECTO R

UNNIT

I" SERIAL
DATA

I TRUNKS

-----. ---	 REPRODUCIBILITY,/ OF THE
ORIGINAL PAGE IS POOR

Figure 3.-1 Basic CDC FMP Configuration

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i----------I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 6

REV.

--------------------------- RA 0 L

3.1 (Cont.)

Data and programs are entered into t.he FMP via__tJae
Input/Output p ts-- -t-t-a ehed--toi-hh Backing Store.

-- O TI he-various fragments of a job are aggregated in
the Backing Store, 'and the FMP is idle, the job is

"rolled" into the Main Memory via the Swap Unit.

Certain portions of the compuTations, all of the

bookkeeping and all of the FMP's overall control are

accomplished in the Scalar Processor . It is this

processor that interprets the instruction stream,

acts on those instructions which it can, and

distributes the remaining instructions to the

appropriate attached units (Map, Swap, Buffer,

Vector).

The FMP is designed to operate at a minor clock

cycle rate of ten nanoseconds, with all data

transfers, and all pipeline segments capable of

clocking a new data nuantity (32, 6., 128, 512, or

2048 bits wide) every minor cycle. The maximum rate

of arithmetic-results production in the 8 sector

pipelines then becomes 3 (operations peak rate)*2

(32-bit results per piPleline)48(pipelines)=48 per

minor cycle of 1O nanoseconds=4.8 billion

floating-point operations per second.

The Scalar, Map, Swap, and Vector Units are capable

of operating simultaneously so that a majority of

bookkeeping and data mapping (reorganization

functions) can be overlapped with the computation.

This enables the effective rate of problem solution

to approach 60% of the peak rate, or 2.8 billion

operations per second, which exceeds the original

objectives established for Navier-Stokes solutions

for flow field simulations.

Unlike the STAR-iO0, the FMP is designed for

monoprogramming of computational jobs, thus there is

no virtual memory mechanism. All user lobs are

given the use of the entire eight million words of

Main Memory minus the first 65K words which are

reserved for the FMP monitor. This monitor area

cannot be accessed by the job mode programs. A

series of several monitor mode instructions permits

the management and allocation of the Backing Store,

as well as control communications with the I/O

processors attached to the FMP. These I/O

processors, called PDCs (Programmable Device

Controllers), are capable-of intelligent control of

(continued) R PqOUIBGE Po0OF

ORIGINAL PAGE IS PGO

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

! i DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 7
REV.

------------------------------------ RAU0L----------------------------

3.1 (Cont.)

the I/O trunks (up to four attached to each POC) and

intelligent communications with the monitor, as well

as providing 200-megabit data transfer rates between

the Backing Store and the trunks, and from 50 to

100-megabit transfer rate on the actual coax trunks

themselves.

The instruction set for scaler ooerations is a

comoatible subset of the STAR-100 family which

supoorts most STAR software, with the addition of a

few operations made necessary by the unique I/O and

REPRODUCOIBILTYopFTHfacking Store configuration provided on the FMP.

Yhe Map Unit provides execution cepabi lity of the

OWTV1 4, STAR-jO "Iverson" operators of vector
MASK,MERGECOMPRESS and SCATTER/GATHER while the
Vector Unit, in cooperation with the Map Unit,
performs the "Iverson" SELECT, SEARCH, and SEARCH
INDEXED LIST operations. The Map Unit is capable of
performing memory to memory operations while the
Vector Unit is performing buffer to buffer operations
indeoendently. In addition, several combinations of
Memory, Buffer, and Vector Unit operations may be
invoked.

The Vector Unit performs the add, subtract, multiply,

divide operations commonly found on most processors,

in addition to a series of linked and macro

operations oroviding combinations of additions and

multiplications every minor cycle. The set of

linked operations chosen were based on the

characteristics of flow-model simulations that have

been analyzed by Control Data CorporaTion. In

addition to the simple combinations of add/subtract

and multiply, the functions SUM,PRODUCT,SUM OF

PRODUCTS, and -PROOUCT OF SUMS are included for

matrix computations.

To ensure the reliability and maintainability of the

FMP, a number of error checking and recovery

facilities are built in, as well as a group of

maintenance functions which can be invoked by a

designated computer attached to one or more of the

1/0 trunks. Single Error Correction, Double Error

Detection (SECOED) is carried through all data

trunks up to the functional unit actually using the

data. Checking for errors is done at several points

in The data oath (for examole at the Memory, at the

Map Unit, and at the Vector Unit) so that faults can

be quickly isolated, while the error correction is

apolied at the point where the data is used, for

example the input stream of the Vector Unit.

(continued)

N G NO. 10354637]CONTROL DATA I E N G I N E E R I
DATE Dec. 1977i I

S P E C I F I C A T I 0 N PAGE 8I Corporation 1 REV.

------- --------------------- R A 0 L -------------------------

(to be supplied later)

REPRODUjBILTY OF THE
ORLIcINAL PAGE IS POOR

CDC FMP Floor Layout
Figure 3.1-2

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
;--
I Corporation I S P E C I F I C A T I 0 N

DATE Dec. "1977
PAGE 9
REV.

---------------------------- R A 0 L--------------------------

3.2 Scalar Processor

The Scalar Processor Is physically contained in a

cabinet attached to the Vector Processor cabinet.

Main.Memory is attached to the Scalar Processor

cabinet in order to reduce transfer delays and gain

performance.

The Scalar Processor has synchronous internal logic
with a clock period of 10 nanoseconds and is

0 Pimplemented using LSI circuits. A block diagram of

the functional components of the Scalar Processor is

shown in Figure 3.2-1.

The CDC FlP 'instruction control is contained in the

Scalar Processor. The Instruction Issue Unit

consists of two parallel parts, one for the monitor

program and one for the job program; it receives and

decodes all instructions from Main Memory. A

semiconductor instruction stack provides buffering

for eight swords for the Job and one sword for

monitor (512 bits per sword) each of which can

contain up to 128 32-bit instructions or 64 64-bit

instructions or a mixture. The job instruction stack

can contain up to 6 discontiguous swords with two

swords lookahead. The Read Next Sword (RNS) portion

of the RNS/Branch Unit provides the control, for

loading the instruction stack. The Branch-portion

performs branch condition testing and executes the

branch instructions.

The Instruction Issue Unit is pipelined and is

caoable of issuing instructions at the rate of one

instruction every 10 nanoseconds. The Instruction

Issue Unit decodes all instructions and directs

decoded stream instructions to the appropriate

processor for execution. Thus, with independent

vector and scalar instruction controls operating on a

single instruction stream, the Scalar Processor can

execute scalar instructions in parallel with most

stream instructions.

The instruction stack contains eight superwords

(swords) containing 512 bits each. If an

instruction is referenced which is not presently in

the stack, the Issue Unit is halted and a memory

request Is made for the word containing the required

instruction. The sword thence brought from memory

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
------------- i DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 10
REV.

---------------------- R-RA D L- ------------------------

3.2 (Cont.)

must replace one of the swords already in the stack.

The sword that is "thrown aay2L" o-v.exs-i-d--by--t-h-e
o -

.-...- i-n-ofiifg---7r-d-Is the least recently used (LRU)
sword. Thus if words numbered consecutively 0

through 7 have been executed without any intervening

branches, word 8 (reauired by the next consecutive

instruction) would be" brought from memory and

overlaid in the stack in the position originally held

by sword number 0 Nhich, in this case, is the LRU

sword.

(continued)

REPRODUCBILITY OF THE
ORIGINAL PAGE IS POOR

DATA FLAB
ERRORS TO SWAP UNIT

(FROM MAP UNIT) FIRNC

BNC SCALAR
FLOATING POINT

1UNIT

STACK(512 BITS) ISSUENTREGISTER MONITOR I DVD

FILE
(256 x 64

SI WRS)F-M-PLY --

READ 3 O,,
I INSTRUCTION ISTUE

STACK ULOGIL

L - O

GINTERCHANGEG LOAISORSTOREO

TO
MAP UNIT

Figure 3.2-i Scalar Processor Block Diagram

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i- DATE Dec. 1977
I Corporation 1 S P E C i F I C A T I 0 N PAGE

REV.
it

----------------------R~I-------RADL -------------------------

3.2 (Cont.)

The Load/Store Unit provides special handling of the
Load and Store- instructions. The unit acts as a
pipeline and is capable of accepting a new request
rate of one load every minor cycle or one store
every two minor cycles, provided a memory busy

P or register file write-bus busy
does not occur. A circular buffer containing six

p registers provides buffering for up to six load
W) requests, or three store requests, or a mixture of

loads and stores.

< The Load/Store Unit is cacable of loading a randomly
o accessed word of data from Main Memory into the

< Register File in 150 nanoseconds after reading the
base address and item count of the data. This time
assumes a memory busy or register file write-bus busy

Pr does not occur. A memory busy would add up to 40
nanoseconds to the load time.

The Scalar Floating-Point Unit contains completely
indecendent functional elements to attain high scalar
performance. The following are the times in
nanoseconds to produce a 32-bit or 64-bit result In
each functional element. These times corresoond to
the shortstoo times. Shortstop is the process by
which a result from any arithmetic element may be
returned directly to either input of any arithmetic
element. This occurs in parallel with the storing of
the result in the Register File. Shortstop
eliminates the time necessary to store the result in
the Register File and then retrieve it for use in the
next arithmetic operation.

Add/Subtract Pipe 50 ns
Multiply Pipe 50
Sh'ift/Logical Pipe 40
Single Cycle Pipe 10
Divide/SQRT/Convert Element 240

The pipe elements are segmented and capable of
accepting new operands every j0 nanoseconds. The
Divide/SQRT/Convert element must complete each
ooeration before a new one can begin. All elements
are capable of being shortstopped. The Scalar
Processor contains a semiconductor Register File
which provides 256 64-bit registers for use in
instruction and operand addressing, indexing, field
lengths, and as

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I- DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 12
--------------- REV.

---------------------------	 RAOL--------------------------

3.2 (Cont.)

source and destination registers for sca'lar

instruction operands and re-su-ts-.--T-he--Re- -- F-T-Y

---t--ca b-1T--f- two reads and one write every i0

nanoseconds,

3.2.1 Scalar Processor Error Checking

The basic design of the FMP Scalar Processor. is based

on the design of the STAR-10A and STAR-DO0B Scalar

Processors. In these designs (already being

implemented) there exists a moderate amount of error

checking on busses:

a. 	SECDED - Al I data busses in and out of the
Scalar Processor carry seven bits of single
error correction, double error detection
code bits for each 32 bits of data. The

data busses are the Load/Store data bus 64

bits wide), the Instruction Read data bus

(128 bits wide), the Register File exchange

path (128 bits wide each way), and the

Register File data bus to the Map Unit (128

bits wide).

b. 	 Parity - All microcode memories In the Issue

and Floating-Point Units contain parity bit

checking. The microcode carries a parity

bit from the time it is assembled on a

front-end processor, until it is read during

execution in a given unit. A parity fault

causes an immediate stoppage of the CPU, and

an error flag to be sent to the Maintenance

Control Unit (MCU). The instruction stack

contains parity information in like manner.

c. 	 Illogical function - Communication between
the various functional elements of the
Scalar Processor is performed by sequences

of microcode generated function codes, which

are decoded at the receiving end by

microcode. Sufficient entropy has been

included in the function code scheme to

permit some detection of internal control

signal failures.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 1035'4637

i ----- I 	 DATE Dec. 1977

I Corporation I S P E C I F i C A T 1 0 N PAGE j3

--	 REV.

------------------------- R A 0 L----------------------------

3.2.1 (Cont.)

The 	Scalar Processor for the FMP is being examined

closely to see if parity (1 bit for each 8 bits of

data) can be included in all internal data trunks and

functional elements. Checking of the arithmetic

elements (with the exception of the multiply element)

can be accomplished 	by this method, thus ensuring a

high degree of integrity for this unit. The penalty

for 	this measure however can be a seriously reduced

performance for some scalar operations (particularly

where recursion is invoked). An examination of the

tradeoffs of cost, performance, and reliability will

have to await more detailed design and analysis of

the 	Scalar Processor,

3.2.2 	 SECOED (Single Error Correction Double Error

Detection)

The 	SECCED error information is logged by the

Maintenance Control Unit (MCU). The information

logged is syndrome word, single error, double error,

Read bus code, and CPU word address bits 37-58.

SECDED ERROR INFORMATION

1. SYNDROME BITS -	 These seven bits generated by

the error correcting code . The 39 unique

syndrome words for single bit errors are listed

on Table 3-2-1. Of these 39 (odd bit) syndrome

words, only the 32 data bit codes will toggle a

bit when error correction is enabled. Other odd

bit codes latched in SECOED that differ from the

39 unique syndrome words will be flagged by the

MCU as a multiple odd bit error. Double error

syndrome words have an even number of bits.

2. 	SINGLE ERROR - Bit 5 of channel ATB8 (see section
3.6.1) will set if there is a single error not
aneceded by a double error.

3. 	 DOUBLE ERROR - This MCU disolay register will

set unconditionally on a double error.

4. 	 SECOED FAULT BUS CODE - These MCU display

registers define the read bus on which the

SECDED error occurred.

(continued) 	 RO. ucmG OF THE= W~AGE" 18 POOR

1CONTROL DATA I E N G I N E E R I N G NO. 10354637
;------------ i DATE Dec. 1977
I Corporation I S P E C I F I C A T 1 0 N PAGE 14
....... REV.

--- ---------------------- R A D L----------------------------

3.2.2 (Cont.)

Read

Bus

CODE 0 = 	 I/O

CODE I = 	 Ri

CODE 2 	 R2

CODE 3 = 	 R3

CODE 4 = 	 Scalar

CODE 5 = 	 RNI

CODE, 6 = 	 Swap

The error logging priority for simultaneous SECDEO

errors on multiple buses is:

i. 	 RNI

2. 	 SCALAR

3. 	 R2

4. 	 Ri

5. 	 SWAP

6. 	 1/0

7. 	 R3

5. 	 HALF-WORD ADDRESS (Bits 57,58) - These address

bits decode the four 32-bit groups within a

quarter sword. The error logging priority for

simultaneous SECDED errors more than one

half-word is in order: HWO, HW, HW2, and HW3.

6. 	 CPU WORD ADDRESS (Bits 37-56) - These address

bits indicate the following:

Bit 37-39 Select i of 8 Memory Chios

40-49 Select J of 1K Memory Cells

50 I024K Select

51 512K Select

52-54 Bank Select

55-56 Quarter Sword Select

7. 	 LATCHED ADDRESS BITS (37-5,8) - In SECOED these

address bits are always the physical CPU Word

Address Bits.

(continued)

ICONTROL .OATA I E N G I N E E R I N G NO. 10354637
--------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T 1 0 N PAGE 15

REV.

--------------------------- R A 0 L- -------------------------

3.2.2 (Cont.)

TABLE 3.2-1 UNIQUE SYNDROME WORDS FOR SINGLE BIT FAILURES

Bit Data Syndrome Word

0 30000000 70
1 40000000 68
2 20000000 58
3 10080000 64
4 08000000 54

5 04000000 7C

6 02000000 7A
7 01000000 76
8 00800000 ±C
9 00400000 jA

10 00200000- 16
1i 00j00000 19
12 00080000 15
13 00040000 iF
14 00020000 5E
15 00010008 5D
16 00008000 07
17 00004000 46
18 00002000 45

19 O0001000 26

20 00000800 25

21 00000400 67

22 00000200 57

23 0000O0 37

24 00000080 61

25 00000040 51

26 00000020 31

27 00000010 49

28 00000008 29

29 00000004 79

30 00000002 75

31 0000000i 60

32
 Check Bit 0 40

33
 Check Bit J 20

34 Check Bit 2 i0

35 Check Bit 3 08

36 Check Bit 4 04

37 Check Bit 5 02

38 Check Bit 6 ±

(continued)

REPRODUCrBILITyORIGiNAL OF THEPAGE IS POOR

1977

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
-- DATE Dec.

I Corporation 1 S P E C I F I C A T I 0 N PAGE j6
--------------- REV.

-- ---------------------- R A D L--------------------------

3.2.2 (Cont.)

The syndrome word is latched if the bit shown in the

data pattern in Table 3.2-1 is In error. For

example, if and only if, bit 0 failed on any data

pattern, then the syndrome word would be 70.

The SECOED error latching hardware has two basic

modes of operation - Mode I and Mode 2.

Selection between the two modes is accomplished

through the MCU/CPU Maintenance Line called SELECT

.SECODED ERROR LOG MODE TNO.

For bath modes in the event of simultaneous SECDED

errors, the information to be latched is dependent on

the relative priority of the data buses or half-words

which contain the errors. 4ll information will be

correct for the error selected. It Is possible In

both modes to encounter a single and double error

simultaneously and latch the single error. The double

error flag will set unconditionally. Therefore,

if the-double error fla is set the_ syndrome bits

must be checked to determine if sincle or double

error was latched. In the event the single error flag

is set, and no double error, the error will be a

single error.

Mode I

The first error to occur after a master clear or

error clear wil I have its error information* latched.

The information will be correct in all cases,

regardless of subsequent errors. If a double error

follows a single without an error clear, the double

error information will be lost.

ModeP

Operation in Mode 2 is the same as in Mode i except

for the following enhancement: An attempt wil I be

made to latch the error information for the first

double error encountered whether or not a single

error has previously been latched.

(continued)

IPRODUCIBLnY or 'mf
ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

S-----I DATE Dec0 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 17

REV.

------------------------- R A 0 L----------------------------

3.2.2 (Cont.)

As in Mode 1, the double error flag will set

unconditionally when a double error is encountered.

However, other aspects of Mode 2 operation are less

certain. The conditions which may result are'listed

below*

Case I

In the event of simultaneous errors, Mode 2 is the

same as Node J. If the double error flag is set, the

syndrome bits must be checked to determine if a

single or double error was latched.

Case 2

If the SECOED checker encounters a single or several

single errors, and is absent of the double error

flag, then the error information will be that of the

first single error. All information is correct as in

Mode 1.

Case 3

4
0

&
4P

If the SECOED checker encounters a double followed by
other double or single errors then the er ror
information will be that of the first double error.
All information is correct as in Mode 1. However,
the MCU cannot be distinguished from Case ± with the
doubled error latched, so the synorome bits must be

_ checked.

Case 4

If the SECDED checker encounters a single error and N

minor cycles later (N<8) a doubl'e error is

encountered: Address bits 37 thru 54 for either the

single or double error may be latched; bits 55 and 56

are indeterminate. and the remaining error

information would be that of the double error.

Case 5

If the SECDED checker encounters a single error and N

minor cycles later (N>8) a double error is

encountered, the double error information will be

correct, However7 the MCU cannot distinguish this

case from Case 4.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
. * 1977------------- DATE Dec.
I Corporation 1 S P E C I F I C A T i 0 N PAGE 18

REV .

- -------------------- -------A0L -------------------------

3.2.2 (Cont.)

Case 6

If the SECDED checker encounters a double error and

-one or more minor cycles later a single or double

error is encountered, thisis simply Case 3. The

first double error information will be latched.

Mode-_A Double Error Log

This mode is electronically identical to Mode 2.

The difference is strictly operational.
Specifically, after a master clear or error clear,
the MCU deliberately creates a single error using
the maintenance function to toggle a check bit.
This error is not cleared, and effectively blocks
detection of all subsequent single errors.

Consequently, when the MCU detects the double error

flaq, it knows that this is Case 5 and the error log

information is correct for that double error.

BLOCK WRITE ENABLES

The MCU has the cacability to enable block write

enable i-f a SECDED error occurs. There are two

options which can be selected deoending on SECOEC

error mode.

1. 	 With Mode 1, the write enables wil l be blocked

when SECDHO receives its first single or double

error.

2. 	With Mode 2, the write enable will be blocked

when SE-CDED receives its first double error.

COMPLEMENT I/O CHECKWORD BITS

This maintenance feature enables the MCU to toggle

the Write I/O checkword bits before write into

memory. Toggling the 128 combinations on each

half-word of the six Read Data Buses allows checkout

of the SECDED checker.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I------------- I DATE Dec. 1977
Corporation I S P E C I F I C A T I 0 N PAGE 19

REV.

----------------------------- R A 0 L--------------------------

3.2.2 (Cont.)

GENERAL USAGE

Mode j is a good SECDED latch design for a memory
with low error rate. All error log information is
correct. However, it will not latch the double error
if it follows a single error within the cycle time
of the MCU.

Mode 2 is a better SECOED latch design for a memory

with a high error rate. All single errors latched

are correct, and all double -errors following a

sinqle error by greater than eiqht minor cycles

(80 ns) are correct. A double error occurring

before a single error Is also latched correctly.

Mode 2A is a double error logging system for use

if single errors are to be ignored. This mode will

miss the double error only if there is a simultaneous

single error with higher latching priority. If this

condition would occur, a diagnostic requesting only

one bus will get around the bus priority. If the

diagnostic fails and still latches a single error,

then the double error is in a lower priority half

word.

3-2.3 Associative Unit

N/A

3.2.4 Instruction Issue/Decode

All instructions are read from memory by the Scalar

Processor and decoded for subsequent issue. This is

accomplished in the Issue Unit which is composed of

two parts, one for monitor and one for job. After

decoding an instruction, the Issue Unit issues it to

the unit responsible for its execution: the Vector

Unit, the Swap Unit, or the Scalar Processor itself.

Responsibilities for all instructions are shown in

table 3.2-2.

These units are essentially independent of one

another and can execute instructions in parallel.

The remainder of section 3.2 provides additional

information on Scalar Processor operation. Section

3.3 describes the Vector Unit and section 3.7 covers

the Swap Unit.

(continued)

I

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

1 -i DATE Dec. i977

I Corporation I S P E C I F I C A T I 0 N PAGE 20

REV.

--- ---------------------- R A D L- --------------------------

TABLE 3.2-2 INSTRUCTION RESPONSIBILITY

First Digit of Instruction Code

10 2 3 4 5 6 7 8 9A 8 C D E F

I ---------------------------------------

0IS S S S S S S S I S I I I I
 5I

21S15 I 553SS Il IS II I!
I

S.IS IS I1555 Ill S I1I1I1

Second 41S I I S S S S S I I I S I I I I

I

Digit S I S S S S S I I I S I I I I

of GIS II S SYXS S I I1 I I I

i I I I I
Instruc- 711 I I S I I S S I I I I

Digit 511 15 5 Ition I 5 I II S I

Code 41S I I S S S S S I I I I I I I II

o1S I I S S SS I I I T I II I

1 I S S S S S I I I I I I I PAGE POOR

I
I
CII I S SS S I I I I I I I I

il I SS S S SX I VII I I I I I

I

EI I S S S S S I V IS S I I l
I

I -

FI I SS S S S S I VIS I I I I

'S - Executed within the Scalar Processor (Note that

Data Flag information will be passed to the Data

Flag Register in the Vector Processor for

-appropriate instructions).

V - The Scalar Processor initiates the Vector

Processor to execute portions (or all) of the

instructions.

I - Illegal instruction.

X - Executed in the Swap Unit.

ICONTROL DATA I 1E N G I N E E R I N G NO. 1035,4637

------------- I DATE Dec. 1977

I Corporation I S P E C I F I C A T £ 0 N PAGE 21

REV.

------------------------- R A 0 L----------------------------

3.2.5 Register File

The Register File of the FMP contains 256

64-bit words. This Register File is capable of

accomplishing two read operations and one write

operation every 10 nanosecond minor cycle. In

addition, 	the Register File can be exchanged at the

rate of two registers in and two out every minor

cycle. A comolete swap of the Register File is

P41 accomplished in 256 10-nanosecond minor cycles plus

M 	 set-up time.

Pq 	 The FMP has 16 Result Address Registers (RAR) used

to conflict check each scalar instruction ready for

issue against register file addresses that are to be

written by an already issued scalar instruction. It

a conflict exists, the action taken deoends on

whether the needed result can be shortstopped or not

(see sections 3.2 and 3.2.8 for additional

information on shortstop). If shortstop is possible,

the instruction is issued at the appropriate time

and instruction issue continues. If shortstop Is

not oossible (e.g., the result of a previous load is

needed), issue stops.

The RARs are set seauentiall y from the result

register designators of issued scalar instructions.

They are cleared when the result is written into the

Register File.

3.2.6 Branch/Instruction Stack

The Branch instruction execution times may be found

in section 3.9 of this Specification.

The instruction stack implemented in the FMP

accommodates up to 8 swords (512 bits per sword), 6

of which may be discontiguous. To sustain the

instruction rate a two-sword "lookahead" will be done

by reading the two swords following the one being

executed. Issue will not be blocked if the swords

following are not in the stack.

An address is maintained for each of the eight swords

so that out-of-stack branches may be taken without

voiding the entire stack. For instance, it would be

possible to call a subroutine of un to 3 swords (48

instructions/32 bits each) several times from a three

sword instruction stream and never branch out-of

stack after the first branch which loads the

subroutine into the stack.

(continued)

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
I--------- -- * DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE

REV.
22

A0L
----------------------- AL------ --------------------------

3.2.6 (Cont.)

Self-Modifying Programs

The material describing the restrictions concerning
self-modifying programs will be added at a later
date.. This will be similar to that found in
paragraph A2.0 of Eng. Spec. 10354636.

3.2.7 Load/Store Unit

The Load/Store Unit executes the*12, 13, 32, 5E, 5F,

7E and 7F instructions. There are six address

registers in the Load/Store Unit which enable

requests to be stacked and executed in the proper

order. The 12, 5E and 7E instructions each require

one register and can be executed (in the absence of

memory conflicts) at the rate of one load per minor

cycle. The 5F and 7F instructions each require two

address registers and can be executed at one store

per two minor (1O ns) cycles. The 13 and 32

instructions each require two address registers which

are then busy for- 17 minor cycles.

The Load/Store Unit is thus capable of streaming

Load/Store instructions (other than the 13 and 32)

at one minor cycle per load and two minor cycles per

store assuming no Memory or Register File conflicts.

For examole, a stream of N loads will execute in N +

14 minor cycles from the issue of the first load

until the operand from the last load available in

the Register File. A stream of N stores will

execute in 2N + IN minor cycles from issue of the

13

first store until issue of the last store.

3.2.8 Scalar Floating Point

The FMP has an arithmetic unit dedicated to scalar

(non-vector) operations. This Scalar Floating-Point

Unit will be divided into five separate functional

elements: one each for add/subtract, multiply and

logical, a single cycle element for the add/subtract

address and transmit type instructions,-and one

combining divide, square root and convert.

(continued)

RUPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

:CONTROL DATA I E N G I N E E R I N G NO. i035463-7
.............-- DATE Oec., 1977
I Corooration I S P E C I F I C A T I 0 N PAGE 23

REV.

-- ------------------------- R A 0 L----------------------------

3.2.8 (Cont.)

All elements of the arithmetic unit are separately

and independently controlled to allow concurrent

ooeration However, only one ooerand pair is issued

to the arithmetic unit each minor cycle so this

becomes the limiting factor determining the result

rate from concurrent onerations.

The first four are effectively segmented pipeline
elements which accept a new pair of operands every
minor cycle. They each produce a 64 or 32-bit
result every minor cycle. The divide - sq.rt.

convert element is not segmented and thus acceots

operands only at completion of the previous

operation, every 28 minor cycles per 64-bit operand.

Using 32-bit operands would spproximately double the

result rate of the divide - sq. rt. and convert.

Interface Between Scalar Floating Point and Scalar

Control Unit

Input Trunks

There are three input trunks to the Scalar Floating-

Point Unit. The characteristics of these trunks are

outlined in the following description. All input

operands are treated as 64 or 32-bit floating-point

quantities, except as noted. If an indefinite or

machine zero floating-ooint operand is received, its

coefficient will be set to all zeros.

(continued)

ICONTROL DATA ; E N G I N E E R I N G NO. 10354637

i ------------- DATE Dec. 1977
I

I Corporation I S P E C I F I C A T 1 0 N PAGE 24

REV.

--- ---------------------- R A 0 L----------------------------

3.2.8 	 (Cont.)

A Inout Trunk

This trunk is 64 bits wide. It receives 64 data

bits from register location R in the following

formatO

64-Bit Mode

0 15 16 63

Information 	I exponent I coefficient
I I

32-Bit Mode

o 7 8 15 16 39 40 63

Information I expo-lexpo-lcoe'fficientl zeros
I nent l.nent I 	 i

(copy

of 00-07)

All bits transferred on this trunk should be held on

the trunk for a period of 10 nsec. measured at the

input to the Scaler Floating-Point Unit.

B Inout Trunk

The B trunk receives data from register location S

and is identical to the A trunk..

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
1------------ I DATE Dec. 1977
Corporation 1 S P E C I F I C A T I 0 N PAGE 25

--- ------------ R EV .

---------------------------- RAOL--------------------------

3,2.8 (Cont.)

Lontrol Trunk

The control trunk carries t'he signals which control

the Scalar Floatina-Point Unit. It is made uo of

the following signals:

Control Address

The control address bits are the bits that

select the proper set of internal control

signals for the floating-point instruction

being executed. There is a unique code for

each instruction as listed in Table 3.2-3.

Using the input data to the Floating-Point Unit

as a reference, these control bits must arrive

at the floating-point logic 1.5 cycles ahead of

the data and be valid for 10 nsec.

Mode Controls

the mode controls are Mode 6 In, Mode 64 Out,

G-bits and Divide. The Mode 64 and G-bit lines

must lead the input data by 1.0 minor cycles and

the Divide signal must lead by 1.5 minor cycles.

These should remain up for 10.nsec.

