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SUMMARY



The primary objective of this study was to provide a data base for


a program plan for the development of the ion-propulsion thrust system


for the Halley's comet mission spacecraft. This data base was to include:


the definition of a design concept, selected from among alternate candi­

date configurations; the identification of required supporting technology,


including the definition of critical areas and potential technical risks;


the definition of a program development plan, including a development


schedule and an assessment of potential schedule risks; and a preliminary


estimate of yearly and total program costs.



A concurrent objective of the study was to conduct a hardware


"approach confirmation" technology effort to evaluate the ion thruster's



performance and lifetime at the power level required for the Halley's


comet mission, to design and evaluate the thruster isolator required for



operation at the higher power level, and to evaluate the design of a


capacitor-diode voltage multiplier.



A thrust system baseline configuration was identified for the


30-cm extended-performance mercury ion thruster that can perform the


Halley's comet rendezvous mission. The confiquration is comprised of


10 thrusters configured with a power management and control system and


a structure and thermal control system in a modular thrust system design.


The power management and control system uses conventional power process­


ing. Power is provided to the thrust system with an 85 kI concentratinq


solar array. The thrust system mass is 1010 kg (including 15% contin­

gency), the average system efficiency is70%, and the estimated relia­


bility upper bound is 72%.


Adaptability of the 900-series 30-cm thruster design to the
 


6 to 7 kW range required for the Halley's comet mission was demonstrated



with only minor design modification required, and an acceptable high­


voltage isolator design was validated by laboratory tests. The design
 

and performance of an alternate power management and control system


design approach utilizing the capacitor-diode voltage multiplier was



successfully demonstrated by laboratory model tests inexcess of 1 kWd.
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The technology efforts mentioned above assisted in the identification



of the level of technical risks associated with the thrust system design.



These risks have been found amenable to resolution through normal enqi­


neering development and, therefore, judged to be acceptable for mission_ 

-appl-icatiorf. -

The program plan, which includes the procurement plan generated for 

the baseline configuration,is a viable plan that provides for delivery, 

inMay 1981 of the flight thrust system to be integrated with the mission 

module and solar array. The cost of the thrust system development pro­


gram is projected to be 54 million dollars (infiscal year 1977 dollars)



excludinq contractor fee, of which approximately 13.5 million dollars



will be required in fiscal year 1978.



In contrast to the low technical risk, the schedule risk for



initiating this program development is of particular concern. Timely



approval of the authorization of 13.5 million dollars for fiscal year



1978 must be granted so that the pre-project, or advanced development,



activities can be initiated.
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SECTION 1 

INTRODUCTION



This report summarizes the results of a six-month study to define



the design, program plan, and costs of the ion-propulsion thrust system



for the Halley's comet mission spacecraft. The modular characteristics



of the design developed during this study also make it applicable as the
 


prime space propulsion system for other potential missions.



This study, which is based on an initial system characterization



(completed 7 February 1977) performed by the National Aeronautics and



Space Administration's Lewis Research Center (NASA LeRC), was performed



in three parts:



* 	 Design tradeoff studies (14 February to 15 April 1977)


to define and compare alternate design approaches.



* 	 Conceptual design definition, program plan, and costs


of a selected design approach (15 April to 15 June 1977).



* 	 Approach confirmation of supporting technology in


selected areas.



The results of this study are presented in four volumes. Volume I



summarizes the results of the entire program. Volume II discusses the



conceptual design, program development plan, and cost estimates for the



selected baseline thrust system design. This volume, Volume III,



descibes the design tradeoff studies performed to compare alternate



design approaches. Volume IV describes the evaluation of thruster



technology for extended performance applications.



A. 	 BACKGROUND



In the fall of 1976, the Office of Aeronautics and Space Technology



(OAST) was given the responsibility of assessing the capability of the



electric propulsion technology under development at NASA LeRC and of the



solar array technology under development at Marshall Space Flight Center



(rSFC) and the Jet Propulsion Laboratory (JPL) to perform the Halley's



comet rendezvous mission proposed by JPL. OAST established an "Aunust
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Project" team from members of the three organizations to develop a



preliminary program plan to support a fiscal year (FY) 1979 new start.



The August Project consisted of parallel efforts by JPL, NASA LeRC,



and rISFC to define the design approach, program pl-an, costs, and risks of



the Halley's comet mission. Three areas were considered: the spacecraft



(including the science payload), the ion propulsion subsystem (referred



to as the thrust system in this report), and the solar array. The NASA



LeRC program was conducted in two phases. First, initialization studies



(completed 15 February 1977) were conducted to define requirements and



to identify preliminary design characteristics. Second, durinq the



15 February to 15 July period, the design of the thrust system was



defined, the program plan and projected costs were generated, and a risk



assessment was made. The results of the second phase of the program are



reported in this volume. The design selection process included tradeoff



studies among alternate design approaches, followed by a refinement of



the conceptual design that had been selected. Iteration with design data



available from the parallel activities at JPL and IISFC, and concurrent



approach confirmation tests and analyses included in this study,



strengtnen the conclusions of the thrust system study.



NASA directed us to begin the study by identifying two candidate



solar array configurations (flat or concentrator), three candidate power



management and control (MaC) approaches (conventional, direct drive, or



voltage multiplier), and two structural design approaches (modular or



integrated). A comparative assessment of the various configurations



possible from combinations of these design choices was desired in terms



of performance, mass, efficiency, reliability, and technical and schedule
 


risks.



The thrust systems being considered are based on the electric
 


propulsion technology that NASA LeRC has been developing for over a



decade. The technical baseline for this application is the most recent



operational engineering model thruster (EMT), the 900-series 30-cm mer­


cury ion ENT. This thruster is a scaled-up version of the 15-cm thruster



developed and flight tested during the 1960-1969 period for the SERT II



program. The EMT operates at a 3-kl power level with a specific impulse
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of 3,000 sec. By making minor modifications in the existing thruster



design, extended performance at approximately 6-kW power level, 4,800 sec



specific impulse, and 15,000-hr pre-wearout life (as required for a



Halley's comet mission) was believed to be achievable at a low technical



risk. This supposition was evaluated as part of this study.



In addition to the extended-performance thruster, the key elements



of the thrust system for this extended-performance application are the



PFaC subsystem, gimbal system, propellant storage and distribution



system, thermal control system, and supporting structure. The background



of extensive development in power-processing technology for mercury ion



thrusters-and technology developments in the other areas were the basis



for the high level of confidence that the required extended performance



levels could be achieved.



B. SCOPE



The scope of this study included: the development of conceptual



designs for various candidate systems; the selection, definition, and



evaluation of a baseline design concept and its critical interfaces; an



evaluation of the sensitivity of the baseline design to critical data
 


base and design parameters; the generation of a development program plan



for the baseline concept; estimation of costs and fiscal year funding



requirements; fabrication of a demonstration scale model; and the conduct



of supporting technology studies (including fabrication and testing of



critical hardware components) to estimate the physical and electrical



performance and to provide a baseline for subsequent work.



The design characteristics, program plan, and costs of the baseline



system were defined in parallel with the supporting technology effort.



Design definition was carried out in two consecutive phases:



* Phase 1: Definition and comparison of alternate 
configurations, leading to baseline selection. 

a Phase 2: Design definition and evaluation of the 
baseline configuration, culminating in the generation 
of a program plan and cost estimates. 
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The concurrent technology effort comprised thruster performance and



lifetime evaluation, thruster isolator design and evaluation, and the



design and evaluation of a CDVHI breadboard.



The design study was necessarily limited to the conceptual defini­


tion of the key design features and characteristics. However, sufficient



understanding was achieved in all important areas to provide realistic



estimates of masses; power requirements, which led to efficiency calcu­


lations; complexity and parts count, which led to reliability estimates;



development, procurement, fabrication, and test requirements, which led



to schedule definition; potential areas of uncertainty and concern, which



led to an assessment of the technical and schedule risks; the scope and



nature of system interactions, which led to the definition of principal



interfaces; and requirements and phasing for hardware and manpower,



which led to a cost estimate.



The tradeoff studies of alternate configurations presented in this



volume led to the selection of one thrust system configuration as the



baseline. The studies considered two solar array design concepts,



several approaches to the design of the power management and control



subsystem (PiMaC), and two structural design approaches (modular versus



integrated). From the various possible combinations of these design
 


approaches, seven candidate thrust system configurations were defined.
 


A conceptual design was developed for each of these seven configurations



in sufficient detail to estimate their performance in terms of mass,



reliability, and efficiency and to assess their potential technical,



system-interface, and program (schedule) risks. The configurations



were then compared with respect to these factors to select the



recommended baseline for subsequent design definition, program plan



development, and cost estimation.



Section 2 of this volume defines the seven configurations selected



for comparative assessment from the matrix of potential configurations,



using the data base furnished by NASA LeRC. Section 3 presents the key
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features of the various PMaC design concepts developed during this



preliminary analysis to the degree required to define the design



characteristics of the seven selected thrust system configurations.



Section 4 presents the structural and thermal conceptual designs
 


generated for the seven configurations, using the PMaC design data, the



solar array characteristics furnished by NASA LeRC, and the design char­


acteristics developed for the other components of the thrust system.



Section 5 presents the comparative assessment of the seven configurations,



and the rationale for the selection of the recommended baseline.
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SECTIO It PAGS ..... 

CANDIDATE THRUST SYSTEM CONCEPTS



A. CONFIGURATION OPTIONS



The block diagram in Figure 1 defines the key components of the



thrust system and its principal interfaces with the other systems of the


Halley's comet spacecraft. Figure 1 also identifies the options avail­


able for defining the alternate thrust system configurations that we



considered.



The key components of the thrust system are



0 PMaC subsystem (interface and thrust module units)



* Thrusters and gimbals



* Thrust system structure



* Thermal control subsystem



* Mercury propellant storage and distribution



* Solar array drive



The other major systems of the Halley's comet spacecraft (shown in


Figure 1) are the solar array and the mission module (assumed in this



study to include the science payload). The principal interfaces are



shown in Figure 1 and are the interface between the solar array and the


mission module and the interface between the thrust system and the



Interim Upper Stage (IUS). The adapter between the thrust system and



the IUS was considered as part of this study.



The initial system characterization performed at NASA LeRC before


the start of this study evaluated thrust systems incorporating conven­


tional, direct drive, and voltage multiplier power management and control



subsystems in combination with a flat solar array. Preliminary trajectory


analysis results available at the conclusion of the characterization



indicated that the performance of the conventional and voltage multiplier



thrust system approaches was marginal if not sufficient. Concurrently,


trajectory analyses evaluating a concentrator solar array option showed
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a substantial increase inthe delivered mass capability to the comet.



The feasibility of the conventional and voltage multiplier options was
 


thereby enhanced with the concentrator solar array.



Table 1 shows the coding adopted for the PMaC subsystem, solar array,
 


and modularity options. The integrated design was compared to the modular



design concept to assess any mass benefits of the integrated design. The



specific thrust system configuration options selected for the tradeoff



study are shown in Table 2. They are believed to provide a reasonable



cross section of the available choices:



* A comparison of the four PMaC concepts is presented for 
the modular designs which employ the flat solar array 
concept. 

* The four combinations of flat versus concentrator array 
and modular versus integrated design are examined for 
the conventional PMaC concept. 

The principal comparisons of performance capability and technical risk



could therefore be obtained from the study of these seven configurations



for the purpose of selecting the recommended baseline.
 


Table 2 also indicates the number of thrusters required for each



configuration, as determined from a preliminary analysis of the solar



array power profile. The numbers were selected jointly with NASA LeRC



at the start of the study and may be considered to be part of the data



base (presented in the next subsection).



The thruster and gimbal designs are common to all options. The



same dual-tank mercury propellant subsystem was assumed for each candidate



configuration. Alternate approaches to the design of this subsystem



(e.g., one versus two tanks) are secondary tradeoffs that do not signifi­


cantly influence the assessment of the alternate thrust system configu­


rations. These tradeoffs were subsequently performed for the selected



baseline configuration (see Section 2.D of Volume II). The same solar



array drive was assumed for all candidate configurations.



Variations in the number of thrusters was subsequently analyzed


for the selected baseline configuration, as reported in Volume II.
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Table 1. Study Option Codes



Option Code



Solar array



Flat A



---Concentrator



PMaC



Direct Drive 
 1



Conventional discharge supply (none)


Direct drive discharge supply X



Conventional 2



CDVM 3



Modularity



Modular design (none)



Integrated design I



Number of thrusters (modules): determined by (none)


mission requirements



T5816



Table 2. Selected Study Configurations



Option No. of


Code PMaC Solar Array Modularity Thrusters



1A Direct drive Flat Modular 12



Conventional discharge


supply



lAX Direct drive Flat Modular 12


Direct drive discharge


supply



2A Conventional Flat Modular 10



2B Conventional Concentrator Modular 10



2A/I Conventional Flat Integrated 10



2B/I Conventional Concentrator Integrated 
 10



-
3A Capacitor-diode Flat Modular 
 10


voltage multiplier



T5816



10





B. 	 DATA BASE



The data base for defining the seven configurations comprised:



G Mission module interface characteristics and


requirements



* 	 Solar array design assumptions and interface


characteristics (flat and concentrator concepts)



* 	 IUS and shuttle design characteristics and interface



assumptions



* 	 PMaC conceptual design definition (all four concepts)



* 	 Design definition of other thrust-system elements:


thrusters, gimbals, propellant storage and distribu­

tion subsystem, and solar array drive
 


* 	 Certain supplementary ground rules and assumptions.



The mission module characteristics assumed were the same as those



summarized in Volume II,Section 2.A for the selected baseline, and wi'll



not be repeated here.



The electrical, structural, and thermal characteristics of the two



solar array configurations, furnished by NASA LeRC, are presented below.



A total mass allocation of 700 kg (including the deployment system) was



assumed for both the flat and the concentrator arrays. It was also



assumed that both arrays would have the following structural natural



frequencies:



* 	 Each wing (uncoupled): 0.04 Hz



* 	 Each wing and boom (uncoupled): 0.035 Hz



* 	 Each array wing at the root of the drive structure:
 

0.025 Hz*



Subsequently changed for the baseline configuration to 0.015 Hz;


this is discussed in Volume II,Section 2.A.
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The flat array was a 100 kW array whose power profile is shown in



Figure 2. Corresponding voltage and current profiles, not included



here, were also provided. The deployed and stowed configurations are



shown in Figure 3. The deployed length of each wing is 55 m. The arrays



are deployed by pulling the restraining pins and unfolding and rotating



the wings, as illustrated in Figure 4. Thermal characteristics are



given in Figure 5.



The stowed configuration shown in Figure 3(b) was one of several



acceptable designs that was considered; it was ultimately selected for



all the modular configurations using the flat array (i.e., 1A, IAX, 2A,



and 3A). An alternate configuration, one in which the four blanket



containment boxes were placed side by sjde (as initially suggested by



NASA LeRC), was also considered (as discussed in Section 4)* but was



rejected because the net structural mass would have been higher even



though the thrust system would have been shorter. A still different



stowed configuration was chosen for the integrated configuration 2A/I;



in it, the blanket containment boxes were placed vertically, as dis­


cussed in Section 4.



In addition to the degree of freedom available for the specific



placement and arrangement of the blanket containment boxes, Figure 3



indicates the two dimensions X and Y left open as design variables,



depending on the thrust system configuration. Dimension X, given in



Table 25, was ultimately defined by the requirement to prevent solar



array contamination by mercury ions, as discussed later in this subsec­


tion. Dimension Y was determined by the length requirements of each



thrust system design, primarily determined by thermal radiator size (as



discussed in Section 4).



In effect, therefore, eight alternate configurations were


analyzed.
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The concentrator array was an 85-kW array with a 3:1 concentration



ratio; its power profile is shown in Figure 6. Corresponding voltage



and current profiles not shown here were also furnished. The deployed



and stowed configurations are shown in Figure 7. The 3:1 concentration



at distances gtbater than 1.4 AU is provided by the side reflectors



deployed at a 600 angle, as shown in Figure 7(a). Inside 1.4 AU, the reflec­

tors are coplanar with the cell blanket. The deployed length of each



wing is 60 m. Thermal characteristics are given in Figure 8.



The separation distance X for the flat array in the deployed



configuration shown in Figure 7(a) was ultimately determihed by the



requirement that Hg ion contamination be prevented. A value of X = 2.25 m



was used in preparing layouts.



This concentrator solar array design, which was used for comparing



the seven configurations, was not the same as the design of the array



subsequently furnished by NASA LeRC for the analysis of the selected



baseline (the latter design is discussed in Volume II,Section 2.A).



Concentrator array configurations 2B and 2B/I and the comparative



assessment of all seven configurations are, therefore, based on the



earlier design. Although the solar array design selected was changed,



the results of our comparative analysis are still considered valid



because the modifications only make the concentrator array more desirable



for the baseline. These modifications improved thrust system performance,



in particular by reducing the size of the stowed array.



The characteristics that the IUS was assumed to have are those



given in Ref. 1 and 2 and subsequently updated by Ref. 3. The key



specifications were the envelope dimensions, mechanical interface



requirements, structural loads, and payload capability. IUS length



ranges from about 5.4 m (17.8 ft) in Ref. 1* for the standard two-stage



configuration to 8.4 m (27.5 ft) for the three-stage planetary configura­


tion. A maximum length of 8.4 m was therefore postulated. The structural



Subsequently updated in Ref. 3 to 5.0 m.
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interface was defined in terms of the standard bolt circle given in Ref. 1



and 2, although it would be acceptable to provide transverse extension



fittings if the diameter of the configuration were to'exceed the bolt



circle diameter as a result of the size of the stowed array. IUS loads



governed the structural designrequirements.- ReSults of the loads



analysis (presented in Volume II,Section 2.D, and not repeated here)



were therefore used in designing'each of the seven configurations. IUS



payload capability could not be readily determined. Furthermore, the



allowable mass for the complete spacecraft does not depend'only on the



IUS payload capability; it also depends on the mission trajectory ulti­


mately selected through system-level'analysis. The allowable mass for



the thrust system depends, inturn, on the mass allocated to the solar



array and to the mission module. Consequently, IUS payload capability



was not considered to be an imposed constraint. Instead, the design



goals established were to minimize thrust system mass for each
 


cbnfiguration.



The shuttle characteristics assumed are those given in Ref. 4. As
 


discussed in Volume II,Section 2.D, compliance with shuttle load



requirements was assumed to be met by providing a "forward cradle" sup­


port structure that will remain in the shuttle after the payload is



deployed.



The PvaC design data developed during this study are presented in



Section 3. The conventional PMaC design data was based on inputs from



NASA LeRC (from the initialization study). Direct-drive PMaC design



data (for use of both conventional and direct-drive discharge supplies)



and the CDVM design data was generated during the thrust system configu­


ration design study.



