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ABSTRACT

The implementation of Satellite based Doppler positioning systems fre-

quently requires the recovery of transmitter position from a single pass of

Doppler data. The least squares approach to the problem yields conjugate solu-

tions on either side of the satellite subtrack. It is important to develop a pro-

cedure for choosing the proper solution which is correct in a high percentage

of cases.

This paper derives a test for ambiguity resolution which is the most power-

ful in the sense that it maximizes the probability of a correct decision. When

systematic error sources are properly included in the least squares reduction

process to yield an optimal solution, the test reduces to choosing the solution

which provides the smaller valuation of the least squares loss function. When

systematic error sources are ignored in the least squares reduction, the most

powerful test is a quadratic form comparison with the weighting matrix of the

quadratic form obtained by computing the pseudo-inverse of a reduced rank

square matrix.

The paper provides a formula for computing the power of the most power-

ful test. A numerical example is included in which the power of the test is coin-

puted for a situation which may occur during an actual satellite aided search

and rescue mission.
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INTRODUCTION

A Search and Rescue Orbiting Satellite System has been suggested as a

means for locating distress signals from downed aircraft, small boats, over-

land expeditions, etc. 1 - Z • 3 • Positioning with this system would be accomplished

using emissions from Emergency Locator Transmitters (ELT), now available on

most U.S. aircraft. An essential requirement of the system is that the location

of ELT emissions be determined to within a few kilometers using data obtained

during a single pass of a 700-1200 kilometer altitude satellite.

One specific mission proposals involves the incorporation of search and

rescue mission instruments on a TIROS-N satellite in a circular, 850 Km alti-

tude, polar orbit. The instruments would be capable of detecting and locating

ELT's operating at 121.5 and 243 MHz, as well as new and improved ELT's
i

operating on the 406 MHz frequency authorized for ground to satellite use by .he

1971 World Administrative Radio Conference on Space TelecommLMicatiors. ine

nominal launch data is Jan. 1981.

The requirements of such a mission lead to a certain estimation problem:

that of determining transmitter position from a single pass of Doppler data and

a satellite epoch state within or near the data span. In fact, it is very difficult

to recover three position components from a single pass of Doppler observations.

The usual procedure is to assume the transmitter to be on the surface of an

ellipsoidal Earth and to use a conventional least squares filter to estimate longi-

tude and latitude components of position. Also, the carrier frequency cannot be

1



assumed as known. Hence it is necessary to recover the carrier frequency from

the data along with transmitter longitude and latitude.

All least squares reduction processes are equivalent to finding a local min-

inum of a surface. In the case of single pass Doppler position determination the

multidimen 3ional surface in question has two local minima, representing solu-

tions on each side of the satellite subtrack. Hence two solutions are available

and they can be obtained by choosing initial values for the least squares itera-	 0

tion process on either side of the satellite subtrack. Within the context of a

satellite aided search and rescue mission the ability to choose the correct least

square solution can be critical. Unless one develops a decision procedure which

is correct in a high percentage of cases, situations may occur in which it will be

necessary to send rescue parties to two widely separated locations thus increas-

ing the cost of each rescue. The ambiguity problem, the distinguishing of the cor-

rect from the spurious solution, is the subject of this paper.

The problem arises in other applications. An example is the proposed satel-

lite-aided coastal sur-eillance in support of the recently imposed 200 mile fishing

limit. 6 This system would require a single pass Doppler positioning capability.

Also, Green 7 has analyzed the ambiguity problem in the course of a comprehen-

sive treatment of the NT.MBUS-TWERLE experiment. But he does not attempt

to derive the optimal decision procedure. In addition, the technique recommended

for computing the probability of a correct decision which relies on a cumulative F

distribution is incorrect.

2
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In what follows it is shown that the residual sets of the two solutions have

different statistical properties and that this fact can be exploited to develop a

simple quadratic form test which is the most powerful in the sense that it max-

imizes the probability of a correct decision.

A numerical example is given in which the power of the test is computed for

a situation which may occur during an actual satellite aided search and rescue

mission.

RESIDUAL STATISTICS

In this section we develop the statistical properties of the a-posteriori least
i

squares residuals for both the correct and the spurious solution of the single pass

Doppler positioning; problem. The treatment is sufficiently general to account for

systematic error sources which are left unadjusted in the reduction process.

