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SUMMARY

superconducting tape conductor fabricated by chemical

vapor deposition (CVD) can make it possible to construct very high-field

superconducting magnets capable of attaining 20 to 25 tesla at 4.2 Kelvin.

The objective of this NASA program was to investigate and optimize the

high-field properties of NbsGe tape samples in view of their future ap-

plication in scientific laboratory magnets and nuclear fusion magnets.

A process of fabricating superconducting NbsGe tapes by CVD has

been developed and tapes up to 10 meters long fabricated. The typical

properties achieved were: critical temperature T = 20 K, upper critical

field Hc2 = 29 tesla at 4.2 K and J = 3 to 4 x 108 A m"2 at 4.2 K,

18 tesla. The best J achieved in these conditions was ̂  109 A m~2. The

relative depression of T and HC2 compared with the best thin film sam-

ples sputtered on sapphire (T = 22 to 23 K, Hc2 = 36 to 38 tesla at

4.2 K) was due to the presence of NbsGe3 second-phase particles used as

flux pinning centers and to strains induced by thermal mismatch with

Hastelloy B tape substrates. A peculiar field dependence of flux pinning

force that was observed in both CVD and sputtered NbsGe indicates a pre-

mature pin-breaking mechanism or a phase inhomogeneity. Further optimiza-

tion work should concentrate on elucidating the problem of premature pin

breaking vs phase inhomogeneity, preparing multilayerd single-phase

films, testing of mechanical properties of NbaGe and developing long,

composite Nb3Ge conductors. Eventually, test solenoids and prototype

magnets should be constructed.
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FOR HIGH-FIELD MAGNET APPLICATIONS
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and J. A. Woollam

NASA-Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A process of fabricating superconducting NbsGe tapes by chemi-

cal vapor deposition (CVD) has been developed and tapes up to 10 meters

long fabricated. The'typical properties achieved were: critical tem-

perature T = 20 K, upper critical field HC2 = 29 tesla at 4.2 K and

J = 3 to 4 x 108 A nT2 at 4,2 K, 18 tesla. The best J achieved in these
tZ C-

conditions was ̂  109 A m~2. The relative depression of T and HC2 com-

pared with the best thin film samples sputtered on sapphire was due to

the presence of NbsGes second-phase particles used as flux pinning cen-

ters and to strains induced by thermal mismatch with Hastelloy B tape

substrates. A peculiar field dependence of flux pinning force that was

observed in both CVD and sputtered NbsGe indicated a premature pin-

breaking mechanism or a phase inhomogeneity. Directions of further opti-

mization work were defined.

XI



1 . INTRODUCTION

The overall objective of this program was to develop and char-
*

acterize Nb3Ge superconducting tape for application in superconducting

magnets capable of generating very high fields, up to 20 tesla or even

above .

Gavaler discovered in 1973 that Nb $Ge can have a high critical

temperature, T , in excess of 22 K when prepared by low energy dc sput-
m

tering technique. In 1974 T onsets of 23 K were reached and it was

also found that the material has a very high upper critical field, Hc2 =

36 to 38 tesla at 4.2 K. ?J For a thin sputtered sample of Nb3Ge thef *\\
critical current density was J - 1 x 109 A nf2 at 21 tesla, 4.2 K.

Hence, it became clear that the material will be useful for very high

field applications provided that a practical conductor could be formed in

a viable large-scale process. Indeed, it was shown in 1974 to 1975 that

Nb3Ge can be grown by chemical vapor deposition (CVD) , which lends itself
(3 41readily to the manufacture of lengths of conductor in tape form. '

The Westinghouse study of CVD NbsGe was at that stage supported in part

by the Air Force Office of Scientific Research.

The development of Nb3Ge tape conductor at Westinghouse was

initially (1975 to 1976) sponsored by the U. S. Energy Research and

Development Administration with the aim to evaluate a possible low- field

application in. superconducting transmission lines [Contract No. E(ll-l)-

2522]. That program was substantial in size and laid solid ground for

the preparation of NbsGe by CVD. Its end results are reported in refer-

ences 5 to 7. In 1976 the present program was instituted to optimize the

*
The formula NbsGe is used as a generic term for the high-critical tempera-
ture, superconducting A15 phase. Its actual composition may deviate from
ideal



tapes for high-field magnet application by building upon the re-

sults obtained in the above ERDA program. The original goals and tasks

of the present program are given in the Statement of Work (Appendix I).

Subsequently, due to progress in the ERDA study, the scope of this work

was extended to include the effect of dopants upon the high-field proper-

ties of NbsGe. It was also agreed between the NASA Project Manager and

Westinghouse that the quoted above properties of thin sputtered films

will serve as a target for the study, and that tapes longer than the ori-

ginally planned 0.3 meter will be fabricated.

