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FOREWORD



This report summarizes the work performed under the Planning and Defini
tion Study of the present NASA-sponsored VCE Testbed Program (Contract 
NAS3-20048). The NASA Project Manager for this study was Mr. A G. 
Powers. Mr J S. Westmoreland was the Pratt & Whitney Aircraft Program 
Manager with Mr. J Godston as Deputy Program Manager. 
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PLANNING AND DEFINITION STUDY





SECTION 1.0 

SUMMARY



This study provided definition and plans for 
a test program to demonstrate a low noise co
annular nozzle and a low emissions duct burn
er in a large-scale, Variable Cycle Engine 
(VCE) environment. This Planning and Defi
nition Study consisted of the following three 
technical tasks updating the VSCE concept, 
defining the testbed design, and formulating 
the overall program plan. 

VSCE Concept Update 

The Variable Stream Control Engine (VSCE) 
was selected as the advanced supelsonic flight 
engine concept for this study The baseline 
configuration incorporates numerous ad
vanced-technology components, including a 
low-emissions duct burner and a coannular 
exhaust nozzle. The engine update involved 
revising the baseline design to reflect techni- 
cal improvements in the duct burner and noz
zle from related VCE technology programs 

The duct burner was updated to a three stage 
system from a two stage system This concept 
is based on the Vorbix combustion techno
logy that was demonstrated during the 
NASA/P&WA Experimental Clean Combus
tor Program This design has the potential to 
meet the performance and emissions require
ments for future supersonic aircraft The 
selected design also meets the pressure loss, 
thrust efficiency, and ignition goals, and is 
considered as a moderate risk approach con
sistent with the large scale engine demonstra
tion in calendar year 1978 

The coannular exhaust nozzle in the updated 
VSCE is unchanged from the baseline confi- 
guration. It has a nominal 0 8 radius ratio m 
the outer tan stream and a plugless geometry 
in the inner core stream 

Using the updated flight configuration, analy
tical predictions of performance, including 
noise and emissions, were updated. Also, the 
engine weight and length estimates were up
dated Results showed that baseline fuel con
sumption characteristics remain unchanged, 
and weight increase of 2.5 percent was incur
red because of the three stage duct burner 
In terms of environmental factors, there was 
about a 2 EPNdB reduction in noise because 
of a more exact application of model test data. 
There was also no significant change to emis
sions estimates 

Testbed Design Definition 

The testbed system was designed to provide a 
large-scale demonstration of the two critical 
technology components, the duct burner and 
coannular nozzle In the Planning and Defini
tion Study, the conceptual mechanical confi
guration and preliminary aerothermal design 
of the testbed system were established Also 
the definition of critical areas required to de
termine design criteria, estimates of perform
ance, and preliminary control system and in
strumentation requirements were established. 

As part of the design definition, the F100 en
gine was selected as the gas generator for the 
testbed The Fl 00 engine, in comparison to 
the other engines evaluated, has the best po
tential to simulate the desired exhaust condi
tions of the VSCE flight concept Further
more, it does not require extensive modifi
cation for the testbed, which incorporates 
the duct burner, an existing F401 exhaust 
nozzle, and an ejector that can accommodate 
both a hard-wall surface and acoustic treat
ment 



The major component subsystems in the test- 
bed were reviewed from a thernmal-mechanical 
standpoint in order to identify potential de
sign problem areas resulting from integration 
of the FI00 engine with the testbed This re
view encompassed the engtne/tstbed inter
face, the duct burner, nozzle, and ejector 
Also, assembly considerations were addressed 
and a mounting scheme was defined for in
stalling the testbed system in the appropriate 
test facilities 

Instrumentation iequirements were defined to 
ensuie meaningful and valid test data would 
be acquired during the planned test program 
The types of sensors, specific instrumentation 
for noise and emissions, safety, control, and 
health ot the F100 engine were defined. 

Test sites for conducting the test program 
were evaluated and selected To meet the pro
gram objectives three different sites will be 
employed Calibration of the F 100 engine 
will be performed at the Pratt & Whitney Air
craft Government Products Division in Florida 
A checkout of the engine testbed system will 
be conducted at the Pratt & Whitney Aircraft 
Commercial Products Division in Connecticut. 
The Boeing Boardman facility in Oregon was 

selected as the site for conducting the aero/ 
acoustic testing. 
OverallProgamPlan 

The overall program-plan, s outlined from 
this study, provides for a comprehensive eval
uation of the duct burner and coannular noz
zle The scope of work includes the necessaiy 
analytical effort to complete the testbed de
sign, fabrication, procurement of test hardware, 
test program, data reduction and analysis 

The program plan for testing the VCE testbed 
system covers a two-year period to complete 
two series of tests The first series of tests, 
which includes the acro/acoustic noise evalu
ation and associated preparation tests, is sche
duled for completion by the end of calendar 

year 1978 After this demonstration of the 
coannular noise benefit, a second senes of 
tests is planned to obtain duct burner emis
sions and performance data. The testing in
cludes an evaluation of the initial duct burner 
configuration, the testing of one minor and 
one major duct burner modification, and a 
second aero/acoustic evaluation using the re
fined duct burner configuration This work 
will be conducted during the 1979 and 1980 
calendar years 
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SECTION 2.0



INTRODUCTION



Propulsion systems designed for second-gen
eration supersonic commercial aircraft must 
achieve improved fuel economy during both 
subsonic and supersonic flight conditions, 
while operating within the environmental 
constraints of reduced exhaust emissions and 
reduced noise levels In recent studies com
pleted by Pratt & Whitney Aircraft, the area of 
main interest has focussed on the study of the 
Variable Cycle Engine (VCE) concept Basi
cally, the VCE concept uses inflight cycle 
changes to optimize propulsive efficiency in 
both subsonic and supersonic flight regimes 

The study of the VCE concept has proceeded 
primarily on an analytical basis under several 
NASA-sponsored plograms. This work has 

identified the Variable Stream Control En

gine (VSCE), a derivative of the VCE, as one 
of the most attractive approaches to meet 
the requirements of future supersonic air
craft. The VSCE uses two key components, 
a low-emissions duct burner and a coannular 
exhaust nozzle, to offer substantial gains in 

emissions and noise reduction along with in
creased range, when compared to technology 
available today 

At present, model testing of the coannular 
nozzle as well as rig testing of the duct bur
ner are in progress under NASA-sponsored 
VCE-related programs (NAS3-20061 and NAS3
20602, respectively) 

Demonstrating the environmental advantages 
of the duct burner and coannular nozzle is 
the pnncipal objective of the current NASA
sponsored VCE Testbed Program The Testbed 
Program is a multiphase effort that, as planned, 
will culminate in a large scale demonstration of 
these components at operating conditions rep
resentative of the VSCE. 

The work completed in the initial phase of the 
Testbed Program, which is the subject of this 
report, involves the planning and definition 
of the overall program. The three major tasks 
completed as part of the planning and defini
tion of the VCE Testbed Program are the 
VSCE Concept Update, Testbed Design Def

inition nd Testbedorml n shw


in and2 P-n.


in Table 2 0-1.



TABLE 2.0-1



VCE TESTBED PLANNING


AND



DEFINITION STUDY 

Update Testbed Testhed 
dVSCE design program 

concept definition plan 

Integration * Experimental * Test matrix 
studies components * Facilities 

* VCE * Select testbed * Schedule 
component engine 0 Cost 
programs e Select variable a Long lead 

• Update nozzle time 
• Weight hardware hardware 
* Noise * Select duct burner 
* Emissions



Range * Configuration


* Mount concept 
*Instrumentation 
* Controls 
* Performance 

simulation 
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SECTION 3.0



RESULTS OF STUDY AND CONCLUSIONS



3.1 	 SCAR STUDY VCE CONCEPT AND Under a related NASA-sponsored technology 
UPDATE program, Pratt & Whitney Aircraft has been 

conducting model tests of different coannular 
This study involved updating a flight engine nozzle geometries. On the basis of results ac
definition of the VCE concept in order to pro- quired to date,'the nozzle 6ofifiguration ills
vide acurrent baseline engine for planning the trated in Figure 3.1-1 has been selected f6r 
VCE Testbed Program. The engine concept the flight engine. As part of another NASA
selected for this study is the VSCE-502B, and sponsored technology program, various duct 
across section of the conceptual mechanical burner concepts were assessed analytically in 
configuration is shown in Figure 3 1-1. The terms of performance, emissions, and general 
VSCE-502B is dual spool turbofan utilizing compatibility with the requirements with the 
far-term technology advances in the areas of VSCE-502B. From the results of this work, a 
structures, aerothermodynamics, and mater- three stage duct burner system, based on the 
als to meet the stringent environmental and Vorbix combustion technology, was selected. 
performance standards for future supersonic The designs of both of these components met 
commercial aircraft, the performance goals of the flight engine and 

are consistent with the flight engine schedule. 
The two critical components in the engine are 
alow-emissions duct burner and acoannular Incorporating these improved.component de
exhaust nozzle In this study, the baseline signs in the baseline flight engine adds only a 
VSCE was updated to reflect design improve- slight weight increase. However, the overall 
ments with these two components. engine length and diameter remain unchanged.-

Advanced high spool 

Variable fan 	 Low emissions Low emissions Nozzle/reverser
main burner duct-burner 

Figure3.1-1 	 VSCE-502B - The two criticalcomponents in this engineconcept are the low-emissions duct 
burner and the coannularexhaust nozzle 
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The added weight, which amounts to ap
proximately 105 kgs (230 Ibs), is attributed 
to the third combustion stage in the duct 
burner and associated hardware. Through fur
ther technology development, it may be pos
sible to negate this weight penalty. 

Overall engine performance is unaffected by 
the component changes In fact, fuel con
sumption estimates for the VSCE-502B are 
the same for both subsonic and supersonic 
cruise conditions as initially estimated during 
Phase IV of the Advanced Supersonic Propul
sion Studies (Reference 1). 

Engine exhaust emissions and noise levels 
were also re-examined. Emissions levels were 
updated to reflect the improved duct burner 
configuration and the addition of recent 
emissions data from the NASA/P&WA Exp
erimental Clean Combustor Program. Figure 
3.1-2 presents the Environmental Protection 
Agency Parameter (EPAP) for the airport vi

cinity for the VSCE-502B based on ECCP data 
extrapolated to the operating characteristics 
of the main and duct burner. As indicated, a 
higher duct burner efficiency is required to 

meet the EPA carbon monoxide rule for ad 
vanced supersonic engines. The control of 
other pollutants is very close to the 1984 EPA 
rule. 

20 -0 -" 

S--The 
9 

, 10 .-E-AC L 

04 ... 

L F ... 
No - CO TH-

EED ONor, DUCTBURNEREFFICIENCLEVEL

Figure3.1-2 UpdatedEmissionsEstimates - A duct 
burnerefficiency of99.6 percentis re
quired to meet the 1984 EPA carbon 
monoxide rulefor advancedsupersonic 
engines, 

I - R A. Howlett and F. D. Streicker, "Advanced Supersonic 

Initial noise estimates were updated using 
refined prediction procedures to account 
for other noise generating components, in 
particular the turbine and duct burner. Fig
ure 3.1-3 presents a comparison of the orig
inal and updated noise predictions at full 
throttle maximum duct burning flyover con
ditions. The coannular acoustic benefit has 
been included in these predictions at full throt
tie maximum duct burning conditions. The co
annular acoustic benefit has been included m 
these predictions 

720(210 , 
120 2A fl paass.tre ratio 

Total 

110 D bter 0 
XX 

10 X 

9 , XX 

s 

70 

so8 

oL 

Figure 3 1-3 UpdatedNoise Estimates - Using the 
addedpredictionprocedures,overall 
noise levels arelower for the updated 
VSCE-502B 

impact of technology on the VSCE cycle 
definition was evaluated in a parallel NASA program by defining an engine, the VSCE-51 1, 
based on nearer term levels of material and com

ponent technology. A comparison of the nearer 
term engine with the far-term VSCE-502B in
dicates that the combination of reduced cycle 
temperatures, reduced cycle pressures, and 
lower material stress levels causes an approxi
mate 7 percent penalty to aircraft range. The 
cycle characteristics of each technology level 
VSCE are such that both will draw design in
formation for the coannular nozzle and duct 
burner from the VCE component and testbed 

programs. 
Propulsion Study Phase IV Final Report",. NASA CR-135273, September 1977 
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3.2 	 VCE TESTBED DESIGN DEFINITION siderations for selecting the F100 engine 
are that the engine does not require extensive 

The main objective of the Testbed Program is modification for integration of the testbed, 
to experimentally evaluate, in an operating and it provides the highest level of duct burn
environment representative of the Vanable er airflow of all the available Pratt & Whitney 
Stream Control Engine, the noise benefit Aircraft engines so the maximum annulus 

produced by the interaction of the low-emts- height for the duct burner is obtained 
sions duct burner and coannular exhaust 
nozzle The testbed design approach is to A cross-sectional view of the VCE testbed 
provide a realistic and large-scale demonstra- configuration, including the F 100 engine, is 
tion of these two critical technology corn- shown in Figure 3.2-1. The testbed replaces 
ponents by using an advanced, current-tech- the F100 mixed-flow afterburner and super
nology F100 engine as the gas generator sonic exhaust nozzle with a three-stage 

Vorbix duct burner, a F401 nozzle, and an 
Of the different Pratt & Whitney Aircraft acoustically-treated ejector. The duct burner 
engines evaluated for use in the Testbed has independent metenng of fuel flows to 
Program, the F100 has the most potential the three combustion zones to permit an 
to approximate the desired exhaust condi- evaluation of the coannular noise effect 
tions of the VSCE-502B as well as the near- at simulated takeoff, subsonic cruise, and 
term technology engine, the VSCE-5 11 part power conditions. The different test
The cycle charactenstics of the rematched bed components will be manufactured from 
F100 engine are presented in Table 3 2-I conventional materials currently used in 

along with the VSCE-502B and -511 cycle engine hot sections in order to reduce fab
characteristics for comparison. Other con- ncation time and program cost. 

TABLE 32 I 

COMPARISON OF REMATCHED FUND CYCLE WITH VSCE-502B AND 
VSCE-511 CYCLES


Far-Term Near-Term Testbed 

Cycle VSCE-502B VSCE-511 (Rematched F100) 

Fan Pressure Ratio (Design Level) 3 3 3 3 3 1 

Overall Pressure Ratio 20 13 4 20 8 

Bypass Ratio 13 085 091 

Max S L S Combustor Exit Temp - 'C ('F) 1204 (2200) 1093 (2000) 1204 (2200) 

Pan Pressure Ratio 28-33 28-33 3 1 

Exhaust Condition 
Velocity Ratio (Duct/Engine) 
Nozzle Area Ratio (Duct/Engine) 
Airflow Ratio (Duct/Engine) 

1 7 
i 0- I 4 
1 3  i 5 

1 7 
 
0 7  1 1 
 
0 8  1 I 
 

1 7 
0 79 
0 93 

Duct Burner Condition 
Inlet Temp - C ('F) 

Exit temp -
0C (°F) 

Pressure -N/m 2 (psa) 

Fuel Air Ratio 

143-153 
 
(290-310) 
 
1148 1287 
 

(2100  2350) 
 
2 27 X 105 - 2 89 X 105 
 

(33  42) 
 
003-0035 
 

143 153 
 
(290-310) 
 
1287 - 1426 
 

(2350  2600) 
 
2 2X 105 -2 89 X 105 
 

(32  42) 
 
0036-0042 
 

152 
(307) 
1165 

(2130)

2 44X 105


(35 5)

0031


Net Thrust - kgs (lbs)/Total 66 - 69 66 - 68 63 5

Corrected Airflow - kg/sec 
(lbs/see) 

ORIGINAL PAGE IS
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Fl 00-PW-100



TESTBED ENGINE Duct burner F401 nozzle 

Coannular nozzle 
with treated ejector 

Figure 3 2-1 VCE Testbed Configuration - Adapting the testbed to the 17100 engine allows testingat 
exhaust conditions which closely duplicate the VSCE-502B 

In the Planning and Definition Study, work 
has progressed to the point where the concep
tual mechanical configuration and prelimin
ary aerothermal design definition have been 
established This includes definition of per
tinent areas required to define design criteria, 
estimates of performance, and establish con
trol system and instrumentation requirements 
Also, assembly considerations for the testbed 
have been addressed and a mounting scheme 
for installing the testbed engine in the test 
facility has been defined 

An area of particular importance is the defini
tion of test instrumentation requirements. 
These design requirements ensure that adequate 

data will be acquired to substantiate the design 
prediction system and to demonstrate the 
validity of data obtained in earlier scale model 
tests. This information will include data 
for determining levels of overall aerothermo
dynamic performance, emissions and noise 
Velocity profiles to measure the coannular 
effect at the fan stream and core stream exit 
planes will be acquired with a laser doppler 
velocimeter. Additional instrumentation to 
monitor safety of operation and engine con
trol has been also provided in the definition 
of instrumentation requirements. Table 3 2-II 
presents a listing of the different type of in
strumentation that is planned for the test phase 
of the program 
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TABLE 3.2-11



TESTBED INSTRUMENTATION SUMMARY



jjT ?TT7T TtM 

I I11 
INLET I GH I I I E~erO 

HIG~rJR.IIEJ NOLL 

Station and Location Probe Type General Remarks 

Performance Instrumentation 

1 Inlet Screen Temperature Data used for energy balance 
calculation for duct burner 
inlet airflow determination 
and standard day corrections 

2 Engine Inlet Pitot-Static Standard day corrections and 
calculations of total airflow 

2 5 Fan Discharge Temperature Update performance simula
tion 

Pressure Define and establish fan oper
ating line 

Pitot-Static and average Data used to indicate fan 
temperature pressure ratio to assist in 

setting test points 

3 High-Pressure Com- Temperature and pressure Update performance simula
pressor Discharge tion and core airflow itera

tion technique 

4 5 Fan Turbine Inlet Temperature Fuel control correction, pro
vide engine data, and moni
tor engine operation 

6 Fan Turbine Exit Pressure Core engine data define pn
mary nozzle performance, en
gine monitonng, and energy 
balance calculation 

0RIGINAL PAGE IS 
OF POOR QUALITY 

Temperature Fan duct data define duct in
let conditions, duct burner
efficiency calculations, and 
energy balance calculation 
for duct burner inlet air
flow determination. 
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TABLE 3.2-11 (Cont'd) 


Station and Location Probe Type General Remarks 


15.9 Augmentor Duct Pressure and temperature Def'mes-duct-burner inlet 
conditions and duct burner 
airflow determination 

16.0
18.0 Duct Burner Area Static pressure and metal Duct burner perform

temperatures ance diagnosis 

16 0 - Ejector Inlet and Static pressure Nozzle performance 
18.0 Flowpath diagnosis 

159 
16.3 Fuel Manifolds Pressure and flow Testbed performance 
16.5 

Emissions instrumentation 

18.0 Fan Duct Nozzle Temperature, pressure and Duct burner performance 
(without ejector) emissions and emissions 

18 0+ Primary Nozzle Exit Emissions Same probe used at ejector, 
(with ejector) and exit and primary nozzle 
Ejector Exit 

Acoustic instrumentation 

152 Augmentor Duct Pressure (Kulites) Measure noise at duct burner 
inlet 

16.1 
16.4 Duct Burner Pressure (Kulites) Define duct burner noise and 
16.5 detect burner screech 
16.9 

18.0 Ejector Pressure (Kulites) Defines ejector noise 

18.0+ Ejector Exit Velocity (LDV) Defines velocity profiles 

Condition monitoring instrumentation 

2 Engine Inlet 
16.6 Fan Duct Nozzle Accelerometers Measures vibration levels 
16.9 Inner Duct 
17.7 Ejector Inlet 

10 



3.3 	 PHASE II PROGRAM PLAN 

Phase II of the VCE Testbed Program con
tinues the work started m the Planning and 
Definition Study, and, as scheluled, will cul
minmate with comprehensive aero/acoustic 
and emissions tests of the testbed system. Al

though the work outlined for Phase II is 
principally test onented, it also encompasses 
completing the final design of the testbed and 
associated design analyses as well as fabricat
ing and/or procuring test hardware 

As defined dunng the current study, the test 
plan covers a two-year period and consists of 
the major elements shown in Figure 3 3-1 
The first series of tests, ending with the aero/ 
acoustic evaluation, will be completed during 
calendar year 1978. The first test in this 
senes is a calibration of the F 100 core engine, 
and will be conducted at the Pratt & Whitney 
Aircraft Government Products Division in 
Flonda Next, a checkout of the integrated 
F 100 testbed system will be completed at the 
Pratt & Whitney Aircraft Commercial Pro
ducts Division in Connecticut Aero/acoustic 
testing, which comprises the main portion of 
the test program, will be conducted at the 
Boeing Boardman facility in Oregon. The fa
cilities used to conduct each test were speci
fically selected dunng the Planning and Defi
nition Study on the basis of criteria which re
flect adequacy to support the test program 
from both technical and logistic standpoints 

The second series of tests involves the emis
sions evaluation As indicated in Figure 3.3-1, 
this test is planned for the 1979 calendar 
year. Testing will be conducted at the Pratt & 
Whitney Aircraft Commercial Products Divi
sion with additional aero/acoustic testing to 
be conducted at the Boardman site 

The overall schedule of the NASA-sponsored 
VCE Testbed Program is presented in Figure 
3 3-2 This schedule indicates the work that 
has been completed under the current Plan
ning and Definition Study and the work recom

19771978 1978 1979 19791980 

Ftoda 

'


!



