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THE ROLE OF TIME-HISTORY EFFECTS IN THE FORMULATION
OF THE AERODYNAMICS OF AIRCRAFT DYNAMICS

Murray Tobak* and Lewis B. Schiff**
Ames Research Center, NASA, Moffett Field, California 94035, U.S.A.

SUMMARY

The scope of any aerodynamic formulation proposing to embrace a range of possible maneuvers is shown
to be determined principally by the extent to which the aerodynamic indicial response is allowed to
depend on the past motion. Starting from the linearized formulation, in which the indicial response is
independent of the past motion, two successively more comprehensive statements about the dependence on
the past motion are assigned to the indicial response (1) dependence only on the recent past and (2) depen-
dence additionally on a characteristic feature of the distant past. The first enables the rational
introduction of nonlinyar effects and accommodates a description of the rate-dependent aerodynamic
phenomena characteristic of airfoils in low-speed dynamic stall; the second permits a description of the
double-valued aerodynamic behavior characteristic of certain kinds of aircraft stall. An aerodynamic
formulation based on the second statement, automatically embracing the first, may be sufficiently compre-
hensive to include a large part of the aircraft's possible mancuvers. The results suggest a favorable
conclusion regarding the role of dynamic stability experiments in flight dynamics studies.

LIST OF SYMBOLS

C pitching-moment coefficient,

pitching moment
m 7

q

G[o(£)] functional notation: value at ¢ =t of a time-dependent ‘unction which depends on all values
taken by the argument function o(g) over the time interval 0<e< t

1 moment of inertia about the pitching a«is

4 reference length

q dynamic pressure, % pV?

S reference area

oo ORIGINAL PAGE IS
v magnitude of flight velocity vector OF POOR QUALITY
g angle of attack, Fig. 1

p atmospheric density

w frequency of harmonic oscillatory motion

1. INTRODUCTION

One of the difficult problems in aircraft flight dynamics is that of formulating an aerodynamic force
and moment system with sufficient scope to cover the wide range of maneuvers typical of modern aircraft
(Refs. 1,2). What is the nature of the problem?

Consider the questions that arise in the prediction of a maneuver from a known initial state. Let an
essentially rigid aircraft with known inertial properties undergo an arbitrary motion. At a certain time
to. allow a measurement of the aircraft's state (i.e., its linear and angular velocity components) and
its aerodynamic response (i.e., the aerodynamic force and moment). Given this information at tg, what is
needed to predict the aircraft's motion over the succeeding increment of time? The ability to carry the
motion forward over the first increment of time implies, of course, the ability to predict the entire
subsequent motion. What is needed principally is a form for the incremental changes in the aerodynamic
force and moment, that is, the indicial response, over the increment of time. Assigning an adequate form
constitutes the problem of formulation. The difficulty of the problem arises in assigning a form that
applies not only to the motion under study, but to all of the other motions of which the aircraft is
capable, and which might have occurred prior to ty. This way of describing the difficulty allows one to
appreciate the great virtue of a linearized version of the aerodynamic indicial response. Invoking
linearity supposes that the aerodynamic indicial response is independent of anything that happened prior
to the origin of the response. Thus, the calculation can be carried forward without any acknowledgment
whatever of the motion prior to . Although there are flow regimes where use of the linearized formula-
tion can be justified (e.qg., attached flows with small perturbations), these regimes do not embrace the
whole range of flows that a modern aircraft may experience. A formulation applicable to the remaining
regimes must be freed of the limitation imposed by linearization. This means, of course, that the
aerodynamic indicial response must be allowed to depend on the past motion.

In a series of papers (cf. Ref. 3 for a connected account), the authors have tried to show how con-
cepts from functional analysis could be used to construct a mathematical framework allowing a general
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dependence of the aerodynamic indicial response on the past nution. Having a riqorous framework has
enabled the introduction of rational approximations which, in effect, 1imit the dependence on the past
motion to some definite property, applicable to an appropriate class of flows. One can arque in favor of
limited statements about the dependence on the past motion as follows: Since the linearized formulation
has found application to a certain class of flows, a formuiation based on a limited statement, which
includes the linearized formulation as a special case, must find application to a wider class of flows. A
sequence of successively more comprehensive statements, each embracing all of the preceding ones, must
eventually reach a stage where the resulting formulation is applicable to a sufficiently wide class of
flows to accommodate a description of all of the motions of interest. It remains to discover whethe-= this
stage can be reached well short of having to account for the whole past motion in detail for any of the
motions of interest.