Issue Controls

These controls are S-Shortstop, R-Shortstop,

S-Clockgate, R-Clockgate, S-Shortstop Enable,

R-Shortstop Enable and Go. These controls all

must be valid 1.0 cycles ahead of the data.

The Shortstop Enable signals enable the setting

or clearing of the Shortstop control fIio-flops.

The Shortstop signals set or clear signals

cause date to be clocked into the floating
point input registers when these signals are a

one. The Go signal tells the Floating-Point

Unit to begin processing the operands that are

in the input registers.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

I DATE Dec. 1977

I Corporation 1 S P E C I F I C A T I 0 N PAGE 26

......-
 REV.

------------------- RRADL L--------------------------------

3.2.8 (Cont.)

TABLE 3.2-3 INSTRUCTION CODES

INSTR M64 M64 CONTROL G-BITS DIV. CYCLE BUSY A B
-- IN._ OU AfjEDlSa TIME TIME TRUNI TRUNK OUTEUT CONTRgj

10 1 i 01 ± 20 17 0 R DTDB,0FLG39
i1 1 1 02 1- 53 50 0 R DTD8
20 1 1 10 0 0 R S
21 1 1 11 a 0 R S
2A 1 1 18 0 3 0 I R
28 ± ± 19 0 3 a I R
2C 1 i iA 0 3 0 R S
20 1 i is 0 3 0 R S
2E i i iC 0 3 a R S
2F I 1 10 G2,3 0 1 0 0 T
30 1 1 iE 0 3 0 R S
31 1 ± iF 0 1 0 R +1
34 1 1 20 0 3 0 R S
35 1 i 21 a0 1 0 R -
36 1 1 22 b j 0 CIAR +20
38 1 ± 23 -0 1 0 R T
3C 0 0 24 0 5 0 R S
30 1 1 25 0 5 0 R S
3E .1 1 26 0 ± 0 R I
3F I 1 27 0 1 O R I
40 0 0 28 0 5 0 R S DFLG42,43,-46
41 0 0 29 0 5 a R S DFLG42,43i46
42 0 0 2A 0 5 0 R S OFLG42,43,46
44 a 0 26 0 5 0 R S 0FLG42,43,46
45 o 0 2C 0 5 0 R S OFLG42,43,46
46 0 O 20 0 5 0 R S DFLG42,43,46
48 0 0 2E 0 5 0 R S OFLG42,43,46
49
48

0
0

0
0

2F
30

a
0

5
5

0
0

R
R

S
S

OFLG42,43,46
OFLG42,43,46

4C 0 0 31 ± .30 25 R S DFLGFL,42,43,46
4D a 0 32 0 1 0 I 0
4E 0 0 33 0 ± 0 R I
4F 0 a 34 1 30 25 R S OFLG41,42,43,46
50 0 O" 35 0 5 0 0 R OFLG46

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i-- DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 27

REV.

--- ---------------------- R A D L----------------------------

3.2.8 (Cont.)

TABLE 	3.2-3 INSTRUCTION CODES (Cont.)

INSTR 	M164 M64 CONTROL G-BITS DIV. CYCLE BUSY A B
£t oUI ADF - TIME TIME TRUNK TRUNK OUTET_CONTROL

51 0 a 36 0 5 0 0 R DFLG46
52 0 0 37 0 5 0 0 R DFLG46
53 0 0 38 i 30 26 0 R DFLG43,45,a6
54 a 0 39 0 5 a S R OFLG42,43,46
55 0 0 3A 0 5 0 S R DFLG42,46

56 1 1 0 4 0 R S
58 0 0 38 0 ± o R 0
59 a 0 30 0 5 0 0 R DFLG42,43,46
5A 0 0 30 0 3 0 a R
5B 0 a 3E a 3 0 R S
5C 0 0 3F 0 5 0 0 R DFLG43,L6
50 0 1 40 0 5 0 0 R DFLG43,46
60 1 1 41 0 5 0 R S DFLG42,4S,46
61 1 1 42 0 5 a R S OFLG42,43,46
62 i 1 43 a 5 0 R S DFLG42,45,46
63 1 1 44 0 0O R S
64 ± 1 45 0 5 0 R S DFLG42,43,46.
65 1 1 46 0 5 0 R S DFLG42,43,46
66 1 1 4+7 0 5 0 R S DFLG42,43,46

67 1 1 48 a ± 0 R S
68 ± 1 49 0 5 0 R S DFLG42,43,46
69 1 ± 4A a 5 0 R S OFLG42,43,46
68 1 1 4B 0 5 a R S DFLG42,43,46
6C i I 4C 1 54 49 R S DFLG41,42,43,56
60(1)1 ± 4D 0 4 0 R S
6D(2)1 i 4E 0 3 a T 0
6E I I 4F 0 3 a R S
6F 1 ± 50 1 54 49 R S OFLG4±,42,43,46
70 1 1 51 0 5 0 0 R DFLG64
71 1 1 52 0 5 a 0 R DFLG64
72 1 1 53 0 5 a a R DFLG64
73 ± ± 54 1 54 50 0 R DFLG43,45i46
74 ± 1 55 0 S a S 2
75 1 1 56 0 5 0 S R
76 1 ± 57 a 5 0 0 2
77 1 a 58 0 5 0 0 R
78 1 a 59 0 1 a R a
79 1 1 5A 0 5 a 0 R
7A I I 5B a 3 a R 0
78 1 1 5C a 3 a R S
70 1 1 5D 0 3 a R a

Note: The 60 instruction requires three references to the

Register File: this takes two minor cycles. The "'(i)" is the
first and the "(2)" is the second.

(cont inued) REPROUCU.l3TILTY OF THE

ORIGINAL PAQE IS PC

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
I ------------- I DATE Dec. 1977
I Corporation I S P E C I F I C A T 1 0 N PAGE 28
......- REV.

----------------------------- RA L- -------------------------

3.2.8 (Cont.)

TABLE 3.2-3 INSTRUCTION CODES (Cont.)

INSTR M64 M64 CONTROL G-BITS DIV. CYCLE BUSY A B
.1N_ QUI AOORESjS LIME_ TIML TR UNK IR N GTtJT
AO~~s 29TUTCONTROj-L___ INQjj __ Uf~ IflEIEINI TFJNK j)1

B0,G=0 i 1 60 Gi,2,3,4 0 3 a A X
B0,G1=i 1 1 70 61,2,3,4 0 5 a A X
BiG=o 1 1 6± G1,2,3,4 0 3 0 A X
BjGj=j I 1 71 Gi,2,3,4 0 5 0 A X

B2,G=o 1 1 62 G1,2,3,4 0 3 a A X
82,G=l i .1 72 61,2,3,4 0 5 0 A X
B3,G=0 1 1 63 61,2,3,4 0 3 0 A X
B3,G=1 1 1 73 Gi,2,3,4 0 5 0 A X

84,G=o 1 1" 64 Gi,2,3,4 0 3 0 A X
B4,Gt=1 ± 1 74 Gi,2,3,4 0 5 0 A X
85,61=0 1 4 65 Gl,2,3,4 0 3 0 A X
BTGi=j i 1 75 612,3,4 0 5 0 A X

BE 1 1 76 0 i a 0 I
9F 1 1 77 a 1 0 I R
CO 0 0 78 0 ± 0 0 I
CE 0 0 79 0 1 0 I R

(continued)

---------------------------------- ---------------

!CONTROL DATA 1 E N G I N E E R i N G NO. 10354637

I------------- I DATE Dec. 1977

1 Corporation I S P E C I F I C A T I 0 N PAGE 29

--------------- REV.

----------------------R A D L--------------------------

3.2.8 	 (Cont.)

Outout Trunk

This trunk is 64 bits wide4 It transmits outout

data to the Map and Swap Units. The data formats for

32 and 64-bit mode are as shown below. Data will

remain on this trunk for 10 nsec.

0 15 ±6 	 63

64-Bit Mode 	I exponent coefficient i

I 	 i

0 7 8 31 32 39 40 63

32-Bit Mode 	lexpo-Icoefficientfexpo-Icoefficient

Inent I Inent I I

N 	 /

copy of 00-31

Outout Control Trunk

The output control trunk transmits control or fault

bits associated with results generated by the Scaler

Floating-Point Unit. These signals come uo with

data and are held up for 10 nsec. The following

signals are transmitted on the outout control trunk:

Signal 	 Meaning of a "1 2n Signal Line

Branch Cond. Met, 	 The operands meet the comoare

condition. This line is zero

when a comoare is not being

done.

Exit Cond. Met 	 The onerands do not meet the

compare condition. This line

is zero when a comoare is not

being done.

Divide Timing 	 Divide operands will follow

Pulse 	 this timing pulse by 14 cycles.

Divide Busy 	 The divide element cannot acceot

new operands curing the time

this signal .is a "J".

(continued)

REPRODUCIBImLTY OF THE

ORIGINAT. p

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i ------------- I DATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 30

REV.

------- ----------------------R A L ----------------..........

3.2.8 (Cont.)

Sianal Meanino of a "il on Skenal Line

Data Flags 39, 41, See specification 10354636 for

42' 431 45, 46 these definitions.

instruction Conflicts

Due to the various instruction cycle times,

conflicts may arise at the outout of the Floating

Point Interface and within the unit. Floating Point

operations must not be initiated on cycles which

will cause conflicts. The following procedure can

be-used to determine these conflict cycles:

C = the cycle at which operation A is

A initiated.

L = the number of cyc-les operation A spends in

A floating point.

C = the cycle time at which operation B is

B initiated.

L = the number of cycles ooeration B spends in
B floating point.

If oeration B is initiated after operation A then

C C + L - L to avoid a conflict.

B A A B

In addition it must be remembered that no divide

instruction may be initiated if 'the busy time has

not expired from a previous divide.

(continued)

REPRODUCIBLIy Op THE
ORIqINPAGE 'I8 .P0

ICONTROL DATA I E N G I N.E E R I N G NO. 1035"4637
S----- I DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE

REV.
31

---------------------- A0-R'A -L-------------------------

3.2.8 (Cont.)

Scalar Floating Point Maintenance Aid

This feature currently under study would allow the

display of pertinent registers in floating point

during multi-cycle instructions.

The Scalar Floating Point Unit is controlled by two

separate microcodes. Each of these mirocodes

provides control information to the integrated

circuit logic to implement the instruction being

performed. By altering this control information,

i.e., reloading the microcode memories with specially

modified microcodes, the contents of interval

registers could be transmitted, unaltered, to the

outout of the unit. Maintenance software would use

this information for display or fault isolation.

Oisolay:

Only the registers critical to that instruction

would be displayed grouped in timing ranks. It may

be possible with a multi-oipe machine to display

comoarisons.

Additional information on this will be provided at a

later date.

3.2.9 Absolute Bounds Address

The absolute bounds address mechanism provides the

facility to notify the MCU of a memory reference

(read or write) inside a specified block of memory.

The block of memory is specified by an unper bounds

sword address and a lower bounds sword address.

Note that the addresses are absolute ohysical sword

addresses transmitted from the MCU. The bounds

addresses are defined as not included in the block of

memory.

The classes of reference are:

j) Vector Read and/or Write Requests

2) CPU and/or Swap Requests

Bounds checkirrg is effectively disabled, if either

(or both) class i or 2 has neither possibility

selected.

(continued)

REPRODULBIL 1 OF. THj
RIGINAL PAGE IS POOR

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
S------ --- -. DATE Dec. 1977

.1 Corporation I

S P E C I F I C A T I 0 N PAGE 32
REV.

-- --------------------- RA 0 L--------------------------

3.2.9 (Cont.)

The Checker can selectively test various classes of

requests for in-bounds conditions. Any combination

of classes may be selected.

If the FMP has been stopped by a bounds hit, the hit

must be cleared by the clear fault signal from the

MCU before the FMP can be restarted. The FHP can be

restarted to execute the next instruction in

sequence.

The occurrence of a bounds hit (i.e., a selected

memory reference Inside bounds) is signaled to the

MCU. To identify a second bounds hit, the MOU must

clear the first bounds hit signal via the clear fault

signal.

When a bounds hit is made, the sword address of the

causing request is saved in the bounds hit register

until a Master Clear or Fault Clear occurs.

.The bounds limits and the bounds hit address refer

to physical addresses, which are independent of all

Memory Degradation modes. (The bounds test is

applied to the address after any Degradation mode

manipulation has been appl-ied).

I

1 E N G I N E E R I N G NO. ±0354637ICONTROL DATA

DATE Dec. 1977S------I

S P E C I F I C A T I 0 N PAGE 33Corporation I
--------------- REV.

----------------------- R A O L -------------------------

3.2,10 Trace Register

is used as the trace
Register file address zero

register. The trace register contains the address

from which the most recent branch was taken.

Register zero can be referenced by executing a 7D

See the instruction specification for
instruction.

the mode of the 70 instruction which will move

to Main Memory. The maintenance
register zero

station can read register zero by storing the

Register File and reading absolute zero from

memory. After a job to monitor exchange, the]ob's

address zero in memory contains the address of the

the exchange operation.
last branch taken prior to

After a monitor to job exchange, monitor's address

the last
zero (absolute zero) contains the address of

branch taken prior to the exchange operation.

f lmTY OFoDI6 O,YPR PAGE 1S POORORIGMNIt

3.3

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
I------ -------I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I O N PAGE 34
........- REV.

--------------------- R A 0 L ----------------------------

Vector Processor

The Vector Processor consists of three distinct

subsystems, the Map Unit, the Buffer Unit and the

Vector Floating-Point Ensemble (VFPE). The Map Unit

is a single homogeneous logical element which

controls all memory accesses by vector ooerations,

and performs certain limited functions (such as

Transmit Vector and Scatter/Gather) itself. The

Floating-Point Ensemble is designated an ensemble

because it consists of -aset of nine identical

arithmetic units, all of which operate in lock-step

synchronization. One of the units is designated by

control signals from the Maintenance Control Unit

(MCU) as the auxiliary or spare unit. Normally, this

unit will be performing the same functions as the

remaining eight units, utilizing data inputs common

to one of the operational units, but with its output

data ignored. The self-checking circuits internal to

that unit then can be exercised continuously even

though the unit is off-line.

The Buff'er Unit Is physically part of'the VFPE but

is treated as a logical entity. It has nine

identical sections, each of which is directly

associated with one of the nine Vector Units In the

VFPE.

The Vector Processor runs under its own local

control. That is, the Instruction Issue Unit in the

Scalar Processor passes sufficient Information to

the Vector Processor so that it can proceed

independently. .No active control is required from

the Issue Unit. When the Vector Processor is given

a process to perform, it checks for resources

required and, if available, sets up and performs the

required operations. If the resources are not

availab'le, the setup information is held in a

one-word queue until the resources become available.

When the Issue Unit finds the queue full, it

suspends issuing to the Vector Processor until the

queue is emotied.

(continued)

ICONTROL DATA I E N G I N E E R I N G . NO. 10354637
I------------- DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 35

REV.

---------------------------- R A 0 L---------------------------

3.3 (Cont.)

The Vector Processor queue is, in fact, three

queues - one e~ch for the Vector, Mao, and Buffer

Units. The Bu'ffer and Map Unit queues are further

broken down according to the separate resources of

each unit, Thus, if an individual resource is

available, it immediately tries to perform the

desired function.

For example, if the Mao Unit Is requested to get two

vector streams from memory to be added in the VFPE

and to store the results in the Buffer Unit, the

Issue Unit sends information to set up the two read

ouses, RI and R2, as part of the instruction issue.

If R2 is in use at the time of the issue, the setup

information for R2 is held in its queue and the RI

setup is performed (provided R1 was not in use). RI

then makes memory requests but, because the current

operation which has R2 in use does not require RI

data, no data moves through RI.

As. another example, consider a vector stream from

memory, via RI in the Map Unit, being -added in the

Vector Units to a data stream from the Buffer Unit

with the result going back to memory. Concurrent

with this the Issue Unit can send setuo information

to R2 and S2 in the Mao Unit and WB$ in the Buffer
Unit to cause a load of the buffer from memory.
Because all of these resources - R2, 32, and WBI
are not in use the setups are performed and the
bu"ffer starts loading. No conflicts occur because
of the vector add being executed in parallel.

Holding its own setup information locally, a
resource has two additional requirements in order to
perform a function: valid data at its input and a
place that will accept the orocessed output. This
then is the control system for the Vector Processor

when valid data is oresented at the input to a

function resource, if the resource has been set up

to oerform an operation it sends an "accept" to the

sending resource, and some number of cycles later

produces valid outout data. If the receiving

resource is able to take the data it does so. If,

however,-proper setup of the receiving resource has

not as yet been fully accomplished7 acceptance of the

data is not forced. If a given resource does not

receive an "accept" to t'he resource supplying its

input. Valid data is indicated by a "valid" signal

on a single line (called the valid line) that

accompanies the data. The "accept" signal is also a

single line (called the accept line).

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S--- DATE Dec. 1977
ICORPOR4TION I S P E C I F I C A T I 0 N PAGE 36

REV.

----------------------------- R A L---------------------------

3.3 (Cont.)

Thus, a comolete operation consists of setting up a

complete "valid" chain - from things that can source
"valids" (Main Memory and Buffer Unit) to things

that can sink "valids" (also Main Memory and Buffer

Unit). If a complete "valid" chain is established

for a'given operation, that operation will proceed
to completion. In most cases completion is

determined by the write length of the output vector

going to zero. When this occurs a signal is sent

backward along the "valid" chain (in the "accept"

direction) stopping the generation of "valid" and

"accept" signals. However, operations being

performed, memory addresses being referenced, and
the "valid" connections are maintained. Thus, only
the changes from one operation to another need be
sent to start the next operation.

3.3.1 Vector Floating-Point Ensemble (VFPE)

Figure 3.3-1 provides a simplified block diagram of

a single Vector Unit in the ensemble. Each unit is

completely independent of another, with no

interconnections between them for data or control.

All incoming and outgoing control passes between each

unit and the Map Unit or the Scalar Processor. Each

Vector Unit contains two full multiplier and adder

elements and two half-adder elements, each of which

is capable of operating on pairs of 64-bit input

operands or quartettes of 32-bit operands every clock

cycle. Each arithmetic element (add, multiply) are

segmented pipelines, three segments per element.

Each segment requires one clock cycle of pipeline

time. Thus two operands proceeding through all three

segments for a-combination add and multiply (

(A+B)4 C) would require nine minpr cycles to naSS from
the select network to the result busses, Arithmetic
Result i (ARI) and Arithmetic Result 2 (AR2). A
simole, normalized ADO operation utilizes the
front-end add elements (FAO0l or FAD2), bypasses the
multioly elements and completes the addition and
post-normalization in the back-end add elements
(BADDI or 0-ADO2). The total segments for a simple,

normalized ADO is six or for a simple MULTIPLY

operation it is also six segments of pipeline time.

This pipeline length contributes to vector startup

time as described in section 3.9.2

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S--- DATE Dec. 1977
!CORPORATION : S P E C I F I C A T 1 0 N PAGE 37

----- ---- ---- REV.

----------------------------- R A 0 L- --------------------------

.FROM

MAP

S2

UNIT

FiBUS A

SELEC

DI

L BUS B

A

O

MUI B-D1-A

TO MAP

L UNIT

- TO BUFFER
UNIT

FROM DD -- L" -- TO BUFFER

BUFFER . UNIT

Figure 3.3-1 One Vector Unit

lCONTROL DATA I E N G I N E E R I N G NO. 10354637
I------------- ! DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 38
--------------- REV.

---------- RI------- ----------- A0L--------------------------

3.3.1.1 Read Bus Select Elements

There are four Input data busses for each Vector

Unit, RB1 (Read Bus f"from the Map Unit),

R82 (Read Bus 2 from the Map Unit), Si (Source i

from the Buffer Unit), and 32 (Source 2 from the

Buffer Unit). Each input bus is capable of

suoplying operands to any or all four of the

functional streams (Bus A, Bus B, Bus C Bus 0) which

feed the various arithmetic elements. As can be

seen from figure 3.3-1 then, any combination of input

busses can be fed to any of the arithmetic elements,

permitting such combinations to occur as (A*A)+(B*B)

by supplying the A stream from the Buffer Unit (for

example) via Si and selecting it through SELECT A and

SELECT B to the Bus A and Bus B sides of the multiply

element. Likewise the B operands could be supolied

from the Buffer Unit via S2 and selected through

SELECT C and SELECT 0 to the C and D sides of the

second multiply element (MUL2). The results of MULJ

and MUL2 would then be combined in the final back-end

adder BADO 1, to form the sum of the two products.

The read bus select elements SELECT A, B, C and D

are individually controlled by the C, 0, E and F

fields of the 9F (Vector Arithmetic) instruction

which is interpreted by the Issue Unit and

transmitted to the Vector Unit.

3.3-1-2 Write Bus Select Elements

On any given clock cycle a Vector Unit can

transmit one 64-bit or two 32-bit result operands to

the Mao Unit for storage in memory via the WRITE J

Bus. On any given clock cycle the BADD J and BAD 2

elements (back-end add elements) can produce one

64-bit or two 32-bit results, each of which are

placed on their respective Arithmetic Result busses

(ARI, and AR2). The results appearing on these two

busses are defined by the suboperetion codes for the

9F (Vector Arithmetic) instruction. The N field of

the 9F instruction (section 3.2.1.160 of the

Instrubtion Specification) directly controls which

result bus, ARt, or AR2, or no bus, is connected to

the Write Bus, WE.

~QWJ~hx1TyOF TER4
Q1W4h~ PAGE -7I POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i ------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 39
--------------- REV .

----------------------- R A 0 L ------ --------------------

3.3.1.3 Front-End Add Elements (FADDI 8, FAD02)

Two identical arithmetic elements form the front-end

functional processors of each Vector Unit. These

elements are composed of a brenormalize network which

aligns operands of unlike exponents, plus a full

two's complement adder producing one 64-bit or two

32-bit results every minor cycle. There is no

post-normalization shift network presenT in these

elements. The output results from such an element is

the equivalent of the FMP ADD or SUBTRACT UPPER or

LOWER, with no normalize shifts being done on the

result data.

The primary function of these adders in primitive

operations (dladic arithmetic such as A*B) is to

perform the pre-normalization of input operands

(particularly for the divisor in divide operations)

and to provide for complementing of one or more

ooerands for functions such as (-A*B).

Each FADD element has its own independent microcode

control so that diagnostics can be loaded via the

microcode trunk to perform failure isolation to the

lowest replaceable component level (LSI chip).

In addition to the pre-normalization of the divisor

in divide, operations, the FADO elements perform the

necessary complementation of negative source

operands prior to Performing the table look-up that

initiates the reciorocal aoproximationso

3.3.1.4 Multiply Elements (HULl & NUL2)

Each Vector Unit contains two identical multiply

elements each with its own independent control logic.

The multiply element inputs two 64-bit or four

32-bit operands and produces one 6a-bit or two

32-bit results every clock cycle. This nultioly

operation is performed in three segments, each of

which requires a minor cycle. In the first segment,

four-bit groups of the multiplier are used to

encode 8-bit groups of the multiplicand into a

series of partial sums and carries For the

remaining two segment times, these partial sums and

carries are merged through a series of Partial

adders yielding a 96-bit wide, final product of

(continued) -

REPRODUCIBILIrt OF THE
ORIGIN4AL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
!------------- DATE ec 977
!CORPORATION 2 S P E C I F I C A T I 0 N PAGE 40

REV.

---------------------------- RADL ---------------------------

3,3.1.4 (Cont.)

partial sums and carries which are finally added

together in the back-end adder (BADi or BADD2).

This addition operation produce-s a 96-bit wide

coefficient result which can either be normalized,

truncated, rounded, or.left In upper or lower

form (for double-precision arithemtic).

Inputs to the multiplier are controlled by the

subfunction operations specified in the 9F (Vector

Arithmetic) Instruction, and can come from the read

bus select networks, the front-end adders, the

divide table element (for divide operations), or from

one of the arithmetic result busses emerging from the

back-end adders depending on which operations, such

as PRODUCT, are desired. If one of the two MUL

elements is not specified in the suboperation, then

identical inputs are selected for both elements end

checking is enabled.

3.3.1.5 Back-end Adder Elements (BADDI and BADD2)

Each Vector Unit contains two identical back-end

adder units, each with its own independent control

logic. The back-end adder consists of a rank of

deskew logic for synchronizing the various partial

sums and carries from the multiply elements , and a

full three-input adder capable of combining the

multiply output results with the output of either

FADOI or FADD2 of the other multiplier element. This

function provides facilities such as (A4B)+C or

(A4 B)+ (CD).

Each back-end adder performs a 96-bit (in 64-bit

operand mode) or two 48-bit (in 32-bit operand mode)

coefficient addition every minor cycle. The first
segment contains the Latches and first addition of a

pair of operands. The second segment contains the

second addition of the resulting input pair of

operands plus the final group carry/generate tree,

and the final segment contains the

rounding/truncation logic and post-normalization

network. Post-normalization is controlled by the type

of operation specified in the 9F instruction.

Inputs to back-end adders are controlled by the

subfunction code in the 9F (Vector Arithmetic)

(continued)

E N G I N E E R I N G NO. 10354637
!CONTROL DATA I

DATE Dec. 1977
------ I

S P E C I F I C A T I PAGE 41
--------------- R EV.
ICORPORATION I 0 N

----------------------------- R A 0 L---------------------------

3.3.1.5 (Cont.)

instruction. The outputs are placed on the

arithemtic result busses ARI and AR2 by the adders

BAODD and BADD2 respectively0 In addition, each of

the result busses is connected directly to the input

selection network of the Buffer Unit.

3-3.1.6 Divide Table Element

The divide operation utilizes most of the arithmetic

elements in the Vector Unit To achieve a divide

rate of one result per minor cycle (for 24-bit

coefficient accuracy), the reciDrocat divide

aproximation is utilized. In this mode, the divisor

is pre-normalized and its absolute value yielded by
a

front-end adder. This resulting divisor is then

sampled by taking 12 bits of the coefficient from the

left-most (or most significant) end, not includihg

the sign (which will always be zero since the

absolute value of the divisor is used), and not

including the most significant bit (which will always

be one-since a normalized divisor is used), yielding

bits 18-29 of the 64-bit coefficient. These twelve

bits are used to address a read-only memory (ROMq or

look-up table, called the divide table element. A

39-bit word (plus one parity bit) is read from the

ROM at that address. The word is partitioned into

two fields, S (14 bits) and T (25 bits). The field

is used as input to the other front-end adder (for

comolementation if the divisor was originally

negative),-and the S field is used as inout to a

multiolier to form the oroduct of S times the

remaining bits of the coefficient (the 34 bits not

used in the table look-up). The multiolied result is

subtracted from T in the back-end adder and that

result Is then fed into the other multiplier along

with the dividend to form a 64-bit result of which

24 bits of the coefficient are accurate. The pair of

results out of the back-end adders can be stored in

the buffers or memory, thence retrieved during a

second pass (DIVIDE 2) to perform the necessary

corrections to produce a full 64-bit result.

(continued)

snVRODUoIBThG IOF T10

Of1GIN-A P)AGE 18 P00Th

ICONTROL DATA I E N G I N E E R t N G NO. 10354637
- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 42
.....- REV.

-------------- ------- RA D L .--------------------------

3,3.1.6 (Cont.)

Figure 3.3-2 shows the Interconnection for the first

pass divide operation (DIVIDE 1) which yields a

correct 24-bit coefficient result. Not shown is a

network which transmits the l'ower 34 bits of the

divisor with the upper 14 bits cleared to zero. it

is this quantity which is multiplied times the slope

(S) value to form the first product in the reciprocal

approximation.

Figure 3.3-3 shows the interconnection scheme for the

second pass divide operation (DIVIDE 2) which is

used to produce 64-bit floating-point quotient

results. The input operands required for this second

pass are: the first pass quotient (which is by

itself adequate for 32-bit arithmetic), the original

divisor,, and the intermediate product which is

normally stored in the Buffer Unit.

The divide table element is referenced once each

minor cycle during the DIVIDE.j operation. This

means that when in 32-bit mode, the divide rate is

the same as for 64-bit mode during the first pass,

one result oer minor cycle. Usually however, the need

for 48-bit accuracy in the coefficient portion of the

64-bit result will require the DIVIDE 2 pass which

then creates a true 64-bit divide rate of one result

every two minor cycles per Vector Unit.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
i ----- I DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 43

REV.

---------------------- R A D L ----------------------

REPRO)UcmgLpy oF TU
OIGNAL PAGE L PR

DIVIDEND
QOIN

SEEC AASRU1

A (R6

DIVISO R

Figure 3.3-2 First Pass for 32-Bit Divide

ICONTROL DATA I
i -------- - i
ICORPORATION I S

E

P

N

E

G

C

I

I

N

F

E

I

E

C

R I

A T

N

I

G

0 N

NO.
DATE
PAGE
REV.

10354637
Dec. 1977
44

----- - ---------------------- R A 0 L ---------------------------

DIVISOR

BU .-

$1AR1

.

64-BIT

QUOTIENT

PREVIOUS "AD
QU OTIENTSE

,UIBAD

E T 5T

SECC C' Be

O

Figure 3.3-3 Second Pass for 64-Bit Divide

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
:-D-- i ATE Dec. 1977
!CORPORATION I S P E C I F I C 4 T I 0 N PAGE 45
--------------- REV.

---------------------- R A DL

3.3.1.7 Error Checking

3.3.1.7.1 SECDED

Each of the trunks entering and leaving a Vector Unit

and connecting to the Mao Unit contain SECDED (single

error correction, double error detection networks).

