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THE ROLE OF TIME-HISTORY EFFECTS IN THE FORMULATION
OF THE AERODYNAMICS OF AIRCRAFT DYNAMICS

Murray Tobak • and Lewis B. Schiff"
Ames Research Center, NASA, Moffett Field, California 94035, U.S.A.

SUMMARY

The scope of any aerodynamic formulation proposing to embrace a range of possible maneuvers is shown
to be determined principally by the extent to which the aerodynamic indicial response is allowed to
depend on the past motion. Starting from the linearized formulation, in which the indicial response is
independent of the past motion, two successively more comprehensive statements about the dependence on
the past motion are assigned to the indicial response (1) dependence only on the recent past and (2) depen-
dence additionally on a characteristic feature of the distant past. The first enables the rational
introduction of nonlir ,ar effects and accommodates a description of the rate-dependent aerodynamic
phenomena characteristic of airfoils in low-speed dynamic stall; the second permits a description of the
double-valued aerodynamic behavior characteristic of certain kinds of aircraft stall. An aerodynamic
formulation based on the second statement, autcnmaticdlly embracirq the first, may be sufficiently compre-
hensive to include a large part of the aircraft's possible maneuvcrs. The results suggest a favorable
conclusion regarding the role of dynamic stability eKperimcnts in flight dynamics studies.

LIST OF SYMBOLS

Cm	pitching-moment coefficient, pitchin moment--

G[a(E)I	 functional notation: value at E = t of a time-dependent unction which depends on all values
taken by the argument function i(E) ovar the c!me i-iterval 0	 < < t

I	 moment of inertia about the pitchin5 acis

I	 reference lenqth

q	 dynamic pressure, 3 oVz

S	 reference area

t	 time	
ORIGINAL PAGE IS

V	 magnitude of flight velocity vector	 OF POOR QUALITY

o	 angle of attack, Fig. 1

o	 atmospheric density

W	 frequency of harmonic oscillatory motion

1.	 INTRODUCTION

One of the difficult problems in aircraft flight dynamics is that of formulating an aerodynamic force
and moment system with sufficient scope to cover the wide range of maneuvers typical of modern aircraft
(Refs. 1,2). What is the nature of the problem?

Consider the questions that arise in the prediction of a maneuver from a known initial state. Let an
essentially rigid aircraft with known inertial pro perties undergo an arbitrary motion. At a certain time
to, allow a measurement of the aircraft's state (i.e., its linear and anyiilar velocity components) and
its aerodynamic response (i.e., the aerodynamic force and moment). Given this information at to, what is
needed to predict the aircraft's motion over the succeeding increment of time? The ability to carry the
motion forward over the first increment of time implies, of course, the ability to predict the entire
subsequent motion. What is needed principally is a form for the incremental changes in the aerodynamic
force and moment, that is, the indicial res ponse, over the increment of time. Assigning an adequate form
constitutes the problem of formulation. The difficulty of the problem arises in assigning a form that
applies not only to the motion under study, but to all of the other motions of which the aircraft is
capable, and which might have occurred prior to to. This way of describing the difficulty allows one to
appreciate the great virtue of a linearized version of the aerodynamic indicial response. Invoking
linearity supposes that the aerodynamic indicial response is independent of anything that happened prior
to the origin of the response. Thus, the calculation can be carried forward without any acknowledgment
whatever of the motion prior to to. Although there are flow regimes where use of the linearized formula-
tion can be justified (e.g., attached flows with small perturbations), these regimes do not embrace the
whole range of flows that a modern aircraft may ex perience. A f-emulation applicable to the remaininq
regimes must be freed of the limitation imposed by linearization. 	 This means, of course, that the
aerodynamic indicial response must be allowed to defend on the past motion.

In a series of papers (cf. Ref. 3 for a connected account), the authurs have tried to show how con-
cepts from functional anal ysis could be used to construct a mathematical framework allowinq a qeneral
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dependence of the aerodynamic indicial response on the past nc.tion. Having a ri gorous framework has
enabled the introduction of rational approximatlur •, which, in effert, limit the dependence on the past
motion  to some definite property, applicable to ,n a pp ropr iate class of flows. One can argue in favor of
limited statements about the dependence on the past motion as follows: Since the linearized formulation

has found application to a certain class of flows, a formulation ba:«d on a limited statement, which
Includes the linearized formulation as a special case, must f i nd application to a wider class of flows. A
sequence of successively more com p rehensive statements, each emt i ucinq all of the preceding ones, must
eventually reach a stage where the resulting formulation i; 3ppli,abla to a sufficiently wide class of
flows to accommodate a description of all of th,;,notiuns of interest. 	 It remains to discover wheth — this
stage can be reached well short of having to account for the whole past motion in detail for any of the
motions of interest.