Thus, the role assigned to time-history effects, that is, the statement about the dependence on the
past motion, constitutes a determining criterion by which the merits and shortcomings of any aerodynamic
formulation may be judged. The purpose of this report is to investigate how far the first few statements
qgo toward fulfilling the goal of a sufficientlv comprehensive statement. Starting from the linearized
formulation, in which the indicial response is independent of the past motion, two successi'.ly more com-
prehensive statements about the dependence on the past motion are assigned to the indicial response
(1) dependence only on the recent past and (2) dependence additionally on a characteristic feature of the
distant past. The successive statements allow the effects of successively larger bodies of aerodynamic
phenomena to be acknowledged within the scopes of the resulting formulations. The first enables the
rational introduction of nonlinear effects and accommodates 2 description of the rate-dependent aerodynamic
phenomena characteristic of airfoils in low-speed dynamic stall; the second permits a description of the
double-valued aerodynamic behavior characteristic of certain kinds of aircraft stall. It is suggested that
an aerodynamic formulation based on the second statement, automaticaily including the first, may be of
sufficient scope to embrace a large part of the aircraft's possible maneuvers. Implications of the results
with regard to dynamic stability experiments are discussed.

2. DEFINITION OF MANEUVER

To focus directly on the question of time-nistory effects, it is advisable to avoid the complications
introduced by coordinate systems and motions with multiple degrees of freedom. In all of the study to
follow, the aircraft's maneuver is restricted to be planar with only a <ingle degree of freedom. Extension
to more general motions will be straightforward, paralleling that described in Ref. 3.

Let the aircraft be in level steady flight prior to time zero. At time zero let it begin an
arbitrary pitching maneuver during wnich the center of gravity continues to follow a rectilinear path at
constant velocity V. Hence flight-path properties such as dynamic pressure, Mach number, and Reynolds
number remain constant throughout the maneuver. The pitching maneuver is defined by the angle of attack o
(Fig. 1), the angle between the aircraft's longitudinal axis and the velocity vector. The motion, of
course, may be specified to reproduce that of a wind-tunnel madel in an oscillations-in-pitch experiment.

/
(

O ! B
ORIGINAL PAGE
OF POOR QUALITY

Fig. 1. Single-degree-of-freedom pitchina maneuver.

Thus, focusing on this motion will facilitate a later discussion of the implications of the results with
regard to wind-tunnel experiments.

3. FORMATION OF INDICIAL PITCHING-MOMENT RESPONSE AND INTEGRAL FORMS

Since 1t will be necessary in later
sections to consider the influence of random

&) k) i fluctuations, the formation of the indicial
pitching-moment response will be described in
o o do a way that acknowledges their presence. Two

motions have to be considered (cf. Fig. 2).
First, beginning at & = 0, the aircraft is

S - - : % b f made to undergo the motion under study o(z).
f At a certain time <+ the motion is con-
! strained so that the value of o at time =,

that is, o(t), remains constant thereafter.

ent i The pitching moment corresponding to this
// o motion is measured at 2 time t. Now if 7(1)
< G m

t
b Fig. 2. Formation of indicial response.

I
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is sufficiently large so that, fo. example, flow separation occurs in the course of a maneuver, then as a
result of the ensuing fluctuations in trhe flow, any single measurement of the pitching moment at time ¢
will include a random component. This circumstance calls for repeating the maneuver and the corresponding
measurement at time t .any times and teking the arithmetic mean of the measurements. If the fluctuating
part of the response is truly random, its contribution to the measurement at time t should cancel in

the mean, and the resulting mean value should be representative of the deterministic part of the response.
It will be assumed that this is true for any time t, and that as a result, a deterministic part cf the
response will exist that is continuous for all ¢ i{n the interval 0 < ¢ < t. Second, the aircraft is
made to execute precisely the same motion, beginning at ¢ = 0 and constrained in the same way at £ = ,
except that at the latter time, » 1is given an incremental step Ac over its value at ¢ = t. Hence, for
all time subsequent to 1, 5 is equal to o{:) + ac. The pitching moment corresponding to this motion

is again measured at time t. Just as before. the second maneuver and the corresponding measurement at
time t must be repeated many times, and the arithmetic mean of the measurements taken to be the deter
ministic part of the response. The difference between mean values for the two measurements, a4l (i), is
divided by the incremental step ac. The limit of this ratio (if it exists) as the magnitude of the sten
approaches zero is called the indicial pitching-moment response at time t per unit step change in ; at
time 1. Since the two maneuvers prior to £ = t are identical (in the mean), the ratic must be identi-
cally zero for 0< g <71. At £ =1 a discontinuity in the ratio is permissible, reflecting the
discontinuous change in ¢, For all ¢ > t the ratio is assumed to be continuous. With the understandin
that the pitching-moment response to each maneuver and at each time t is the result of an ensemble
average of measurements, the indicial pitching-moment respocnse is defined as:

) AC,(t)
Tim
ao+0 A9

- Cp [o(5)it.1) (1)

As the functional notation indicates, the indicial response is allowed to depend in an unspecified way on
the entire history of the motion o(%).