-	 WiAn 

P&WA 

N. 	 test 

Figure33-1 VCE Test Plan - The test plan, as de
fined, provides a comprehensive,large
scale evaluationof the duct burner 
and coannularnozzle with a particu
laremphasis on low nsk 

mended, basically the aero/acoustic and emis
sions tests, for demonstrating the technology


readiness of the low-emissions duct burner


and the coannular exhaust nozzle. This sche

dule also takes into consideration the appro

pnate interfaces with the other VCE-related


technology programs. 

3.4 	 CONCLUSIONS AND RECOMMENDA-

TIONS



From the work completed in the Planning


and Definition Study, the following general


conclusions have been made.
 


0 	 On the basis of NASA-funded integra
tion studies by the engine/airframer 
contractors, the Variable Stream Control 
Engine (VSCE) was identified as the 
most promising concept for a supersonic 
application, and was therefore selected 
as the baseline flight engine definition 
for the VCE testbed. 

0 	 The testbed system, using the F 100 
engine as the gas generator, is a viable 
method to expenmentally evaluate, in 
large scale, the coannular noise effect and 
the interactive performance and emis
sions characteristics of the duct burner 
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In progress 

- Recommended 

Planning and definition study - - -

Design ----------------------------

Fabrication and assembly 

Noise tests ------------------------

Emissions tests ---------------------
I I 

Follow-on tests------------------- I II I 

1976 77 78 79 80 81 

Calendar 	 year 

Figure3 3-2 	 NASA/P& WA VCE Testbed ProgramSchedule - The overallprogramschedule has allow
ances for follow-on testing to evaluateother technology areas requiringfurtherwork 

0 	 The program plan recommended for the 
Phase 11 aero/acoustic and emissions 
tests is structured to minimize program 
risk and ensure a comprehensive test 
to provide data to verify the technology 
demonstrated in scale model tests The 
test plan is time-phased to utilize infor
mation from other NASA VCE-related 
technology programs for the duct bumer 
and nozzle. 

Based on these conclusions, the recommenda
tion is to proceed with the planned VCE 
Testbed Program to ensure continuous pro
gress in the testbed and coannular and duct 
burner technology programs leading to a 

total engine technology demonstration as 
part of the Variable Cycle Experimental 
Engine Program 

Possible follow-on programs using the basic 
VCE testbed system are to evaluate flight 
effects on the coannular noise benefit in the 
NASA-Ames 13.6-by-27 meter (40 by 80 foot) 
wind tunnel Other possible programs include 
inlet noise/performance tests, a more refined 
nozzle test with evaluation of a thrust reverser, 
and, depending on the noise test results as well 
as future noise requirements, jet noise suppres
sion tests in which the suppressor would be 
applied only to the outer, high velocity stream 
of the coannular nozzle. 
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SECTION 4.0



DISCUSSION OF RESULTS



4.1 SCAR STUDY VCE CONCEPT AND 4.1.2 Engine Design Definition 
UPDATE



4.1.2.1 Study Engine Concept 
4.1.1 Introduction 

Selection of the VSCE as the baseline engine 
Updating a study Variable Cycle Engine for the Testbed Program was predicated on 
(VCE) concept was the first of three techni- results acquired from preceding Supersonic 
cal tasks completed in this program. The Cruise Airplane Research (SCAR) studies 
purpose of this task was to select the most and Pratt & Whitney Aircraft Advanced 
promising VCE concept and revise the me- Supersomc Propulsion studies. These 
chanical design and performance predictions studies identified the VSCE as the most 
to reflect design improvements in key com- promising advanced engine concept for a 
ponents defined in related technology pro- future supersonic commercial aircraft. This 
grams. As discussed in the following section, conclusion was based on the definition and 
the Variable Stream Control Engine (VSCE) evaluation of more than 100 different engine 
was selected as the study engine. In this study cycles and configurations, including 
particular engine configuration, the critical conventional, unconventional and other 
components are a low-emissions duct burner VCE concepts. 
and a low-noise exhaust nozzle. 

The greater potential of the VSCE in terms 
Concurrent with the VCE Testbed Planning of range capability, as a representative ex
and Definition Study, the duct burner and ample, is depicted in Figure 4.1.2-1. As 

,-, coannular nozzle designs were refined under indicated, the VSCE-502B, the selected 
two NASA-sponsored component tech- baseline study engine, offers a range ad
nology programs*. As design perturbations vantage of approximately 7 percent over 
were evaluated, the study engine was up- the VCE-l 12C concept, a rear valve con
dated analytically to reflect configuration figuration which showed the most promise 
and performance changes obtained through of the various valve engines studied. 
component optimization. Updating the 
performance included updating both noise The VSCE, in terms of mechanical configura
and exhaust emissions estimates. In addition, tion, is similar to a conventional, twin spool 
engine weight, critical dimensions, and turbofan engine. However, it employs vari
installation requirements were modified to able geometry components and has a unique 
reflect updated component technologies, throttle schedule for independent control 
Using the final version of the study engine, of the fan and pnmary exhaust streams. 
the engine size requirements and aircraft This independent control of flow streams, 
range were determined according to establish- which is produced through the interaction 
ed ground rules of a low-emissions duct burner and a low

noise coannular exhaust nozzle, provides a 
substantial noise benefit along with improved 

* Contract NAS3-20602, Low-Emissions Duct Burner fuel consumption.


for F100 Component Testbed Engine Program



Contract NAS3-20061, Aero/Acoustic Performance of The low-pressure spool of the engine consists 
a Coannular Exhaust Nozzle for Variable Cycle Engines of an advanced multistage, variable geometry 
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fan and a low-pressure turbine. The high
pressure spool consists of a variable geome
try compressor driven by an advanced single
stage turbine with-high temperature capability, 

TOGW - 345,640 kg (762,000 Ibm) 

50 go 7%RANGE 

45 -Clean 

E502B 
40 

KM Erisk 

<- i 

a a a 
325 375 425 455 525 

kg/sec 

30 700 o0 0 l 10 12M 

TOTAL ENGINE AIRFLOW - LBM/SEC 

Figure41 2-1 Range Comparisonof VSCE-502B 
and VCE-112C- The dataare 
results from the recently completed 
PhaseIVAdvanced Supersonic 
PropulsionSystem IntegrationStudy 

Both the primary combustor and the duct 

burner utilize low-emissions, high-efficiency 
 
combustion concepts that are particularly 
 
effective in controlling oxides of nitrogen 
 

(NOx). The exhaust nozzle system is a coan-


nular (concentric annular) configuration 
 
that features a variable throat area in both 
 

streams and an ejector/reverser system. 
 

Integration of the various engine and noz-


zle functions is managed by a full-authonty, 
 
digital, electronic control system 
 

4.1.2.2 Duct Burner Update 

The definition and refinement of a duct 
 
burner design was conducted under a related 
 

NASA-sponsored technology program (con
tract NAS3-19781) In this program, work 
was directed towards the-identification-of 
two duct burner design concepts which offer 
the greatest potential to achieve the perfor
mance and emissions goals of the VSCE. 

Using emissions and performance data ac
quired from the NASA/P&WA Experimental 

Combustor Program, various duct burn
er concepts, ranging from conventional 
combustion systems to very advanced, high

concepts, were defined and evaluated. 

A more comprehensive study was made of 
selected concepts which involved aerother
mal definition, estimating performance, 
and an assessment of the impact on engine 
performance over the total mission. Refined 
estimates of emissions, and qualitative asses
sment of such factors as cost, weight, and 
development risk was also completed. 

The results of this program led to the defini
tion of two duct burner concepts that ap
peared to be compatible with the overall 
design goals of the VSCE-502B. The two de

sign concepts, schematically shown in Figure 
4.1 2-2, are a Vorbix (vortex burning and 

mixing) configuration and a premixed-pre
vaporized configuration The Vorbix duct 
burner concept was denived from the corn
bustion technology demonstrated dunng 

oint NASAnP&WA Eemntalea 
the NASA/P&WA Experimental Clean Com

bustor Program. The second concept is a 

more advanced design and employs premixed 

combustion with external prevaponzation 
of the fuel in a regenerative liner prior to 
injection into the premixing passages. Both 
combustor concepts utilize three axially

positioned stages of combustion: a pilot 
prechamber stage, a low power stage, and a 
high power stage During takeoff, all three 
stages are operative, while at supersonic 
cruise only the prechamber and low power 
stages are operative 

14 
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Figure4.1.2-2 Cross-SectionalViews of the Vorbix 
 
- andPrernixed-PrevaporizedDuct
Burnr Cocept
- hesetwo
 on-Geometry

Burner Concepts - hese two con
cepts were identifiedduringthe 
screeningstudy as having the great
estpotentialformeeting PSCE per 
formance andemissionsgoals. 

A summary of the projected emissions, per
formance, and pertinent physical character
istics of the two selected concepts is presented 
in Table 4.1.2-1. For comparison, the goals of 
the Duct Burner Screemng Program are also 
tabulated. As indicated by the results, both 
configurations are projected to meet the 
chemical and thrust efficiency* goals, the total 
pressure loss and soft ignition requirements, and 
the size constraints of the VSCE-502B fan duct. 
The major difference between the two concepts 
is the projected oxide of nitrogen (NOx) emis
sions level. The premixed-prevaporized system 
offers potentially lower NOx emissions, partic
ularly at the supersomc crise condition. This 
advantage in emissions reduction is attained 
at the expense of substantial increases in system 
weight and development risk. A significant 
part of the weight increase is attributed to the 
regenerative fuel heating system that is unique 
to this concept. 

*Efficiency calculation based on an effectve temperature at 
the nozzle throat to produce thrust, 
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PROJECTED EMISSIONS, PERFORMANCE AND SIZE OF DUCT BURNERS


FOR THE VSCE 502B ENGINE



Screening
Prograi 

Three Stage
Premix Three Stage 

Goal Prevaponsed Vorbix 

CttuueEnnuumis 

El NOx 10 0 52 2 75 

Combustion Efficiency % 99 99 99 

SLTO Emissions 
El NOx 10 112 178 

Combuston Efficiency % 99 99 99 

Criun Performance 

Total Pressure Losn-% 4 5 4 25 4 25 
ThrUSt Efficiency -% 94 5 94 5 94 5 

SLTO Performance 
Total Pressure Loss -% None Req'd 140 140 
ThrustEffictency -% None Req'd 955 88 
Max Ignition Fuel/Air Ratio 0002 0002 0002 

Maximum Duct Height -cm(m) 33(13) 33(13) 33(13) 

Length - cu(m) 168(66) 157(62)tt 168(66) 

Penaltes 

Size 0 None None 
Weight - Kg Obs) 0. 740(1620t) 105(230) 

Development Risk High Moderate 

SBselhne establishedpreoious SCAR studies 
t410 Kg (900 lbs ) of penalty due to regenerative fuel heating system 

t Exclusmve of prermuing pasages extending into fan duct diffuser 

Since the requirements for high altitude 
NOx emissions are not as yet established 
and the possibility exists for trading NOx 
emissions of the duct burner and main 
burner at this condition, the added com
plexity and attendant high development 
risk of the premixed-prevaporized concept 
does not appear to be warranted. On the 
basis of this rationale, the three-stage Vorbix 
concept was selected for the VSCE study 
engine. Information generated during the 
screening study was used to update the 
engine layouts and projected performance 
of the VSCE-502B. 

A schematic of the three-stage Vorbix duct 
burner installed in the fan duct of the VSCE
502B is shown in Figure 4.1.2-3. In addition 
to showing the interface of the burner with 
the fan duct nozzle and associated actuation 
hardware, the air flow requirements are listed 
for each combustion stage. 
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(13E IN)NG=6 	 1 

168M W .	 	 AIRF LOW INPERCENT 0F 

DuCT FLOWAT CRUISE 

Figure4 1.2-3 	 Three-Stage Vorbix DuctBurnerInstalledIn FanDuct - This configurationimposes a 


slightweightpenalty thatprobablycan be obviatedthrough addedtechnology develop


ment 

In the basic mechanical configuration, the 

pilot prechamber stage and the low power 
stage are enclosed by a hood to ensure a posi

tive air management for combustion. 
 Air 	 
enters the low power stage through a row of 
swirler tubes that promotes rapid mixing 
of air with the combustion gases existing 
from the prechamber stage. The rapid tur
bulent mixing produced by the swirling jets 
enhances complete combustion to reduce 
exhaust pollutants. A similar arrangement is 

also employed in the third combustion zone 
or high power stage. As indicated in Figure 
4.1.2-3, the fuel injectors for the low and 
high power stages are located at the exit of 

the previous stage so that fuel may be rapidly 

vaporized in these hot combustion products. 
The high power stage of the duct burner, as 
mentioned previously, is operative during 
takeoff and transonic climb. 

The combustor liners in both low and high 
power stages are a louvered design, requiring 
slightly more than 6 percent of the airflow for 
cooling. 	 

As indicated earlier in Table 4.1.2-I, the only 
penalty associated with the three-stage con
figuration, relative to the prehminiary con
figurations identified during the SCAR 
studies, is an added increase in engine weight 
by 105 kg (230 lbs). This is attributed pri
marily to the use of a third combustion stage 

and the weight of an additional fuel mani
fold and injectors. A two-stage Vorbix duct 

burner, the basis for establishing the screening 

program goal noted in Table 4.1.2-I, was also 
evaluated as part of the screening program.

However, it was rejected on the basis of pro

jected difficulty in achieving the ignition fuel


to air ratio, while maintaining the desired radial 
duct height, and because it was projected to 
produce slightly higher cruise NO x emissions 
relative to the three-stage burner. If these 
anticipated difficulties can be resolved through 
future development, it would be possible to 

employ a two-stage Vorbix duct burner in 
subsequent generations of the VSCE-502B 
concept. 

4.1.2.3 Coannular Nozzle Update 

Under a separate NASA contract (NAS3-20061), 
Pratt & Whitney Aircraft has been conducting 

model tests of coannular nozzles. As part of 
this work, the coannular noise benefit associ
ated with inverted velocity profiles has been 
evaluated both statically and in simulated 
flight. Aero/acoustic tests have been recently 

completed to assess the effect of radius ratio in 
both the core and fan streams. From these 
efforts, significant data have been acquired 
which affect the primary nozzle discharge 
coefficient. This information will affect the 
nozzle area variation required for the VSCE 
flight engine concept. 
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Aero/acoustic model tests completed to date tion, in the axial direction, of the core and 

confirm the baseline nozzle concept selected duct burner nozzles. Key nozzle parameters 

for the VSCE-502B with a nominal 0.8 radius for both the core and duct streams are listed 


ratio in the fan stream and a plugless config- in Table 4.1.2-II for the VSCE-502B and the 

uration in the core stream. However, further testbed system. 

evaluations, including performance substantia

tion, are required with this nozzle, and the addi- The ejector system that will be used in the test

tional data could change this selection, bed is a 0.52 scale size of the configuration in 


the VSCE-502B. Table 4.1.2-IIl presents a 

A comparison of the VSCE flight engine con- comparison of this scaling between the testbed 
cept and the VCE testbed configuration is pre- and VSCE-502B. 
sented in Figure 4.1.24. Note the similar loca-

Low emissions Low emissions Coannular 
main burner duct-burner Nozzle/reverser 

TESTBED ENGINE Duct burner F401 nozzle 

Coannulr nozzle 
with treated ejector 

Figure4.1.24 	 VSCE-502B and Testbed Configuration- The nozzle usedin the testbedis similarto the design 
in theflight engine. 
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TABLE 4.1.2-11 

NOZZLE COMPARISON 

VSCE-502B 
408 kg/sec (900 Ib/sec) 

PRIMARY STRI.AM 

Throat Area, m2 (In2) 0 7169 (1110) 

Pressure Ratio 1 65 

DUCT STREAM (Maximum Augmentation at SLTO) 

Throat Area, m2 (In2 ) 1 103 (1710) 

Pressure Ratio 2 2 

TABLE 4.1 2-111 

VSCE-502B AND TESTBED EJECTOR COMPARISON 

Diameter -m (in) 

VSCE-502B 2042(804) 
 

0 52 Scale of VSCE-502B 1 067 (42) 
 

Testbed 1067 (42) 
 

* Testbed is a linear scale (LSF)* of VSCE-502B 

*LSF I [Alp + Ajf1 Testbed Alp Primary nozzle areaAl p 

+ Af) VSCE-502B Alf Fan duct nozzle area 

VCE Testbed


105 kg/sec (232 Ib/sec)



01240(373) 

1 6 

0263(406) 

2 3 

Length -m (in) 

2.233 (8- 9) 

1 43 (45) 

1.43 (45) 
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4.1.2.4 Mechanical Definition 

The resulting changes in engine design im
posed by refinements to the duct burner 
and coannular nozzle are minimal. As dis
cussed in the preceding sections, the nozzle 
was confirmed as the baseline configuration 
for the VSCE-502B, and the duct burner de
sign was updated to reflect an improved con
figuration The influence of these changes is 
depicted in Figure 4.1.2-5 through the overall 
comparison of the VSCE-502B updated con
figuration (bottom) with the engine definition 
prior to the VCE Testbed Planning and Defini
tion Study (top). 

Except for the refined Vorbix duct burner 
definition, the engine configuration is basical
ly unchanged. Refinements to the duct bum
er, however, have not resulted m changes to 
the duct flow area so that the engine diameter 
has not changed. Similarily, the length re-

Advanced high spool 

Variable fan Low emissions 
main burner 

quirement has not changed through the addi
tion of a third combustion stage. Based on 

a preliminary weight analysis, there is a 2.5 
percent increase in engine weight resulting 
from the additional hardware. This increase 
translates into approximately 105 kgs (230 
lbs) and is due to the increase number of 
swirler tubes which promote higher mixing 
and the addition of a burner manifold and 
fuel nozzles for the third combustion stage. 