Thus, the role assigned to time-history ef fects, that is, the statement about the dependence on the
past motion, constitutes a determinin q criterion by which the merits and shortcomings of any aerodynamic
formulation may be j,.dged. The purpose of this re port is to investigate how far the first few statements
qo toward fulfilling the qoal of a sufficientl y comprehensive statement. Startinq from the linearized
formulation, in which the indicial response is independent of the oast motion, two successi , .'y more com-
prehensive statements about the de pendence on the oast motion are as0 ,1ned to the indicial response
(1) dependence onl y on the recent past and (2) dependence additionall y on a characteristic feature of the
distant past. The successive statements allow the effects of successively larger bodies of aerodynamic
phenomena to be acknowled ged within the scopes o f the resulti-iq formulations. The f irst enables the
rational introduction of nonlinear effects and accommodates t descriotion of the rate-aevendent aerodynamic
phenomena characteristic of airfoils in low-speed dynamic stall; the second permits a description of the
double - valued aerodynamic behavior characteristic of certain kinds of aircraft stall.	 It is suggested that
an aerodynamic formulation based on the second statement, automaticaily includinq the first, may be of
sufficient scope to embrace a large part of the dircraft 's pass ; hl p maneuvers.	 implications of the results
with re g ard to dynamic stability experiments are discussed.

2. DEFINITION OF MANEUVER

To focus directly on the question of time-history e f fects, it is advisable to avoid the complications
introduced by coordinate systems and motions with -ultiple iegrees of freedom. In all of the study to
follow, the aircraft's maneuver is restricted to be planar with only a 0 n g le degree of freedom. Extension
to more general motions will be straightforward, pdral'eling that described in Ref. 3.

Let the aircraft be in level steady flight prier to time zero. At time zero let it begin an
arbitrary pitching maneuver du r ing which the center ,. F g ravity continues to follow a rectilinear path at
constant velocity V. Hence flight-oath properties such as d ynamic pressure, Mach numhe r , and Reynolds
number remain constant throughout the maneuver. 	 the pitchinq maneuver is de f ined by the angle of attack v
(Fig. 1), the angle between the aircraft's longitudinal axis and the velocity vector.	 The motion, of
course, may be specified to reproduce that of a wind-tunnel n)del in an oscillations-in-pitch experiment.

O \`aVe
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Fig. 1.	 Single-degree-of-freedom pitchin ,1 maneuver.

Thus, focusing on this motion will facilitate a later discussion of the implications of the results with
regard to wind-tunnel experiments.

3. FORMATION OF iNDiCiAL PITCHING-MOMENT RESPONSE AND INTEGRAL FORMS
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Since it will be necessary in later
sections to consider the influence of random
fluctuations, the formation of the indicial
pitching-moment response will be described in
a way that acknowledges their presence. Two
motions have to be considered (cf. Fig. 2).
First, beginning at r ° 0, the aircraft is
made to undergo the motion under study o(E).
At a certain time . the motion is con-
strained so that the value of o at time i,
that is, o(T), remains constant thereafter.
The pitching moment corresponding to this
motion is measured at a t ime t. Now if c(r)

Fiq. 2.	 Formation of indicial response.
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is sufficientl y large so that, fo, example, flew sepdratiun ok-urs in the course of a maneuver, then ^n d
result of the ensuing fluctuations in the flow, any single measurement of the pitching moment at time t

will include a random component. This circumstance calls for repeating the maneuver and the corresponding
measurement at time It avany times and taking the arithmetic mean of the measurements. If the fluctuating

part of the response is truly random, its contribution to the measurement at time t should cancel in
the mean, and the resulting mean value should be representative of the deterministic part of the response.
It will be assumed that this is true for any time t, and that as a result, a deterministic part cf the
response will exist that is continuous for all f in the interval 0 < { < t. Second, the aircraft is
made to execute precisely the same motion, beginning at E = 0 and constrained in the same way at c = .
except that at the latter time, o is given an incremental step 4a over its value at E 2 T. Hence, for
all time subsequent to T, o is equal to o(r) + ac. The pitching moment corresponding to this motion
is again measured at time t. Just as before. the second maneuver and the corresponding measurement at
time t must be repeated many times, and the arithmetic mean of the measurements taken to be the deter
ministic part of the response. The difference between mean values for the two measurements, aC m (t), is
divided by the incremental step ea. The limit of this ratio (if it exists) as the magnitude of the stet
approaches zero is called the indicial pitchinq-moment response at time t per unit ste p change in ; at.
time T. Since the two maneuvers prior to E = T are identical (in the mean), the ratio must be identi-
cally zero for 0 < E < T. At E = T a discontinuity in the ratio is permissible, reflecting the
discontinuous change in a. For all E > T the ratio is assumed to be continuous. With the understandit.
that the pitchinq-moment response to each maneuver and at each time t is the result of an ensemble
average of measurements, the indicial pitching-moment response is defined as:

C (t)
lim a 

m	
• Cm [0(0 ;t,T)	 (i)

'10-0	 63	 a

As the functional notation indicates, the indicial response is allowed to depend in an unspecified way on
the entire history of the motion a(;).

When the assumptions leading to the definition of a deterministic indicial response can be said to
hold within each increment of the stepwise representation of an arbitrary motion a(t), the pitching-
moment response Cm(t) to the notion a(t) follows from a summation of incremental responses over the
time interval 0 to t:

t

Cm ( t ) = Cm (0) +	 Cm [0(E);t,T] dr dT	 (2)
o

This is the general integral form for Cm(t) corresponding to an arbitrary motion a(t). The form is
essentially exact, but its further use without approximation is exceedingly difficult. The nature of the
difficulty becomes clear if one writes the equation of notion for the sinqle-degree-of-freedom pitching
motion a(t), and asks for a solution of a(t) for specified initial conditions. The equation of motion
is: jt

o(t)	 1J	
cm (0) +	 Cma[ (E);t.T] ddT dT)	 (3

Since the indicial res ponse within the integral is a functional, dependent in general on the whole past
motion a(E), it is unknown when o is unknown. Thus, both the indicial response and the motion must be

found simultaneously, an awesome prospect. Cases can be envisioned (e.g., massively ablating reentry

vehicles) where the mutual dependence between the motion and the indicial response cannot be uncoupled.