Lett be the three dimensional vector representing true values of transmitter

longitude, latitude and transmitter carrier frequency. Let y be an m dimensional

set of correct or noiseless Doppler observations obtained from a single satellite

pass. The actual observations are corrupted by noise. Hence

y = y + v, E(v) = 6, E(vvT ) = Q
	 (1)

where Q is a full rant: covariance matrix, and v is normally distributed. In addi-

tion, there are other parameters —Z (orbit epoch state, carrier frequency drift rate,

etc.") which influence the functional relationship between y and a. If the estimates
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of these parameters are uncertain to a significant extent, this fact must be taken

into account in obtaining an optimal estimate x of x. Let z be an estimate of Z.

Then

z = z + a . E (a) = 0 , E(azT ) = P	 (2)

where P is full rant: and u normally distributed. The functional relationship be-

tween R and ^ can be expressed as

Y = f(X, z)	 (3)

Let x  be a nominal estimate of x. Expand equation 3 in a first order Taylor

series about x  and 'z and include the results of equations 2 and 1. The result is

Sy=ASx+y	 (4)

where

y = Ba + v, E(-y) = O. E( ,yy T ) = BP13 T + Q = ¢	 (5a)

	

6y - y - f (xh . z)	 (5b)

SX = X - X 	 (5c)

	

A= f̂ . B= a f	 (5d)
^X	 ^Z

Equation 4 can be used as an equation of condition for a standard least squares

estimator. The result is

X = X N + ( AT,1"
IA )

-1 AT : '' y	 (6)

The left side of equation G can be used as a new nominal and the process can be

repeated until a convergence criterion is satisfied. By employing the usual

linearity assumptions one can show that the left side of eq. G is an optimal esti-

9matoi of x in the sense that the trace of its covariance is a minimum.
i

4
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We require that the first and second order statistics for the a-posteriori

residuals of the least squares filter when the iteration process converges to a

correct solution. Assume that the nominal value x  used as cut initial guess

for the least squares iteration process is sufficiently close to 3Z that the first

order Taylor series expansion represented by eq. 4 is valid. 'Then by combining

eq. 4 with eq. G we obtain

x=x+ (AT4-1A)-1AT;-1y	 (7)

The a posteriori residuals are defined as

R =y -f(X,z)	 (^)

Assume that x is a good estimate of x. and rewrite equation 8 as

R=f(x,z)-f(x,zj+	 (9)

Then a first order Taylor series expansion about x and z yields

R - [I - A(AT I -1 A) -1 AT ^ -1 ] Y	 (10)

Ilence R is a linear function of a normal random variable and,

E(R) - 5	 (1 1a)

COV(R)-E(RR T )=^p-A(AT ^- 1 A)- 1 A T -C	 (111))

In fact the covariance matrix C of li is of reduced rank. This can be seen by

focusing attention on eq. 10. Because of the interpretation of the least squares

reduction process as a projection operator' it follows that the matrix which

maps , onto R is a projection operator on the complement space of the range

of A. Since y is a full rank random vector and since the range space of A is of

rank 3, it follows that the AT dimensional covariance matrix C is of reduced rank

5



M-3. These facts can be summarized in the following

Theorem:

Assume that a least squares process has been implemented to solve the

single pass Doppler positioning problem and that the process has converged to

a point near the true transmitter position. Assume also that the equation of

condition (eq. •1) properly accounts for systematic error sources which are left

unadjusted in the lust squares process. Then equation 6 provides a minimum

, ariance estimate of transmitter position. The a posteriori residuals of the

process have first and second order moments given by eq. 11a. , and llb. The

covariance matrix of the residuals is of reduced rank \1-3 where M is the num-

ber of data points.

To obtain residual statistics for the spurious solution, let x' be the expected

value of the least squares solution when the iterative process converges to the

wrong side of the satellite subtrack. The spurious solution is obtained when the

initial estimate xN is within a certain radius of convergence of x'. Hence eq. 6

can be considered as the least squares estimator for the spurious solution but

with the partial derivative matrices evaluated at x' rather than z. Perform the

following first order Taylor series expansior

f(x N .z)- f(x'.i) =A(xN- x')+B(z.z)	 (12)

where the partial derivative matrices A and li arc evaluated at x' . When eq. 12

is combined with eq. 6, the result is

6
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x - x'+ (AT 4 - 'A)- I AT t,- I [f(z, a) - f( x', z ) + %^ (13)

