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SUMMARY

The equations of motion are derived, and a2 computational
procedure is presented, for determining the nonviscous flow
characteristics in the cross-—-sectional planes of a curved
channel due to continuous mass discharge or mass addition.
The analysis is applied to the radial inflow turbine scroll
to study the cffects of scroll geometry and the through flow
velocity profile on the flow behavicr. The computed flow
velocity component in the scroll cross—sectional plane,
together with the through flow velocity profile which can be
determined in a separate analysis, provide a complete descrip-
tion of the three dimensional flow in the scroll.



INTRODUCTION

Although radial turbines have been in operation for a very
long time, there is a renewed interest in small radial inflow
turbines. With advantages such as high efficiency over the
limited range of specific speed, simplicity and ruggedness,
these units are used in different applications such as auto-
motive and diesel engines, aircraft cooling systems, and space
power generation.

References [1], [2] and [3] are some examples of the recent
interest in radial inflow turbine design and development. Several
studies dealing with the prediction of the performance of these
turbines can also be found in the literature [4-8]. While many
flow studies were concerned with the flow in the impeller, very
little has been done to investigate the flow in the rest of
the turbine components. An experimental and theoretical study
of the losses in the nozzle wvanes and the vaneless nozzle is
reported in Ref. [9]. It has been shown in that reference, that
the performance of the vaned nozzle is greatly influenced by the
flow incidence angle at inlet to the nozzle vanes., Therefore,
in order to use any available loss analysis, the knowledge of
the flow conditions at exit from the scroll is essential. A
better understanding of the flow behavior in the scroll can thus
contribute to a more accurate performance prediction.

The radial inflow turbine scroll is usually arranged in a
helical configuration as shown in Fig. la to discharge uniformly
into the nozzle of the radial turbine or the impeller in the
case of nozzleless turbine. The actual flow in the scroll is
three dimensional, compressible and viscous. Even in the absence
of viscosity effects, the three dimensional flow is caused by the
continuous flow discharge from the scroll. Although under real
operating conditions other factors such as secondary flow effects
may contribute to the thxree dimensional behavior of the flow,
the effect of the raéiai‘bbﬁpcnent of the exit flux from the
scroll will have the most predominant effect over the three

dimensional flow behavior.



The present study investigates the three dimensional flow
behavior in the scroll due to the continuous flow discharge.
The equations governing the flow motion in the scroll are
formulated in a special way in orxder to be solved.in the ecress
sectional plane for a given through flow profile. Solutions
are obtained numerically for the typical scroll cross sections
of Figures 2 and 3, and the results are presented to show the
effects of scroll geometry on the flow behavior in the scroll,

MATHEMATICAL FORMULATION

The differential equations governing the steady inviscid
flow motion in the cross-sectional plane of the scroll will
be developed. It is convenient for this purpose to consider
the control wvolume, 2, shown in Fig. lb, which is contained

between two cross—sectional planes.

The Hquations of Motion:

Referring to the control volume of Fig. lb, the equation of

conservation of mass can be written as:

ff pgmnds = 0 (1)
)

where p is the density, g is the flow velocity vector in the
seroll, and n is the unit vector perpendicular to the surface,
S, of the control volume., The surface, 8, is the union of the
scroll surface 82, the cylindxical surface of the flow exit
from the scroll Sq+ and the two cross sectional planes Ay
and Az.

On the two surfaces Sl and 82, g-n is equal to V-n, where
V is the velocity vector in the axial radial plane. Egquation
(1) can therefore be rewritten as:

rr V'n 48 = 2
sy c ORIGINAL PAGE 18 (2)
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where Q is the net mass influx through the planes A, and A,.