A summary of the engine weight breakdown 
by major component is presented in Figure 
4.1.2-6 for the baseline and updated VSCE
502B These weight changes were not used 
for the mission update since the design 
changes need to be substantiated through 
the design and test investigations, which were 
beyond the scope of work for this program. 
When the component modifications are fin
alized, a final estimated weightfor the 
VSCE-502B can be determined 

pAGEISOFIG 

Low emissions Nozzle/reverser 
duct-burner 

Figure4.1.2-5 	 UpdatedVSCE-502B CrossSection (Bottom)andBaseline VSCE-502B Cross Section 
(Top) atBeginningofStudy - The overallengine configuraton, includinglength and 
diameter,is basicallyunchanged. 
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Figure4.1.2-6 	 Engine Weight Breakdown - The 
updated VSCE-502B has a slight 
weight increaseof 2.5 percentover 
the baselinedefinition 

Engine Installation 

Integrating the VSCE with the advanced, 
 
supersomc cruise vehicle concepts currently 
 
being studied by the three major airframe 
 
manufacturers does not appear to present any 
 
difficulty based on discussions with the 
 
Boeing Airplane Company, the Douglas


Aircraft Company, and the Lockheed 
 
California Company. This includes con-

ventional under wing installations of the 
 
Boeing and Douglas aircraft as well as the 
 
unique under/over wing installation in the 
 
Lockheed conceptual aircraft 
 

MaintainabilityConsiderations 

Preliminary procedures were established for 
 
inspecting and servicing the VSCE-502B 
 
configuration. These procedures were de-

fined by reviewing engine maintenance re-

quirements in terms of frequent service and 
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inspection items. Inspection requirements 
include items located in the pod as well as 
core engine locations viewed through bore

access-panels. Overall, most of the 
inspection procedures conform to current 
practices. 

4.1.3 Predicted VSCE Performance 

4.1.3.1 Overall Performance and Fuel Con

sumption Characteristics 

The performance characteristics of the up

dated VSCE system have remained unchanged
from the baseline engine for the operating 

modes of climb, supersonic cruise and sub
sonic cruise, although a change has been made 
to the mode of operation during takeoff 
power settings. Thrust specific fuel consump
tion (TSFC) estimates for the VSCE-502B are 

shown in Figure 4.1 3-1 for both subsonic and 
supersonic cruise operation. For consistancy 
with previous performance information, the 
curves in Figure 4.1.3-1 are for a 408 kg/sec
(900 lb/sec) engine size These trends were 

imtially established during the Phase IV Ad
vanced Supersomc Propulsion study completed 
by Pratt & Whitney Aircraft under Contract 
NAS3-19540 and remain unchanged at the 
completion of this study. Consequently, the 
refinements in component designs have not 
produced any adverse effect on fuel consump
tion. 

The change in takeoff power settings reflects 
an improved method for part power opera
tion. Previously, part power performance dur
ing takeoff was achieved by throttling the duct 
burner at a constant core engine match. This 
resulted in a reduction in the inverted nozzle 
velocity profile. The improved method of 
part power operation of the VSCE-502B dur
ing takeoff is to throttle the core engine at 
the same time the duct burner temperature 
is reduced in order to maintain a constant and 
optimum nozzle jet velocity ratio over a range 
of power settings. By means of independently 
varying the nozzle jet areas in the core and 



bypass streams, the VSCE-502B also main
tains the maximum design airflow during part 
power takeoff conditions. This capability 
compliments the coannular noise benefits to 
enhance the overall noise characteristics of 
the engine. Figure 4.1.3-2 presents a corn
parison of the original method of scheduling 
the VSCE-502B during part power operation 
at takeoff with the present constant jet velo
city ratio method. 

16,155m (53,000 It1 2 32 Me Std * 8C (144F1 
W , 1 Installed0 408kg/set (900 Thn/soc) 

1172 0115 

~164 

1 49 POWER 
 
- SETTING 
 

0145 * 
 

ne,101 0135..a
55 75 95 115 135 155 175 195 

1000N 
IFigure
12 16 20 24 28 32 36 40 44 

Net thrust -1000 Ibf 

SUPERSONIC CRUISE 

11,000m 136,089 f11 0 9 Mn Std . 0C(144F) 
WA, toC 408 kg/sec (900 Ibm/sec)Installed 

132 -0134 

124 - 0124 

S0114-	 POWER 

108 S SETTINGTYIA 
 

-04 0Max clmb 
 

092 0094 ottlito 
15 1000N ,, , 

0 2 4 6 8 10 12 14 
Met thrust -1o0obf 
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Figure41.3-1 	 FuelConsumption Characteristics 
for Supersonicand Subsonic euise -
Updatingthe VSCE-502B has not 
produced any changein TSFCesti
matesfor these operatingconditions. 
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4 1.3-2 PredictedTakeoffPartPowerOper
ation -ThisJigure compares the


originalandpresentschedulefor 
the VSCE-502B for improvedpart 
powerperformancealong with en
hanced overallnoise characteristics 

4.1.3.2 Noise Prediction Update 

Engine noise levels for the VSCE-502B were 

1calculated using a recently updated noise pre

diction system. The update consisted of a re
finement in the procedure used to estimate 
engine jet noise and the addition of new pro
cedures for evaluating turbine and duct burn
er combustion noise levels. The sensitivity of 
the VSCE fan noise to variations in inlet flow 
conditions and duct treatment assumptions 
was also examined. The noise prediction sys
tern updates are explained and the results 
presented in the following paragraphs. 

The noise prediction system currently in use 
at Pratt & Whitney Aircraft consists of several 
modules or subroutines that have the capabi
lity to predict the noise generated by several 
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components within the engine. The predic- of a choked inlet. The impact of not maintain
tion of jet noise for engines with coannular ing choking flow conditions m the inlet is it
inverted flow nozzles consists of two separate lustrated in the noise levels of Figure 4.1.3-3 
noise components. These noise components are As a result of the long fan discharge ducts in 
low frequency merged jet, which is generated the VSCE design, a substantial amount of aft 
downstream of the nozzle, and high frequency fan noise attenuation-is-expected. The-atten= 
premerged-jet which-is-generated close to the uation characteristics of this treatment were 
nozzle exit by the high velocity fan stream. estimated on the basis of test data from Pratt 
The low frequency portion is calculated by & Whitney Aircraft, the Federal Aviation Ad
the SAE ARP 876 method, utilizing down- ministration, and NASA engine and ng tests. 
stream merged jet properties as input. For Figure 4.1.3-3 indicates the impact of differ
the high frequency portion, correlations of ent levels of treatment on the total engine 
experimental data for coannular nozzles were noise levels. 
made in order to predict the peak sound pre
ssure level and shape In addition, this pro- Engine/airframe integration studies are being 
cedure accounts for an ejector with either a conducted in parallel with the Testbed Program 
hardwall or treated surface, As part of the (final reports not yet released). From these 
update, the proposed SAE shock noise pre- studies, a representative size for the VSCE
diction method was added to account for 502B for the FAR Part 36 noise level is 340 
shock noise created by the high velocity by- kg/sec (750 lb/sec). Therefore, the noise pre
pass stream. This prediction system provides diction update discussed here is for this engine 
an empirical method for applying test data size, and not the 408 kg/sec (900 lb/sec) size 
obtained from the NASA sponsored model that performance data are based on. 
nozzle test program (NAS3-17866) to flight 
engine noise predictions. 

AIt=335M(1100ft) Nosdhking 
4The procedure for transforming jet noise from enguesWAT;=340kg/sec(7501b/sc) 28FPR
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(N x 1000)
The prediction system for fan noise has not 3o 40 50 60 
been altered for the current update Predic- Thrust lbs x 1000 
tions are based on a data base drawn from 
both engines and fan rigs, and covers ranges 
of key factors, including fan tip speed, stage Figre4 1.3-3 VSCE-502B SidelineNoise Update 
number, and blade design. As shown, turbine noise is insigmfi

cant,fan noise hasa slighteffect on 
A choked inlet noise study, sponsored by totalnoise,dependingon the level of 
NASA (Contract NAS3-16811), was conduc- acoustic treatment(L/H)in the duct 
ted at Pratt & Whitney Aircraft. Based on the behind the fan, and combustion 
results of this contract, a 20 dB inlet noise sup- noisefrom the ductburner may have 
pression was applied to account for the effect a small effect on total noise. 
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A main burner combustion noise prediction 
system was the result of an FAA sponsored test 
and analytical program This prediction sys
tern is not intended for VSCE cycles, and 
extrapolating it to duct burner conditions is 
questionable Some preliminary predictions 
for duct burner combustion noise were made 
using this approach and the results are in
eluded in the total VSCE-502B noise esti
mates. The inclusion of duct burner noise is 
part of the prediction system update. 

Results from a revised turbine noise predic

tion procedure were also included. Levels of 

turbine noise are relatively low for the VSCE 
configurations at takeoff, cutback and side
line, and do not contribute to the total noise. 
At approach, this noise source may becomesigmficant, 

The noise estimates for the VSCE-502B are 
summarized in Figure 4 1 3-4. The range of 

values represents the possible variations in en
gine operating procedure and assumptions re
garding various noise treatment geometries. 

Alt = 335 n (1100 ft) 
 
No shielding
 


4 engines 340 kg/sec 
 
120 (5 bsc 

115 WA,,, 

110o 

EPNL -efficiency 
10o5 

100 
 
9-5 
 

35 40 45 50 55 60 65 70 75 

Specific thrust {F,/W.) 

Figure4.1.3-4 SidelineNoise Estimates - VSCE 
conceptswith the coannularnoise 
benefit are compared with different 
configurationsof a Low Bypass 
Engine (LBE) 

The VSCE-502B levels are compared with a 
family of conventional unsuppressed single 
stream nozzles. 

4.1.3.3 Exhaust Emissions Prediction Update 

The projected emissions characteristics of the 
VSCE-502B were updated to reflect improve
ments in the emissions data base acquired from 
two main sources. These included the results 
from the NASA/P&WA Experimental Clean 
Combustor Program and the NASA-sponsored 

duct burner screening study under contract 
NAS3-19781 

Recently, the test results from the engine eval
uation of the Vorbix combustor under Phase 

graofcthe xeimal Clea CombusPgram became available. The data were used 
for projecting the emissions of the main com

bustor m the VSCE-502B. Also, the results of 

the duct burner screening study have provided 

a more comprehensive definition of the duct 
burner and its emissions characteristics thanahee ne rcdn CRdfnto 
studies 

With assimilation of this infornation into the 

existing data base, revised estimates were com
puted of VSCE-502B exhaust emissions. Fig
ure 4 1 3-5 shows the projected emissions 
levels for both airport vicinity and altitude 
cruise as a function of chemical combustion 

of the duct burner. The shaded 
area depicts emissions from the main com
bustor, while the unshaded area depicts the 
emissions from the duct burner. The pro

jections of the different pollutants are based 
on direct scaling of the new data, and do not 
reflect any allowance for deviation from a 
nominal engine deterioration or additional 
development of the combustors. 

The results indicate that by incorporating the 
technology demonstrated in the Experimental 
Clean Combustor Program in both the main 
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combustor and the duct burner the engine is 
capable of meeting the 1984 airport vicinity 
NOx emissions requirements for Class T5 en- 
gines. However, when the duct burner is de
signed for 99 percent combustion-efficiency 
(the goal of screening study of NAS3-19781), 
carbon monoxide (CO) pollutants are nearly 
twice and the unburned hydrocarbons (THC) 
50 percent above the Environmental Protection 
Agency Parameter (EPAP) required levels. The 
excessive CO and THC emissions are attribu
table to duct burner operation at takeoff and 
climbout To reduce the overall output of 
these pollutants to the required airport vicimty 
levels, it is necessary to increase the chemical 
combustion efficiency of the duct burner from 
99 percent to 99.6 percent. The cruise NO x 
could be reduced by a reduction in cycle over
all pressure ratio below the design value of 20 
This reduction would not affect supersonic 
performance but would compromise subsonic 
cruise TSFC. 

............1. ...... 
 
UNEIAOEO- FROMOucr BURNER 

S 

1 
0 

P19CLA TBO 
76..E,,,.0 

4 

= ~~CA -3: 0 o.o'
00AL30 

c ~mo NOX Co T 4 I CRUISE
OEOURX 

*u DuOtSuRNER - S 
CMBUSTION EFFICIENCY COMUIO. EFFICIENCY 

Figure4 1.3-5' Updated VSCE-502B Emissions 
Estimates-A chemical combus
tion efficiency of99.6 percentis 

The NOx emissions at high altitude cruise, as 
indicated in Figure 4.1.3-5, are substantially 
higher than the proposed Climatic Impact 
Assessment Program (CIAP) goal of 3.0. Al
though the-requirements for altitude NOx are 
not as yet established, if they are constrained 
to this proposed level, more advanced emis
sions-reduction technology must be employed 
in gas-turbine engine combustors to meet the 
goal. Since the main combustor produces near
ly 90 percent of the NOx emissions at the super
sonic cruise condition, it would be advantageous 
to introduce new emissions-reduction techno
logy to the main combustor with a pnority 
higher than the duct burner. The duct burner, 
however, could also utilize this new technology 
to lower emissions. 

4.1.4 Engine Sizing and Mission Results 

Mission analyses of the VSCE-502B were con
ducted using the same ground rules and pro
cedures as in Phases II, III and IV of the Ad
vanced Supersonic Propulsion study (Con
tract NAS3-19540). As a summary, the mis
sion analysis ground rules are presented in 
Table 4.1.4-I as well as the following para
graphs However, a complete description is 
presented in the Advanced Supersomc Pro
pulsion Study Phase II Final Report (NASA 
CR-134904) 

TABLE 4.1.4-1 

MISSION ANALYSIS GROUND RULES 

Airplane Design Modified ArrowWing(NASA CR-13-2374) 

'light Mach-Nuimber 2.4 

Thrust Loading Base 0.275, Alternates 
0.24 and 0.32 

I" 
Payload 292 Passengers 

required to meet-the-1984 Environ

mental ProtechonAgency CO rule Takeoff Gross'Weight 345646 Kg (762000 lbm) 

for bdvancedsupersonicengines (TOGW) 
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TABLE 4 1.4-1 (Cont'd) 

Range Vanable 

Fuel Reserves As Defined in Lockheed 
Report LR-26133 

Inlet Axisymmetnc Mixed 
Compression 

Design Missions Nominal All Supersonic 
Alternate Mixed with 

1110 Kn 
(600 nautical 
miles) Initial 
Subsonic 
Cruise 

For this analysis, the airplane aerodynamics 
from NASA CR-132374 were modified to 
account for pod drag differences caused by 
engine size vanations Airplane empty weight 
included the effects of engine size on engine 
and pod weight Climb power settings (duct 
burner augmentation levels) were optimized 
to maximize overall mission range 

Engine corrected airflow divided by airplane 
takeoff gross weight (WAT 2 /TOGW) is used 
as the engine size parameter in advanced super
sonic technology mission evaluations because 
the range capability of the airplane is essenti
ally a unique function of this parameter for 
a given engine type. The takeoff field length 
capability is related to the airplane thrust 
loading, 4 (Fn)/TOGW, for a four-engine air
plane. The higher the thrust loading the 
shorter the takeoff field length Both Fn/ 
TOGW and VAT, /TOGW are defined at 
370 km/hr (200 its) at sea level on a standard 
+1O°C day Theoretical jet noise of an en
gine is directly related to its specific thrust 
(Fn/WAT 2 ), which can be calculated from 
the following equations 

4 (Fn) TOGW 
Fn/WAT 2 

4 (WAT 2 ) TOGW 

Since airplane range is a function of WAT 2 I 
TOGW and engine noise is a function of 
Fn/WAT 2 , this equation can be used to re
late noise for any given aircraft takeoff thrust 
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loading for a specific engine type, providing 
that appropriate distance, shielding and m
verted velocity effects are included 

The parameter WAT2 /TOGW is a good one 
mainly because jet noise can be related to it 

in a gross way at a fixed Fn/TOGW, if the Vd/
V s constant Range is not a unique func- u 

tion of WAT 2/TOGW, however. For example, 

TOGW can be reduced at constant WAT 2/TOGW 

until range = 0 because fuel weight equals 0 

Range is a unique function of WAT 2 for a 

given airplane with fixed TOGW 

Figure 4 1 4-1 shows the VSCE-502B engine


size-airplane range relationship for the nominal


(all supersonic) and mixed-missions Since


the VSCE-502B baseline performance has not


changed from the estimates defined in the Phase


III Advanced Supersonic Propulsion study the


trends shown in this figure have not changed.


However, noise estimates for the VSCE-502B


with the inverted velocity piofile have changed.


A minimum change in these results would


occur for the added weight from the three


stage vorbix duct burner (A=24 n. mu.). How

ever, noise estimates for the VSCE-502B with


the inverted velocity profile have changed


As a result, the noise effect on airplane range


is different in comparison to that identified in


the Phase III study The updated noise levels


are shown in Figure 4.1.4-2 along with the


Phase III noise levels. The primary reason for


the noise difference is the inclusion of new


flight effects data m the Pratt & Whitney Air

craft noise prediction system



4M 

00'0 0a1 0 W10012 00013 00014 
sLS W TMGOW - S9EC 

Figure41 4-1 VSCE-502B EngineSize and Range
Relationship-These trends have 
not changedfrom earlierPhaselll 
studies since VSCE-502B perfor
mance has not changed 
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TOTAL PEAK SIDELINE NOISE - EPNdB 

Figure4 1 4-3 	 Range Capabilityfor Nominal 

Figure4 14-2 	 Effect of UpdatedNoise Levels - Mission - Revised mission range 
Effect of revisednoise estimates trends at variouspeak sideline 
on missionrange is less that I noise levels areshown for differ
percentat FAR-36 noise level, ent thrust to weight ratios 
increasingto 4-5 percent atFAR
36-5dB 

4000. , FNITOGW 02400 0270 0320 

4 ENGINENOISEThe band shown for the revised noise levels in 
1400Figure 4 1 4-2 represents the difference be

tween operating at the engine nominal fan ,400)

pressure ratio (FPR) of 3 3 (higher noise side I0 	 2® 


of the band) at takeoff versus operating at a 
fan pressure ratio of 2.8 (lower noise level). - a2oER500 	 S 

Operating at the lower pressure ratio requires 
more augmentation to attain a specified thrust 37000 0 40 

- TA - FAR32 "tlevel in contrast to the higher pressure ratio. 
TOTAL PEAK SIDEINE NOISE - EPNdB 

Consequently, if combustion noise from the 
duct burner is eventually determined to be a 
problem, the noise levels estimated with the Figure4.1 4-4 	 Range CapabilityforMixed Mission 

- Revised mission range trends atlower fan pressure ratio system may not be 
variouspeak sidelinenoise levelsachievable 
 
are shown for different thrustto 

Figures 4.1.4-3 and 4 1 4-4 present summaries weight ratios 

of mission range capabilities at various revised 
peak sideline noise levels for takeoff thrust to 4.1.5 Technology Sensitivity Study 
weight ratios of 0 24, 0 275, and 0 32 The 
range estimates using the revised noise levels A study was conducted to determine the per
for the nominal mission are presented in Fig- formance differences between a VSCE using 
ure 4.1.4-3, and Figure 4.1.4-4 presents the near-term technology as opposed to the far
same information for the mixed mission. The term technology used m the definition of the 
FAR-36 reference point in each figure corre- VSCE-502B. The assessment of technology 
sponds to an effective perceived noise level difference was made by comparing a VSCE de
(EPNL) of 108 decibels. rivative, designated VSCE-5 11, which has a 
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technology readiness in the early 1980 time The thermodynamic cycle of the VSCE-511 
period, with the VSCE-502B, a late 1980 en- was d6fined by using the same fan pressure 
gine. This amounts to a five year difference ratio (3.3) and main combustor throttle ratio 
in technology readiness level between the two (1.195) as the VSCE-502B. (Main combustor 
engine concepts. throttle ratio is defined as the combustor exit 

temperature at the maximum climb level divid
4.1.5.1 	 Near-Term Technology Engine De- ed by the combustor exit temperature at take

finition off.) As a result of decreased cycle tempera
tures and increased cooling air the bypass ratio 

The VSCE-511 concept was derived from the of the VSCE-511 was lowered to maintain the 
VSCE-502B by adjusting cycle temperatures same nonaugmented exhaust velocity ratio as 
and pressures to meet the technology limits the 502B (V D/VJ = 1.0) at the sea level static 
for the nearer term period. The mechanical takeoff turbine temperature. The cycle over
configuration of the VSCE-511 concept is es- all pressure ratio was lowered to maintain a 
sentially the same as the 502B, with added maximum compressor discharge temperature 
weight and length resulting from cycle changes. of 6200C (1150 0F) at the supersonic cruise 
Figure 4.1.5-1 shows a comparison of the en- flight condition, compared to the VSCE-502B 
gines: 	 discharge temperature level of 7050C (1300 0F) 

at the same condition. 