In the course of this work established were the effects of depo-

sition temperature upon HC2 and the high-fieId J (up to 17.5 T, 4.2 K)

as well as the effects of several dopants: NbsGea, NbN and NbC. Lengths

of tapes up to 10 meters have been fabricated and evaluated. Tape speci-

mens were delivered to NASA. The target properties of NbsGe were ap-

proached although not attained in full. Directions for further work

aimed at attaining and exceeding the target properties were formulated.

In conclusion, this program has demonstrated long Mb366 tape

conductors capable of performing adequately up to 18 tesla at 4.2 K. The

program has also identified problems to be solved for a further high-

field performance improvement.



2. THE CVD PROCESS AND REACTOR SYSTEM

2.1 Background

The chemical vapor deposition of Nb-Ge layers occurs at ele-

vated temperatures by hydrogen reduction of a niobium and germanium

chloride vapor mixture. General information about the Westinghouse pro-

cess development is available in the literature so that there is no

need to reproduce it here. However, for the convenience of the reader,

Appendix II contains a revised excerpt from Reference 5 describing the

process and the moving tape CVD reactor which evolved from the ERDA's

program. Appendix II describes the status at the end of that program

(June 1976) and also gives the definition of process parameters used in

the present report.

After June 1976 further changes and improvements in CVD of

NbsGe resulted from the work done under this program. Changed or modi-

fied were:

1. chloride vapor species.

2. the CVD reactor

3. some process parameters.

Below is given a brief description of major modifications.

2.2 Chlorides

In the moving tape CVD reactor the deposition zone must be short

to preserve uniformity of the deposit in spite of the existence of a com-

position profile such as that discussed in Appendix II. However, shorter

zone results in a reduced growth rate at any tape speed. As discussed in

Section 2.4 the zone length was set at 10 cm only. Accordingly, main-

taining a realistic growth rate became critical and material losses in



the mixer zone had to be eliminated. Hence, NbCl5 and GeClit were intro-

duced. These chlorides are stable at relatively low mixing temperatures

and have higher vapor pressure than NbCl^ and GeCl2.

Chlorination of the Mb bed to form NbCls has been performed at

250 to 280°C by injecting a mixture of 10 vol. % C12 (UHP grade, Matheson

Company) and Ar (99.985%, Burdox). It was shown by Newkirk at Los Alamos

Scientific Laboratory (LASL) that at relatively low temperatures NbCls is

produced as the only species if maintained at a low partial pressure. In

the present case it was verified by collecting the vapor condensate that

the reaction indeed produced NbCls- The quantitative character of the

reaction (i.e., that it goes to completion) was verified by determining

the Nb weight loss resulting from chlorination. Table 1 shows that for

10 cases out of 12 Nb consumption was within 2% of theoretical when

chlorinating at a standard C12 flow rate of 100 cm
3/min with manual flow

control. Good reproducibility was achieved as long as the Nb bed tem-

perature was maintained in the above-given temperature range. Since in

the reactor system the hydrogen was preheated by flowing around the Nb

and Ge beds, a 30 min. equilibrium time was needed after introducing the

hydrogen. Temperature changes caused by the heat of the chlorination re-

action were within acceptable limits.

At a double chlorination rate in runs 432 and 444 the Nb con-

sumption was 96 and 95% respectively which was s^ill acceptable. No sig-

nificant effect of the bed depletion was observed after the. 345 min. long

run 444 (in that run an ̂  10m long tape was deposited with 3 to 5 vim of

Nb-Ge on each side of the substrate).

Chlorination of the Ge bed to form GeCl^ was performed between

210 and 3109C with no strong dependence upon the temperature as shown in

Table 1. Satisfactory control of the reaction rate was achieved after

substituting for C12 a 10% Cl2-Ar mixture to improve the gas flow control.

Chlorine flow rates in the typical range of 20 to 25 cm3/min could not be
*

controlled reliably without electronic mass flow controllers. However,

*
After three years of use the mass flow meters used for electronic con-
trol deteriorated and were disconnected during the program.
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the manual flow rate control in the range of 200 to 250 cm3/min typical

for the 10% mixture was found adequate as illustrated by Table 1.

After introducing the above modifications the loss of material

in the mixer zone that was kept at 380 to 400°C was.practically eli-

minated: the mixer weight increase was of the order of 1 gram or less in

a typical run lasting several hours. Prior pick-up rate (Appendix II)

was 7 to 8 grams per hour.

As a result of the change described above the deposition condi-

tions were somewhat altered. At the deposition temperatures NbClii and

GeCl2 are the stable species. When introducing NbCls and GeCl^ the

excess chlorine dissociates and is present in the reaction atmosphere in

addition to the other vapor components. This could have reduced the pro-

cess efficiency but did not significantly affect the growth rate.