The design characteristics of the remaining thrust system elements



are the same for all seven configurations (except for the number of



thrusters). These were described in Volume II.
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The data base for the design of the seven configurations also



included the following ground rules and assumptions (established with



NASA 	 LeRC concurrence):



* 	 There is no requirement to jettison any -thrust system


elements.



* 	 There will be no direct sunlight incident on thermal


radiation surfaces (i.e., spacecraft orientation


throughout the mission will keep the planes of the


thermal radiators always parallel to the line to the


sun).



* 	 The spacecraft attitude control sensing and command


functions will be performed by the mission module;


commands will be executed by gimballing the thrusters


within their gimbal angle range capability, stipulated


as ±50 along the solar array centerline and ±300


about the solar array centerline.



* 	 The solar array drive is part of the thrust system,and


executes the commands generated by the mission module


to orient the deployed array (initial solar array


deployment is a function that ismechanized by


actuators that are part of the solar array subsystem*).



* 	 The distinction between "modular" and "integrated"


designs is based on different approaches to the


arrangement of subsystems and to structural and thermal


design. The electrical unit designs are the same for


both approaches. The modular design approach assures


thermal and structural module similarity for assembly


and test, and allows changing the number of thrusters


(inmultiples of two) used in the configuration with


only relatively minor design modifications.



The relative complexity of deployment is,however, considered in


the comparative evaluation of the seven configurations in


Section 5.
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* 	 Potential impingement of mercury ions on the solar


array from the thruster ion beam plumes could result


in substantial power degradation if not prevented.


Impingement will be prevented by several available


design measures (e.g., by providing adequate separation


distance between the thrust system and solar array)and


therefore need not be considered as constraining the


physical design of the thrust systems nor as a signifi­

cantfactor in the comparative assessment of the


resulting configurations.



The last.ground rule was adopted following an analysis of the dis­


tribution of the Hg ions in the ion beam plume, which indicated that



impingement effects were negligible outside of a 450 cone about the thrust



axis 	 (500 cone allowing for 5' gimbal angle along the array centerline),.



This geometry can be achieved relatively easily by providing an adequately



long solar array arm for all configurations to ensure the required sepa­


ration between the array and the thrusters without imposing any design



constraints on. the 9ength of the thrust system or on the location of



thrusters. The Hg ion impingement'geometry is illustrated in Figure 9,



which was constructed for the conventional PMaC, concentrator solar array



configuration (2B).
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SECTION 3



ALTERNATE PIiaC SUBSYSTEM DESIGNS 

This section presents the design characteristics of the four PMaC



subsystems, thereby completing the data base for the conceptual design



definition of the seven configurations. The conventional PI1aC design



approach was ultimately chosen for the baseline configuration. It is
 


fully described in Volume II,Section 2.C. The three other PMaC design



concepts (the direct drive approach with either a conventional or direct



drive discharge supply, and the CDVM beam supply concept with conventional


discharge supply) developed during the study phase differ from the con­


ventional PMaC approach in the design of the beam supply and the source/



load reconfiguration unit of the interface module. This reconfiguration



unit performs the functions of electrical control of the solar array out­


put and of controlled power distribution, as required in each approach.



The design features of the three alternate PriaC concepts are presented



here primarily in terms of these two units, using as the baseline refer­

ence the conventional PMaC design. Based on the design analysis, this



section summarizes the characteristics of all four PMaC design concepts



in terms of size, mass, power dissipation (efficiency), and reliability.



A. DESIGN DEFINITION



The PMaC subsystem serves to process, condition, and manage the power



furnished by the solar array: (1)to provide the voltages and currents



required for the operation of the thrusters, (2)to furnish power for the



thrust system housekeeping and control functions, and (3)to provide the



required mission module power. Preliminary analysis (later done in



greater depth for the selected baseline) led to the partitioning of these
 

functions among .PMaC components according to their application ineither



the thrust modules or the interface module. This partitioning was iden­


tical for all four PMaC concepts. The thrust module units comprise



beam, discharge, and low-voltage'power supplies for the operation of


individual thrusters. Control functions common to all thrust modules are
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incorporated in the interface module components. The interface module



units perform power control, distribution, and conversion functions, and



include a thrust system controller.



I-.-	 Functional Requi-emit



The PMaC subsystem designs were developed to comply-with the fol­


lowing data inputs and functional design requirements:



* 	 Compliance with the electrical requirements of the thrusters


and with the thrust system housekeeping and mission module


power requirements.
 


a 	 Compliance with the two solar array designs and with the


specified design characteristics (reconfiguration con­

cepts) for each array as applicable to the various Pf4aC


concepts.



* 	 Compliance with several design guidelines and ground


rules furnished by NASA LeRC or generated during the


study.



The thruster, housekeeping, and mission-module electrical require­


ments stipulated by NASA LeRC are listed in Tables 3 and 4. The system



battery, provided in the mission module, furnishes power before the solar



array is deployed, including power for thrust-system housekeeping, firing



the release squibs, and deploying the solar array.



The original functional requirements furnished by NASA LeRC after



the initialization study as a study guideline are represented by the



block diagram in Figure 10. In particular, the designs of the conven­


tional beam and discharge supplies were essentially those specified by



NASA LeRC, and were to be capable of operating over a 200 to 400 V range



of solar array output.



Other design requirements adopted, which were essentially common to



all four PrdaC concepts, included: provision of adequate filtering'and



electromagnetic interference (EMI) protection, implementation of con­


troller functions, and compliance with certain additional general ground



rules. The last two arediscussed below.
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ORIGINAJ PAGII-M 

Table 3. Thruster Power RequirementsO POOR QUALM 

Maximum Ratingsb Static Load Static Load


Supply Voltage, Current, Power, Requlations Ripple,


Number Supply V A W Type and Percent Percent, P-P



I Main vaporizer 9 - 1.5 13.5 It 5 iOc 
c2 	 Cathode vaporizer 6 1.5 9 1±10 lO
 

3 	 Cathode heater 15 4 4 1 66 I ± 5 1 
ic

C
4 	 Main isolator and I 9 4 0 36 V ± 101 . 


cathode isolator 

c



5 Neutralizer heater 15 4.4 66- 1 ± 5 10
 

0c
6 	 Neutralizer vaporizer 6 1 5 9I ± 10 
 

7 	 Neutralizer keepera 25 I 2.5 I 62.5 I± 5 2 

[20] [2.1]



8 	 Cathode keepera 15 1,O 15 1 ± 10 10 

[5] [ 5] 

9 Discharge 60 16 3 1 815 1i 1 2



10 Accelerator 500 0 02 10 V ±10 10



11 Screen - 3000 2 0 .6000 V ± 10 10


12 Magnetic baffle - 2 5 0 10 I ± 5 5 


aBoost supply, 400 V at 10 mA, 25 V at 100 mA.



continuously to the thruster Where two V/I characteristics are indicated, a condition



during startup isshown and the norminal condition isbracketed



CApplies only to ac heaters



5918



Table 4. PMaC Housekeeping and Mission Module


Power Requirements



Power Source Voltage I Power 

Requirements, V j Requirements, W 


Mission module +30 + 2 400 (during thrusting 


phase) 


650 (during rendezvous) 


PMaC system house- +30 + 2 I 75 

keepinga ±15 I 140 (max) 


+5 10 (max) 


aDuring thrusting phase. 


2703 
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The logic to perform the thruster control functions and other thrust


system management functions was placed centrally in a controller (one of



the Pr4aC interface module units). The controller was to be capable of


ensuring autonomous thruster operation for an extended period of time.



Its functions include: sensing the operating parameters of power sup­


plies, analysis of PMaC system and thruster operation, generation and



execution of control signals, data exchange with the ground via the



mission module.



The following additional general design requirements and ground



rules were adopted:



* 	 Common (single) bus for power distribution



* 	 Thruster ground isolated from spacecraft ground



* 	 Capability of withstanding transient or sustained


shorts by all thruster power supplies



* 	 Provision of thruster grid clearing circuit



6 	 Input/output power bus fault protection for all 
inverters 

a Operation of thrusters not influenced by malfunction of 

single thruster/PlaC subsystem ­

* 	 Provision of redundancy for critical units



o 	 PriaC mounting surface temperature range from -30'C


to +60°C.*



Later changed to 50'C for the selected


baseline.
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2. Description of Alternate Designs



The PMaC designs are described in this section to provide a common



framework for discussing the four concepts and for defining the specific



design features which, istingu-ish them. The description also establishes



a convenient format for defining the PMaC design and performance charac­


teristics that are required to design and assess the seven thrust system



configurations.



The PMaC subsystem is basically an interface between the solar array



and the power consuming components of the spacecraft: thrusters, mission



module, and housekeeping units. These requirements are identical for all



four PMaC concepts. Thruster requirements and operational modes are



similar. The Pr4aC subsystem must provide the required voltages and cur­


rents because the solar array output power level and the operating point



on its current-voltage (I-V) curve vary over the mission trajectory and



with the number of operating thrusters. The differences among the vari­


ous PrlaC design concepts relate to the different methods and design



techniques employed to utilize the solar array output, particularly with



respect to the provision of thruster beam and discharge powers. The



different design approaches are also reflected in different PMaC sub­


system design features (size, thermal characteristics) and performance



characteristics (mass, efficiency, reliability).



Figure 11, a simplified schematic of thruster operation,shows the



basic current paths and gives the principal thruster power requirements:



high voltage beam (screen and accelerator) supply and discharge supply.



The four PIIaC concepts differ in the way in which these requirements are



implemented in terms of: (1)design features of these two power supplies,



and (2)the method in which they are connected to the solar array. The



other thruster requirements (i.e., the various low-voltage power supplies)



are identically satisfied by the PMaC subsystem in all four design con­


cepts. Also, the PMaC units which furnish power to the mission module



and which power and manage the housekeeping functions are identical in



all four designs.



A generalized block diagram for all four P[IaC concepts is presented



in Figure 12, which shows the units and functions common to all four
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concepts. The figure also indicates the differences between the four



concepts, Units and functions common to all four concepts were described



for the baseline configuration inVolume II,Section 2.C. Units and



functions that are different for the four concepts are presented in some


detail inthe succeeding subs6ctions. Specifically, the differences



among the four designs pertain to:



* 	 The design of the beam supply and the method of furnishing


thruster discharge power
 


,a 	 The functional requirements and the design of the source/

load reconfiguration unit connecting the main solar array


to the beam supply.



The conventional PMaC approach, concept 2, uses beam and discharge


supplies of conventional design. Both supplies are fed from the main



solar panel and furnish power to the thrusters at a constant voltage



level, provided that the input to the supplies iswithin a 2:1 (200 to


400 V) range. This is accomplished because they have a built-in regula­


tion capability. The solar array is configured so that its output


delivers power at the corresponding low-voltage level. The reconfigura­


tion unit (or units) on the interface module basically performs the


filtering/isolation function;* power distribution isautomatic. The



power distribution filters are packaged infive separate units to dis­

tribute the total mass more evenly. Design modularity is enhanced by



mounting the units on the interface module side of the cold plate (one



per module).
 


Discharge current to each thruster is required to track the beam
 

current. Since the two supplies are adjustable, the controller simply



compares the two currents and sends appropriate commands to maintain



them in the proper ratio.



Solar array control unit is included inthe baseline system to


provide for variations inthe output voltage of the selected


solar array that are anticipated to exceed the allowable 2:1


range during the mission.
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PHaC concept 3 uses a CDVI beam supply. The solar array output is



furnished at a low voltage (200 to 400 V), and voltage multiplication is



achieved without transformers to obtain a high-voltage output. This



affords significant potential payoffs in reducing mass, increasing
 


reliability, and increasing efficiency although a development program is



required. Present specifications call for the CDVM beam supply to be



unregulated, although some regulation is provided at the input so that



the beam voltage supplied to the thrusters varies only over a 1.75:1



range during the mission. Much better regulation could be achieved with



some mass penalty. The resulting thruster operational parameters accord­


ingly would be sowewhat different from those for the conventional system,



but this would not significantly alter thruster performance.
 


The reconfiguration unit for the COM PMaC concept in Figure 12 is,



however, considerably more complex than for the conventional system. *In



addition to the power distribution and isolation functions,** a switching



matrix is required to reconfigure the solar array output because each



CDVI has an individual neutralizer return for each thruster. The solar
 


array must be partitioned so as to create separate sections for each



CDVII. lhe reconfiguration unit is fed by a series of separate inputs,



one for each thruster. The switching matrix connects these inputs to



the individual CDVMs to provide the required isolation. As the number



of operational thrusters changes, this switching matrix can reconfigure



the available power from the various sections of the solar array to



utilize the full solar array capability optimally. Many reconfigurations



The conventional system could also have been designed with no


regulation provision in the beam and discharge supplies, with


some mass saving; existing designs, however, already incorporated


this regulation feature.



The CDVM beam supply designs incorporate input filtering.



34





are required during the mission not only for this thruster on-off control,



but also to respond to changing power levels and I-V characteristics, which



change with time during the mission and with thruster throttling require­


ments. The switching matrix and reconfiguration frequency required will



depend on the number of sections. More reconfigurations would require



reducing the variation in thruster operating modes. The NASA LeRC



initialization study yielded the solar array partitioning concept that



was used in designing the switching matrix.



The CDVM PHaC subsystem uses a conventional discharge supply. Since



such a supply does not require a switching matrix, system simplicity is



achieved by powering the discharge supplies from a common auxiliary solar



panel rather than from the main solar panel (see Figure 12). Control of



the discharge current in proportion to the beam current is accomplished



by the controller in the same manner as for the conventional system.



PMaC concept 1 (direct drive with conventional discharge supply)



uses the conventional discharge power supply, but has the main solar



array interconnected so as to provide the high-voltage beam power



directly to the thrusters. Separate beam supplies are not required.



The solar panel is divided into sections individually connected to the



reconfiguration unit. The reconfiguration unit performs the switching



functions needed to connect these sections in the series/parallel com­


binations to fulfill thruster requirements. This reconfiguration unit



is more complex than the one used with the CDVM. It does offer potentially



significant benefits in reduced PMaC system complexity, lower mass, and



improved reliability, although it requires developing the yet unproven



technology high-voltage solar arrays and solving any associated problems.



Discharge supplies are fed from the common auxiliary solar panel (as with



the CDV concept) and discharge current tracking of the beam current is



,also done by the controller.



PJIaC concept 1X (direct drive with direct-drive discharge supply) is



similar to concept 1, except that conventional discharge supplies are not



used. Instead, part of the main 'olar array'provides the discharge power



directly. This is done (see Figure 12) by adding an extra reconfiguration
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unit to couple the discharge supply solar panel section to the discharge



circuits of the individual thrusters. This function is performed at the



required high potential relative to spacecraft ground. With the excep­


tions that the input and output voltages are lower (30 to 60 V range) and



that the power level is considerably less, the reconfiguration/switching/



isolation functions of this unit are similar to those for the direct­


drive beam supply reconfiguration unit. Beam-discharge current tracking



cannot be done by the controller: currents and voltages at the thruster



input are determined directly by the solar array output. Since circuit



parameters cannot be adjusted, simultaneous reconfiguration of both



beam and discharge circuits is required. This automatically maintains



the fixed proportionality between the beam and discharge currents. This



concept offers potential improvements relative to concept 1 (direct drive



with conventional discharge supply) in terms of simplicity, mass, and



reliability, but for the penalty of a higher technical risk.



The four concepts are compared in Table 5 in terms of the type and



number of units required. The number of units listed reflects the



assumptions regarding the number of thrusters required for each concept
 


(definee in Table 2): 12 for the direct drive concepts and 10 for the



conventional and CDVfI concepts. In addition, one spare is provided for



better reliability for the following units: distribution inverter,



dc-dc converter, and controller.



B. CONVENTIONAL PMaC DESIGN CONCEPT



The conventional PfaC design concept selected for the baseline 

thrust system configuration is essentially that presented in Volume II, 

Section 2.C, with the following principal differences: 

* The selected baseline PMaC system includes a solar array


reconfiguration unit that was not included in this initial


tradeoff study.



* The mass of the beam supply was increased from 14.3 kg


to 20 kg for the selected baseline (as specified by


NASA LeRC).
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Table 5. Type and Number of Units Required


for the Four PMaC Designs



Number of Units for Design



Unit 
Concepta 

1 IX 2 3 

Source load reconfiguration (direct drive) 2 2 

Source load reconfiguration (CDVM4) 2 

Source load reconfiguration (direct-drive 
discharge) 

2 

Power distribution 5 

Distribution inverterb 3 3 3 3 

DC-DC converterb 2 2 2 2 

Controller b 2 2 2 2 

Conventional beam supply 10 

CDVII beam supply 10 

Discharge supply 12 10 10 

Low power supplies 12 12 10 10 

a1 = Direct drive beam supply 

IX = Direct drive beam and discharge supplies 
2 = Conventional 
3 = Voltage multiplier 
bone spare unit added for reliability. 

T5916 
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.	 The length and width of the beam and discharge supplies


(with total volume unchanged) and the length of the


low-voltage power supply unit were modified for the


selected baseline. This was done so all units would be in


the NASA Z-frame modular package and fit within the


available mounting surface area.



The design features of the conventional PMaC concept are taken directly



from 	 Volume II in the following discussion.



C. 	 DIRECT-DRIVE PMaC DESIGN CONCEPTS



The two direct-drive PMaC concepts differ from the conventional



approach primarily with respect to the functions of the reconfiguration



units. Neither the direct drive discharge supply nor the conventional



discharge supply approaches include a beam supply unit. One function of



the reconfiguration unit in both concepts is to transfom the solar array



output to provide the beam power to all the thrusters. In addition,



concept IX requires solar array power reconfiguration/switching to provide



the discharge power to the thrusters.



Since the reconfiguration units for PMaC concept 3 and for PMaC



concepts 1 and IX are similar, these units are described jointly and



those differences which do exist are highlighted.



Table 6 summarizes the basic requirements for the three recon­

figuration units. Electrical differences result from differences in


input voltages, accessory circuits (filters, inductors, and grid clearing



circuits) switching logic, number of sections switched, and switch



drivers. The number of reconfigurations (essentially the same for each


unit)govern the overall unit designs. Since half of the thrusters are



powered by each solar array wing, the reconfiguration function can be


divided between two identical units to optimize mass distribution, with



each unit handling the switching requirements for one wing. The cor­


responding physical configurations vary only slightly among the three



PMaC concepts.