However, for rigid aircraft of fixed shape, the past success of the linearized formulation lends credence

to the belief that the interdependence may be at least partially uncoupled. Now if the indicial response

were somehow known, Eq. (3) would become an integro-differential equation of the Volterra type for which

solutions can be found by known, albeit numerical, techniques. The indicial response could be considered

known, at least in principle, if its dependence on the past motion were specified in a way that allowed it

to be an identifiable member of a collection of indicial responses, all of which had been obtained before-

hand from, for example, a suitable series of experiments. Thus, Eq. (3) can be made tractable by assignim

to the indicial response ipprupridte statements about how it depends on the past motion which allow it to

be determined in advance. Let it be noted, however, that since every statement assigned to the indicial

response will multiply the number of responses in the collection required to be known in advance, it

becomes imperative to make the least number of s tatements possible. In succeeding sections, two such
statements will be introduced, which it is hoped, may suffice to cover the cases of interest.

Finally, it is recognized that counting on the availability of a collection of indicial responses
may be somewhat unrealistic in view of the difficulty of experimentally determining an indicial response.
In a later section, however, it will be shown how the results from suitably designed oscillations-in-pitch
experiments, which, it may be presumed with greater reason, are technically feasible, may be used in place
of the integral in Eq. (3). Thus, for the availability in principle of a collection of indicial response,
may be read the availability of an equivalent collection of results from oscillations-in-pitch experiments

4. DEPENDENCE OF THE iNDiCIAL RESPONSE ON THE RECENT PAST

First, Ea. (1) for the indicial pitchinq-moment response will be put in an equivalent form that will
suggest a first statement about its dependence on the past motion. if ,a(r) can he considered to he
analytic in a neighborhood of ' - T (corresponding to the most recent nast for an indicial response with
ori g in at E = T), in principle, its history can be reconstructed from a knowledge of all of the coeffi-
cients of its Taylor series expansion about E - t. Then, since i(r) is equally represented by the
coefficients of its expansion, the functional, with its dependence on o(E), can be replaced without
approximation by a function with a dependence on all of the coefficients of the expansion of •(;) about
E • T; that is,

ORIGINAL PAGE 13
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Cm
	

;t	 Cm= Cm	 t - r;o(I).3(T).i(T).	 .)	 (4)

0	 0

The additional replacement of a dependence on elapsed time It - T rather than on t and T separately is

justified within the s pecification alread y invoiced ­6T constant fliqht-path properties.

Now it is arqued that a class of flows exists for which disturbances oriqinatinq at times far removed

from the vicinity of C - T will have died out before thev are able to influence events in the vicinity

of C = T.	 In such cases, it can be assumed that the indicial response will have "for gotten" lonq-past

events, and so will depend only on events occurrin q in the most recent past. Therefore, to the extent that

the indicial response can be influenced by the pas' motion, the form of the past motion just p rior to the

origin of the step might just as well have existed for all earlier times. Accordinql y , only the first few

coefficients of the expansion of o(C) need be retained to characterize correctly the most recent past,

which is all the indicial response is assumed to remember. Retaining the first two coefficients of

for example, implies matching the true past history of c in magnitude and slope at the origin of the

step, thereby approximating 0(C) by a linear function of time -(C) = 0(T) - 3(1)(T - C).	 With an

approximation of this order in force in Eq. (1), the integral form replacing Eq. (2) and the right-hand

side of Eq. (3) becomes

t
Cm (t) = Cm (0) +f	 Cm (t - T;o(T).b(T))do dT	 (5)

c

The steady-state value of the indicial response can b3 put in evidence with the additional (consistent)

assumption that events in the recent past, that is for C < T, will again be far removed and so, forgotten,

so far as the indicial response is concerned when t - r -

a

 . This means that the steady-state value of

the indicial response will depend only on local conditions, that is, on the constant value of U(T). 	 The

latter behavior is put in evidence by the substitution

Cm (t - r;o(T),v(T))= Cm ( .• ;o(T)) - F(t - r;c(r),b(T))	 (6)

where Cmn ( m ;o(T)) is the steady-state value of the indicial res ponse. Notice that it must be a single-

valued function of ,(T). The function F(t - 	 ;^( ),;( )) is called the deficiency function; it approaches

zero as t -	 • m and, in practice, will be essentially zero for all elapsed time t - . 	 larger than a

relatively small value t	 When En. (6) is substituted in Eq. (5), the steady-state term multiplied by
(do/dT)dr forms a perfect

d.
 differential which can he inte g rated. The resultinn formulation for Cm(t)

becomes

Cm(t) = Cm (-;'(t)) - ! t F(t - T;0(r).^(r)) dam-- dT	 (1)

Here, C,(-;c(t)) is the pitchingg-moment coefficient that would be measured in a steady flow with - fixed

at the instantaneous value o(t). Again, note that Cm(-;o(t)) must be a single-valued function of

according to this formulation.