2.3 CVD Reactor

The following major modifications of the reactor described in

Appendix II were introduced:

1. The gas flow path between the mixer and the deposi-

tion zone was shortened from ^ 40 cm to ̂  5 cm as

shown in Figure 1. This cut down the material

losses along that path very significantly and in-

creased the growth rate by ̂  50%. The position of

the masking track MT1 (Figure 1) was chosen based

on the X-ray analysis of the deposit profile.

2. The use of.a short deposition zone (between MT1 and

and MT2, Figure 1) permitted the elimination of the

long Marshall furnace seen in Figure 8, Appendix II.

The deposition now occurred in the cross furnace

previously used for gas preheating only. The cross

furnace was on both ends buffered by 10 cm long end

furnaces. The modified reactor is shown in

Figure 2. To improve the temperature uniformity
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Figure 6 —The CVD reactor for continuous tape and wire/fiber
coating with Nb3Ge.
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along the cross furnace a 1015 steel liner was im-

plemented. The liner was 40 cm long. Its wall

thickness was 0.16 cm. Cross furnace heaters were

modified to obtain a steep temperature ramp between

the mixer and the tape track MT1 and to minimize

the temperature dip along the tape unavoidably re-

sulting from the injection of Ar + H2 + chloride

vapor mixture having a temperature of ̂  400°C. The

final temperature profile along the major axis of

the ractors is shown in Figure 3 for the typical

deposition temperature, T, = 850°C. The tempera-

ture increment along the 10 cm deposition zone was

an acceptable +10°C.

3. The fused-silica masking tracks having a circular

section ^ 1 cm in diameter (MT in Figure 1) were

eventually replaced with flattened 1015 steel

tracks 9 mm wide, with 0.25 mm wall thickness and

0.25 to 0.50 mm clearance. The circular profile

of silica tracks, particularly MT1, produced a

"shadow" in the deposition zone resulting in a very

nonuniform distribution of deposit on the tape.

The 1015 steel tracks were geometrically similar to

the original stainless steel masking tracks eli-

minated because of the deposit contamination

(Appendix II). The use of soft steel such as 1015

minimized the contamination problem (this observa-

tion was originally made by Newkirk at LASL).

Auger and secondary ion mass spectroscopy (SIMS)

analyses indicated no presence of iron in the bulk

of the deposit. The SIMS sensitivity limit in this

case was better than 10 ppm. However, due to the

tape contact with the mask at high temperature an

iron-containing diffusion layer formed near the
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tape surface. The thickness of this layer was of

the order of 1000 A.

The substrate ohmic heating by electric current

(Appendix II) was extensively tested and eventually

abandoned. There were two main reasons for this

decision:

(a) Although the external resistive furnace was

kept at a low temperature of 500 to 600°C,

deposition on tube walls occurred due to ra-

diation heating by the tape substrate.

Lower external furnace temperatures were not

practical because of excessive power density

in the tape resulting in local overheating

and "hot spot" formation. With the furnace

kept at ̂  500°C the gas phase depletion

along the deposition zone has not been re-

duced significantly, and the rate of Nb-Ge

deposition on the tape was not increased

markedly over what was typical for the stan-

dard resistive furnace heating. A different

reactor design eliminating the thermally in-

sulating furnaces around the tube and using

radiation reflective tube walls would have

been necessary to benefit from the direct

substrate heating. Such drastic change was

beyond the scope of this program.

(b) The Hastelloy B substrate tape, 25 ym thick,

has experienced significant plastic flow

under tension when heated by current. Con-

stant tension must be applied to the tape

for proper positioning along the major axis

of the deposition tube. A calibrated, ad-

justable spring system has been used to

11



apply the tension. In the absence of elec-

tric current forces up to 1000 grams did not

produce significant tape deformation. For

example, at 850°C application of 1000 grams

for 15 minutes produced a plastic deforma-

tion (elongation) of <_ 0.2% over a 0.5 meter

long hot zone. Breakage occurred, however,

when heating the tape with current (^ 10A dc

or ac rms) to reach the same tape tempera-

ture with a 500°C background furnace tem-

perature. Even at much lower tension forces

the plastic flow was prohibitive: 2 to 3%

after 15 mins. under a load of 150 grams, a

necessary minimum. for proper tape position-

ing. Predictably, the use of twice as thick

tape (50 ym) has reduced the plastic defor-

mation only by a factor of 2 to 3.

The flow effect was tentatively explained by nonuniform ohmic

heating on Hastelloy grain boundaries having significantly higher resis-

tivity than the grains themselves. High-power density dissipated at

boundaries causing localized heating, grain slippage, and eventual break-

ing of the tape in analogy to the effects extensively studied for tung-

sten filaments used in incandescent lamps. In that case it was

demonstrated that metallurgical control of the microstructure offers a

satisfactory solution to the problem. Within the scope of this program,

however, work on substrate metallurgy could not be justified.