When the assumptions leading to the definition of a deterministic indicial response can be said to
hold within each increment of the stepwise representation of an arbitrary motion o(t), the pitching-
moment response Cp(t) to the motion o(t) follows from a summation of incremental responses over the
time interval 0 to t:

t
¢, (t) = C,(0) +J‘ Cp [o(6)ityr] § de (2)
s, @

This is the general integral form for Cm(t) corresponding to an arbitrary motion o(t). The form is
essentially exact, but its further use without approximation is exceedingly difficult. The nature of the
difficulty becomes clear if one writes the equation of motion for the single-deqree-of-freedom pitching
motion o(t), and asks for a solution of o(t) for specified initial conditions. The equation of motion

is:
7 t
a(t) = (g%) {Cm(o) +I Cn [(8)ita] g—:d‘t} (3
(4] [¢]

Since the indicial resnonse within the integral is a functional, dependent in general on the whole past
motion o(g), it is unknown when o s unknown. Thus, both the indicial response and the motion must be
found simultaneously, an awesome prospect. Cases can be envisioned (e.q., massively ablating reentry
vehicles) where the mutual dependence between the motion and the indicial response cannot be uncoupled.
However, for rigid aircraft of fixed shape, the past success of the linearized formulation lends credence
to the belief that the interdependence may be at least partially uncoupled. Now if the indicial response
were somehow known, Eq. (3) would become an inteqro-differentia) equation of the Volterra type for which
solutions can be found by known, albeit numerical, techniques. The indicial response could be considered
known, at least in principle, if its dependence un the past motion were specified in a way that allowed 1t
to be an identifiable member of a collection of indicial responses, all of which had been obtained before-
hand from, for example, a suitable series of expariments. Thus, Eq. (3) can be made tractable by assignin
to the indicial response 2rprypriate statements about how it depends on the past motion which allow it to
be determined in advance. tet it be noted, however, that since every statement assigned to the indicial
response will multiply the number of responses in the collection required to be known in advance, it
becomes imperative to make the least number of ctatements possible. In succeeding sections, two such
statements will be introduced, which it is hoped, may suffice to cover the cases of interest.

Finally, it is recognized that counting on the availability of a collection of indicial responses
may be somewhat unrealistic in view of the difficulty of experimentally determining an indicial response.
In a later section, however, it will be shown how the results from suitably designed oscillations-in-pitch
experiments, which, it may be presumed with greater reason, are technically feasible, may be used in place
of the integral in Eq. (3). Thus, for the availability in principle of a collection of indicial response-
may be read the availability of an equivalent collection of results from oscillations-in-pitch experiments

4. DEPENDENCE OF THE INDICIAL RESPONSE ON THE RECENT PAST

First, Ea. (1) for the indicial pitchina-moment respcnse will be put in an equivalent form that will
suggest a first statement about its dependence on the past motion. If «(r) can be considered to be
analytic in a neighborhood of ¢ = : (corresponding to the most recent nast for an indicial response with
oriain at ¢ = 1), in principle, its history can be reconstructed from a knowledge of all of the coeffi-
cients of its Taylor series expansion about ¢ = «, Then, since (f) is equally represented by the
coefficients of its expansion, the functional, with its dependence on o(f), can be replaced without
approxim:t1on by a function with a dependence on all of the coefficients of the expansion of () about
£ = t; that is,
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Cmo[o(i);t.r] B Cmo(t - t30(1),8(1).5(1)s . . ) (4)

The additional replacement of a dependence on elapsed time t - + rather than on t and v separately is
justified within the specification already 1nv5ieg of constant flight-path properties.

Now it is argued that a class of flows exists for which disturbances originating at times far removed
from the vicinity of £ = r will have died out before they are able to influence events in the vicinity
of £ = 1. In such cases, it can be assumed that the indicial response will have "forqotten" long-past
events, and so will depend only on events occurring in the most recent past. Therefore, to the extent that
the indicial response can be influenced by the past motion, the form of the past motion just prior to the
origin of the step might just as well have existed for all earlier times. Accordingly, only the first few
coefficients of the expansion of o(t) need be retained to characterize correctly the most recent past,
which is all the indicial response is assumed to remember. Retaining the first two coefficients of (),
for example, implies matching the true past history of ¢ in magnitude and slope at the origin of the
step, thereby approximating o(£) by a linear function of time o(£) = oft) - &(7)(r - £). With an
approximation of this order in force in Eq. (1), the integral form replacing Eq. (2) and the right-hand
side of Eq. (3) becomes

T
C, (t) = C,(0) +'|: Cn (t = Tio(e).5(r) §2 or (5)

The steady-state value of the ifdicial response can b2 put in evidence with the additional (consistent)
assumption that events in the recent past, that is for £ < r, will again be far removed and so, forgotten,
so far as the indicial response is concerned when t - t = =, This means that the steady-state value of
the indicial response will depend only on local conditions, that i5, on the constant value of o(r). The
latter behavior is put in evidence by the substitution

Cma(t - r;c(:).f'(x))= € (wia(r)) - F(t - t3e(t),8(7)) (6)

m
where Cm,(=30(t)) is the steady-state value of the indicial response. Notice that it must be a single-
valued function of o(r). The function F(t - r;o(+),2(7)) is called the deficiency function; it approaches
zero as t - 1+« and, in practice, will be essentially zero for all elapsed time t - + Jlarger than a
relatively small value t,. When Ea, (6) is substituted in Eq. (5), the steady-state term multiplied by
(do/dr)dr forms a perfec% differential which can be integrated. The resultinq formulation for Cp(t)
becomes

. . do
cm(t) = Cm(";f(t)) - I F(t - tia(1),8(1)) 3; dt (7)

Here, Cm(w;c(t)) is the pitchin?-moment coefficient that would be measured in a steady flow with - fixed
at the instantaneous value o(t). Again, note that Cp(=;o(t)) must be a single-valued function of o
according to this formulation.