Equation (7) actually includes three increasingly comprehensive formulations, each of which may be
appl i cable in a ppropriate circumstances.	 The simplest, of course, is the linear formulation, for which

the indicial response is said to be independent of both -(T) and o(T). The resulting simplificationI
,, reflected in the equation of motion, Eq. (3), which becomes

(	 r	 11
o(t) = (^`-)S•'(t)Cm (^) -J t F(t - r) 

do 
d-

rll 	 n

The equation is linear and the inteqral term is of the convolution type, which enables an immediate

solution for c by the aid of Laplace transforms. A considerable additional virtue is that the collec-

tion of indicial responses required to be known in advance consists of one member.

f

	

	 The second formulation, a pplicable in particular to slowl y varying motions, is obtained by omittinq

the dependence on 3(-) from the indicial res ponse. Omittinq this dependence in Eq. (6) means that, so

far as the indicial response is concerned, the motion prior to the oriqin of a step is being approximated

by the time-invariant motion o(C) • C(T). The eq uation of motion, Eq. (3), becomes

t	 1
o(t) _ (9JL) ^Cm^°; ^it)) 	f F(t	 T;a(T)) do

T dTJ

a nonlinear Volterra integro-differential equation, solvable b y numerical techniques. 	 Here, the collection
of indicial responses required to be known in advance must consist of members corresponding to a range of

values of ,(T). This formulation also lends itself to reduction to a form correct to the first order in

frequency, resulting in a nonlinear generalization of the classical stability derivative formulation. The

form has been studied at length in the authors' previous work (Ref. 3). Approximation at the level of the

second formulation thus enables the rational introduction of nonlinear effects.

Finally, the third, most comprehensive formulation is that represented in full by Eq. (7). This form

is of sufficient scope to allow the treatment of motions involving hysteresis effects caused by rate-

dependent aerodynamic phenomena.	 It is believed to be applicable, for example, to the complex set of

aerodynamic phenomena characteristic of airfoils in low-speed dynamic stall (Refs. 4-6). Retaining a

dependence on ^(T) allows assigning different indicial responses to a step at a sinqle value of c(T),
depending on the magnitude and sign of o(T).	 It is possible, for example, to distinguish between indicial

responses where o was increasing or decreasing prior to the step. The motion that would be required to
nhtaln the indicial response experimentally with positive i(T) is essentially the same as the maneuver

that has been used to study the overshont in lift that orcurs following a ra p id p itch-up (Ref. 7).	 it would
ala„ hn npre5axry to carr y nut expnrim pntt involvinq pitch-down maneuvers to allow for the possibility

l

tl	
i	 i

(8)

(g)



motion qualifying as the first of the two motions

3).	 The motion for values of r - T	 is given by a(E);

.^	 DISTANT PAST--
RECENT
PAST

Fig. 3. Recent past and distant past.

26-5

tnat the indicial response for a given a(T) and a negative value of o(T) will be different from that

for a positive b(T) of the same magnitude. Here, the collection of indicial responses required to be

krown in advance must embrace a range of values of T(,) d , Id a range of both positive and negative values

of b(T).

While Eq. (7) goes some distance toward fulfilling the goal of a sufficiently comprehensive
formulation, it is still incapable J accounting for the existence of multivalued aerodynamic phenomena

that need not depend on the pitching rate. This is evident, in particular, in the representation of the

steady-state aerodynamic pitching moment Cm(d;oi,t)), and its derivative Cmo(-;a(t)), which must be

single-valued  functions of a. Admitting the possibility of multivalued aerodynamic responses, not

necessarily dependent on the pitching rate, will require an acknowledgment of the influence of the distant

past on the indicial response.

S. DEPENDENCE OF THE iNDiCIAL RESPONSE ON THE DISTANT PAST

In the preceding treatment, on the assumption that events in the distant past should be incapable

of influencing the indicial response, the indicial response functional Ciiij,(t);t,-) was replaced by a

function CM,(t - T;o(t),o(-)) which de pends only on the magnitude and slo pe of the past motion	 ( )

at the origin of the step. This replacement can be viewed either as an a p proximation of the actual motion

,(E) b y a linearly varying motion a(E) _ 7(T) - '(T)(T - r,) for all past time, or, as a substitution

ap p licable only in the vicinit y of F. = T with the im p licit understanding that the distant- past motion,

bein g immaterial to the indicial response, can he assigned at will. 	 In what follows, the latter inter-

pretation will be the desired one to the extent possible. However, the presence of fluctuations appears

to represent a condition where events occurring in the distant past (e.y•, the initiation of fluctuations

due to flow separation) can affect the p resent evolution of the indicial response. For suppose that

certain distant-oast mot ons, but not others, can initiate fluctuations that persist up to the measuring

time, and that the indicial res ponse measured in the presence of fluctuations can differ from the measure-

ment in the absence of fluctuations. Then this must be taken into account somehow, and in a way that

does not require assigning the ac jal distant- past motion to every indicial response.