But since x' is interpreted as the expected value of the least squares estimator,

we have

x _ x ' + (AT t - IA ) -I ATp -I y	 (14)

By combining eq. 9 Nvith eq. 14 and employing another Taylor series expansion

about x', we obtain an expression for the residuals of the spurious solution as

R S = f(x,z)- f(x',z)+ [I-A( AT^ -I A) -I AT p - I I .>	 (15)

!	 Hence the first and second order statistics for the a-posteriori residuals of thei
spurious solution are

E(R S )= f(z,z)- f(x" )-U	 (16a)

COV(R S ) _ - A(AT^^-IA)-I AT	 (16b)

i
The symbol U is the difference between the true Doppler signal received from a

transmitter located at its actual position represented by x and the two Doppler

signals which would be received if the transmitter were at the position repre-

sented by x'.

The covariance matrix of the residuals for the spurious solution given by

16b has the same form as the covariance matrix for the residuals of the true

solution as given by 11b. The difference is that the partial derivative matrices

A and B defined in equation 5b. are evaluated at approximately mirror image

points relative to the satellite subtrack. However, numerous simulations have

'	 shown that the matrix form given by equation 11b or 16b are nearly identical
r	 i

^	 I
when evaluated at mirror image points. This is the result of the near symmetry

I

' II c	
yy
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of the function defined by equation 3 about the satellite subt rack . 'These facts

are stunninrized as follows:

'I'hcorem:	
1

The covariance matrix of the a-posteriori residuals of the spurious solui.)n

is the same as that of the n- posteriori residuals for the correct solution. The

expected value of the residuals associated with the spurious solution is the dif-

ference between the signal received it thL' tr:insnlitter were at Z and the signal

received it the trmsmitter were at .x ' .

MOST POWFH F UL 'PEST FOR AMBIGUITY RESOLUTION

Assume that a least squares solution to the single pass Doppler positioning

problem has been implemented and that solutions on sides a :uid b of the satellite

suhtrack have been obtained. Let r , and r ►, be the residual sets of the two solu-

tions. We require an algorithm which permits us to decide N\'hich of the two

residual sets is associated Mth the correct solution. Furthermore, it is to be

the most powerful test in the sense that among all possible such tests, it mxxi-

mizes the probability of a correct decision.

The problem can be formulated in terms of a statuiard testing of a statistical

hypothesis. Let the null hypothesis be that the vector r is a realization of a

random vector R whose mean is 6 and whose covariance matrix is C as defined

by eq. 111). The null hypothesis is equivalent to the assumption that the correct

solution is on side a. The alternative hypothesis is that r is a realization of

M

is

s

r	 1
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	a random vector U S whose ex}keted value is U as defined by equation 1f:R. and 	 fi'

whose covariance matrix is C. The resultant test is to be the most powerful in

the sense that it maximizes the probability of rejectingthe ru:l hypothesis when

i	
in fact the null hypothesis is false.

1	 The derivation of the most powerful test would be quite straightforward if

it were not for the fact that the random vectors R and 11, are of reduced rank.

1
It is necessary to account for this fact by performing a linear transformation

of variables by means of a matrix T of dimension (M-3) by M. The transforma-

tion defined by T must have the property that the composite mappirg TC have a

range space of dimension M-3. (One such transformation is defined by a matrix

whose rows are the D1-3 eigenvectors associated with the non-zero eigenvalues

of C.) Define

= TR	 (17a)

S - TR 5 	(17b)

V11 - Tr,, , Vb = Tr f 	(17c)

W - Tll	 (17d)

The null hypothesis is now that the vector- V . is z sample of the M-3 dimen-

sional random vector : whose mean is 0 and whose covariance is

COV(2) = TCT T = D	 (18)

where D is a full rank matrix. Thz- alternative hypothesis is that V a is a sample

1	 from the random vector r s with mean W and covariance !r.