VSCE-502B 

VSCE-511 
Engine -502S -511 
Dimensions m (in)I 

D2IX 224 (B5) 2.24 (') - I 
1total 876 1268) 7.26 (286) 47 8%) 	 O 0 ORIGINILLOF P 	 PWeights kg ib) 
DEW 4765 (10,500) 5445 (12.000) 

Eng. * N/R 8090113,400) 6985 (15,4001 (.15%) 
airflow size 

401 kW/sec 1500 lb/secd 

Fgure4.1.5-1 Engine Comparison-The major differences between the two engine concepts are in the 
hot section componentsand exhaustnozzle configuration. 

27 



4.1.5.2 Performance Trends 

The areas of principal interest in assessing tech
nology sensitivity are the hot section compo
nents in the engine. The burner liner materials 
projected for'the near-term VSCEhave a lower 
metal temperature capability which introduces 
required cycle changes. The effect of this on 
the main combustor is to limit the maximum 
compressor discharge temperature by lowering 
the cycle overall pressure ratio. For the duct 
burner, an increase in cooling air is required. 
This additional cooling flow increases the by
pass stream losses, thereby reducing engine per
formance at each augmented flight condition, 
Since the VSCE operates with duct burning 
augmentation at the supersonic cruise flight 
condition, the impact of these losses becomes 
significant. 

Turbine materials, including airfoil and disk 
materials, are also affected by the lower tern
perature capability. Lowering the cycle over
all pressure helps in cooling the turbine disks 
and airfoils, but reduced combustor exit tern
peratures and increased cooling flows are still 
necessary to maintain commercial durability 
and life requirements These changes necessi

tate a decrease in bypass ratio to maintain the 
optimum jet velocity ratio between the pn

mary and fan duct streams. This velocity ratio 
is important in establishing takeoff noise levels, 
and to maximize performance-at-subsomi and 
supersonic cruise operating conditions. 

In addition to lowering the turbine airfoil 
metal temperatures, the blade root stress levels 
must be decreased. Lower stresses are obtained 
by reducing the design rotor speed, which in 
turn, necessitates compressor flowpath changes 
such as increased diameter of additional stages 
to limit the design loading levels. Such changes 
in the engine configuration serve to increase 
the overall engine weight. 

The effect of technology level on VSCE per
formance is shown by the mission performance 
characteristics listed in Table 4.1.5-I. In this 
table, the cycles of the two study engines are 
listed along with the VCE testbed engine cycle. 
Since the testbed cycle is close to either the 
near or far-term engine, the VCE component 
and testbed programs will provide nozzle and 
duct burner design information and data that 
are applicable to both levels of technology read
mess. 

TABLE 4.1.5-1



EFFECT OF TECHNOLOGY ON VSCE PERFORMANCE



Cycle Characteristics 

FPR 
 
CET 0 C (0F) 
 
TCA (%) 
 
BPR 
 
CDTMAX 0C (F) 
 

OPR 

Mission Performance 

Supersonic TSFC (%) 
Subsonic TSFC (%) 
Engine Weight (%) 
Range (%) 

VSCE-511 VSCE-502B VCE Testbed 

33 3.3 3.1 
1370 (2500) 1480 (2700) 1200 (2200) 
15 11 -

085 1.3 0.9 
620 (1150) 705 (1300) - -

134 20 21 

+1 7 Base - -

+8.0 Base - -

+150 Base - -

-7 0 Base - -
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From a cycle standpoifit, the five year differ- 
ence in technology is most apparent in the 
lower percentage of turbine cooling air (TCA) 
and the increase in combustor exit tempera
ture for the VSCE-502B However, the ap
plication of near-term technology also has 
an adverse effect on engine performance, 
fuel consumption, weight and mission range. 
The effect on aircraft range is a decrease of 
7 percent for the VSCE-5 11 engine relative 
to the VSCE-502B 

A series of technology trends is presented in 
Figure 4.1.5-2 to further illustrate the cycle 
and performance improvements that are 
achievable through the application of far-term 
technology advances These trends compli
ment the mission performance results present
ed in Table 4 1 5-I. 
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4.2 VCE TESTBED DESIGN DEFINITION 

4.2.1 Introduction 

Work in this part of the program was directed 
at establishing the preliminary design defini
tion of the VCE testbed configuration for test
ing the two cntical components the low
emissions duct burner and the low-noise coan
nular nozzle Under related NASA technology 
programs, the feasibility of these components 
has been demonstrated dunng small-scale test
mg However, for verification of this techno
logy, large-scale testing of these components 
in a representative engine operating environ
ment is required. This verification testing is 
planned for the next phase of the overall VCE 
Testbed Program. In addition, this large-scale 
engine test may serve to identify other areas 
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Figure4 1.5-2 VSCE Technology Trends-Benefits in cycle operatingcharacteristicsand overallsystem 
performanceare clearly apparentthrough the utilizationoffar-term technicaladvances. 
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requiring technology improvement to ensure 
the establishment of a viable technology base 
for second generation supersonic transport en
gmes. 

The objectives of the overall VCE Testbed 
Program are listed in Table 4.2 1-I. The tech
nical approach outlined for the Testbed Plan
ning and Definition Study to meet these over
all program objectives consisted of the follow
ing: 

* Establish testbed design criteria 
 
" Select core engine 
 
* Define conceptual mechanical configura

tion 
" Define control system requirements 
" Define instrumentation requirements 
* Select test facilities 

TABLE 4.2.1-1 

VCE TESTBED PROGRAM OBJECTIVES 

DEMONSTRATE: 

" Coannular noise benefit 
* Low-emssions duct burner 
* IHigh levels of duct burner performance 
* Acoustic treatment effectiveness 
* 	 VSCE cycle characteristics - inverse throttle 
 

schedule 
 

EVALUATE: 

* Duct burner combustion noise 
* Fan/duct burner noise interactions 
o Fan/duct burner/nozzle stability 
* Core noise source 
* 	 Validity of noise prediction based on model test 

data 
* Improvements to AST jet noise prediction 

4.2.2 	 Testbed Design 

The VCE testbed system, as a technology de
monstration vehicle, will be designed to con
form with current Pratt & Whitney Aircraft 
rig hardware standards. These design standards 

are intended to ensure complete demonstra
tion of aerothermodynamic concepts. A de
monstration of the structural life requirements 
of potential advanced technology supersonic 
engines is beyond the scope of this program, 
but will be a necessary follow-on to this pro
gram. 

4.2.2.1 General Design Criteria 

For the mechamcal design of the testbed sys
tem, general design criteria must be established 
for areas of concern Also, operating limits and 
experimental data verification requirements 
must be established. The specific areas to be 
considered in defimng the testbed design cri
teria include: engine and rig interface defini
tion, operating requirements and limits; struc
tural-mechanical, aerodynamic and thermal 
limits, duct burner, nozzle and ejector designs, 

range of test parameters, instrumentation and 
control requirements. 

The design criteria should be established 
early in the design phase of the program and 
will supersede or extend Pratt & Whitney Air
craft normal design practices or F00 engine 
design criteria as well as be consistent with 
NASA requirements. Criteria for all loads, 
life design margins and requirements will be 
defined. The testbed engine operating charac

teristics and performance, operating limits 
from mechanical, thermal, and aerodynamic 
standpoints will be established for the F100 
engine and the associated duct burner and 
exhaust nozzle test hardware. This will in
lude mounting arrangements and interface 

definitions, in addition to maximum load 
conditions, structural life requirements, al
lowable stresses, stability limits, materials, 
and safety requirements. 

The range of test parameters to acquire meaning
ful noise (with and without acoustical treat
ment for the ejector) and emissions data will 
be used to define overall performance parame
ters (airflows, pressures, temperatures) and 
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"health" monitoring parameters (metal teAi
peratures, stresses). Finally, control and mst
rumentation requirements will be established 
for the FIO0 engine testbed This definition 
will encompass structural considerations and 
consider the accuracy of test data to be ob
tained during the program. 

4.2.2.2 Core 	 Engine Selection 

Three Pratt & Whitney Aircraft production 
engines were considered and evaluated as the 
core engine for the VCE testbed system. The 
candidate engines considered were the TF30, 
TF33, and the F100-PW-100. These engines en
compass a range of total airflow sizes, fan pres
sure ratios and bypass ratios, and each engine 
is capable of being modified to accept the 
low-emissions duct burner and the low-noise 
coannular nozzle A brief description of the 
mechanical configuration of each engine is pre
sented in the following paragraphs. 

The TF30-P-1 engine is an axial-flow turbofan 
with a moderately igh bypass ratio and com
pression ratio. The basic engine configuration, 
as shown in Figure 4 2.2-1, consists of a low
pressure spool with a three-stage fan, six-stage 
low-pressure compressor, and a three-stage 
low-pressure turbine. The high-pressure spool 
consists of a seven-stage compressor unit and 
a single stage high-pressure turbine. The con
bustion system consists of eight can-annular 
chambers. Different models of the engine are 
equipped with an afterburning system having 
a fully modulating, flap-type convergent pri
mary nozzle and a blow-in-door ejector with 
variable inlet and exhaust areas. 

The TF33 engine is also an axial-flow, twin
spool turbofan. The low-pressure spool in the 
TF33 engine is comprised of a two-stage fan, 
seven-stage low-pressure compressor unit, and 
a three-stage turbine system. The high-pressure 
spool consists of a seven-stage compressor that 
is driven by a single-stage high-pressure turbine. 
The combustor is a can-annular configuration. 
A cross-sectional view of the TF33 engine is 
presented in Figure 4.2.2-2. 

Figure42.2-1 	 TF30EngineCross Section -De
nvatves of the basic TF30 engine 

are used in suchMilitary applica

tionsas the F-111 andA-7fighter 

aircraft. 


Figure422-2 	 TF33EngineCrossSection -De. 
rivativesof the basic TF33 engine 
power models ofthe B-52 long 
rangebomberandthe C-141 cargo 
aircraft. 

Of the three engines considered for the test
bed, the F100-PW-100 is the more advanced 
in terms of-technology level. As shown in 
Figure 4.2.2-3, the FIO-PW-100 is a twin
spool turbofan with mixed-flow augmentation. 
The fan is a three-stage system that is driven 
by a two-stage low-pressure turbine. The corn
pressor in the high-pressure spool is a ten-stage 
system that is driven by two air-cooled turbine 
stages. The inlet vanes to the high-pressure 
compressor have variable geometry capability 
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along with the first two stator rows. Unlike 
the other engines, the Fl 00-PW-1 00 has an 
annular combustor design. The mixed-flow 
augmentor utilizes circumferentialtpilot-bum
ers and radial "V-gutter" flameholders. The 
exhaust nozzle is a balanced beam configura
tion, which provides a light weight, compact 
design 

Figure4 2.2-3 	 FIOO-PW-100EngineCrossSection -
This eng4e s thepowerplantfor 

the advancedF-16 weapon system, 
and incorporatesnumerous tech
nology advances. 

The cycle charactenstics of the three candi
date engines are presented in Table 4.2.2-I 
along with the VSCE-502B for comparison. 
Overall, the 51 00-PW-1 00 engine most closely 
duplicates the VSCE-502B cycle charactens
tics, particularly, bypass stream conditions. 
On the basis of this similarity and other fac
tors as noted below, the FIOO-PW-100 engine 
was recommended and selected for the testbed. 

Although the TF30 and TF33 engines closely 
match the VSCE bypass ratio, the limited 
combustor exit temperature capability and 
low fan pressure ratio of these engines does 
not provide enough flexibility when rematched 
to the VSCE-502B cycle conditions. Conse
quently, these engines are not capable of pro
viding the proper duct burner inlet conditions 

and the attendant flexibility to fully evaluate 
the coannular noise benefit. 

TABLE 4.2.2-1


CANDIDATE ENGINE CYCLE CHARACTERISTICS



ALONG WITH VSCE-502B



Total corrected 
airflow - kg/sec (Ib/see) 

Bypass ratio 
Fan pressure ratio 
Overall pressure ratio 
Combustor exit 

temperature '-C(OF) 

Bypass stream conditions 
at fan exit plane 
Pressure - N/rn2 (psia) 
Temperature -,oC (*F) 

Primary stream conditions 
at turbine exit plane 

Pressure '-N/in2 (psia) 

Temperature ' 0 C(F) 

VSCE-502B 

272-408 
(600- 900) 

1.3 
 
3.3 (28) 
 

20 
 
1482 
 

(2700) 
 

41,5 (33) 
153 [144] 

(302 [292]) 

1.86 x 105 1.72 x 105 
(27 [25]) 
637 [671] 

(1180 [1240]) 

FIOO-PW-100 TF30 TF33 

125 104 230 
(227) (230) (508) 
0.63 0.9 1.26 
3.1 2.1 1.9 
25 16.5 15.6 

1404 982 926 
(2560) (1800) (1700) 

42 28 26 
148 136 80 

(300) (207) (177) 

3 03 x 105 2.06 x 105 1.93 x 105 

(44) (30) (28) 
746 521 478 

(1376) (970) (894) 
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In contrast, the F1OO-PW-100 engine, because 4.2.2.3 Predicted Performance 
of the high fan pressure ratio and combustor 
exit temperature capability, has the potential Performance predictions of the VCE testbed 
to be rematched to duplicate the inverted ye- system were made by integrating the perfor
locity profile associated with the coannular mance simulation of a F100 engine with the 

noise benefit. By removing the mixed-flow VCE testbed simulation. A baseline simula

afterburner system and single-stream nozzle tion of a representative F100 was obtained 

and replacing these components with the VCE from the Pratt & Whitney Aircraft Group 
duct burner and separated-stream coannular Government Products Division The F1 00 si
nozzle, the F100-PW-100 engine has the po- mulation was converted to the VCE testbed 

tential to approximate the desired exhaust by analytically removing the afterburner and 

conditions of the VSCE-502B In addition, common nozzle routines, and incorporating 
the rematched F100 also has the potential to separate nozzles for the core and bypass 
simulate the exhaust condition of the VSCE- streams. Also, a duct burner routine was 
511, the near-term teclmology concept, as 	 added to the bypass stream The appropriate 
indicated in Table 4 2 2-II 	 pressure losses associated with the duct burn

er and bypass flow duct were incorporated in
to the simulation 

TABLE 4.2.2-11


COMPARISON OF REMATCHED F100 WITH VSCE-502B



AND VSCE-511 CYCLES



Far-Term Nearer-Term Testbed 

Cycle VSCE-502B VSCE-511 (rematched F100) 

Fan pressure ratio (design level) 
Overall pressure ratio 
Bypass ratio 
Max combustor exit temp

°C (F) 

3 3 
20 
1 3 
1204 

(2200) 

3.3 
134 
0 85 
1093 

(2000) 

3.1 
208 
0 91 
1204 

(2200) 
Fan pressure ratio 28-33 2.8-33 31 
Exhaust condition 

Velocity ratio (duct/engine) 
Nozzle area ratio (duct/engine) 
Airflow ratio (duct/engine) 

1 7 
1 0-1 4 
1 3  15 

1.7 
0.7-1.1 
0 8 - 11 

1.7 
0.79 
0 93 

Duct burner condition 
Inlet temp0 C(OF) 143-153 

(290-310) 
143 153 

(290-310) 
152 

(307) 
Exit temp0 C(F) 

PressureN/m 2 (psia) 

1148-1287 
(2100 -2350) 

227x 105 289x 105 
(33- 42) 

1287-1426 
(2350 -2600) 

2 2 x 105 2.89x 105 
(32- 42) 

1165 
(2130)

244x 105 
(35.5) 

Fuel/air ratio 003-0035 0036-0042 0031 


Net thrust -kgs (lbs)/total 66 - 69 66 - 68 63 5 

corrected airflow kgs/sec 
(lbs/sec) 
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- -

With the requirement to open the primary 
nozzle to achieve jet velocity variations, an 
accurate representation of the turbine exit 
guide vane pressure loss characteristics was 
necessary Although the Pratt & Whitney Air
craft Government Products Division furnished 
guidelines on the relation of primary nozzle 
areas and turbine exit gmide vane pressure 
losses, a pressure loss profile was not available 
which covered the range of operation required 
for the testbed. However, it was determined 
that the information supplied by the Govern
ment Products Division could be matched 
very closely with the use of a JT9D turbine 
exit guide vane swirl map for the testbed 
operating range Therefore, a swirl module 
with this profile was integrated into the test
bed simulation to complete the construction 
of the F100 testbed simulation. 