5.1 Reformulation of Pitching-Moment Response

It is convenient to consider first a typical

required to form the indicial response (cf. Fig.

it is held constant at o(T) for all 	 r̂ > T.

The time , = t is the time at which the

pitching moment is measured. The whole

time period prior to r _ , will be

called the past relative to any value

Of t = t > T. Let the past be divided

into two parts so that there is an

interval	 T just Prior to E = T.

The interval of duration T will be

called the recent Past and the

remaining interval the distant _paast.
Let T be chosen sufficienT tly large

so that under normal circumstances,

the Particular form of the motion

a(r,) in the distant past is immate-

rial to the Pitchin g-moment response

for values of ,' = t ,a • .	 This is

the condition that has been used in

the precedin g section.

How can motion in the distant past influence the measurement for the pitching moment at time t?

It is clear that it will do so if it is capable of changing the nature of the flow in the recent past,

to which the measurement i-^ certainly sensitive. This is possible if motion in the distant past has

initiated fluctuations that persist into the recent Past. The following is an explicit argument.

Suppose that the pitching moment is measured at time t for the motion shown in Fig. 3. 	 (Recall that

the measurement is actually the ensemble average of repeated measurements at t corresponding to

repetitions of the same nation.) With everything else remaining the same, make an infinitesimal change

in the distant-past motion as shown by the dotted curve in Fig. 3. After many repetitions of this nation

and the corresponding measurement for the pitching moment at time t, compare the ensemble averaged

result with that of the original motion. Suppose first that there is no difference between the two

measurements. This, of course, is the expected result according to the p-ecedinq formulation. However,

there are two conditions under which it should hold: (1) neither distant-past motion has initiated

fluctuations that persist into the recent past or (2) both distant-past motions have initiated fluctuations

that attain similar statistical properties over the identical recent past, thereby altering the ensemble-

averaged flow over the recent-past motion in the same way. Both condition; can be incorporated within

a single assertion that in neither case did only one motion initiate fluctuations persisting into the

recent past. Now sup pose that the two measurements differ at time t. Tien the infinitesimal change

in the distant-past motion must have exceeded a critical condition for the initiation of fluctuations,

and the p ersistence of these fluctuations into the recent past must have chanoed the form of the flow in

the recent past in ensemble average. The argument of exceeding a critical condition is equally valid for

cases in which an infinitesimal change in the distant-past motion sto s previously existing fluctuations

from persisting into the recent past. Thus, if the distant-past motion is able to influence the measure-

ment at t, the cause is attributable to the existence of a critical condition for the initiation or cessa-

tion of pe rsistent fluctuations.

ORIGINAL PAGE IS
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Finally, consider a second infinitesimal change in the distant-past motion that also exceeds the

critical condition. Consistent with condition (2) already noted, it is argued that the pitching-moment

response to this motion at time t will be the same as the response to the previous motion which had

also exceeded the critical condition. The argument is that relative to values of E = t > T, there is

sufficient time over the duratior T of the recent past for fluctuations originating in the distant past

to attain statistical properties that no longer de pend- on their origin, but rather depend only en their

experience over the recent past. Since the recent- past mo— o Ts tFe same for both distant-past motions,

the statistical properties of their respective fluctuations should have become the same by the time they

have reached the vicinity of E - T. With identical statistical properties, ensemble averaging of

repetitions of the pitching-moment responses to the two motions should then yield the same result at E 	 t.

Now the same argument should hold for aAD distant-past motion that has initiated fluctuations persisting

into the recent past. According to this argument ;hen, the pitching-moment response at time t for a

given past motion can be duplicated by the pitdiing-moment response for a motion whose form in the distant

past is assigned at will, so long as it is known that both have initiated fluctuations persisting into a

same recent past. Likewise, a distant-past motion whose fluctuations do not persist into the recent oast

can be replaced, according to the argument, by one assigned at will, so long as fluctuations originating

in the latter motion also do not persist into the recent past. The argument translates into a mathematical

statement that the pitching-moment response at E = t > T must be a unique functional of the recent-past

motion and additionall y , must de pend on a parameter that designates by say, one of two numbers, whether

fluctuations originating in an otherwise arbitrary distant-past motion do or do not persist into the recent

past. Accordingl y , the pitching-moment response is written in the functional form

C,(t) - C,[,(E);t,T.a(T)]
	

(10)

where it will be understood that the range of r. over which there is a functional dependence on o(E) is

now restricted to cover the recent past only, that is, T - T : r c T, and where + designates the tie

of distant-past motion, othe revise arbitrary, by one of two numbers; that is,

a(T) = 0:	 fluctuations originating in distant past do not persist into recent past;

(11)

^(T) = 1:	 fluctuations originating in distant past persist into recent past.

Notice in Eqs (10) and (11) that although ^ can take only one of two values, nevertheless it is

denoted a function of 7. This is because the event characterized by a must originate in the distant

past, and by definition, what is called the distant past depends on T. That is, an event is said to occur

in the distant past if the time 	 , at which it occurs satisfies - - E - T.

5.2 Reformulation of Indicial Response and Integral Form

Now it is necessary to consider the role of fluctuations in the formation of the indicial response.