9



1

Imagine an exj^eriment whose first step is to choose either random vnrialde

or random variable :' s with probability .5 for each choice. Next obtain a real-

ization V from whichever random vector was chosen at the first step. The prob-

ability structure of the experiment can be described as follows: Define a two

point random variable x as x - 0 if random vector.' is chosen and x = 1 if ran-

dom vector . s is chosen. The outcome of tht! exper i ment can be described as a

two tuple (V, x) where the value of x describes the chosen probahil_ry law and

where V is the realization. From equations 10, 15 acid 17a, 17b, it is seen that

random vectors and 1 S are linear functions of normal random vectors. Since

they are also full rant: they are normally distributed. Hence the joint probability

density function of the experiment outcome is

^(V,x)=	 1	 ^'.Kli	 <<Td-ty^

`(2 I rv- P,2I DI t =

ifx= 0

a(V x) _	 1	 _cxp ((V- w)Tn -1(v -N)^

ifx=1.

The Neyman-Pearson Lemm.0 0 asserts that in the case of simple niternative

hyTotheses, a maximum likelihood criterion is the most power-

ful test for accepting; or rejecting; the null h ypothesis. An

al),ilication of Bayes' theorem 
11 

yields the conditional pi-Ohahility

density function of x given a realization V. of V as

ORI(^,^ x^uliAll.l'fY
t)	 1

10

(19)

I 	 '1
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(23)

exp 2 [VT D —1 va

f(XIV=V;,) _—

exp 
2 [VT 

D— ^ va +eXp Z [(va —

ifx=0

ex 11	 [(va — W) T D -1
 (Va .

f(xIV=V ;,) _
Cxp 2 [VaD-lva]+ exp 2 [(Va - M

ifx=1.

From equation 20 it follows that the maximum l it

f(OIV=V„ )> f ( I I V = Va )

But since we have alternative and mutually exclusive i

f(11V=V a )= f(OIV=Vb)

From equations 20, 21, and 22 we obtain the result tb

test is to accept the null hypothesis if and only if

V T D 1Va < Vb D- 1 Vb

Equation 23 can be written as

r aT T T n - I T r A < rtT T T W I T rb	(24)

But in fact,

•	 TT D- ' T = C 1	 (25)

1

where C' denotes the unique pseudoinverse 9 of C. This can be seen by showing

that the left side of equation 25 satisfies the four axioms of the pseudoinverse.

CC' C = C	 (26a)

CI CC' - C'	 (26b)

^	 11

i
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(CC' ) T = CC'	 (26c)

(C'C )T C'C	 (26d)

Hence the criterion for accepting the null hypothesis is

ra C' r^ < r 1T C r i 	(27)

A further simplification is possible.

Theorem:

Both residual set r,, and resid • ial set rb are in the range space of C.

Proof:

hes i dual sets r. and rb are realizations of random vectors R and R S which

are defined by equations 10 and 15. Hence it is sufficient to show the existence

of random . .riables G and GS such that

R = CG	 (?.8a)

R S = CA S	(28b)

From equations 10 and llb, it is clear that the required representation for G is

^- ^'t. Also notice that from equations 13 and 14

(A T E- ^ ,U- ' A T E- ^ [f(z, 1 - f(X , ,i )1 = U	 (29)

when x' is the expected value of the least squares estimator when the iteration

process converges to the wrong side of the satei l ite subtrack. Hence equation 1-5

can be :ewrittea

R S = ;I -A(A T L -l A) -I A T¢' 1 J [f(z.i)- f(x',i)+yl	 (:30)

i

1

4

S^
^I

i}

V :1
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The correct expression for GS is

Gs=¢[f(x,z)- f(x',i) +y] 	 (31)

. ^
Theorem:

Let C be a matrix transformation whose form is that of llb, and let X be a

vector in the range space of C. Then

X T C 1 X = X T t," t X	 (32)

Proof:

Let F be such that

X = CF	 (33)

where C has the form of equation llb. The following set of equations proves the

result

XTCIX = F T CC 1 CF	 (34a)

F T CC'CF = F T CF	 (34b)

F T CF = F T CQ- 1 CF	 (34c)

F T C,t' i CF = X T^b' i X	 (34d)

The above results imply that inequality 27 is satisfied if and only if

re "1 r a < r `T ¢' 1 r t	 (35)