The direct drive reconfiguration unit must handle voltages ranging



from 2000 to 4000 Vdc at 2.5 A. The direct drive discharge reconfigura­


.tion unit switches a voltage of 30 to 60 Vdc at 16.3 A, and is refer­

enced to the beam voltage. The discharge reconfiguration unit must
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Table 6. Design Requirements and Characteristics of the 
Reconfiguration Units for PMaC Concepts 1, IX,and 3 

Requirement or Characteristic Direct Drive Direct-Drive CDVM


Discharge Beam



Functional mechanization



High-voltage relays Yes Yes Yes


Relay redundancy Yes Yes Yes


Hybrid relay driver Yes Yes Yes


Relay driver redundancy Yes Yes Yes


Line filter Yes' No No


Line inductor "No Yes No



Fault protection with a grid Yes. No No



clearing circuit



Baseline parameters



Input voltage, V 2000-4000 30-60a 200-400


Number of.,outputs 12 12 10


Power dissipation, W 34 34 17


Size, in.3 3600 3600 3000


Weight,.kg 44.8 32.8 20.6


Reliability 0.998 0.998 0.999



aReferenced to 2000 to 4000 V array panel-
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reconfigure the solar panel at the same time the beam panel is recon­


figured and switching circuitry will be identical to that of concept 1.



The CDV1I reconfiguration unit must carry currents as high as 30 A at a



voltage of 400 V. The number of solar panel segments and the frequency



of reconfiguration are lower than for the other units.



The maximum excursion of the solar array output voltage was assumed



in the initial tradeoff study to be 2:1. For the selected baseline, the



design was subsequently changed to include an additional solar array



control/reconfiguration function that would allow increasing this ratio.



High-voltage relays and hybrid switching logic were selected for



all three designs. Figure 13 is a block diagram of a typical reconfigura­


tion unit. Serial commands are received from the controller and decoded
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in the relay driver address buffer. The appropriate hybrid relay driver 

and high-voltage relay are then commanded to switch. A relay matrix 

performs the series/parallel connections of the solar panel segments to 

operating thrusters. Input power isolation ismaintained by dedicating 

solar panel segments to a particular thruster. The positive and negative 

power terminals of each operating thruster are electrically isolated 

from adjacent operating thrusters. This prevents possible interaction 

during a thruster malfunction. To reduce EM1I effects during normal arcing 

or during a malfunction, line filters were added to two of the units, but 

not to the CDV1I unit.* A grid-clearing circuit was also fincluded in all 

three approaches. -

Figure 14 is a schematic of the concept 1 unit for one wing and six



thrusters; two such units are required per spacecraft. To improve



reliability, three redundant single-pole single-throw relays are used



for each relay shown. The required switch position for each recon­


figuration iE shown in Table 7. Relay position A in Table 7 corresponds



to the position of the relays shown in Figure 14. The small figure below



Table 7 shows the thruster positions with respect to the center of



gravity. The thrusters are arranged to operate in pairs on the opposite



sides of the center of gravity (e.g., I and 2, 3 and 4).



A simplified representation of the five switching configurations
 


encountered during the mission is shown in Figure 15 for the direct drive



reconfiguration unit. With the exception of Configuration A (in which



all thrusters are operating), each configuration has at least one stand­


by thruster to cope with faults that cannot be cleared.



Figures 14 and 15 and Table 7 are assumed to also apply to the
 


direct-drive discharge.reconfiguration unit.**



The CDVI beam supply incorporates these filters.



The data furnished by NASA LeRC for direct drive is also assumed


to apply to the direct-drive discharge panel.
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Figure 14. Schematic of the one wing of direct drive reconfiguration unit.
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Figure 15. 	 Switching configurations for direct-drive



reconfiguration unit.
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Figure 15. Continued.
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Corresponding diaqrams for the CDVM, reconfiguration units are shown



in Figure 16 and 17 and Tabje 8. This unit differs from the direct-drive



unit in that only four reconfigurations are required for the 10 thrusters



(versus five reconfigurations required for 12 thrusters). The switching



diagram in T-ab-le -8indi-cates- that aI-I 10 tl rusters would be operational 

at the beginning and end of the mission; a minimum of two thrusters would



be operating midway through the mission. The corresponding four switch­


ing configurations are shown in Figure 17, which-indicates how the solar



array segments are connected through the power-processing units to the



thrusters. Configuration A (and partially in configuration B) does not
 


allow other thruster/PMaC units to be selected in case of a malfunction.



The switching hardware could be simplified by requiring fewer spares



during the low-power phase of the mission.



This preliminary design effort sized the reconfiguration units-i



The physical dimensions and design characteristics, common to all three



units, are shown in Figure 18. The unit consists of an aluminum honey­


comb panel, components mounted on this panel, and two aluminum covers.



The honeycomb panel minimizes vibration and provides an adequate thermal



path to the mounting surface.



All high-voltage circuitry, filters, and grid-clearing circuits are



mounted on one side of the panel. The low-voltage circuitry, including



relay driver logic, is located on the other side of the panel. The ­


relays (SPST Kilovac KC-4, latching)are rated at 10 kV. There are 18



high-voltage connectors: 1 per thruster and 1 per wing segmdnt. The



connectors are Reynolds Industries series 1804 (four pin). A seven-pin



version of this connector has previously been used on the power elec­


tronics unit for our 8-cm ion thruster. All'wiring is redundant, and



,precautions must be taken to minimize high-voltage arcing. The 12 solar



panels used in the direct-drive solar array are switched redundantly



wi'th 126 relays (262 relays for both wings)., The 10 solar panels used



in the CDVM reconfiguration unit are switched redundantly with 96 relays



(192 relays for both wings-)..



Table 9 summarizes the major components used in the three units,



their quantities, and the mass breakdown. Table 10 summarizes the
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Table 9. Parts Count and Mass Breakdown of


Reconfiguration Units



Direct Drive Direct Drive Concept 3


Component Concept 1 Concept IX



Quantity Mass, g Quantity Mass, g Quantity Mass, g



High voltage relays 126 7,150 126 7,150 96 5,448



Hybrid circuits 9 360 9 360 7 274 

High voltage 18 756 18 756 15 630 
connectors 

Low voltage 1 25 1 25 1 25 

connectors 

Wire -- 500 -- 500 -- 380 

Honeycomb, cm2 3,064 1,294 3,064 1,294 2,451 1,035 

Covers, cm2 7,418 2,088 7,418 2,088 5,483 1,550 

Hardware and -- 1,500 -- 1,500 -- 1,000 
miscellaneous 

Grid-clearing circuits 6 6,000 0 0 0 0 

Inductors 0 0 6 2,700 0 0



Filters 6 2,700 0 0 0 0



Total (single unit) 22,373 16,373 10,342
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Table 10. Summary of Design Parameters of the


Reconfiguration Units



(two units per interface module)



Direct Drive Direct Drive CDVI 

Discharge 

Size, cm3 29,500 29,500 24,700 

Mass, kg 22 4 16.4 10.3 

Pd, 1q 17 17 8.5 

Reliability 0 999 0 999 0.999 

T5916 
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principal design parameters of the three reconfiguration units (size,



mass, power dissipation, and reliability).



D. CDVM PMaC DESIGN CONCEPT



The CDVII Pr1-aC concept 3 design differs from the conventional PMaC



design only with respect to the reconfiguration unit and the CDVM beam



supply itself. This section summarizes the design features and pdrform­


ance parameters associated with the conceptual design developed during



this study.



The output voltage from the CDV, which is an unregulated supply,



varies from 2000 to4000 V as the input voltage supplied from the recon­


figuration units varies from 200 to' 400 V. There are 16 CDVI supplies



in the five thrust modules (two per module).



Figure 19 is a block diagram of the CDVM. A 2.2-mHz astable multi­


vibrator provides the fundamental timing signal to the 11-phase command



generator. The generator outputs two signals to one drive stage for



each phase. The power stage switches solar panel power to the capacitor­


diode matrix through small aircore inductors. The peak capacitor­


charging currents in the transistors and rectifiers are limited to obtain



efficient capacitor charging and low component stresses. The primary



function of the output filter (a 7Tdesign) is to inductively limit peak



currents in the capacitor-diode matrix during thruster arcing. Since



each CDV14 beam supply is driven by a dedicated solar array, screen cur­


rent can be sensed by a resistor between neutralizer return and solar



panel return. When an overcurrent is sensed, the protection circuit



turns off all transistors in the power stage, thereby protecting the



capacitor-diode matrix. Included in each CDVM supply is a grid-clearing



circuit that is used in the same way as in the conventional beam supply



system.



The principal design tradeoffs pertain to the choice between SCRs



and transistors for the power stage and among various alternative circuit



configurations (single versus multiple parallel, number of phases) for



the driver and capacitor-diode matrix. SCRs and transistors are com­


pared in Table 11. The four most attractive configurations - two using



SCRs and two using transistors - are listed in Table 12. The preferred
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Table 11 Comparison of SCRs and Transistors



in CDVM Applications



SCR Transistor



Advantages



Higher voltage and current, Hiqher frequency capability


therefore fewer phases required 	 (%lO0 kHz)



Easy to turn off during fault.



Low "ON" losses



Low switching losses



Disadvantages



Slow turn-off, therefore lower [lore phases required to handle


frequency operation ( 20 kHz) current.



Require additional components Higher drive losses


in the CDVII to ensure safe


operation during fault



Additional components required



to commutate SCRs off



Apparent Nethods to Best Utilize the Devices



Operate three 2-phase multi- Ilultiphase driver and multiplier


pliers from a single driver (eleven phases)



Three 2-phase systems run out Six 2-phase system run out of


of phase. phase.
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Table 12. Viable CDVII Configurations


(from tradeoff studies)



Capacitor-diode
Driver
Concept CMatrix

Configuration 
 Configuration



SCR driven Single --2 phase 	 Three parallel ­

2 phase



SCR driven 	 Three parallel - Three parallel ­

2 phase 2 phase



Transistor driven Single - 11 phases Single - 11 phases



T5916
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design (the third entry in Table 12) was selected on the basis of mass,



efficiency, and component stress levels. It utilizes transistors rather



than SCRs in the driver, and both the driver and the capacitor-diode



matrix are in the single, 11-phase configuration. The rati-onale for this



se-lection is briefly summarized below.



The fewest phases considered practical were two. Peak currents in 

the power stage of any single-phase CDVM are twice those in a two-phase 

CDVM. High peak currents cause severe penalties in the mass of the 

input filters and capacitor-diode matrices required. At least three 

parallel, two-phase capacitor-diode matrices are required to maintain 

average rectifier currents within the ratings of available components. 

Furthermore, capacitor rms current ratings limit the amount of power that 

can be handled by a two-phase capacitor-diode matrix. A transistor­

driven system requires eleven phases to maintain peak currents within the 

transistor ratings. The four configurations listed in Table 12 were 

selected primarily in compliance with component ratings. 

The masses of the four configurations inTable 12 are compared in



Tables 13 through 16. The comparison, which was based on theoretical



capacitor design curves, does not include packaging or input/output



connectors. All of these are the major contributors to the total mass



of the units, they are not expected to differ significantly from con­


figuration to configuration. Although the mass differences between the



four configurations is not very great, this comparison supports the



selection of the configuration in Table 15. The two configurations that



use transistors are lighter than the SCR configurations primarily because



the mass of the capacitor-diode matrix and input filters is lower. This



mass is lower mainly because of the higher operating frequency allowed



by the transistors and the low ripple content of the input current. The



mass penalty from using SCRs is particularly evident with the additional



phases in the second configuration in Table 14: although the mass of



the input filter would be significantly lower, the higher mass of the



power stage would more than offset this. The configuration in Table 15



was also selected because its efficiency is higher because short-circuit



protection can be provided relatively easily.
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Table 13. Relative Mass of Candidate CDVM Driver-Matrix


Designs (Not Including Packaging): Single 2-phase



SCR Driver; Three Parallel 2-phase Matrices



Circuit Mass, kg



Capacitor-diode matrix



Capacitors 0.62



Rectifiers 0.03



Inductors 0.36



Power stage



Main SCRs 0.12



Auxiliary SCRs 0.08



Commutating rectifiers 0.08



Commutating inductors 0.08



Commutating capacitors 0.01



Input filter
 


Inductor 0.27



Capacitors 0.66



Logic/drive circuitry
 


ICs 0.02



Drive transformer (0.02 each) 0.16



Miscellaneous resistors and 0.05


capacitors



Miscellaneous transistors °002



Total 2.56
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Table 14. Relative Mass of Candidate CDVM Driver-Matrix


Designs (Not Including Packaging): Three Parallel



2-phase SCR Drivers; Three Parallel 2-phase


Matrices 

Circuit Mass, kg 

Capacitor-diode matrix 

Capacitors 0.62 

Rectifiers 0.02 

Inductors 0.36 

Power stage 

Main SCRs 0.36 

Auxiliary SCRs 0.24 

Commutating rectifiers 0.24 

Commutating inductors 0.24. 

Commutating capacitors 0.03 

Input filter capacitors 0.03 

Logic/drive circuitry 

ICs 0.06 

Drive transformers 0.32 

Miscellaneous transistors 0.06 

Miscellaneous resistors/ 0.15 
capacitors 

Total 2.73 

T5916 
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Table 15. Relative Mass of Candidate CDVM Driver-Matrix
 

Designs (Not Including Packaging): Single 11-phase



Transistor Driver; Single 11-phase Matrix



Circuit Mass, kg 

Capacitor-diode matrix 

Capacitors 0.37 
Rectifiers 0.05 
Inductors 0.40 

Power stage 0.77 

Input filter capacitors 0.03 

Logic/discrete components 

ICs 0.04 
Miscellaneous transistors 0.08 
Miscellaneous resistors/ 0.04 

capacitors 

Total 1.78 

Table 16. Relative Mass of Candidate CDVM Driver-Matrix


Designs (Not Including Packaging): Six Parallel



2-phase Transistor Drivers; Six Parallel


2-phase Matrices



Circuit Mass, kg



Capacitor-diode matrix



Capacitors 0.38


Rectifiers 0.05


Inductors 0.44



Power stage 0.84



Input filter capacitors 0.03



Logic/discrete components



-ICs 0.05


Miscellaneous transistors 0.09


Miscellaneous resistors/ 0.05



capacitors



Total 1.93
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Based on the configuration selected, a preliminary design of the



CDVI beam supply was developed. The packaging concept is presented in



Figure 20. Because a significant amount of power is dissipated (326 W


maximum), components are spread over the largest available area to evenly



di-stribute the approximately 0.156 W/cm2 (1.0 W/in.2) thermal loading to 
the heat sink. The height of the CDVM package is low enough (5.1 cm or


2 in.) to closely couple the thermal loads to the heat sink at a minimum



mass penalty.



A mass summary estimate for the entire CDVI package, including the



grid clearing circuit, is presented in Table 17. Comparison with Table 15



shows the significance of the contribution of packaging to total mass.*


Table 18 summarizes CDVM losses and estimated efficiency.



E. SUMMARY COMPARISON OF DESIGN CIIARACTERISTICS 

The four PMaC design concepts defined above completes the data base



required for the design definition of the seven configurations and for



their comparative assessment. This section summarizes the key param­

eters (mass, size, power dissipation, and reliability). Mass, size, and



power dissipation are used directly in Section 4 for developing the



structural and thermal designs. The structural design data (including



total configuration mass), PIaC power dissipation and reliability, and



the design information in the preceding sections are used in Section 5



for the overall assessment of the relative masses, efficiencies, relia­


bilities, and-technical risks of the seven configurations.



Mass and power dissipation for the various PMaC units are listed in



Table 19. Table 20 summarizes, for each PriaC concept, mass and power



dissipation per module for all the thrust modules, for the interface



module, and for the entire PIaC subsystem. For the integrated configura­


tions, only the last entry - the overall summary - is significant. 

Aside from packaging contributions, the major difference between


these tables is that the chassis and cover, output conductor,


connectors, circuit board, and wire were not included in the


comparative tabulation in Tables 13 through 16.
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61





Table 17. Summary of Estimated CDVM Mass



CDVM Component Subassembly Quantity 
 

Chassis and cover 1 
-­ Multipl-ier-modle . . .. l1 
Ceramic capacitors 14 

Tantalum capacitors 2 

Zener diodes 1 

Power transistor 22 -

TO-5 transistor 34 

Digital ICs 14 

Drive transformers 11 

Air core inductors 11 

Output inductor 1 

Resistors 56 

Connectors (high voltage) 2 
 

Connectors (low voltage) 1 
 

Circuit board 1 
 

Wire 
 

Subtotal 
 

Grid clearing cirduit 
 

CDVM Total 
 

ORIGINAL PAGE IS 
OF POOR QUALITY 

Mass, g



2,315


-6,000 

8



2



I 

561



4



7



165



88



136



33



84



22



49



75



9,550



1,OOO"



10,550
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Table 18. Summary of Estimated CDVI Losses



and Efficiency



Losses, Wa
COW Subassembly 

Capacitor diode matrix 

Rectifiers - 78 

Capacitors 55 

Power Stage 

Transistor drive 63 

Transistor forward drop 90 

Miscellaneous losses 40 

Total 326 

CDVM efficiency 95.3% 

aCDVMI operating conditions 

Input voltage 225 V 
Output voltage 2666 V 
Output current 2.5 A 
Output power 6.664 kW 
Multiplication ratio 12:1 

T5916
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Table 19. Mass and Maximum Power Dissipation of PriaC Units


Mass, kg Maximum Power



Unit Dissipation, W



PMaC Concept Concept
-PIaC 
 

1 iX 2 3 1 IX 2 3 

Each thrust modulea 

Beam supplies (2) 

Discharge supplies (2) 

-­

10.0 -­

28.5 21.0 -­ . 

10.0 10.0 160 -­

950 652 

160 160 

Low voltage supplies (2 sets) 

Harness for above 

12.5 

1.0 

12.5 

1.0 

12.5 12.5 

5.0 7.0 

52 52 

0 0 

52 

0 

52 

0 

Total per module 23.5 13.5 56.0 50.5 212 52,162 864 

Interface module 

Reconfiguration units for 
beam power 

45 45 -­ 21 34 34 -­ 17 

Discharge power -­ 33 -­ -­ -­ 34 -­ --

Power distribution filters -­ -­ 88 b -­ -­ 531 b 

Distribution inverters (2) 

DC/DC converter 

Controller 

3 

3 

8 

3 

3 

8 

3 

3 

8 

3 

3 

8 

60 

65 

15 

60 

65 

15 

60 

65 

15 

60 

65 

15 

Harness 16 13 28 30 0 0 0 0 

Total 75 105 130 65 174 208 671 157 

aper two thrusters for integrated configurations



blncorporated in CDVM beam supply.
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Table 20. Summary Comparison of Mass and Power Dissipation 
for the Four PMaC Concepts 

Mass or Power Dissipation of PaC Concept 

Unit or Module 1 iX 2 3



Mass summary, kg



Mass of PMaC units on each thrust 23.5 13.5 56 50.5


module



Mass of all thrust module PMaC units 141a a 280b 252 -5b



Mass of interface module PMaC units 75 105 130 65



Total PMaC system mass 216 186 410 317.5



.Maximum power dissipation summary, W



Dissipation in PMaC units on each thrust 212 52 1162 864


module



Dissipation in PMaC units in all thrust 1272a 312a 5810b 4320b



modules



Dissipation in P~aC units on inter- 174 208 671 157


face module



Total maximum PMaC system power, 1446 520 6481 4477


dissipation



aSix modules per PMaC unit.



bFive modules per PMaC unit.
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Comparing the masses of the various PMaC systems highlights the impact



of the absence of beam supplies on the mass of the systems using the direct



drive concepts: mass per module for the direct drive is reduced by 50%



relative to concepts 2 and 3. Another 50% reduction is achieved by



deleting the discharge supplies. The mass of the interface module units



depends strongly on the requirement for reconfiguration units and associ­


ated filters. The conventional PfaC interface module (concept 2) is
 


heaviest because of the requirement for power distribution filters. The



variation in the mass of the interface modules from 65 to 130 kg, how­


ever, plays a secondary part in the overall mass comparison.