In spite of the present lack of success the substrate ohmic

heating still represents a desirable approach to fabrication of long tape

conductors. It simply requires more work and a different reactor design.

2.4 Process Parameters

Gaf>: In static tape deposition experiments performed

under the ERDA program, helium was used as the carrier gas. It was first

12



replaced by argon in the tape ohmic heating experiments since at normal

(1 atm) pressure the thermal conductivity of Ar is much lower than that

of He. Accordingly, the desired tape temperature could be achieved at a

lower average power density in the tape. In these experiments, however,

it was also observed that the coating rates on two sides of a horizontally-

mounted tape were more uniform when using Ar than it was typical for He.

Hence, Ar was ultimately adopted as the carrier gas. Representative tape

section profiles obtained using Ar are given in Figure 8 . Deposit

growth rates in Ar were reduced by 20 to 25% compared with the rates in

He. This was due to much lower diffusivity of Ar. The improvement in

coating uniformity was ascribed to lesser gas phase segregation in condi-

tions of a nearly laminar flow in the horizontal deposition tube. The

matter was, however, not studied systematically.

Vnpob-itioYi TempeA£l£u>ie: Based on the data of Reference 5 the

standard deposition temperature was chosen to be T, - 850°C. This choice

was dictated by trade-offs between the achievable T (increasing with T,

up to 950°C), J (increasing with inverse T.) and compositional uniformity

along the deposition zone. A few deposition experiments at T, = 880 to

900°C were also performed in the moving tape mode.

Pepo.6-t£t0n Zone Length: The deposition zone length, a, was the

distance between the masking tracks MT1 and MT2 in Figure 1. In the

moving tape mode the deposit thickness at a given tape speed, v , in-

creased with I as shown in Figure 4 while the deposit uniformity de-

creased with increasing I due to the existence of a compositional profile

along the zone. Such profiles were determined by measuring the cell

edge, a , of the A15 single-phase static tape deposits. The profile used

as a base for the choice of H is given in Figure 5. The compromise de-

position zone length chosen was I - 10 cm.

Tape Speed: The standard tape speed chosen was ̂  0.75 m/hour.

Double speed of ̂  1.5 m/hour was used in high delivery rate experiments

aimed at producing long tape sections.

13
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Ro£e: The standard delivery rate for Mb and Ge was

kept on the same level as in static tape experiments described in Ref. 5

in spite of the change in produced chloride species (Section 2.2). The

mass of niobium transported toward the deposition zone was ̂ 9.3 gram/hour.

The mass of germanium was ^2.1 grams/hour. It was varied between 1.6

and 2.4 grams/hour in experiments aimed at optimizing the deposit compo-

sitiQn. In experiments testing the fabrication of up to 10 meters long

tape sections double rates were used, i.e., ̂  18.5 and 4 grams/hour for

Nb and Ge respectively.

Siwimat-f/: The standard deposition parameters used in the moving

tape experiments are summarized in Table 2.

Table 2

Deposition Parameters in the Moving Tape Mode

Parameter

Vapor mixing temperature

Deposition temperature, T,

Argon carrier flow rate
(main line)

Argon flow rate through
vapor locks

Hydrogen flow rate

Nb mass delivery

Ge mass delivery

Deposition zone length, a

Tape speed, v

Tape width

Substrate thickness

Deposit thickness, h
(per side)

Unit

°C

°C

2,/min

£./min

Jl/min

g/h

g/h

cm

m/hour

cm

ym

ym

Standard
Value

^ 400

850 -20
8

3 (per lock)

12

9.3

2 1 +0'3-1 -0.5
10

0.75

0.6

50

4 ± 1

Double Rate
Value

% 400

850 -20
8

3 (per lock)

12

18.5

4

10

1.5

0.6

50

4 ± 1
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2. 5 Homoepitaxial Deposition

In a recent publication Dayem et al. presented data indicating

that stoichiometric NbsGe may grow epitaxially on polycrystalline A15

substrates, such as Nbalr, which have matching cell edge values.

Newkirk at LASL suggested that if the above is true then homoepitaxial

deposition on NbaGe should also occur. One could initially nucleate

the stable, Ge-deficient, A15 phase and then very gradually decrease the

ratio s = Nb/Ge in the vapor phase to shift the deposit composition and

attain the 3:1 stoichiometry. A high T , uniform NbsGe phase should thus

eventually grow on top of a transition layer having a more or less steep

compositional gradient normal to the surface. The Nb-Ge composition

varies along the deposition zone of the moving tape CyD reactor. Homo-

epitaxial deposits could be grown were the tape substrate moving in the

direction of decreasing s (which was, incidentally, the standard direc-

tion adopted in this program) .