We have derived the fundamental result of the paper,

Theorem:
I

Assume that the least squares solution to the single pass Doppler positioning

problem has been implemented and that solutions on either side of the satellite

4
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1

subtrackhave been obtained. Let r, and r,, be the residual sets of the two solu-

tions. Assume also that systematic error sources have been properly modeled

in the reduction process so that when ambiguity is properly resolved the residt-

ing least squares estimator is optimal in a minimum variance sense. Then the

most powerful test for ambiguity resolution is obtained by choosing the solution

on side a of the satellite subtrackas the correct transmitter position if and only

if inequality 35 is satisfied. The quadratic forms on the left and right sides are

the valuations of the least squares loss function obtained at each of the two solu-

tions and, hence, are available as an automatic byproduct of the least squares

reduction process. If no systematic error sources are present and if the data

noise is uncorrelated and of constant va. iance, the most powerful test reduces

to choosing the solution whose residuals provide the smaller square sum. Once

the residuals are available the probability of the test providing a correct answer

can be obtained by computing

T -^	 11
CXp 2 '. R n Q Ra!

P -	 (36)
cXli	 ^ko V-^ R o ^ + CXfi 2 ,H^ Q- ^ R^^

where the required probability is P if P ` .5 and 1-P if P < .5.

An entirely different approach which also derives the above result is given

in the aplxendix.

If the systematic error sources defined by equation 2 are neglected in the

least squares reduction process, the residual statistics are different from those
,

given by equations 11a, llb cull 16a, and 161,. Hence for this situ;ition the above

I
14
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theorem is invalid. The most powerful test for this case can be obtained by

noticing that if the uncertainties implied by equation 2 are ignored in the least

squares reduction process, the least squares estimator becomes

X = X  + ( AT Q- 1 A) -1 A T Q-16Y	
(37)

By the sank reasoning that obtained equation lu from equational, an equation for

•	 the residuals of the correct solution can be obtained as

R = [ I - A(ATQ-1A)-1 AT Q-1 ]Y	 (38)

Defino

H = I - A ( AT Q -1A ) -1 A T Q-1	 (39)

Then residual statistics for the correct solution become

E(R) = 0	 (40a)

COV(R) = H 11 T - C o	 (40b)

By repeating the logic which obtained equation 15 from equations 6 we obtain ;u1

expression for the residuals of the spurious solution

R S = f(x,Z)- f(x',i )+H y 	(41)

Hence

•	 E(R5)= f(x,7)- f(x',i )=U	 (.12a)

Cov(R S ) = H : II T = C o	 (42b)

The reasoning employed from equation 17 to equation 27 is again applicable and

we have the following result,

I k, ll,* :', L PAGE IS
OF POOR QUALITY
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Theorem:

Assume that the least squares solution to the single pass Doppler position-
f	 ,

ink problem has been implemented and that solutions on either side of the satel-

lite subtrackhave been obtained. Let r. and rb be the residual sets of the two

solutions. Assume that the uncertainty associated with parameters defined by 	 1

equation 2 have been ignored in the least squares reduction process. Then the

most powerful test for ambiguity resolution is obtained by choosing the solution
t

on side a of the satellite subtrackas the correct transmitter position if and only

if

	

r o C 0	 ^r • < r C Q rb

	

T r	 r	

(43)

where C o is defined by equation 39b.

It would be inconsistwit to ignore systematic error sources in a least squares

data reduction and then include their effects in an effort to resolve ambiguity.

Hence it is unlikely that the test implied by inequality 43 would be implemented in

practice. however, the test is of use in providing a bound on the probability of

ambiguity resolution in the presence o; different types and magnitudes of sys-

tematic error sources.

COMPUTING THE POWER OF THE TEST

Suppose that an optimal least squares estimator defined by equation 6 has

been implemented to determine transmitter position from a single pass of Dop-

pler data. The inequality 35 provides the most powerful test for ambiguity

`L
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resolution. The power of the test is the probability of inequality 35 being satis-

fied when the correct solution is on side a.

From equations 10 and 15 it follows that

	

±U - r . - r 	 (44)

With regard to determining the power of the test it will be seen that the sign

•	 ambiguity is irrelevant. We will assume the positive sign. Inequality 35 can

•	 now be rewritten as

r T̂ ^t -1 
r:, < ( r, - U )T ^p-1 ( r. - U)	 (45)

Expand inequality 45 to obtain

2 U T q -1 r^ < UT ¢-1 U	 (45)

If the correct solution is on side a, the probability of satisfying inequality 45 is

the probability that a standard normal random variable satisfies tnec-ftlality

X ^

	

	 UTq-1 
U	

(47)

2 ( UT,F -1 C4. -1 U) 1I2

where C is defined by equation llb. But from equation 29, and 11b it follows that

	

C^t -1 U = U	 (43)

Hence inequality 47 is equivalent to

x < ( UT ^p-1 U )1/1	

49(	 )
2

The power of the test can be obtained by computing the right side of inequality 49

and consulting a tabulation of the cumulative normal distribution for the proba-

bility of the standard normal variable not exceeding the number in question. If

17	 ORIGftiAI, PAGE IS
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no systematic error sources are present and if the data noise is uncorrelated

and of constant variance, inequality 49 reduces to

X < ( UT U ) 1/2	
(50)

2C7

where a is the standard deviation of the data noise.