Equation (7) actually includes three increasingly comprehensive formulations, each of which may be
applicable in appropriate circumstances. The simplest, of course, is the linear formulation, for which
the indicial response is said to be independent of both o(t) and 5(1). The resulting simplification
is reflected in the equation of motion, Eq. (3), which becomes

t
5(t) = (ﬂ§—z—){omcm1(m) S i dr} (8)

The equation is linear and the integral term is of the convolution type, which enables an immediate
solution for o by the aid of Laplace transforms. A considerable additional virtue is that the collec-
tion of indicial responses required to be known in advance consists of one member.

The second formulation, anplicable in particular to slowly varying motions, is obtained by omitting
the dependence on &(r) from the indicial response. Omitting this dependence in Eq. (6) means that, so
far as the indicial response is concerned, the motion prior to the origin of a step is being approximated
by the time-invariant motion o(f) = o(r). The equation of motion, Eq. (3), becomes

q o
0 = (S {ey(eet)) - [ F(E - vion) & m} (9)

a nonlinear Volterra integro-differential equation, solvable by numerical techniques. Here, the collection
of indicial responses required to be known in advance must consist of members corresponding to a range of
values of ofr). This formulation also lends itself to reduction to a form correct to the first order in
frequency, resulting in a nonlinear generalization of the classical stability derivative formulation. The
form has been studied at length in the authors' previous work (Ref. 3). Approximation at the level of the
second formulation thus enables the rational introduction of nonlinear effects.

Finally, the third, most comprehensive formulation is that represented in full by Eq. (7). This form
is of sufficient scope to allow the treatment of motions involving hysteresis effects caused by rate-
dependent aerodynamic phenomena. It is believed to be applicable, for example, to the complex set of
aerodynamic phenomena characteristic of airfoils in low-speed dynamic :tall (Refs. 4-6). Retaining a
dependence on &(r) allows assigning different indicial responses to a step at a single value of o(1),
depending on the magnitude and sign of &(t). It is possible, for example, to distinguish between indicial
responses where o was increasing or decreasing prior to the step. The motion that would be required to
obtafn the indicial response experimentally with positive &(t) is essentially the same as the maneuver
that has been used to study the overshoot in 1ift that occurs following a rapid pitch-up (Ref. 7). It would
Alen he necessary to carry out experiments involving pitch-down maneuvers to allow for the possibility
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that the indicial response for a given o(x) and 2 negative value of &(t) will be different from that
for a positive 3(t) of the same magnitude. Here, the collection of indicial responses required to be
k:own(!? advance must embrace a range of values of o(t) and a range of both positive and negative values
of 4(r).

While Eq. (7) goes some distance toward fulfilling the goal of a sufficiently comprehensive
formulation, it is still incapable of accounting for the existence of multivalued aerodynamic phenomena
that need not depend on the pitching rate. This is evident, in particular, in the representation of the
steady-state aerodynamic pitching moment Cp(w;o(t)), and its derivative Cp,(=;0(t)), which must be
single-valued functions of o. Admitting the possibility of multivalued aerodynamic responses, not
necessariiy dependent on the pitching rate, will require an acknowledgment of the influence of the distant
past on the indicial response.

5. DEPENDENCE OF THE INDICIAL RESPONSE ON THE DISTANT PAST

In the preceding treatment, on the assumption that events in the distant past should be incapable
of influencing the indicial response, the indicial response functional Cp,[o(£)it,] was replaced by a
function C ?t - 1;30(1),4(=)) which depends only on the magnitude and slope of the past motion o(%)
at the origin of the step. This replacement can be viewed either as an approximation of the actual motion
o(€) by a linearly varying motion o(g) = o(t) - %(+)(r - £) for all past time, or, as a substitution
applicable only in the vicinity of £ = t with the implicit understanding that the distant-past motion,
being immaterial to the indicial response, can be assigned at will. In what follows, the latter inter-
pretation will be the desired one to the extent possible. However, the presence of fluctuations appears
to represent a condition where events occurrina in the distant past (e.g., the initiation of fluctuations
due to flow separation) can affect the present evolution of the indicial response. For suppose that
certain distant-past motions, but not others, can initiate fluctuations that persist up to the measuring
time, and that the indicial response measured in the presence of fluctuations can differ from the measure-
ment in the absence of fluctuations. Then this must be taken into account somehow, and in a way that
does not require 2ssigning the ac ual distant-past motion to every indicial response.