Read Bus 1 (RBI), Read Bus 2 (RB2) inouts contain

SECDED detection and correction circuits, while the

Write Bus 1 trunk contains a SECOED code generation

network.

SECDED is carried on a 32-bit basis, seven bits for

each 32 bits of data. Thus all input and output

trunks possess 78 actual bits of transmitted data.

3.3.1.7.2 Parity

The divide table element consists of a loadable RAM

that behaves as a read only memory during normal

Vector Unit operation. Each 39 bits of divide table

data have a single parity bit associated with them.

Upon each table read, the parity is checked. If a

error occurs, the Vector Unit is immediately halted

and the Maintenance Control Unit (MCU) is alerted by

an error flag. In addition, the Scalar, Map, and

Swap Units are sent stop signals.

Upon command of the CU the Vector Unit can transmit

the failing memory location in the divide table, the

ooerand location in-he input vectors for the

failing case, and the P counters of all the control

microcodes for the Vector Unit, to assist in

maintenance actions.

Each of the microcode memories contains a parity bit

for each word addressed. In the event that a oarity

error occurs, the microcode sequence is frozen and

the P counter transmitted to the MCU on command. A

flag indicating which microcode is failing is sent

to the MCU. The Map, Scalar, and Swao Units are

also sent stop signals.

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S--------I DATE Dec. 1977
iCORPORATION I S P E C I F I C A T I 0 N PAGE 46

REV.

R A 	D'L---------------------------

3.3.1.7.3 Result Checking

Each Vector Unit is supplied with three coincidence

checking networks, capable of comparing the results

produced by the identical pairs of arithmetic

elements. CHECK I compares the outputs of FADDi and

FA002, CHECK 2 compares the outouts of MUL and MULE,

and CHECK 3 compares the results of the final adders

BADi and BAD2. Checking Is enabled under the

following circumstances.

J. 	When the same input trunks are selected into

the pair of ooerand ports AEC and BED, and

the identical functions are selected for the

pair of 'elements FADDI, FAOD2 or MULl, MUL2

or 8ADOI, BAD02;

2. 	When a given element is idled during an

operation. For example, the suboperation

code 02 would Invoke the operation A+8 and

C+O thus idling the multiply elements; In

thds case a pair of operands emerging from

the front-end adders would be

enabled into both MULl and NUL2

automatically by the Vector Unit. The

multiplied output, athough meaningless to

the programmer, would be checked by the

checking network.

3. 	 When one of a pair of elements is idled by a

particular suboperation code. For example

the suboperation code 05 would cause the

operation (A+B)*D, thus tUL2 would be idle.

In this case the Vector Unit would

automatically enable the same pair of inputs

to both multiply elements. The checker

would then be enabled.

It can be seen that the programmer can explicitly

control checking in some cases by setting the

appropriate fields in a 9F add instruction to select

identical operands to identical elements.

In the event that an enabled checker discovers a

mismatch in the output data, the Vector Unit is

halted, a stop signal is sent to the Map, Swap,and

Scalar Units, and the MCU is alerted.

PAGE IS vFek_

ICONTROL DATA t E N G I N E E R I N G NO. 10354637
.............--iDATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 47
--------------- REV.

-----------------------------R A D L---------------------------

3.3.1-8 32/64-Bit Arithmetic

Each Vector Unit is capable of processing two 32-bit

or one 64-bit results each minor cycle in each of

its arithmetic element segments, except for the

divide table which produces one 32-bit result per

cycle.

Each arithmetic element except for the divide table

can also orocess a combination of one 64-bit and one

32-bit operand each minor cycle as input to an

operation. For-example, the FAOD1 element could be

accepting a 64-bit input operand on Its A trunk and

A 32-bit operand on its B trunk. In this mixed mode

FADDI would produce a 64-bit result.

Each of the input trunks, from either the Map Unit or

Buffer Unit, provide a flag indicating what mode that

particular trunk is operating in, either 64 or

32-bit. The Vector Unit then automatically configures

its arithmetic elements to acceot that form of data

on that trunk.

The output trunks to the Mao Unit and Buffer Unit

also provide a flag to the Vector Unit indicating

what mode they expect their ooerands to be in. Thus

the Vector Unit is responsible for the necessary

truncation or expansion of data to match that format

required by the receiving units.

OF THE
1iERODUCIBILTY
ORIGINAL PAGE IS POOR

(continued)

---------------------- -------------------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
.-- DATE Dec. 1977

ICORPORATION) I S P E C I F I C A T 1 0 N PAGE 48
REV .

--------------------------- R AD L- --------------------------

3.3.1.8 (Cont.)

Floating-point numbers in.the CDC FMP are two

lengths, 32 bits and 64 bits. The 32-bit format has

an 8-bit exponent and a 24-bit coefficient (Figure

3.3-4), The 64-bit format has a 16-bit exponent and

a 48-bit coefficient. The left-most bit of each

exponent and coefficient is the sign bit. A

detailed description of floating arithmetic is

presented in the instruction specification.

32-BIT FORMAT

0 7 8 3± 32 39 40 63

* I * I I

2 (8) 1 124) I [8) 1 (24) I
I I -- I I I

\ _ ____. k_ I k _/

'I V V V

UPPER UPPER LOWER LONER
EXPONENT COEFFICIENT EXPONENT COEFFICIENT

64-BIT FORMAT

0 ±5 16 63

I (16) 1 (48) 1
1 1 I

v v
EXPONENT COEFFICIENT

Figure 3.3-4 Operand Formats

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
. .---- -- DATE Dec.. 1977

ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 49
REV.

------------------------------P A O L---------------------------

3.3.1.9 Asynchronous Control

As all other units, the Vector Unit controls the

movement of operands through its various elements by

request/accept signals. Therefore, as soon-as data

ready signals appear at the norts selected by a

oarticular 9F operations, the Vector Unit will begin

to move tha data through its networks. The results

will be placed on the selected output busses, and no

more data will be placed there until an accept is

received from the selected trunk destination. That

is the purpose of the fields in the 9F which

designate which output ports to expect accepts on

during an arithmetic operation.

Likewise, the Vector Unit returns an accept for every

operand it takes from an input port, thus allowing

the unit supolying operands to move a fresh operand

into place on the trunk. In the case of mixed mode

ooerations where the rate of supply can exceed the

rate that the Vector Unit can process, the accept

flag consists of two bits indicating whether the

lower or upper 32-bi.t eperand has been accepted on

the particular 64-bit trunk.

3.3-.1.iO Control Signals

(To be defined later)

3-3-1.11 Microcode Terms

(To be defined later)

3.3..12 Interface Timing

(To be defined later)

http:3-3-1.11
http:3.3-.1.iO

ICONTROL DATA I E N G I N E E R I N G NO. 10354637*
i - I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 50
REV.

---------------------- R-A-D-L

3-3.1j13 Exchange Operation and Interruots

The purpose of the exchange is to change the prime

role of'the CPU. In job mode, job tasks are

performed; in monitor mode, the system decisions are

made.

Some Ins-tructions in progress may be Interrupted

prior to their completion. The invisible flags

stored in the invisible package are used to restart

the interrupted instruction exactly where its output

left off.

Job mode data processing can be monitored, during

monitor mode, by examining the Stall Bit in Word 8 of

the job's invisible package. The Stall Bit is a "J"

if-no data was processed during the job time-slice

that resulted in the preparation of the invisible

package.

Invisible Package

The invisible package Is always stored starting at an

even numbered sword address. Therefore, the

right-most ±0 bits of the starting address of the

invisiblre package must be zeros. This is as indicated

in the Exit Force instruction write up in-the

Instruction Specification.

The monitor must set up an Invisible package for each

lob. There is NO invisible package for the monitor

program itself.

If a Job is to be re-entered, the monitor should not

alter the Job's invisible package.

Figure 3.3-5 shows the format of the invisible

package.

(continued)

ICONTROL DATA I E N G I N-E E R I N G NO. 1035L637

i------------- I DATE Dec. t977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 51
REV.

----------------------------- R A L --------------------------

3.3.1.13 (Cont.)

PROGRAM ADDRESS 58 1 WORD 0

09 15116 BREAKPOINT® 58~' t 1
7/2

'X/16 DATA FLAG BRANCH REGISTER © 63 4

00 PF01 CS) 15116 PF1l) 63 5

00 VECTORS FSG 2 15 16 VECTOR'S PROGRAM ADDRESS) 58 9 6

00 PFO2 8 1516 PF12 ® 63 7

0t2

0 PF03 ® 1511 PF13 ®63 9

00 CURRENT INSTRUCTION 12 63 A

00 PF04 8 1516 PF14 63 B

00 PF05 ® 15j16 PF15(®) 63 D;E

00 PF06 1516 PF16® 63 F

- CONTENTS UNDEFINED

Figure 3.3-5 Invisible Package Format

(continued)

ORIGINAL PAGE IS POOR

http:3.3.1.13

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i ------------- : DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 52

- REV.

-- ------------------------ R A 0 L---------------------------

3.3.1.13 (Cent.)

The following notes apply to Figure 3.3-5.

± Bits 0-15 and 59-63 are not used and must be set to

zeros.

2 Quantity is loaded or read/stored or written by

the Scalar Processor, only.

3 Usage bits for breakpoint register.

4 Quantity is loaded/stored by Vector Processor only.

5 N/A

6 Bit 16 Flag 0

Bit 17 Flag I

Bit 18 Flag 2

Bit ±9 Flag 3

Bit 20 Interrupt Flag

Bit 21 NOT USED

Bit 22 Load/Storej

Bit 23 Load/Store2

Bit 24 Subfunction bit 0

Bit 25 Subfunction bit i

Bit 26 Subfunction bit 2

Bit 27 Subfunction bit 3

7 Quantity is loaded/stored by the Vector Processor

only.

8 Words 5,7,9,BiD and F are loaded by both the

Scalar and Vector Processor. These words are
stored by the Vector Processor if the vector
restart bit (word 8 bit 0)=j and by the Scalar
Processor If the bit = 0.

9 Bits 59-63 are not used and must be set to zeros.

(continued)

http:3.3.1.13

!CONTROL DATA -
I E N G I N E E R I N G NO. 10354637

DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 53'
--------------- REV .

------------------------------ R A U L--------------------------

3.3.1.13 (Cont.)

10 	Bit 0 vector restart bit.

The Vector Processor's instruction register

receives bits 0-15, word 6 and bits 16-63 word A.

A vector will restart without reloading the vector

instruction from memory only if bits 16-63, word A

are not'needed to restart (Bit 0, Word 8=1).

Bit I Register file's scalar enable

(Bits 0 and I are loaded by the Scalar

Processor and stored by the Vector Processor),

Bit 2-11 are not used.

Bit 12 Stall bit. This bit is a "I" if no data is

processed.

Bit 13 Fault test instruction enable. For further

information see specification 11845800.

Bit 14 Monitoring counters enable. For further

information see Section 3.7 in this

specification.

Bit 15 ASCII =07 EBCUIC =1 {Bits 12-15 are

loaded/stored by the Vector Processor only).

11 	Job Interval-Timer. Quantity is loaded/stored by

the Vector Processor only.

12 Quantity is stored by the Scalar Processor and

loaded by neither,

OFaEpRoDUCIBIhYO,IGIhAL PAGE IS POOR'

(continued)

http:3.3.1.13

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
........-.. I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 54

REV.

--- ---------------------- R A L---------------------------

.3.3.1.13 (Cont.)

Exchange from the Monitor to a Job

This is always accomplished with an Exit Force

instruction. The monitor program must set up the

invisible package for the job prior to exchanging to

that job via the ExIT Force instruction. The Exit

Force operation is as follows:

1. 	The CPU's invisible registers and flags are

loaded from the invisible package located

starting at the bit address in the monitor's

register T specified by the Exit Force

instruction. This starting address is saved in a

register to provide for storing the current

invisible package when returning to the monitor

program.

2. 	 The Register File for monitor is stored into

absolute memory locations a through 3FC0 The

16

Register File for the Job is loaded from the

job's memory locations i00000-I03FCO Any job

16

mode references to this area of a Job's memory

causes the executing instruction to be treated as

an illegal instruction.

3. 	 The CPU mode is changed from monitor mode to lob

mode.

4. 	The contents of P (program address register) are

then read up and an appropriate start

sequence is executed.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i------------- i DATE Dec. 1977
1CORPORATION I S P E C I F I C A T 1 0 N PAGE 55

REV.

----------------------- R A D L --------------------------

3.3.1.13 (Cont.)

Exchange from Job to the Monitor

The 	Exit Force instruction and the channel interrupt

are 	 the two normal ways of getting from a job in the
Job mode to the monitor program in Monitor Mode.

Attempting to execute a monitor-type instruction in

job mode or an attempt to execute an undefined

op-code comprise the third way into the monitor.

Exceot for the starting point in the monitor program,

the operations performed in getting to the monitor

are identlcal for the three.

The 	oneration is as follows:

j. 	 The current invisible registers and flags are

stored into the invisible package starting at

the same address used to load the invisible

package when the job was entered.

2. 	The Register File for the Job is stored in

memory locations I0000-I03FC0 and

16

memory locations 0 through 3FCO are

16
read and put into the Register File.

3. 	 The CPU mode is changed from job mode to monitor
mode. Any external interrupts which occur after
this point are honored only if the CPU executes
an Idle instruction. If the CPU does not execute
an Idle instruction, the interrupts are saved
until the CPU mode reverts to Job mode, or until
the monitor program clears those interrupts with
a OE (Translate External Interrupt) instruction.

tf. 	 The monitor program is executed starting at the

absolute address contained in the right-most 48

bits of the-monitor's register 3,5,6 or 7.

Refer to Table 3.3-1 for methods of gettinq from

Job to monitor mode.

(continued)

http:3.3.1.13

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

I------------- i DATE. Dec. -1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 56

.....- REV.

-- ----------------------- R A D L---------------------------

3-3-1.13 (Cont.)

If an attempt is made by the monitor program to

perform an undefined op-code, an automatic branch is

made to the absolute address contained in the

monitor's register 4. This hardware trap is to aid

in the debugging of the monitor software and to trap

some hardware failures. This trap is not to be

utilized by the monitor software as a "normal"

branch.

TABLE 3.3-1. JOB TO MONITOR METHODS

IMethod of GettIng IWonitor Register, the I

Ito the Monitor IContents of which is I

!Used to Set P I

I--I

11. 	 Undefined instructionI Register 3

Monitor .type I

instruction in Job -1

Mode, or a reference i

to the Register File I

I 	 as memory (bit I

address O000-3FFF o)

I2. 	 Undefined OP Code in I Register 4

1 Monitor or reference'

I to the Register File I

I as memory (bit

I address 0000-3FFF).

16 	 I

II

13. Exit Force. I Register 5

I1

14. 	 Channel Interrupt. I Register 6

(otne

(continued)

http:3-3-1.13

- - - - - - -- - - - - - -- - - - - - -- - - - - -

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i--- DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 57

REV.

------------------------------- R A D L- --------------------------

3-3.1.13 (Cont.)

The bits in the external interrupt register are
assigned as shown in the following table:

TABLE 3.3-2. EXTERNAL INTERRUPT REGISTER BIT ASSIGNMENTS

I I I

lExternal Interrupt Line !Assignment I

0 !1/0 channel 0 I

* 2 2

3 a

4 4

5 5

6 6

7 7

--I

I 8 I 8

j 9 .9 i

l 11 il

12 12 I

13 13

14 14

15 11/0 channel 15

t 16 IMonitor Interval Timer I

http:3-3.1.13

lCONTROL DATA I E N G I N E E R I N G NO. 10354637
I ------ - I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 58

REV.

-------------------------- -RAD0L----------------- ----------

3.3.2 Buffer Unit

Each Vector Unit contains a buffer capable of

holding from !024 to 8192 64-bit operands, depending

upon machine configurations. The total

configuration of eight buffers (plus one spare)

constitutes the Buffer Unit. See Figure 3.3-6. The

basic configuration of 1024 operands provides a

capacity of 8192 total operands that can be held

within the Vector Processor. In the maximum

configurati6n this can be as high as 65,536 operands.

Although the buffers are physically contained within

each Vector Unit to limit access times, they are

treated as logically separate entities on a par with

the Map and Swap Units. Thus there is a separate

control for addresses for reading and writing and the

format of the operands (32 or 64-bit).

ICONTROL DATA
1 -

ICORPORATION

I

I

E N G I N E E R I N G

S P E C I F I C A T I 0 N

NO. 10354637
DATE Dec. 1977
PAGE 59
REV.

---------------------------- R A 0 L ---------------------------

Si 512

52

AR
512

AR
5R12

-

-

WB1
WRITE

DATA
SELECTOR

BUFFER
8192 WORDS (1024 x 8)

+ SECDED PER 32 BITS

0
-

151

2

TO VECTOR

UNITS
B

R131

3

4

WB2
WRITE
DATA

SELECTOR
-12

5

6

RB2

7

8

NOTES:
1. S1, S2 FROM MAP UNIT
2. AR1, AR2 FROM VECTOR UNIT
3. ALL DATA PATHS CARRY SECDED

BUT ONLY THE DATA BITS CARRIED
IN A PATH ARE NUMBERED

Figure 3.3-6 Buffer Unit

5

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S--------.---- 1DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 60

REV.

---------------------- R A 0 L---------------------------

3.3.2.1 Read and Write

Each buffer is capable of reading two independent
operands every minor cycle, as well as writing two
independent result operands per minor cycle. The
selection of which operands to write into the buffer
is performed by the write data selectors I & 2 (see
figure 3.3-6). Note from the figure that any bus can
feed any of the two select networks at the same time.
Thus it is possible to input a data stream from S$
(the Map Unit) to both Write Buffer ± (WRI), and
Write Buffer 2 (WB2) simultaneously.

The write addresses or WB± and W82 are independent

and are set up by separate Buffer Unit suboperations.

Thus in the illustration, Si could be written into

two separate, independent areas of the Buffer Unit,

simultaneously.

Read operations can proceed from independent

addresses in the same minor cycle since the buffer is

composed of high-speed ECL RAMS allowing random

addressing at the rate of two per minor cycle. As

operands are read from the buffer and placed on the

designated trunk: a "data valid" signal is placed on

the corresponding trunk control lines. In addition,

the format of the data (32 or 64-bit) is also

flagged on the respective trunks to the Vector Unit.

The four ports providing input operands are connected

to the Map Unit (Si and S2) and the output result bus

of the Vector Unit (ARt and AR2).

3.3.2.2 Control

The Buffer Unit processes its own control logic,

despite the fact that it is intimately connected

within the host Vector Unit. The control scheme is

based on a loadable microcode which'handles the

interpretation of the oarticular suboperation code,

the setting uo of addresses, and the control of

incrementing of address counters and testing of

termination thresholds for all vectors whose source

or destination is within the Buffer Unit.

IZEPRODUOIBMTI4 OF. THE
ORIGINAL PAGE IS POOR

ICONTROL DATA
! -

I E N G I N E E R I N G NO. 10354637
DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE.61
REV.

---------------------------- R A 0 L- -----------------------

3.3.2.3 Error Checking

All data paths within the Buffer Unit carry single

error correction, double error detection codes with

each 3Z-bit operand, In the event that a read

operation causes the discovery of a single-bit error,

the data will be corrected and the unit will not

halt. However, the error address at which the data

was read will be "latched up" for sampling by the

CU, along with the SECOED syndrome bits which will

be sent an error flag.

In the.event of a double-bit error, the Vector Unit

will be halted, a stop signal sent to he Swap, Map,

and Scalar Units and an error flag transmitted to

the MCU.

3.3.2.4 Control Signals

(To be defined later)

3.3.2.5 Llicrocode Terms

(To be defined later)

3.3.2.6 Interface Timing

(To be defined later)

3,3.3 Mao Unit

Figure 3.3-7 gives a general block diagram of the

Mao Unit. This unit is divided into 12 functional

elements, each of which contains its own control

microcode, and thus is able to operate somewhat

independently of the other elements. This feature

is primarily intended to facilitate fault isolation

and maintenance. The Map Unit controls all accesses

to Main Memory for reading and writing by the

Vector Unit or the Map Unit itself. The Map Unit

also contains certain vector functions which it can

perform itself (SCATTER, GATHER, COMPRESS, MASK,

MERGE).

.ROD-IJIBILITY OF THO

,1:A.GINAL PAGE IS POOR.1

E N G I N E E R I N G NO. 10354637

I------------- I

ICONTROL DATA I

DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 62
REV.

-- ----------------------- R A D L -

FROM SCALAR

PROCESSOR

INSTRUCTIONS
FROM ISSUE UNIT MAP DATA FLAG ERRORS

PROCESSORREGISTE CONTROL TO SCALAR

TO VECTOR
MEMORY & BUFFER UNITS

ADDRESSES

TO/FROM FILE DATA

INTERCHANGE
--. ADDRESS -1TO ALL MULTI- 51

PLEXOR
READ 1

BUS ANDSTATU
ALL CONTROLDATA

. ASSEMBLY MASK

,ADDRESS
READ 2

DATA CONTROL D

COMPRESS MULTI- --- 51
F r . ASU

PLEXOR _A DR SS UREADA3 __-

. DATA CONTROL WORDS
 FO

_ BITS VECTOR

WRITE UNIT

EN/ BLESRESULT
ORDER STATUS
VECTOR _ASSEMBLYADDRESS

WRITE1
BUS AND--

WRITE 1 - ARITHMETIC
SELECT .. RESULTS

NOTE:

ALL DATA BUSSES

ALSO CARRY SECOED

Figure 3.3-7 Mao Unit

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
:------ ------ I DATE Dec. 1977
!CORPORATION f S P E C I F I C A T 1 0 N PAGE 63
............... REV.

-----------------------------R A D L --------------------------

3.3.3.1 READ 1 and READ 2

The Map Unit contains two identical bus read

elements termed READ i bus and control and READ 2

ous and control networks. Each element provides the

addressing, address incrementing and data bus

buffering required for the interconnection to-Main

Memory busses.

3.3.1.1 Error Checking

All data busses within the ap Unit provide 7 bits

of SECOED code for every 32 bits of data. To assist

in fault isolation, each read bus element contains a

SECDED error checking network, for its respective

input port. In the event that a single-bit error is

discovered, the contents of the respective address

counter, an error flag, and the syndrome bits are

held in HCU interface registers for sampling by the

MCU.

In the event that a double-bit error occurs, all of

the above actions Take olace, but in addition, the

entire MaD Unit is halted, a stop signal is sent to

the Vector, Swap, and Scalar Units, and a fatal

error signal is transmitted to the MCUo

3.3.3.1.2 Data Movement

Each data bus can move 512 bits (plus SECOED) of

data every minor cycle 0 All requests to memory

yield a full 5±2-bit data word, while the outputs of

the read bus elements can emit 512, 128, 64 or

32-bit data items.

3.3.3.1.3 Address Control

Each bus element manages its own 'addressing control

of memory access. Initial addresses are sent to the

bus elements by the map control element. In

addition, address increment values (+j, -± or some
prescribed variable N) are sent to each buffer

element by the map control. An additional set of

control lines from the map control indicate what

addressing modes, and what data widths are required

of the bus control element. A special address

increment port is supplied by the READ 3 bus

increment, GATHER operation.

(continued)

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR.

- - -
ICONTROL OATA I E N G I N E E R I N G NO. 10354637

--------- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T 1 0 N PAGE 64

REV.

-------------------- R A O L--------------------------

3.3.3.1.3 (Cont.)

The modes of operation for the address logic are:

1. 	 Full streaming--In this mode data is moved at

the maximum rate supplied by the memory system.

Normally 512 bits of data are transmitted to

the input port each minor cycle; 512 bits are

passed directly to the S1 and S2 output ports

which suoDly the Vector and Buffer Units with

data. This mode is used for all vector

arithmetic operations when all operands are

the same size. For example, if the operation

performed is a memory-to-memory vector

addition with input and result operands all 64

bits wide, the Map Unit will provide data at

streaming rates. However, if one of the

operand streams is not the same size (say one

32-bit Input and one 64-bit input operand),

then the bus supplying the 32-bit operands will

move half as much data per minor cycle in order

to synchronize with the 64-bit data movement.

2. 	 Half streaming--In this mode memory requests

are not made each minor cycle, but are made

every other minor cycle. This case arises for

the mixed 32/64-bit mode previously discussed.

3. 	 Word or half-word streaming--Depending on the

operand size, the input read streams can be

moved at regular intervals in word or half-word

increments. This mode is used for the COMPRESS

and MASK operations which guarantee that new

elements will be used evey minor cycle.

4. 	 Burn mode--This mode moves word or half-word

elements, as needed, by the functional element

in the Map Unit. Its peak rate is one data

element every minor cycle, while it is possible

for many minor cycles to Pass before the data

element is required. The major use for this

mode is in the vector MERGE operation where

data elements are moved from the read stream

depending on the presence of one-bits in the

corresponding order vector.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

S--D gATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 65

REV.

--- ----------------------- R A 0 L-----------------------------

3.3.3.1.3 (Cont.)

5. 	 Read reverse mode--The memory system and

addressina and data disassembly networks are

capable of streaming data in any of the

previous modes in reverse order if the address

increment is -j.

6. 	 Random access mode--All previous modes deal

with sequentially accessed data, moving such
data at rates prescribed by the operation in
process. In the case of the vector GATHER
operation, data is accessed non-sequentially

from the Main Memory. Two submodes are provided

in this case--fixed increment and variable

index.

In the fixed increment mode, the map control

element provides a positive or negative integer

value which is used as an increment for each

new memory address. Thus, instead of the

normal increment of 1, any integeral value can

be used in this mode. In such cases for

example, the memory addresses produced are M,

M+N, M+2N and so forth, where M is the initial

address and N is the fixed increment,

In the variable index mode, the value of the

memory address is computed from the initial

address M and the contents of a list of integers

I. For each integer (positive or negative) in

the list, a memory address is computed and a

corresponding request sent to memory at the

rate of one per minor cycle, per bus control

element. The memory request will yield either

one 64-bit or one 32-bit operand depending on

the format desired by the operation.

The two bus control elements (READ ± and READ 2) are

capable of transmitting simultaneous memory requests,

if the addresses are odd and even, respectively.

Thus a peak rate of two random access requests is

possikle with the two elements operating in tandem.

3.3o3.2 READ 3 Bus and Control

A third input bus is provided in the Map Unit for

handling special streams of data used in the Map

Unit.

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
!------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 66
...... - - REV.

-------- ------------ RAD0L-----------------------------

3.3.3.2.1 Error Checking

SECDED error codes are carried on the READ 3 data

bus, but are not passed on to other Map Unit

elements as are the READ J and READ 2 data bus error

codes. This is due to the fact that READ 3 data is

disassembled into bit streams or index streams and

the 32-bit SECDED parcel is no longer intact. Thus

the READ 3 bus element pr6vides error checking of

the inout data only.

Error handling and correction and reporting to the

MCU are identical to that supplied by the READ 1 and

READ 2 bus elements. See paragraph 3.3.3.1.1.

3.3.3.2.2 Data Movement

The movement of data within and out of the READ 3

bus element is more complex than the READ i and READ

2 counterparts. This is due to the nature of

operands provided by the READ 3 element.

1. Control vector--The writing of data into

Main Memory on the WRITE 1 data bus can be

conttblled down to the 32-bit level; That is,

in any given minor cycle, 512 bits of data can

be transmitted to the Memory Interchange, but

any combination of 32-bit operands within that

512 bits can be suppressed (not written Into

memory). This action is controlled by the grouo

of bits called control vector bits. When

operating a vector to memory operation at full

streaming rate, 16 32-bit quantities are

transmitted fo memory. If the control vector

operation is invoked (see instruction

specification for 90 instruction), a grouo of J6

bits is provided by the READ 3 bus control

element. Thus READ 3 must, in full streaming

mode, be capable of disassembling the 512-bit

input data sword (super-word) into groups of

16-bit parcels, one parcel per'minor cycle.

(continued)

ICONTROL DATA I E N G "I N E E R I N G NO. 10354637
I------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T 1 0 N PAGE 67
--------------- REV.

-- ----------------------- R A D L- --------------------------

3.3.3.2.2 (Cont.)

2. 	 Order vector--The vector onerations MASK, MERGE,
and COMPRESS derive their control of data
movement from a group of bits called order
vector bits (taken from Iverson's APL). The
presence of.a bit in the order vector may mean
the transmission of that corresponding data
element in the READ 2 stream (in the case of
vector MASK operations). In this model bits are
transmitted in groups of sixteen to the
appropriate functional element (MASK, MERGE or
COMPRESS networks) at the rate required by that
element.. In normal operation four bits are
moved (as are four operands) every minor cycle,

thus requiring the READ 3 bus to provide J6 bits

every four minor cycles.

3. 	 Indexed list--When performing the vector

ooerations GATHER or SCATTER using a list of

indexes, the READ 3 bus supplies these indexes

at the rate required by the particular bus

element. Indexes always fill a 6k-bit operand,

although the maximum index requires only 16

bits. Thus indexes are moved at the rate of

two words (64 bits wide) every clock cycle

requested by the READ i and READ 2 controls.

Since memory requests in this mode are

essentially random, the rate of data movement

is not predictable, due to memory conflicts

between READ I or READ 2 or memory busy's due

to previous requests. Thus the memory address

and request control operates in a form of burp

mode.

3.3.3.2.3 Address Control

The management of addressing and memory requests is

much simoler in the READ 3 control element, since

all data is sequentially accessed. Note that the

maximum rate at which READ 3 is renuired to deliver

operands (in the indexed list mode) is two 64-bit

words each minor cycle. This means that when the

Vector Unit is running in full streaming, READ 3 Is

making memory requests every 16 minor cycles, and

when not in full streaming (SCATTER/GATHER), READ 3

is requesting memory evey u minor cycles. This

lower rate for READ 3 makes it oossible to share the

residual memory bandwidth with the Swan Unit and

instruction stream requests issued by the Swap and

Scalar Units.