Power dissipation per module also varies widely among the four PMaC



concepts. The low dissipation for concept 1 reflects the absence of



beam supplies; for concept 1X it reflects the absence of both beam and



discharge supplies. Power dissipation for the conventional system is



significantly greater than for the CDV14 system because the conventional



beam supply dissipates 50% more power than the CDVM. The conventional



system also shows a much higher power dissipation on the interface



module because of the dissipation in the power distribution filters.



But, interface module dissipation has a secondary effect on the over­


all comparison of the four concepts because thrust module dissipation



dominates. The 65 W dissipation* for the dc/dc converter corresponds to



the dissipation during the thrust phase, which is the appropriate



quantity for determining the thermal control system requirement. Dissi­


pation increases to about 75 N after the thrust phase is completed



because the power requirements of the mission module are higher during



science payload operations.
 


For Table 20, it is assumed that all thrusters are operating, as



required for the sizing of the thermal control subsystem. The major



differences between the four concepts are particularly evident in this



Subsequent design improvements reduce this to 55 W for the


selected baseline.
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summary. The short radiators required for the direct-drive configurations
 


simplify the design of the thrust system structure. The lower power



dissipation of the direct-drive PIiaC system also significantly affects



the thermal design of the PrIaC units. Thermal control of PMaC units is



based on a maximum allowable mounting surface temperature* consistent with



using proven, high-reliability electrical components. Where units dis­


sipate small amounts of power, as in concepts 1 and IX, the maximum



mounting temperature can be handled relatively easily with small radia­


tors. Electronic packaging is not critical because there are few high­


dissipation components. However, in concepts 2 and 3, large amounts of



power dissipated in localized high-dissipation components makes it more



difficult not to exceed the mounting temperature limits. Electronic



packaging becomes critical, which dictates the use of a low-profile



chassis and close thermal coupling to the mounting surface.



The approximate sizes of the individual PI~aC units used in preparing



configuration layouts in Section 4 are presented inTable 21. The length



and width of the conventional beam -and discharge supplies were later



changed for the selected baseline to comply with the ground rules subse­


quently furnished by NASA LeRC to utilize the 38.1 cm x 101.6 cm (15 in.



x 40 in.) area of the Z-frame modular packaging technique. Total volume,



however, was not changed. The 25.4 cm (10 in.) length of the low voltage



supplies package was subsequently increased to a nominal value of



38.1 cm (15 in.) for the baseline because of the space available within



.the modular Z frame. The total space required for each PMaC concept



depends on the number of units required (as listed inTable 5).



PMaC reliability estimates are presented in Table 22, which shows



the calculated reliability of each individual unit and of the entire



system for each of the four PPaC concepts. The number of units and the



redundancy provided are taken into account in the calculation. Unit



,


Taken as 60'C during the initial study phase, it was later reduced


to 50'C for the selected baseline design.
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Table 21. PPIaC Unit Size Summary



Unit 
 

Thrust module



Conventional beam 
 
supply



CDVM beam supply 
 

Discharge supply 
 

Low voltage power 
 
supplies



Interface module



Contr6ller 
 

DC/DC converter 
 

Distribution 
 
inverter



Power distribution/


reconfiguration



Conventional 
 
system



Direct drive 
 

Direct drive 
 
discharge



CDVM 
 

Approximate Dimensions, in.


Approximate



Length, Width, Height volume,



cm (in.) cm (in.) -Cm (in.) cm3 (in.3)



45.7 (18) 40.6 (16) 15.2 (6) 28,349 	 (1730)



54.6(21.5) 41.9 (16.5) 5.1 (2) 11,634 (710) 

45.7 (18) 22.9 (9) 15.2 (6) 15,895 (970) 

25.4 (10) 15.2 (6) 15.2 (6) 5,899 (360) 

30.5 (12) 20.3 (8) 10.2 (4) 6,309 (385)



20.3 (8) 20.3 (8) 5.1 (2) 2,130 (130)



15.2 (6) 7.6 (3) 7.6 (3) 901 (55)



30.5 (12) 12.7 (5) 10.2 (4) 3,932 (240)



63.5 (25) 45.7 (18) 10.2 (4) 29,496 	 (1800)



63.5 (25) 45.7 (18) 10.2 (4) 29,496 	 (1800)



53.3 	 (21) 45.7 (18) 10.2 (4) 24,744 (1510)
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Table 22. PMaC Reliability Estimates



Effective (Functional) Unit PMaC Subsystem Reliability 
Reliability 

Single 
Unit Unit 

Reliability 
Number 

of 
Operating 

Units 

Number 
of 

Redundant 
Units 

Functional 
Reliability 

Design 
Concept 

1 

Design 
Concept 

IX 

Design 
Concept 

2 

Design 
Concept 

3 

Thrust module 

Conventional discharge 0.977 2 0 0.955 na na 0.955 na, 
supply 

CDV beam supply 0.987 2 0 0.974 .na na na 0 974 

Conventional discharge 0.983 2 0 0.966 0.966 na 0.966 0,.966 
supply 

Low-voltage power supplies 0.967 2 0 0.935 0.935 0.935 0.935 0.935 
Reliability of PMlaC sub­ ....... 0.903 0.935 0.863 0.880 
system on each thrust 
module 

Interface module 
Controller 0.797 1 1 0.970 0.970 0.970 0.970 0 970 

DC/DC converter 0.979 1 1 0.999 0.999 0.999 0.999 0.999 

Distribution inverter 0.984 2 1 0.999 0.999 0.99§ 0.999" 0.999 

Power distribution/ 
reconfiguration 

Conventional system 0.997 5 0 0.985 na na 0.985 na 
Direct drive 0.999 2 0 0.998 0.998 0.998 na na 

Direct-drive discharge 0.999 2 0 0.998 na 0.998 na na c1 

CDVM 0.999 2 0 0.999 na na na 0.999 P 

Reliability of PMaC .... 0.967 0.964 0.954 0.967 
subsystem on inter­
face module 

T5916 



reliability estimates were obtained from component parts counts for each



unit, using best available component reliability data and accounting for



component redundancy provided in unit designs. The reliability of the



PMaC subsystem for each thrust module (two sets of power supplies) and



for the interface module are tabulated separately (they are used in



Section 5 for estimating total thrust system reliability).
 


Table 22 reflects the rationale for incorporating unit redundancy.



Redundancy was considered more critical for the interface module.



Accordingly, one spare is provided for the controller, one for the dc/dc



converter, and one for the two distribution inverters. The effective



functional reliability, taking into account the number of operating units



and spares, exceeds 0.97 for all the functional units. The overall



reliability of the interface module PMaC units exceeds 0.95 for all four



concepts. No redundancy is incorporated in the thrust modules because



an excessive mass penalty would be incurred and because the total number



of thrust modules permits using one-half module as a spare. Were one



set of thrust module PMaC supplies (or one thruster) to fail, it would



not be catastrophic to the mission. This is discussed in more detail in



Section 5. Furthermore, the lowest single-unit reliability value (0.97



for the low-voltage power supplies) is still reasonably satisfactory



without redundancy, and is comparable with the reliability of the con­


troller with redundancy. In any event, the primary objective of the~e
 


PMaC system reliability estimates (to provide a basis for comparing the



alternate concepts) is fulfilled by using the same redundancy ground



rules for all four concepts.
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SECTION 4



ALTERNATE STRUCTURAL DESIGNS



The preceding sections have described the options available for



specifying the choice of subsystems in designing the seven thrust system



configurations (defined in Table 2). This section discusses the design



of the structure and the thermal control subsystem for these seven



thrust system configurations. The work described produced layouts for



each configuration, defined the structural materials, and consequently



enabled estimation of the total spacecraft mass for comparison of the



seven thrust system design concepts. Analyses were performed to deter­


mine the structural loads and thermal transport processes to support the



minimum mass design goals that guided the design effort for both the



comparison of thrust system'configurations and the selected baseline



thrust system.



A. DESIGN APPROACH



Designs were developed for the thrust system structure and thermal
 


control system (using the data base and the ground rules described in



Section 2) with the overall objective of minimizing mass. The dis­


cussion below explains how ground rules were interpreted and applied; it



also serves to define the approach adopted in establishing the key fea­


tures of the designs.



The thermal design uses cold plates for mounting electronic equip­


ment, radiators, and coplanar Communications Technology Satellite (CTS)­


type heat pipes. The radiators and heat pipes were sized to assure that



the thermal design would comply with component ratings, and that the



interface requirements with the mission module and with the solar array



would also be satisfied. Design parameters were selected on the basis



of tradeoff studies to minimize mass and impact on configuration length.



The seven configurations were compared by postulating a maximum tempera­


ture limit of 600C (later reduced to 50'C) for the mounting surface of



the PI'aC units. The results were validated by computer analysis of a
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thermal model of thrust system configuration, using thermal-interface



and power-dissipation data available from thruster data and from the



PriaC subsystem design. The distribution of dissipated power in the cold



plates was assumed to be uniform.



The-load paths and the sizing of structural members (for the thrust



system structure and for the adapter) were determined by IUS requirements



(see Volume II); a forward cradle supporting the thrust system directly



from the shuttle was assumed. The adapter, thrust system-IUS separation
 


subsystem, and solar array deployment mechanisms* were sized in compiling



total mass estimates.



The lateral dimensions of the thrust system (perpendicular to the



longitudinal axis of the shuttle) were determined primarily by the
 


dimensions specified in Section 2 fqr the PMaC beam and discharge sup­


plies for the modular configurations and by the number of thrusters.



Integrated configurations permitted an additional degree of freedom in



the packaging arrangement. The overall cross-sectional dimensions,



including the stowed array (and the adapter beams), were constrained by



the 4.6-m (15-ft)-diameter shuttle envelope. For some configurations,



this constraint resulted in a tight fit and required design ingenuity



because of the -large size of the stowed array, particularly with the



concentrator array concept. For example, the limited space available



with concentrator configuration 2B for the location of adapter tripod



support beams was one of the principal factors that determined the



structural design and mass for this configuration.



Thrust system length was determined by the length of the stowed



array and/or by the required length of the thermal radiators. For all



configurations, length per se was not a critical factor, since ample



space was available in the shuttle. Accordingly, design selection was



based on minimizing the resultant mass. For flat arrays, two alternate



stowed array configurations were considered for modular configurations;



The mass of the solar array deployment mechanisms was not charged


to the thrust system, but was assumed to be a part of the mass
 

allocation to the solar array in compiling the final mass tabula­

tions for the selected baseline in Volume II.
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the one shown in Figure 3(b) was selected because its net mass is lower



even though its length is greater.



The requirement for modular construction was interpreted to mean



that (1)the thrust modules are identical and have independent structures
 


and thermal control systems, and (2)that the interface module is a
 


separate structure although it does use space on the thrust module cold



plates for mounting the interface module power electronics (thermal



control). Thus, the additional mass of a separate cold plate and­


radiator assembly for the interface module is eliminated without loss of



the ability to have interchangeable modules and to test and evaluate



individual mqdules. Special test apparatus will be required to provide



the appropriate electrical and thermal interfaces for module testing,



but this would be the case in any modular design. Each module had an



individual cold plate for mounting identical thrust module components



on the module side and for mounting interface module components on the
 


interface module side. Interface module components, however, were not



identical; they were distributed to obtain near-uniform mass and power
 


dissipation distribution among the modules. This is illustrated in



Figure 21. In all other respects, the modules were identical. Addi­


tional mounting holes were provided on-the cold plates allowed to



facilitate module interchangeability. As compared to the alternative of


a separate interface module configuration for mounting electronic units



with a separate thermal control, this approach significantly reduced



mass without violating any of the key provisions of the modular design



ground rules discussed in Section 2. In particular, the modularity



concept for other mission applications was still essentially preserved,



since only a minor design change would be required if,for example, the



number of modules were reduced to two or three: appropriately modified



interface module units would simply be redistributed on top of the cold



plates.



The same criteria were used for all configurations in selecting



structural materials. Aluminum was selected for the interface truss,



cold plates, and radiators; titanium for the thrust module structure;



and beryllium for the adapter tubes, the IUS interface beams, and the
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Figure 21. Typical electronics layout.
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solar panel deployment booms, where stiffness requirements dominate.



The design of the selected baseline was later modified somewhat.
 


A reasonably simple mission module structural interface was sought



for all configurations- by providing the largest footprint consistent
 


with structural efficiency. In particular, the goal was to maximize the



ratio of the circumference to the area of the rectangle formed by the



four points of attachment.



The adapter/IUS separation system was designed to minimize mass



and to simplify the interface with the IUS. Every attempt was made to



utilize the standard interface bolt circle, to minimize requirements for



additional IUS interface beams, to provide the simplest separation sys­


tem consistent with the structural design requirements, and to efficiently



use the space available in the shuttle bay outside of the envelope



required for the stowed solar arrays. The permissible stowed array



locations were rearranged (with NASA LeRC assistance) to help accomplish



this. To the extent possible, the accessibility for assembly and test



was also considered. Both modular and integrated configuration designs



reflect these goals. The designs were carried out in sufficient depth



to confirm their feasibility, to identify critical interfaces, and to*



assess their performance in terms of size, mass, and technical risk.



B. 	 THERMAL CONTROL



Thermal and structural designs of each configuration evolved from



iterative analysis and design tradeoffs. The thermal design for all



seven configurations is presented first.



Initial design work and tradeoff analyses related to the thermal



control system were performed. The results led to definition of the



thermal control subsystem for each configuration and for the selected



baseline. The results and a description of the baseline design are pre­


sented in Volume II. The basic design is generally applicable to all



seven configurations, and'will not be repeated here, except for the



following differences:



a 	 The specific design parameters for radiators/heat pipes


(number and size of radiators and number of heat pipes
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per radiator) vary, depending on configuration parameters
 

(power dissipations, thermal radiation geometry). These


are presented in this subsection.



a Modular thermal design concepts are modified when applied


to the 2A/I and 2B/I configurations to accommodate their


integrated design features: common cold plate versus


individual cold plates for each module, one set of two


radiators and a single thermal blanket versus individual


sets for each module.



The summary of the radiator/heat pipe design parameters is presented



in Table 23. These parameters are derived from the calculations of the



maximum (worst case) heat rejection, QR' per radiator. This is deter­


mined by assuming the worst-case power dissipation in the PMaC units



and thrusters, taking into account radiation losses (which, depending on



geometry, differ among the various configurations) and solar array view



factors and on structural design.



The values in Table 23, which were determined from the analysis* of



heat rejection requirements, can be generally explained by correlating



them to power dissipation data for the PMaC units and to the other fac­


tors considered in the analysis, with the following relationship:



= + +QR QP QS QT - QO 

where



Q total heat rejected by all radiators under worst-case

conditions, which defines radiator size and number of


heat pipes (optimized by tradeoff analysis).


QR is obtained from Table 23 by multiplying heat rejec­

tion per radiator by the number of radiators.



Qp total heat dissipation by all PMaC units under steady­

state conditions with all thrusters operating at


maximum power.



Qp is directly calculated from Table 20 in Section 3 by


adding power dissipation in the interface module to the


sum of power dissipations in all the thrust modules.



The analysis was somewhat simplified assuming uniform power dissipa­

tion over the cold plates, but is considered adequate for this


comparison.
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Table 23. Thermal Control Subsystem: Key-Design Parameters 

Thermal Control 

View factors 

Factors 

IA IAX 2A 

Configuration 

2A/I 2B 2B/I 3A 

Radiator - solar array 0.05 0.05 0.04 0-04 0.04 0.04 0.04 


Radiator ­ container 0.05 0.05 0.05 0.03 0.04 0.04 0.03 


Radiator ­ canister 0.05 0.05 0.02 0.02 0.03 0.03 0.02 

Radiator - reflector 0.11 0.11 --

Heat rejection, 
W/radiator 

140 64 674 3130 659 3169 458 

Radiator dimensions, 
length/width, meters 0.53/0.64 0.25/0.64 2.01/0.76 2.87/2.34 2.08/0.76 1.91/4.06 1.60/0.76 

Area per radiator, m2 0.33 0.16 1.53 6.71 1.59 7.74 1.22 

Number of heat pipes 
per radiator 2 2 5 23 4 22 3 

Heat pipe weight per 
radiator, kg 2.1 1.78 5.3 27.8 3.4 21.1 2.8 

Radiator weight per 
radiator, kg 1.02 0.49 2.1 9.2 2.2 10.6 1.7 

Number of radiators 12 12 10 2 10 2 10 

Total weight of heat 
pipes and radiators, 
kg 37.5 27.3 74.0 74.0 56 63.4 45.0 



QS E 	 incremental power dissipation during thruster start up.



For modular designs, the radiators must be sized to


account for QS for one of the two thrusters per module.



For integrated designs, radiators must be s4zed to


account for QS for one of the ten thrusters.



QT 	 thruster power dissipation (excluding radiation and


conduction losses not directly coupled to the radiators).



QO 	 portion of PMaC power dissipation not coupled to


radiators via cold plates/heat pipes (e.g., losses


through insulation blankets).



QR and Qp are given in Table 24. Direct correlation between them



is not easily evident because QS, QT' and Q0 vary from configuration to



configuration. QS is a much larger worst case relative "surcharge" for



modular configurations. Q0 is greater for the "open" configurations IA,



IAX, 2B and 2B/I than for configurations 2A, 3A, and 2A/I (for which



the radiators extend over the interface module, thereby shielding it).



For example:



Configuration 2A versus 2B



9 	 QR > QP for both because of the contributions of QS and QT'



but QR is greater for 2A because QO is smaller for 2B


than for 2A



Table 24. Comparison of PMaC Power Dissipation with
 

Heat Rejection Requirements of Thermal Radiators



Configuration


Type of Power Dissipation 

1A IAX 2A 2A/I 2B 2B/I 3A 

QR z Total heat rejected by
all radiators, in W 

1680 768 6740 6260 6590 6338 4580 

Qp Maximum steady-state 1446 520 6481 6481 6481 6481 4477 
power dissipation by 
all PMaC units, in W
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Configuration 2A versus 3A



* 	 QR > QP for both because of the contributions of QS and QT'



but Qp is greater for 2A than for 3A



o 	 QO is a larger fraction of-Qp for 2A



e R - QP) difference is greater for 2A 

Configuration 2A versus 2A/I



QR > QP for 2A because of the contributions of QS and QT'



but QR is less than Qp for 2A/I because QS is smaller and



+QO > 	 (QS QT) 

The important design parameters in Table 23 that affect overall



configurations are radiator length and total mass. Only one component



of total thermal control system mass, the mass of radiators and heat



pipes, is included in Table 23. The other components (cold plates,



thermal blankets, etc.) are included in the final tabulations in



Section 4.