5.1 Reformulation of Pitching-Moment Response

It is convenient to consider first a typical motion qualifying as the first of the two motions
required to form the indicial response (cf. Fig. 3). The motion for values of £ < r is given by o(£);

.

it is held constant at o(t) for all ¢ > 1.

The time £ =t is the time at which the
pitching moment is measured. The whole

time period prior to £ =t will be

called the past relative to any value

of £=1t> 1. Let the past be divided 0
into two parts so that there is an

interval T Jjust orior to £ = 1.

The interval of duration T will be

called the recent past and the

remaining interval the distant past. i l A
Let T be chosen sufficiently large 5"“¥ = T £
so that under normal circumstances,

the particular form of the motion == RISTANT PAST = e

o(£) in the distant past is immate- PAST

rial to the pitching-moment response

for values of £ =t > r. This is Fig. 3. Recent past and distant past.

the condition that has been used in
the preceding section.

How can motion in the distant past influence the measurement for the pitching moment at time t?
It is clear that it will do so if it is capable of changing the nature of the flow in the recent past,
to which the measurement i< certainly sensitive. This is possible if motion in the distant past has
initiated fluctuations that persist into the recent past. The following is an explicit arqument.
Suppose that the pitching moment is measured at time t for the motion shown in Fig. 3. (Recall that
the measurement is actually the ensemble average of repeated measurements at t corresponding to
repetitions of the same motion.) With everything else remaining the same, make an infinitesimal change
in the distant-past motion as shown by the dotted curve in Fig. 3. After many repetitions of this motion
and the corresponding measurement for the pitching moment at time t, compare the ensemble-averaged
result with that of the original motion. Suppose first that there is no difference between the two
measurements. This, of course, is the expected result according to the preceding formulation. However,
there are two conditions under which it should hold: (1) neither distant-past motion has initiated
fluctuations that persist into the recent past or (2) both distant-past motions have initiated fluctuations
that attain similar statistical properties over the identical recent past, thereby altering the ensemble-
averaged flow over the recent-past motion in the same way. Both condition; can be incorporated within
a single assertion that in neither case did only one motion inftiate fluctuations persisting into the
recent past. Now suppose that the two measurements differ at time t. Then the infinitesimal change
in the distant-past motion must have exceeded a critical condition for the initiation of fluctuations,
and the persistence of these fluctuations into the recent past must have changed the form of the flow in
the recent past in ensemble average. The argument of exceeding a critical condition is equally valid for
cases in which an infinitesimal change in the distant-past motion stops previously existing fluctuations
from persisting into the recent past. Thus, if the distant-past motion is able to influence the measure-
ment at t, the cause is attributable to the existence of a critical condition for the initiation or cessa-
tion of persistent fluctuations.
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Finally, consider a second infinitesimal change in the distant-past motion that also exceeds the
critical condition. Consistent with condition (2) already noted, it is argued that the pitching-moment
response to this motion at time t will be the same as the response to the previous motion which had
also exceeded the critical condition. The argument is that relative to values of ¢ = t > 1, there is
sufficient time over the duration T of the recent past for fluctuations originating in the distant past
to attain statistical properties that no longer depend on their origin, but rather depend only cn their
experience over the recent past. Since the recent-past motion 1s tge same for both distant-past motions,
the statistical properties of their respective fluctuations should have become the same by the time they
have reached the vicinity of £ = r. With identical statistical properties, ensemble averaging of
repetitions of the pitching-moment responses to the two motions should then yield the same result at ¢ = t.
Now the same argument should hold for any distant-past motion that has initiated fluctuations persisting
into the recent past. According to this argument then, the pitching-moment response at time t for a
given past motion can be duplicated by the pitching-moment response for a motion whose form in the distant
past is assigned at will, so long as it is known that both have initiated fluctuations persisting into a
same recent past. Likewise, a distant-past motion whose fluctuations do not persist into the recent past
can be replaced, according to the argument, by one assigned at will, so long as fluctuations originating
in the latter motion also do not persist into the recent past. The argument translates into a mathematical
statement that the pitching-moment response at £ = t > r must be a unique functional of the recent-past
motion and additionally, must depend on a parameter that designates by say, one of two numbers, whether
fluctuations originating in an otherwise arbitrary distant-past motion do or do not persist into the recent
past. Accordingly, the pitching-moment response is written in the functional form

cm(t) % Cm[o(ﬁ);t.i.k(t)] (10)

where it will be understood that the range of % over which there is a functional dependence on o(t) is
now restricted to cover the recent past only, that is, r - T < £ < 1, and where A designates the type
of distant-past motion, otherwise arbitrary, by one of two numbers; that is,

A(t) = 0: fluctuations originating in distant past do not persist into recent past; } )
n

A(r) = 11 fluctuations originating in distant past persist into recent past.