Consider again the motion illustrated in Fig. 3, for which the pitching-moment res ponse is of the form

Eq. (10). Just as before, with everytht q else remaining the same, make a small change °e in the con-

stant value o(T). Re petitions of this motion and the corresponding measurement at time t yield an

ensembl avera ge value `or the oitchinq moment at time t. The procedure is re peated for successively

smaller values of to, as many times as necessary, to carry out the limitinq process indicated formally

in Fq. (12):

ACm(t)(CIn[12(E);t,T,'(T)1 - Cj0 I (E);t,T.a(T)1 l
lim	 lim

	
An

(	 --	 }
Ao• o	 °a	 to+e l 

Cm (u(E);t,T,k(T))	 (12)
a

where

al(C) _ "(E) ;	 0 < E < T

= 0( T ) ;	 C ^ T

oz(C) = o(E)	 0 < E < T

• a(T) • to ; E > T

The result (1f it exists) is the definition of the indicial response.	 Su ppose first that the limit

exists, and moreover, that the pitching-moment response to the second motion is very similar in character

to that of the first. Again, there are two conditions! (1) neither motion cj(E) nor al(E) contains

flow fluctuations or (2) both motions n l (E) and ,(E) contain flow fluctuations of similar statistical

characte r . Both conditions are incorporated withiA a single assertion that in neither case did the

infinitesimal change to either initiate fluctuations or stop prior fluctuations.	 Now su ppose that the

ensemble-averaged pitching-moment res ponse to the second motion differs from that of the first in such a

marked way that the limiting process ,10 (tCm(t Vac ) almost fails to converge.	 in this event, it will be

said that the infinitesimal change to has either initiated fluctuations or stop ped prior fluctuations.

In other words, if the infinitesimal chan ge Ac required to fo rn, the indicial res ponse itself either

initiates fluctuations or stops prior fluctuations, the evidence of this will be a marked, almost

discontinuous, change in the indicial res ponse. This abrupt change w;ll he evidenced, in particular, in

the stead st^att va l ue of the indicial res ponse. While the cause of an abru p t change in the indicial

response most often can be attributed to the initiation or terrination of fluctuations, let it be noted

that nothing in the analysis prevents associating the abrupt change with other, perhaps nonfluctuating,



26-7

phenomena as well; for example, an abrupt shift in the pattern of flow separation or an abrupt shift in

the location of a shock wave (Ref. A). All that the analysis requires in principle is the existence of

tw,; distinct re g imes of flow separated by critical conditions. Thus, the phrase "initiation (or termina-

tion) of fluctuations" may stand for any flow phenomenon leading to an abrupt change in the indicial

response.

To complete the reformulation, it is necessary to consider the summation process leading to an

integral form for the pitching-mument response to an arbitrary motion. Although, as noted, the p„ssibility

is allowed of a near-discontinuity with respect to u in the indicial response, this possibility will exist

only at certain isolated values of a where the exceeding of a critical condition by the infinitesimal

change ^o either initiates or stops fluctuations. 	 Since the nearly singular behavior of the ind;rial

re ponse thus will be confined to discrete events in the history of o, these events will not invalidate

the general applicability of the summation procedure. Then, as before, the result of summation yields for

Cm(t):

t

	

Cm (t) = Cm(D)	
J 

Cm (a(C);t,T,^(t)^ dT dt	 (13)
c

The form differs from the one presented earlier (Eq. (2)) in two respects: 	 (1) the functional dependence

if the indicial response on a(C) extends only over the recent past; (2) the indicial response depends

additionally on the parameter a, designating the ape of distant-past motion that is to be attached

to the recent-past motion.

Finally, the same ar g ument that was used before can be invoked to replace the indicial response

c ut. r tional in Fq. (13) by a function de p endent on a limited number o” parameters, rather than on all values

cf	 r(r' ov•?r the interval T of the recent past. 	 If it is assumed a g ain that the recent-past motion is

adr, • uatel y represented by the first two terms of its Taylor series expansion about C 	 T, then Eq. (13)

Dec or* s

t Cma ^t - r;o(r),a(t).a(r)^ ^ dt 	 (14)Cm(t) . Cm( o) tf 

Again, it can be argued that as the indicial response approaches its steady-state value with increasing

va l ues of t - T. it must become independent of any particular recent-past motion (characterized by =(t)

,n Eq. (14)), since the statistical properties of disturbances originating in the recent past will have

becor,e independent of their origin as t - r	 . The dependence on a remains, however, and this means

tea • •ie steady-star value of the indicial response may now be a double-valued function of a(r),

curresp..nding to the two possible values ut 	 . The substitution

	

Cm (t - t:a(r).o(T),a(r)) = Cmr'm;o(T),a(r)^- F(t - T;a(r),o(T),a(r)) 	 (15)
n

puts the steady-state value of the indicial response in e-idence.	 If Eq. (15) is substituted in Eq. (14)

and the interval G < T < t is divided into segments, each of which contains only a single value of

then ttie steady-state term can be integrated over each of the segments. The intermediate terms always

cancel, huwever, so that the formulation for Cm(t) takes the form:

	

C m (t) = Cn,(-;d t).r(t))-	 at F(t - T;o(r),a(T),1(t)^ da dt	 (16)

As before, Cm(-;o(t),1(t)) is the pitchinq-moment coefficient that would be measured in a steady flow with

a n ixed at the instantaneous value o(t). Like its derivative, it may now be a double-valued function of

	

cnrresoondinq to the two possible values of	 .