The difference between the mass flux on the surfaces Al
and A2 due to the through flow wvelocity can be represented by
a continuous source distribution, g, in the control volume

according to the following relation:

Q = [fff gdv (3)
Q
Substituting eguation (3) into equation (2) and using

Gauss divergence theorem, we can write

J1r &ivie Nav = Jff gdv (4)
Y Q
Since this eguation is correct for any arbitrary control volume

2 of incremental depth, we can write:
Velp V) = g (5)

For irrotational flow, the conservation of momentum is
satisfied by introducing the velocity potential function ¢,
such that

V o= Vé (6)

Substituting equation (6) into equation (5), we obtain the
following relation

Ve (pV¢) = g {(7)

The following isentropic relation is used to determine the

density p, of the adiabatic, irrotational, nonviscous flow:

-1 g T

g

where o is the flow stagnation density, and T is the flow tem—
perature, which is a function of the stagnation temperature, TO,
and the magnitude of the flow velocity, g, according to the

following relation:



2

T o= T - i%?iﬁiﬂ (9)

For given inlet stagnation conditions, equations- (6} through
{(9) can be solved to determine the flow density, temperature and
velocity components, in the cross sectional planes of a scroll.
The solution will naturally depend on the source distribution
which corresponds to the through flow profile at each cross
section.

Equation (7) is rewritten in a different form, which will

be used in the iterative numerical sclution laterx.

38
=l

T-v0 + g/p (10)

It can be seen from this form that the velocity potential in the
cross sectional plane is governed by Poisson's equation. The
first term on the right hand side of equation (10} is a source
or sink term contributed by the flow compressibility and the
second term in the same eguation represents the contribution

of the through flow velocity to the source.

A very limited amount of experimental data is available
from flow measurements in the scroll., Reference [8] reports only
five points pressure measurements at one radial location, in
the scroll. On the other hand, the pressure measurements of
Ref. [10] in the centrifugal pump, were obtained at the volute
center. At the present time, detailed measurements through
scroll cross sections are not available, Several factors
such as the scroll radius of curvature, and the location of the
particular cross section under consideration can affect the
through flow velocity profile.

The condition of constant angular momentum has been applied
to the flow in the scroll, and wvaneless nozzles [3, 10]1. In
the absence of any blades to exert circumferential force on
the flow, the product {pwr) remains independent of the radial
distance r, from the machine axis, where w is the through flow
velocity. A variation in g, across the scroll cross section,

that is proportiocnal to 1/r, is one of the cases considefed in the



results. For a given mass flow in the scroll, the proportionality

constant will depend on the geometry of the cross section, and
on the ratio of the particular cross sectional dimensions to
the scroll radius of curvature at that section. A uniform, g,
distribution is. also considered, which corresponds to the case
of a scroll with infinite radius of curvature, oxr a straight
variable area tube with continuous uniform mass ejection., The
boundary layer development will naturally cause variation from
these profiles near the scroll walls, with the effects being
more pronounced in the latter scroll sections. A third type
of, g, distribution, namely that of a paraboloid of revolution
in the circular part of the scroll cross section was also

considered to study this viscous effect.

The Boundary Conditions

The eguations governing the flow motion in the cross-
sectional plane of the scroll, have been derived in the previous
section. The boundary conditions will generally depend on the
scroll geometry and the mass flow rate in the scroll.

Figures 2 and 3 show some typical scroll cross sectional
gecmetries. Referring to these figures, the flow boundary

conditions can be expressed as follows:

Vo

31

= Vl on .Sl {11)

Ven =0 on S (12)

2

where Vl is the radial flow velocity at exit from the scroll.
The boundary conditions given by equations {(11) and (12) are
of the Neumann type, when expressed in terms of the wvelocity

potential function ¢:

9¢ _
L Vl on Sl {(13)
o .
om0 e 52 (14)
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Equations (13) and (14) provide the boundary conditions
which are necessary to solve the governing equations (6), (8),
{9) and (10). Two of the parameters appearing in these equations
are not really independent. Both the source strength distri-
bution, g, due to the through flow, and the outlet velocity, Vl,
are related to the total mass flow rate in the scroll.

Assuming axisymmetric flow conditions at the scroll exit,

and referring to Figures 2 and 3, we can write

r

! vy ds = m/2w Ry (15)

P1
where m is the rate of total mass flow in the scroll. The
integral on the left hand side of equation (15) is carried over
the scroll exit width, B, of radial location, Rl, of which the
density and velocity are equal to oy and Vi respectively.