Notice in Eqs. (10) and (11) that although A can take only one of two values, nevertheless it is
denoted a function of . This is because the event characterized by A must originate in the distant
past, and by definition, what is called the distant past depends on r. That is, an event is said to occur
in the distant past if the time £ at which it occurs satisfies - ¢ > T.

5.2 Reformulation of Indicial Response and Integral Form

Now it is necessary to consider the role of fluctuations in the formation of the indicial response.
Consider again the motion illustrated in Fig. 3, for which the pitching-moment response is of the form
Eq. (10). Just as before, with everythi. 3 else remaining the same, make a small change 4o in the con-
stant value o(r). Repetitions of this motion and the corresponding measurement at time t yield an
ensemble-average value ‘or the pitching moment at time t. The procedure is repeated for successively
sma1ler(va;ues of 4As, as many times as necessary, to carry out the limiting process indicated formally
in Fq. (12):

v Aczit) o {Cm[ﬂ;(t);t.r.\(1)]A; Cploy(£)ityr,n(1)] }
Ac+0 Ao+0
z Cp [o(E)itsia(r)] (12)
where ’
o,(€) = o(€) & 0<g<r
= of1) 3 E2 1
0,(€) = o(€) 3 0<E<T

=g(t) +80; £21

The result ({f 1t exists) is the definition of the indicial response. Suppose first that the limit
exists, and moreover, that the pitching-moment response to the second motion is very similar in character
to that of the first. Again, there are two conditicns: (1) neither motion o,(¢) nor o)(£) contains
flow fluctuations or (2) both motions o, (&) and o,(g) contain flow fluctuations of similar statistical
character. Both conditions are incorporated within a single assertion that in neither case did the
infinitesimal change Ac either initiate fluctuations or stop prior fluctuations. Now suppose that the
ensemble-averaged pitching-moment response to the second motion differs from that of the first in such a
marked way that the 1imiting process Jggb(acm(t)/no) almost fails to converge. In this event, it will be

said that the infinitesimal change 4o has either inftiated fluctuations or stopped prior fluctuations.
In other words, if the infinitesimal change Ao required to forn the indicial response itself either
initiates fluctuations or stops prior fluctuations, the evidence of this will be a marked, almost
discontinuous, change in the indicial response. This abrupt change will be evidenced, in particular, in
the steady-state value of the indicial response. While the cause of an abrupt change in the indicial
response most often can be attributed to the initiation or termination of fluctuations, let it be noted
that nothing in the analysis prevents associating the abrupt change with other, perhaps nonfluctuating,
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phenomena as well; for example, an abrupt shift in the pattern of flow separation or an abrupt shift in
the location of a shock wave (Ref. 8). All that the analysis requires in principle is the existence of
two distinct reqimes of flow separated by critical conditions. Thus, the phrase "initiation (or termina-
tion) of fluctuations" may stand for any flow phenomenon leading to an abrupt change in the indicial
response.

To complete the reformulation, it is necessary to consider the summation process leading to an
integral form for the pitching-moment response to an arbitrary motion. Although, as noted, the possibility
s allowed of a near-discontinuity with respect to o 1n the indicial response, this possibility will exist
only at certain isolated values of o where the exceeding of a critical condition by the infinitesimal
change Ao either initiates or stops fluctuations. Since the nearly singular behavior of the indicial
response thus will be confined to discrete events in the history of o, these events will not invalidate
the general applicability of the summation procedure. Then, as before, the result of summation yields for
Cult):

t
Colt) = Cql0) + | G fo(0)itira(e)] £ 4 (13)

The form differs from the one presented earlier (Eq. (2)) fn two respects: (1) the functional dependence
>f the indicial response on of(t) extends only over the recent past; (2) the indicial response depends
additionally on the parameter ), designating the type of distant-past motion that is to be sttached

to the recent-past motion.

Finally, the same arqument that was used before can be invoked to replace the indicial response
furctional in Fq. (13) by a function dependent on a limited number of parameters, rather than on all values
of (7' over the interval T of the recent past. If it is assumed again that the recent-past motion is
adecuately ropresented by the first two terms of its Taylor series expansion about € = v, then Eq. (13)
becones

t
Cp(t) = Cp(0) OI) Cma(t - 130(1),8(1),2 (1)) %%dt (14)

Again, it can be argued that as the indicial response approaches its steady-state value with increasin
values of t - r, it must become independent of any particular recent-past motion (characterized by ??r)
in £q. (14)), since the statistical properties of disturbances originating in the recent past will have
becore independent of their origin as t - r » =. The dependence on 1 remains, however, and this means
that e steady-state value of the indicial response may now be a double-valued function of o(1),
correspunding to the two possible values of i. The substitution

Cma(t - r;c(t).a(t).l(v)) = Cmn(n'.o(r).k(t))- F(t - T;G(T).a(t).k(i)) (15)

puts the stealy-state value of the indicial response in evidence. If Eq. (15) is substituted in Eq. (14)
and the interval 0 < r <t 1is divided into segments, each of which contains only a single value of 1,
then the steady-state term can be integrated over each of the segmen*ts. The intermediate terms always
cancel, however, so that the formulation for Cp(t) takes the form:

t
Cm(t) = Cm(a;u(t).l(t))- J'o F(t - 1'.0(\’).6(1).”1)) g% dr (16)

As before, Cp(=:io(t),2(t)) is the pitching-moment coefficient that would be measured in a steady flow with
tixed at the instantaneous value o(t). Like its derivative, it may now be a double-valued function of
+ corresponding to the two possible values of .