5.3 Decisinn Logic for Choice of t

It remains to determine a logic for assigning the appropriate value of I to an indicial response.

Recall that the influence of the distant-past motion on an indicial response at current time, characterized

by	 , was associated with the exceeding of a critical condition in the distant past which either initiated

or terminated persistent fluctuations.	 It was noted also that at the time of exceeding a critical condition

the initiation or cessation of fluctuations would he evidenced by a marked change in the behavior of the

indicial response, and in particular the stead y -state value of the indicial response, accompanying an

infinitesimal change in r. This suggests that a suitable experiment for determining where the onset and

cessation of fluctuations occur is simply the experiment that would be required in any case to determine

the steady-state pitching moment as a function of angle of attack. A suitable program for changing the

angle of attack is illustrated in Fig. 4, where, at each level, sufficient time is allowed before measuring

the pitching moment for the pitching-moment response

to reach a steady state (in the mean). Advancing

through a series of increasing angles of attack,

and then similarly, through a series of decreasing

angles of attack, should allow determining

whether double-valued behavior of the steady-	 a

•.tate pitching moment is possible. 	 Suppose

that the result of measurements for the steady-

state pitchinq-moment coefficient resembles

that shown on Fig. 5(a). The curve has two

distinct branches, reflecting the nonfluctu-	 a

sting and fluctuating regimes of flow. A	 r

region of overla p , I g	 aS, exists in which

the pitching-moment coefficient is double- 	
Fig. 4. Anq le-of-attack program for measuring

valued.	 As illustrated schematically in

Fif l , 51b), passage from one regime to the 	
steady-state pitchin g moment.
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Fig. 5. Steady-state pitching-moment coefficient with region of double-valued drpenaence on angle

of attack.

other	 is barred	 (indicated by the double line) except by traversing	 the critical	 points	 u	 uS, o •	 ^R

ie	 the directions indicated by the arrows. 	 Then, having the values of	 r S and OR	 should suffice to

determine a	 logic	 for the choice of	 a.

Assume that a step-by-step calculation is being made of a maneuver,	 ind that the calculation has

advanced	 to	 the	 point	 E	 (cf.	 Fig.	 6).	 To continue the calcul,tion one core	 step,	 it	 is	 necessary

to assign	 the .ippropriate	 indicial	 responcc	 to

the point	 -	 .	 Can	 it now Le done?	 The	 form

of	 the	 ina	 ill	 r•sponse,	 F I	 ( I5),	 indi..ates	 u,t
parameters	 that have	 to Le known:	 r(T).	 O(T),	 and

;(T).	 Since	 o(E)	 is	 known	 for	 E < T,	 the	 v.,lues

Of	 r(TI,	 o(T) con be specified.	 it	 remains	 to

determine whether	 a	 -	 n ;,r 1	 to conDlete the

o1F1 specification.	 The	 followicn	 three questions	 are

s asked:	 (1)	 Is	 *here at	 least	 one	 r.n	 with

Ea	 >	 T	 such	 that	 • (tc)	 -	 uS?	 (2)	 Is	 there

"R at	 least one	 E	 with	 T	 -	 Et	 - T	 such that

=	 if	 to	 (1)	 (7)o(E1)	 -R?	 (3^	 the answers	 and	 aro/

yes,	 is	 min( ,	-	 E 1 )	 >	 min(-	 -	 :a)?	 Yes	 or	 no

L
answers to the three questions d?tervnire the value

of	 Result;	 are given	 in	 Table	 1:—_^	 i _ i	 F

E^	 Et	 ^ t
►F; I iABLE 1.	 oEI:ISTON LOCK FOR	 a

Fin.	 6.	 Step-by-step calculation of a maneuver. No 	 -	 0

Yes	 No	 ---	 1

Yes	 Yes	 No	 0

_	 Yes	 Yes	 Ye s 	 1

6.	 IMPLICATIONS rOR DYNAMIC STABILITY EXPERIMENTS

The formulation Eq. (16) is considered to be the principal rest. l t of this study. Given the informA-

tion required to determine t, its scope may he sufficiently wide to embrace motions involving both

nonlinear aerodynamic responses and the double-valued aerndynamic behavior evident in certain kinds of

aircraft stall (Ref,. B-10). however, its usefulness in practice appears to hinqe on the availability

of a collection of indicial responses, forming the kernel of the integral term in Eq. (16). As noted

Parlier, the eventual availability of such a c p liECtion is very unlikely in view of the great difficulty

of experimentally determin 4 nq an indicial response.	 The purpose of this section will be to show that the

usefulness of the formulation in fact is not contin gent on the availability of indicial res ponses.	 it

will be shown that the integral term in Ea. (16) is replaceable by results from a technically more feasible

experiment: the oscillations-in-pitch experiment.