Radiator length impacts the total structural length and, more



importantly, the resulting structural mass. In the attempt to minimize



this impact, some of the configurations (2A, 3A, 2A/I, and 2B/I) have



radiators which extend beyond the cold plates (i.e., over the sides of



the interface module). The resulting reduction in the length/mass ratio



is added complexity of heat pipe design and individual module testing,



because of the additional bend required. This disadvantage is not con­


sidered sufficiently important to warrant abandoning the mass advantage.



The thermal design was subjected -to a simplified computer model



analysis to validate design integrity. The computer model used is shown



in Figure 22, and the results are summarized in Table 25. The postu­


lated design limits are not exceeded.
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Figure 22. 	 Computer model for thermal analysis,


showing Nodal breakdown.
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Table 25. Results of Thermal Computer Model Analysis; Comparison 

with Allowable Limits. 

Thrust System Configuration Subsystem Temperatures, oCa 

PMaC Propellant Propellant Solar Array Thruster Gimbal Structure 
Solar Array PflaC System Desgnation MountingMunting Ta kLiTanks eDrLines vDrive 

Surface I 

Flat Direct 1A 59/-20 39/-35 54/-31 55/-25 254/-68 112/-57 63/-43 
drive 

Flat Direct IAX 59/-20 39/-35 56/-31 47/-25 254/-68 112/57 63/-43 
drive 
discharge 

Flat Conventional 2A 59/-18 57/-27 58/-8 59/-30 254/-57 112/-57 65/-48 

Flat Conventional 2A/I 58/-3 54/-19 54/4 53/-21 254/-68 112/-57 58/-19 

Concentrator Conventional 2B 59/-21 46/-31 55/-15 57/-30 254/-68 112/-57 65/-43 

Concentrator Conventional 2B/I 50/-8 45/-27 45/-3 43/6 254/-68 112/-57 44/-15 

Flat CDV 3A 60/-23 57/-32 59/-33 62/-30 254/-68 112/-57 66/-45 

Allowable limits 60/-30 150/-40 150/-40 60/-30 300/-100 125/-65 200/-185 

aHot/cold conditions. 

f00 



A comparison of the thermal control system design values for



configuration 2B with the design values for the selected baseline (Volume II)



derived from this configuration shows the principal difference between



these to be in power dissipation: 659 W per radiator in-2B compared



with 500 W in the baseline. This affords a somewhat shorter radiator



for the baseline, and shortens the overall thrust system length (by about



0.2 m). The reasons for the lower power dissipation are: lower maximum



thruster power with the revised solar array and thruster profile (7 kUJ



versus 6.4 kW), higher efficiency of beam and discharge supplies (per



revised data furnished by NASA LeRC, lower dissipation in the power dis­


tribution unit for the revised solar array power profile (530 W versus



326 W).



C. DESCRIPTION OF STRUCTURAL CONFIGURATIONS
 


The seven structural configurations and one alternate configuration



are presented in sequence in Figures 23 through 37. Each configuration



is described in terms of a three-view layout, followed by a sketch



(except for ]A). Configurations IA and lAX are similar, except for mass



and thermal control parameters. The three-dimensional sketches for all



configurations (except 2B/I) are shown with the solar array stowed; the



dimensional envelope specified for the mission module is indicated for



reference (it is allowed to extend 2.5 m above the interface module).



The sketch of the 2B/I configuration is shown in Figure 35 with the solar
 


array deployed since the large solar array cannisters would hide the key



design features in a stowed representation. The sketches for the 2A/I



and 2B configurations are shown for both stowed and deployed modes.



Figure 24 shows the layout of an alternate 1A configuration in which



the four solar array blanket containment boxes are placed side by side



rather than above each other as in the selected 1A design. This is



evident in the side views in Figures 23 and 24. Similar alternate lay­


outs, not shown here, were prepared for configurations 2A and 3A. These



alternate design approaches were rejected becauseof a net mass penalty.
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Figure 27. Configuration 2A stowed. 
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Figure 29. Configuration 2A1I stowed.
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Figure 30. Configuration 2A/I deployed.
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Figure 33. Configuration 2B deployed.
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D. 	 COMPARISON OF STRUCTURAL DESIGN CHARACTERISTICS



The seven designs discussed in Section 4 are compared here in terms



of their.principal design features:



a 	 Design of the support structure to withstand loads



* 	 Adapter design



* 	 IUS separation subsystem design



* 	 Characteristics of structural interface with mission


module



* 	 Choice oF materials.



In addition, those design features of the integrated configurations that



distinguish them from the modular configurations are explained. Several



special features of interest for the individual configurations are also



discussed: relative complexity of solar array stowage and deployment,



assembly/test accessibility, required deployed array-thruster separation



distance to prevent mercury ion contamination.



The principal distinguishing features are summarized in Table 26



for the discussion which follows. The materials used are the same for



all configurations; they are discussed separately later. Configura­


tions IA and lAX are similar and are treated jointly,throughout this



discussion. The difference in their masses is discussed in Section 4.E.



1. 	 Critical Design Considerations



The principal constraints and requirements that are critical in



designing the structure for minimum mass are indicated in Table 26. The



reasons for the checked items will become fully evident as design fea­


tures are explained. The following general observations will be helpful.



The requirements for modular construction constrain all but the


2A/I and the 2B/I configurations. The size of the stowed solar array



impacted all configurations; additionally, the length of the 3A and 2A



configurations was influenced by the thermal radiator size requirements.



The design of configurations 2A, 2B, 2B/I, and 3A was also influenced by



the requirement to provide supports for the cantilevered thrusters; the
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Table 26. Comparison of Key Structural 'Design Characteristics



Configuration


Design Characteristics



IA and lAX 2A 2A/I 2B 2B/I 3A 

Critical design considerations 
Modularity requirement Yes Yes No Yes Yes Yes 

Stowed solar array size Yes Yes Yes Yes Yes Yes 

Solar array deployment No No No Yes Yes No 
Thermal radiator size Nlo Yes No No No Yes 

Cantilevered thrusters No Yes No Yes Yes Yes 

IUS adapter mass/loads to No No Yes No No 
IUS separation Yes Yes No Yes No Yes 

Structural features 

Stowed array orientation relative Normal Normal Parallel Parallel Parallel Normal 
to thrust axis 

Thermal radiator extension over No Yes Yes No No Yes 
interface module 
Flexible, efficient structural No No Yes No Yes No 
arrangement/design 

Supports (snubbers) requirea for No Yes No Yes No Yes 
cantilevered thruster storage 
IDS extension beams required Noa Yes No Yes Yes Yes 

IUS extension beams protrude beyond No No No Yes No No 
bolt circle 

IUS separation



Separation plane. at IDS interface CP CP IUS CP IDS CP


or at cold plate (CP)



Springs actuate through Array Array Major Astromast Major Array


yoke yoke structure canister structure yoke



Adapter legarticulation (rotation) Yes Yes No Yes No Yes


required



Mission module interface


Area of the four-point attach- 2 6 2 4 4 4 2.2 2.2 2.2


ment rectangle, m



Ratio of rectangle legs 0 42 0 46 0 93 0.44 0.44 0.44



Other



Accessibility Fair Poor Excellent Poor Good Poor



Minimum Hg impingement angle 6 45 77 97 26 45 63


(initial design), deg



Added (deployed) separation Some None None Significant Some None


of array requiredb



aNot required for structural loads or mass reduction but included for improved



IUS separation implementation
 


bDesign modification (acceptable to solar array) to attain 500



T5916
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short cantilevers in lA/lAX configurations did not impose this



requirement. IUS loads and separation significantly influenced struc­


tural and adapter designs for all modular configurations, especially for



2B which required a special design effort to preclude prohibitive mass



penalties. Configurations 2B and 2B/I were also influenced by solar



array deployment requirements.
 


2. Structural Features of Configurations ]A (and IAX), 2A, and 3A



Although thrust system configurations 1A, 2A, and 3A have similar



structural designs, they differ significantly in overall length because



they require different thermal radiator lengths (inorder of length, 1A,



3A, 2A). All three configurations are modular and have the solar array



stowed below the thrust modules in the direction normal to the thrust



axis. To minimize length (and mass), the thermal radiators for



configurations 2A and 3A extend above the separation plane and over the



sides of the interface module. This is not required for the lower­


dissipation direct-drive thrust system configuration IA. The design
 


and assembly features of the thrust modules are shown in Figure 38.



The four-tripod adapter design is shown in Figure 39 (and fully discussed



for the baseline in Volume II); the adapter design is similar for all



configurations. The separation plane between the IUS and the thrust



system is at the bottom of the interface module (marked CP in Table 26).



Two of the adapter tube legs attach to a common fitting at the separa­


tion plane; the third leg attaches to a separate adapter end fitting.



The legs are hinged at the IUS with a preloaded torsion spring. In all



cases, unobstructed egress is provided during separation by spring­


actuated articulation (rotation) of the adapter legs and by spring­


actuated pushoff through the array yoke.



The difference in the overall length of these three configurations



is the main reason for differences in their structural designs (i.e.,



the length of the cantilevered thruster supports and the inclination of



the adapter tripod). Because of the length differences, we had to



examine supplementary structures for aft support of the thrusters



(snubbers) and extension beams to provide a broader base for the
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adapter tripod' than'is available on the IUS interface bolt circle. The



relatively long cantilever support of the thrusters in configuration 2A



implies a highly flexible support structure and a relatively large dis­


placement at the thruster end if the structure is subjected to vibra­


tional loading at low excitation frequencies. This results in a cor­


respondingly high load magnification. Of the two solutions possible ­


larger support members (increased stiffness) with resulting mass penalty,



and lateral restraint of thrusters with additional aft supports (snub­


bers) - the latter approach was selected (as is evident in the side view



in Figure 26). The relatively short cantilever length in configuration



1A does not require such snubbers. Configuration 3A falls somewhat



between the cases mentioned above: requirements for snubbers are mar­


ginal, and the proposed design incorporates them. Efficient transmission



of lateral forces axially through the adapter tripod tubes (i.e., with



small magnification) is achieved with a large relative inclination of



the tubes. The short length of configuration ]A permits an efficient



adapter structure design,without using extension beams at the IUS inter­


face. For the longer thrust system, configurations 3A and 2A, such



extension beams are required to avoid a significant mass penalty that



would be incurred if the same function were performed by increasing the



adapter tube diameter. These IUS extension beams are reflected in the



entries in Table 26 and in'the configuration layouts in the previous
 


subsection.



Increasing the inclination of the adapter tubes would also facili­


tate deploying the adapter at separation. Therefore, two small IUS



beams were also incorporated in the IA design. For thrust system con­


figurations 1A, 2A, and-3A, however, the IUS extension beams can be



confined within the limits of the-IUS interface bolt circle.



An'alternate to thrust system configuration 1A was considered for



the alternate stowed array arrangement shown in Figure 24. The length



of the thrust system is shorter in this configuration (by about 0.4 m)



and the inclination of the adapter tubes is greater. However, the



resultant saving in mass was more than offset by the mass of the rela­


tivdl'y long'suppdrt beams required at the IUS interface. Also, these



103





support beams would extend beyond the IUS bolt circle. The net mass



penalty of the alternate to configuration IA relative to lA was esti­


mated to be about 10 kg. Similar assessments were made regarding



possible alternate designs for configurations 2A and 3A. Accordingly,



the alternate solar array stowage concept was abandoned, although this



decision perhaps should be reconsidered if later it is desired to



minimize post-deployment on-orbit mass at the expense of IUS payload



mass and IUS interface complexity.



IUS separation is accomplished using pin pullers and separation



springs. Pin pullers rather than concentric bolts were selected for the



2A and 3A configurations because there are several potential interface



problems associated with thermal radiators that extend over the separa­


tion plane. Concentric bolt with explosive separation nut devices,



although more reliable in assuring positive separation, could seriously



affect the radiators. Pin pullers were also included in the 1A design,



subject to future reassessment. During separation, axial forces are



transmitted in double shear through the pin to the adapter fittings, and



lateral forces are transmitted by bearing against adjustable stops.



Separation springs are located at the base of the solar array boom



support. When the pin is withdrawn, the legs of each tripod fall away:



two legs as a unit, and the third leg independently. The pushoff



springs provide the desired separation velocity.



3. Structural Features of Thrust System Configuration 2B



Thrust system configuration 2B required special design measures



because of the constraints imposed by the stowed solar array. The



dimensions of the array's stowage cannister are so large that it would



have barely fit within the space allowed. These constraints were sig­


nificantly reduced for the selected baseline derived from this con­


figuration by a smaller solar array envelope that was subsequently



specified by NASA LeRC.



Since the large array cannisters could not be oriented horizontally



within the shuttle envelope, .they were stowed parallel to the thrust



axis, overhanging the IUS interface ring. This required a heavy adapter
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structure, as shown in-Figures 31 and 32. The modular structure comprising
 


the interface module and the thrust modules, similar to that for con­


figurations 1A, 2A, and 3A, is supported by the two cradle-type structures



attached to the ring of large beams at the IUS interface. The adapter



tripods embrace the extreme ends of the thrust system - two on each side.



Four end posts are laced with diagonal members to transmit the lateral



forces and to reduce the effective column length. The large IUS beams,



which necessarily extend beyond the IUS bolt circle to prevent a large



mass penalty, carry the loads to the IUS. The solar array is supported



by the astromast canister and snubbers. As shown in Figure 31 and noted
 


in Table 26, support snubbers are also required here to support the



cantilevered thrusters. Among the seven configurations, this is the



only instance where it is necessary to have the IUS beams extend beyond



the circumference of the bolt circle.
 


The height of the stowed array influenced the length of configura­


tion 2B since the mission module space above the interface plane must



not be encroached upon. The thrust modules, and the overall 2B con­


figuration, are longer than for 2A, and the thermal radiators do not



extend over the interface module.*



The thrust system-adapter separation plane at the bottom of the



interface module, and the method of IUS separation by articulation of



adapter legs, are similar to those discussed previously, but the load



paths and mechanization are necessarily different. The solar array



loads are carried through the astromast canister. Because thermal



radiators do not extend beyond the thrust system-adapter separation



plane, concentric bolts and shear cones, and push-off springs, are used



for separation. A high-strength bolt inserted into an oversize hole



and isolated from bending forces is threaded into an electro-explosive



separation nut. The shear cones align the adapter with the thrust



system and transmit the lateral forces across the separation plane.



The push-off springs are compressed when the adapter and spacecraft



are mated. Because their location is optimal, the springs provide a



Volume II,Section 9.B.
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positive, accurate separation force. A cursory separation analysis



indicated that a separation force of approximately 17,800 N (4000 pounds)


would be required. This could be produced with four springs with a



spring rate of 1400 N per cm (800 pounds per inch) and a deflection



of 3.2 cm (1.25 in.).



The design approach is also dominated partially by the deployment



of the large volume array. To assure design integrity, a preliminary



conceptual deployment sequence was analyzed, (one not furnished as part



of the data base) and is illustrated in Figure 40. Many more articula­


tion 	 steps than those required for the flat array are evident, but the



compatibility of solar array deployment with structural- configuration



design was shown conceptually.



4. 	 Structural Features of Integrated Thrust System


Configurations 2A/I and 2B/I



Thrust system configurations 2A/I and 2B/I were structured and


sized to determine the possible advantages of abandoning modular



construction and allowing greater flexibility in efficiently arranging



the thrust system components on an integral structure. The principal ­

aim was to determine the degree to which mass could be reduced. Thrust 
system configurations 2A and 2B were selected for this study (as 

directed by NASA LeRC) because the mass savings were expected to be



larger for these configurations because they are heavier than are con­


figurations 1A and 3A.



Since the mass of the-adapter was relatively large for the 2A and



2B configurations (compared to IA and 3A), and we were concerned that



the total mass might exceed IUS payload capabilities, the effort was



directed towards minimizing the total mass on the IUS rather than mass



of the injected spacecraft. In retrospect,* mass minimization of the



injected spacecraft is a more desirable objective. Nevertheless,



Subsequent inputs from NASA LeRC indicated that IUS payload capability


could be assumed to be significantly greater than originally stipulated,


pending mission trajectory tradeoffs. This was used in baseline design,


described in Volume II,to minimize the mass of the injected spacecraft.
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the conclusions of the study are basically valid with respect to 

assessing the relative benefits of integrated versus modular designs. 

Several different integrated structural arrangements were explored. 

Although the design development for these configurations was not as-- ­

-extensiv&a -orthe modular configurations, the analysis did identify



the major benefits and disadvantages of integration and estimate poten­


tial mass savings. Because the volume occupied by the stowed concen­


trator array is larger in thrust system configuration 2B/I, design of



configurations 2A/I and 2B/I was approached somewhat differently. The



difference between modular and integrated configurations is reflected



in the features common to both integrated designs 2A/I and 2B/I. Both


integrated configurations have a common cold plate and only two radi­


ators, one on each side of the integrated thrust system structure.



Shear web panels are used on the two opposite sides. Loads are paftiaIly
 


carried by these panels and partially by the radiator/cold plate ateffi­


blies. The solar arrays are stowed alongside the radiators, in the


direction parallel to the thrust axis. They are coupled to the IUS7 with


a simple adapter at the bottom of the thrust structure. The separation


plane is at the IUS interface. Neither the tripods nor the associated



articulation (rotation) of support arms that are required for the



modular configurations are necessary. Separation is accomplished using


concentric bolts with springs actuating against the major structure.



The differences between configurations 2A/I and 2B/I relate to the
 


size of the stowed concentrator array:. These differences are in-the ­

arrangement and support of the thrusters and in the design details of 

the adapter (including the requirement for IUS support beams). An 

integrated design for the smaller stowed array of the baseline configura­

tion would have led to a configuration closer to 2A/I. 

Configuration 2A/I has the ten thrusters arranged in a circle and


supported by a common shelf. As in configuration 2A, the thermal radi­


ators extend over the mercury tanks above the cold plate to minimize



thrust system length. The holes shown in the side panels in Figures 29



and 30 reduce structural mass and provide access to the assembled con­


figuration. The outside dimensions of the square structure
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(2.1 m x 2.1 m) place it within the IUS bolt circle. The simple adapter



is comprised of four columns which attach the bottom of the thrust sys­


tem directly to the bolt circle.