5.3 Decision Logic for Choice of

[t remains to determine a logic for assigning the appropriate value of 3 to an indicial response.
Recall that the influence of the distant-past motion on an indicial response at current time, characterized
by », was associated with the exceeding of a critical condition in the distant past which either initiated
or terminated persistent fluctuations. It was noted also that at the time of exceeding a critical condition
the initiation or cessation of fluctuations would be evidenced by a marked change in the behavior of the
indicial response, and in particular the steady-state value of the indicial response, accompanying an
infinitesimal change in c. This suggests that a suitable experiment for determining where the onset and
cessation of fluctuations occur is simply the experiment that would be required in any case to determine
the steady-state pitching moment as a function of angle of attack. A suitable program for changing the
angle of attack is illustrated in Fig. 4, where, at each level, sufficient time is allowed before measuring
the pitching moment for the pitching-moment response
to reach a steady state (in the mean). Advancing
through a series of increasing angles of attack,
and then similarly, through a series of decreasing
angles of attack, should allow determining

whether double-valued behavior of the steady- o
state pitching moment is possible. Suppose 1\_

that the result of measurements for the steady-

state pitching-moment coefficient resembles _/_/—_/_

that shown on Fig. 5(a). The curve has two

distinct branches, reflecting the nonfluctu- A

ating and fluctuating reqimes of flow. A —\~ 4 %

region of overlap, og < o < og, exists in which
the pitching-moment coefficient is double-
valued. As illustrated schematically in

Fig. 5(b), passage from one regime to the

Fig. 4. Anqgle-of-attack program for measuring
steady-state pitching moment,

ORIGINAL p
. AGE
UF POOR QUAiITIlg



26-8

Cmi=.0) NO FLUCTUATIONS

FLUCTUATIONS

S ——
e

v

0 an u'

(a) Pitching-moment coefficient. (L) Regimes of Tiows.

Fig. 5. Steady-state pitching-moment coefficient with region ot double-valued dependence on angle
of attack.

other is barred (indicated by the double 1ine) except by traversing the critical points o = u§. o=
in the directions indicated by the arrows. Then, having the values of «cg and og should suffice to
determine a logic for the choice of A,

Assume that a step-by-step calculation is being made of a maneuver, and that the calculation has
advanced to the point & = t (cf. Fig. 6). To continue the calculation one nore step, 1t 1s necessary
to assign the appropriate indicial response to
the point . = (. Can it now Le done? The form
of the ina,-ial response, E7 (15), indicates (ie
parameters that have to te known: o(+), a(r), and
a(t). Since of£) 15 known for £ < r, the values
of o(r), (1) can be specified. It remains to
determine whether A = 0 or 1 to complete the
o(E) specification. The followina three questions are
ogl asked: (1) Is there at least one £, with
t = Eg > T such that o((c) = 0g? 22) Is there
R at least one £, with v - ¢, »°T such that
S o(g;) = op? (3‘ If the answers to (1) and (2) are
yes, is min(+ - £,) > min(r - £5)? Yes or no
answers to the three questions datermine the value
of 1. Results are given in Table 1:

;

TABLE 7. DECISION LOGIC FOR 2
DY 0 - Y A
Fig, 6. Step-by-step calculation of a maneuver. B oz s D

Yes No --- 1

Yes Yes No O

Yes Yes Yes 1

6. [IMPLICATIONS FOR DYNAMIC STABILITY EXPERIMENTS

The formulation Eq. (16) is considered to be the principal result of this study. Given the informa-
tion required to determine 1, its scope may be sufficiently wide to embrace motions involving both
nonlinear aerodynamic responses and the double-valued aerndynamic behavior evident in certain kinds of
aircraft stall (Refs. 8-10). However, its usefulness in practice appears to hinge on the availability
of a collection of indicial responses, forming the kernel of the integral term in Eq. (16). As noted
earlier, the eventual availability of such a coliection is very unlikely in view of the great difficulty
of experimentally determining an indicial response. The purpose of this section will be to show that the
usefulness of the formulation in fact is not contingent on the availability of indicial responses. It
will be shown that the integral term in Eq. (16) is replaceable by results from a technically more feasible
experiment: the oscillations-in-pitch experiment.