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637

ICORPORATION

I
I S P E C I F I C A T I 0 N

DATE Dec.
PAGE 68
REV.

1977

--- ----------------------- R A O L- --------------------------

3.3.3.3 WRITE 1 Bus and Control

The WRITE i Bus (WI) provides the output port for

the Vector and Map Units back to Main Memory.

3.3.3.3.1 Error Checking

The WRITE i bus provides 7 bits of SECDED code for

every 32 bits of data transmitted. SECDED codes are

generated by each of the functional components of

the Vector and Map Units, so that WRITE I control

only checks for errors in the operands being

transmitted through it. This feature is provided

for fault isolation and maintenance procedures.

Error checking, correction and-MCU communications

are the same as for READ 1, READ 2 and READ 3.

3.3.3.3.2 Data Movement

The WRITE ± bus is capable of transmitting 512 bits

plus SECDED each minor cycle when in streaming mode.

In addition to the 512 bits, a group of sixteen bits

called write enables are transmitted to enable the

storage, or suppression, of any 32-bit quantity

transmited to the memory system. These write

enables permit the storage of vectors beginning at

memory address other- than 51-bit boundaries, and

the ending of vectors on other than 512-bit

boundaries.

The write enables are also used to transmit control

vector bits for selecotive storage suporession when

invoked by that particular suboperation for the Mao

Unit.

3.3.3.3.3 Address Control

WRITE I is capable of writing, sequential data at

streaming rates, or writing data at fixed increments

(as READ I and READ 2 can read data at fixed

increments), or writing data based on a list of

indexes provided by the READ 3 trunk (SCATTER

oneration).

ICONTROL DATA E N G I N E E R I N G NO. 10354637
i -DATE Dec. 1977
ICORPORATION i S P E C I F I C A T I 0 N PAGE 69

REV.

-- -------------------------- R A 0 L-----------------------------

3.3.3.4 GATHER Assembly Network

When performing the GATHER operation, the individual

operands (either two 64 or two 32-bit operands)

which are delivered each minor cycle by [he REAO i

and READ 2 busses must be assembled into a

contiguous vector. This network provides that

function. In addition to handling the maximum rate

of operand input, the network must also be able to

handle burp rates as memory and bus conflicts

interrupt the smooth flow of data.

All data gathered includes its corresoonding SECDED

codes (which is based on 32-bit Parcels), but no

error checking or correcting logic is included.

3.3-3.5 Si and 32 Multiplexors

The Map Unit provides two data ports supolying the

Vector and Buffer Units. These are the Si (Source 1)

and S2 (Source 2) ports aopearing in Figure 3.3-7.

These multiolexors are provided to permit the

selection of. one-of the Mao Unit functional elements

(GATHER, COMPRESS, MASK/MERGE) or the contents of

READ i bus or READ 2 bus as inputs to the source

stream going to the Vector or Buffer Units. Both

busses can move data at'the maximum streaming rate,

or at slower rates depending on the specified

function. For every operand segment transmitted, the

Si and 32 busses must receive an accept signal on

their respective control lines before moving a new

data quantity onto the bus.

3.3.3.6 WRITE 1 Select

This network provides a simple selection multiolexor

for the stream to be written back to memory. No

error checking logic is included although the busses

carry the SECDED codes.

3.3.3.7 MERGE/MASK Network

The vector functions MERGE and MASK are orovided by

this element. Inputs are data streams from READ I

and READ 2 at 128 bits aoiece. A disassembly

register is provided for each stream to break down

the data into 64 or 32-bit operands.

(continued)

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
i------- - I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 71
........ RREV.

------------------------------ R A 0 L---------------------------

3.3.3.7 (Cont.)

Data 	is moved at the rate governed by the input

order vector (sixteen bits at a time) and the

specified function:

1. 	 MERGE--The MERGE operation has two modes,

replace and shuffle. In the replace mode7 the

vector input on READ ± is moved through the

element at the rate of four ooerands per minor

cycle. The order vector is moved at the rate of

four bits per minor cycle. When a one-bit is

found in the order vector a data element from

READ 	2 is replaced for the corresponding data

element in the READ 1 vector, and the next READ

2 data element is moved uo to await insertion.

Thus READ 2 is moved at the rate of one-bits

appearing in the order vector.

In the shuffle mode, READ I Is advanced for

every one-bit in the order vector and READ 2 is

advanced for every zero-bit in the order vector.

When a-stream Is advanced, one operand from that

stream is moved into the output stream. In both

cases the output stream is moved at the rate of

four operands per minor cycle.

2. 	 MASK--In the MASK operation all streams, input

and output, are moved at the rate of four

operands per minor cycle. In this case, if an

operand is not used from the input streams it is

thrown away.

SECOED error codes are carried through this element,

but no checking or correcting is don'e thet-e.

3.3.3.8 COMPRESS Network

The COMPRESS network operates in a similar fashibn

to the MASK/MERGE network, however, It utilizes only

one input stream, READ j, and produces output data

at the rate at which one-bits appear in the order

vector. The READ ± stream is moved at the rate of

four operands per minor cycle, the order vector is

moved at the rate of four bits Der minor cycle. In

the event that the order vector was comoletely

filled with one-bits, the output stream would move

at the rate of four operands per.minor cycle. On

the other hand, it the order vector was completely

vacuous, no output would be oroduced, but the entire

READ I vector would be input and thrown away.

ICONTROL DATA I E N G I N E E R I N G NO. 03.54637

4 i DATE Dec. 1977

!CORPORATION I S P E C I F I C A T I 0 N PAGE 71
--------------- REV .

----------------------- A0L --------------------------

3.3.3.9 Order Vector Assembly

One set of vector functions permit the creation of

the order or control vector based on arithmetic .

comoarison-s performed in the Vector Units. In this

mode each Vector Unit transmits 3 control bits

indicating the state of comparison of a set o-f

operands in a given clock cycle. This comoarison

can only be performed by one of the two back-end

(final) adders (BADDI or BAD02) in the Vector Units.

The condition codes transmitted are: A=B, A>B, A<B.

The condition codes are then selected by the Map

Unit for any combination (A<=B) of conditions and

used to form a bit vector indicating the truth or

falsity of the selected condition. The resulting

order/control vector is then stored into memory

via the WRITE 1 blbs

Since the order/control vector is generated at this

point, the assembly network also generates the

SECOED codes needed for all operands. Order/control

vectors are-formed at the rate of 8 bits per minor

cycle (8 pipeline units at one condition each per

minor cycle).

3,3.3.10 Map Cbntrol

The map control element provides the interface

between the Instruction Issue Unit and the Map Unit.

When a map instruction (0o code 9D) is detected by

the Issue Unit, it is transmitted (along with all

subooeration parcels) to the mad control element

which then makes any necessary

register file references, forms the starting

addresses, increments, and contro-I signals and

transmits them to the appropriate Map Unit elements.

The Map Unit is responsible for releasing the Issue

Unit to go on issuing further instructions.

Many conditions arise during vector and mao

operations which can effect the contents of the data

flag register. The map control element deskews all

such data flag information and makes the approoriate
changes in the data flag register.

http:3,3.3.10

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i------ -------I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 72

REV.

-R -------------------------------- A OL- ---------------

3.3.3.jj Pipeline Selection

Figure 3.3-8 gives a block diagram overview of the

interconnection of the Map Unit and the Vector Units.

In this di-agram, the Buffer Unit is not shown, but

instead is considered imbedded within the respective

Vector Units.

As can be seen from the figure, there are actually

nine physically distinct Vector Units comprising the

Floating-Point Ensemble. Nine input select and

eight outut select networks are housed within the

Hap Unit to provide 'connections to the Vector Units

and the input and output data busses. Only one of

the input trunks Is shown here, labeled S(0) through

S(7) , corresponding to the source trunk Si of
emerging from the Map Unit. Also shown is a special
data trunk labeled maintenance data, which can be
selected into any or all of the nine physical Vector
Units. The selection of maintenance data in and
maintenance data out is under the control of the
Maintenance Control Unit (MCU).

http:3.3.3.jj

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 73

REV.

--------------------------- R A D L- ---------------------------

MAINTENANCE

DATA SELECT VECT1OR___0 EEC

VECTOSELEC

S(2) SEEC

Figue .

VECTOR 2

E ECT

; MAINTENANCE

S(4)

SO SLECT

-D SELECT H

VECTOR 3

VECTOR 47ELC

SE EC W1()

S(5)SELECT VECTOR 58..

Figure.3-8 Ma/Vectorintcnn)to

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
- I DATE Dec. 1977

!CORPORATION I S P E C 1 F I C A T 1 0 N PAGE 74
REV.

----------------------- R A 0 L---------------------------

3.3.3.11.1 Normal Operation of Selection Networks

Upon deadstart of the FMP, the Maintenance Control

Unit (MCU) sets up the input data selection networks

and output data selection networks for eight

pipelines. Normally the pipelines would be

configured with Vector 0 through Vector 7 on-)ine to

the input and output data trunks. In addition, the

data trunk of the adjacent Vector Unit (in this case

SO7)) would be enabled to the extra Vector Unit tin

this case Vector 8). The output of Vector 8 would

not be selected into WRITE 1 (Wj), but could be

sampled by the Maintenance Control Unit. The same

selection would be made for the S2 (Source 2) bus

from the Map Unit. Thus during execution of vector

arithmetic instructions, Vector 8 (in this example)

would be performing identical operations on data

identical to that submitted to Vector 7. Thus the

internal arithmetic elements and checking circuitry

of the excess unit are continuously exercised.

In the event that the excess unit discovers an error

in its own operation (checker failure, parity error

or SECOED double error), The'Vector Unit will be

halted but no stop flag will be sent to any other

Units. The MdIntenance Control Unit (MCU) will be

alerted, however. Under control of the MCU, soecial

data trunks can be connected to the inout-and output

of the excess unit and fault isolation diagnostics

executed with selected data being forced into the SI

and S2 ports of the failing unit. This technique

permits the on-line maintenance of a failing Vector

Unit.

3.3.3.11.2 Error Recovery and Maintenance

In the event that an error Is detected in one of the

on-line Vector Units, the entire FMP is halted and

the lob in progress is aborted. Before another job

is started the MCU will switch the data bus selects

so that the excess unit is Introduced into the

system, and'the failing unit removed. For example,

if Vector 4 were to fail and thus be s.witched

off-line, the input selects would be changed so that

S(4) would now go to Vector 5, S(5) to Vector 6,

and so on with S(7) now gated to the previously

offline Vector 8. At the same time the output

selects would be changed in similar manner, as well

as maintenance communications enabled with Vector 4

through the data busses.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354537
.............--iDATE Dec. 1977

ICORPORATION I S P E C I F I C A T 1 0 N PAGE 75
REV.

----------------------------R A 0 L- --------------------------

3.3.3.11.2 (Cont.)

This scheme permits the use of any Vector Unit as

the excess unit, dependng on the NCU controls set up,

thus all pipelines can be continuously exercised in

an on-line manner thoughout the operating day. In

such instances, the Maintenance Control Unit could

rotate the assignments between jobs.

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I....... ! DATE Dec. ±977
I Corporation I S P E C I F I C A T I 0 N PAGE 76

REV.

RA0L--------------------- AC------- --------------------------

3.4 Main Memory

Main Memory Is a single-levelt random-access

memory using bipolar', 4K-bit integrated circuits. The

memory words are 78 bits which provide for a 64-bit

data word and 7 bits of single error correction

double error detection (SECDED) for each 32-bit

half-word. The semiconductor memory access time is

4a nanoseconds1 where access time is defined as the

-time from the address reaching memory until data is

clocked out of the memory. This memory is directly

addressable in either monitor mode or job mode.

The basic Main Memory size is two million words

with expansions to four or eight million words

available as field upgrade options.

Each two million words of Main Memory contains 16

memory stacks each having 256K 39-bit half-words (32

data bits plus 7 SECDED bits). Each 256K stack is

arranged in eight phased.banks. In streaming mode, a
reference will be made simultaneously t.o the same

address in each of the ±6 memory stacks to obtain a

super-word (SWORD) of 512 data bits. Mem'ory busy

conflict rules take into account the 16 ohysically

independent stacks and the eight-bank phasing within

each stack to treat the bank address in each of the

16 stacks as a separate entity. Thus, it could be

said that each two million words of Main Memory

contains 128 phased half-word banks.

The eight-bank phasing plus the Physical distribution

of the memory stacks allows memory references to be

made at a maximum rate of one every 10 nanosecond

minor cycle for each two million words of memory.

Thus, the Main Memory has very high data transfer

bandwidths4

two million words = 512 bits/minor cycle

four million words = 1024 bit's/minor cycle

eight million words = 2048 bits/minor cycle

ICONTROL DATA I E N G I N E E R I N G NO. ±O354637
i------------- ; DATE Dec. 1977
I Corporation I
-------- -------

S P E C I F I C A T I 0 N PAGE
R EV .

77

--- ------------ ---------- R A 0 L-----------------------------

3.4-1 Memory Stack

The memory stack is packed in a freon-cooled .5

cubic ft, area with 8 banks, each 32K x 48 bits. The

FP utilizes thirty-two bits for data and seven

bits for SECDED. There are three board tyoes used in

the stack: inout control, storage, and output.

Figure 3.4-1 shows th! module organization which

lends itself to massive use of distributed loading

and emitter-ANDing and also results in "zero-skew"

construction which equalizes signal paths through all

memory chips to maintain identical timing throughout

the stack.

(continued)

-- ----------------------

I'CONTROL DATA I E N G I N E E R I N G NO. 10354637
1------------- i DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 78

3.4.1 (Cont.)

BANK

A INPUT BANK 0 2,4,

a INPUT BANK 1,3,5,7

C STORAGE BANK 0

D STORAGE BANK I

E STORAGE BANK 2

F STORAGE BANK 5

G STORAGE BANK 4

H STORAGE BANK 5

J STORAGE BANKS

K- SOAGE BANK T

L STORAGE BANK 0

M STORAGE BANK I

P STORAGE BANK 3

R STORAGE, BANK 5Q STORAGE BANK 7

S STORAGE BANK 6

TSOAGE BANK 7

REV.

RA D L- ---------------------------

CONTROL AND TIMING

W. DATA 0-19

W.DATA20-39

BIT 0-I9

BIT 0-I9

BIT 0-19

BIT 0-19

BIT O-19

BIT 0-IS

BIT 0-IS

BIT 0-19

BIT 20-39

BIT 20-B9

BIT 20-39

BIT 20-39BIT 20-39

SIT 20-39S

BIT 20-39

ADD A

ADD. B

C

D

E

F

G

H

K

L

M

S

RQ

T

U OUTPUT TERMINATORS. READ DATA REGISTERS U

Figure 3-4-1 Memory Stack

(continued)

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
I------------- I DATE Dec. 1977
I Corporation I P E C I F I C A T I 0 N PAGE 7S

REV.

--------------------- R A D L --------------------------

3.4.1 (Cont.)

108 coax lines connect each memory stack to the

Memory Interchange, All signals on the lines except

the read data are sent from the interchange to the

stack. Below is a list of these lines:

Clock (2) - One for each input board to

synchronize the memory stack to the interchange.

Absolute Address (j5) - Twelve address bits for
the selection of the 4K memory chios and three
address bits for the selection of the eight
ranks of memory chins.

Bank Address (6) - Three for each input board

which are decoded for the selection of the

eight banks within a stack.

Stack Request (2) - One for each input board

which are decoded for selection of a unique

memory stack.

Write Control (2) - One for each input board to
inform the stack of a write memory cycle.

Write Data (39) - 39 data bits to memory, 32 for
data, 7 for SECOED. Bits 0-19 on the "A"
input board, and bits 20-38 on the "B" input

board.

Sync (1) - This signal provides a point of time

reference for maintenance purposes.

Master Clear (2) - One for each input board.

Read Data (39) - 39 Read date bits from the
read data registers on the output board back to
the interchange.

3.4.2 Memory Configuration

Memory stacks are located as shown in Figures 3-4-2

and 3.4-3. There are eight stacks per memory section

and these sections are positioned around the Memory

Interchange, (Figure 3.4-2). Figure 3.4-3 shows

where the various half-word segments in a sword of

data reside in memory and where stacks reside in a

section. Section positioning In this diagram is shown

for data clarity and is not the true physical

positioning.

ICONTROL -DATA I E N G I N E E R I N G NO. 10354637
I ------------- i DATE Dec. 1977
I Corporation I S P E C I F I C A T I 0 N PAGE 8o

REV.

---------------------- R A 0 L---------------------------

(to be supplied later)

Figure 3.4-2 Section Designations FMP Memory

ICONTROL DATA
;-
1 Corporation

1

I S

E N G

PE C

I N E E R I N G

I F I C A T i 0 N

NO.
DATE
PAGE
REV.

10354637
Dec. 1977
8i

-- ------------------------ R A 0 L-----------------------------

(to be supplied later)

Figure 3.4-3

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

....... - DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE
REV.

82

---------------------------R A L

3.4.3 Memory Interchange

The Main Memory has 512 banks, each bank 39 bits wide

(32 + 7 SECDED) by 32K words deep. See figure 3.4-4.

The memory-has two separate access control networks,

each network connected to one-half (256 banks) of

memory. The "EVEN" control network addresses and

passes data to and from the even numbered i±24-bit

groups and the "ODD" control network the odd numbered

groups. This is done to enable two separate accesses

to memory simultaneously.

The other side of the Memory Interchange are the

connections to the Map Unit and the other units that

require access to memory - the Scalar Processor and

the Map Unit. The memory access is controlled

through four memory ports. Three of the oorts are

dedicated connections to the Map Unit (Ri, R2, WI)

and the remaining port is time shared between the

remaining read/write buses (R3 and swap).

For vector operations Ri, R2 and R3 make requests

for 2048 bits of data thus requiring both even and

odd control networks. For RI and RE, 2048 bits of

data are held and sent 512 bits at a time to the Map

Unit. W1 accepts 512 bits and assembles them into

2048 bit groups. This assembly/disassembly means

that a port requires access to memory one cycle in

every four. Thus the map ports can use up to 3/4 of

the memory bandwidth.

The remaining port into memory is divided 3 ways:

the Swap Unit, R3 to the Map Unit, and R3 to the

Scalar Processor. The Swap Unit will use 128 data

bits oer cycle and will always address memory

sequentially. On a swap request the port will get or

store ±024 bits from/to memory. Thus the Swap-Unit

can make a memory request every eight cycles and data

will.move to/from the Swap Unit as a 512-bit move

every four cycles. The Mao Unit uses R3 in either of

two modes - to get indexes for the GATHER/SCATTER
instructions or to get bit strings (order vectors).

In the first case the Map Unit can use uo to 128 bits
on a cycle, thus requiring a memory request every

eight cycles. In the second case the Map Unit uses

up to eight bits on a cycle thus requiring-a memory

request only every ±28 cycles since the oort will

always request ±024 bits of data. The R3 connection

(cont inued)

OF T E
t CIBohv- 0R

RFJPRF 1 Boo3t

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i DATE Dec. 1977

I Corporation I S P E C I F I C A T I 0 N PAGE 83
REV.

----------------------------R A 0 L --------------------------

3.4.3 (Cont.)

to/from the Scalar Processor is used for two

purposes. The first is to fetch instructions into

the Issue Unit and the second is for load and store

requests to/from the scaler Register File. Both of

these functions are highly asynchronous. The Issue

Unit has a buffer to hold uo to 4096 bits of

instruction so as to enable orogram loops of

reasonable size without making repeated memory

requests.

Memory can be accessed in several bit-group sizes

32 bits (half-word), 64 bits (C word) 1024 bits (16
words), and 2048 bits (32 words). Each port contains

logic to tell memory the access width and the address

of the first half-word to access. All accesses must

be on proper boundaries for the size requested.

Thus, for example, a word access must request an even

half-word address. Even though an entire 1824 bits

of data may be transferred by a network control, only

the data requested will make the memory busy. Thus a

request for a full word of data-will make two banks

of memory busy thereby reducing possible memory

conflicts.

uRGorU CI3UL FORIGIhAU rAGE Is pOOR

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i ------------- I DATE fec. 0977
I Corporation 1 S P E C I F I C A T I 0 N PAGE 84
--------------- REV.

----------------- R A O L -----------------L ---------

RERODUor1MIy op TIMOIGAL PAGE IS POOR

DATA

MAIN MEMORY
SM, 64 BIT WORDS + SECOED

1

256 BANKS

WI COO

"o/FT
TO MAP/Ra ASSEMBLY?

TO/FiROM SCVALAR/RSO

Figure 3.L -i FlIP Memory interchange

and Mlain Memory

ICONTROL DATA i E N G I N E E R I N G NO. 10354637

SDATE Dec. 1977
1 Corporation I S P E C I F I C A T I 0 N PAGE 85

REV.

----------------------- RA0LO------- ---------------------------

TABLE 3.4-i MEMORY PORT TRANSFER MODES

MEMORY i I i

I INTERFACE- 1 MEMORY PORT I TRANSFER I
I BUFFER I I MODE I

-- I

I RI 	 I Mao I Half-word, Word,I
I I Sword

I---I
*I I I

i R - I Map I Half-word, Word9 l
I I Sword I

I

I WI 	 1 MaD I Half-word, Word,)
I 1 Sword I

I 	 I

I R3/Swap 	 I Scalar, Map I Half-word, Word I

I Swap I Sword I

I I 	 I1 -

I I I

RUPRODUOBhY OF TH

OMlRNAL PAGtJS ?POOR

!CONTROL DATA I E N G I N E E R I N G NO. 18354637
.............- I DATE Dec. 1977

I Corporation I S P E C I F I C A T- 0 N PAGE 86
R EV .

---------------------------- R A L- --------------------------

3,4.4 Memory Degradation

If more than the minimum two-Mword memory is

oresent, degradation may be selected so that the

amount of usable memory is less than the total

memory on the system. The amount of usable memory

is control led by three degradation bits from the MCU

along with a strobe bit.

I Memory I i I

1 Sections* I DEGRADATION BITS Usablel

Used IMemory!

-- I

SI I I I

I AH I I i I I a I I

i -- -- -- -- - -- -- -- -- - -- -- -- - - - I I
I B G I ± 1 1 II 02 I
- --- IIword
I CF I 1 Ii I I ± 32 I
--- Ior1I , 2 I

I DE I 1 I i i t 1 3 1 i
-l---I------- I
I AH;B,G I a i 1 i X 1 I 4 1
I -- IMword I
I C,F;DE o I X I 5 I 1

I- -- I------ I
I AH;BG I 0. 1 0 i X I 6 : 8 I
I C,F;D,E I I I I IMword I

I ---
II

I* See Figures 3.4-2 and 3.4-3

OF. ,TE?, PRODUCIBILITY
ORIGINAL PAGE IS POOR

I

3.5

!CONTROL DATA I E N G I N E E R I N G NO. 1035'4637
I ------ I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 87

REV.

---------------------R A D L- --------------------------------

I/0 Channels

The FMP is equipped with a basic set of eight I/0

channels, and includes space for an optional eight

I/O channels. All input and output'is through the

Backing Store, via the Swap Unit. Figure 3.5-1

gives a general block diagram of the I/O unit. The

input/output characteristics are optimized around

large block transfers of data,-since small block data

handling appears to have a higher overhead as'sociated

with memory accesses.

TWrnuBmL

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

I ----- --------I DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T 1 0 N PAGE 88
--------------- REV .

---------------- R A D L ---------------------------------

FROM/TO SCALAR DISTRIB-

DATA DATA®

128_

FROM/TO SWAP'

1/0 BUFFER 7 MORE PDC'S WITH

DATA TRUNKS

L_
8 OPTIONAL

1/0 CHANNELS

G) EACH PDC CAN HAVE UP TO
4 TRUNKS ATTACHED.

()A TRUNK WITH THE ASSOCIATED
DATA SET AND PDC CONSTITUTES
A CHANNEL.

Figure 3-5-1 1/0 Unit

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I ----- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 89

REV.

- ---------------- A0L---------------------------------L-----

3,5.1 Data Movement

Data can be transmitted from the I/0 Unit at the
rate of 128 bits every clock cycle. Thus with a 10
nanosecond clock cycle the total I/0 bandwidth is
22.8 billion bits per second. However, the I/O Unit
must share the Swan Unit bandwidth with Memory to
Backing Store swaps, and thus the design goal is for
an achieveable, sustained I/ bandwidth of 3.2
billion bits per second.

The I/O Unit is engineered in two parts, CPU and

peripheral. The CPU portion includes the I/O

distributer for control between the Scalar Processor

and PDCs, the I/O buffers and associated channel

control not shown. The individual CPU-end capability

for tranfers is one 32-bit (olus SECOED) data item

transfered per minor cycle per channel. The current

peripheral-end bandwidth is 5.0 megabits per second,

thus the CPU-end is not being challenged in the

initial installation.

Data is moved between the I/O Unit and the Backing

Store in 128-bit parcels (quarter-swords). Data is

moved between the I/0 Unit and the peripheral

sections in 32-bit segments, and control Information

under the command of the monitor mode scalar

instruction is communicated between the Scalar

Processor and the peripheral section in 64-bit

pieces.

3.5.2 Error Checking

All data passed through or buffered in the I/O Unit

contains seven bits of SECCED information for every

32-bits of data. SECOED checking and generation are

performed in the POC (peripheral device controller)

so that error correction can cover the total path

from the Swap Unit out to the peripheral sections.

In the event that a single-bit error is detected by

the PDC, the error is corrected and the PDC memory

counter for the failing address plus the syndrome

bits are locked up for sampling by the MCU. An

error flag is sent to the CU indicating which POC

discovered the error.

(continued)

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
I I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 90

-- - -- - -- - -REV.

---------------- R A D L---------------------------------

3.5.2 (Cont.)

If a double-bit (uncorrectable error) is discovered,

the error date is latched up, the MCU is flagged,

and the POC attempts to retry the data transfer

between the Backing Store and the PDC. if after a

number -of attempts (set by the installation) the

error cannot be recovered, an error message is sent

down the network data trunk by the PDC, a code word

is sent to the scalar monitor on the 64-bit trunk,

and the I/O Unit idles that oarticular channel. If

the MCU discovers more than one channel falling it

will force a job abort of the computation in

progress and cause the monitor to enter a channel

diagnostic mode. All stations attached to the trunk

are alerted to the problem and will take approoriate

action, including switching to an alternate channel.

Data transferred onto the data trunk carries one or

more CRC (cyclic redundancy codes) for error

checking. If the POC receives a faulty

transmission, it requests a retry of the full block
on the trunk for a number of times. If the block

cannot be transmitted the PDC wil.l signal the

transmitting station and attempt to retry on an

alternate trunk (each POC can be attached to up to

four trunks at a time). The MCU and the

transmitting stations are all alerted to any errors,

whether transient or fatal, and through software

will take aporopriate actions.

3.5.3 Addressing

All data transfers to and from the I/O Unit are by

128-bit parcels; however, the minimum block size

transmitted from the Backing Store is defined for

each channel, but cannot be less than 512 words.

All data arriving at the I/O Unit is held in a large

buffer. This buffer can house from 32,768 to

262,144 words depending on the bandwidth requirements

of the perioheral subsystem on a given channel.

Eight channels operating at full rate would require a

full block to be held at a time per channel to

minimize interference with other Backing Store

requests. All data enters the homogeneous memory

ouffer, which is allocated by a local control in the

I/O Unit. Since a variable amount of buffer can be

allocated dynamically, the buffer can be of modest

size, with various I/O channels given large portions

as they need them for large transfers.

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 91
REV.

------------------ R AU0L---------------------------------------

3.5.4 The POC

See report Appendix C

3.5.5 The Trunk

See report Appendix 0

3.6 Maintenance Control Unit (MCU)

The MCU is an autonomous Maintenance Control Unit

connected to the computer via a COC FMP 1/0 channel

with access to special internal interfaces. These

interfaces allow It to regulate information flow,

control pulses, and monitor performances of the

computer. The MCU consists of a control unit, line

printer, card reader, and a disc drive and it

provides for system dead-start and system performance

monitoring. Special connections to the computer give

the MCU the capability of monitoring system

performance. Diagnostics and preventive maintenance

are facilitated by this section.

There are three operating modes for the MCU.

$. The first mode is under operation of a diagnostic

maintenance program to locate faults and

malfunctions within the MCU.

2. The second mode of operation is running diagnostic

routines on the FNP. The MCU loads diagnostics,

ranging from a simple command test to a very

sophisticated diagnostic catalog routine, controls

and monitors the operations of the diagnostics,

and displays the results of the tests via the

display unit or line printer.

3. The third mode of operation is System Operation.

Here again, the MCU loads the Operating System

Software into the FP and controls and monitors

its operation. In this on-line mode of operation,

the MCU concerns itself with: autoloading the

central processor and first level stations,

running on-line diagnostics, monitoring CPU

faults, and restarting the central processor after

hang-ups.

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i ------------- i DATE Dec. 1977
ICORPORATION I S P E C I F I C A T 1 0 N PAGE 92
......... - REV.

---------------------- RADL ..--------------------------------

3-.1 MCU/CPU Interface

The FCU connects to the FMP via a network trunk.