In experiments 437 and 438 an attempt was made to verify the

above suggestion. Static tape run 437 was made to determine the growth

rate, h (x) , and cell edge a (x) profiles at T, - 850°C over a length of

40 cm. The Marshall furnace (Figure 8, Appendix II) was reattached to

the reactor for this purpose. The growth rate profile was found to be

too flat to be practical. In consequence, in run 438 the temperature was

increased to T, = 900 to 920°C to make the profile steeper. The h (x)

data indicated that in the moving tape mode 60% of the total layer thick-

ness would grow in the first 10 cm of the deposition zone adjacent to the

vapor injection point (Figures 1 and 5) where the composition change

would be small. The remaining 40% would have a significant (desired)

composition gradient. Epitaxial growth conditions were then modeled by

linearly decreasing the s value during the deposition from s = 8 to s = 3

at a rate of -0.3/min. No improvement of the deposit properties was ob-

served when comparing with the standard samples grown at a constant

s = 3.0 and 3.6. Hence, no further work was expended in this direction.

However, the experiments were not complete enough to draw any conclusion

about the basic possibility of homoepitaxial deposition.
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2.6 Deposition of Thin and Layered Films

Films of NbsGe grown over short periods of time to produce

thicknesses, in the submicron range should have finer microstructure and

less columnar morphology than standard thickness deposits. Such films

could be compared with thin sputtered films. In experiments 452 and 455

thin films were grown in the static mode by manually drawing the tape

into the deposition zone, holding it there for a predetermined length of

time and then quickly pulling it out of the furnaqe. Deposition condi-

tions were otherwise standard. Properties of such films are discussed in

Sections 5.2 and 5.3. Significant increase of critical-current density

was .observed. Crude attempts were also made to form multilayered strucr-

tures of such thin films. Since the CVD reactor had no provisions for

layering by introducing intermediate, thin, nonsuperconducting layers

three types of experiments were performed:

.1. Periodic variation of s ratio.

2. Introduction of intermediate layer material avail-

able for delivery in vapor form.

3. Periodic interruption of deposition process.

In run 446 layering on static (immobile) Hastellpy substrate

was attempted by periodically introducing bursts of additional GeCl^ to

form a stack of alternating NbsGe and nonsuperconducting NbsGes layers of

various thicknesses. In run 447 the same was repeated under moving tape

conditions. In run 448 silicon growth rates were determined using 3%

silane, SiH^, as a source. Silicon could be used as a material to form

nonsuperconducting layers. In static run 449 bursts of normal delivery

mixture, NbCls + GeCl^, were periodically introduced to determine whether

random NbsGe nucleation will start with each layer thus breaking the

columnar growth habit.

Finally, in run 452 G, H renucleation was attempted by periodi-

cally pulling the substrates in and out of the deposition zone. In all

of the above runs, standard (reference) Nb-Ge samples have also been

18



prepared for the sake of comparison with layered deposits. Results of

these layering experiments remained inconclusive.
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3. TAPE SUBSTRATES

3.1 General Requirements and Description

A substrate for magnet tape conductors should have the follow-

ing properties:

1. Thermal expansion (contraction) compatible with

that of the deposit.

2. High elastic modulus and high strength.

3. High electrical and thermal conductivity at low

temperatures.

4. Strong bonding to the deposit without formation

of a thick diffusion layer.

5. Chemical compatibility with the superconductor

deposition process.

6. Minimum thickness to insure a small minimum

bending radius.

In the present work Hastelloy B tape substrates offered a prac-

tical compromise between several of the conflicting requirements. Accord-
*

ingly, Hastelloy B was used throughout this program as the standard

substrate material for NbsGe deposition. In addition, in a limited

number of experiments Nb-1% Zr and Ta tape substrates were used to evalu-

ate the effects of strains in NbsGe that were induced by differential

thermal contraction.

In static tape experiments the Hastelloy B tape used was 1.27 cm

(0.5 inch) wide and = 50 ym (2 mil) thick. Such tapes have been coated

*Ulbrich Stainless Steel and Specialty Metals, Inc., P. 0. Box 294, North
Haven, CT 06473.
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on one side only. In the moving tape mode tapes 0.6 cm O 0.25 inch)

were used. The standard thickness was again h = 50 urn, i.e., as de-

livered. The original tape length was up to several hundred meters per

section. Also, sections of 25 ym thick Hastelloy B tape were fabricated

in-house by rolling, annealing and slitting the 50 ym thick, 1.27 cm wide

strips. The total length was ̂  1000 meters. The thickness tolerance was

within < ± 10% for most strips. The starting material thickness toler-

ance was zero to +10%.

The Nb-1% Zr and Ta substrates were also 0.6 cm wide. The

Nb-Zr tape thickness was hg = 75 ym, the Ta tape was ^ 50 ym thick.