For an arbitrary motion o(t), the contribution to Cy(t) of the integral term in Eq. (16) may be
approximated as a finite sum of responses to discrete steps Ac(t). The form of the summation, that is,
the inteqrand, is illustrated in Fia. 7. At each step, the deficiency function F(t - vic(t)a(1),a(x))
dies out to zero as t - r + =, and will be essentiz2lly zero for all t - : larger than a relatively
small value t;. This is shown schematically in Fig. 7. It is clear that in the surmation of responses
at time t, on?y the responses in the interval t - t; < r <t yield measurable contributions at t.
Thus, the form of the motion ofr) outside the interval t - ty < r < t 1is immaterial to the summation,
except insofar as it determines the value of 1. On the assumption that the motion outside the interval
is such thit it ensures the correct value of i, the motion within the interval t - t, < 1 < t can be
approximated without serious error by any convenfent substitute motion. If, for example, the substitute
motion 1s harmonic, the resulting summation of responses at time t will be that corresponding to an
equivalent harmonic oscillatory motion.
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Fig. 7. Summation of indicial responses.

An arbitrary harmonic motion op(r) about a constant mean provides three arbitrary constants
(assuming that the frequency w« 15 chosen to match 2 characteristic frequency of the actual motion)
which may be chosen to match three properties of the actual motion. It s especially important to match
the actual motion in the immediate vicinity of =~ = t where the contributions to the summaticn are
largest. [f it is chosen to match the actual values of «o(t), 3(t), and 5(t) by a harmonic motion
op(:), then the form of the harmonic motion is qiven by

on() = [a(e) + 8] - AL gyn oqe - ) - B8 cos ot - 1) (17)
su Nt
ap(e) = 3(t) cos .(t - 1) - L gin (- 1) (8)

Suvs*ituting Eqs. (17) and (18) for o(t), &(x) in the integral term in Eq. (16) yields for the integral
term (letting the lower limit be t - t; for consistency):

t
J(t) = -6(!)‘[!_“ F(t - 1;ch(:).&h(v).l(t))cos ot = 1)de
. t
c MO F(e (o)) () sin wlt - 1)de (19)
Y %t-t,

or, with a change of variable,

t
J(t) = -o(t) I . Flusop(t - u)i6y(t = u)ya(t - u))cos wu du

. t
. 0_’_‘).[ ? Flusop(t - u)u5, (t - u),a(t - u))sin wu du (20)
[+]

This is the contribution to Cp(t) from the intearal term, and it is the same contribution that would be
obtained from an oscillations-in-pitch experiment for an oscillation constructed according to Eq. (17).

This means matching o(t), 5(t), and 5(t) requires that an equivalent harmonic motion have a mean value equal
to [c(t) + é(t)/u7g and an amplitude equal to {[&5(t)/u]¢ + [5(t)/u?)?1'/2, The contribution from the

term multiplied by &(t) in Eq. (20) is actually of second order in . and probably negligible for the

very low reduced frequencies typical of most aircraft motions. For rapid maneuvers, however, (e.g., a

rapid pitch-up maneuver) it may be necessary to retain the term, since it accounts for the very large
deviation from the steady-state aerodynamic contribution (i.e., Cp(=;o(t),a(t)) in Eq. (16) at o = opay
(where & = 0) which has been observed in wind-tunnel experiments with oscillating airfoils in the low-

speed dynamic stall rexime (Refs. 4,5).

The result represznted by Eq. (20) mathematically expresses the major theme of this study. However,
couched in more general terms, it leads to an almost self-evident conclusion that should hold in the
general case: the instantaneous aerodynamic force and moment corresponding to an arbitrary motion can be
duplicated with the instantaneous force and moment corresponding to an assigned motion, so long as both
motions are essentially the same in the recent past relative to the instant, and are in the same flow
regime determined by the otherwise immaterial distant-past motion.

7. CONCLUDING REMARKS

The scope of any aerodynamic formulation prooosing to embrace a range of possible aircraft maneuvers
has been shown to be determined principally by the extent to which the aerodynamic indicial response is
allowed to depend on the past motion. Allowing the indicial response to depend only on motion in the
recent past resulted in an aerodynamic formulation enabling the rational introduction of nonlinear effects
and a descrintion of the rate-dependent aerodynamic phenomena characteristic of airfoils in low-speed
dynamic stall., Allowing the indicial response to depend additionally on a characteristic feature of
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motion in the distant past, that is, the initiation or termination of persistent fluctuations, resulted
in a more comprehensive formulation permitting & description of the double-valued aerodynamic behavior
characteristic of certain kinds of aircraft stall. The scope of the latter formulation should be
sufficiently wide to include any pitching maneuver having no more than two distinct regimes of flow,
separated by critical conditions. Straightforward extensions of the formalism already developed should
yield formulations permiiting a description of any number of flow regimes and embracing motions with
multiple degrees of freedom. A general conclusion that can be drawn from this study, favorable regarding
the role of dynamic stability experiments, is the following: the instantaneous aerodyramic force and
moment co! responding to an arbitrary motion can be duplicated with the instantaneous force and moment
corresponding to an assigned motion, so long as both motiuns are essentially the same in the recent past
relative to the instant, and are in the same flow regime determined by the otherwise inmaterial distant-
past motion.
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