NUMERICAL EXAMPLE

To illustrate the application of equation (50), an example that is typical of

the satellite-orbit search and rescue system to be tested using the TIROS-N

satellite 1 -' was chosen. A circular satellite orbit with a radius of 7200

kilometers and an inclination of 98.7 0 was simulated. The latitude of the

transmitter was about 36°N, and the distance from the satellite subtrack

was chosen so that the satellite elevation was 20° at the time of closest approach.

The range rates that would be measured in such a configuration using one min-

ute intervals between observations over a span of three minutes were calculated,

and are listed in the second column of both Table I and Table II. The first column

in each of these tables, the time of observation, is given relative to the time of

closest approach of the satellite to the transmitter, which occurs at the second

range-rate observation.

In Table I, noise was generated using a standard deviation of about 2.9 meters

per second, which, at a transmitter frequency of 40611111z, corresponds to a de-

termination of the received frequency to within a bin width of 10 Ilz. The noise

f

I
i

Ii

'	 1
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values obtained are listed in the second column of Table I. The simulated range

rate observations were formed by adding the range rates in the first column to

the corresponding noise values in the second. Using these simulated observations

a least squares position location algorithm was used to solve both for the mini-

mum near the transmitter position, and also for the false minimum on the op-

posite side of the satellite subtrack. The residuals of the least squares fits to

4'	 these minima are listed in the fifth and fourth columns of Table I respectively.

The vector U appearing in equation (50), which is defined in equation (44) as the

difference between the residuals at the false minimum and those at the minimum

near the true position, is listed in the last column. The fundamental test, equa-

tion (35), in this case gives the correct results since the sum of one squares of

the fourth column, ?3.684, exceeds that of the fifth column, 9.027. Using the

residual difference in equation (50), the right side of (50) is equal to 0.438

which, consulting a table of the cumulative normal distribution, yields a value

of 670/( for the power of the test, a low value.

in Table II the process above has been repeated, except that in this case the

receiver resolution is taken to be 1 Hz at 406 IAIEz. The power of the test in-

creases to 99.99%. Clearly the power is a strong function of data noise standard

deviation. It is also a function of Beacon latitude, satellite elevation at TCA, and

the data distribution along the satellite pass.

' )RIGINAL P.1GF; 1S
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The use of Satellite Rased, single pass Doppler positioning systems creates

f
a certain estimation problem - that of determining transmitter position from a

1

single pass of Doppler data and a satellite epoch state within or near the data

span. A least squares approach is usually employed to solve the problem. how-

ever, all least squares reduction processes are equivalent to finding a local min-

inlunl of a surface. In the case of single pass Doppler position determination the

multidimensional surface in question has two minima, representing solutions on
i

1
C	 each side of the satellite subtrack. In many applications it is important to have

a procedure for choosing the proper solution which is correct in a high percent-

.	 f

.

f }

II

J^

age of cases.

It is shown that the residual sets of the correct and the spurious solutions

have different statistical properties mid that this fact can be exploited to develop

a simple quadratic form test for ambiguity resolution. This test is the most

powerful in the sense that it maximizes the probability of a correct decision.

Alien systematic error sources are properly included in the data reduction

process to yield an optimal solution, the test reduces to choosing the solution

which provides the smaller valuation of the least squares loss function. When

systematic error Sources are ignored in the least squares reduction, the most

powerful test is a quadratic form comparison with the weighting; matrix of the

quadratic form obtained by computing; the pseudo-inverse of a reduced rank

square matrix.