The mean value of g, can also be expressed in terms of the

total mass flow rate, m, as follows:

/f gdA = m/27 R (16)

a 1
where the integral on the left hand side is carried over the
scroll cross sectional area. Equations (15) and (16) can be

combined to give the following relation:

[fgdn = [y Vv, dsS (17)
A B

It is well known that a solution to Poisson equation with
Neumann boundary conditions exists and is unigque within an
arbitrary constant if Green's first integral theorem is
satisfied. Closer examination of equations (10} and (13) show
that in the special case of incompressible flow, equation (17)

represents Green's first integral condition.

18
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NONDIMENSIONAL FORM CF THE GOVERNING EQUATIONS

It is more convenient to express the flow wvariables in the
following dimensionless form:

% i

$ = ¢/V;D vo= v,
* *

T = T/T, ’ e = p/og (18)
% D

7 ) povl 7o

where D is a characteristic dimension of the scroll cross-section,
which can be taken as the diameter in the typical sections of
Figures 2 and 3. The coordinates are alsc normalized with
respect to D. In the above equations and in the following
derivations, the radial exit wvelocity component, Vqr will be
taken as constant across the screll exit width, B. Using
equation (18), one can write the flow governing eguations in

nondimensional form as follows:

Equations of Motion:

*2 * 1 - E *® *
v T = === (V+Vp ) +ag/e (192)
i . * % g
vV = V¢ (20)
* *2
T = 1 - Cp g (21)
- L
* ® ES -
o = @ gl YL (22)
Boundary Conditions:

*®
% = 1 on 8 (23)
3n

*
.ai; = 0 . on 82 (241
5n



where

2
{(y-1) v

g o

Equations (23) and (24) show that the boundary conditions of
the nondimensional problem are homogeneous, thus leading to
self similar solutions in the case of geometrically similar
scroll cross sections with similar through f£low profiles.

The above eguations are not tractable to analytical solutions
in scroll cross sections such as the typical ones shown in
Figures 2 and 3. A numerical solution which is based on the
finite difference method is used to determine the two dimensional
velocity potential distribution on the scroll cross-sectional
plane. Before writing the governing eqguations in finite
difference form, equations (19}, (20), (23) and (24) are rewritten

using the Cartesian coordinates as follows:

2 % 2 % % = .
e e R iR Rt I (26)
3 2 2
X 3y P ax 3y
* *
* *
u o= 32; and v = a¢* (27)
ax 3y
®
3$¥ = 1 on 84 (28)
ax
* *
n, 3¢* + n B¢* = 0 on 38, (29)
¥ Y 3y

* *
where u , v are the x and y components of the nondimensional

velocity vector in the cross-sectional plane, and n_, n_ are

XY
the direction cosines of the unit vector which is perpendicular
to S, According to egquation (28}, the two perpendicular
axes will be taken such that y is in the direction of the

machine axis.



NUMERICAL SOLUTION

The derivations of the finite difference equations is
followed by a description of the iterative procedure used to

obtain the numerical solution.

The Finite Difference Eguations:
Referring to Figure 4, the finite difference representation
of equation (26) is obtained using standard five-point Laplace

difference operator.

* * % * * F*_ 2
o [613”’11*‘4’33)* BB624(¢22+¢A_4)— F Dx ]/(cl3+c24) (30)
where
BB = (Dx/Dy)2 P
Ciq = 1/8,8; ' C,y, = BB/§,5, , (31)
613 = 1/(51+53) ; 824 = l/(62+64) .
* * ]
bi5 = cpi/e;i , i=1, 2, 3, 4 (32)
* % 1 * Bp* * Bp*
F o= g/p - =% (u s+ v =) (33)
p 3X 3y

The first order derivatives needed in the u* and v* calcula-
tions, as well as the derivatives of the density in equation
{33), are evaluated using central difference formulas at the
interior points. Forward or backward difference schemes were
used in the first order derivative computations at the boundaries
of the scroll cross section. The boundary conditions can

generally be written in the following form:

*
o wtn, e o= L (34)
Y b13)
PAGE
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where n, and ny are the direction cosines of the normal to the
boundary, and L is a constant which is equal to one or zero as
in equations (28) and (29).