Table 3 gives qualitative performance ratings1 for the three above materi-

als used as substrates for CVD of NbsGe. ' .
. . . i

Table 3

Substrate Material Performance Rating

Material

Thermal contraction
compatibility

Elastic modulus
and tensile strength

Electrical and
thermal conductivity

t".

•\ • v

Bonding

Chemical compatibility
with CVD

Hastelloy B

poor
produces e - -0.6%
compressive strain

in Nb3Ge

high

low

excellent, but
Ni diffuses into

Nb3Ge

very good

Mb
(Nb-1% Zr)

good,
e - -0.04%

fair

high

poor to fair

poor -
hydride
formation

Ta

fair to good
e = +0.04%

high

high

poor to fair

poor -
hydride
formation
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In the following sections the substrate properties and per-

formance are discussed in some detail. It is already clear from Table 3,

however, why these three materials have been considered.

3.2 Properties of Hastelloy B ;

Typical composition and some properties of Hastelloy B are

given in Table 4.

Table 4

Typical Properties of Hastelloy B
(Composition: 66% Ni, 24% Mo, 4 to 6% Fe>

Parameter

(14)Modulus of elasticity, E,

(14)Tensile strength

Yield strength (0.2% offset)

Thermal expansivity

Electrical resistivity, p

(12)Thermal conductivity, K,

Unit

10 ̂ newton/m2

106 psi

108 newton/m2

103 psi

108 newton/m

103 psi

Value
at 293 K

1.8 to 2.2

26 to 30

8.3 to 8.9

120 to 130

3.9

56

Value
at 20 K

2.2 to 2.3

32 to 33

^ 15

^ 220

?

?

S E E S E C T I O N 3 . 4

10~6 fi-cm

W nT1 K"1

135

7

120

^ 10

The microstructures of Hastelloy B tapes are shown in Figure 6.

3.3 Niobium and Tantalum, Hydriding

Niobium and tantalum properties are given in Table 5. Tapes of

these materials have been used only in strain effect related experiments.

The use of both Nb-1% Zr and Ta was difficult due to the hydrogen

22



(a)

'• ;>V/' •£$; 1

* •* /*•"/- i'"**' r< •«*', %•> .-. •.*,*. * •*• '- . f ^
"

(b)

Figure 6 - The microstructure o£ Hastelloy B tape substrates:
(a) 50 ym thick tape, average grain size ^ 14 ym,
(b) 25 ym thick tape, average grain size ^ 6 ym.
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embrittlement occurring when the substrate resided in the deposition

zone and in the cooling zone of the CVD reactor.

It is well known that hydrogen solubility in Nb and Ta is very

high even at low H£ pressures, and that the material embrittlement re-

sults. The solubility increases with the inverse of the temperature as

shown in Figure 7. Embrittlement should thus occur especially at

temperatures lower than the deposition temperature, i.e., in the cooling

zone, unless the NbsGe layer were able to protect the substrate. Whether

embrittlement occurs at T, = 850°C in the specific NbsGe deposition con-

dition was not clear. To check these points in static tape runs No. 422

and 423 the Nb-1% Zr and Ta substrates were quickly, in about 1 sec. time,

drawn into the deposition zone (Tn = 85Q°C). After 30 to 40 mins. depo-

sition time to form a NbsGe on all tape surfaces the samples were quenched

by quickly pulling the tape out of the reactor. All eight samples

tested (4 Nb and 4 Ta) turned very brittle and broke after one bend thus

clearly indicating that hydrogen diffused through the forming Nb-Ge

layers (having final thicknesses ranging from 2 to 15 ym, depending upon

the conditions of the experiment). Since slow cooling of the sample in

the moving tape mode could only contribute to further embrittlement it

became clear that the use of Nb or Ta as a substrate for practical conduc-

tors made by the present CVD process will not be feasible unless a hydro-

gen diffusion barrier is formed on the substrate. In experiment No. 424

performed in the same manner as 422 and 423 tantalum substrates coated
o

with a 3000 to 5000 A thick layer of nickel were tested with negative re-

sults. Finally, in run No. 433 a Ta substrate protected by 2 to 3 ym

layer of sputtered copper was tested successfully. An observable embrit-

tlement did not occur even in the moving tape mode, i.e., upon slow cool-

ing of the sample. Hence, the feasibility of using Ta (or Nb) copper-

coated substrates for practical NbsGe conductors was convincingly

demonstrated.
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Curve 69331^-A

1.0

0.8

• 0.6

I 0.4
"o

0.2

0

M=Nb

400 600
Temperature, T, °C

800

Fig.7-Solubility of hydrogen in niobium at 1 atm H« pressure/
experimental data
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3.4 Minimum Bending Radius

Brittle A15 superconductors degrade significantly when strained.