Configuration 2B/I, which is constrained by the space available,



features a rectangular integrated truss structure with the thrusters in



line, five on each side. The main truss supports six thrusters, and two



overhanging extension shelves support the remaining four thrusters, two



on each side. Because the length of the configuration is determined by



the length of the solar array (as for configuration 2B), there is no



requirement for the thermal radiators to extend above the common cold



plate. The structure isalso supported on the bottom with a simple



four-column adapter. The structural geometry, however, requires that



IUS extension beams be added to carry the loads; these extension beams,



as indicated in the top view in Figure 34, need not extend beyond the



circumference of the IUS interface bolt circle.



Confiquration 2B/I differs somewhat from the other configurations



in that it utilizes only one mercury tank. A two-tank system was



selected for the other configurations, which were designed earlier than



2B/T, for reasons discussed in Volume II. The reasons for this choice



are not very compelling, and a single-tank system could be easily adapted
 


to each configuration with only minor penalties and a negligible mass



difference. In the two-tank systems, the tanks are located close to the



adapter supports to minimize bending stresses and to raise the struc­


tural frequencies. In configuration 2B/I, it would have been awkward to



place the two tanks in the three bays, and a single-tank design was



chosen (with the tank located in the center bay along the thrust system



axis). The tank diameter was increased from 0.6 m for the two-tank
 


system to 1.0 m. The impact of this design difference on the overall



comparison of the seven configurations is negligible.



Although the integrated configurations were not optimized, signifi­


cant conclusions can be drawn relative to the mass difference between



modular and integrated designs. The discussion below is based on the



mass breakdown 'analysis (summarized in Section 4.E).
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Comparing configurations 2A/I and 2A indicate that there is likely



to be no significant difference in mass for any subsystems other than



the structure and the adapter. Different integrated design approaches



merely reflect tradeoffs between the-masses-of these two subsstimt.-


Configuration 2A, the design elected, was intended to minimize IUS pay­


load. In that design, the adapter mass has been drastically reduced ­


from110 kg to 20 kg. This 90 kg saving was, however, partly negated by


the heavier (by about 60 kg) on-orbit mass, which was largely due to the
 


increase in the mass of the structure by about 55 kg. That increase is



largely attributable to the side panels and to the bottom shelf of



configuration 2A/I. Alternate integrated design approaches that mini­

mize on-orbit mass might reduce structural mass relative to 2A, at the



expense of adapter mass, but the design analysis conducted during-this



study indicates that a significant reduction in on-orbit mass would be



very unlikely.


Comparing configurations 2B/I and 2B indicates that adapter mass



was significantly reduced (150 kg versus 220 kg for 2B) and that"total



injected spacecraft mass was reduced somewhat (1020 kg versus 1050 kg



for 2B). A net reduction in IUS payload mass of about 100 kg (70 kg



for the adapter and 30 kg for the thrust system) was thereby achieved.



Here the basic similarities between thrust system structures for con­

figurations 2B/I and 2B, which were necessitated by stowed array volume



constraints, precluded a significantchange in thrust system structural



mass: again, some increase was necessary -(A5-kg), primarily because of



the mass of the extension shelf for the outside thrusters. The principal



reduction (about 35 kg) stemmed from the more compact (single blahket)



design of the thermal control subsystem.* In any event, the same



,


This conclusion may not be entirely valid. The mass of the thermal
 

control system for 2B is somewhat'suspect, since subsequent, more


detailed analysis for the baseline in Volume II led to lower mass
 

estimates. Time did not permit a full reassessment of the mass


of the thermal control subsystem for configuration 2B.
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general conclusions reached for the comparison between 2A/I and 2A



-above apply here: no significant-reduction in on-orbit mass is expected



with an integrated dsign; a significant saving in IUS payload mass



might be obtained by simplifying the adapter structure; and tradeoffs



are available between adapter and structural designs that reflect on



potential IUS payload mass reduction versus the extent of reduction (or



increase) in injected spacecraft mass.



5. Materials



The criteria used in selecting structural materials were (1)to



satisfy structural requirements, (2)to minimize mass (without an exces­


sive cost penalty), (3)to facilitate manufacture, and (4)to be obtain­


able on a procurement cycle that is compatible with the required schedule.



As a further ground rule, the same materials basically were selected for



all the configurations because this eliminated materials as a variable



without compromising design optimization. The selection was governed



by the availability of state-of-the-art materials. High-modulus fiber



composites (such as graphitelepoxy, boron epoxy, and fiber reinforced



materials) should be considered in.the final design of the selected



baseline.



Table 27 summarizes the materials used for structural members.



Aluminum and beryllium were used as principal structural materials.



Aluminum was used for components that do not greatly influence overall



spacecraft rigidity and for parts that require a significant amount of



machining. Beryllium was only used in elements for which stiffness



requirements were critical. In particular, beryllium was selected for



the long adapter columns (because a prohibitively large tube diameter



would be required with aluminum) and for the IUS beams (because this



provides a rigid support with less mass). Aluminum was selected for



interface truss tubes and corner fittings. In the subsequent design



definition of the baseline configuration (Volume II), aluminum was



replaced with beryllium for the interface module truss. Aluminum sheet



(alloy '6061-T6) was chosen for fabricating the radiator and cold plate
 


face sheets because of its strength, stiffness, and high thermal
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'Table'27. Material~s 

Component laterial 

Heat pipes Stainless steel 

Intbrface trussa Aluminum 

Cold plate Honeycomb - aluminum 
face 'sheet 

Radiators Aluminum 

Solar panel deployment booms Beryllium 

Thruster support beams Titanium 

Thrust module structure Titanium 

Adapter Beryllium 

IUS interface beams Beryllium 

T58'6 

conductivity. -Titanium was selected for the small-diameter thruster



truss structures to isolate the high-temperature thruster environment



from the electronics. Materials selected for the elements of the vari­


ous subsystems not shown in Table 27 were described in Volume II.



6. Mission Module Structural Interface



One design objective was to achieve-favorable structural interface



with the mission module. All seven designs provided a four-point



attachment to the mission module, but differed somewhat in the location



of these attach points. The relative "figure of merit" is determined by



the geometric properties of the rectangle formed by the four points of



attachment. The structural interface is improved as the rectangle



approaches a square and as its area increases.



These two parameters - rectangle area and length-to-width ratio of



the rectangle - are shown in Table 28 for the seven configurations.



Configurations 2B, 2B/I, and 3A have identical mission module interfaces.
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Table 28. Summary of the Mass and Length of the Seven Structural Configurations



Structural Configuration

Design Characteristic

 IA lAX 2A a
2A/I 2B
 2B/I 3A



Number of thrusters/modules 12/6 12/6 10/5 10/NA 10/5 10/NA 10/5



Mass, kg



Thrust modules (sum) 355 290 600 NA 650 NA 525



265 310 NA 305 NA 240
Interface module 235 

(including Hg residuals, solar array drive and'


booms, and solar array deployment mechanisms)a



930 765
Subtotal 590 555 910 '965 955 


Contingency b 60 55 90 95 95 90 75



Thrust system,on orbit, dry 650 610 1000 1060 1050 1020 840
i' 
 

Adapter '(including contingency,,supports, and 50 50 110 20 220 150 110


separation subsystem)



Length, m



Thrust system, overall 2.9 2.9 4.4 4.6 4.9 4.6 3.7



Solar array height (dimension X in Figure 3) 2.7 2.7 4.2 NA NA NA 3.5



aMass budget for selected thrust system baseline did not include solar array



deployment mechanisms, considered part of solar array mass budget.



bl0% assumed in this task, versus 15% in sizing selected baseline.
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Although all configurations provide an acceptable mission module structural



interface, the one provided by configuration 2A/I is by far the best . The



differences among the other six configurations are not sufficient to sub­


stantially influence selection, although configuration 2A is somewhat better



than the remaining five (highest length-to-width ratio, second in area).



7. Accessibility



Accessibility during assembly and testing was also considered in



developing the seven designs. Different constraints arose in each case.
 


Table 26 gives relative accessibility ratings, which strongly favor the



integrated design approach.



8. Mercury Ion Impingement



The potential for contamination of the solar array by the mercury



ions in the thruster plume was a concern, as discussed in Section 2.A,



and illustrated in Figure 9. This concern would be eliminated if the



angle between the thrust axis and the line to the corner of the deployed



array could be kept above 500 throughout the mission. The worst impinge­


ment condition would occur when the solar array is fully opened and



co-planar with the thrust system. The corresponding "worst case" (mini­


mum) angle will be called 9 in this discussion.



That B will be more than 500 is assured for all designs with a



sufficiently large separation distance between the deployed array and



the thrust system. In accordance with ground rules in Section 2,



assurance of 8 > 500 was not the determining factor in the design of the



thrust system (i.e., its length) and the location of the thrusters. The



rationale was that the length of the solar array deployment arm could



later be increased, if necessary, to meet this requirement.



Table 23 contains the calculated 6's for each configuration. This



permitted rating the configurations in terms of the extent of desiqn
 


modification that would be required (i.e., the additional separation
 


distance required to achieve 0 > 50). This is also indicated quali­


tatively in Table 23. Concentrator arrays are particularly susceptible
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to Hg impingement, and added epavatioi distance is especially needed



for configuration 2B. The short length of configuration IA also calls



for some additional separation. The potential impingement problem with



configuration 2B from-which the selected baseline-was derived did not



prove formidable when the modified solar array configuration was defined



and a modest increase in solar array separation essentially eliminated it.



E. MASS SUMMARY OF THE ALTERNATIVE THRUST SYSTEM CONFIGURATIONS



Table 28 summarizes the masses of the seven configurations. Table 29



gives a mass breakdown by major subsystem, excluding contingencies. The



mass tabulations included the estimated mass of the solar array deploy­


ment mechanism to highlight the potential mass penalties of the concen­


trator array configurations. The final tabulation for the selected



baseline in Volume 1I allocates this mass component to the solar array



mass budget., As noted in Table 28, the 10% contingency used initially



was later changed to 15% for the selected baseline.



Table 28 also shows the lengths of the seven configurations and,



for reference, dimension X (from Figure 3). Dimension X is the required



overall height of the flat solar array in the stowed configuration for



the four modular designs employing this array. The mass and length of



the selected baseline differ slightly from those of configuration 2B.



The selected baseline is 0.2 m shorter (4.7 versus 4.9 m, primarily as



a result of reduced power dissipation and radiator length) and 130 kg



lighter (notwithstanding the 40 kg penalty of using a higher contingency



of 15%). The mass comparison is shown in Table 30. A large contributor



to the lower mass is that the adapter is 90 kg lighter. The total net



reduction in total injected spacecraft mass is therefore only 40 kg.
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Table 29. Thrust System Mass Breakdown



Subsystem 
 

Thrust module 
 

Thrusters 
 

Gimbals 
 

PMaC 
 

Structure 
 

Thermal control 
 

Hg distribution 
 

Total 
 

Number of modules 
 

Total, all thrust modules 
 

module
Interface 
 

PMaC 
 

Structure 
 

Thermal control 
 

Hg storage and distribution 
 

Solar array drive 
 

Array booms and deployment 
 

Total 
 

Thrust system total 
 

Mass of Modular 
 
Subsystem 
Configurations, kga 
 

1A lAX 2A 2B 3A 
 

Thrusters 
 

17.5 17.5 17.5 17.5 17.5 
 Gimbals 
 

6.0 6.0 6.0 6.0 6.0



23.5 13.5 56.0 56.0 50.5 
 PMaC 
 

3.0 3.0 6.0 11.5 5.0 
	 Structure 
 

8.0 7.0 32.5 37.0 24.0 
	 Thermalc
Temlcontrol 
1.0 	 1.0 2.0 2.0 2.0



Hg storage and 
 
59.0 48.0 120.0 130.0 105.0 
 distribution



6 6 5 5 5 
	 Solar array drive 
 

355 290 600 650 525 
 Array booms and

deployment 
 

75 105 130 130 65



45 45 45 50 45



5 5 5 5 5



70 70 70 70 70



10 10 10 10 10



30 30 50 40 45



235 265 310 305 240


Thrust system



590 555 910 955 765 
 total 
 

Mass of Integrated


Configurations, kga



2A/I 2B/I 

90 90 

30 30 

410 410



125. 115



170 155 

80 80



10 10



50 40


-

965 930





Table 30. Mass Comparison: Selected Baseline Versus Configuration 2B



Comparison Element 
 

Thrust modules (five),



PaC units 
 

Structure 
 

Thermal control 
 

Net, thrust modules 
 

Interface module



Electronics 
 

Mercury storage and distribution 
 

Structure 
 

Solar array deployment mechanism 
 

Net, interface module 
 

Subtotal 
 

Contingency 
 

Thrust system on orbit, dry 
 

Adapter (including contingency) 
 

Total 
 

Mass of Baseline



Minus Mass of
Configuration 2B,


kg



+ 55 
 

- 20 
 

- 70 
 

- 35 
 

+ 10 
 

- 10 

- 5 

- 40 

- 45 
 

- 80 
 

+ 40 
 

- 40 
 

- 90 
 

-130 
 

Comments 

Increase from 14 5 to 20 kg per unit (as


specified by NASA LeRC )



New solar array; redesign



Update Previous estimate found too high,


plus redesign 615 for baseline versus 650


for 2B



Addition of solar array control unit



Desiqn update



Design update (new array)



Deleted from thrust system budget (included


insolar array budget)
 


260 for baseline versus 305 for 2B



875 for baseline versus 955 for 2B



135 (15%) for baseline versus 95 (10%)


for 2B 
 

1010 for baseline versus 1050 for 2B



130 for baseline versus 220 for 2B


(simpler, new solar array)



Main truss -50 -50


IUS support beam -25 -25


Aft support snubbers deleted -15 	 T5916
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SECTION 5



COMPARISON OF ALTERNATE THRUST SYSTEM CONFIGURATIONS
 


The seven thrust-system configurations are compared in this section



in terms of their principal design parameters (mass, length, efficiency,



reliability) and in terms of the key criteria of technical risks and



system interfaces. The other elements of the spacecraft (the solar



array and the mission module), although not part of this study, are
 


considered to the extent to which their characteristics affect this



comparison. A baseline thrust system configuration was selected on the
 


basis of this comparison. The analysis does not consider cost or



schedule (program) impact. The program plan and cost estimates were



subsequently prepared for the selected baseline, and are presented in



Volume II.



A. THRUST SYSTEM PERFORMANCE PARAMETERS



The two principal performance parameters required for a comparative



assessment of the alternative thrust system configurations are efficiency



and reliability. To compute thrust-system efficiency requires defining



the total power input and mass flow rate for operating the thrust system



at a given thrust value. To estimate reliability requires defining all



the PMaC and structural el~ments and their failure modes. A simplified



preliminary analysis of these requirements made during the design phase



of the study is sufficient for cdmparing alternative configurations.



Thrust system efficiency and reliability are both influenced by the



plan for determining the number of thrusters to be operated and for'



specifying the beam voltage and current to utilize the available power.



Ideally, one would use a logic chart like the one shown in Figure 41 to



optimize the thruster operating plan for any given mission. For this



study, we were constrained to use the data for a single trajectory for



each configuration with both the available power and thrust require­


ments specified at each point on the trajectory. Consequently, the



only loops shown on the logic chart that could be closed were those to
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01 TRAJECTORY SPECIFICATION 
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THRUSTER REQUIREMENTS PMaC REQUIREMENTS 
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Figure 41. 	 Logic chart for determininglogistics and specification


for operating thrusters to achieve the mission


objectives.
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meet'the constraints on thruster technology or PMaC approaches. ,During



this phase.of the study, the thruster technology limits were set as



follows:



* A maximum beam current of 2.5 A per thruster



-* A maximum beam voltage of 4000 V 

a A maximum operating time of 15,000 hr per thruster.



The power available per thruster and the beam voltage depend on the
 


PMaC approach followed and type of solar array used. For a conventional



ion-beam power supply, the beam voltage can be specified arbitrarily.



For CDVM power supplies, the beam voltage varies with heliocentric dis­


tance and can be controlled or specified only by the solar array.



Specifyihg solar array reconfiguratton was outside .the scope of the



study. Therefore, we took as given NASA LeRC's thruster operation plan



for both the direct-drive and CDVM PMaC approaches. Figure 42 compares



thruster sequencing for a thrust system using a CDVM beam supply and a



flat solar array with one using a conventional beam supply and a con­


centrator solar array. To be consistent, we followed the pattern set by



NASA LeRC in that thrusters were turned on and off in pairs to match



the solat array power output (as contrasted with one thruster at a time).



The operating thrusters were operated at the highest beam current pos­


sible (limited by the power available) to maximize propellant efficiency.



Having established a-plan for thruster sequencing (shown in



Figure 42), it is a straightforward process to add up the total thruster



operating hours-and obtain the average operating time per thruster.



Similarly, the total ion beam ampere-hours can be obtained by using the



thruster operation plan for varying ion beam current as a weighting



factor to provide an average value for ion beam current. The perform­


ance model described in Volume II was used to determine the average



propellant ,efficiency (by using the propellant utilization corresponding



to the average ion beam current). This allows converting the total ion



beam ampere-hours (for all the thrusters) to total mercury propellant



requirement. When the beam voltage remains constant (Figure 42(b)), the



average current can be used with the analytic performance model to obtain
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the average powet input'required by the thruster. Thus, all the elements



required to compute thruster efficiency can be obtained by specifying a



plan for thruster sequencing (as shown in Figure 42). When beam voltage



varies (Figure 42(a)), both the average beam power and the average cur­


rent must be determined for'performance characteristics to be evaluated



using the analytic model. This requires only performing another sum­


mation and then weighting the thruster operating time by beam power to



obtain a value for total watt-hours. Thruster efficiency determined in



this manner was then used with the appropriate PMaC unit efficiency
 


factors to compute thrust system efficiency.



Analysis of the alternative configurations in the-manner described
 


above produced the parameters shown in Table 28. Since, as the only



parameters that can be varied in selecting a thruster sequence plan are



the beam voltage and current, the direct-drive and voltage-multiplier



PIlaC approaches offer no appreciable flexibility. Some latitute in



beam voltage and current is available for the configurations using a



conventional PMaC approach. Consequently, the seven alternatives con­


sidered can be.reduced to the four cases shown in Table 31. Comparing



the conventional PMaC approach configurations that use a flat array (2A,



2A/I) with those that use a concentrator array (2B, 2B/I) shows the



effect of changing beam voltage. The power available from the flat array


declines so severely at large heliocentric distances that beam voltage
 


must be lowered to avoid operating at very low beam currents and to



reduce the power-to-thrust ratio so that the thrust required by the
 


trajectorycan be matched. The consequences are an increase in the



operating time per thruster and in the total propellant requirement.
 