In the testbed, the maximum fan jet velocity 
is determined by the duct burner maximum 
average temperature of 1430'C (2600'F) In 
order to achieve the desired nozzle jet velo
city ratio in the testbed of approximately 1.8 
to 2.0, the core jet velocity must be limited to 

about 450 m/sec (1500 ft/sec), which is con
siderably lower than that of the F 100 at 
maximum power. To achieve the required 
primary jet velocity, the F100 is operated at 
lower combustor exit temperatures The pri
mary nozzle jet area is increased to maintain 
the design total airflow at the lower combus
tor exit temperature. With the testbed simu
lation, predictions of performance and com
ponent operating conditions were established 
for design point operation as well as other 
critical operating points that were selected on 
the basis of the testbed program requirements 
The predicted performance is shown in Table 
4.2 2-1I with the comparison of the base 
F100 match to the match of the F100 in the 
testbed for the design point and two critical 
operating points For each F100 match point 
for the testbed, the predicted performance in
cluded duct burner operation from not lit to 
maximum augmentation conditions. This in
formation was used to establish an aerother
mal definition of the flowpath in the testbcd 
engine, the first step in the mechanical design 
process 

TABLE 4.2.2-111



PREDICTED TESTBED PERFORMANCE



Total Airflow - kg/sec (lbs/sec) 

Fan Pressure Ratio 

CET 'C- (OF)
 
Duct Burner Temp - 'C (0F) 

Duct Jet Area -m 2 (m2 ) 


2Primary Jet Area - m. m 2 (m2) 
 
Primary Jet Velocity - m/sec (ft/sec) 
 
Jet Velocity Ratio 
 
Jet Velocity Ratio (D B not lit) 
 

F100 Base 

103 (227) 
3 1 
1406 (2563) 

N.L. 
0 077 (119*) 
0.177 (275*) 
734 6 (2410) 

Design 
 
Point 
 

105.4 (232.5) 
3.12 
1208 (2206) 
1427 (2600) 
0241 (373) 
0.262 (406) 
454.4 (1491) 

1.9 
0.98 

Testbed 
Primary Nozzle Area 

1 2 

993 (219) 902 (199) 
2 93 2.63 
1146(2095) 1062 (1943) 
1427 (2600) 1427 (2600) 
0.241 (373) 0.241 (373) 
0245 (380) 0 226 (350) 
441 0(1447) 413 3 (1356) 

1 9 19 _ 
0.97 0 96 

*Choked flow area simulation of common flow shown as separate streams. 
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The operation of the F100 in the testbed con- TABLE 4.2.2-IV
 

figuration does not impart any changes to the


operating characteristics of the F 100 high- F100 GAS GENERATOR OPERATING LIMITS



pressure spool The high-pressure compressor
 

operates on its normal operating linc How- Oil Inlet Temperature -0C (OF) 

the fan operates on a slghtly different Normal Operating Range 38-149 (100-300)
ever, Maximum (All Operation) 165 (330) 
operating line in relation to the base F 100 Maximum - Intermediate 
mainly because of the difference in schedul- (During stabilization at idle 
ing the testbed nozzle areas relative to the jet following ugh power 
nozzle in the base F100 engine, operation) 185 (365) 

In Figure 4.2.2-4, the predicted fan character- Turbine Cooling Air (Function of PC05/PB)


istics of the testbed' are compared to the base


F100 As indicated, the overall operating Chamber No 5 pressure/burner pressure with


characteristics are very similar. PCl 1/PB



Chamber No. I1 pressure/burner pressure 

Ratio Maximum Minimum 

1oo 0 	 PC05/PB 0.28 0.23 
PCI l/PB 0.85 070Relative 

fan 0 
pressure 	 Mainratio 	 il Pressure 

080o 	 1 Varies in proportion to compressor (N) speed and 

0 70 1 	 oil temperature The following main oil pressureI I 

080 095 090 o 95 100 105 limits shall be strictly adhered to. 
Relative fan corrected airflow Normal Operating Range 13 8-55 N/cm2 

Figure4 2 2-4 Testbed Fan Characteristics- In (Relative to breather pressure) (20-80 psi) 

comparisonto the base F100engine 
thefan in the testbed operateson Maxmum Allowable for Oil Tem- 69Nitr 2 

a slightiv lower operatingline perature Greater Than 40C (400 F) (100 psi) 

Maximum Allowable Pressure -13 8 N/cm 2 

In addition to establishing the baseline per- Fluctuations (± 20 psi) 

formance predictions, operating limits were 
Minimum (During starting and 13 8 N/cm2 

defined for the testbed system. Testbed oper-


ation must be controlled such that mechani- initial operation, not to persist (20 psi)


for more than one minutecal, aerodynamic, and thermal operating 

limits are observed for the F100 core engine Breather Pressure 
as well as the duct burner When compared to 
the F100 mixed-flow, afterburning configura- Breather pressure shall not exceed 17 N/cm 2 (5 
tion, the testbed operates at reduced turbine in Hg) at steady state conditions or during tran
temperatures and high-pressure rotor speeds sient operation. 

and increased low-pressure rotor speeds to Vibration Limits 
achieve the design fan duct airflow and pres
sure ratio. The Fl 00 gas generator operating The maximumn acceptable vibration limits through
limits are based on the "F100-PW-100 Test out the complete operating range of the engine are 
Instruction Sheet", Volume 2 (revised 5/6/74, tabulated below for the frequencies from 70 to 
and are listed in Table 4 2.2-IV 233 Hz 
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TABLE 4 2.2-V (Cont'd) 

Maximum Single 
Location AmplitudeI. 

Inlet Case 	 0 0076 cm (3 0 mils) of which 
no more than 0 0025 cm (10 
mlt) shall be of the N2 compo
nent 

2-3 Bearing 0 005 cm (2 0 mils) of which no 
Compartment more than 0 0018 cm (0 7 nl) 

shall be of the N-)component 

Engine Gearbox 	 0 0064 cm (2 5 mils) of which 
no more than 0 005 cm (2 0 
mils) shall be of the PTO com
ponent



Diffuser Case 0 005 cm (2 0 mils) of which no 
(horiiontal, more than 0.004 cm (1 5 mils) 

steady state shall be of the N1 component 
only) 

During starts, the allowable limit is 0 019 cm (7 5 
mils) single amplitude at all locations which must 
decuease to within the above hmits within 5 seconds 
after attaining idle power 

Fan Turbine Inlet Temperature (FTIT) 

At intermediate power and above, the limits shown 
m Figure 4 2.2-5 shall be observed 

During starting do not exceed 5930 C (11000 F) 

Fan Speed (N1 ) 

The limits in Figure 	 4 2.2-6 shall be observed 

Compressor Speed (N2 ) 

The maximum allowable speed is (13,400 rpm) 
Burner Pressure 

The maximum allowable pressure is 2100 N/cm2 

(580 psia) 

MIMUM4FFTIFETADY ATE 

OFERATINGLIMIT 

* REPRATF LIMIT 'R 
.IkA MItO l..I I1 R~FI 

"_ -

RMM_ 
-

MMALLROABLEF 

1 I.

,,5o 
. t.. o 

_ _ _ _ 

ENGINE INLET TOTAL TEMPERATURE - T 

30 

O
F 

4D 

,_ 

Figure4 22-5 F100-PW-1O0 Fan Thrbzne Inlet 
TemperatreLimit 

[ -_ _°_ 

I 
-MOR -so a 

o 
2l-00 0 0 200 

ENGINE INLET TOTAL TEMPERIATURE 

's. 

300 

TT oFl 

I 
400 

I 
500 

Figure4 22-6 F100-PW-I00Engine Maximum Fan 

Speed Limits 
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TABLE 4.2 2-IV (Cont'd) 

Compressor Inlet Variable Vanes (CIVV) 

The boundaries shown in Figure 4.2 2-7 shall be 
observed 

Rear Compressor Variable Vanes (RCVV) 	 

The boundaries shown in Figure 4.2.2-8 shall be 
observed 

Augmentor Spikes 

Limit augmentor over-piessure spikes at the fan 
discharge to 10 percent of the steady state oper
ating fan discharge pressure before augmentor 
lightoff 

I'22 I A) 

_,no .... 	 

0testbed. 

NAA77 ....PSRSNT 

Figure4 2 2-7 	 F100-PW-1O0 Engine Compressor 
Inlet Variable Vane Operating 
Characteristicsand Limits 

-At 	 [___selection 

\

,oo*coo~r,. 	-i1 - 2.0'C [.'n'Fl 	 

.c, It5WFl 	 

- rIAL -A-	

.o 
CORETE 29N0TCORRECTEON(N 2Lg7 

nurse -

- TT2 5 "93'C-.Ci0)&BL.W 

,,C°1260,F)
--	

10 19c0030F1 

o to$ t. 
0087- p 120 33owr , RPMX10	

Figure4 2.2-8 	 F100-PWV-lO0 Engine Rear Corn
pressorVariable Vane Operating 
Characteristicsand Limits 

Since the duct burner is to be designed, the 
established operating limits are in the form of 
controllable parameters Specific limits will 
be determined during the design analysis that 
will be accomplished in the following program 
phase 

The duct burner liner temperature levels will 

be limited by the maximum allowable fuel-an 
ratio, and reliable ignition characteristics will 
be established by a minimum fuel-air ratio 
A duct corrected airflow upper limit will 
maintain operation below maximum liner 
buckling loads, while a lower limit will ensure 
adequate cooling air. In addition, a maximum 
duct nozzle throat area will be specified to 
prevent thermal choking upstream of the noz

zle throat which could cause combustion in
stabilities 

4.2.2.4 Exhaust Nozzle System Selection 

Several exhaust nozzle designs used in exist
ing Pratt & Whitney Aircraft engines were 
evaluated for potential application in the VCE 

These included the JT4 convergent 
flap nozzle, TF30-P-7 flap nozzle, TF30-P
412 iris nozzle, TF30-P-100 iris nozzle, F100 
convergent-divergent nozzle, and F401 con
vergent-divergent nozzle 

To assess the relative merits of each design, 
criteria were formulated to address 

the major considerations of nozzle size, mech
anical and aerodynamic compatibility with 
the duct burner and 1100 engine, and avarla
bility. The results of the evaluation are sum
manzed in Table 4.2 2-V and discussed be
low. 	 5 

Both the JT4 and F100 nozzle configurations 
were determined to be unacceptable on the 

basis of size The small size of these nozzles 

would produce interference with duct burner 
hardware. 
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TABLE 4 2 2-V 

CANDIDATE EXHAUST NOZZLE SYSTEMS 
AND SUMMARY



JT4 - Size too small 

TF30-P7 - Aero/mechanical incompatibility 

TF30-P412 - Aerodynamic incompatibility 

TF30-PIOO - Acceptable but unavailable 

1700 - Size too small 

F401 - Acceptable 

The TF30-P-7 nozzle design was rejected as a 
result of aerodynamic/mechanical incompat
ibility. With this design, the nozzle actuator 
system is mounted inside the ejector sup
ports or "stings",which are beam-like struc
tures located in six places The linkage system 
utilizes pivot points that are integral with the 
ejector support ring at the ends of the sting 
structures However, in the VCE configura
tion, using this arrangement to support the 
elector is not a viable approach since the ejec
tor inlet area would be neither correct nor 
variable Nozzle variability is a prerequisite 
for the testbed configuration. 

The TF30-P-412 nozzle was shown to be un
acceptable because of aerodynamic considera
tions With this particular nozzle geometry, a 
cylindrical throat section at the exit area of 
the nozzle makes it difficult to establish the 
nozzle location when the inner body structure 
is superimposed on the system The definition 
of this throat location is a requirement for the 
testbed. 

The TF30-P-100 iris nozzle shown in Figure 
4.2.2-9 was determined to be acceptable in 
terms of all criteria except availability. The 
possibility of procuring this type of nozzle for 
the testbed program was investigated and in
dicated to be essentially negligible because all 
spares in the Air Force inventory are needed 

to support service engines. Consequently, the 
F401 exhaust nozzle was selected for the 
VCE testbed. 

Figure4.2 2-9 	 TF30-P-100ExhaustNozzle - This 
nozzle, as shown installedin the test
bed, is mechanicallyandphysically 
compatible 

figuration is shown in Figure 4.2.2-10. This 
nozzle is similar to the F100 design, but phy
sically larger in size. For the testbed configura
tion, the nozzle would be modified by remov

ing the divergent portion of the nozzle. Other 
minor modifications would be required such 
as installing an aerodynamically-designed 
faring over the actuator linkage to eliminate 
a potential noise source when the ejector is 
used 

-	 __ 

Figure42.2-10 	 F401 Exhaust Nozzle -This nozzle 
system has been selected for the 
VCE testbed. 
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4.2.2.5 	 Testbed Conceptual Mechanical in Figure 4.2.2-12. The interface between 
Configuration the 100 engine and the testbed is at the trail

mg edge of the engine turbine exhaust case 

Before initiating the mechanical design of 	 and the rear fan duct case flange. The mixed
testbed hardware, an aerothermodynamic flow afterburner and the single-stream nozzle 

flowpath was completed This procedure en- of the F 100 have been removed for installation 
sures that all component design assumptions of the duct burner, modified F401 exhaust 
and hardware interfaces are examined prior nozzle, and acoustically-treated ejector. 
to beginning the final design effort. Existing inlet hardware for the F 100, includ

ing the screen and calibrated bellmouth, will 
Predicted testbed engine performance levels be supplied for the program by the Govern
defined the gas flows, temperatures, and ment Products Division 
pressures throughout the duct burner and 

On the basis of As part of the preliminary mechanical definiexhaust nozzle system 
tion, the major component subsystems inthese design conditions, the flowpath shown 

in Figure 4.2.2-11 was constructed. Critical the testbed were reviewed from a thermal

areas, Mach numbers and pressures were mechanical standpoint to identify potential 

checked against performance assumptions, problem areas resulting from integration of 
the F1 00 engine with the testbed. This reviewand necessary adjustments were made for 

component predictions based on preliminary 	 included the following subassemblies: engine 
exhaust cone, turbine exhaust case/innerdesign efforts. 
duct interface, strut case and inner duct, 

With definition of the flowpath, the concep- antidistortion screen, primary fuel manifold, 
- duct burner, exhaust nozzle, and ejector. Atual mechanical configuration of the testbed 

engine was established, showing the interface discussion of each of these subassemblies in

of the F100 core engine with the testbed and dicating the areas to be addressed during the 
identifying hardware requirements. A cross detail design is presented in the following


section of the testbed engine system is shown paragraphs
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1101279STATION INIM -42/-l 067 -125!-318 0/0 75/1 91 	 8352 12 

DESCRIPTION DUCTDIFFUSER PRIMARYTAIL DUCTBURNER DUCTSTREAM PRIMARY EECTOR 

INLE PIPE ENTRANCE ENTRANCE THROAT THROAT EJECTOR 

T, 
0
R/K 772.9/4294 1492 3/829 1 772 9/429 4 30601 700 1492 318291 

5 2 	 2328/1 61Pt. PSIA(10-	 NN 40 5/2.79 23 8911 6 392712 71 33912 34 

2 2
A, IN /M 378/244 480/310 6864/443 3731241 406/262 14251/t 

WA PPS/KG/SEC 11075/5023 12175/5522 11075/3023 110 7515023 	 12175/5522 

Figure4.2 2-11 	 VCE Testbed Flowpath-Areas,flowrates,pressures,and temperaturesare listedfor the duct 
stream nozzle throat,primary stream nozzle throat,andejector. 
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ENGINE EXHAUST CONE 

TURBINE CASE/INNER DUCT INTERFACE DUCT BURNER PRIMARY FUEL INJECTOR 

Ii_L IIH 	 J/k 	
I	 JNRDC


II~~~.. / ,..		 DUCTll 
 

ANTIDISTORTION SCREEN F401 NOZZLE 
OUTER DUCT CASE 

Figure4.2.2-12 	 Testbed CrossSection - The mechanicalconfigurationof the testbed engineis shown in the 
test condition, complete with the inlet screen andbellmouth and ejector. 

Engine Exhaust Cone 

The exhaust cone in the F100 engine, as shown 
in Figure 4.2.2-12, is a truncated configura
tion. Since tis could be a source of noise 
because of the separation of airflow as it 
flows past the lip of the cone, the cone will 
be reconfigured to a full cone shape to elim
mate this potential noise source A review 
of vibratory modes and buckling characteris
tics would be required. 

Turbine Case and Inner Duct Interface 

Since the F100 engine is a single-stream sys
tem, there is no requirement for the turbine 
exhaust case outer shell segments to sustain a 
large pressure gradient. In the testbed confi
guration, a pressure gradient will exist because 
the air streams are not allowed to mix. As a 
result, at the interface between the turbine 
exhaust duct and inner duct, a sheet metal 
wall with a mechanical slip joint scheme 
is required to withstand the pressure gra
client and to allow for thermal expansion 
in the axial direction. 

Strut Case andInnerDuct 

The strut case supports the inner duct struc
ture. Structural areas associated with this 
assembly that will require attention include: 
establishing fatigue and vibration limits, de
fining the number of struts to support the 

inner duct, and identifying a solution to 
thermal incompatibility between the core 
and duct streams. 

Similar areas requiring design effort were also 
disclosed for the inner duct. These include. 
potential axial and radial thermal incompati
bilities between the inner and outer walls, 
the effects of acoustically-induced vibrations 
generated by the duct burner, buckling 
characteristics, 	 and panel vibration charac
teristics of the sheet metal sections. 

AntidistortionScreen 

The antidistortion screen is located in the fan 
duct stream in back of the inner duct support 
struts. Functionally, this screen serves to 
minimize aerodynamic distortions generated 
upstream from obstructions and irregularities 
in the fan duct. From a structural standpoint, 
the screen does not present any unique de
sign problems since it is a nonsupporting mem
ber. 

PrimaryFuelManifold 

The primary duct burner fuel injector, as 

shown in Figure 4.2.2-12, penetrates the flow

path at the entrance to the duct burner pre
chamber stage. Because of this projection 
into the air stream, the fuel manifold design 
will account for vibration resulting from an 
aerodynamic excitation forces. 
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Duct Burner 

A main design consideration for the duct 
burner is to account for the large thermal 
gradient across the louvered liners. The 
liners will be designed to operate at average 
metal temperatures of 760'C (1400 0F) and 
be exposed to hot streak metal temperatures 
of 860°C (1600 0 F) However, the duct burn
er will operate with an inlet airflow tempera
ture of 2040 C (4000F), in contrast to the 
substantially higher compressor discharge 
temperature of 537°C (I0000 F) normally 
used for the main combustor. The effect of 
tis lower temperature inlet flow is that the 
thermal gradients are higher than those in the 
primary burner In addition to the high 
thermal gradients across the liner structure, 
the design must address low-cycle fatigue and 
buckling considerations 

Exhaust Nozzle 

The F401 nozzle, as designed for its normal 
application in the F401 engine, is a convergent/ 
divergent system with a pressure flap connect
ed to the convergent (balanced beam) section 
to reduce nozzle actuation load requirements 
However, the nozzle for the testbed config
uration, as shown in Figure 4.2.2-12, will be 
installed in a "bob-tailed" condition This 
means the divergent section of the nozzle is 
removed, leaving the pressure flaps and bal
anced beam flaps (convergent section) This 
exposes the actuation linkage on the back 
side of the balanced beam and creates the 
requirement for an aerodynamic fairng when 
the ejector is evaluated The use of a fainng 
eliminates the potential noise source of the 
exposed linkage and provides a positive dim
ensional control of the ejector inlet area The 
fairing is a nacelle type structure. Analyses 
will be required to ensure that all acoustical 
requirements have been satisfied 

Ejector 

The ejector is supported on five pipe supports 
that simulate blockage from an equivalent 

flight engine structure The component is 
adjustable m the axial direction to provide 
a variable ejector inlet throat area which can 
be increased by approximately 30 percent. 
An acoustically-treated liner provides the flow
path liner and can be replaced with an untreat
ed liner The design of the ejector will be 
centered on resolving vibration and thermal 
incompatibilities associated with a double 
wall structure, and to ensure that the inlet to 
the ejector is designed to avoid airflow separa
tion. 
Testbed MaterialsSelecton 

A materials selection for the testbed has 
been made on a preliminary basis The selec
tion of materials is based on availability as 
well as experience to ensure component relia
bility and durability for the test program 

The major portion of the testbed structure 
will be fabricated from 410 martensitic cor

rosion resistant steel and AM363 martensitic 
stainless steel. This includes such compon
ents as the strut case, outer duct case, and 
ejector system. An advantage with AM363 
material is that heat treatment is not required 
This eliminates an extra fabrication process 
and problems associated with distortion of 
heat-treated materials. 

Hastelloy X, a nickel base alloy, has been 
selected for the combustor liners in all three 
zones as well as the rear flange and the inner
most portion of the inner duct subassembly 
that is exposed to the gas flow from tlie core 
engine. Extensive experience with the use 
of this material for hot section applications 
has served as a basis for selection The ma
tenal has a high temperature capability, good 
creep strength and oxidation-corrosion resis
tance, in addition to excellent forming and 
joining qualities. 

The swirler tubes at the entrance to the sec
ond and third combustion stages will be 
fabricated from Stellite 31, a cobalt alloy 
being used in the duct burner rig test program 
under contract NAS3-20602. 