Tensile straining eventually leads to cracking. Both, compressive and

tensile intrinsic strains lead to T , H2 and J degradation below the
C Lr

cracking limit. In the case of NbsSn a ballpark figure of e <J± 0.2%|

can be assumed as an intrinsic strain limit above which J deterioration

occurs. ' No data exist yet for Nb3Ge so that NbsSn results serve

as a guideline. Strains in the superconductor can be grossly divided in

two categories:

1. Strains resulting from externally-applied stress

due to bending, pulling, cooldown on mandrels and

the Lorentz force.

2. Internal strains in the composite conductors due

to fabrication process and, especially, to dif-

ferential thermal contraction.

In conductors for high- fie Id laboratory magnets having a small

bore the admissible strain level determines the substrate thickness for a

given bending radius and vice versa. The unidirectional strain at outer

surfaces of a symmetrical tape conductor, i.e., one having on each side

of the substrate a superconducting layer of equal thickness, is

e =± •=- h . + h /r where h is the substrate thickness, h the superconduc-
(. s ) s

tor thickness and r is the bending radius. A desired value of r is

^ 1 cm which allows construction of magnets having a bore of 2.5 cm

(1 inch). For ah = 25 ym substrate e = ± 0.18%, an acceptable number.

Hence, deposition on such thin substrates was attempted. However, the

observed plastic deformation (Section 2.3) under ohmic heating and de-

formations (transverse curling) due to thermal contraction of slightly

assymetrical tapes prompted the adoption of h =50 urn. With such sub-

strates a minimum bending radius of ̂  1.5 cm could be obtained for an

otherwise unstrained superconductor.
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3.5 Thermal Contraction Mismatch

The thermal expansivity of the substrate materials under dis-
f 121cussion is approximated by the following empirical expressions:

Hastelloy B:

AL
= -U.184 + ^/

(±7%, entire temperature range),

Niobium:

f=- = -0.184 + 2743 x lO'4 T + 1.292 x IQ'8 T2 - 4.044 x lO'10 T3
Lo

!=. = -0.125 + 5.164 x 10'4 (T - 100) + 9.858 x 10~7 (T - 100)2

o

- 1.525 x 10'9 (T - 100)3

(±3% at 100 < T < 293K)

Q- = 7.265 x 10"^ (T - 293) + 1.026 x 10~7 (T - 293)2
Li

o

- 1.032 x 10'11 (T - 293)3

(±3% at 293 < T < 1200K)

Tantalum:

^k = 6.308 x ID'1* (T - 293) + 9.706 x 10'8 (T - 293)2

o

- 2.545 x 10'11 (T - 293)3

(±3% at 293 < T < HOOK)
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In these expressions L is the length at 293K, AL the length

increment and T is in degrees Kelvin.

The thermal expansivity of Nb3Ge was given in Ref. 9 for the

temperature range 293 <_T <_ 1033K, and in Ref. 18 for 4.2 <_ T <_ 675K.

Maximum thermal contraction mismatch between Nb3Ge and substrate should

occur when cooling the conductor from the deposition temperature down to

the cryogenic application temperature T. The resulting strain in the x-y

film plane should be

AL
e = e - £. = —

x y L7 o(Nb3Ge)

AL
L
(substrate)

calculated for the above temperature range. Table 6 gives the AL/L and

resulting e values for T, = 850°C (1123K) and T = 0 K, determined from

the above empirical expressions and/or graphs and numerical data from

Refs. 12, 9, 18.

Table 6

Thermal Contraction Between 1123K and 0 K
and the Resulting Mismatch Strain

Material

Nb3Ge

Hastelloy B

Niobium

Tantalum

AL
Lo

7.9 x 10 3

14.0 x 10~3

8.3 x 10~3

7.5 x 10"3

Nb3Ge Mismatch
Strain, e, %

__

-0.6

-0.04

+0.04

Data of Table 6 suggest that the Nb3Ge properties should be de-

graded when using Hastelloy B as a substrate. Due to superposition of

mismatch strains and strains induced by bending, the inner radius layer

will be degraded more than the outer layer where the strains subtract.
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Because of the nonlinearity of the J vs intrinsic strain curve the

inner layer degradation due to bending will be more significant than in

the absence of thermal contraction prestressing. In the case of Nb and

Ta substrates mismatches are reasonably small and the strain level at

zero field is a function of the actual radius of the magnet coil.
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4. SAMPLES