Referrlng to F:Lg._ 5‘3, an_d_fo:_:‘ a general boundary -peint, 4; -

" ore can write the boundary condition in the following finite

difference form [11]:

o]

Dy .* G4Dy

1 Dx ¢3 n
b b

* n
by = <1+ﬁza4§3;)¢ - Es,
Y

L (35)

Similar equations can be written for the boundary points
on the other three quarters by proper permutation. The solution
to eguations (30) and (35) is obtained using a successive
relaxation iterative method which is explained later. In the
following sections, the superscript star will be omitted for

convenience, when referring to the nondimensional wvariables.

Interdependence Between the Source Distribution and the

Boundary Conditions:

It ig well known that in the case of Poisson equation with
Neumann boundary conditions, a solution exists, and is unique

within an arbitrary constant, if the following condition is

satisfied:
- d¢
S P(x,y) @A = f T ds (36)
A - s n '

where F(x,y) is the source strength in Poisson equation, which
is equal to the sum of two terms on the right hand side of
eguation (10). The integrals in the above equation are carried
over the solution domain, A, and its boundary, s, respectively.
In case the source distribution F(x,y) in the differential
equation is arbitrarily chosen, the above condition will not
necessarily be_satisfied. This was the case in Ref. [15], in
which Briley, before proceeding with the numerical solution of
Poigson equation, added a uniform correction to the source
distribution. He accompl%shﬁgﬂﬁhat by computing numerically,
the difference E, between!;the rlght hand and left hand sides of
equation (36), then subtracting the area averaged amount, E/A,

11



from the value of F(x,y), at each grid point. In the case of
incompressible flow, such procedure is unnecessary since the
source strength, ¥, is equal to g, which already satisfies the
conservation of mass, given by the integral condition of
eguation (17). For compressible flow solution, in which case,
F(x,v) is also dependent on the velocity and density at the
grid points, the average value of the difference between the
two sides of equation (36) is calculated numerically and
subtracted from the value of F at each interior grid point

before every iteration.

ITERATIVE PROCEDURE

A successive relaxation method is used to obtain the numeri-

cal solution. The following recurrence formula is used:

bo = (medag + wlegleT] + ¢330+ BB 8y, [eh, + 4y
P2 .
= 53 DxT)/(Cy5 + Cyy) (37}

The computations of the contribution of the compressibility to
the source term were allowed to lag the potential function
calculations by one iteration. Taking the wvalue of the density
from the previous iteration is known to improve the stability
of the numerical solution to compressible flow problems [12].

Boundary Conditions in the Iterative Scheme:

The general recurrence formula for the iterative solution
is given by equation (37). If this is used to determine the
value of ¢ at all interior points, and equations similar to
(35) are to calculate explicitly the boundary values of ¢, the
solution will not converge but will drift slowly and endlessly
[15, 16]. Miyakoda [16] therefore recommended that the boundary
conditions be implicitly introduced into the difference
equations at the interior points next to the boundary such as
point O in Fig. 5. Referring to the same figure, the following
form of finite difference equation is used at the interior

points adjacent to the boundary:

12



-~ Bx Dy, n+l- ~Ox Dy H° Dy . F 2 -
taowe Yo "H"y"'ﬁ:?¢3 = 5= Ll- 5 Dx")/(Cy4+C, )
Y Y (28)

Similar expressions can be written for such points in the
other three quarters of the domain. These equations are solved

algebraically for ¢2+1

, appearing in both sides. The solutions
to the difference eguations consisting of equation (37) at the
regular interior points and equation (38), at the interior
points adjacent to the boundary, was found to converge. The
numerical wvalues of the potential function at the interior

grid points calculated in this fashion are’ then used in
difference equations (35) to compute the values of ¢ at the

boundary points.

Choice of Under—-Relaxation Factor:

The convergence of the numerical solution to Poisson
equation is known to be sensitive to the relaxation factor.
In the matrix solution to compressible flow equation in turbo-
machines using the relaxation methods, the under-relaxation
is known to get stronger as the Mach number approaches unity.
The boundary conditions in those problems are different however
from those involved in the present study. In addition to
Dirichlet type at parts of the domain boundary, they include
periodicity and specified flow angles over the rest of the
boundary. Furthermore, solutions to the Reynolds eguation
which is similar to equation (7), were also easily obtained
using relaxation methods in both' lubrication problems [13],
and magnetostatic fields {14], when Dirichlet type boundary
conditions were involved. In such cases an optimum value of
the under—relaxation factor can be used at all grid points.
In the present solution an optimum value was determined by
trial and error and was used in equation (37) at all the regular
interior points that are removed at least one grid point from

the boundary. The same value of, w, was not necesgarily used

13



in eguation (38) at the interior grid points adjacent to the
boundary. When necessary, other values of uw were chosen in

order that the following condition is satisfied:

[1 -~ wBB §

n
oy =+ EE e v A0 (39)

64 ny I

RESULTS AND DISCUSSION

A computer program has been developed to solve the governing
flow eguations in the cross—sectional planes of the scroll of
arbitrary cross section. The input to the program consists of
the fluid properties at the scroll inlet, the exit radial velo-
city, the scroll geometric dimensions and the through f£low
velocity profile. The typical geometric parameters needed in the
input are shown in Pigures 2 and 3 for the symmetric and
nonsymmetric scroll cross sections. The maximum number of allow-
able mesh points is (50 x 30), in the x and y directions,
respectively. In all the results presented here the computation
time did not exceed 30 CPU seconds.

The results of the computations are presented in the form
of plots of constant potential contours, and arrows showing
the velocity directions in the scroll cross sectional plane.

The effects of through flow velocity profile, scroll cross
sectional geometry, and compressibility on the flow behavior
in the c¢cross sectional plane are investigated.

Figures 6 and 7 were obtained using uwniform source distri-
bution, representing uniform through flow velocity profile.

The results obtained using a source variation which is proportional
to Y, are presented in Figures 8 through 11 to show the effects

of the scroll curvature. Figures 12 and 13 present the results

in the case of a circular paraboloid source distribution.

All the results of Figures 6 through 13 were computed for a

scroll with symmetric scroll cross section, in which case it was
sufficient to carry out the computations in only half the cross

section. Zero potential gradient was specified in this case

14



at the axis of symmetry. The results obtained from computations
in a gscrollwith an unsymmetric cross section are shown in
Figures 14 and 15. The compressible flow results, which were
.obtained -at am exit Mach number 6f"017,‘aré'§re§én£eé“in _ )
Figures 16 and 17. All the last four figures were obtained
with a uniform source distribution, i.e., excluding the influence
of the scroll's curvature. In all the figures, higher velocity
potential gradients are observed at the exit portion of the
scroll cross sections. This means velocity components

in the cross sectional plane are higher in magnitude in

this region than in the rest of the scroll cross sections.

Since the solution for the velocity potential is unique within
an arbitrary constant, the value of 0.1 was always chosen at

the neck of the cross section in order to compare the different
results.

Figures 6 and 7 show in the case of symmetric scroll cross
section with constant through flow velocity profile, that no-
where in the flow field does the velocity have component in the
radially outward direction. The largest radial velocity com-
ponents are observed at the scroll exit portion, decreasing
constantly to zero value at the radially farthest scroll
surface point on the axis of symmetry.

Figures 8 through 11 show the velocity potential distri-
Qgtionfand the velocity direction in the case of a source
distribution which is inversely proportional to r., The first
two figures correspond to a ratio of the scroll's radius of
curvature to cross sectional diameter of 3.0 while the last
two figures show the results for R/D of 1.5. The influvence of
the screll's curvature on the flow behavior can be detected by
comparing Figs. 9 and 11 with 7; and 10 and 12 with 8. It can
be seen that the influence of the curvature is limited to the
radially outward part of the cross section, leading to a
difference in the dicection of the velocity vector in the cross
sectional plane. Some radially outward velocities can be

observed in Figs. 9 and 12, although the magnitudes of the

GE I8
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velocity in this region are very small. The ratios of R/D in
Figs. 8 through 11 are quite low however, and were merely
selected for the purpose of illustration. Such magnitudes
would not be encountered in radial inflow turbine scrolls,
where the value of R/D constantly increases from its minimum
value at the scroll inlet. It can therefore be concluded
that in most scroll cross sections it is sufficient to
consider constant source distribution in the cross sectional
computations.