ORIGINA0L yAIS 

&FpooR Q-UALITY 

41 



4.2.2.6 Testbed Assembly Considerations philosophy is to integrate the instrumenta
tion with the structural components. Conse-


The mechanical design definition also ad- quently, individual modules can be removed


dressed the aspect of testbed assembly to en- for modification and/or repair of either the


sure that the-program objectives can be met instrumentation or the component without


with a minimum loss in time during the test cutting and replacing instrumentation.


program. The testbed design is based on a The modular component assembly of the test

modular construction concept which offers bed is accomplished in six steps, as depicted

the inherent advantage of facilitating assembly in Figure 4.2.2-13. As shown in Step 1,the


and disassembly operations, strut case is the primary structure The case



structure with the integral, antidistortionOne major advantage of component modula- screen and primary fuel nozzle is then added 
rity is that it allows the complete mstrumenta- to the strut case, as indicated by Step 2. Next,


tion of each module before final assembly, the inner duct structure is joined to the assem

thereby reducing the complexity and time ex- bly (Step 3). Also, the fairing is installed after


penditure for instrumentation checkout and the instrumentation lead wires are routed


data acquisition. For the testbed, the design through the support strut and strut case



1 SCREEN



STRUT CASE FUEL NOZZLE 

STEP I STEP 2 

FAIRING RADIAL FLANGE 	 SLIP JOINT 

-. HOOD WIGGLE-STRIP 

INNER DUCT


INSTR.LEADS 
 INSTR LEADS



STEP 3 
 STEP4



RADIAL 
FLANGE



PRIMARY NOZZLE CONE



" -- R-LINER REAR LINER 

NOZZLES CASE 	 SLIP JOINTS r< ""RAR AS 
(LINER & HOOD) INSTA LEADS 

OUTERLINERNOZZLE SUPPORT
OUTERLINERSTRUCTURE 

INSTR. LEADS FUEL' NOZZLE 
STEP5 	 DUCTBURNER STEP6



LINER ASSEMBLY



Figure4.2.2-13 	 Testbed Assembly Procedure- The sequence offiguresillustrateshow the different


modules areassembled in a six step process.Note the provisionsfor instrumentation


lead wiringin different component modules
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Assembly of instrumentation and installation of 
the duct burner components is then started. 
In Step 4, the hood structure and outer case 
subassembly is added to the major assembly. 
With assembly of the hood, the inner duct 
burner liner is joined to the assembly Simi
larly, the outer liner, complete with fuel noz
zles, main outer case and instrumentation 
leads from the liner is installed in Step 5 The 
final step (Step 6) consists of adding the rear 
case, positioning the rear liner and attaching 
the primary nozzle cone at the radial flange, 
and installing the nozzle support structure. 
In Step 6 of Figure 4.2.2-13, the nozzle sup
port contour is represented by dashed lines in 
order to indicate the final positon. 	 

A three-plane system was initially considered 
since this approach eliminated the concern of 
a potential vibration problem that could be 
encountered if the testbed was left unsuppor
ted Also, this method offered a greater mar
gin to accept weight increases that could oc
cur from the type of construction used for 
the testbed. However, further analysis of the 
three-plane system disclosed several problem 
areas that made it unattractive for this appli
cation. 

Analyses indicated that the three-plane sys
ter prdced uatale hane in 
loads on the 100 engine thrust mount. This 
laso h 0 nietrs on.Ti 
was the result of the duct burner, nozzle, and 

4.2.2.7 	 ejector thrust loads being taken out throughTestbed Mounting and Installationthmonabvtescmpetsrhr 
Approachthe 	Approach 	 

Two methods were investigated for mounting 
the testbed engine These approaches are 
shown in Figure 4.2.2-14, and consist of a 
three-plane mounting system and a two-plane 

system 

-Front 	 

mount above these components rather 
than the F100 mounts. In addition, the 

tetrd mount would require modification of 
test site hardware These modifications would 
involve an extension of the mounting strong
back which supports the engine. 

. 


~mount
Two plane mount system 

Rear mount 

Three plane 	 mount system 

Figure4 2 2-14 	 Candidate Testbed EngineMountingSchemes - The two-plane system, which uses the F100 
mount system to support the testbed, is the selected approach 
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The two-plane mounting approach, as shown 
m Figure 4.2.2-14, has the testbed cantilevered 
from the rear fan duct of the F100 engine. The 
F100 engine mount system is utilized for sup
porting the entire testbed system. The front 
mount on the F100-is a single-point connection 
located on the top vertical centerline of the en
gine. This mount point is designed for vertical 
loads, while also having the capability to sup
port minor side loadings. The rear mount con
sists of a two-point connection located on the 
horizontal engine centerline These mount 
points are capable of sustaining both thrust 
and vertical loads. A side load connection 
point is also located in the lower quadrant 
of the rear mount nng. The system was re
viewed analytically to determine the effect 
of the duct burner, nozzle, and ejector over
hung mount and resonant vibration on the 
F100 engine structures The areas of concern 
were bending of the F100 engine/testbed 
interface flange, buckling of the rear fan case, 
and unacceptable case loads The results of 
this analysis indicated that vibration levels 
and the mechanical loadings on the F100 
structures were well within allowable limits, 

On the basis of the problems identified with 
the three-plane system and the structural 
acceptability of the two-plane system, the 
two-plane mounting system was selected for 
the testbed engine. 

4.2.3 Control System 

4.2.3.1 Control System Requirements 

The testbed configuration, which utilizes a 
three stage duct burner and variable coannular 
nozzle system installed behind a F100 engine, 
imposes a special requirements for the control 
system. These include, 

* 	 Stable operation of the engine and duct 
burner over the entire range of testbed 
operating points, and ensure engine and 
duct burner operational limits are not ex
ceeded



* 	 Independent metering of each stage of the 
duct burner fuel flows 

0 	 Controlled transition between engine and 
duct burner operating points 

0 	 Protection of the testbed system from 
potential failures 

0 	 Ease of operation 

Each of these requirements is discussed in 
greater detail in the following paragraphs 
Because of the anticipated number of test 
points planned during the test phase of the 
program, it is desirable that the control sys
tem has the capability to accomplish these 
functions as efficiently as possible in order 
to minimize the operating time of the F100 
engine 

Stable Operating Point Control 

In order to achieve the desired test operating 
points for acquisition of noise and exhaust 
emissions data, the control system must en
sure control of the compressor inlet variable 
vanes (CIVV), the rear compressor variable 
vanes (RCVV), the compressor bleeds, the 
main burner fuel flow (WFE), the duct burner 
fuel flow (WFDB), and the duct exhaust noz
zle area (AID). Representative rematched oper
ating points for the testbed are listed in Table 
4.2 3-I. In this table, two rematched operating 
points of maximum airflow with two different 
primary stream nozzle areas are shown in com
panson to the base F100 operating point As 
indicated, the control system is required to 
operate the F100 engine at significantly differ
ent match points from the base engine match. 
This has an impact on the capability of the 
base F100 control system to acquire all the 
rematched testbed operating points 
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TABLE 4.2.3-1



REPRESENTATIVE REMATCHED TESTBED OPERATING POINTS



Low rotor High rotor 
speed speed 
(RPM) (RPM) 

Base F100 10,113 13,033 

10,364 12,397 

Rematched 
10,331 12,536 

For repeatibility of operating points, it is de
sirable that the control system regulate the 
engine, duct burner and nozzle such that 
actual duct flow variations are within ±1 per
cent of the set point, regardless of the accur
acy of actual airflow measurement used for 
performance data. In addition, the control 
system must protect the engine from exceed
ing the established operating limits These 
limits are fan turbine inlet temperature (FTIT), 
fan speed (NI ), compressor speed (N2), bur
ner pressure (PB), CIVV flutter boundaries, 
RCVV flutter boundaries, and fan and corn
pressor surge limits The duct burner oper
ating limits, discussed below must also be 
maintained 

Duct Burner FuelFlowMetering 

Three fuel flows must be independently meter
ed for the three-stage Vorbix duct burner con-

Core Primary Primary 
Total Duct nozzle burner burner 

airflow airflow area pressure fuel flow 
2kg/see kg/sec m N/m2 kg/sec 

(lbs/set) (lbs/set) (in21 (psi) (lbslhr). 

103.0 408 - 2.482 x 106 1.342 
(227) (360) (10,652) 

105.7 503 .262 2 069 x 106 942 
(233) (111) (406) (300) (7480) 

1057 49.0 226 2 137 x 106 1 018 
(233) (108) (350) (310) (8077) 

figuration This independent fuel flow manage
ment scheduling includes the capability to vary 
individual stage fuel flows, while automatically 
maintaining constant value of total duct bur
ner fuel flow The total duct burner fuel-mr 
ratio must be capable of being vaned from 
0 002 to 0 043. A typical fuel-air schedule for 
the three-stage burner system is shown in Fig
ure 4 2 3-1. In the light-off fuel-air ratio range, 
the fuel flow must be controlled to within ±5 
percent of the set point in order to allow set
ting light-off fuel-air ratios to values on the 
order of 0.002 with an accuracy of ±0.0001. 
(For example, 5 percent = [0 0001 * WDUCT/ 
(0.002* WDUCT)] * 100, where WDUCT = 
duct airflow.) In the maximum fuel-air range, 
fuel flow must be regulated to within ±1 per
cent of the set point to maintain accurate fuel,_ 

air ratio control. 
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IGNITION-I 	 TAKE OFF--. order to avoid 	coking problems. The coordina
0HH POWERSTAGE 	 tion of main fuel flow, duct burner total fuel 

flow, and duct nozzle area must also be pro
vided during all phases of operation to main

o020 	 tam engine and duct burner operating limits 
durng-operatng point transition. 

1 	 _Transient Testing 
0010 	 ____________ 

I A demonstration of duct burner transient oper-
I ation may be required at the conclusion of theU1-S 	 test program. The capability to provide auto-

I 
 PILOTSECONDARY STAGE 

1= P D Tmatlc 	 transient control of the engine and duct
I / 	 burner will be available as a result of the transi

tion control capability, discussed in the pre
_ _ _ _vious 	 paragraph. 

0 IFailure Protection 
PRECHAMBER



The control system must be able to maintain
IR _I__engine and duct burner operating limits in the0o I___ I 	 event of failure such as that resulting from 

0 001 002 003 004 005 

0002 TOTAL FUELAIR RATIO 	 duct burner blowout, loss of control of duct 
fuel flow or nozzle area, loss of transducer, 
failure of any computer utilized in the control

Figure42.3-1 	 Typical FuelSchedule for a Three- system, or loss of electrical power,


Stage DuctBurner- 77isfuel sched

ule shows the fuel sequencingfrom Ease of Operation


ignitionthrough to takeoffpower,
at which all three stagesare operate. 	 Since a substantial number of test operating 

ControlledTransitionBetween OperatingPoints 

To minimize the required time to change test 
operating points and thereby minimize test 
time, it is important for the control system to
maintain control of the entire transition pro
cess This includes power lever inhibit logic 
dunng duct burner stage fill and light-off, and 
fuel flow rate limiting and stage sequencing
These combine to avoid damage to the duct 
burner resulting from inadvertant rapid or ex
cessive movements of the duct burner power 
lever 

The control must provide an automatic nitro
gen purge of stages after they are shut off in 


points is planned for the technology demon
stration testing, it is important that the con
trol system ensure ease of setting operating 

test points. To accomplish this requirement,
closed-loop control of each control variable 
will be implemented as a function of sched
uled engine variables. Manual control andtrim functions must also be incorporated to 
facilitate special test procedures such as inves
tigating the fuel flow split between two duct 
burng tes 
burner stages 

4.2.3.2 Bill-of-Material F100 Control System 

Considering the requirements imposed on the 
control system for operating the testbed system, 
the bill-of-material F100 control system was 
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evaluated to determine if it could satisfy these 
requirements. There are two primary elements 
in the F100 fuel system the unified fuel con
trol (UFC) and the electronic engine control 
(EEC) 

The unified fuel control regulates WFE, RCVV, 
augmentor fuel flow (WFAB), and exhaust 
nozzle area (AJ). The WFE is a proportional, 
or droop governor, control which operates as 
a function of the high-pressure rotor speed 
error. The RCVVs are scheduled as a function 
of high rotor corrected speed Total WFAB 
is scheduled versus a rate limited power lever 
and fan discharge temperature. The control 
system meters total WFAB according to this 
schedule, and a single splitter valve is used to 
control the split of fuel among the three core 
stream zones and the two duct stream zones 
of the mixed-flow augnientor. The AJ is sched
uled as a function of rate limited power lever 
and fan discharge temperature. Manual ground 
trims are provided for the high rotor speed re
ference, RCVV schedule, AJ schedule, and 
WFAB schedule 

The basic functions of the engine electronic 
control include regulation of the CIVVs, 
trimming the UFC power lever to reset WFE, 
and trimming the UFC AJ schedule The 
CIVVs are scheduled as a function of low 
rotor corrected speed. The trim on the UFC 
power lever operates at power lever angles of 
83 degrees and above to reset the WFE in 
order to maintain accurate control of the high 
rotor speed to a scheduled value. This trim 
also operates at all power lever settings to re
duce the UFC power lever, and thus WFE, in 
order to maintain operational limits on low 
rotor speed, high rotor speed, fan turbine in
let temperature, and burner pressure 

The trim on the UFC AJ schedule operates at 
power lever angles of 83 degrees and above to 
reset the exhaust nozzle area in order to main
tain accurate control of the low rotor speed 
to a scheduled value that is correlated to the 
desired airflow schedule. Manual ground trims 

are provided on the high rotor speed sched
ule and the fan turbine inlet temperature limit 
schedule. 

On the basis of evaluation, it was determined 
that the bill-of-material F 100 control system 
would not be suitable for the testbed system, 
without major modifications to the control 
First, the augmentor flow system was incom
patible with the requirement to provide in
dependent metering of three duct burner 
stage flows. Second, the bill-of-material sys
tern was determined to be marginal in provid
ing sufficient manual trim range to operate 
the engine at the rematched operating points. 
Based on these considerations, work was di
rected towards evaluating alternative control 
system configurations for the testbed. The re
sults of this evaluation are discussed in the fol
lowing section 

4.2.3.3 Testbed Control System Selection 

In selecting a control system for the testbed, 
the main emphasis was to use as much as pos
sible of the P100 bill-of-matenal control com
ponents available from previous test programs. 
A total of five alternate control configurations 
was evaluated. 

A schematic diagram of the first two systems 
studied, configurations number 1 and 2, is pre
sented in Figure 4 2.3-2. Overall, the two con
cepts meter total duct burner fuel by using
UFC zone 1 flow and available percent split 
valves for independent regulation of the three 
duct burner stage flows. 

Configuration 1 uses the bill-of-material con
trol for all controlling functions except regu
lating the fuel flow split among the three duct 

burner stages. In this concept, four of the five 
augmentor flow pipes are capped, and the zone 
1 flow section affords metering of total duct 
burner flow. The two percent split valves 
shown in Figure 4.2.3-2 are then controlled 
by a Real Time Control Simulation (RTCS) 
computer for independent metering of the 
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Figure4 2 3-2 	 ControlConfigurations1 and 2 

tion. 

flow to the respective duct burner stages. The 
RTCS is a minicomputer with appropriate in
terface devices for sensing engine variables 
and driving control actuators In addition, the 
RCTS incorporates a control panel with push 
button inputs and a digital display that can be 
set up to perform all control mode selection 
and trimming functions required to facilitate 
the test procedures. This first control config
uration was not selected for the testbed ap
plication since the scheduling for the exhaust 
nozzle area (AJ) in the bill-of-material control 
did not provide sufficient flexibility for the 
test program 

Configuration number 2 uses a separate ac
tuator controlled by the RTCS to drive the 
push - pull cable connected to the nozzle ac
tuation system, in contrast to the earlier con
cept. Further assessment of this system, how
ever, disclosed that substantial modifications 
would be required in the UFC to use the zone 
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ACTUATOR POSITION 

Both configurationsmeter total ductburnerfuel flow by 
using UFCzone 1 flow andavailablepercentsplit valves for independentstage flow regula

1 flow system for metering the duct burner 
fuel flow Moreover, continual resetting of 
the manual trims would be necessary for ob
taming each test operating condition, and sev
eral operating conditions were identified which 
could not be obtained with these trims. Fi
nally, it was desired to operate the duct burner 
fuel section of the UFC. The bill-of-material 
augmentor fuel pump can supply these higher 
pressure levels. On the basis of these factors, 
this concept was eliminated from further con
sideration. 

The third configuration evaluated is similar to 
the second control concept with the excep
tion that a separate electric motor-driven, pos
itive displacement pump and a modified JFC25 
fuel control are utilized to meter total duct 
burner fuel flow. A diagram of this control 
system is shown in Figure 4.2.3-3. 
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Figure4 2 3-3 	 Control Configuration 3 - This configurationis similarto the second configurationexcept 
a motor driven pump and modifiedJFC25 fuel controlare used to meter the total duct 
bumerfuel flow 

The modification to the JFC25 control would these configurations is the availability of a 
allow it to function simply asatetering valve, TF30 afterburner flow cart. This flow cart has 
controlled by the RTCS, for the total required five separate metering valves, and when sup
fuel flow As with configuration 2, the RTCS plied fuel from a centrifugal pump such as the 
also controls the two percent split valves and F 100 augmentor pump, independent metering
the exhaust nozzle actuator. A separate power of five fuel flows can be accomplished Three 
lever controls the gas generator through the of these metenng valves are controlled by the 
UFC, and another power lever controls the RTCS to satisfy duct burner metering require
duct burner through the RTCS. Although the ments. This flow cart can be operated at the 
motor-driven pump and the modified fuel con- higher fuel pressures desired for duct burner 
trol provided the required pressure levels in operation. Only minor modifications to the 
the duct burner fuel system not attainable by UFC and fuel system plumbing are required
the second configuration, the third concept to supply pump control signals shown in Fig
was not selected because of the advantage of- ure 4 2 3-4 Similar to the other configura
fered by configurations number 4 and 5. Both tions evaluated, the RTCS controls the ex
of these concepts utilize the bill-of-material haust nozzle actuation system which allows 
F 100 augmentor fuel pump implementation of a closed-loop control to 

trim the nozzle area. This provides the capa-
A diagram of control configurations number 4 bility to maintain the desired fan operating
and 5 is shown in Figure 4 2 3-4. The key to point as indicated by a fan pressure ratio or 

differential pressure parameter. 
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Figure4 2.3-4 	 ControlConfigurations4 and 5 - These configurationsutilize the bill-of-materialF1O0 
augmentorpump anda TF30afterburnerflow cart. Configuration5 is the selected ap
proach, and differs from configuration4 in that an actuator,controlledby the TRCS, 
drives the UFC powerlever. 

Configuration 4 uses the UFC to control WFE 
proportional to high rotor speed error Con
sequently, this approach does not exercise di
rect control over fan speed and would make it 
difficult to maintain duct airflow within the 
desired ± 1 percent of the set point To cor
rect this problem, configuration 5 employs an 
actuator, controlled by the RTCS, to drive the 
UFC power lever. This approach has been suc
cessfully used in previous test programs and al
lows a closed-loop control function to be im- 

plemented in the RTCS to trim the UFC and 
obtain the desired low rotor speed. With this 

configuration, the UFC power lever angle will 
typically be less than 83 degrees so the EEC 
will only interface with the UFC to down
tnm the power lever for engine limiting pro
tection. 

For control of the testbed engine, duct bur
ner and nozzle, configuration 5 was selected 
This configuration offers a practical and re
liable system for meeting the testbed program 
requirements. Table 4 2.3-I1 presents a sum
mary of the features of this control system. 
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TABLE 4.2.3-11 

FEATURES OF THE SELECTED


TESTBED CONTROL SYSTEM 
 

F100 Gas Generator and Augmentor Fuel Pumps 

FI00 Unified Fuel Control With Minor Modifications 

* 	 Main Burner Fuel Proportional (Droop Gov-
Flow 	 emor) Control as Function 

ofHigh Rotor Speed 

* 	 Rear Compressor Scheduled Versus High 
Variable Vanes Rotor Corrected Speed 

* 	 Augmentor Fuel Not Used 
'Flow 

* 	 Exhaust Nozzle Not Used 
Area 

F100 Electronic Engine Control With Modifications 

* 	 Trim on UFC Trim Active for Maintain-
Power Lever ing Engine Limits 

* 	 Trim on UFC Not Used 
Exhaust Nozzle 
Schedule 

" 	 Compressor Inlet Scheduled Versus Low 
Variable Vanes RotorCorrected Speed 

Real Time Control Simulator 

" 	 Exhaust Nozzle Manual Control or Closed-
Area 	 Loop Control on Fan Pres

sure Ratio or Fan Discharge 
A P/P 

* 	 UFC Power Lever Manual Control or Closed-
Loop Control on Low 
Rotor Speed 

* 	 Duct Burner Fuel Manual Control of Three 
Flows 	 Stages or Scheduled Ver

sus Power Lever with Trim 

TF30 Afterburner Independent Metering of 
Fuel Flows Three Stages on Command 

from RTCS 

4.2.3.4 	 Testbed Control System Design 
Requirements 

The detailed design of the testbed control sys

tem involves several requirements. These in
clude: 

S 	 Defining specific hardware modifica

tions 

* 	 Establishing specific operating limits and 
test procedures 

0 	 RTCS control logic 

0 	 Failure mode and effects analysis (FMEA) 
and resulting failure logic 

S 	 Simulation evaluation 

0 	 Closed loop bench test 

These requirements are to be addressed in the 
design analysis and detailed design phase of 
the Testbed Program to prepare the control 
system for use on the testbed engine The 
closed-loop bench test will provide a complete 
operational check of all control system com

ponents operating in a closed loop environ
ment, utilizing a digital real time simulation
of the testbed engine 	 This will ensure safe, 

reliable operation of the system pror to ac
tual engine testing. 