Fnr an arbitrary motion a(t), the contrihution to Cm(t) of the integral term in Eq. (16) may be

approximated as a finite sum of responses to discrete steps Ao(T). The form of the summation, that is,

the integ rand, is illustrated in fin. T .	 At each step, the deficiency function F(t - 1.-(r)A(T),a(Tl)

dies out to zero as t - r -	 and will be essentially zero for all t -	 larger than a relatively

small value t . This is shown schematically in Fig. 7. it is clear that in the suriation or responses

at time t, on^y the responses in the interval t - to < T < t yield measurable cortr• ibutions at t.
Thus, the form of the motion o(T) outside the interval t - to < T • t is immaterial to the summation,

except insofar as it determines the value of i. On the assumption that the motion, outside the interval

is such th-t it ensures the correct value of a, the motion within the interval t - tT 	 t can be
approximated without serious error by any convenient substitute motion. If, for example, the substitute

motion is harmonic. the resulting summation of responses at time t will he that corresponding to an

Equivalent harmonic oscillatory motion.

- i



rt

J(t)	 •a(t)ft
a

. ^t1 ft
t-t'

F(t - T;c h (T),i; h (T),a(t))cos _(t - t)dr

F (t - T;c h (t),bh(T ).;^(r))sin W(t - T)dT (19)
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Fig. 7.	 Summation of indicial responses.

An arbitrary harmonic motion Ch(T) about a constant mean provides three arbitrar y constants

(assumin g that the frequency w is chosen to match a characteristic freq uency of the actual motion)

which may be chosen to match three properties of the actual motion. 	 It is especially important to match

the actual motion in the immediate vicinit y of - = t where the contributions to the summatic, are

la rgest.	 if it is chosen to match the actual va' , oes of ,(t), :(t), and	 (t) by a harmonic motion

oh(-), then the form of the harmonic motion is given by

o h (T)	 ^7(t) • c L̀^ J	 ;(`i sin W(t - •)	 —(--) cos _(t - T)	 117)

s u h, t

oh( ) _	 t) cos .(t - T) - o,t
	

sin .,(t - T)	 (19)

SULs'ituting Eqs. (17) and (18) for C(T), o(T! in the integral term in Eq. (16) yields for the integral

term (letting the lower limit be t - to for consistency):

„i,i

F(

i

or, with a change of variable,

t
J(t) n - 700 f 

a 
F(u;c h (t - u),o h (t - u),'-(t - u))cos Wu du

c i t Jta
+ ^	 F(u:ah(L - u),a h (t - u),%(t - u))51n -u du

0

This is the contribution to Cm(t) from the inte g ral term, and it is the same contribution that would be

obtained from an oscillations-in- p itch experiment for an oscillation constructed accordin g to Eq. (17).

This means matching o(t), o(t), and ,(t) requires that an equivalent hq ►monic motion have a mean value equal
to [a(t) + o(t) /, 2 ] and an amplitude equal to {[i(t)/.] + [ (t)/W ]^l i 7 .	 The contribution from the

term multiplied by o(t) in Eq. (20) is actually of second order in _ and probabl y negligible for the

very low reduced frequencies typical of most aircraft motions. For rapid maneuvers, however, (e.g., a
r a p id pitch-up maneuver) it may be necessary to retain the term, since it accounts fo r the very large

deviation from the steady-state aerodynamic contribution (i.e., Cm(-;:(t),^(t)) in Eq. (16) at 
'z 

•max

(where c _ 0) which has been observed in wind-tunnel experiments with oscillating airfoils in the low-

speed dynamic stall re g ime (Refs. O,S).

The result represented by Eq. (20) mathematically expresses the major theme of this study. However,

couched in more gene r al terms, it leads to an almost self-evident conclusion that should hold in the

general case' the instantaneous aerodynamic force and moment corresponding to an a rbitrary motion can be

duplicated with the instantaneous force and moment correspondinq to an assigned motion, so long as both

motions are essentially the same in the recent past relative to the instant, and are in the same flow

regimp determined by the otherwise immate r ial distart-past motion.

7, CONCLUDING REMARKS

The scope of an y aerod ynamic formulation p roposing to embrace a ran ge of possible aircraft maneuvers

has been shown to be determined principally b y the extent to which the aerodynamic indicial res ponse is

allowed to de pend on the past motion. Allowinq the indicial res ponse to denend onl y on motion in the

r ecent past resulted i n an aerodynamic formulation enablin g the rational introduction of nonlinear effects

and a descrintion o f the rate-de pendent aerodynamic phenomena characteristic o f airfoils in low-speed

dynamic stall. Allowinq the indicial res ponse to depend additionall y on a characteristic feature of

(20)
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'	 motion in the distant past, that is, the initiation or terrination of persistent fluctuations, resulted
in a more comprehensive formulation perinittinq a description of the double-valued aerodynamic behavior
characteristic of certain kinds of aircraft stall. The scjpe :f the latter formulation should be
sufficiently wide to include any pitching maneuver having no more than two distinct re g imes of flow,
separated by critical conditions. Strai ghtforward extensions of the formalism already developed should
yield formulations perrni.tinq a description of an y number of flow regimes and embracing motions with
multiple degrees of freedom,. A general conclusion that can be drawn from this study, favorable regarding
the role of dynamic stability experiments, is the following: the instantaneous aerodyramic force and
moment co , responding to an arbitrary motion can be duplicated with the instantaneous force and moment
corresponding to an assigned motion, so long as both motions are essentially the same in the recent past
relative to the instant, and are iii the same flow re g ime determined b y the ntherwi;e inmate n al distant-
past motion.
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