Figures 12 and 13 show the results obtained using a
circular paraboleid source distribution, which represents an
extreme case corresponding to fully developed pipe flow. It
can be seen from these figures that some radially outward
velocity components, even though of very small values, are
observed at radially outer portion of the scroll cross section.
In this case, the magnitude of the velocity component in the
cross section plane, as measured by the velocity potential
gradient, is generally smaller in most of the scroll cross
sections, compared to the case of constant source distribution.
It should be pointed out, that in all the cases of Figures
8 through 13, the values of the integral of the source dis-
tribution over the scroll cross section were all the same and
equal to the value for the case of constant source distri-
bution of Figures 6 and 7.

The velocity potential contours and the wvelocity directions
of the velocity wvector in a nonsymmetric scroll cross section
are shown in Figures 14 and 15. These results were obtained
using uniform through flow profile. It can be seen that the
flow behavior is generally smoother in this case, which can be
a result of the more gradual change in the scroll section in
the direction of the machine axis. This type of scroll cross
section, can therefore be recommended over the symmetric
section. ‘

The ,compressible flow solution corresponding to an exit
Mach number of 0.7 is shown in Figures 16 and 17. These results,

in a symmetric scroll cross section, were calculated assuming

16



constant through flow wvelocity profile. By comparing these
two figures with the incompressible results of Figures 6 and 7,
it can be concluded that the shape of the velocity potential
contours is unaffected by compressibility. Consegquently, the
"shape of the streamlines ié not changed by compressibility,
although the magnitudes of the velocities are. While higher
velocities are observed in the scroll neck region, lower
velocities are found in the rest of the scroll cross sectional

plane as compared to the incompressible case.

CONCLUSTION

The known through flow velocity, which is used to provide
the source distribution, and the computed flow velocity in the
cross sectional plane provide a complete description of the
three dimensional flow field in the scroll. A derivation of the
equations governing the flow motion and a computational
procedure for determining the flow velocities in the cross-—
sectional plane are presented in this study. Other simplified
flow models can be used in the through flow velocity compu-

tations.
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NOMENCLATURE

Nondimensional exp&ession defined in equation (25).
Scroll exit width, Figs. 2 and 3.

Expressions defined in equation (31}.

Scroll inlet diameter, Figure 1.

Characteristic dim@nsiOns of the scroll cross-—
section, Figs. 2 and 3.

Expression defined in eguation (33).

Source strength distribution in the scroll cross-
section, due to the through flow.

A constant equal to one or zero on the boundary,
equation (34).

Total rate of mass flow in the scroll,.
Local unit wvector normal to the scroll surface.

Components of the unit vector n, in the x and
y directions, respectively.

Velocity vector in the scroll.

Difference in rate of mass flow across two radial
planes, equation (2).

Radius of the scroll exit, Fig. 1.
Gas constant.
Surface of the control volume Q, Figure 1.

Distance along the boundary contour of the scroll
cross section.

Local static gas temperature.-
Stagnation temperature.

Velocity components in the scroll cross secticnal
plane in the x and y directions, respectively.

Velocity vector in the axial radial plane.

Velocity component in the radial direction at the
scroll exit.
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Greek Symbols

¢ The wvelocity potential function in the cross-
sectional plane.

p Local gas density.

o Stagnation density.

Py Flow static density at the scroll exit.

g Mesh size parameter, Fig. 4.

613,824 Expressions defined in equation (31).

o Successive relaxation factor.

Q The control volume of Fig, 1.

Subscripts

i=1,2,384 Refer to parameters associated with the five
mesh points of Fig. 4.

X,y Refer to derivatives in the x and y directions.

Superscripts

* Refer to the nondimensional variables.

n,n+l Refer to the previous and present iterations.
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APPENDIX

COMPUTER PROGRAM AND INPUT PREPARATION

A brief description of the input and output of the computer
program will be given in this appendix. A listing of the program,
which can be used to solve the equations of potential flow in
the cross-sectional planes of radial inflow turbine can be
obtained from

Description of Input and Qutput

The computer program requires as input the cross sectional
plane geometry, the radius of curvature at the plane, appropriate
shape of the through flow profile, and the operating conditions
such as the inlet wvelocity and the inlet total temperature.

Any consistant set of units can be used in the input data. The
computations are carried out and the results presented in
terms of the dimensionless quantities given in eguation (18).

The ocutput obtained from the program includes cross-—
sectional plane velocities and potential wvelocity values through-
out the region of solution.