4.2.4 	 Instrumentation Requirements 

Instrumentation is a key element in the test
bed design definition, and must be selected 
and located throughout the test configura
tion m such a manner to ensure acquisition 
of representative and meaningful data The 

instrumentation requirements for the testbed include. (1) the types of different 

sensors that will be used during testing, (2) 
instrumentation for monitonng the engine 
match point, performance and "health" of 
the F100 engine; (3) measurement require
merits for noise and emissions data; (4) safety 
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instrumentation; (5) control instrumentation, 
and (6) data validity. Each of these categor
ies is discussed in the following sections. 

4.2.4.1 Sensor Types 

To determine the type of test instrumentation 
required for obtaining meaningful noise and 
emissions data, specific parameters of interest 
must be selected The test matrix for the 
testbed program is within the range of par
ameters shown in Table 4 2 4-1. The types 
of sensors to measure these parameters have 
been selected as part of the design definition, 

Temperature levels will be measured by 
chromel/almuel thermocouples Pressure 
measurements will be acquired by static 
taps, keilhead probes, and water-cooled 
Kulite probes. Mechanical rotor speed will 
be monitored by magnetic proximity pick

ups, and vibration will be measured by ac
celerometers. Turbine meters will be used for 
monitoring fuel flow. The exhaust velocity 
of the core and duct streams will be measured 
by a laser doppler velocimeter. Exhaust emis
sions, including oxides of nitrogen, carbon 
monoxide, unburned hydrocarbons, and 
smoke, will be collected with a steam-cooled 
choked ventun Noise data will be acquired 
with highly sensitive microphones. 

Although establishing the quantity of sensors 
at each engine station was beyond the scope of 
effort in the Planning and Definition Study, 
the quantity will be determined on the basis 
of the needs for obtaining a representative 
sample, impact on mounting and assembly/ 
disassembly of the components, recording 
system capability, and engine operating 
time at the test site locations 

TABLE 4.2 4-1 

RANGE OF TEST PARAMETERS


Parameters Range 

Fan nozzle velocity "-m/sec(ft/sec) 
 365 to 883 (1200 to 2900) 

Primary nozzle pressure ratio 
 1 3 to 1.7 

Primary nozzle temperature -C ('F) 
 593 to 704 (1100 to 1300) 

Primary nozzle velocity -m/sec (ft/sec) 
 396 to 548 (1300 to 1800) 

Thrust -N (lbs) 
 31080 to 75480 (7000 to 17,000) 

Primary burner fuel flow -kg/h (pph) 
 91 to 3628 (200 to 8000) 

Duct burner fuel flow -kg/h (pph) 
 317 to 7256 (700 to 16,000) 

Total airflow -kg/sec (Ib/see) 
 68 to 113 (150 to 250) 

Duct/core engine velocity ratio 
 0.8 to 2.0 

Duct/core engine nozzle area ratio 
 0.5 to 1 2 

Fan nozzle pressure ratio 
 1.9 to 2.3


Fan nozzle temperature "-C(OF) 
 148 to 1426 (300 to 2600*)



*Peak gas temperature to be measured may be as high as 17040 C(3100 0F) 
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4.2.4.2 F100 Engine Instrumentation 

In order to obtain.accurate test data for the 
duct burner and the coannular nozzle, the 
performance and operating conditions of the 
F100 engine must be measured Of partic
ular miportance are the inlet and exhaust 
conditions to determine duct burner inlet air
flow. The required test instrumentation for 
the F 100 engine is depicted in Figure 4 2.4-1. 

ePresure 	 Other 

N2 
WF 
Humidity
P.AR 
WindWind spenddirecton 

wTemperature 	 Thrust 

Figure4 2 4-1 	 F1 0 EngineInstrumentation-
In orderto define the test points 
of the testbed, it is necessary to 
determinehow theFIO0 engine is 
performing. 

4.2.4.3 Noise and Emissions Instrumentation 

The instrumentation for acquirng noise and 
exhaust emissions measurements, exclusive 
of the array of external microphones for noise, 
is shown in Figure 4.2 4-2. 

Pressure 	 Nozzle area Velocity 

* High response pressure transducers 

I 

Emissions 
* Thermocouples a Fuel flow THc 
4 Gas analysis NO2 

Smoke 

Water-cooled Kuhte pressure probes will be 
installed at several locations in both the duct 
burner liner and the ejector wall for a discnrm
ination of duct burner noise and jet noise lev
els Velocity measurements of the core and 
duct stream exhausts will-be made directly 
at the exhaust planes at several diametral sta
tions downstream, as shown in Figure 4 2.4-2, 
as'a diagnostic tool to confirm the noise bene
fit associated with the coannular, inverted 
velocity profile The velocity measurements 
will be acquired with the Pratt & Whitney Air
craft laser doppler velocimeter system The 
optics of this system will be modified to allow 

measurements particularly in the interface areas between the duct burner and core en
gine gas flow streams up to eight diameters 
downstream of the nozzle exhaust planes 

The estimated hot spot at the duct burner dis
charge plane exceeds the upper limit for the 
use of the thermocouples Therefore, the 
emissions rake will be used to sense total pres
sure and collect a gas sample from the stream 
for analysis to compute gas temperature and 
for measurements of oxides of nitrogen, car
bon monoxide, unburned hydrocarbons, and 
smoke The design of this emissions sampling 
rake will take into consideration mounting and 
positioning the sensors, in addition to quench
ing the sample without condensation through 

the switching and mixing prior to analysis
in the Pratt &Whitney Aircraft mobile lab
oratory. 

4.2.4.4 Safety 	 Instrumentation 

The safety instrumentation for both the F100 
engine and testbed is shown in Figure 4 2 2-3 
Standard vibration instrumentation used on 
production and development FlOD engines
will be retained and monitored throughout
the test Vibration limits will be maintained 

at the current F100 levels. 
Figure4,2.4.2 	 Noise and EmissionsInstrumen

tation - As shown, the duct bur- Additional vibration instrumentation on the 
nerand ejectorare heavily mstru- testbed engine, as indicated in Figure 4 2.4-3, 
mented with both steady state and will serve to monitor and limit dynamic am
high responsepressuresensors to plitudes at frequencies below the rotor speed 
document theflow conditions. 
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range. Although it is not anticipated, this in
strumentation will ensure that potentially 
damaging vibration excited by burner noise 
or rumble is identified 

Light-off 
Pressure detector Y High response 

Temperature pressure trans 

* Vibration 0 Metal temperatures 

Figure4 2 4-3 	 Safety Instrumentation- This 
instrumentationwill monitor 
temperature,pressure,and vibra
tnon levels to ensure that the F100 
and testbed operatewithin safe 
limits. 

Condition monitonng instrumentation will be 

installed on the outer and inner testbed struc
tures for monitorng and limiting vibratory 
amplitudes to levels consistent with the capa
bility of the structure at the interface with 
the core engine. This instrumentation will 
also be used to limit the vibratory amplitudes 
of the inner case of the testbed relative to 
the outer wall to ensure that the allowable 
loading of the inner case support structure 
is not exceeded as a result of excitation from 
the F100 rotors, or from the lower frequencies 
generated by the burner. 

Many thermocouples will be installed on the 
duct burner liners to measure metal surface 
temperatures after the initial checkout testing 
is completed. These new thermocouples will 
be installed at observed hot spot locations to 
ensure that the average metal temperature re
mains at 760°C (1400°F) or less Also, a 
light-off detection system will be defined for 
monitoring the lit and nonlit condition of the 
duct burner. This system will bb checked out 

durng the duct burner ng testing being con
ducted under NASA Contract NAS3-20602. 

4.2.4.5 Control Instrumentation 

The control instrumentation for the testbed 
is indicated in Figure 4 2 4-4. This instru

mentation will be used to ensure that opera
tional limits of the F100 engine testbed are 

not exceeded, accounting for potential mal
function and failure modes. The pressure and 
temperature sensors at both the inlet and exit 
planes of the F100 fan will be used to help 

establish the inlet conditions and airflow to 
the duct burner for setting the desired test 

point 

oVane angle * Fuel flow Miscellaneous 

Power level angle 
- N1 

N2 

V Pressure Light-off Nozzle area 
*Temperature detector 

Figure424-	 ControlInstrumentation - Ths 
instrumentationis used to ensure 
thatoperationallimitsarenot 
exceeded 

Turbine meters will be used to measure all 
three stages of duct burner fuel flow The 
system for measuring nozzle area will be fur
nished with the F401 nozzle, including a 
linear variable differential transducer (LVDT) 
to measure the exhaust nozzle area for con

trol. 

Instrumentation is required for the control 
system, in addition of the bill-of-matenal con
trol instrumentation used in the engine Spe
cifically, the real time control simulation 
(RTCS) computer requires instrumentation 
to provide the inputs listed in Table 4.3.4-I. 
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TABLE 4.2.4-11 
 

PARAMETERS REQUIRED FOR 
 
THE CONTROL SYSTEM 
 

Power Lever Angle 

Fan Inlet Total Pressure 

Fan Inlet Total Temperature 

Fan Discharge Duct Total Pressure 

Fan Discharge Duct Differential Pressure 

Fan Discharge Duct Total Temperature 

Gas Generator Burner Pressure 

Low Rotor Speed 

High Rotor Speed 

Fan Turbine Inlet Temperature 

Stage 1 Fuel Flow 

Stage 2 Fuel Flow 

Stage 3 Fuel Flow 

Exhaust Nozzle Area Push-Pull Cable Actuator 
Feedback 

Unified Fuel Control Powei Lever Angle Feedback 

4.2.4.6 Data Validity 

The validity of test data is an important con
sideration, and activities to ensure data va
lidity will begin early in the design effort and 
continue throughout the program. Engineer
ing specialists from the Commercial Products 
Division will consult with F100 performance 
engineers from the Government Products Divi
sion to analyze the past uncertanity of mea
surements accounting for sampling errors to 
determine the quantities of sensors at all en
gine stations. Uncertanity models will be made 
for probes, transducers and data systems so 
that the test data can be properly compared 
between tests conducted at the different sites 

The ability to measure or calculate the duct 

burner airflow within ± 2 percent is important 
so that scaling parameters can be verified from 
duct burner ng To acquire this measurement, 

four methods will be considered. These are (1)
duct calibration, (2) flow parameter iteration, 

(3) duct airflow measurement, and (4) energy 
balance Each of these methods will be ana
lyzed in greater detail dunng the next phase 
of the program to determine the method or 
combination of methods that can best be ap
plied to meet the program requirements. A 
general discussion of each method is presented 
below 

The first method is based on a separate cali
bration the actual duct hardware using the 
F100 fan for duct flow. The duct air is cal
ibrated, measured and a set of flow parameters 
are generated for the test plan. The second 
method is a technique currently used in Fl 00 
production engines. Basically, it involves the 
use of the turbine flow parameter, along with 
the compressor total pressure and total temp
erature and energy balance, to determine the 
compressor flow by an iterative process. The 
accuracy of this method is dependent on the 
accuracy of the turbine flow parameter. The 
third method, duct airflow measurement, is

based on the total pressure and total temp

erature in a known cross sectional area of 
the duct However, the low velocity and 
thermal growth of the duct are factors that 
could possibly introduce large uncertainties 
in the final calculated flow. The energy
balance method, the final consideration, is 
a calculation based on the thermodynamic 
energy balance of the engine. The test at the 
Government Products Division will serve to 
determine the uncertainty of this method 
which is the most promising method of duct 
airflow determination 
4.2.5 Test Facilities 

An evaluation of a number of test facilities 
was made to determine the sites best suited 
for testing the VCE testbed to meet the pro
gram objectives. As part of this evaluation, 
facility requirements were established. The 
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facilities considered were: stands X-314 and 
X-l 6 at the Pratt & Whitney Aircraft Corn
mercial Products Division in Connecticut, 
stands "A" and C-10 at the Pratt & Whitney 
Aircraft Government Products Division in 
Florida, the NASA-Lewis facility in Ohio, the 
Boeing Boardman facility m Oregon, the Rohr 
facility in California, and the McDonnell 
Douglas Quartzsite m Arizona. 

4.2.5.1 Facility Requirements 

The VCE test configuration, by itself, dictates 
 
certain requirements because of its size, fuel 
 
and airflow requirements. Besides the physi-

cal constraints, however, the nature of the 
 
test program presents special considerations

which influence the selection of test facilities. 
 

As structured, the planned test program is es-

sentially comprised of three major elements. 
 
These are calibration of the F 100 engine, 
 
F100/testbed checkout and emissions testing, 
 
and aero/acoustic testing. To substantiate the 
 
coannular noise benefit, special facility re-

quirements are necessary in terms of location, 
 
terrain, and equipment Similarly, acquisition 
 
of emissions data and the calibration on the 
 
F 100 engine impose certain facility require-

ments and considerations. Since one test fa-

cility does not have all the technical and logis-

tic equipment for proper engine support and

data acquisition, three different sites are re-

quired to complete the test program. 
 

Several requirements were defined for con-

ducting the F100 engine calibration These 
 
consist of. (1) defining the health of the F100 
engine to be used throughout the program, 
(2) establishing the core and fan stream airflow 
necessary to assess duct burner operation and 
performance, and (3) providing data to up
date the F100 testbed simulation to accu
rately define the matrix of test points for the 
aero/acoustic evaluation. 

The facility requirements for conducting the 
F IOO/testbed checkout and emissions test
ing are based primarily on logistics The test 

stand must provide easy access to test per
sonnel as well as the sophisticated emissions 
measurement and service equipment for sam
plmg NOx, CO,THC, and smoke. 

For aero/acoustic testing, the facility require
ments are considerably more stringent. In ad
dition to stand availability and necessary con
trol and readout equipment, the facility must 
have the required acoustic measuring equip

ment. Furthermore, the geographic location 
of the site is a controlling factor since residen

tial noise cannot be a constraint. Some of the 
pertinent facility requirements for conducting 
the aero/acoustic tests are briefly discussed 
in the following paragraphs. 

The measurement surface of the acoustic 
field should have an acoustically reflecting 
paved surface that is smooth and free from 
waviness, similar to a commercial aircraft 
runway surface The surface should cover a 
radius of at least 30 m (100 ft ) centered on 
the inlet flange of the test vehicle. Aft of the 
inlet flange, the surface should extend at least 
45m (150 ft.) to the side and approximately 
60 m (200 ft ). A light colored surface such 
as concrete is preferable to avoid excessive 
local heating of air near the ground on sunny 
days. 
An inlet noise barrier is required to isolate 
inlet fan noise. The barrier should be de
signed to produce a minimum of 10 dB fan 
inlet noise attenuation at frequencies of 

250 Hz and above for over a range of angles
from 40 to 60 degrees. Also, ambient noise 

levels in the test area should not exceed 65 
dBC, and operation with community noise 
levels of up to 105 dB overall sound perceived 
level (OASPL) at a radius of 944 m (3000 ft) 
from the test stand must be allowable 

Meterological monitoring equipment should 
be available to sense ambient air tempera
tures, wind velocity, and relative humidity. 
For acquiring acoustic data, both pole-mount
ed microphones and ground level microphones 
are required along with appropriate noise re
cording instrumentation 
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4.2.5.2 Test Site Selection 

The test sites selected for the test program 
 
were based on cost considerations, ease of op-

eration and test support, and data acquisition 
 
system commonality/compatibility. The three 
 
test sites selected meet these criteria and are: 
 
area "A" stands (number 9 or 10) at the Gov-

ernment Products Division for F 100 engine 
 
calibration testing, stand X-1 6 at the Commer-

cial Products Division for F100/testbed


checkout and emissions testing, and the


Boardman facility at the Boeing Commer

cial Airplane Company for aero/acoustic

testing. 
 
A description of these test sites as well as 
 

the rationale for selection is presented in the


following paragraphs. 
 

FI00 CalibrationTest Site 

The test facility selected for the F00 calibra
tion test is one of the test stands m area "A" 
at the Government Products Division in 
Florida. This facility was selected because: 
(I) a stand will be available at the desired time, 
(2) only minimum modifications are necessary 
for engine operating and instrumentation, (3) 
the stand has been used previously for calibra
tion testing of F100 engines, and (4) the 
stand will provide the best data for correlation 
with other F100 engine data. 

An aerial view of the test facility is shown in 
Figure 4.2.5-1, and a typical test stand with 
an F100 engine installed is shown in Figure 
4.2.5-2. 

The test engine will be supported in an over
head "strongback", which allows the engine 
instrumentation to be completed prior to 
mounting in a test stand. The strongback sup
porting the engine will be attached to the stand 
thrust supports by four pins. Stand instru
mentation will be completed by connecting 
multiconnector cables and pneumatic quick
connect panels to the strongback. 
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Figure4 2.5-1 	 Test Area "A - Aenal view of the 
selected test sitefor the F100 
engine calibrationtest. 
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Figure4 2.5-2 	 Typical Test Stand With F100 
Engine Installed-Area "A" test 
standsat thePratt& Whitney 
AircraftGovernmentProducts 
Divisionsareequipped with the 
necessaryfactlitiesfor testing 
F100engines since testingof these 
enginesis done on a regularbasis. 
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For recording test data, a digital data record
ing system is used, capable of recording data 
from 744 inputs (384 temperatures, 240 
static pressures, 96 transient pressures, 10 
pulse trains (speeds or flows), 14 position in
dicators). The normal measurement system 
uncertainity is ±0.15 percent of full scale ex
clusive of the measurement transducer uncer- 
tainity. Specialized calibrated wire probes 
and sensitive pressure cahbration equipment 
will reduce the measurement uncertaimty for 
the performance and operating charactenstic 

A remote data acquisition subsystem (RDAS),
a cathode ray tube (CRT), and a logging type

writer are located in the control room. These 
are connected to a general purpose computer 
(16 bit, 32,000-word core storage), located in 
a central recording building On-line operation 
of the entire system is by the test engineer using 
the control panel of RDAS. Digital data are con
verted to engineering units and pre-arranged per

formance calculations are made before being 
output on line printers and magnetic tape in the 
recording building and the CRT and typewriter 
in the test stand. The data may be processed 
further by another computer (16 bit, 64,000
word core storage), which is equipped with a 
remote graphic display system for editing data 
and a CALCOMP X-Y plotter for data plots, 

The analog recording system consists of four 
subsystems transient recording with a capa
bility of 24 pressure, thermocouple, position 
or switch signals and 6 speed or flow signals, 
dynamic pressure recording with a capability 
of 12 pressure signals and I speed signal, vi
bration recording with a capability of 13 vi
bration and/or speed signals, continuous mon
itor with a capability of 2 speeds, 1 flow, 1 
position, 3 pressures and 1 thermocouple. The 
continuous momtor subsystem operates con- 
tinuously while the engine is runmng The 
other subsystems are operated on command 
from the test engineer, 

Data are also recorded manually from obser
vation of instrumentation on the engine con
trol console The engine operator uses this in
strumentation to operate the engine within 
the prescribed test limits. 