It interfaces 16 buffers, internal to the FMP,

called NCU/CPU channels - ATB being outgoing buffers

and STA being access channels. Tables 3.6-1 through

3.6-8 show the channels from the CPU to the MCU (ATB)

and Tables 3.6-9 through 3.6-16 show the channels

from the MCU to the CPU (STA). Each table shows the

channel bit number, and function of each bit for a

channel.

- - - - - - - - - -

I E N G I N E E R I N G NO. 10354637
ICONTROL DATA

DATE Dec. 1977I ------------- I

E C I F I C A T IO N PAGE 93ICORPORATION 1 S P
REV.

--- ------------------ R A 0 L-

TABLE 3.6-1 CHANNEL ATBi

Function IIBit No. I
I--- - -- -- - - - - - - - -

0 I Bit 0 Current Instruction Address
t I I i Register
12 1 2
I 3 1 I .

S4 4
I B 5

I6 6

71 7

1 8 1 8

1 9
I 9

IA I ±

I i2I C
soa 1 13

I 14I E
IF I 15

TABLE 3.6-2 CHANNEL ATB2

I
Function
IBit No. I
I---------------- ---
1 0 1 BitI6 Current Instruction Address

1 1 17 Register

2
3

18
1 19

I

2 4 I 20 I
5
6

21
22

I
I

1 7 1 23
28 I 24
29 1 25

I A 1 26 1

I C I 28

10 I 29

I E I 30 I

IF I 31 I

(continued)

A 'OOjt t DJ lk~G?', poo

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S DATE Dec. 1977

ICORPORATION I S P E C I F I C A T 1 0 N PAGE 94
REV.

AO----- ---------------------------------- --------------- A0L

3.6..1 (Cont.)

TABLE 3.6-3 CHANNEL ATB3

IBit No. I Function
I-------- I ---
i 0 1 Bit32 Current Instruction Address

i 1 33 Register
1 2 1 34

I 4 1 36 I
I 5 a 37
t 6 1 38
I 7 I 48 I
1 8 i 40
1 9 I 41 I
I A 1 42
I 8 - _ 4
I C 1 44

0 i 45
I E i 46
I F i 47-

TABLE 3.6-4 CHANNEL ATB4

IBit No. I Function

I--------I---

0 I Bit a
i1 I I Display Register - Displays the
2 I 2 register selected by bits C-F of!
I -- L3. channel BTAj in the NCU.

14 1 4
15 1 5
I6 I 6

17______
18 I

7
8

9 I 91

1 A 10

I 'C ID I 212
1 0 1 13
I E I 14
IF 15

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
------ I DATE Dec.- 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 95
REV.

---------------- RADLR L--------- --------------------------------

3.6.1.1 (Cont.)

TABLE 3.6-5 CHANNEL ATB5

I

1Bit No. I Function

1 0 IBit 16 Display Register - Displays the
1 1 17 register selected by bits C-F of

1 2 I 18 Channel BTAi in the NCU.
1 3 1 -19

4- 20

5 21

'6 1 22

1 7 1 23

18 1 24

19 1 25

A4 26

-- _ ?77_

I C 28

ID - 1 29

E 1 30

I F I- ,

TABLE 3.6-6 CHANNEL ATB6

I I I
IBit No. I Function I

I I
_ _ __

I
I I_ _ _ _ _ _

i 0 IBit 32 Display Register
I 1 1 33

(2 I 34

1 1 _ _ _ _ __r,_ _~3
14 1 36

i5 1 37
16 1 38

_ _ __,_ _ __._______I

1 8 1 40
1 9 1 41
IA "42
I B I _ _ _

IC 1 44

1 D I 45

I E 1 46

I F 1 .AZ

(continued)

REPRODcIIL~yPFlrt

ICONTRoL DATA I E N G I N E E R I N G NO. 10354637
i ------------- 11 DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 96
.....- REV.

---- ---------------- D ---------------------------------A ORL-

3.6.1.1 	 (Cont.)
TABLE 3.6-7 CHANNEL ATB7

i

IBit No. I 	 Function

I a 1 Bit 48 Display Register
I 1 49

I 2 1 50
I _ __	 __

1 4 1 52
15 	 53
1 6 1 54
I 7 15
I 8 1 56
I 9 I 57
I A I 58
I R ~ -a - I

I C I 60

n $ 61
I E I 62

TABLE 3.6-8 CHANNEL ATB8

IBit No. I 	 Function

I 09 Memory SECOED Fault or Instruction I
I Stack Parity

i 4I 1 Microcode Parity Fault

1 2 1 Not Used
l__ 1 Absolute Sword Bounds Hit I

1 4* Event Stoo *

5*
I 1 Single SECOED Error I

1 6 1 CPU Clock - Used for gating data back'
I I to the CPU. The MCU cannot read I
iI this line. I
I 7 1 Monitor Mode i
I 8 1 Temperature - Dew Point Alarm I
I S Not Used i
I A I Section Power Fail i
I S 1 _i Hz Inout Power FaflLLM.__G.u___ I

I C I 60 Hz Input Power Fail, M.G.2 i
ID I Not Used -

I E I CPU Idle
I F I ___ CPU Sto Oed I
j 4 These lesin idicate why the rU _ stooed9

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S-----I DATE Dec.. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 97

REV.

----------------------R A O L- --------------------------------

3.6o1.2 Channels from MCU to CPU

TABLE 3.6-9 CHANNEL BTAi

IBit No. I Function i

I---I

0 MAC Master Clear- Master Clear to Memory!

I Interchange, and Main Memory only. I

I This includes the I/O channels. This I

I signal must be set a minimum of 3 i

I microseconds. I

1 I Stop - CPU will stop before next
I instruction issue.

1 I I
I 2 1 Step - Execute one instruction. Store I
* I the register file and the invisible i

i I package (job mode only): then stop.
I Faults must be cleared before the

I

1 computer can be stepped.

* 3 1 Run - Start CPU from manual stop or faultl

I stop. Faults must be cleared before I'

I computer can be started. I

I 	 i

1 4 	 1 Stdre Register File - The Register File I
I is stored starting at address I
1 0000 in monitor mode and address 4000 1
2 16 ±6 1
tin job mode. I

I 5 	 1 Load Register File - The Register File isl

I loaded starting at address 0000 in

I±6

I monitor mode and address 40OO in job I

16 1

mode. I

--i

1* Computer must be stopped before executing these i

I commands. i

(continued)

ICONTROL 	DATA I E N G I N E E R I N G NO. 10354657

I...... ..--... .. I D AT E Dec. 19 77

]CORPORATION I S P E C I F I C A T I 0 N PAGE 98

REV .

----- --------------- RADL ----------------------------------

3-6.1.2 (Cont.)

TABLE 3.6-9 CHANNEL BTAj (Cont.)

I Bit 	 I Function

1 6 	 1 CPU Master Clear - Master Clear to Scalarl
I 	 I Unit, Stream, and Floating Point only. I

I Memory Interchange, I/0 Channels, and i
I Main Memory are not included. This I

I I signal must be set a minimum of 3
I I microseconds. I
* 	 I

1 7 	 1 Clear Fault Conditions - This signal
I I clears the following conditions and
II allows the computer to be restarted with I
1 1 a run signal (bit 3): 1
I 	 I

I a. SECDED Double Error Condition

I 	 I

1 b. MIC Memory Parity Fault

I I 	 I

I c. Sword Bounds Hit

I d. The bounds Hit Address is released. I
I I *

I e. Reference to Illegal Address in I
I Stream Microcode.

I f. Instructional Stack Parity Error

I 	 I

I 8 1 Clear SECDED Single Error, SECDED Fault I
I Address and Syndrome Bits. I

I I I
9 	 I MCU Sync.- This signal is used in the I

I CPU to gate the CPU data back to the MCU.I

I When reading the display registers, the I

I MCU Sync. signal must be set after the ,

I read signal is set.

A 	 I Select SECOED Error Mode Two. I

B 	 I Read - Transfer selected register and I

I CIAR into the Display Registers.

C II
D It Display Register Selection

I E 11 See Section 3.5.4.2 1
II

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

S--D IATE Dec. 1977

ICORPORATION I SP E C I F I C A T I 0 N PAGE 99

REV.

--	 ----------------- R A D L----------------------------------

3.6.1.2 (Cont.)

TABLE 	3.6-10 CHANNEL BTA2

IBit 	 I Function

I a * I Latch Memory Size Code
I * I Static Interrupt Gate - When this signal isi

a "i", time interrupts and external I
A interrupts will only be processed

I I between instructions.
1 2 *I 1 Memory Size Degrade Code
3 1 1 000 = 2 Meg Memory

1 1I 1 = 2 Meg Memory,
I I Force Section I -- > Section 0 -1

I II 1 010 = 2 Meg Memory, I
II I Force Section 2 -- > Section 0 I

4 ±11 'I Bit = 2 Meg Memory,
I I Force Section 3 -- > Section 0 I
1 1 100 = 4 Meg Memory

I 	 I I ii = 4 Meg Memory, Force

I I Upper 4 Meg -- > Lower 4 Meg I

I 1 1±0 = 8 Meg Memory

1 5 NI 1 Select Mainframe Clock Freq.

I I! 1 000 = Nominal

1 6 4

fI Oi = Increase clock freq. (j) I

7 -I 1 010 = Decrease clock frec. (J)

I I Oi = Select variable freq. I
I I (adjustment on oscillator I

I 	 I I pak)

I 	 I I 10 = Increase clock freq. (2)

1 1 ji = Increase clock freq. (3)
I 1 10 = Decrease clock freq. (2)

=
ii	 Decrease clock freq. (3)

I I NOTE: If clock frequency codes 4-7

I I are, used, then code 3 is not

I I available. Either codes 0-3 or 0-2

I I and 4-7 are available.

I8 1 	 1 Delay Trailing Edge - Delay the
I trailing edge of all of the clocks I

I I on the panel which is specified by I
I I bits ±1-15 of Channel BTA2. If bit I
I I 8 and bit 9 are set, only the odd I

I 	 I I or even clock, on a panel are moved I

I I depending on bit A.

I Computer must be stopped before executing these
I commands.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 1Q354637
--------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 1o0

- REV.

---------------RRA0L L---------

3,6.1.2 (Cont.)

TABLE 3.6-10 CHANNEL BTA2 (Cont.)

IBit I Function 	 i

I --

1 9 I I Delay Leading Edge - Delay the i
* I I leading edge of all of the clocks I
I I I on the panel which is specified by I
I I I bits 8-F of Channel BTA2. If bits 8 I

I I and 9 are set, only the odd or even I
I I I clocks on a panel are moved i
I I depending on bit A. i

I A I V - Hove even clocks(see i
I IStatic description for bit 8 or 9). I
I I

* I - Move odd clocks. 	 I

---I

I Computer must be stopped before executing these
I commands.
I------------------------------------	 --------------------- I

I Bit i Function 	 i

I-- I
I 4 1 i
I B (2) IPanel Designator for Clock Margins - Bit I
i 3 18 is the left-most bit of the designatorl
I C (2) IThedesianators are defined below,
1 2 Iesignator I Panet(-s) i
I D (2) I I_.... C I
I 14 5 O0

I E (2 1 I 01 1

i 0 I 02 i

I F (2 1 03I

II 04 I
I 1 05 I
II 06 (to be supplied later) I
$ I 07 I
I U,8 	 I

1 08 1 I

I 09 I

* I OA II

II 	 OBI

* 08I

I OC I

I 	 OE

OF (cd I

(continued)

-------------------- ---------------------------------

ICONTROL OATA I E N G I N E E R I N G NO. 10354537
I- -------------! DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 101

REV.

RA0L

3.6.1.2 (Cont.)

TABLE 3.6-10 CHANNEL BTA2 (Cont.)

I Bit I Function

--- I

1 11 I I

12 1 I

13

14I I

15I

1 16 1 (to be supplied later)
17 1
18 I

1 19 I I
iA .1 I

1 18 1
I IC I,

1C IlE

10 IIF

:F I I

* I

III I
II I

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

;-- iDATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 102

REV.

~J------- --------------	 A0L--------------------------------

3.6.1.2 	 (Cont.)

TABLE 3.6-11 CHANNEL BTA3

I Bit No. 	I Function

I

0 	 1 Not Used.

I I Send an external flag on the channel I
i specified by the Channel Select Code in 1

i I bits 4-8. (*i)(*2) 1

1 2 1 Set Channel Disable on the channel I
specified by the Channel Select Code in I

I bits 4-8.(1)(*3) 1
i 	 i I
1 3 1 Clear Channel Disable on the channel I

specified by the Channel Select Code f

I In bits 4-8.(*1)(*3)

1 4 I 1 Channel Select Code. A code of
Ii i thru F selects a channel i

5 > 1 16 16 i

I
6 I
7 1

S

1 (o thru 15) for the operation
10

I specified in bits 1, 2 and 3.(41) Bit

i
I
I

I 7 of BTA3
I Code.

is bit 3 of the Channel Selectl

i 8 	 1 Select All Channels (thru 15) f-or I

I JO 0 I

I the operation specified in bits 1, 2 andl

3.(41)

I 	 I

1 9 1 Stop on SECDED Single Error Detection. I
I I

I A I Disable Stop on SECDED Double Error i
I Detection.

i S 	 I Block External, Interrupt

C 	 I Disable Error Correction on all Read I

I Buses.

ft I 	 I

1 0 	 1 Swap Register File Read on Exchange.

* I

E I Not Used

i F 	 I Nbt Used.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
1------------- ! DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 103
--------------- REV .

-----------------------	 RA L------------------------------------

(Cont.)
3.6.1.2

(*I) 	 The Channel Select Code bits 4-8 must be set

before any commands are sent, and it must remain

set until after the command has dropped.

(#2) 	 The External Flag is transmitted to the device

on the I/O channel corresponding to the code in

bits 4-8. External Flag instructs the device to

autoload.

(43) 	The Channel Disables are transmitted to the I/O

Unit. If the disable line for a channel is set,

no backing store references will be allowed from

that channel. Data transfers can proceed in and

out of the channel buffer in an end-around type

of operation.

TABLE 	3.6-12 CHANNEL BTA4

I Bit i Function

---	 I

-- 1---	 I
1 U 1 I Checkword bit 01 	 1

1 2 I I 21 Used for toggling I/01
I 3 > I 31-- Checkword bits 0-6 i
1 4 1 1 41 I

5 I j 51 	 I
6 1 1 61 	 1

I 7 1 Block Write Enable on SECDED Error
SI
8 1 Not Used

9 1 Not Used

t
1

I A I Force Reg. File Store at bit address

1 20,000 on Initial Exchange I

B I Force Instruction Stack Parity 	 I

IC I Enable I/O Simulator 	 I
I 	 I

I D I In-itiate I/O Simulator on Channel Flag I

I I I
"E I Not Used"

I F I Not Used

(continued)

:CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

i --------- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 104
REV.

--r ---------------- RADL----------------------------------

3.6.1.2 	 (Cont.)

TABLE 3.6-13 CHANNEL BTA5

I Bit I Function

I 	 I

I1 	at

2 >
I Not Used

I 3 I

I 	41

--- 1Bounds Limit Load Code

1 	51 1 = Null

1 6 > 1 i = Load Bits (35-42) Upper Bounds
I 7 1 1 2 = Load Bits (51-58) Upper Bounds
a --- 3 = Load Bits (43-50) Upper Bounds

4 =
-I 	 Null

1 5 = Load Bits (51-B8) Lower Bounds

1 6 = Load Bits (35-42) Lower Bounds

1 17 = Load Bits (43-50) Lower Bounds

I Bounds Address Bits

8 I Due to the operational characteristics

1 9 1 1 of the maintenance interface, only one

I A I 1 bit of the code can be changed at one

I B > I time. Address 	bits must be loaded in
I C I such a manner 	as tp leave the Load Code I

I 0 i bits undisturbed.- Address b'ts are

I E I transferred on the Leading Edge of a

I 	F I code change, the address bits must be I

--- I set up before a code change occurs.

II Address Cits are Loaded as follows,

I starting and ending with a Null-Code: I

I Code = 0 Null

I Code = I Set up Bits (35-42) Upper

I 	 Bounds

I Code = 3 Set up Bits (43-50) Upper

I Bounds

I Code = 2 Set up Bits (51-48) Upper

I 	 Bounds ,

* Code = 6 Set 	up Bits (35-42) Lower i
I Bounds

I Code = 7 Set up Bits (43-50) Lower

I Bounds I

I Code = 5 Set up Bits (51-58) Lower i

I Bounds 	 i

I Code = 4 Null 	 i

I Bounds lim;its are absolute, physical I

I half-word addresses. Bits (35-36) and I

1 (55-58) must be zero. 	 I

(continued)

ICONTROL DATA I E N G I N E 'E R I N G NO. 10354637
1- DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I o N PAGE 105'
REV.

----------------------- R A D L- --------------------------------

-3.6.1.2 (Cont.)

TABLE 3.6-14 CHANNEL BTA6

1T

I Bit I Function

0 Check bounds on
I reads
1I

I I Check bounds on
1 writes
I -

1 2 1 Check bounds on
I references

1 3 1 Check bounds on
I references

memory 	I If bits 0 and

I

I 1 or bits 2

memory I and 3 are zero,

I

I no bounds hits!

CPU I can occur. I

channelI

1 4 	 1 Stop CPJ on bounds hit I

1 5 	 1 Enable bounds check - The bounds I

I addresses and conditions must be set up I

I before the enable is set. I

I 6 	 1 Count A - Monitoring Counter A is
I enabled while this line is a "j" and

i 	 I held clear when this line is a 10". The!

I proper counter specification and bits 2

I 8-E of channel BTA6 must not change

I while this line is up.

I 7 	 1 Count B - Monitoring Counter B is

I enabled while this line is a "j" and

* 	 1 held clear when this line is a "0". The!

I proper counter specification and bits I
I 8-E of channel BTA6 must not change

* I while this line is up.

1 8 1 Clear counter (see code 6 in Section

1 3.6.4.2).
1 9 1 Stop CPU on Counter A Increment I

I I >---

I A I Stop CPU on Counter B Increment] I I
1 -- I I
I See
I Section I
1 3.6.4-1.31

(continued)

REPRODUCIBIM OF TES
ORIGINAL PAGE iS P0W.

http:3.6.4-1.31

ICONTROL DATA I E N G I N E E R I N G 	 NO. 10354637
i --	 DATE Dec. 1977

!CORPORATION I S P E C I F I C A T i 0 N 	 PAGE 106
REV.

--- ----------------- A L-R ----------------------------------L

3.6.1.2 (Cont.)

TABLE 3.6-4 CHANNEL BTA6 (Cont.)

I I 	 I

I Bit I Function

--- * 	 II

a Enable Carry into Ai I
I Enable Carry into A II

C Enable Carry into A2 I I

I---See Section
1 0 1 Enable Carry into B 1 3.6.4.1.2
I I 	 I I
I E I Enable Carry into 82 1 I

I 1
I I I

* 	 I

I Load Counter A Event Selects and I
1 Gates (Channel STA Bits o-F). I

I II
""- Load Counter B Event Selects and I

IGates (Channel BTA Bits 0-F)..

1 This bit should be set to the prooer

I counter before the count specification I

I is set into Channel BTA7. I

(continued)

ICONTROL OATA I E N G I N E E R I N G NO. i03'54637

I------------ I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 107

REV.

--------------------RAUDL----------------------------------

3.6.1.2 (Cent.)

TABLE 3.6-15 CHANNEL BTA7

I S

I Bit I Function
I--

a :------

I II

II

2 2 1 1 Event Select for Counter Al and Si 1

1 1 I-See Section 3.6.4.1 for codes
3 I

4 2

5 !

IS I

6 I1
2 6

I I-Event Select for Counter A2 and 62 1

1 7 I1 See Section 3.6.4.1 for codes

I 2 2
8

1 9 1 1I SI
9 I - "

I A I Not Used
I I -

1 B 1 Selected Job Gate I

I C 1 Monitor Mode Gate 1 MCU Event

I I Counter Gates]

I D I Job Mode Gate I--See Section
I 2 1 3.6-4-.1
I E Data Flag 56 Gate 1
I I 1I
I F I Data Flag 57 Gate I I

II -- -I

I_ I__ __ I

(continued)

REPRODUCIBILTY OF THE

ORIGINAIt PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i ------------ I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T 1 0 N PAGE 108

REV.

---- ----------------- RA L ---------------------------------

3.6.1.2 (Cont.)

TABLE 3.6-16 CHANNEL BTA8

I I

i Bit I Function

S I

0 . . . I

2

*
I

II
i~

* S

I

I

1 3 2 1 8-bit function select code. Bit 0 1
I i I is the left-most bit of the code. i
1 4 I 1 See event code 12 In Section I

16
5 3.6-4.1.

I I I

6 1

17 I

1 8 I---

1 9 1 1

I A I

B I 8-bit function mask. Bit 8 is the I
I left-most bit of the mask. See i

I C I I event code 12 In Section 3.6.4-1.1
16

I E I I
I FI -

F I

I - I

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i------------- DATE Dec. 1977
IC6RPORATION I S P E C I F I C A T I 0 N PAGE 109

REV.

----------------------- R A D L---------------------------------

3.6.2 MCU/Microcode Memory Interface

Upon power up of the FMP all microcode memory

contents are undefined since that memory is built of

RAM circuits with volatile storage. Each of the FMP

microcodes can be loaded by an MCU function which is

sent over the FMP I/O channels from one of the

processors acting as the MCU. A special trunk

address identifies the special I/O channel which does

not transfer data to the Backing Store, but instead

provides control information for the FMP, and

retrieves status Information from the FlP from one

or more of the internal maintenance channels

contained within the FMP. One of the maintenance

functions is the loading of microcode to each of the

microcode memories. Each block of microcode

received by the MCU interface is checked for data

errors (using the CRC code in the trunk message) and

sent to its respective microcode memory system.

Each block is preceded by a unique 16-bit address

which identifies the particular microcode

destination.

3.6.2.1 Microcode Units and Addresses

(to be supplied later)

3.6.2.2 Microcode Error Checking

Under control of the MCU interface control signals,

a microcode memory can be loaded with data from the

trunk. The data carries its own parity bits (one
per word) which are generated by the assembler at
the time the microcode is created. This block can
be read out of each microcode memory sequentially by
the MCU interface so that the memory can be checked.

Each word read is parity checked and if an error

occurs the location of the failing word is unloaded

by the MCU interface via the P counter of that

microcode.

During normal startup procedures, each microcode

memory is loaded In turn with its unique microcode

and the entire contents are swept out on an MCU
controlled, sequential read operation to verify the

integrity of that memory.

(continued)

RBPRODUCIBILITy Op THE
OPIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO; 10354637
--------- I - DATE Dec. 1977

!CORPORATION I S P- E C I F I C A T I 0 N PAGE igo
--------- - "REV.

--------------- R A D L --------------------------------

3.6.2.2 (Cont.)

During operation of the FMP, each microcode access

is parity checked. If a parity error occurs in any

microcode, the MCU is signalled via the network

trunk and the FMP CPU is stopped as soon as possible.

The location of the error P counter and the address

of the failing microcode unit are then provided to

the MCU interface for transmission to the MCU

orocessor on the trunk.

3.6.2.3 ICU Interface Channel Bits

(to be supplied later)

3.6.3 Microcode Memory Channel Programming

(to be supplied later)

3.6.3.1 N/A

3.6.3.2 N/A

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
S-D DATE Dec. 1977
lCORPORATION t S P E C I F I C A T I 0 N PAGE Ili

REV.

----------------------- R A D L---------------------------------

3.6.3.3 Typical Microcode Interface Function Codes

For al I channel functions the address that

accompanies the function and the null function are

ignored. The following 3-bit function codes control

the microcode memory:

TABLE 3.6-17 B TYPICAL FUNCTION CODES (IC. MEM.)

I Bit 0 I Bit 1 I Bit 2 I Function I

I---

a I 1 0 1 Null - Automatically sent!

I i I by the MCU interface as I

I I I the second half of any I

I 1 other function. I

I

0 	 1 I ± Read Memory - Read a
I I I block of microcode memoryl
I I from the current
Si II microcode "P" address. i
I 	 I

1 0 I i 1 0 1 Write Memory - Write a I
I I block of microcode memoryl
i ' iI from the current

-	 I microcode "P* address.

I IIcI0 ± 1 1 1 Not normally used but I
S-I i I will perform the same as 1

I I I Ia FOP.

1 0 I 0 Data - Automatically sent!
1 , with the data during a I
I I t write microcode memory
i i I operation.

j 	 1I 1 1 Read Status -Read the I

I 1 1 current microcode status.1

i I See Section 3.6.3.5 for I

I explanation. 	 I

I 	 1 0 1 Write Switches -The I

I switches provide control I

I I I of microcode execution. I

I I I See Section 3.6.3.4

-I

S±I 1 I 1 EOP - End of Operation
I I I I clears the interface of I

I I I all previous functions I
II 1 and also clears the

I I counter that controls the!
It 1 data fan-in and fan-out I

I I to/from the channel. I

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i I DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 112
......- REV.

---------------R~3--------- ---------------------------------RA0L

3..6.3-4 Microcode Switches

Microcode switches are i-bit control terms used to
control the microcode memory. Each switch is one bit
of the Write Switch Control Word. -The 110 function
code (write switch) causes the microcode memory to
store the Write Switch Control Word in a register.
The MCU interface receives this data from the 1/O

trunk and sends it to the microcode control. The

following is a definition of each switch function and

a description of its use.

i. Switch Function Definitions

TABLE 3.6-18 MICROCODE SWITCH FUNCTIONS

I Bit 	 I Function

j 0 1 Go Microcode - Strobing this bit will i
I I cause microcode to start execution at the 1

I current microcode "P" address.

1 1 Kill.- Setting this-bit will stop any
I microcode instructions executing at the I
I time the bit Is set. The instruction will i
I come to a normal halt with "P" pointing tot

I I the next word to be executed-. Execution i

can be resumed by setting bit g. I

I I 	 I

1 2 	 1 Sense Switch - Any microcode program can

I sense the condition of this switch for I

I Program control (used mainly by

I diagnostics).

i 3 1 P to 0 - Strobing this bit will force the I
"P" register to zero, Kill should be set 1
either previously or in the same word so I
as to come to a normal halt.

1 4 1 Clear Checkpoint - Strobing this bit Will I
clear the check point flip-f loo.

i 5 f Drop Control-Setting this bit disables I
control of the CPU and the I.C.s from i
microcode, This will prevent undefined CPU!
ooeration due to a microcode memory test. I

(continued)

ICONTROL DATA 	I E N G I N E E R I N G NO. 1035'4637

S-------- -- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 113

REV.

------------------ RA L

3.6.3.4 	 (Cont.)

TABLE 3.6-18 MICROCODE SWITCH FUNCTIONS (Cont.)

I Bit 1. Function I
----- -- - - - - - - - - - - -- - - - - - - - - - -

I I

1 6 I Change Status Word 2 Definition - Bits 8-Fl

i 1 of Status Word 2 become bits 0-7 of an IC I

I register. See Section 3.6.3.5. J

7 Enable 	control of the register logical I

- 'pipe from microcode. I
1 8 1 Function for Scalar'Microcode not yet I

I defined.
I I 	 I

1 9 Sweep Scalar Microcode

I A 	 I Write Scalar Microcode - Must be set to I

I Write. I

I Scalar Microcode, disables microcode writel

I enables. I

a I II
I I a = Enables Scalar Microcode to sweep PMOaI

I = Enables Scaler Microcode to sweep Pilu

I 	 I I
I C-F 	 I Functions for Scalar Microcode not yet I

I defined. I

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i ----------- -_ iDATE Dec. 1977
!CORPORATION 1 S P E C I F I C A T 1 0 N PAGE 114
--------------- REV .

---------------RA0LA L--------- --------------------------------

3-6.- 4 (Cont.)

2. 	Use of Switch Functions

I. 	Switch Functions 0, 3 and 4 are one-shot

functions. This is accomplished by having the

required bit set in the even 16-bit word of a

transfer and clear in the odd ±6-bit word.

If the bit is set into both halves of a

32-bit transfer, for instance, the function

will be performed in that transfer but will

possibly be ignored if sent in the next

transfer.

2. 	Switch Functions a and 3 are delayed by one

cycle so that other functions sent In the

same data word have time to propagate, i.e.,

"kill" and "P to 0" together are legal as are

.'sense switch" and "go microcode", Other

combinations are also legal.

3. 	 Switch Functions 1, 2, 5, 6, 7, 9, A and B

are latching functions that are caught and

held until another function is sent. Note,

however, that a single function consists of

two or more data transfers -- each transfer

clearing and loading over previous data

transfers so that a switch that is meant to

be valid both during and after the function

must be sent in both halves of a 32-bit data

transfer and any latching function that Is

supposed to remain valid through another

'send switches" function must be sent again

with that function, again present in both

halves of the 32-bit data word.

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i--------------I DATE Dec. 1977

ICORPORATION 1 ,S P E C I F I C A T I 0 N PAGE 115

R EV.

---------------- R AOL

3.6.3°5 Stream Microcode Status

The input of status to the MCU can be of any number

of words; but all wotds after the first word will be

word 2 of the status.

The input of status does not have any effect on

microcode or microcode controls.

Upon the receipt of a 101 (read status) channel

function code, the MCU Interface will load the

channel with the following status words.

TABLE 3.6-19 MICROCODE STATUS

1 Bits . I i

I(Word 1) 1 Meaning I

1 0 	 I Checkpoint - Software uses this bit I
I to indicate to the MCU that the i
I microcode has reached some predefinedl
i status found an error or reach some I
I predefined address for debugging, for]

I example.