These consequences are to be expected from reducing specific impulse



(beam voltage). Using a concentrator array (and a different trajectory)



permits operating at a constant beam voltage over the entire mission



without deep throttling (low beam current) and without increased oper­


ating time and propellant requirements. Variations in propellant mass



of several hundred kilograms can be found by varying the beam voltage



over a 200 V range, but it would be necessary to recompute the trajectory



before any significance could be attached to the variation.



123





Table 31. Comparison of Thruster Parameters for the


Design Concepts Considered



Configuration



Thruster Parameter


TA, TAX 2A, 2A/I 2B, 2B/I 3A



Beam current (max), A 2.5 2.5 2.0 2.5



Beam current (min), A 1.0 1.0 1.0 1.0



Beam current (avg), A 1.76 1.76 1.7 1.72



Beam voltage (max), kV 3.9 3.2 2.9 3.5



Beam voltage (min), kV 2.0 1.6 2.9 1.8



Beam voltage (avg), kV 2.7 2.8 2.9 2.5



Maximum thruster power, kW 7.4 8.6 6.3 7.3



Thruster efficiency (avg), % 75.1 75.3 75.2 74.4



Operating time, hr 11,521 14,520 13,056 14,952



Operating time, A-hr 20,326 25,582 22,237 25,653



Number of thrusters 12 10 10 10



Total operating time, hr 138,256 145,200 130,560 149,520



Total operating time, A-hr 243,912 255,816 222,368 256,536



Total propellant, kg 2,130 2,240 1,950 2,250



Average specific impulse, 4,500 4,580 4,640 4,340


sec



T5916
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The parameters inTable 31 can also be analyzed in terms of



reliability. We have assumed that thruster reliability can be described



by a constant failure rate over the operating period and that wearout


lifetime is greater than 15,000 hr. Consequently, the configuration that



requires the least number of operating hours should have the best relia­


bility. Since actual failure rate data is not available for ion thruster



hardware, it is necessary to examine operating conditions that might



affect failure rates adversely. Since the beam parameters are the most



important, a perveance relationship (Figure 43) between voltage and cur­


rent was selected as the best method of comparing operating-conditions.



Thrusterdesign criteria are best satisfied when thruster parameters are



adjusted to produce beam voltage and current values that follow a per­


veance line such as given in Figure 43 (actually, the voltage should be



slightly larger than the value determined from the perveance line for


any given current). The operating ranges requifed for the alternative



PMaC approaches are shown in th6 figure. Since the CDVM and direct-drive



PMaC approaches require the' 'argest parameter variation, thruster oper­


ation in these approaches must deviate thd most from the optimal condi­

tions. This could reasonably- e expected to indrease the failure rate.



The configuration with a conventional PMaC approach atd a flat solar


array also 'has two operat{ng voltage regimes and thereby is,to some



extent, in the same category. Ideally, the operating region would be



parallel to a required perveance line that is drawn through a point



representing the maximum beam current and a beam voltage slightly less


(200 to 500 V) than the beam voltage specified at that point. The con­


figuration having a conventional PMaC approach and a concentrator solar



array is the most amenable to this sort of operation.



B. THRUST SYSTEM EFFICIENCY



Thrust system efficiency is-defined as the ratio of the thruster



power output to the total power furnished to the thrust system. It is a



significant performance parameter because it is one of the key quantities



used for evaluating the total performance of the Halley's comet space­


craft system. For this comparison, the average thrust system efficiency
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(time-weighted over the mission) was calculated-for each of the seven



thrust system configurations. After thdse calculations were made,



NASA LeRC directed that such calculations should exclude the power fur­


nished to the mission module for housekeeping purposes. Since we had



included this power, the average efficiencies presented below are some­


what lower than they otherwise would have been. But the difference is so
 


small as to have no effect on the comparative evaluation.
 


The quantities required to calculate thrust system efficiencies are



power profile, thruster efficiencies, and PMaC unit power dissipations.



The calculated thrust system effiCiencies are listed in Table 32.



Table 32. Thrust System Efficiency



(Time-weighted average over the mission)



Configurations 1A lAX 2A and 2A/I 2B and 2B/I 3A



Efficiency, % 73.0 73.7 67.5 68.1 68.5



Iote Calculations include housekeeping power furnished


to mission module.
 


T5816



C. 	 THRUST SYSTEMi RELIABILITY



Thr6st system reliability calculations-are based on the reliability



model usd'for the selected baseline (Volume II). The notation used



is given below:



e rp reliability of one set of PMaC thrust module


units (i.e., per thruster)



rT.. reliability of one thruster/gimbal = exp (-X T)



where



T = average hours per thruster (from Table 28) 

X= failure rate, in failures per hour 

5 
 
- 6 <A 10-5 
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rM 	 reliability of each thruster/gimbal/PlaC supplies 
string (half-module) = rp • rT 

RErireliability of all thrust modules = F(X, T, rp, N)



where



N E number of 	 thrusters 

Rp reliability of the PMaC units on the interface module



•Rp 	 •R1
R E reliability of the thrust system = RM 

where



R' E reliability of other subsystems (principally


mercury storage and distribution).



=
Note 	 that R' 0.95 will be assumed for all configurations.



Reliability strongly depends on X, T, N, and thruster utilization



(i.e., the number of spares, number required to be operational at the



end of the mission, etc.). T also depends on N, the thruster utilization



plan, the solar array power profile, and the assumed values for thruster



parameters (maximum voltages and currents, etc.). Initial calculations



assumed specific (nonoptimized) thruster profiles and led to the values



of T listed in Table 32. With N and T specified for each configuration,



calculations of reliability thus depend on the value assumed for X and



on the formula for RM (which depends on whether spare thruster/PMaC



units are retained).



Reliability calculations summarized below were performed for the



two estimated extreme limits of X, and for the following three cases



considered for thruster utilization:



* 	 Case 1: All N thrusters considered operational when


calculating T (i.e., no spares), and all N


operational at the end of the mission.



0 Case 2: 	 N-l thrusters considered operational (i.e., one


spare), and N-l operational at the end of the


mission.
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e Case 3: 	 Same as Case 2, except that N-2 thrusters


are operatio6al at 'the end of the mission


(i.e., mission performance degraded but not


catastrophically).



The corresponding eqjuations for RM corresponding to these cases (derived



in Volume II); reveal a strofig dependence on X and also that Case 2 is 
significantly 	 bett~r than Case 1 (especially for low values of X) and



Case 3 is somewhat better than Case 2 with respect to reliability.



Results of an analysis'of Case 1 -forX =.10-6 (considered to be a



- representative value) are presented in Table 30. The formula for RM is



R = rMiN . All entries are identical for the corresponding integrated



and modular configurations, reflecting the earlier assumption that



structural reliability would have a negligible effect. Accordingly, the



columns for configurations 2A and 2A/I and for 2B and 2B/I will be com­


bined in subsequent tables.



Table 33 indicates'that R ranges from 38% for 2A to 53.4% for IAX.



R depends on T, N, and rp. Configuration lAX is best because it has the



highest value 	 for rp and the lowest value for T. Both direct-drive con­


figurationsare-better than any of the other configurations because the



higher rp and 	 the lower T contributions overshadow the effect of larger



N. Configuration 2A is the worst one because of its low rp. For this 

case (X= 10-6) the effect of T is not nearly as pronounced in the 

expression exp (-AT) as it is for the upper limit of X (X = 10- 5) dis­
cussed below. Therefore, the reliability of 3A is greater than that of 

2A or 2B, notwithstanding its larger T. 

Relative reliability, p, is the most useful measure for comparisons



for two reasons. First, it shows the relationships between the estimated



system reliabilities explicitly. Second, it at least partially is



isolated from the effect of assumptions made in estimating the absolute



reliability magnitudes. Variations from assumed values that affect all



configurations proportionally will be reflected in R but not in p. But



those variations that affect some configurations more than others will



affect both R and p. A sensitivity analysis on the effects on R and on



P of varying the assumptions in Table 30 was performed, and the results
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Thrust System Reliability Estimatesa
Table 33. 
 

_________ Configuration ___ 

Factorb 
Reliability 

JA IAX 2A - 2AlI 2B 2B/I 3A 

rp -0.950 0.967 0.930 0.930 0.930 0.930 0.940



T, (103 hr) 11.5 11.5 14.5- 14.5 , 13.0 13.0 15.0



0.9885 0.9885 0.9855 0.9855 0.987 0.987 0.985
rT 
 

0.939 0.956 0.9165 0.9165 0.918 0.918 0.926



N 12 12 10 10 10 10 10



: rN 0 470 0.583 0.418 0.418 0.425 0.425 0.464



Rp 0 967 0.964 0.954 0.954 0.954 0.954 0.967



R 0 432 0.534 0.379 0.379 0,385 0.385 0.426 

Relativea Reliability, 0 0.81 1.00 0.71 0.71 0.72 0.72 0.80 

rM 
 

Assuming = 6 failures/hour and all thrusters-operational 
for the full mlssion with respect to configuration IAX. 

bDefined in the text. 
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10-6 
for several cases are given in Table 34. The first case, X = , is



taken for reference from Table 33. The three other cases shown are



a X = 10- 5; Case 1 of thruster utilization



* X = 10-6; Case 2 of thruster utilization



* X = 10-6; Case 3 of thruster utilization.



Increasing X to its upper limit drastically reduces R for all



configurations. However, p is largely unaffected, except that configura­


tion 3A becomes less attractive. This can be traced to the specific



(nonoptimized)) thruster profile selected for this particular configura­


tion, and basically stems from the fact that the CDVM beam supply is



unregulated. The correspondingly larger thruster power swings (from



minimum to maximum) which would require using more thrusters during the



mission in the selected thrust profile. This is reflected in a larger



T (see Table 31). Because the increase in T is pronounced for larger



value of A, the relative ratings of configurations 2B and 3A appear to



reverse for the particular set of thrust profiles selected.



In Case 2-above (one thruster as a spare), all values of R are



significantly improved. This case was selected for the baseline (see



Volume II). Since the improvement relative to Case 1 is greater for the



less reliable configurations, the spread among them is reduced, but the



relative ordering remains unchanged: again IAX is best and 2A is worst.



The last case in Table 31 indicates the improvement expected over 

the previous case by allowing one less thruster to be operational at the 

end of the mission (with some potential mission degradation). The value 

of X = 10-6 was maintained for direct comparison. Reliability would be 

further improved and the values of p bunched still closer, and the rela­

tive ratings left unchanged. 

The most significant result from the above analysis is the identi­


fication of the relative reliability ratings of the seven configurations,



which can be used in the subsequent overall comparative assessment. The



absolute magnitudes of estimated reliability vary rather widely in



response to changes in X, in thruster profiles, and in the manner of



their utilization. Relative reliability ratings, however, remain - at



least in the examples given - unchanged.
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Table 34. Estimated and Relative Reliability of Alternate Thrust Systems
 


Thruster Number of Thrusters Configurations
Fahrser
Failure



Rate (X), Considered Considered Operational Reliability a


at End of IA lAX 2A and 2A/Ib 2B and 2B/Ib 3Ab
Failures/hr Operational as Spares Mission



10 -6 N 0 N R 0.432 0.534 0.379 0.385 0.426 

p 0.81 1.00 0.71 0.72 0.80 

10-5  N 0 N R 0.125 0.154 0.103 0.119 0.110 

p 0.81 1.00 0.67 0.77 0.71 

R 0.768 0.828 0.724 0.730 0.766 
10,6 N-I 1 N-1 

p 0.93 1.00 0.87 0.88 0.92 

lO6 N-l 1 N-2 R 0.788 0.841 0.752 0.757 0.790 

p 0.94 1.00 0.89 0.90 0.94 

a12 thrusters operational.
 


b thrusters operational.



Cp is normalized to RlAX.



T5916





D. 	 RISK ASSESSMENT
 


The relative risk associated with the seven thrust-system



configurations is an important consideration in selecting a configura­


tion. The study attempted to develop some measures of overall technical



risk for each of the seven designs to furnish an input to NASA LeRC for



the overall assessment of risks at the total spacecraft level. Only



risks associated with the thrust system and with interfaces with the



solar array and with the mission module were considered. The rationale
 


for the final selection made by NASA LeRC is presented in Section 5.D.



The risk factors associated with the solar array (and considered by



NASA LeRC) are also noted.
 


The factors considered in assessing thrust system risks included:



* Novel technology requirements



a Engineering design complexity and difficulty



* 	 Test validation requirements and feasibility



* 	 Operational and design flexibility



* 	 Predictability and resolution of interfaces (including


environmental susceptibility).



Engineering design risks considered here were those relating to factors



other than those pertaining to the nominal reliability estimates. The



purpose of risk assessment was not to determine which configurations are



feasible and which are not, since it can reasonably be expected that



each of the seven designs could be implemented in time for a successful



Halley's comet mission. This confidence stems primarily from four fac­


tors. (discussed inmore detail in Volume II):



* 	 The maturity of electric propulsion technology, which


would be the basis for the ion thruster proposed for


this application.



* 	 Analyses and tests conducted during this study that


demonstrated that the extended performance required


of the 30-cm thruster can be achieved.
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o 	 The extensive background in power processing technology

that is directly applicable to the conventional beam


and discharge supplies. Also, the results of breadboard
 

tests of the CDVI (performed during this study) were


promising, thus increasing our confidence in the voltage


mulltiplier PMaC concept.



* 	 Current (1977) technology for electronics and system


design is adequate, and no new components are required.


Hence, what was assessed was the degree of risk, not


overall feasibility.



1. 	 Technology



Comparing the seven thrust system concepts purely on a technological



basis - basic physics and new technology requirements - indicates that


the only significant difference among them arises from the requirement



for high-voltage switching gear for the direct-drive PMaC concepts.



High-voltage solar array design and panel switching is a relatively new



concept for space application, one not yet tested in a space env.iron­


ment. The risk it presents is significantly higher than for the other
 


design concepts. And the direct-drive discharge concept obviously pre­


sents an even greater risk than use of only the direct drive beam supply.



The components of novel technology in high-voltage array design and



switching are also reflected in the associated relative risks in the



areas of design implementation, test validation, interfaces, and



environmental susceptibility (discussed later).



Another area of technology risk is the requirement for a high­


voltage propellant isolator. This risk is included here rather than in



the engineering risk category because the design required is so novel.



Intensive effort during this study (see Volume IV)is believed to have



resulted in an isolator design approach that could be implemented within



the necessary time frame. However, that design must be evaluated further



before its performance can be confined. This risk does not affect the



selection from among the seven candidate thrust system configurations



because all seven require this 'newcomponent.



No novel technology requirements exist in any other area of thrust


system design. In particular, 1977 technology is deemed adequate for all



electronic designs, and no novel electronic components are necessary.
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2..- Engineering and Design



The seven configurations differ significantly with respect to



engineering design of the thrusters and P7iaC subsystems. These differ­


ences are reflected in'the risks assignable to design implementation.



Structural and thermal design aspects, although differing somewhat among



the seven configurations 'interms of relative design complexity, are not



considered to present any significant technical risks. Accordingly,



structural and thermal design differences will not be considered further
 


in this subsection, but will be adcounted for inthe overall comparative



assessment inSection 5.4:



The engineering/design areas that present some risk, and for'which



a difference arises among the various thrust systems, are:



* Thruster design scalability to required power levels



* PaC design maturity



* Thruster/PlaC interactions.



The differences inthruster and PMaC design complexity and inthruster



life requirements among the configurations has already been accounted



for inthe relative reliability estimates. The above engineering risk



categoSe address other design factors. Fault protection isnot



included inthe above listing because it is equally present and equally



resolvable inall four PMaC concepts.


All configurations require extended performance operation from the



thruster. One concernis the risk associated with scaling thruster per­


formance to higher voltage and power operation. Greater energy dumped



into the accelerator grids during arcing and the increased stress placed



on insulators by higher voltage may increase the failure rate. This



concern exists even though the (previously noted) experimental work



conducted has given us confidence that higher power/voltage operation



isfeasible. The differences among the various design concepts stem



from the differences inthruster voltage, current, and power level and



operatiggtime (on a performance basis) required over the mission. The



actual dif.ferenees suggest a significant advantage for the conventional
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PIaC 	 concentrator array configurations (2B or 2B/I) and a significant


disadvantage for the direct drive configurations (IAand IAX).



Comparing the P'1aC electronic designs on the basis of desion


maturity clearly places the CDVII approach in the highest risk category.


The CDVrI concept is a novel, unproven design in an initial stage of



development, which has yet to be scaled to the required power level 
 or


to 	 be tested with thrusters. Furthermore, no life testing of CDV'I cir­

cuits has been conducted.



Because the CDVI electronics has only begun to be developed, it had



to 	 be assessed as a high-risk technology, even though no real problem


areas have been identified as yet. On the other hand, there are funda­


mental, relatively well-defined,technology risks associated with the



high-voltage switchgear of the direct-drive approach and the high.parts


count (low reliability) of the conventional PMaC electronics. ­

Thruster-P:laC interactions at high power levels pose additional


problems to be solved that differ somewhat for the four PvIaC design



concepts. These problems fall in three general categories:



* 	 The identification of potential EII sources and effects,


and provision of corrective design measures.



* 	 The definition of and recovery from thruster malfunction.



• 	 The implementation of maximum power tracking for multiple


I thruster operations.



Potential EHh sources and effects and the measures available for


reducing or eliminating these effects are discussed inVolume II for the


conventional PIIaC design. ElI problems are generally equally applicable


to 	 the CDVI design. The basic mechanisms are associated with the high


noise currents caused by thruster high-power operation and by thruster



arcing. Detrimental effects on sensitive circuits in the thrust system


and in the mission module could result from conducted interference and



from 	 radiated emissions. The most serious interference mechanism


(conducted and radiated) is associated with the P!IaC harness. Localized


<shielding, and filters in the conventional and CDV power supplies can


significantly alleviate the potential problems. The inability to predict
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current paths and the nature of detrimental effects on circuit performance



must, however, place the technology for solution of this problem in a
 


potentially high-risk category because the questions raisedcan only be



resolved by extensive tests at the subsystem and system levels.



The causes, effects, and remedial measures against EIII are sig­


nificantly different for the direct-drive concepts. Although the radi­


ated emissions generated by the thrusters are similar for all concepts,



the nature of noise current sources and current paths, and the measures



for noise suppression and filtering, are inherently different,for the



direct-drive concepts. Without a beam power supply to act as a buffer,



only a limited amount of filtering can be reasonably incorporated between



the thrusters and the solar panels. _The conducted and radiated current



paths,and effects~are even less predictable than for conventional P IaC
 


electronics. Inaddition, direct-drive concepts pose potentially an



even.more serious problem resulting from thepresence of higher voltage.