Testbed Checkoutand Emissions Test Site 

The test facility selected for checkout of the 
testbed system and emissions evaluation is 
stand X-l 6 at the Commercial Products Divi
sion in Connecticut. This facility, which is 
shown in Figure 4.2 5-3, is a gas-turbine engine 
test facility designed to develop both nonafter
burning and afterburning turbofan and turbo
jet engines. Engine testing can be conducted 
at static sea level inlet and exhaust conditions. 
The stand is constructed of reinforced concrete 

in the form of an elongated "EI" a horizontal 
inlet and a resonant chamber exhaust silencer
with a vertical discharge stack are located at 

the extreme ends. Extended sound-stream 
type acoustical panels with 42 percent open 
area are installed in the inlet The test engine 
is attached to a suspended overheat type thrust 
measurement platform. Ambient air is suppliedto the test engine inlet, wich is isolated from 

the tet engine by a pata bulk


the after part of the engine by a partial bulk
head. Exhaust gases from the engine are ejec
ted into a collector tube where they are mixed 
with and cooled by atmospheric air aspirated 
over the inlet bulkhead vane. Additional cool
ing of duct burner engine exhaust is accom
plished by injecting water into the air stream 
by means of spray nozzles in the exhaust duct 
The mixed gases are then dispersed through an 
exhaust silencer 

The controls and instrumentation necessary 
to operate the engine and monitor its perfor
mance are located in the test stand control 
room This room is located at an intermediate 
elevation and a observation window is provided 
for a visual inspection of the test cell interior 
during engine operation. Test stand support 
equipment and services are located beneath 
the control room. 

The test parameters are automatically recorded 
with the steady-state data system (SSDS). The 
system consists of central computer area and 
four remote subsystems. The central computer 
area consists of DDP-516 32K computer with 
drum memory storage There are also four 
7-track 556 BPI tape units for recording stand 
data, 1 card punch, I card reader, I printer, 
and computer-subsystem interface logic. The 
SSDS is used primarily for engine testing. 
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Figure 4.2.2-3 	 T'estStandx-16 - This facility, lo catedat the Pratt& Whitney Aircraft Commercial 
ProductsDivision in Connecticut, has been selected forconducting the initial emissions 
test. 

When data acqmusition is initiated, engine data 
are processed initially through the DDP-516 
which converts the electrical signal to engine
ering units. The conversion to engineering 
units is done by a preprocessor program with 
information on the engine configuration sup
pled by input in the long term and pretest. 

The engineering units can then be printed at 
the stand and at the central computer area, 
depending on thnnibwheel option. In addition 
to printed output, the engineering units are also 
recorded on magnetic tape andlor cards in the 
standard ADR card image format. Within the 
DDP-5 16 computer, the "'qulck-look"program 
receives the engineering units and proceeds 
with its calculations to bring out (on the 
stand and on the central printer) the meca
sured data, selected answers, and selected 
gas stream radial pressure and temperature 
profiles. The quick-look answers aid the 

engineer in evaluating engine performance
during the engine run. 

The magnetic tape or card output from the 
DDP-5 16 computer is hand carried to the 
IBM 370 for more extensive calculations by 
modular data reduction (MDR) programs. 

Special cabling will be provided from the test 
cell to the control room and to an outside 
mobile van panel. This system provides for 
connecting special instrumentation such as 
vibration meters, pressure transducers, strain 
gages, closed ciruit television, fuel flows, 
and communication. For the above purposes, 
ninety-four conductor shielded cables, six 
coaxial cables, six two conductor cables, and 
thirty-two thermocouple channels are instal
led from the test cell to the control room. 
Sixty-six four conductor shielded cables and 
ten two conductor shielded cables are pro
vided from the test cell to the van panel. 
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Aero/Acoustic Test Site 

Several candidate facilities were evaluated 
for conducting the aero/acoustic testing. 
The different facilities are listed in Table 
4.2.5-I, along with a summary of the-results 
of-the evaluation. As indicated, only two 
facilities were determined technically accept
able the Boeing Boardman facility m Oregon 
and the McDonnell Douglas Quartzsite in 
Arizona. The NASA-Lewis facility and stand 
X-314 were eliminated from contention mainly 
because of a potential community noise pro
blem. The Government Products Division test 
stand C-10 was found unacceptable because of 
the surface condition of the acoustic field. The 
Rohr facility was eliminated because of avail
ability problems and community noise con
cerns. 

A further evaluation of the Quartzsite and 
Boardman facilities was made to determine 

a final site selection for aero/acoustic testing. 
The cnteria listed in Table 4.2.5-II were used 
as a basis for selection. 

Proposals from the-Boeing Airplane Company 
and the McDonnell Douglas Company were 
received Their respective test facilities were 
judged technically competitive and comparable 
in cost. However, since the Quartzsite facility 
is new and relatively unproven, normal startup 
problems are anticipated. This results in a 
higher risk factor for the Quartzsite facility. 
Therefore, the Boardman facility was selected. 

The Boardman test site is located on 4 x 108 
m2 (99,000) acres in a remote, unpopulated 
area some 257,440 m (160 miles) east of 
Portland, Oregon. An aerial view of the test 
site is shown in Figure 4.2.5-4. 

TABLE 4.2.5-1



TEST FACILITY COMPARISON



Site Company 

X-314 P&WA (CPD) 

Boardman Boeing 

*Quartzsite Douglas 

Brown Field Rohr 

C-10 P&WA (GPD) 

(NASA) NASA 

Quality of 
Low Freq. Noise Data 

Very Good 

Very Good 

Good 

Poor 
(no hard surface) 

Poor 
(no hard surface) 

Undetermined 

Potential 

Community Noise 


Problem 


Probably Yes 

No 

No 

Probably Not 

No 

Yes 

Overall 
Stand 

Acceptability 

Marginal 

Acceptable 

Acceptable 

Not Acceptable 

Not Acceptable 

Not Acceptable 

*Under construction specifically for noise testing, therefore, comments are assumptions at this time 
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TABLE 42.5-11 


SELECTION CRITERIA FOR EVALUATING 

THE BOARDMAN AND QUARTZSITE 


FACILITIES 


Management 

* 	 Experience with Similar Programs 
* 	 Planning 
* 	 Support in Planning this Program 

Test Site 

* 	 Ease of Engine Mounting & Service 
* 	 Convenience of Services - Air, Fuel, Oil, Hydraulic 
* 	 Acoustical Surface 
* 	 Safety Facilities 
* 	 Maintenance and "Year Around" Upkeep 
* Acoustically Calibrated Against Flight Noise Data 

Control and "Observation" of Engine During Test 

* 	 "Block" House Location 
* Ease of Monitoring Engine/Performance/Noise Parameters 

Test Site Logistical Support 

* 	 On-Site Data Review 
* 	 On-Stand or Site Engine Maintenance/Support 
* 	 Data Handling and Transmission to P&WA 
* Communication



Instrumentation



* 	 Noise Data and System Checkout 
Operation of Data Acquisition System Requirements and Limitations* 

* 	 Accuracy (Documented) 
* 	 On-Site Spares and Repair Capability 

Cost 

* 	 Test 
* 	 Support 
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CHARACTERISTICS: 
ACOUSTIC FIELD FORWARD QUADRANT TO 30 n 

(100 FT) 
AFT QUADRANT TO 76 n (250 FT)

OPERATING FREQUENCY RANGE: 50 Hz TO S0 kHz 
TEST STAND THRUST RATING: 25,000 LB 30 

T 

SIDELINE FA 

CONCRETE 

SURFACE 

~MICROPHONE 
LOCATIONS 

AFT QUA DRA NT4 

Figure4.2 5-4 	 Boeing Boadman Test Facility- This facility is locatedin an idealremote areaand has 
the appropriateacousticfield surface conditionsand noise measurement-equipment to 
conduct theaero/acoustictesting. 
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Exi °,,00oB 

istrumentaton Control Testbed 
checkout checkout

cCheckout 

Figure4 3 2-2 Test Planfor Testbed Engine Checkout - In preparation for the aero/acoustc testing, 
the F1O0 engine will be calibratedandan initialcheckout of the testbed will be made. 

checkout program involves the calibration of 
the F100 engine, which will be conducted 
at the Pratt & Whitney Aircraft Government 
Products Division test site "A" The engine 
will be tested to establish gas generator 
health, define the core and fan duct air flows, 
and provide data to update the VCE testbed 
engine computer simulation. The performance 
calibration will consist of operating the engine 
throughout the complete operating range, 
from idle to 100 percent of maximum con
tinuous power, for complete documentation 
of engine operating and stress characteristics 
and overall aerothermodynamic behavior 

The second part of the program will be the 
testbed operational checkout and will be con
ducted at the Pratt & Whitney Aircraft Coin
mercial Products Division test stand X-1 6 
This test will establish the overall operating 
characteristics of the testbed system, mclud
ing controls, engine components, and instru
mentation. Furthermore, potential areas of 
distress in the duct burner will be identified 
to determine operating procedures and/or 
additional or modified safety instrumentation 
for the remainder of the test program. 

Dunng this portion of the program, the emis
sions gas sampling system will be evaluated 
with respect to functional operation and re
liability. Also, the laser doppler velocimeter 

system will be evaluated for operation and 
reliability. 
4.3.2.2 Aero/Acoustic Test (Exhibit B) 

The aero/acoustic testing that will be conduct
ed at the Boeing Boardman test facility will 
provide the first acoustic test data on the 
large-scale duct burner and coannular nozzle 
testbed configuration. The test is structured 
to evaluate noise charactenstics of the test 
configuration by (1) initial aero/acoustic 
testing covering a limited matrix, and (2) 
completing the aero/acoustic testing for 
evaluation and optimization of the coannular 

noise benefit. 

The test consists of three major test categories, 
as delineated by the flow diagram m Figure 
4.3.2-3 The different categories include, a 
facility checkout, noise assessment without 
the ejector, and noise assessment with the 
ejector. 

The facility checkout at Boardman will be a 
brief test to check the operation of the test
bed engine after testing at the X-16 test site, 
and to check the functional operation of the 

different facility service systems and readout 
equipment. After completing the checkout, 
aero/acoustic noise data will be acquired both 
with and without the ejector installed on the 
testbed. 
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Figure4.3.2-3 	 Test PlanforAero/Acoustic Test
ing -A comprehensiveprogramhas 
been defined to acquire sufficient 
noise dataatdifferent conditions. 

The acoustic inlet noise barrier will be used 
during the majority of these tests, 

Dunng testing without the ejector, early test 
data will be obtained to cover a selected range 
of test points within the test matrix. The data 
will be acquired utilizing primary nozzle area 

No. 1, as indicated in Figure 4.3 2-3. The laser 
doppler velocimeter (LDV) system will be 
employed to measure the velocity at several 
positions downstream of the exit planes of the 
core and fan stream nozzle throat. The en
gine will be matched three (original plus two 

-area primary nozzles 
to cover the complete matrix of required test 
points. A velocity survey will be completed 
with the LDV system at several locations down
stream of the exhaust nozzle for two additional 
conditions. 
Test data will then be acquired with the 

ejector system installed to complete the 
acoustic 	 test data acquisition. The ejector 
will be evaluated both with and without 
acoustic 	 treatment to assess the reduction 
in noise with an acoustically-treated ejector 
The evaluation will be conducted with three 
different aerodynamic fairings if necessary. 
Jet velocity measurements with the LDV 
system will also be taken during this part of 
the test. 

Of QMJiN 

4.3.2.3 	 Duct Burner Emissions Evaluation 
(Exhibit C) 

After the noise tests have been successfully
completed, the testbed engine will be return
ed to the Commercial Products Division for 
the initiation of emissions testing in Stand 
X-16 This is the first scheduled test to be 

accomplished under Exhibit C of the pro
gram. The objectives of this testing will be 

to obtain, as near as possible, the cruise,
transonic, and takeoff duct burner operat
mig points and to optimize the fuel flow splits 
for the combustion zones. 

A flow diagram is shown in Figure 4.3.2-4, 

indicating the different types of testing that 
will be completed during this program. The 
duct burner will be evaluated in a series of 
tests at a number of simulated operating
points to acquire the necessary test data.
Essentially all of the testing will be perform
enwitho the e tintalle 

Exhibit C 

Duct burneremission 

evaluation 
I 	 ] I 

MoiidAlternative
initialburner burner burner
evaluation 	 evaluation evaluation 

r = 
With Wrthout 

ejector 	 ejector 

Figure4.3.2-4 	 Test Planfor EmissionsEvaluation-
The emissions test plan includes 
provisionsfor evaluatingductbum
er modificationaswell as alterna
tive configurationsas partofthe 
optimizatonprocess. 

As indicated in Figure 4 3.2-4, tests will be 
conducted to assess duct burner modifications 
to improve liner cooling and fuel distribution 
using the initial liner configuration Tests to 
evaluate an alternate configuration defined 
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as a result of the early testbed and/or duct 
burner ng program (under NASA contract 
NAS3-20602) will also be accomplished. A 
new duct liner will be fabricated for the al
temate configuration. 

4.3.2.4 Noise Evaluation Update (Exhibit C) 

A final series of aero/acoustic test will be 
completed at the Boeing Boardman site 
using the best duct burner configuration 
discussed in the preceding section Tins test 
will provide data for an overall update of the 
duct burner and the appropriate coannular 
nozzle modification. 

A flow diagram of the planned test program 
is presented in Figure 4.3.2-5. As shown, 
testing will be conducted both with and with
out the ejector. Also, testing will be 
performed with three aerodynamic fainngs 
during the aero/acoustic evaluation if deemed 
necessary. 

Exhblt C 

No. e 
evLtuation

update 

Selected 

duct burner 
 
6whout ejector 

*Test 

faring 
No. I 

*LDV utilized 

4.3.3 Program Work Plan Summary 

An overview of the work outlined in Exhibits 
B and C is presented in Figures 4 3.3-1 and 
4.3.3-2, respectively. These schedules delineate 
the major areas of effort as well as-identify key 
program milestones. In Figure 4.3.3-1, sup
portive NASA-sponsored programs related to 
the VCE Testbed Program are listed along with 
the program schedule and appropriate mile
stones. Of main interest are the scheduling 
interfaces among the VCE Testbed Program, 
the coannular nozzle programs, and the duct 
burner programs. 

A summary of the test plan for both Exhibits 
B and C is presented in Tables 4.3.3-1 and 
4.3 3-11, respectively. The information in 
these tables includes the purpose of each test, 
the location of the test, testbed configuration, 
and a general listing of the test instrumentation. 

Selected 

duct burner 
wih ejector 

i Test 

faring 
No.2 

fTest 

I 'ig 
No 3 

Figure4.3 2-.5 Test Planfor FinalAero/A coustic Test -Noise datawill be acquired with therefined 
duct burnerconfigurationfor an updateof theoverall testbedsystem. 
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Fgure 4.3.3-1 ExhibitB -Program schedule for conducting the aeroacoustie and associated preparatory



tests. 
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Figure4 3.3-2 ExhibitC -Program schedule forconductingthe emissionstesting. 
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TABLE 4.3.3-1



PRELIMINARY VCE TESTBED EXHIBIT BTEST PLAN SUMMARY



Test 
No. Purpose Location 

Testbed 
Configuration Instrumentation 

B-1 Calibration of F100 
Engine to Determine 
Performance Charact
enstics 

Florida "Production Engine" "Production Engine" + Some 
Experimental Instrumentation 
(Sta. 10 Pt, P, Tt, Sta. 25Pt, 
Tt Sta. 3.0 Pt, Tt: Sta 6 Pt, 
Tt) 

B-2 Testbed and Instru
mentation Checkout 

East Hartford 
(X-16) 

Testbed with 1st 
Core Nozzle Area 
No Ejector 

7100 - Same as B-I 
Testbed Internal 

0 Burner (T/C's, Ps) 
* Burner Inlet Rake 
* Accelerometers 
* Other 

Testbed External 
* Duct Burner Gas Sampling & Pt 
* LDV 

B-3a Testbed Checkout, Plus 
Initial Noise Test 

Boardman Same as B-2 FI00 - Same as B-1 
Testbed Internal - Modification of B-2 
Testbed External -LDV,Microphones (1 test 
pt. -up to 4 axial positions with LDV). 

B-3b Same as B-3A 

Completion of Noise 
Test Matns 

Same as B-3a 
2nd Nozzle Area 

Same as B-3a (Without LDV) 

B-3c Same as B-3b Except 
3rd Nozzle Area 

(I test pt-each with up to 4 axial positions 
with LDV) 

B4a Noise Data Acquisition Same as B-3a Testbed + Ejector 
W/O Noise Treatment 

Same as B-3a Except LDV Moved to 
Ejector Exit (1 test pt.  with up to 4 
axial positions with LDV) 

B-4b Noise Data Acquisition Same as B-3a Same as B-4a with 
Noise Treatment 

Same as B4a 

os6
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Test 
No. Purpose 

C-la Emissions Data Acqui
sition 

C-lb Emissions Data Acqui
sition 

C-2 Emissions and Burner 
Performance 

C-3 Emissions and Burner 

C-4 Noise Data Acquisition 

TABLE 4.3.3-11 


PRELIMINARY VCE TESTBED 

EXHIBIT C TEST PLAN SUMMARY 


Location Configuration 

East Hartford Same as B-3a, b or 
(X-16) c of Exhibit B 

East Hartford Same as B-4a, of 
Exhibit B 

East Hartford Testbed with Mod I 
Burner and Select
ed Core Nozzle 
(same lImes as used 
for previous tests) 

East Hartford Same as C2 except 
with Alternate 
Burner System 
(i e., new lines with 
mods from testbed 
and duct burner 
rig testing mcorpor
ated) 

Boardman Same and C-3 with 
or w/o ejector 

Instrumentation 

Same as Exhibit B test #B-2 Except 
W/O LDV 

Tentatively same as C-Ia 

Same as C-la 

Same as C-2 

Same as B-3a or B-4a of Exhibit B 
(1 test pt-with up to 4 axial posi
tions with LDV) 
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LIST OF ABBREVIATIONS



Aj 

AID 

BPR 

CET 

CIVV 

CO 

DB 

EEC 

El 

EPA 

EPAP 

EPN 

FN 

FPR 

FTIT 

LDV 

NOx 

OPR 

PB 

RCVV 

RTCS 

SCAR 

SLTO 

Exhaust Nozzle Area (Core) 

Exhaust Nozzle Area (Fan Duct) 

Bypass Ratio 

Combustor Exit Temperature 

Compressor Inlet Variable Vane 

Carbon Monoxide 

Duct Burner 

Electronic Engine Control 

Emissions Index 

Environmental Protection Agency 

Environmental Protection Agency Parameter 

Effective Preceived Noise 

Thrust 

Fan Pressure Ratio 

Fan Turbine Inlet Temperature 

Laser Doppler Velocimeter 

Oxides of Nitrogen 

Overall Pressure Ratio 

OIGINAL PAGE IS 
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Burner Pressure 

Rear Compressor Variable Vane 

Real Time Control Simulator 

Supersonic Cruise Airplane Research 

Sea Level Take Off 
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LIST OF ABBREVIATIONS (Cont'd) 

TCA Turbine Cooling Airflow 

THC Total Hydrocarbons (unburned) 

TOGW Take Off Gross Weight 

TSFC Thrust Specific Fuel Consumption 

UFC Unified Fuel Control 

VCE Variable Cycle Engine 

VSCE Variable Stream Control Engine 

WAT 2 Engine Corrected Airflow 

WFAB Augmentor Fuel Flow 

WFDB Duct Burner Fuel Flow 

WFL Main Burner Fuel Flow 
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