20
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The paiper provides a formula for computing the power of the most powerful

test. The power of the test is a function of the data noise, the number and dis-

tribution of the data points, transmitter latitude, and the maximum elevation of

the data points, transmitter latitude, and the maximum elevation of the satellite

pass relative to the transmitter position. A numerical example is included in

which the power of the test is computed for a situation which could occur during

4	 an actual satellite aided search and rescue mission.
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Appendix

Alternate Derivation

The probability that the true position x of the transmitter lies in ,I

region A when a particular series y of range rates are observed is given by

[13]

P[z inAIy]	
P( IY)	 ( 

1)(Y1x )p(x)dX	 (A1)
.A

%%-here p(x) is the marginal probability density of x, p(ylx) is the conditional

probability density of y given x, and p(y) is the marginal probability density of y

(Y) = f I)(Ylx)P( x )( Ix 	(A2)
S

%,.here the integration is over the entire range S of x, that is, over both the entire

surface of the earth and the possible values of frequency.

'rhe observed ran;;e rates are mexielled as the sum of the true range rates

f(x) and Inoise component r whose covariance is the matrix Q (see equation 11.

It follows thA the conditional probability of y given z is [13]

e

4

i

P(YI	 )=	 1	 "X1)	 1 eY- f(?e)^TQ—t[Y-i(x))( 2" )" 2 ` QI

i

`	 r

I ;

(A3)
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1

Substituting (A3) into (A 1)

	

P[x in AI y , =	 I	
fA

P(x)txp_ 1 [Y-f(x)] T Q- 1 [y -f(x)]dx (A4)
(2 )" z	 IQI P(Y)

The exponential function in (A4) has two maxima. Assume that the area A

encompasses only one of these, a maximum at x = x A . An approximate expres-

sion for the integral in (A4) can be obtained by expanding f(x) linearly about

AC A . Let

x= x A + A x	 (A5)

f(x)- f(x A )+A^x	 (A6)

The exponent in (A4) then becomes

	

-	 [Y- f(xA)-AAx]IQ-1 [Y- f(xA)-AAx]

_ - 1 lY- f ( x A )J T Q -1 [Y- f ( xA )! _2 .y XT AT Q -i A ,x (A7)

The cross product terms

Jx T A T Q- 1 [Y- f(x A )] + [y- f(x A )I T Q -1 A

are absent from the right hand side of (A7) because the conditi . that x, is a

maximum of the exponential function is equivalent to requiring that these terms

vanish.

Also, the quantities y - f(xA ) appearing in (A7) can he recognized as the

residuals It  of the weighted least squares fit to y of f(xA ). AssunlinV that p(x)

is a slowly varying furotion, (A4) becomes

OKIGINAL PAGE, IS
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_ p^ " A ) ^^ E, -	 RAQ-1RA	 ex, -	 Ax TA T G-'AAx dAx	 (A8)

(2n) m'2 	IQ1p(Y)	 .A

The integral in (A8) c:ui be approximated by extending the limits of integL ation

to infinity, giving for (A8)

P [3Z in AIy] =

	

	 exp -	 R TT Q - ' R
A
	 (A9)

IQIi!'IATQ-IAli "p(y)

The probability p[x in B /y] is given by a similar expression, with B re-

placing A throughout. Because of the symmetiy of the two maxima x, and xb.

the coefficients of the exponential factors are equal, whence equation (36) is ob-

tained in the form

	

,T	 1

	

h A 	 RAP[x inAl y] _	 -	 (A10)
exp - 1-, RA Q - ' R A + exp - ; RAQ-' Re

by dividing (A9) by 1 = P [a in A I y] + P [x in 11 1  y] .

t

► 	

i

A
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1 llz Resolution

3iduals
Ilse Alin.
III/s)

Residuals
of True Min.

(m/s)

Residual
Difference

(III/s)

1.137 0.704 0.433

3.120 -1.925 -1.195

3.303 2.039 1.264

1.321 -0.818 -0.503

f`

Table II
Simulated Data, 1 11z Resolution

e

Time
(minutes)

Hangre
Rate
nl/s

Noise
m/s

Residuals
of False Mir,.

(m/s)

Residuals
of True Min.

(m/s)

Residual
Difference

(m/s)

-1 -1550.382 -0.225 0.476 0.039 0.437

0 0 -0.189 -0.303 -0.105 -1.198

1 1547.107 0.021 1.377 0.111 1.266

2 2876.790 -0.299 -0.550 -0.045 -0.505

i 1 ; NAT, PAGE, 1
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