High-level transients may occur as a result of thruster arcing. Solar



panel voltage potential may change drastically during thruster malfunc­


tions. Unpredictable plasma interactions may occur. But it is not easy



to shield, isolate, or reroute (between the thrusters and the solar panel)



the high-voltage wiring harness to prevent or reduce Ell effects. There­


fore, potential EI1l problems appear to be more severe for the direct­


drive concepts (especially.for concept IAX). The testing required
 


to resolve them is both more comprehensive and more difficult, and the



remedial measures will be less predictable.



All thrust system designs must provide for recovery from thruster
 


malfunctions. Possible malfunction modes and controller design con­


cepts for automatic recovery on board the spacecraft from some of these



malfunctions are discussed in Volume II for the conventional PMaC design.



Defining the thruster malfunction modes for which automatic recovery
 


provisions can be incorporated and mechanizing these provisions will vary



among the different PMaC concepts. This difference stems from the degree



to which each design allows for sensing, adjusting, and controlling



thruster operational parameters. Conventional and CDV[I designs inherently



possess this capability because the beam and discharge supplies provide
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for P~aC-thruster closed loop control: thruster operational parameters



can be measured and adjusted by corresponding measurements and adjust­


ments in the beam and discharge supplies.



Providing for ident-ification of-and automatic recovery from thruster



malfunctions will be less certain and more difficult for the direct drive



and for the direct-drive discharge concepts 1A and lAX. A controllable



discharge supply is available for concept 1A, but neither beam nor dis­


charge supplies are available for concept lAX. The risk of adequately



providing for thruster malfunction recovery is therefore greater for



concept lAX.



Each thrust system concept, to operate efficiently, must have auto­


matic maximum power tracking. Implementing this requirement in the



controller for multiple thruster operation involves a greater risk for



the direct drive concepts than for the conventional and CDM designs for



reasons similar to those given above for thruster malfunction recovery.



The risks are especially significant for direct-drive discharge concept



lAX. For this concept, direct coupling to the high-voltage solar panel



is required for sensing and adjustment, and the resulting impact on



thruster operations is less predictable than it is for the other



configurations.



3. Test Validation



All PHaC concepts require extensive tests at both the subsystem



and system levels to validate thruster PMaC interactions and operational



performance. It is difficult to assure in advance that all potential



problems, especially the ElI effects, can be resolved. The fact that the



CDV;U design has not been previously tested with an operating thruster



is a source of some risk relative to the conventional design. The risk



assignable to testing the validity of the direct drive concepts is sub­

stantially higher because simulation, identification, and validation of



corrective measures for potential EFI effects is extremely difficult, if



not impossible, on a full-scale basis.
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4. Flexibility



The operational flexibility available is an important measure of



the relative performance of the various designs. Flexibility is needed



inadjusting the performance parameters of the multiple operational



thrusters to ensure the success of the mission. Efficient performance



must be maintained as the solar array power level changes, as the number



of operating thrusters is altered, as the thruster performance varies



(e.g:, as a function of wear-out), and during the recovery from mal­


.functions. This flexibility, although related to provision for malfunc­


tion recovery, is a broader design requirement. Real-time closed-loop



control is required for adjusting operating parameters, and would be



provided-by using a discrete set of control algorithms incorporated in



the controller design. The problem is compounded by the fact that the



flexibility-requirements are largely unpredictable until late in the



development program or until after the mission begins. The PMaC subsystem



design must therefore incorporate flexibility in terms of control loops



and operating points, with simple provisions for real-time changes.



The task of providing operational flexibility is not equally



tractable for each of the four PMaC concepts. The conventional approach



(concept 2) offers the greatest flexibility because of the adjustments



available for controlling and modifying the set points in the beam and



discharge supplies. The CDV approach (concept 3) also offers good
 


flexibility, although regulation (not included in the design evaluated



,under this study) would be.required. The CDWI design used for this study
 


could be readily modified (with some performance degradation) to include



regulation. The direct drive concept poses a much greater risk with



respect to flexibility. The thruster beam supply is directly tied to



the solar array via the reconfiguration unit, and a change in operational



parameters would require special provisions in the design of the solar



array reconfiguration unit. The performance and the associated risks



are still greater for the direct-drive discharge concept, since both



the beam power and the discharge power depend directly on the character­


istics of the solar array design and of the associated reconfiguration
 


units.
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5. 	 Interfaces



Defining the interfaces between the thrust system and the other



major vehicle components (the mission module, and solar array) and



complying with the resu-l-ting interface specifications pose a difficult,



if not the most difficult, problem in the thrust system design. There



are likely to be problems concerning the responsibility for and the



ability to predict specifications for certain interfaces. These prob­


lems stem from the possibility of interactions caused by the electro­


magnetic environment; the risk differs among the various thrust system



design concepts. These risks involve a broad, system-level class of ElI



effects. One potential problem is the impact on mission module com­


munication and computer functions of high-noise thruster operations



(especially during malfunction or recovery). As another example, solar



array arcing within the direct-drive configurations may s'ignificantly



affect the mission module and the thrust system. These effects are a



concern because many of the potential interactions can only be



guessed at, but not definitely pinpointed, a priori. Again, the direct­


drive concepts present greater risks.



E. 	 COMPARATIVE EVALUATION



A summary comparison of the seven thrust system configurations is



presented in Table 35. The major categories listed are those considered



to furnish the principal criteria for the comparative assessment. In



each category, the factors that distinguish among the seven configura­


tions are presented. Modularity is included because it is important to



the final selection. Thrust system length, although it varies sig­


nificantly by configuration, is included for reference only since each



configuration would fit easily in the shuttle bay (assuming the speci­


fied 2.5-m-long envelope for the mission module and a maximum IUS length



of 8.4 m).



Mlass data is included for the total spacecraft. Mass data is given



for the significant trajectory times:



* 	 On orbit at rendezvous (after the expenditure of


mercury propellant)
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____ 

Table 35. Summary of Principal Features: and Characteristics.


of the Candidate Thrust System Configurations
 


Configuration 
Parameters/Characterist cs 
 1A 

odul arn ty Yes 
Length, m 2.9 
Spacecraft, kg



On orbit, at rendezvous 
 1800 
 

On orbit, at IUS deployment 
 3930 
 

On IUS, at shuttle deployment 
 3980 
 

Efficiency, % 
 73 0 
 

Reliabiltya



Estimated, % 
 77 
 

Relative, normalized with respect to IAX 
 0 93 
 

Technology risk 
 High 
 

Engineering/design risk 

Thruster operating parameters level (scalability) High 
 

PMaC electronics design maturity Medium 
 

Thruster-P~laC interactions (E'lI, High 
malfunction 
 
recovery, Pmax trackinq)



Other riskb 
 high 
 

Structural design and interfaces complexity of 
 
Design complexity 
 Medium 
 

Accessibility 
 Medium 
 

Solar array interface 
 Medium 
 

IUS interface 
 Medium 
 

aEstimated upper limit with no mission degradation



bTest, operations, interfaces



lAX 

Yes 
2.9 

1760 
 

3890 
 

3940 
 

73 7 
 

83 
 

1 0 
 

High 
 

High 
 

Medium 
 

Hih 
 

High 
 

Medium 
 

Medium 
 

Medium 
 

2A 

Yes 
4.4 

2150 
 

4390 
 

4500 
 

67.5 
 

72 5 
 

0.87 
 

Low 
 

Medium 
Low 
 

Low 
 

Low 
 

lio0h 
 

Poor 
 

Good 
 

Medium Medium 
 

2A/I 

No 

A 6 

2210 
 

4450 
 

4470 
 

67.5 
 

72 5 
 

0 87 
 

Low 
 

Medium 
Low 

Low 
 

Low 
 

Low 
 

rood 
 

Good 
 

Good 
 

2B 
 

Yes 

A 9 

2200 
 

4150 
 

4370 
 

68.1 
 

73 
 

0 88 
 

Low 
 

Low 
 

Low 
 

Low 
 

Low 
 

lhgh 

Poor 
 

Poor 
 

Poor 
 

2B/I 

No 
 

4.6 
 

2170 
 

4120 
 

4270 
 

68.1 
 

73 
 

0 88 
 

Low 
 

Low 
 

Low 
 

Low 
 

Low 
 

Low 
 

Good 
 

Poor 
 

Good 
 

3A 

Yes



3 7
 


1990



42&0



4350



60.5



76 5



0 92



Low



Medium 
High , 

Low



Medium



C.


High t4 

Poor



Good



Medium
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* 	 On orbit at the start of thrust phase (after deployment



from the IUS)



o 	 On the IUS (after deployment from the shuttle).



This 	 data reflects the relative mass-contributions of the various thrust



system designs. However, the comparison is somewhat artificial and



inconclusive. A true comparative assessment would be based on a full



mission trajectory analysis at the spacecraft level, an analysis that



considers the relative thrust system masses as inputs and that derives



the relative available mission module payload masses using the actual



IUS capabilities for each trajectory and the updated mercury propellant



requirements resulting from mission profile optimization. Nevertheless,



the data in Table 35 is judged to be adequate for a relative assessment



of the configurations in terms of their masses.



The comparison of relative thrust system reliabilities takes into



account the reliability and wear-out of the thrusters (i.e., in terms of



the relative thruster operating time required) for the reliability and



complexity of the PriaC electronics, and for redundancy provisions.



These relative values therefore also implicitly account for differences



in potential single point failures. Structural reliability contributions,



which are relatively insignificant and essentially the same for all con­


figurations, are, in effect, also included. The values presented in



Table 35 correspond to the third case in Table 34 (i.e., one spare



thruster, all other thrusters operational for the full mission duration,


=
and thruster failure rate taken at the lower limit of X 10-6 failures



per hour). This yields upper limits for reliability estimates with no



mission degradation. This case is considered as the most representative
 


since it corresponds to the case selected (one spare half-module) for



the baseline. The rankings of the configurations are not significantly



different for the other reliability estimates. Both the estimated



reliability values and the relative reliabilities with respect to con­


figuration IAX are listed.
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Resultsof the risk assessmeht are summarized in three separate



categories; these reflect the ielative importance of the factors in the



overall assessment. Risks related to high-voltage technology are high­


lighted for the direct-drive configurations. Engineering and design



risks are broken down into the three areas previously considered. The



scalability of thruster parameters is of most concern with the direct­


drive configurations, since, these require the highest variations in the



parameters, and of least concern with the configurations using conven­


tional PMaC systems and a solar concentrator array. From a design



maturity standpoint, the configuration using the CDV PMaC subsystem is



rated as most risky because the COVri beam supply has not yet been



designed for the required power levels, and has not yet been operated



with thrusters. Interactions between the thruster and the P1laC unit are



the least understood and their effects are of the greatest potential con­


cern for the direct-drive configurations.



The other potential risks (adequate test validation, provision of



required operational flexibility, and interactions between the solar



array and the mission module) are grouped together. The highest risk is



again assigned to the direct-drive configurations because with them i~t



is the most difficult to incorporate the design measures required for



operational flexibility. Because full-scale testing would probably not



be possible, a flight test would probably be necessary for validating



system integration procedures for a direct-drive spacecraft configuration.



Of the other configurations, the CDVW configuration is considered some­


what more risky in this respect because test data is lacking.



The last entry in Table 35 relates to all the other design and



interface factors that distinguish among the seven configurations and



that are considered of significance. These factors all reflect a rela­


tive degree of complexity, although none of them presents any serious



concern regarding design implementation.



The integrated configurations are preferred.from a structural



design complexity standpoint. Of the modular designs, the short direct­


drive configurations are. structurally the simplest and have the best



accessibility for assembly and testing.



143





Comparing the configurations,with respect,to the adequacy and



complexity of the interfaces leads to some changes in the above rankings.


The superiority of the integrated configurations still emerges essentially



unchanged, but the ranking of the concentrator-array coff1uration (2B)



is significantly reduced with respect to all the others. This is because



of the potential interface problems with the solar array and with the



IUS, caused by the large volume that was specified for the stowed array.



Changing the stowed array packaging significantly improved the structure



of this configuration and contributed to its selection as the baseline



concept.



The interface between the thrust system and the solar array was



considered with respect to the difficulty of array,stowage and deploy­


ment and the requirements for preventing mercury ion contamination (i.e.,



the length the deployment arm must :be to provide adequate separation).



The two concentrator array configurations receive the lowest ratings.



The rating of a configurations structural interface between the thrust



system and the IUS was made with regard to required IUS attachment,



modifications (e.g., extension beams), the design of the adapter and of



the separation system. Again, the integrated configurations are rated



highest and the concentrator array configuration of the modular was



rated lowest. Rating of a configuration's interface-with the missing



module was made in terms of structural adequacy; all configurations are



basically satisfactory, but the integrated, flat array configuration



(2A/I) appears to be distinctly superior.



F. BASELINE SELECTION



The comparative analysis of the seven configurations (summarized



inTable 35) was used as the basis for selecting the baseline thrust



system. The conventional PIlaCapproach, and a concentrator-solar



array configuration (2B) was selected. The selection process consisted



of three steps. The first step, carried out as part of this study, was



to recommend the thrust system. The second step, which was carried out



by NASA LeRC, considered (inaddition to the thrust system) the risks



associated with the solar array configurations and the net mass available
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for the science payload (by considering thaniission trajectory profile).


The result was a tentative preference for configuration 2B. The third



step was the introduction of a design modification for the concentrator



solar array. The improvement from the modification was significant and



led to the selection of configuration 2B as the baseline.



This section primarily addresses-our analysis of the thrust s~stem



(step 1 above). The data in Table 35 was translated into a comparative



assessment matrix, given in Table 36. Disregarding length differences,



rankings were assigned for each of the parameters and characteristics



by assessing the corresponding entries inTable 35, with an A repre­


senting the most desirable confiburation, a B representing the next



desirable, and a C representinq the least desirable. This was admittedly



a rather arbitrary and subjective method for comparing configurations;



however, it serves to point out the fact that none of the configurations



can be considered an obvious best choice. Our recommendations were



therefore based on the arguments that follow.



Of the assessment criteria shown inTable 36, the risk assessments



are probably the least likely to be influenced by refinements in design



and could be changed only by intensive development. The Halley's comet



rendezvous mission is constrained to an exact time frame and it is
 


unlikely that sufficient activity could be supported (within a reason­


able budget) to alleviate the risks within the time frame required.



The direct-drive configurations (1A and IAX) were therefore eliminated



on the basis of risk. Thrust system mass, efficiency, and reliability



were used to differentiate among the remaining configurations. The


configurations employing the flat solar array and a conventional P!AaC



subsystem were judged least desirable and were eliminated on that basis.



Ranking the three remaining system configurations is most subjective



and requires further consideration of the weighting of the assessment



criteria.



As in the initial comparison, risk was-weighted most heavily with



reliability next in order of importance. This weighting allowed



selecting the conventional-PIlaC subsystem configurations (2B and 2B/I)



over the CDVM configuration (3A). This is not a clear-cut choice



145





Table 36. Assessment of Thrust System Configurations 

Assessment Criteria Configuration 

1A lAX 2A 2A/I 2B 2B/I 3A 

Technology risk Ca C A A A A A 

Engineering risk C C A A A A B 

Other risk C C A A A' A B 

Reliability B A C C C C B 

Mass A A C C B B B 

Efficiency A A C C B B B 

Structure and interface complexity B B B A C A B 

Modularity A A A C A C A 

aA Best 

B Medium 

C 2 Worst 



because,-byassuming some additional engineering and integration risk, it



might be possible to obtain a thrust system with higher reliability



(lower parts count and complexity). In comparing the remaining two con­


figurations, 2B and 2B/I, the desirability of modular construction



overshadows the interface criteria and resulted in the recommendation of



the modular configuration 2B as the baseline concept for further design



and evaluation. Our recommendation is made with the reservation that



the mass, efficiency, and reliability of configuration 2B might not be



adequate to satisfy the mission requirements without significant design



modifications (notably to the stowed array). We also observe that a



configuration using a concentrator solar array with a CDVM PMaC subsys­


tem would make a good alternate if some additional risk could be



tolerated.



-Results-of steps 2 and 3 (carried out by NASA LeRC) strengthened



this selection. During step 2 process, two basic factors were considered:



The acceptability of the mass of configuration 2B (with respect to avail­


able payload mass) was confirmed by a system-level analysis (which also



confirmed the relative mass ratings of the other configurations). Also,



the relative risk disadvantages of the other configurations (especially



direct drive) were significantly increased by the analysis of the rela­


tive risks of the solar arrays. Table 37 summarizes NASA LeRC's ratings



of the risk factors for the various solar array configurations. Step 2



further confirmed our selection and pointed out the need to simplify the



concentrator solar array design in a way that would improve performance



and strengthen the validity of this selection. Subsequent investigation



initiated by NASA LeRC did lead to the identification of several, alternate



concentrator array designs that would meet those goals. As reported,



the final recommended concentrator array design exhibited significant



performance and structural design improvements for this application



relative to the concentrator design considered during this task. This



significantly reduced some of the concerns reflected in Table 35. In



particular, the mass of the thrust system was reduced and the structure



was simplified, thereby effectively removing the C rating in Table 36.


As modified, configuration 2B therefore emerged as the clear choice and



was used for defining the selected baseline (presented in Volume II).
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Table 37. Comparison of Solar Array Configurations


(From a NASA LeRC Initiated Study)



Comparison Category 	 Parameter or Comment



Solar array configuration Flat Flat 	 Flat 
 

Thrust system configuration



Designation lA and lAX 2A 	 3A 
 

Type of PMaC system Direct drive Conventional 	 Voltage 
 

multiplier



High-voltage Thin cells Thin cells


effects
Technology risk(s) 
 

Thin cells


0o



High voltage Manufacturing Manufacturing 
 
design and blanket and blanket 
 

Engineering risk(s) handling handling

EngineringManufacturing



and blanket 
 
handling



Test validation risk 	 High voltage 
 

Operational flexibility 	 Low



Degradation Thin cell Thin cell


Environmental susceptibility 	 of the thin degradation degradation



cell



Concentrator



2B



Conventional



Mechanical integrity


in space (alignment/


pointing)



Deployment



Deployment 
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In summary, the final selection of configuration 2B may be stated



evolved from the following sequence:



* 	 Direct-drive configurations were rejected because of high


risk.



a 	 Flat solar array configurations were rejected because


of their high mass and because of risks associated


with the thin cells.



0 	 Integrated configurations were rejected because their


relatively small potential mass savings, their


efficiency and reliability benefits, and their relative


structural and interface simplicity did not warrant


abandoning the benefits of modularity. (Modularity


is desired because itwould permit the thrust system


components to be adapted for other missions at a much


lower cost than for adapting an integrated configuration.)



* 	 The concentrator array was considered superior,


particularly given the modified design that was expected


to lower total system mass and to make packaging more


manageable.



* 	 The conventional PMaC approach was adopted because of its


relatively low risk and acceptable system mass, relia­

bility, and efficiency.



* 	 The concentrator array with the CDVM PMaC subsystem


(not explicitly studied) was considered as a potential


alternative to the baseline, pending progress in CDVM


development.
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