*

1 1-4 	 1 Flags The current state of flags 0,1

I 	 I

I 5-F 	 i P - The current state of the P I

I (microcode address) register.*

a--

I Bits 	 I

I(Word 2) 	 1 Meaning

0 	 1 Run - This bit will be used to

I Indicate the microcode is executing. I

1 1-4 	 1 J1 - The current state of the least I
I significant 4 bits of the Ji
I register. I

I II
I 5-F I J2 - The current state of the J2 I

register. (See bit 6 of the switch I
I function control word).

l4The contents of P co not indicate the address at I

I which microcode has stopped until the second minorl

I cycle after the RUN bit has gone to zero. Thus it'

I Is necessary to read the status word twice, once I

I to determine that microcode is not running, and I

I once to read P.

-- -- ---------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

!------ ------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 116
......- REV.

--- --------------- R A D L ---------------------------------

3..3.6 Interface Sequences

After selection of the MCU interface the
following are examples of possible control seduences.

TABLE 3.6-20 INTERFACE SEQUENCES

I Step 1 Code I Sequence (Stream Units Write. Microcode)
I------ I---------I---

A jjj I EOP - To- clear the interface. Initiate (bit I
1 0) should not be sent with any EOP function. i

I 	 I

B W - with this

I I I ignored; the write will proceed from the

8 010 Write Mode The address 	 function is!

I current P address.
* 	 I

I- C 	 1 100 1 Data - Data sent to microcode must (except on I
I the last transfer) be sent in integer

I I multiples of microcode words. One microcode I

I word is 14 j6-bit transfers. Data will be lost!

2and/or I rearranged if this is not observed.

S
I

0-I
I

±11 EIOP

I E I I Repeat from Step B as many times as necessary I
i I to complete transfer of the block of data.

------------------------------- ----------------------------------
I Step I Code I Secuence (Stream Un-its Read Microcode)

------- -- I------ --
i A I 111 EOP

* 8 1 00J I Read Mode - The address is ignored.

I C 	 I I Input the data. The same caution as in Write I
i 1Nicrococe Step C applies. Data starts from i
I I the current microcode P address.

I 	 S
: I i
I D 1 1-IEOP

I E 	 I I Repeat from Step 8 as many times as necessary.
i--I

INote: If the last operation performed in a sequence is an EOPl
Ithe next sequence does not have to start with another EOP.

d--------------------------------

(cant inued)

ICONTROL DATA I E N G I N E E R I N G NO, 10354637
I------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T 1 0 N PAGE .117

REV.

- ---------------- ADL
U----- --------------------------------

3.6,3o6 (Cont.)

After selection of the MCU Interface the following

are examples of possible control sequences.

TABLE 3.6-20 INTERFACE SEQUENCES (Cont.)

I Step I Code I Sequence (Stream and Scalar Write' I

- --------
I Switches)
I--

I

A I jjj I EOP

I B 	 I Ig I Set Switch Mode - The address is ignored. I

iI I 	 I
I C 	 I JOB I Oata - Although one 32-bit transfer is the I

I I normal data length, there is no restriction onl

I I data length If the extra data length can be 1

S I useful - repeated starts for instance.

1 C 	 i l1± I ECP I

1 Step I Code I Sequence (Stream Read Status)
------------- ---I

I A I iii I EOP
*I 	 I

8 I 	 101 I Set Status Mode - The address is ignored.

II 	 I

C 	 I I Input Data - All data after the first word is I
I I status word 2.

II I *

0I 111 1 EOP I
I--
INotet If the last operation performed in a seauence is an EOP,!I

Ithe next sequence does not have to start with another EOP. I

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i------ -------I DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 118
.....- REV.

------------------------	 RLA0L ---------------------------------

3-6.3.6 (Cont.)

TABLE 3.6-20 INTERFACE SEQUENCES (Cont.)

I Step I Code I Sequence (Stream and Scalar Write i

I I Switches) I

-. --- ----- ----- ---- - - ---- --..- ---.. - - ..-

I Step.: Code I Sequence (Write Scalar Microcode)

--------	 i---------------------------------------

I 4 	 1 :A I EOP - To clear the interface I

* I 	 !

i B 	 1 010 1 Write Mode - Bits 0-8 of the second 16 bits of I
j 1 the address, selects daughter boards 0-Be i
i I respectively. The first ±6 bits of the addressl

i I are ignored. The write will proceed from the i
1 1 current P address.

I 	 I I

C 	 i 100 I Data - Bits 0-3 are Write Enables and bits

I 4-I5 are Data. The microcode address is
-1

* incremented by one for each 16 bit quantity I
I I sent by the MCU. i

0 1 1 Repeat step C until the selected Auxiliary I
I 	 I Board has been loaded (normally 1024 16-bit I

I words).
I 	 I I

i E 	 1 i11 I EOP
I 	 I I

I I I

i F 1 I Repeat from step B to load other Auxiliary I

1 1 Boards. i
-- -- I

INote! If the last ooeration performed in a sequence is an EOP, I

Ithe next sequence does not have to start with another EOP. I

OWlIA PAkGE IS p)001t.

ICONTROL DATA I E N G I N E E R I N G NO. ±0354637
I------------- I DATE Dec. ±977
lCORPORATION I S P E C I F I C A T I 0 N PAGE 1±9

REV.

----------------- R A L

3.6°3°7 Writing or Sweeping Scaler Microcode Memories

The scalar microcode consists of 5 memories; PMJI,

PMO1, HMO0, OMa0 and GMOQ. Although each operates

independently during CPU instruction execution, they

are all addressed simultaneously curing writing or

sweeoing operations.

3.6.3.7.1 Scalar Microcode Memory Write Operations

For write operations, the write enables at each

auxiliary board control which auxiliary board and

which address within an auxiliary board is to be

written. Since 12 bits of data are written at a

time, the write enables are also responsible for

choosing which 12-bit portion of a microcode address

is to be written.

Under the control of the write enables and auxiliary

board select, one auxiliary board is written at a

time. The address registers on the auxiliary boards

will first be set to 00 and then cycled thru FF

16 16

and then back to 00 while writing one-fourth (or

16

twelve bits) of an auxiliary board. The write

enable will then change to address the next twelve

bits of the particular auxiliary board and the

address register will again cycle through all

addresses. This operation will occur four times on

each of the 9 auxiliary boards.

It is possible, by bringing up all 9 auxiliary board

selects and all write enable bits, to write all bits

of all auxiliary boards in one write of i00 words

16

(except PMOO/PMO$). Each 12-bit segment of the 48
bit word will be duplicated. This would be done

only as a maintenance aid for pattern generation

during either write or sweep operations.

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
I -------------- , DATE Dec. 1977
ICORPORATION I S P E C I F I C A T 1 0 M PAGE 120
--------------- REV.

---------------- R A D L---------------------------------

3.6.3.7.2 Scalar Microcode Memory Sweep Operations

Sweeping of the scalar microcode memory is an

operation to be done to detect a parity error on any

of the 9 microcode auxiliary boards. The operation

simply consists of referencing all 9,auxiliary

boards simultaneously with the same address register.

Since there is one parity bit per auxiliary board

per microcode memory, any parity error or errors

will be isolated to the failing auxiliary board or

boards.

The control signals necessary to perform the sweep

operation are Sweep (switch,function bit A), Enable

PHOD/PMOI (switch function bit 8) and Clear Fault.

Sweeo should be enabled during the entire sweep

operation. Enable PMOO/PMO selects PMO0 or PlO$

microcode memories and Clear Fault will clear any

parity errors caused by the sweep operation. If

Clear Fault is sent while sweep is still set, not

only will the parity fault condition be cleared but

sweeping will continue. However? since the sweep

address, upon a parity fault, is 3, 4 or 5 addresses

ahead of the actual parity fault address, sweeping

immediately after a parity fault will "skip" 3, 4 or

5 addresses respectively. For example, if the

parity fault address is 22 on PiOg then addresses 23,

24 and 25 will be skipped.

The register used to reference all of the auxiliary

boards during the sweep operation is cleared before

and after the sweep operation. Thus, sweeping

starts with address zero and, because of the time

delay in detecting parity errors, will end beyond

-that address which caused the parity error. For

example, if the parity error occurred on HMO0 at

address 125 then the address displayed at the MCU

will be 130 and is therefore 5 ahead.

The following list specifies how far ahead of the

parity fault address the sweep address will be.

GMO0 5 ahead

DMO0 4 ahead

HMO0 5 ahead

PM0O 3 ahead

PilOt 3 ahead

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
S- DATE Dec. 1977
ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 121

REV.

---------------- RRADL L---------

3.6.4 Monitoring System Activity by the MCU

The HCU monitors the output of two display registers

as its main medium of monitoring system activity.

One display register contains the output of the

Current Instruction Address Register (CIAR). The

other display register contains the output of the

register selected by the MCU. A 4-bit code sent from

the MCU selects which register the display register

will present. In addition to monitoring the display

register, the MCU can also monitor the microcode

memory status and other CPU status.

3.6.4.1 Monitoring with Counters

For monitoring purposes, the CPU has four ±6-bit

counters. Each of these counters can be connected to

an event line selected by a command from the MCU.

See figures 3.6-1 and 3.6-2. A list of events which

can be counted and their corresponding select codes

is given in Table 3.6-21. For ourposes of discussion,

one pair of 16-bit counters is referred to as

Counters Ai and A2. The other pair is labeled Bi and

82. Counter A and Counter B are completely

independent and cannot be tied together; however,

they do share the same input event lines and-gate

lines. The counters can be read by selecting them for

input into the MCU display register. They can also be

combined in various ways to form one or two 32-bit

counters. This reconfiguration is accomplished via

the carry lines from the MCU. The counters are

enabled by a number of hardware and software gates

selected with a mask from the MCU. The MCU has the

option of stopping the CPU count condition. This

option is exercised by use of the stoo lines.

(continued)

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637

.............--
ICORPORATION

.....

iD
I S P E C

....
I F I C A T

....
I 0 N

AT E
PAGE
REV.

Dec .
122

1977

-------------------. D
----- ------ -- -- ------------ - -- - -- - --- R A D L ------ -----

3.6.411 (Cont.)

INPUT

EVENTS AI/SI

T 32-A COUNTER
BITS TO CU

INPUT
EVENTS A2/82 COUNTER A

FROM
CPU

INVISIBLE PKG
CTR ENABLE BIT-

ONITOR MODE -A LINES 	 ASTOP

CpuMI JDATA FLAG SIT 56
DATA FLAB SIT 57- A GATES

EVENT-ft-t 	 t
SELECT AL STOP CPU ON CTR A INCR

EVENT ENABLE CARRY INTO A2
8ELECT INTO A IjENABLE CARRYAZ

SELIETED JOB BATE' 	 -COUNT A

JOB MOE GATE- DATA FLAG57 GATEL

MONITOR BODE GATE- DATAFLAG$6 GATE

FROM MCU

32B COUNTER
TO MCUBITS

8COUNTER

S LINES 	 B STOP
CPU

B GATES

EVENT 	 tI OP CPU ON CTR B INCR

S 	 ENABLE CARRY INTOS2NSELECT
EVENT -L ENABLE CARRY INTO BI

SELECT B2 COUNTS

SELECTED JOB GATE- IATA FLAG 57 GATE

JOB MODE GATE -

MONITOR MODE GATE- DATA FLAG 56 GATE

FROM MCU

Figure 3.6-1 Block Diagram of Counter Logic Lines
(continued)

REPRODUCIBILITY. OF TIMORIGINAL PAGE IS]POOR

'CONTROL DATA I E N G I N E E R I N G NO. 10354637
S-------I DATE Dec., 1977

lCORPORATION 1 S P E C I F I C A T I 0 N PAGE 123
REV.

R A L ---------------------------------

3.6.4.1 (Cont.)

CPU INPUTS

EVENTS

INVISIBLE PACKAGE COUNTER ENABLE BIT
INPUT EVENTS INPUTS EVENTS

JOB MODE COUNTER A2/B2 COUNTER A, I aI

MONITOR MODE

DATA FLAG BIT 56

DATA FLAG BIT 57

61 B 8s 8>2 82z SI1 I

EVENT SELETON
SLECT NETWORK Al

NIWR AtW KA
EVENT

A.CT>
SELECITIONSELECT F

, NTWOR A2LINE COUNTA2 NW
SELEC

" ECTEDEVENT

IEDN

Joa LINE
CUNTCEGATE I-

SPECIFY JOB -'

COUNT MODEAN
FOR - GATE

COUNTER

A

MCU MOWNTOR
GATES ..DE AND

GATE

MCU
INPUTS

DATA

FLAG 56 AND OR

GATE

DA

EVENT MASK

COUNT

ITO A

INTO AA ORA

STOP CPU ON

CRRY 3

TO MCU

Figure 3.6-2 Block Diagram of Counter A

(continued)

REPRODUOIBILITY OF THE

,tIC.TAL PAC? 1S POOPR

--------------------------- ------------------- --------

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
- .------------- DATE Dec.I 1977
ICORPORATION f S P E C I F I C A T I 0 N PAGE 124

REV.

AI----- --------------------------- --------------- A0L 	 -------

3.6.4.1 (Cont.)

TABLE 3.5-21 COUNTER EVENTS

I *Codes I I
16 1 EVENTS

I---------------- I
ICounter !Counterl

IAj/Bj IA2/B2 I I

aI 	 I
i 01 	 I INumber of branches out of instruction stack

I------	 --- -- I - - - - - - - - - - - -- - - - - - - - - -
1 01 INumber of branches in instruction stack.
I---- I---I

04 	 i INumber of times microcode field NON = is
I !selected.

*----I---

I 04 	 INumber of shortstop path usages.

II- - -- - ------- -- - - - - - - - - - - - - - - - - -
i 05 I INot Used -

I- ---4 -------- -------
i 1 05 INot Used.

- I------- - i - - - - -- - - - - - - - - - - - - - - - - - -
1 09 1 INumber of normal channel backing store

SI Irequests.

*------I-----I---I
1 09 	 INumber of normal channel backing store

Irequests accepted.

I 	 I

I OA 1 INumber pf CPU memory requests.
S -I- --

I OA- INumber of CPU memory requests accepted.

I OB 	 I lTotal number of memory requests.

*---------I 	 i -

I 	 OB iTotal number of memory requests accepted,

i 	 I

I ± 	 I INumber of minor cycles from selected

i linstruction" issue to next, non-selected issue.!
I IThe counter will begin counting when an
i I linstruction whose function code meets the
I Icorditions described in code 12 below, is
I i loaded into IRO. It will stop counting when

i Ithe first following instruction which does NOTI

I Imeet the conditions is loaded in'to IRO.

i ---	 a
I *These 	are 5-bit codes, expressed in hexadecimal.

(continued) R'FKODUCIBWITY OF THE

-ORIGINAL 	PAGE IS PO'

ICONTROL DATA I E N G I N E E R I N G NO. 1035'4637

I------------- I DATE Dec. 1977

!CORPORATION I S P E C I F I C A T I 0 N PAGE 125

REV.

O----- --------------------------------- ---------------- A0L

3.6.4.1 fCont.)

TABLE 3.6-21 COUNTER EVENTS (Cont.)

I *Codes .1

±6 I EVENTS I

ICounter ICounterl 1

IAI/Bi IA2/82 I

II I 	 I

t 	 I

1 12 1 INumber of times a particular function code or

I I Ia particular category of function codes is

I I lexecuted. The count condition is determined byl

- Ian 8-bit select code and an 8-bit mask sent to:
I Ithe CPU on MCU channel BTA8. If the select I
I *code bits and the corresponding instruction i
S !function code bits are equal wherever there is!
I I"i'" in the mask, the counter wil I be

I I lincremented. If the mask contains all zeros, I
iI !all instructions will be counted. I

I-------- I------- I --
1- 12 iTime - I MHz. i

!-------- I------- I ---
i 13 I ITime between selecting microcode monitor

i I Ifield, MON=2 and selecting ON=3.

I--

1 13 INumber of cycles where data is not available I
I lat the output of a functional unit once data I

* 	 I Ihas been requested for all input streams. Thisl

Itime does not include the time required for I

I linitial setup (preceding the input of the lastl

Ioperands to a functional unit). This count I

I 	 I Ithus permits the programmer to analyze the

I lamount of time required f-or startup memory

II accesses, pipeline/functional unit length, and]

I !memory conflicts for a specific instruction.

I*These are 5-bit codes, expressed in hexadecimal. 	 i

RToRODUCIBILTIY OF THE

O(IGINAL PAGE M POOR

ICONTROL DATA I E N G I N 	E E R I N G NO. 10354637
I ------------- i DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 126
.......-
 REV.

-----------------------	 R A D L..................................

3.6.4.1.1 MCU Count Gates and CPU Lines

The counters are incremented when the selected event

occurs, the count line is up, and one or more of the

followkng gate-line conditions is satisfied:

j. 	 The Event Counter Enable bit is set in the

invisible package of the Job currently bei-ng

executed and the Selected Job Gate from the HCU

is set. This allows.counts to be made during

selected Jobs only.

2. 	The CPU is ir lob mode and the Job Mode Gate

from the MCU is set.

3. 	The CPU is in monitor mode and the Monitor Mode

Gate from the MCU is set.

4. 	Data flag bit 56 (or 57) is set in the Data Flag

Register of the CPU and the data flag 56 (or 57)

gate from the MCU is set and the CPU is in

monitor mode.

51 	 Data flag bit 56 (or 57) is set in the Data Flag

Register of the CPU and the date flag 56 (6r 57)

gate from the MCU is set and the Event Counter

Enable bit is set in the invisible package of

the job currently being executed.

There is one set of gate-line enable logic for

Counters Aj and A2 and one set for Counters B
 and

82' therefore, Counter A may be enabled by different

gates than Counter B.

In summary the CPU lines are:

1. 	 Data flag bit 56.

2. 	Data flag bit 57.

3. 	 Monitor mode.

4. 	Job mode.

5. 	 Job enable of monitoring counters from invisible

Package.

There is a corresponding MCU gate for each of the

above.

R-EPRODUCIBILIy Op TIMORIGINAL PAGE 72 POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 127

REV.

-----------------------	 RAUDL------------------------------------

3.6.4.1.2 Carry Lines

There is one enable carry line associated with each

±6-bit counter. Enable carry line Al enables the

carry.into Counter Al from Counter A2. Enable carry

line A2 enables the carry into Counter A2 from Aj.

There are equivalent lines for the B Counter. A zero

on carry lines Al and A2 allows the Counters to

operate as two 16-bit counters. Only half of the

total number of events are available at the selection

network for one Counter At or A2; therefore, if a

32-bit count is desired, either counter may have the

lower bits of count. For example, if an event is

enabled to Counter Ai and a 32-bit count is desired,

then enable carry line Ai must equal "0" and enable

carry line A2 must be a "J". In this example, Counter

At will have the least significant bits and Counter

A2 will have the most significant.

3.6.4-.13 ' Stop Lines

There is one stop line associated with each counter

pair, one for the A Counters- and one for the B

Counters. When the stop line is a "J", an event

incrementing either 16-bit counter wil I stop the

comouter. Mode line "Event Stop" is returned to the

MCU (bit 4, channel ATB8) to show why the CPU has

stooped. The MCU, after sending a "Clear Fault

Signal", may restart the CPU.

3.6.4.1.4 Counter Setup

Typically, the four counters would be set up by the

MCU 	as follows:

$. 	Set the following bits as requiredl

a. 	 Stop CPU on A Increment (bit 9, channel BTA6)

b. 	Stop CPU on 8 Increment (bit A, channel BTA6)

c. 	Enable carry into Aj (bit B, channel BTA6)

d. 	Enable carry into A2 (bit C, channel STA6)

e. 	Enable carry into Bt (bit 0, channel BTA6)

f. 	Enable carry into B2 (bit E, channel BTA6)

2. 	 With bit F, channel BTA6, a zero, set event and

mask selection for Counter A into channel BTA7.

3. 	Set bit F, channel BTA6 to a "".

4. 	Set event and mask selection for Counter B into

channel BTA7.

RPRo, O$DTh1JB N OF THE (continued)

opxr~APAGE IS PGM

http:3.6.4-.13

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i....-. I &-ATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 128

REV.

---------------- RA0LR L-------- ---------------------------------

3.6-4.1.4 (Cont.)

5. 	 If At/St event code 12 for function counting has

been selected, set channel BTA8 to the desired

function and mask.

6. 	Set count line A or B (bit 6 or 7, channel BTA6)

as desired,

The counters will now be counting events and will

continue to count until their respective count lines

are drooped.

3.6.4.2 Qisolay Registers

There are two 64-bit display registers that can be

monitored by the MCU. One display register is used

for the Current Instruction Address Register (CIAR)

and the other is used for a register that has been

selected by the MCU. The register is selected by a

k-bit code transmitted on bits C-F of channel BTAJ.

Any unlisted bits (such as bits 0-16 for code 3) are

undefined.

The 	MCU must send a read signal to enable the CIAR

and the selected register into the display registers.

The read signal has been defined as bit B on channel

BTAi and its leading edge simultaneously transfers

both registers'into the display registers. The

register select code must be set uo by the MCU before

the read signal is transmitted to the CPU.

The CIAR is received on channels ATet - ATB3 of the
MCU and may read while the CPU is running. The
selected register is received on channels ATe4 - ATB7
of the lCU. See Section 3.6.1.1 for bit assignments.

The selected register on channels ATB4 - AT7 may

only be read when the CPU is stopped.

(continued)

--

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I ------------- I DATE Dec. ±977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 129.

REV.

----------------------- R A L- --------------------------------

3-6.4.2 (Continued)

The select codes and corresponding registers are

listed below:

TABLE 3.6-22 DISPLAY REGISTER SELECT CODES

ICode I Register(s) 	 I Bits I

I I16 1

i 	 a 1 Current Instruction Register 1 0-63 I
1 1

I 	 f Data Flag Register 13-15 1

I i
 !19-3ii

1 35-471
S1
 1 31-581

I ii

i 2 1 Invisible Package Address 1 0-22 1

i I (Absolute Sword Address) ,

I 	 I

1 3 1 External Interrupt Register 	 I 15-31l
I Monitor Interval Timer 15 1

1 Channel 0
 16 i

I 1 17 1

i 17 ,

2
 18

i9 t

4

3

120 1

5 21 1

22 1
7
6 123

24 I
9 ' 25 I

I 126 1

8

127i

128 1
12

129 I

14

13

1 30 I

15
 31 1

I 1 Channel Read Active - Write Active 1 32-631
1 I Channel 0 1 32-331

I
 1 34-351

1 36-371

3
2

1 38-391

4 [40-411

I 1 5 1 42-431
I 6 ! 44-451
I 7 1 46-471

1 8
 I 48-491

I 9
 I 50-5il
1 i8 1 52-531

' I 1j 1 54-551
12 I 56-571

58-591

' 14

13

60-61!

15
 1 62-631

(continued)

RFAPROD U IIPAG .puoaiG l pAGE is rOOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

i-- DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 130
REV.

---------------- R A 0 L---------------------------------

3.6.4.2 (Cont.)

TABLE 	3.6-22 DISPLAY REGISTER SELECT CODES (Cont.)

ICode 	I I

* 	 156 Register(s) t Bits I

-.--- 1 -----
1 4 1 SECOEO Fault Read Bus Code 1 0-2

It/O Bus Code 0 1

1 R1 Bust Code 1 I I

* 	 I R2 Bus = Code 2 I I
I R3 Bust Code 3 i

I I Scalar Bus = Code 4 1 . I
NRNS Bus = Code 5 1 1

1 Instruction Stack Parity Fault I' 4 I

1 I MIC Memory 0 Parity Fault i 5 i

I I MIC Memory ± Parity Fault 2 6 1

1 	 1 Scalar MIC Parity Fault 1 7 i

I Double Secded Error. Syndrome Bits must be 1 8 1

I checked to determine itf address and Bus Code arel

I 	 I valid.

I Syndrome Bits

I Parity Fault

I Parity Fault

I 	 I Parity Fault
i Parity Fault

* I Parity Fault
i I Parity Fault
I I Parity Fault

Parity Fault
1 Parity Fault
I PMO Enabled

1
1 9-i5 I

on Auxiliary Board 0 $±6 1
on Auxiliary Board ± 17 I
on Auxiliary Board 2 18 1
on Auxiliary Board 3 1i9 I
on Auxiliary Board 4 2 20 1
on Auxiliary Board 5 1 2± I
on Auxiliary Board 6 I 22 I
on Auxiliary Board 7 223 1
on Auxiliary Board 8 1 24 2
for Parity Checking 1 25 1

1 Scalar Microcode Address -Bit 0 1 26 I
i I Scalar Microcode Address -Bit 1 2 27 I
i I Scalar Microcode Address -Bit 2 1 28
I I Scalar Microcode Address -Bit 3 I 29 1

I Scalar Microcode Address -Bit 4 1 30 1
I Scalar Microcode Address -Bit 5 1 31
I Scalar Microcode Address -Bit 6 32 i

a I Scalar Microcode Address -Bit 7 1 33 1

j 	 f NOTE: All Fault/Error conditions are cleared I

I by the "Clear Fault" signal from the ii

I MCU except the SECOED Ertor and the II

Syndrome bits. These are cleared/ i

I released by the "Clear Single Error" I

i signal from the MCU. I

(cont inued) REPROD TOITT vOF H.
ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

I- I 	 DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 131

REV.

- ---------------- ADLL------ ------- ------------------------

3.6.4.2 	 (Cont.)

TABLE 3.6-22 DISPLAY REGISTER SELECT CODES ICont.)

ICode I I I
I 161 Register(s) I Bits I
* . . I --- I - - - -

1 4 1 (continued) I

i I SECOEO Fault Address 34-631

i (Absolute physical bit address, significant

i I to the half-word level)

i I The address of the first SECDED error Is I
i - Iretained in this register.

* - I The SECDED Fault Address is released by the I
I I Clear Single Error Condition Signal from the I

i i 	MCUo

1 5 	 1 Sounds Hit Address 0-31 1

I (Absolute physical bit address, right

I ustified)

1 The address of the first bounds hit is

I retained in this register. The bounds hit I

* 	 l address is released by the Clear Fault

1 Condition Signal from the MCU. The bounds

I checking is performed on half-word boundaries I

I only. i

I 6 	 1 Counter Ai - 0-15
I Counter A2 I 16-311

I 	 1I
I Counter B1 1 32-471
I Counter B2 I 48-631

I 	 t I
I If bit 8 of channel BTA6 in the MOU is a "0", 1

I I both counters will be cleared after the read
I I signal is received and after both counters are I
i I transferred into the display register. If i I

I bit 8 is a "J", the counters will not be

I cleared.

I o ensure proper initialization of the countersI
1 the count lines must be made zero prior to the i
I new count selection.

REPRODTUCBILITY OF THE
ui. - .	 - PAG - 'A

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I ---- ------- DATE Dec. 1977
!CORPORATION 1 S P E C I F I C A T I 0 N PAGE 132

......- REV.

-------------- RA0LR L---------- ------ -------------------------

3.6.4.3 Logic Fault Monitoring

There are two types of logic faults detected in the

comouter. They are memory SECOED and MIC memory

parity, When a logic fault is detected, the computer

stops between instructions. The types of f-ault may

be sensed on channel ATB8. (See Section 3.6.1).

After sensing the logic fault, the MCU must clear the

fault via bit 7 of channel BTAt. The MCU must

determine the appropriate response to the fault

and has the option of restarting the CPU by setting

bit 3 of channel BTAt.

3.7 Swap Unit

Figure 3.7-1 gives an overall block diagram of the

Swap Unit. This unit performs swapping operations

for data from the Register File to Main

Memory, from Main Memory to the Register File during

exchange operations and register file swap

operations (70 instruction). The Swap Unit also

performs block swap bperations between Main Memory

and the Backing Store. Finally, the Swap Unit

provides the 1/O Interface to the Backing Store.

S RODUOChBh1Y OF TM
ORIGINAL PAGE IS Pr"

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I DATE Dec. 1977'

ICORPORATION I S P E C I F I C A T I 0 N PAGE 133
REV.

----------------------- R A D L- --------------------------------

1 DATA FROM SCALAR
PROCESSOR

123

TROL

SELECT
256 x 128

SIT
DATA

ASSEMBLY

"

512

DATA TO 1/O UNIT

DATA TO MEMORY

ADDRESS &CONTROL BACKlOt
T RU

DDES
ADDRESS/LENGTH FROM SCALAR PROCESSOR

ADDRESS FROM I/0 UNIT

BACKING
STORE

CONTROL

TO WRITE
BACKING

STORE
MAP ERRORS TO SCALAR & 1/O UNIT

ADDRESS TO SCALAR PROCESSOR

256 x 128
SIT

BUFFER
SELECT

DISASSEMBLY

128

512

DATA FROM I/O UNIT

DATA FROM MEMORY

3 DATA TO SCALAR
PROCESSOR

I, Figure 3.7-1 FIP Swap Unit

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I------------- I DATE Dec. 1977
!CORPORATION I S P E C I F I C A T I 0 N PAGE 134

----- ---- ---- REV.

O----- ---------------------------------- -------------- ADL

3.7.1 Data Movement

The Swap Unit moves swap data between register files

and memories at the rate of 128 bits oer minor cycle.

Data transmitted to/from Main Memory is transferred

in 512-bit (plus SECDED) segments. Thus a set of

assembly and disassembly buffers are provided to

agglutinate or decompose data into/from 512-bit

units from/to the transfer quantity of 128 bits.

3.7.2 Error Checking

SECOED is carried on all trunks (including the

register file swap trunk) and in the data buffers.