Input Data

First Set (Fluid Properties), one card
READ: RG, GAMA, TO, VE
according to format (4F10.0)

RG Gas constant.

GAMA Ratio of specific heats.

TO " Stagnation temperature.

VE Scroll exit velocity in radial direction.

Second Set (Scroll Geometry), one card
READ: M1, M2, DO, R1, B, H, R, RC
according to format (2I10, 6F10.0)

Mi, M2 Number of mesh lines in the circular part of the
cross~section of the scroll in the x and vy
directions, respectively (Figure 3a).

DO Scroll inlet diameter.
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Scroll radius of curvature, Fig. la.
Width of the scroll exit, Figs. 2 and 3.
Length of scroll exit nozzle, Figs. 2 and 3.

Radius of theé scroll cross-section equal D/2,
Figs. 2 and 3.

Radius of exit portion of the unsymmetric cross-—
section, Fig. 3.

Third Set (Control Parameters), one card
READ: ICOM, ISYM, IFG, IPAP, IFREVO
according to format (5I10)

ICcoM

ISYM

I¥G, IPAP,
IFREVO

Parameter to control type of calculations.
ICOM = 0 for incompressible flow and ICOM = 1
for compressible flow.

Parameter to control type of scroll cross section.
For symmetric cross-section ISYM = 1, and for
unsymmetric c¢ross section ISYM = 0.

Parameters to contrel the mass source distribution
(i.e., the type of through flow velocity profile).

(i) TFG = 1, IPAP = 0, IFREVO = 0, for an
arbitrary source distribution. In this case
the value of the mass source is fed as input
at all the interior mesh points.

(ii) IPAP = 1, IFG = 0, IFREVO = 0, for a circular
paraboloid source distribution.

(iii) IFREVO = 1, IPAP = 0, IFG = 0, for free

vortex source distribution

(iv} IFG = 0, IPAP = (0, IFREVO = (0, represents the
uniform source distribution.

Fourth Set (Numerical Parameters), one card
READ: ITMAX, EPSMAX, WO, WOP
according to format (X100, 3¥10.0)

ITMAX
EPSMAX

WO, WOP

Maximum allowable number of iterations.

The largest tolerable value of the square of the
sum of the absolute values of the deviations of
by 5 from their previously computed wvalues.

?

Successive relaxation factors, for interior mesh
points, and for the points adjacent to the
boundaries, respectively.
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Fifth Set (Output Control Parameters), one card
READ: IP, IVPLOT, IPLT
according to format (3I10)
Ip Frequence of intermediate printout. Solutions are
printed after every IP iterations.

IVPLOT Parameter to control plotting of program output,
IVPLOT = 1, a plot is prepared; if IVPLOT = 0,
no plot is prepared.

IPLT Number of contours in the output plot for the
potential velocity.

Sixth Set (Values for Velocity Potential Contour Plotting), number
of cards is egual to IPLT
READ: VISOBR
according to format (F10.0)

VISOBR Numerical values of the wvelocity potential
contours to be plotted as output.

Seventh Set (Arbitrary Source Distribution)

Is required only in the case of arbitrary source dis-
tribution, i.e., IFG = 1. The value of the source distribution
F(I,J) is read in DO loop according to format (8Fl0.0).

The input data is fed starting from I = 1 to I = Moy and
marching in J direction from J = JL, JU as shown in figure
ia.

Output

The program output includes a printout of the pertinent flow
properties at all the grid points evexy IP iterations and of
two figures one for the desired velocity potential contours as
specified by IPLT and VISOBR and the second showing the velocity
direction in the cross—-sectional plane.

Explanation of the labels of the print output are given
below:

F Vector containing the values of Poisson's source
strength at each grid point.

P Vector containing the values of the potential
function ¢ at all grid points.
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PBX, PBY
\aY

VVBX, VVBY

THETA

Vectors containing the values of ¢ on the scroll
boundaries.

Vector containing the absolute values of the
velocity vector V, at each grid point.

Vectors containing the absolute values of the
velocity vector V, at the boundary points for
each I and J mesh lines, respectively.

Vector containing the values of the angle between
the wvelocity vector V, and the x-axis at each
grid point.
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