SECOED originating in the Main Memory is composed of

seven bits for every 32 data bits. SECDED is

carried this way (seven bits for every 32 bits)

throughout the FMP with the exception of the Backing

Store. SECOED within the Backing Store consists of $$,

error code bits for each 512 data bits; the
conversion between seven bits for every 32 and 11
bits-for every 512 must be accomplished at the
Backing-Store interface. /

In the event that a single-bit error is detected by

the Swap Unit, a flag is sent to the MCU and the

counters pointing to the data plus syndrome bits are

locked uc for sampling by the MCU. Note that in

such cases the first error only will be locked up in

the MCU interface.

When a double-bit error is detected, the Swap Unit

is hatted immediately, stop flags are sent to the

Scalar, Map and Vector Units, and the MCU is alerted.

Location and nature of the error are locked uo as In

the case of the single-bit error.

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

--------- ---------------------------------

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
i O'ATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 135

REV.

--------------- RRA0L

3.7.3 Addressing

All transfers involving the Backing Store occur in

bl-ocks of 32,768 64-bit words. All exchanges between

the Register File and Main Memory occur in

multiples of ±28-bit quarter-swords, beginning, on a

quarter-sword boundary. When a reference to a

particular Backing Store block is made, data

transmission from that block begins as soon as the

particular block is selected, rather than waiting

for the first word of the block to appear at the

outout or input ports of the Backing Store. This is

necessary to reduce the latency time inherent in

block-organized CCD memory systems. With a block

length of 32,768 words the latency.time to wait for

the first word can be as long as .3.2 milliseconds.

This can be reduced to near zero by beginning

transfers immediately.

The ability to begin Backing Store transfers

immediately requires address control information to

be exchanged between the Backing Store and the Swap

Unit. In particular, the current address being read

by the Backing Store must be sent to the Swap Unit

so that Main Memory write addresses can be

adjusted to match the starting word location. The

same is true for the Read from Memory, Write to

Backing Store.

3.7.4 Address Queue and Backing Store Map

The Swap Unit is capable of four different swap

instructions, one In process and three waiting to be

executed. This permits the object code in the

Scalar Processor to release a series of swap

instructions local to a segment of computation and go

on to something else. As addresses and swap control

information arrive at the Swap Unit, the

corresponding blocks in the Backing Store are-set

busy in the backing store map. This prevents

accidental overlap of swap operations. A similar

busy is set for Main Memory by the Memory

Interchange to prevent erroneous conflict situations

to arise.

(continued)

ICONTROL DATA I E N G I N E E R I N G NO.. 10354637

-------------- I
ICORPORATION I

S P E C I F I

R

C

A

A T
DATE Dec.

1 0 N PAGE 136
R EV.

E0i.

1977

---------------- RRA0L L--------- --------------------------------

3.7.4 (Cont.)

I/O operations are funneled through the Swap Unit,

by checking the busy map. I/O operations are

permitted to occur only with busy blocks (which have

been set busy by the monitor). At the completion of

an i/O operation, the I/O orocessor can clear the

busy bit or instruct the monitor to clear it.

In the event that two swao requests are made to the
same block of Backing Store, such that the second
request encounters a busy block, the request will be
rejected and a data flag bit set to indicate that an
error condition has arisen. The programmer may
choose to sample the data flag bit or to enable an

automatic data flag branch to an error handling

routine.

3.7.5 Control Signals

(To be defined later)

3.7.6 Microcode Control Terms

(To be defined later)

3.7.7 Interface Signals

(To be defined later)

3.8

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 137
REV.

-----------------------RLADL ----------------------------------

Backing Store

The Backing Storage subsystem provides a massive,

on-line memory with fast access and high block

transfer bandwidths. The memory is engineered into

32-million-word modules, so the minimum

configuration is one 32-million-word cabinet. The

maximum configuration is governed by aVailable space,

but with the 65K chips now available in CCO (charge

coupled devices) the practical maximum appears to be

256-million words. The allowable address space

permits an expansion up to i-billion words of

Backing Storage as technology developments make such

volumes feasible.

3.8.1 Data Movement

Data is read/stored from/into the CCD memory on

512-bit paths. Every 400 nanoseconds 512 bits are

read in parallel from a selected rank of memory

chips. The data is latched into 512-bit holding

registers and disassembled into 128-bit segments for

transmission to the Swap Unit every tehth minor

cycle. Writing of the Backing Store proceeds in

reverse order with 128-bit segments being transmitted

and assembled every tenth minor cycle, and the

resulting 512 bits being written to the Backing Store

every 400 nanoseconds.

REPRODUCIBITY OF THE
ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N - E R I N G NO. 10354637
I ------------- I DATE Dec. 1977
!CORPORATION I S P E C I F I C A T I 0 N PAGE 138

REV.

--------------- RRA0LU--------- --------------------------------

3.8.2 Error Checking

The Swap Unit transmits and receives 128 bits, Plus 7

bits of SECDED for each 32 data bits, between the

Backing Store and itself while 1i bits of SECDED are

stored and retrieved with each 512 bits of data in

the Backino Store. The conversion from 7 SECDED

bits per 32 data bits to j SECOED bits per 512 data

bits (and vice versa) is done in the Backing Store

Unit at the assembly/disassembly interface. While

the new SECDED code is generated, previous SECOED is

checked with appropriate error correction and/or

flagging taking place.

3.8.3 Addressing

A read or write operation is Initiated by the Swap

Unit sending a basic block address and read or write

signal to the Backing Store. In return the Backing_

Store Unit transmits the next word address available

for readng and writing. 'The Swap Unit then adjusts

its memory addresses so that data transfer can begin

immediately,

3,8.4 Control Signals

(To be defined later)

3.8.5 Interface Signals

(To be defined later)

3.9 Timing Information

The FRP is in preliminary design phase so only the

most preliminary timing estimates are available.

All estimates are given in CPU minor clock cycles.

The period of this clock cycle is predicted to be 10

nanoseconds,'but with extant technology can be no

worse then 16 nanoseconds.

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R1 N G NO. 10354637
I ------ I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 139

REV.

RA0L U------------------------- R --------------------------------

3.9.1 Scalar Processor Timing

The table in Section 3.9.1.2 is designed to provide

scalar timing data for the instruction sequences in

FMP. All timing data is expressed in minor cycles.

3.9.1.1

Multi-operand instructions are typically expressed as

overhead + (number of cycles per operand) (number of

operands).

Scalar instructions are expressed as described below.

The I~iUE portion of the table gives the minimum

number of minor cycles between the issue if the

specific instruction listed in the left column and

the issue of the next instruction in the sequence.

Various operand or memory conflicts (as discussed

later) can cause additional delay beyond this

'minimum time.

The Issue portion of the taoles is sub-divided when

appropriate into three categories as defined below:

NB -- No Branch
IS8 -- In Stack Branch
OSB -- Out of Stack Branch to first quarter

sword. This time must be increased by

1, 2 or 3 if the Branch address is in

the 2nd, 3rd or 4th quarter-sword

respectively.

The non-branch instructions use the entry under NB

or No Branch. Example 1 illustrates a simple, no

conflict, Branch sequence.

REPRODUCIBIlTY OF THE

ORIGINAL pAGE IsPOOR

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
!--------- - DATE Dec. ±977
lCORPORATION 1 S P E C I F I C A T 1 0 N PAGE 140

REV.

---- --------------- RA -L.--------------------------------

3.9.i.j (Cont.)

Xntr S T Comments

A) 60 	 Register designators which
are not pertinent to the
example are represented by
a

8) 25 - -	 Branch condition not met.

-
C) 65 - -

D) 25 - - - Branch condition met,
branch out of stack to
instruction E in 3rd
quarter-sword,

Secuence Timino

Instr. A issues at minor cycle 0

Instr. B Issues at minor cycle I

Instr. C issues at minor cycle 12

Instr. 0 issues at minor cycle j3

Instr. E issues at minor cycle 42-

The RESULT AVAiLBLE 	portion of the table contains

information necessary to time instruction sequences

with operand dependencies. The first column, SS or

shortstop, contains entries for those instructions

which use the Scalar Floating-Point Unit. These are

the instructions which may use the shortstop feature

to provide an input operand. This entry is the

number of minor cycles after issue that the result

operand will be available at.the shortstop for use

with a following instruction.

if instruction A Issues at minor cycle X, any

following instruction, 8, needing the result of A

must issue no later than minor cycle X+SS to utilize

the shortstoo. A floating-ooint instruction needing

the result of A, can be Issued before X+SS and wait

at the input of Floating Point for the shortstopped

result of A. This allows other non-floating-point

(continued)

1 E N G I N E E R I N G NO. 10354637
!CONTROL DATA

i 	 i DATE Dec. j977

I S P E C I F I C A T I 0 N PAGE 141
!CORPORATION

REV.

----------------------- R A 0 L--------------------------------

3.9.1.1 (Cont.)

instructions to issue. The resulting time of an

instruction that issues and waits for shortstop

will be as if 	it had issued at the ideal time to

match shortstop. A subsequent instruction requiring

access to Floating-Point will not issue any earlier
than {X+SS} + J.

If instruction 8 issues later than cycle X+SS, thus

missing the shortstop; instruction B must wait until

at least X+RF. At this time the desired oerand

will be available from the Register File. Examole 2

illustrates operations using shortstop.

Examo le 2

Instr. P S T Comments

A) 60 - 12
B) 60 - - -

C) 60
0) 60 - -

E) 60 - -

F) 60 12 14

G) 60 14 14 -

H) 7F - - -
I) 60 - - 15

J) 60 14 - 16
K) 60 ±6 15 -
L) 60 - -

Sequence Timino

Instr. A issues at g
Instr. B issues at 1
Instr. C issues at 2

Instr. 0 issues at 3
Instr. E issues at 4

Instr. F issues at 5 -- Thus exactly matching
shortstoo

Instr. G issues at 6 --	 Issues but must wait
at the inout of
Floating Point for the

result of instruction
F to be available

(continued)

QOF THE

o~qGINL PAGE 	 ~pO

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637

1------------- i
 DATE Dec. 1977

ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 142

REV.

-RADL 	 RV.

3.9.1.1 (Cont.)

Instr. H issues at 7
Instr. I issues at ii -- Cannot issue until

instruction G catches

shortstop and

proceeds. Thus 3

minor cycles not used

Instr. J issues at 13 --	 Missed result of
instruction F at
shortstop thus
waiting until operand
is available from
Register File

Instr. K issues at J4 --	 Issues and waits at
input to Floating
Point

Instr. L issues at 19 --	 Instruction K is
treated as if issued
at 18 and the L at ±9

The last column under RESULT AVAILABLE (MEM)

contains entries for those scalar instructions (131

32, 5F, 7F) which store a result into Main Memory.

The time listed is the minimum time until the

operand is in memory and available for use. The

time may also be ,increased by 4 minor cycles if the

desired memory bank is busy.

The UNIT BUSY portion of the table concerns

instructions issued to either the Divide/Convert

(D/C) Unit or the Load/Store Unit (L/S). The Divide/

Convert Unit executes the 	±0, ±1, 4C9 4F, 53, 6C, 6F

and 73 instructions. This unit is the only portion

of Scalar Floating-Point which is not completely

pipelined; thus the appropriate unit busy time

listed in the table must elapse before a third

instruction can be issued 	to the Divide/Convert Unit.

Floating-Point instructions other than these eight

may be issued to Floating-Point while the

Divide/Convert Unit is busy. A second instruction

from the set of eight can be issued, but will be held

in front of the Floating-Point Unit and issuing of

non-floating-point instructions will continue.

(continued)

REPRODUCIBILITY OF THEORIGINAL PAGE IS POOR

!CONTROL DATA I E N G I N E E R I N G NO. 10354637

I------------- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 143

REV.

------------------------R A C L---------------------------------

3.9.1.1 (Cont.)

The Load/Store Unit executes the 129 13, 32, 5E, 5F,

7E and 7F instructions There are six address.

registers in the Load/Store Unit which enable

requests to be stacked and executed in the proper

order. The 12, 5E and 7E instructions each require

one register and can be executed (in the absence of

memory conflicts) at the rate of one load per minor

cycle. The 5F and 7F instructions each require two

address registers and can be executed at one store

per two minor cycles. The 13 and 32 instructions

each require two address registers and can be

executed at one per 14 and J5 minor cycles,

resoectively.

The Load/Store Unit is then capable of streaming

Load/Store instructions (other than the 13 and 32)

at one minor cycle per load and two minor cycles per

store assuming no Memory or Register File conflicts.

For example, a stream of N loads will execute in N +

[4 minor cycles from the issue ol the first load

until the operand from the last load is available in

the Register File. A stream of N stores will

execute in 2N + IN minor cycles from issue of the

13

first store until issue of the last store.

Examol e '3

Instr. R S T Comments

-A) 60 - -

B) 7E - -
-C) 13 - -

D) 13 - - -

E) 60 - -

F) 7E - - -

G) 7E - -

H) 7E - - -

I) 13 - -

(continued)

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
-
ICORPORATION
.......-

i
I S P E C I F I C A T I 0 N

0.....O-ATE
PAG
REV.

Dec.
144

1977

-- --------------- A0L
AJ----- --------------------------------

3-9.1-1 (Cont.)

3eouencelimino

Instr. A issues at 0

Instr. B Issues at j

Instr. C issues at 2

Instr. 0 issues at 4

instr. E issues at 6

Instr. F issues at 7

Instr. G issues at 8

Instr. H issues at j9 Instr. 	H must wait for

address register

to become free

from Instr. C.

Instr. I issues at 35 Instr. 	I must wait for
address register.

There are three additional Ooerand Oeoendencies which

must be considered.

1. 	Source operand conflict -- an instruction.

requiring the-result of a previous instruction

as an inout operand waits until the operand

becomes available.

2. 	Output operand conflict -- an instruction output

to the same Register File location as a

previously issued, but slower instruction, waits

until the previous Instruction stores its result

in the Register File.

3. 	 Register File Write conflict -- an instruction

cannot issue if its result arrives at the

Register File at the same minor cycle as the

result of a previously issued but slower

instruction.

Table 3.9-1 pertains to instructions having greater

than 1 minor cycle issue time.

The first column lists the appropriate instructions.

The second column indicates the minor cycle of issue

that a soecific operand is required. The third

column indicates the availability of shortstop for

that specific operand.

(continued)

--

--

ICONTROL DATA E N G I N E E R I N G NO. 10354637
! -D DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 145

REV.

------------------------	 RLA D L ---------------------------------

TABLE 3.9-1- ORDER THAT DESIGNATORS ARE READ FOR MULTIPLE
ISSUE INSTRUCTION AND IF THEY CAN CATCH SHORTSTOP OF A
PREVIOUS INSTRUCTION

* INSTRUCTION I DESCRIPTION I SHORTSTOP

-- I

13 1st I R&S&T I No
2nd I T I No

I------------------- --I
20-27 $st I T I No

2nd I R&S I Yes
I---
I 2F 	 1st i S I No

2nd I T I No

3rd I T I No

--	 I
31&35 ist - S&T I No

2nd I R I No
3rd I R I No

I--
32 	 ist I S I No

2nd T I No

-- I

36 1st 1 S&T 1 No
2nd. I R I No
.3rd I R I No

--	 I
1 5F 	 1st I RES I No

2nd I T I No

I

1 6D 	 jst I RES I Yes (RES)

2nd I T 	 I No
-- a

I 7F 1st I R&SgT I No
2nd I T I No

I------------------------------ ----------------------------------- 1
I B0-85.XOOX-X 	 lstI BEY I No

2nd! X&A I No
3rdl No
4thl X&A&C I No

I BO-BS.XOiX-X 	 istl B&Y I No

2nd! X&A&C I Yes (X+A)

3rdl Z I Yes

B0-BS.XjOX-X 	 1st! B&Y I No

2nd! X&A I Yes

I---I

I 80-85.XIX-X Istl B&Y No

2ndl X&A 	 I Yes

j':st I R 	 I No

ICONTROL OATA I E N G I N E E R I N G NO- 10354637
S----------- DATE Dec. 1977

ICORPORATION 1 S P E C I F I C A T I 0 N PAGE 146
REV.

---- ---------------- R A D L- --------------------------------

3.9.j.j (Cont.)

xamole 4

Instr. _ S T Comments

A) 60 - - :2
8) 35 10 - 12 Specifies an out of stack

branch to Instruction C in
the 2nd quarter sword

C) 60 - 35
0) 80 40 35 - Specifies an in stack branch

to Instruction E

E) 60 - -

Sequence Timins

Instr. A issues at 0
Instr. B issues at 8 B must wait for Result from A

to be stored Into the Register
File

Instr. C issues at 32
Instr. 0 Issues at 36 Result from Instruction. C

available from Shortstoo at
time 37 allows issue at 36

Instr. E issues at 48

--

ICONTROL DATA I E N G I N E E R I N G 'NO. 10354637
I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 147
REV.

---- ------------------ R A D L- --------------------------------

3.9.1.2 Basic Instruction Timing

TABLE 3.9-2 SCALAR INSTRUCTION TIMES

I Issue j Result Avail. lUnit Busy I

------------- I-----------I

Instructionsl NB I ISB I OSB S.S. I R.F. IMEM I LiS I 0/Cl

I

, 4, , 3 I 2
00 Waits for external or real-time interruptl I

i I 	 i I I

04 	 120 2I I I
i I I 1
I 4 1 1I I 	 I

2 I 	 I 1 1 - I

2 081 0 I14 2 .1 1i 	 I

I t I I I I I

*08 120 1 I I I I

I 	 I
09 Job to Monitor I 	 I*

I I I I I I iI I -- I -- I --

12 2-- I 2 -- --

I - I I I 	 II
I*E1 1 20 1 3 1 	 i I I

*Monitor to Job I I I 	 I I

1I 	 I I * I I
OA 20 I I 	 i 1 I

*I 	 I I

OE I 20 2 34 2 II

III I II

* 10 2 1. ..--2- I 221 25 1 I 29

2I I *

!11 ± 1 -- . 1 53 2 56 I II 2.. 	 25

12 	 Ii I.. ..I -- 2 15 I Ii

II 1 	 I 1I

I13 1 2 1- I-- 2 23 Jj4#

I I II2 	 I

20 1 I----- -- -- 1 2 I

MUST AGO 5 MC FOR REGISTER RELEASE

(continued)

ICONTROL DATA I E N G I N E E R. IIN G NO. 10354637
i ------------- I 	 DATE Dec. 1977
ICORPOR4TION I S P E C I F I C A T I 0 N PAGE 148
............... 	 IREV.

---------------- R A D L---------------------------------

3.9.1.2 	 (Cont.)

TABLE 3.,9-2 SCALAR INSTRUCTION TIMES (Cont.)

I Issue I Result Avail. lUnit Busy I

Iinstructionsl NB I ISB I OSB I SS. 1 R.F. I MEN I L/S I 0/Cl
III 	 I

1 1 I I I
21 1 1

21
-

I
III

I . .1 31 6 1 --
I

I1I
28 I 1 ..I

..I
31 61I -- II II

S 2C I 1 I I . II . 31II 6a -- I1II I

i I 20 I 1 -. .. 1I - I -- 1 I 1

1 2E I1 1
II

--
I

- 3
I

6 I -
I I

I 2F 171 81 23.1
I
--

I
71 -

J
1

31- 1I 7 	 23 -- 7 1 - 1 1
30 - ii -- 1---- I ---- - 3----51 - -- I -- --	 I--

II I 	 I

MUST ADD 5 MC FOR REGISTER RELEASE

(continued)

op.tpp-0 VNG,3lB -OOR'

--

]CONTROL DATA 1 E N G I N E E R I N G NO. 103546537.
I ------------- I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 149

REV.

----------------------- R A D L- --------------------------------

3.9.1.2 (Cont.)

TABLE 3.9-2 SCALAR INSTRUCTION TIMES (Cont.)

Issue I Result Avail.]Unit Busy

I------------I

lInstructions I NB I ISB1 OSB I S.S. R.F. I MEM I L/S I 0/Cl

I--

I 1 I I I I f I I

SiI I i G-bits 2&Z 1
I I I I I I I I

I 32.OX-X 1 2 1 -- I -- -- 1 (241 15*)10 ± 1
I I I I I fI

I I I
1 32. 1-X 2 t 9 24 1 -- - <-1(24 I 15*)>i 1
I I I I I I I I
II
I32.IX-X I 2 I 2± 36 1I

I
- --

I
I (24

I
I j5

I
4)3I± i

II II I I (I)l
II I J 1

133.XXXXK)O XXI I
I

I
I I

I *

I I I
I 33.XXXXXIXX I I 3 I I I

*II I I I111

34 i I . 2 31 61 -- I
* I 1

35 1 7 1 81 23 I -- 1 7 1 -- i
IIII I I I

1 36,R=T,S=o i 5 1 ... I -- 5 1 -- I
I I I -I I I I
I 36R=T,S 1 9 1 24 I -- 5 1 1 1

II I I 1 I I
7 81 23 ... I I

I 3 j I I I
I 38 1321 i -I-IIII * I I

381± -I -I jI41 - I

i I I I I 5 I I fII3 I I I II
I I I

I1B-20 I -- I I -- - III1' 3 11 1 1 1 1 -- I i I
1 I I I II

1 30 I 2 -- I 8 I -- I* I I I II

I it I ---- I 0 I -- I II I I I I I

MUST ADO 5 MC FOR REGISTER RELEASE

R RODUCIBILITY OF THE

Or- A PAGE IS POOR

--- ----------

I

ICONTROL DATA I E N G I N E E R I N G NO. 10354+637
I- ------------- I DATE Dec. 1977

CORPORATION I S P E C I F I C A T I 0 N PAGE J50
REV.

-------------------. D

-- - -- --- -- --- - -- -- -- R A D L ------- -- ------ - -- -- -- ---- --- --- -

TABLE 3.9-2 SCALAR INSTRUCTION TIMES (Cont.)

I Issue I Result Avail. lUnit Busy

--- I-----------I

lInstructionst NB I ISS I OSB I SS. I R.F. I MEN I L/S I D/Cl

III I
a I

3E 1 ..
IIIIII

.. 1 1 1 4 I
I

1 1

i 3F I t I.
I

I 4 I -- a I

*I

40 1 1 . 1 1 5 1 8 -

4 1 1 I I Ii
45 i 1 . 1 . 5 1 8 I -- I i

4 1 1
42 i I .. I I I-- I I

aaI a
I S

49 I 1 1 I . 1 . 5 1 II 8 -- 1

4B - i 1 5 8 - 1 1
t I I I I I I

40 ±. .. 5 18 I --
* I

48 i ..-- .. I -- ;

I I i I 1 1 	 1 I
1 I

46 1Ii1 - 1 -- 1 j 1 8 i -I 1
4 I 	 - 1 5 8 1 - 1

I III
kC ill-- 301 33 1 -- ij3 I

IIIII I
40 Ii --. ..- I 41I-- 1

50 5 - 2 1 8 1I 1 11
- -4E I- I -- 1 ----- 4 i--

45 - 1 	 1-

*IIIII 	 I "
* III

I4F i I -- I - I 30 1 3 I -- Ii 3 I
IIIII I

IIIIII I
I I

So 	 gil--. .. . 51 8 I ~--I I
*IIIIII I

5i i* .. . 5 	 I -- I
* 	 . 1I

52 ±i .. - a . - 5 .' 8 1 -- 11

IIIIIII I
53 i .. . 2 32 * -- 13 I

ICONTROL DATA 	1 E N G I N E E R I N G NO. 10354637
I I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T 1 0 N 	 PAGE 151
REV.

---	 ---------------- A L- ---------------------------------A0RD

TABLE 3.9-2 SCALAR INSTRUCTION TIMES (Cont.)

I Issue I Result Avail. lUnit Busy

I------------

!Instructions! NB I ISB I OSB I S.S. I R.F. I HEM I L/S I D/CI
- - -- - -- - -- - - - - - - - - - - - - - - - - - - -

I
I

iI a i I

i 54 fI1 .. . 1 5SI 81 -- I I
S I

5A I 8 a i I
I I I * I I ii I I

*5 ± -- I -- 5 8 I 	 -- i I
5 	 1 1 a I I I f
0 I j 1 5 1 1 1

I IaI -- I 	 6 -- I

5F 	 I 2 1 1 -- i 1 * 1i
i I i I I I I i

1 62 	 I 1 -- 1 31 6 1 1- 1 1

6 . .. 5a - I
a 65 1 1 1 I 31 61 i I

5F42 	 a . .a 8.. I I -I

SD 	 2 .. - .. I 51 8 I -- I

63I 	 .I 1 S - 1 a60 I 1. .. I 5 1 8 2 -- I I
5E 1 154 --

SE1 1-- -- 5 15 1 -- I 	 t
IIIII I I I

65 1 2 II-8 I -- I 0 1 2

I * I

6 1 1*61 	 1 . .. I a - - II I 	 IPI I
aIII I I

62 1 -- I -- I 1 I 4 I -- I1

MUS a EUAR REES I" 'OIT] 	ZIrI OI , SLMC FO

aOaIaINaL 	 PA a8 a0

------- ---- -

I

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

S---------I DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 152

REV.

--------------- L----------RA------ ------------------------

TABLE 3.9-2 SCALAR INSTRUCTION TIMES (Cont.)

I Issue I Result Avail. (Un-it Busy
--- I------------ I

!Instructions! NO I IS3 I OSB I S.S. I R.F. I HEM I L/S I D/Cl

1 1.!13

I 68 Ii------- 1 I 81 a- -- - -
1 6 3 I 1 1 1 1
3 69 I 1 - . . 5 1 8 I --

I II I I
I 381 1 1 3 1 .

6C I
I

i . . - 54
II

57 I --
I

1251
I

II I

I 60 1
II

2 ..
1I

. 4 1 7 I
3

-- 1
I

I
I

I
II

6E I t I
* .

..
I II

3 6 1 --
I

1 I
I

I
I

6F I
I

jI I I. . 5l 1 57
I

-I
1

125

I t

I
II

70 l I .-.-- 5 81
I

- 1 1

I71
7± I

... 1 1 5 1 8 1 1--
I

I72I*III ... 1 I 5 8 I 1--I

f I I
72 I 1 I - 1 5 I 8 3 --

I I I 1 8 I I I i
II 777I I I .. -...... 5. I 1I ---- 125I
I I 7 *I 1 1 -I ? I 8 -- II
I 7 I i I I -- I2
1 75 (I 1 -I -I~ I -

1 3II I. I I

S 77 I 1 I - .. 5 I 8 11 -- II
----- II I II II I - I-
I*7I S I I . I - - I.

I 7A I i i -- 1 I

I I I I . . . I I II IIII . . If l I i I I

TkUlRVIOUCIBL'TYOFORIGAL PAGE IS POOR

E N G I N E E R I N G NO. 10354637

i -

ICONTROL DATA I

DATE Dec. 1977

!CORPORATION I S P E C I F I C A T I 0 N 	 PAGE 153
REV.

------------------------	 R A L- ---------------------------------

TABLE 3.9-2 SCALAR INSTRUCTION TIMES (Cont.)

I Issue I Result Avail. lUnit Busy I

-- I-----------I

NB I ISB I OS I S.S. I R.F. I MEM I L/S I C/Cl
lInstructionsl

I

7 1I 1 I 1 1I 1I 1.I I 1I 1I II

7 I I 6 - -I I
I 7C

7C
1
1

j I-
12. --

1
I

- 1
I

3 1
71

61
-6 i

7-
--

1 i
I

* I1 I

-- I -

7E i- .. - . .jl5I-- 1

I I 1 1 I1 1 1 f I
1 7F I 21 3 ..- I --- 1 !5 1 21 1

I 0 t I I I - I

B.xoo X-X 8 9 24 -- 1 8 -
* I

-- I --. 5 15+8* I -- 1 1 -I 81.X0l X-XI~~~~~I 3 1 ~ -1- H-I

I B0.XjO X-X I 11 I 12 I 27 1 -- I -- -- I I

I i I i i 	 II I I 	 61 9 I--I II IIBO.Xj X-XI 2 	 .I-

i 	 I I I I I 1I

I sjXo X-X I8 9 I 24 I -- 8 1 -- I I
iI i I i I I Iii I

IBj.XO1 X-X 1 3 .. I ..- 5 5+8 I -- I

B1R.X00 X-X 11ii ±2 I27 I - I -- IIII I I I I I I I
1 I2X0 I-1 - I -- 1 5I58* 1 1 I
I B1-Xii X-X 1 2 1 -- I -- 1 6 9 i -- I I

I 	 I I I I I i I I
I 8 oXOO X-X I 8 I 9 2 24 I -- I 8 1 -- 11

B 3 	 --- I ----5+8 -1 - - - -82.XOI X-X I--

I 22(1o X-X I iil 12 I 27 1 I - -- a

IB2.XI!IX-XI 21 --.. .. 6 1 9 1 -- 1
II 	 I III

MUST ADD 5 MC FOR REGISTER RELEASE.

**Output to be stored in Register C is available 	at 5 cycles and Y

at 8 cycles. Y may be used from the Shortstop at time S. C can

not be shortstopped,

--

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
1------------- ! DATE Dec. 1977
!CORPORATION I S P E C I F I C A T I O N PAGE 154

REV.

----- ----------------- R A D L ---------------------------------

TABLE 3.9-2 SCALAR INSTRUCTION TIMES (Cont.)

I Issue I Result Avail. lUnit Busy I
-~~--- ---------- I

lInstructionsl NB I ISB I OSB I SS. 1 R.F. I MEM I L/S I D/C

* I I I 	 I I I

B3XG0 X-X I 8 1 9 1 24 I -- 1 8 -- I

I- 2 -	 1I 83 XI 1 1 1 . I -- 1 	 1
I B.X91 X-X I 3 1 -- I -- I 5 5+8* I --

I ~ I I I I 	 I

I B3,X10 X-X I i I 12 27 1. -- -- I -- I I
I II I I II 	 I

I3.XI1 X-X1 2 I -- I 6 9 'I--I 1 1
II I I

III I I I I

I B4.XO0 X-X I 8 I 9 1 24 I -- 1 8 I 1
II I I III

B40X1 X-X I 3 I -- I -- 1 5 I 5+8* I I I

I B4.X10 X-X I 11 I 12 1 27 1 I

I I I - I I I

iB4Xi X-X I 2 -- 1 -- I 6 9 I

I IB i 	 I 4 I

o 	 I I 1I I
IBSoXgo X-X I' 8 1 9 I 4 I -- I 8 1I -

C I I I I 1 4
4

I fl
I 85.X X-X 1 3 I I 5 5--+--- -- -
II I 	 I

cyle 	I u 27 m te at
I b sotopeI I I

at X0 X-X Y 1 1. d I 	 o t

.. I
BS8.8(j X-X I 2 I *-. - 6 9

. I I aI I

I I I III

86 I 7 I 8 23 I- II

IIIII I I

BE II1I -.. ..- 1 1 41

II

8F 	 .. . I i I4
tFI - ! -I 4

C,- I 1 I I- I4-I

IIII I 1

CE Il1l- .I 4!
. -11

Output to be stored in Register C is available at 5 cycles and Y
at 8 cycles. V may be used from the Shortstop at time 5. C can
not be shortstopp'ed.

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
I ----------- -!. DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 155

REV.

--------------- RRA0L L--------- --------------------------------

3.9.2 Vector Processor Timing

Ali vector processing times are stated In terms of

overhead (the time required to start up a vector

ooeration) and vector throughput in results per minor

cycle. Total time for a vector operation is then

stated as O+N/R where 0 is the overhead, R is the

rate of results per minor cycle, and N=M times the

ceiling of L/t L is the vector length and M is 8 for

64-bit operands or J6 for 32-bit operands. Ceiling

is the APL operator which returns the maximum

integer value of the argument.

Vector overhead is variable depending on a number of

conditions. Its component parts are:

i. 	 Issue time---The Instruction Issue Unit

requires a certain number of cycles to

translate and scan over the vector

Instructions and the included 32-bit

packets.

2. 	 Transmission of control information from the

Scalar Unit.

3. 	 Map Unit setup---- The time recuired to form

addresses and initiate the memory requests

within the Map Unit.

4. 	Transmission of memory request.

5. 	 Memory access time.

6. 	 Data transmission to Map Unit.

7. 	 Data transmission through Map Unit.

(continued)

-- --

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

; -------------- I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 156

.....- REV.

--------------------------	 RA-L--------------------------------

3.9.2 (Cont.)

8. Data transmission to Vector Unit.

9. Time through vector pipelines.

10. Transmission to Map Unit.

J1. Data path through Map Unit.

12. Transmission to memory.

When two vector operations appear in consecutive

instructi'ons in the Issue Unit the issue time,

transmission of control to the Map Unit, and part of

the buffer setup time are overlapped. Thus the

overhead in such cases can be reduced.

Table 3.9-3 gives Vector Processor times for

operations involving the Vector Units. See section

3.9.3 for timing of vector operations executed

within the Map Unit and section 3.9.4 for Swap Unit

timing.

TABLE 3.9-3 VECTOR PROCESSOR TIMES

I I I Sustained 2
12 i0esti- I Overhead I Data I

2 Function I Modifier I Source Ination I Time* I Rate/Cyclel
-

I Vector I Normal 	 I Memory I Memory 1 28 + 2P 1 512 bits I
I I I I I I
I Memory Buffer 1 20 + 2P I I

I2 -I1 	 1 1 1
2 Buffer I Memory ! 20 + 2P I 2
I I I I I I
v I Buffer Buffer 1 12 + 2P 2 I

I I I I
I2 I Broadcastl Memory I Memory 2 28 + 2P I I

I I I I I I
2 Memory Buffer 20 + 2P I

I I I I I
I Buffer I Memory I 20 + 2P I
,I I I I I

i vv Buffer I Buffer 1 12 + 2P I I 2
I I I I v -

I Buffer I None I Memory 1 Buffer I 14 + 2P 1512 bits I
I Load I I I I I I

S ---

I*P = Packet Count in 	the instruction header.I

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i------------- i DATE Dec. 1977
tCORPORATION I S P E C I F I C A T I 0 N PAGE 157

REV.

----------------------RADL ----------------------------------

3.9.3 Nap Unit Timing

The Map Unit functions of MERGE, MASK, COMPRESS,

SCATTER and GATHER operations are Incorporated

physically within the single Map Unit. These

operations have only memory as a source of operands

but all except SCATTER can deliver results to either

memory or the vector buffers. Table 3.9-4 gives

timing information for these MaD Unit functions.

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637
1------------- 1 DATE Dec. 1977
ICORPORATION I S P E C I F I C A T I 0 N PAGE 158

REV.

------------------------- RA-L---------------------------------

TABLE 3.9-4 MAP UNIT TIMES

i I I I i I Maximum I

II I Desti- I Overhead I Data I

I Function I Mode I Modifier I nation I Time* I Rate/Cycle!

;---
I GATHER
III

I Word
I

I
I

None I
I
Memory 1 36 + 2P 1i

I
operand4l

II
1
III

11 I None I Buffer I 28 + 2P
I

I
I

i

I I
l

I I Stride
Il:

I Memory
I1

1 26 + 2P I

I I
III

v I
I

Stride I Buffer 1 22 + 2P
*

I
I

v I

I
II I

Recordl None I Memory 1 36
I -.

+ 2P 1512 bits 4*l

I I None I Buffer' 28 + 2P I I I
I I I *" I

l I
I I
. l

I Stride i Memory
I

-1 26
I

+ 2P I
1

I

vI v I Stride I Buffer 1 22 + 2P I v I
A I I I II

I SCATTER
I I

I Word
Il

1 None 1 Memory I
I

30 + 2P II
1

operand**!
I "

II
1

2
Word I Stride

-

Memory
II

1 28 + 2P I v I

I I Recordl
a t

None I Memory
I

1 30
I

+ 2P 1512 bits 4

a
tl

I
v I Record9 Stride I Memory

II
1 28 + 2P I v I

I

I COMPRESS

I

I N/A
I

I
I

N/A I Memory 1
I

26 + 2P 18 input I
loperands** I

I I Buffer I 22 + 2P 18 input

II
vI

I II I
!.ioperands** I

v 1 Buffer I 20 + 2P I v I
I III

1 MERGE I i 1 I Memory I 26 + 2P 18 output I
1I I Ioperands *I

1 I I I
v I V I v I Buffer I 22 +.ZP 18 output I

I I Ioperands4 4 I
I - --- I
1 *P = Packet count in the instruction header. I
I **Either 32-bit or 64-bit word.
I4*4Rate assumes that swords are moved on sword boundaries; I
i if not, maximum rate is 256 bits per cycle.

REPRODUCBILITY OP THE

ORIGINAL PAGE IS POOR

ICONTROL DATA I E N G I N E E R I N G NO. 10354637

I ------ I DATE Dec. 1977

ICORPORATION I S P E C I F I C A T I 0 N PAGE 59

REV.

---------------- AL--------- ---------------------------------PA0L

3.9.4 Swap Unit Timing

Swap Unit startup consists of the issue cycle = $,

transmission to the Swap Unit = 1, and Swap Unit

setup = 5 cycles. Once begun, the swap operation

moves data at the rate of 512 data bits every 400

nanoseconds.

4.0 QUALITY ASSURANCE PROVISIONS - Not Applicable

5.0 PREPARATION FOR DELIVERY - Not Applicable

6.0 NOTES

6.1 Intercom

CDC $MP has an intercom system which Is utilized

primarily for maintenance purposes. The system can

be enabled by simply plugging the required number of

headsets into-the desired intercom jacks. There are

intercom jacks located in each section and in the

MCU. Up to four headsets may be on-line at any time.

6.2 System Start-up

The 	Start-up sequence for the system is as follows:

1. 	Bring un system power.

2. 	Autoload MCU.

3. 	Master clear the system from the CPU.

This master clear:

a. 	Initializes the CPU - clears all control

flip-flops, data flags, interrupts and error

flip-flops.

b. 	Sets monitor mode in the CPU (Job Mode FF

cleared in step A).

oRIGPbP It ?NGE IS POO

ICONTROL DATA I E N G I N E E R I N G - NO. 10354637
S -- I DATE Dec. 1977
ICORPORATION I S P E C I'F I C A T I 0 N PAGE 160
--------------- R EV.

-----------------------	 R A L --------------------------------

4. 	 Load microcode into the Stream Unit and the

Scalar Unit from the NCU.

5. 	 The MCU sends an external flag to the I/O

stations required on-line. The stations, on

receiving this flag, will autoload and enter an

idle loop waiting for a channel flag from the

CPU. An alternative approach is TO manually

autoload each of the stations desired on-line.

6. 	 The MCU loads the operating system kernel into

Main Memory, then interrupts the CPU. The

CPU recognizes the. interrupt and executes a

partial exchange to start execution in monitor

mode. This exchange is the same as a normal Job

to monitor exchange except the contents of the

Register File are not stored. Program execution

starts at the address contained in monitors

register six Just as it does after a normal I/0

interrupt.

RfPRODUOIBILITY OF THE

ORIGINAL PAGE IS POOR

APPENDIX C

PROGRAMMED DEVICE

CONTROLLER DESCRIPTION

OF! TO
rsiT10

Appendix C

PROGRAMMED DEVICE CONTROLLER DESCRIPTION

A Programmed Device Controller (PDC) is a unit which adapts data channels or peripheral controllers to
a serial data trunk. By means of the PDC and the serial trunk, a set of processors, or processors and
peripherals, may be conveniently and efficiently interconnected.

Figure C-1 illustrates a processor to processor data link construct using the serial trunk for connectivity
and PDC's for adapting the CPU channels to the trunk. A CPU can present messages (and data) to
the PDC, and can accept messages (and data) from the PDC. The PDC is an agent for inserting messages
on the trunk and for selecting messages from the trunk. in this case the PDC is neither the originator
of an activity nor the recipient, but rather the means for conveying the bit stream defining the activity.

o 0 0 CPU [CPU CPUCP

CHANNEL
INTERHFACE

0 0 0 POCC
PDC HTRUNK

Figure C-i. Processor To Processor Data Link

Figure C-2 illustrates an interconnect of host processors and peripheral units. The function performed
by the PDC for the host processors here is the same as that in the processor-to-processor data link: to
act as the agent for message (and data) delivery, being neither the originator nor the recipient of a
message. The PDC adapting a peripheral unit to a trunk, on the other hand, is itself the originator or
recipient of messages. As such, it has the function of message interpretation and execution as well as
the message delivery function.

C-1

HOST PERIPHERALS

PROCESSORS (AND CONTROLLERS)

CPU CPU

PDC PDC P00 P00 P00

TRUNK

Figure C-2. Processor/Peripheral - Subsystem Network

This type of PDC, having an additional function to satisfy, requires resources in addition to those of the
processor-adapting PDC, namely execution time and memory; the design must be capable of such exten
sion.

r ,TRUNK

DATA

SET

TCU *00(UP TO 4 TOU's)

TCU SELECT CONTROL

DATA MESSAGE PROCESSOR
BUFFER BUFFER

DEVICE
INTERFACE

C-2

The PDC consists of transmission control units, message and data buffers, a device interface, and a
processor to manage these resources in a way which satisfies the PDC functions.

1.0 TRANSMISSION CONTROL UNIT (TCU)

The TCU decouples the message transmission protocol from the functional definition of the message. The
message transmission protocol includes,

o Trunk protocol - a bit-oriented protocol similar to SDLC

O Contention resolution

o Access control

o Message closure

and defines how a message is moved from a TCU buffer interface, down the trfunk, to another TCU
buffer interface, and how a message disposition status is returned.

2.0 BUFFERS

The PDC buffer decouples the data rate of the attached device (processor channel, peripheral interface)
from the 50-megabit data rate of the trunk. The buffer has two parts, a message section and a data
section.

Messages have a predefined format and are of fixed length. Data transfers, from the viewpoint of the
attached unit, can be of any length. The PDC blocks and unblocks long data fields for transmission on
the trunk. The data buffer functions as a circular buffer. When half full, the PDC begins transmitting
the data block on the trunk, while at the same time the device- continues outputting data to the PDC
(other half of the data buffer). The receiving PDC performs a similar function, placing the received data
blocks into its data buffer in a circular fashiop. Thus the sending PDC waits for its attached device
to deliver a block (half buffer) of data, "bursts" this data on the trunk, and waits for the next block.

The trunk, is available to other communicating PDC's between bursts.

Messages, as they arrive off the trunk, are placed into the message buffer one after the other until
either the message buffer becomes full, or a message arrives with associated data. If the message buffer
is full, the TCU returns a BUSY response to the originating TCU. If the message is accepted by this
PDC, an ACK is returned to the originating PDC. The PDC will accept one message with associated
data at a time. No additional messages will be accepted until the process defined by the data message
and its data has been concluded.

3.0 DEVICE INTERFACE

This is the logic necessary to match the device control and data characteristics to the PDC. A channel
interface includes data assembly/disassembly, resync, ready/resume, and whatever control line and function
translation is required. This logic also includes voltage/impedance (V/Z) matching. The interface to a
peripheral controller is essentially the same as a channel interface.

C-3

The major difference between a PDC interfacing with a processor channel and one interfacing with a

peripheral controller is the question of control. A PDC is passive to a channel, and active to a con

troller. Thus a channel PDC reacts to the commands of the channel; the state of.this PDC is controlled

by the channel. The situation is reversed for the peripheral controller PDC. Here the state of the

peripheral controller is controlled by the PDC; the PDC, in effect, appears to the peripheral controller

to be a channel.

4.0 PROCESSOR

This is the programmable element in the programmable device controller. The software executed by the

processor includes a basic set, which is found in all PDC's, and an application-oriented set, i.e., the

channel PDC, peripheral controller PDC (and its variations).

5.0 BASIC SOFTWARE SET

o 	 Message transmission control

1. 	 Interprets response to message

a. 	 ACK - Message received. Transmission is completed. Set status for channel.

b. 	 BUSY - Message was not accepted. Transmission is completed. Set status for
channel.

C. 	 No Answer - Contention, transmission error, access violation, or failedPDC
(also nonexistent). Perform a retry operation.

Results (a, b, or c) determine next action.

o 	 'Buffer management

1. 	 Message queue - FIFO. Manage queue pointers. Set up address registers for both the
channel and the TCU interfaces.

2. 	 Data buffer management. Set up address and length registers.

* 	 Data blocking

1. 	 Synchronize the transmission of data blocks on the trunk with data motion on the
channel.

o 	 PDC state control

1. Busy/available (for messages), transmit/receive data, connected/disconnected, autoload.

6.0 CHANNEL PDC SOFTWARE SET

O 	 Channel Interface

1. 	 Output message, output data - interpret selects.

2. 	 Input message, input data - interpret selects.

3. 	 END OF OP - synchronous with final data message.

C-4

4. STATUS

5. ABORT - send message to destination PDC similar to the end of operation message.

6. MASTER CLEAR

a. Hardware - reset pointers.

b. Software (function) - Abort data input/output if in progress.

7.0 PERIPHERAL CONTROLLER PDC SOFTWARE SET

O Channel extension

1. Convert command words to channel functions.

2. Input/output data.

3. Data bloeldng/deblocking.

o Device driver

1. Manage queue of read/write requests.

2. Convert requests to the appropriate set of channel command words.

3. Error retry/recovery.

4. All of channel extensions.

* Higher level function

1. 	File system

- a. Message translation

b. 	 ' Resource management

c. Catalogue

d. Access control

e. All of channel extensions, all of device driver

C-5

APPENDIX D

SERIAL TRUNK

CONTROL PROCEDURE

Appendix D

SERIAL TRUNK CONTROL PROCEDURE

The Programmable Device Controller Communication-Control Procedure (PDCCP) is a bit-oriented, code
independent, modular data link (trunk) control protocol. It is designed for a conference multipoint inter

connect, and is meant to be line and link compatible, to the greatest extent practical, with Control Data

Communication Control Procedure (CDCCP). CDCCP is presently under development as a Control Data

Corporate Standard and is not yet available for publication.

CDCCP, which is intended for use in "datacomm" networks, i.e., those using relatively low-speed common

carrier facilities, expressly forbids multipoint interconnects, whereas the serial trunk system allows them.

This constitutes the principal difference in the design philosophies of the two protocols, and arises be
cause of the widely divergent application requirements.

This document defines in detail the frame structure used in all PDCCP transmissions. It describes the

structure, formatting, and significance of the various fields in the frame as well as frame delimiting flags
and frame check sequences.

I.0 FRAME STRUCTURE

1.1 GENERAL

The vehicle for all command, response, and information transmission is called a frame. A frame is a
sequence of contiguous bits bounded by and including opening and closing flag sequences. There are two

types of valid frames, as discussed below.

1.1.1 TYPE-I Frame

A valid TYPE-I frame is a minimum of 64 bits in length, including flags, and must conform to the fol
lowing structure:

F, T, FUN, S, P, I, FCS, F

where

F = Flag Sequence

T = Destination Address Field
FUN = Function Field
S = Source Address Field
P = Parameter Field

I = Information Field (optional)
FCS = Frame Check Sequence

Frames containing only link control sequences form a special case where no I field is present.

D-1

The TYPE-I frame structure is illustrated in Figure D-1. Each element of the frame is detailed under
Section 1.2.

1.1.2 TYPE-11 Frame

A valid TYPE-I frame is a minimum of 80 bits in length, including flags, and must conform to the fol
lowing structure.

F, T, FUN, AC, S, P, I, FCS, F

where

AC = Access Code Field

and all other elements are identical to the elements of the TYPE-I frame.

Frames containing only link control sequences form a special case where no I field is present.

The TYPE-n frame structure is illustrated in Figure D-2. Each element of the frame is detailed under
Section 1.2.

1.1.3 Frame Type Limitations

Command frames may be either TYPE-I or TYPE-I frames. Response frames are always TYPE-I frames.
On a given trunk, all command frames must be of the same type.

1.2 FRAME ELEMENTS

1.2.1 Flag Sequence (F)

All frames open and close with the flag sequence. This sequence has the binary configuration 01111110,
that is, a zero-bit followed by six one-bits, followed by a zero-bit.

The opening flag serves as a position reference for the address and control fields, and initiates trans
mission error checking. The closing flag serves as a position reference for the frame check sequence.

Transmitters must send only complete 8-bit flags. All receivers attached to the data link must search
continuously, on a bit-by-bit basis, for the flag sequence. Thus, the flag sequence provides frame
synchronization.

An F may be followed by a frame, another F, or an idle line. An F which closes a frame may also be
used as, the opening F on a following frame. Any number of F's may be transmitted between frames.

Since the .F sequence brackets and synchronizes the frame, it must be prevented from occurring in any
field of the frame. This is accomplished by the zero-insertion technique described below.

Each transmitter must insert a zero-bit following five contiguous one-bits anywhere between the opening
and closing flag sequences. The insertion of the zero-bit thus applies to the address, control, information,
and FCS fields and effectively prevents the fortuitous transmission of the F sequence 01111110.

D-2

F T FUN S P I FCS F

Opening
Flag

8 bits
/

Destin-
ation

Address
Field
8 bits

\

Function
Field

8 bits
/

Source
Address

Field

8 bits

Para-
meter
Field

8 bits
/

info
Field

Variable

Frame, Check
Field

16 bits

Closing
Flag

8 bits

Span of Frame Check and Zero Insertion

Figure D-1. TYPE-I Frame Structute

(A

F T FUN AC S P I FCS F

0 "

Opening
Flag

8 bits

Destina-
tion

Addiess
Field
8 bits

Func-
tion
Field

8 bits

Access Code
Field

16 bits

Source
Address

Field

8 bits

Para-
meter
Field

8 bits

Info
Field

Variable

Frame Check
Field

16 bits

Closing
Flag

8 bits

Span of Frame Check and Zero Insertion -

Figure D-2.
FigP0

TYPE-I! Frame Structure

Each receiver after detecting the opening flag (start of frame) continuously monitors the received bit

stream and removes any zero-bit which follows a succession of five contiguous one-bits. Note that zero

insertion at the transmitter follows the computation of FCS and that zero-deletion at the receiver pre
cedes the FCS check process.

Receivers must be capable of recognizing the following sequences as containing one or more flags.

a. 	 FCS 01111110 T FUN

-- Flag--,

The flag can be detected as a valid closing flag for one frame and a valid opening flag
for the next frame whether or not the first frame was addressed to this receiver. This
is a combined opening and closing flag.

b. FCS 	011111101111110 T - FUN

-Flag

-Flag-

Although transmitters must send only complete 8-bit flags, receivers will detect this sequence
as 2 flags.

c. 	 01111110 XX XX 01111110

where X is any combination of bits not comprising a flag. The number of X bits rangecan
from 0 upward.

1.2.2 Destination Address Field (T)

The Destination Address Field (T) immediately follows the opening flag of a frame and precedes the func
tion field.

Two addressing modes are defined for this addressing field by the state of the most significant bit (bit
zero):

1.2.2.1 Unique Destination Address

Bit zero = 0. The remaining 7 bits uniquely identify the destination.

1.2.2.2 Global Destination Address

Bit zero = 1. The frame is directed to all units on the trunk.

1.2.3 Function Field (FUN)

The Function Field (FUN) is located immediately following the destination address field and preceding
the source address field (TYPE-I) or the access code field (TYPE-ID. The function field is used to
convey the commands and responses necessary to control the data link.

D-4

The two most significant bits of the function field are reserved for link control as follows:

0 1 2 7

= 1 For Rotate Priority Command frame

= 0 For all other Command frames
= 0 For Command frame

= 1 For Response frame

Note that bit 1 is reserved for command frames, but not for response frames.

The remaining six (6) bits of the function field are available for specified commands and responses.

1.2.4 Access Code Field (AC)

The Access Code Field (AC) immediately follows the function field in the TYPE-II frame; this field

does not exist for the TYPE-I frame.

The AC is a "key" which must match the "lock" on the receiving unit in order that the frame be

accepted. If the match is not made, the frame is discarded.

1.2.5 Source Address Field (S)

The Source Address Field (S)immediately follows the function field in the TYPE-I frame or the access

code field in the TYPE-Il frame.

The Source Address Field identifies the unit which sent the frame.

1.2.6 Parameter Field (P)

The Parameter Field (P)immediately follows the Source Address field, preceding the information field.

The parameter field provides control or status for the control message or response message respectively.

1.2.7 Information Field (I)

The data link control is completely transparent to the contents of the I field. The I field may, there
fore, consist of any number of bits, in any code, related to character structure or not and limited only
•by system requirements. The I field is unrestricted as to length but it should be recognized that typical

length is contingent on system requirements and limitations beyond the link level. Factors limiting I
field length may include channel error characteristics, PDC buffer size, and the logical properties of the

data.

The fortuitous occurrence of a flag or abort sequence within the I field is prevented by the zero-insertion
technique described in paragraph 1.2.1.

An I field with a length of zero is specifically permitted.

10-5 REPRODUCIBILIy OF THEORIGINAL PAGE IS POOR

1.2.8 Frame Check Sequence (FCS)

Each frame includes a 16-bit frame check sequence (FCS) immediately following the I field (or the P

field if there is no I field) and preceding the closing flag. The FCS field serves to detect errors induced

by the transmission link thus validating transmission accuracy. The 16-bit FCS results from a mathemati

cal computation on the digital value of all bits (excluding inserted zeros) in the frame including the

destination address, function access code, source address, parameter and information fields.

The process is known as cyclic redundancy checking using the CCITT Recommendation V.41 generator

of X1 6 polynomial + X12 + X5 + 1. The transmitter's 16-bit remainder value is initialized to all ones

before a frame is transmitted. The binary value of the transmission is premultiplied by X1 6 and then

divided by the generator polynomial. Integer quotient values are ignored and the transmitter sends the

complement of the resulting remainder value, high-order bit first, as the FCS field.

At the receiver the initial remainder is preset to all ones and the same process is applied to the serial

incoming bits. In the absence of transmission errors the final remainder is 1111000010111000

(X0 thru X1 5 respectively).

The receiver will discard a frame in error. Subsequent retransmission of the errored block is under

control of error recovery procedures.

1.3 ADDITIONAL CONVENTIONS

1.3.1 Interframe Time Fill

nterframe 'time 'fill may be 	 transmitted to maintain the link in an active state. Time fill may also be

to hold the authority to transmit.

used to avoid timeouts and

When used, interframe time fill must be a series of contiguous flags which are contiguous to the closing

flag of one frame and the opening flag of the next frame.

1.3.2 Abort

Abort is the process by which a PDC, in the act of transmitting a frame, decides before the end of that

frame to terminate in an unusual manner which wil cause the receiver to discard the frame.

Aborting a frame is accomplished by transmitting at least seven consecutive one-bits with no zero

insertion. Receipt of seven contiguous one-bits is interpreted as an abort.

1.3.3 Invalid Frame

An invalid frame is defined as one not properly bounded by an opening and closing flag or one which

is too short, e.g., less than 64 (TYPE-I) or 80 (TYPE-fl) bits between flags. An aborted frame is an

invalid frame. A PDC will ignore an invalid frame.

1.3.4 Order of Bit Transmission

The order of transmission for all fields is most significant bit first.

D-6

2.0 DEVIATIONS IN PDCCP FROM CDCCP

2.1 FRAME TYPES

CDCCP defines one frame type; PDCCP defines two (one incorporates an access code, one does not).

2.2 FIELD DEFINITIONS

PDCCP defines three additional fields:

S - Source Address Field

P - Parameter Field

AC - Access Code Field

2.2.1 Address Field Definition

The Address Field (A) of CDCCP is redefined as the Destination Address Field (T) in PDCCP as follows:

A (CDCCP) 	 T (PDCCP)

N Octets in length Single Octet
where N > 1
Two Addressing Modes Single Addressing Mode

Group Addressing No Group Addressing
Global Address = 11111111 Global Address = 1XXXXXXX
Null Address = 00000000 No Null Address
(ignored by all stations)
Address Field refers to Address Always Destination
Source or Destination

2.22 Control - C (Function - FUN) Field

C (CDCCP] 	 FUN (PDCCP)

N Octets in length Single Octet
where N > 1

- Content Definitions Totally Different- -

2.3 MINIMUM LENGTH OF FRAME

CDCCP 	 PDCCP

48 Bits 	 64 Bits (TYPE-I)
80 Bits (TYPE-1I)

D-7

2.4 ORDER OF BIT TRANSM4ISSIONS

CDCCP PDCCP

Address, Control, Respon- All Fields

ses, and Se.quence Numbers Most Significant Bit First

are Low Order Bit First

(Bit 20 first)

Data (I Field) Any Order

FCS = Most Significant Bit First

3.0 TRANSACTIONS

3.1 GENERAL

A transaction is a dialogue between two units on a trunk. At least one of the units must be active

(a PDC). Active units can transmit command br response frames. Passive units can transmit only response

frames. The multiplexed loop controller is an example of a passive unit.

A dialogue can be viewed as a set of command and response transmissions. Consider two units, A and B:

IDLE TRUNK

A transmits command frame(s) to B

Reserved trunk

B transmits response frame(s) to A

Reserved trunk

A transmits command frame(s) to B

0

a

C

B transmits response frame(s) to A

IDLE TRUNK

A dialogue, therefore, consists of one or more sets of command/response transmissions.

Each PDC contains one to four trunk interfaces. These interfaces are called Trunk Control Units (TCU).
The TCU interfaces the trunk and the PDC buffer. The TCU selects frames from the trunk and presents
frames to the trunk.

The, TCU analyzes certain frame fields as part of -the select process. Likewise the TCU generates certain

fields when presenting frames to the trunk. These TCU operations, as they pertain to the PDCCP frame,

are discussed in detail in the following sections.

D-8

3.2 TRANSMIT COMMAND' FRAME - TYPE-I OR TYPE-II

F T IFUNI FCS I F

F =Flags
FCS = Frame Check Sequence

FUN = Bit 0 and 1 forced to zeros. Bits 2-7 come from the buffer.

Q = not generated by the TCU

3.3 RECEIVE COMMAND FRAME - TYPE-I

F T I FUN Is FCS F

[not analyzed by the TCU]

T = The transmitted address which must match this unit's address.

FUN = The function field which must identify this frame as a command frame (bit 0 = 0). The

TCU recognizes a small set of functions.

S = The source field of the first correctly received frame; it is saved by the TCU

3.4 RECEIVE COMMAND FRAME - TYPE-HI

F T _I FUNI AC 1 8 j FCS I F

f-not analyzed by the TCUH

AC = The transmitted access code which must match the physical access code of this unit.

All other fields are recognized identically to the TYPE-I frame of Section 3,3.

3.5 TRANSMIT RESPONSE FRAME

F I TIFUN I S P I IFCSI F

[not generated by the TCU--

T = The value saved: when receiving a command frame. See Section 3.3.

FUN = The response, including bit 0 = 1.

S The physical address of this unit.

P = The parameter field; contains unit status.,

T, FUN, S,and P are inserted by the TCU.

D-9

3.6 RECEIVE RESPONSE FRAME

F TJIFUN~I

H-not analyzed by the TCU

IFCS IF

T = The transmitted address which must match this unit's address.

FUN = Bit 0 must be set.

D-10