4.1 Macrostructure, Labeling

As already stated in Section 3.1 samples prepared in static

tape experiments were deposited on one side of 1.27 cm (0.5 inch) wide

and 50 ym thick Hastelloy B substrates. The NbsGe layer thickness ranged

from 2 to 20 ym. The sample's were slightly bent (curled) around the

major tape axis with the coated surface convex due to thermal contraction

mismatch. Such tapes are labeled Type I in the following text. In the

moving tape mode (Type II samples) NbsGe layers were deposited on all

surfaces of Hastelloy substrate tapes 0.6 cm wide. The layer thickness

has been determined from micrographic sections using an optical micro-

scope. Nominal thickness was 4 ± 1 ym per side, but varied considerably

depending upon conditions of deposition, process parameters fluctuation,

etc. Scanning electron microscopy (SEM) was used to measure thicknesses

of the order of 1 micrometer and below. Figure 8 shows results of thick-

ness measurements plotted as two typical sample section profiles, one

symmetrical and one asymmetrical, i.e., having one side layer thicker

than the other. Such asymmetry has been relatively common as shown in

Table 7 and was due to gas phase stratification discussed in Section 2.4.

Much thicker layer around the tape edges seen in Figure 8 was a common

feature of all samples. The thick edges contributed no more than 2 to 4%

to the total Nb3Ge cross section and could, therefore, be neglected in

the critical-current density determination.

Tape samples used for critical-current density measurement were

coated on both sides with 5 to 10 ym of high-purity copper to stabilize

against flux jumps. Copper was deposited either by sputtering or by

electron beam evaporation. Adhesion of both types of Cu layers was firm

upon cycling between room temperature and 4.2 K provided that the NbsGe

surface was precleaned by backsputtering in the case of sputtered layers.

31



Haste! loyB Nb3Ge

Sample 434 A
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/ Hastelloy B

\z^^-
Sample 434 C

Fig.S-Thickness profiles of typical Type II Nb-Ge tapes. The

horizontal scale is compressed 25 times (except for the layer
thickness)

20um
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Table 7

Random Selection of NbsGe Thickness Data,
(Type II Tapes)

Sample Number

434 A

434 C

435 C

439 AU

439 BD

439 CU

439 DU

443 G

443 H

440 (5 m long tape)

end 1

end 2

*
444 (10 m long tape)

444-2

444-4

444-6

444-8

444-10

444-12

444-14

MEAN

TOLERANCE

(4 vim nominal)

Thickness, h, in ym

Side 1

4.2 to 4.4

5.0 to 5.4

2.0 to 2.2

5.6

5.6

5.2

4.8

2.5

3.7

3.0

2.0

2.0

2.3

3.7

2.4

3.9

3.9

4.3

3.2

-50%

+8%

Side 2

4.0

3.3 to 3.5

3.9 to 4.5

3.6

4.7

3.1

3.2

5.1

4.7

3.2

4.5

3.1

3.2

5.0

4.6

4.3

4.9

5.9

4.4

-23%

+48%

Total

8.2 to 8.4

8.3 to 8.9

5.9 to 6.7

9.2

10.3

8.1

8.0

7.6

8.4

6.2

6.5

5.1

5.5

8.7

7.0

8.2

8.8

10.2

7.6

-36%

+28%

h measured every 50 cm
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Short specimens, up to 10 cm long were copper-coated by sputtering, longer

ones, up to 35 cm, by E-beam evaporation. At equal thickness the sput-

tered copper was more effective in stabilizing the samples. A systematic

comparison of Cu resistivity ratios was not made.

The useful sample length was 1 to 5 cm for Type I samples be-

cause of compositional variations along the tape. Type II tapes were up

to 10 m long. Typically, when evaluating the effect of process parame-

ters upon the sample properties specimens 10 to 30 cm long have been pre-

pared. In such a case the Latin or Greek characters following the run

number indicated a specific set of parameters, e.g., 439 B was a label

for the variant B of run 439. Some long tapes were sectioned into 25 or

50 cm long specimens to allow characterization. In such cases additional

arabic numerals denoted the consecutive section. For example, label

444-10 denoted 10th section of tape prepared in Run 444. Labeling of

Type I was analogous: additional arabic numerals denoted the sample

positions in the deposition zone at 5 cm intervals.

4.2 Phases and Microstructure

Type II NbsGe samples for high-field application contained 5 to

10% of NbsGea tetragonal phase dispersed in the A15 matrix and serving as

flux pinning centers. Transmission electron microscopy (TEM) revealed

that the size and spacing of NbsGes particles decreased with deposition

temperature. This is illustrated in Figure 9 obtained in a separate
*

study program. The A15 grain size decreased only slightly with T, but

very dramatically with the layer thickness, h. Figure 10 shows a TEM

micrograph of a typical 5 m long tape deposited at T, = 850°C. In this
o

^ 5 ym thick layer the NbsGes particle size is 100 to 300 A, mean spacing

is undefined and mean grain size of A15 matrix is d = 1400 A.

Type I samples deposited at T, = 900°C were doped with

NbN and NbC to compare the effectiveness of flux pinning on various second

Air Force Office of Scientific Research Contract No. F44620-74-C-0042.
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Fig. 10 TEM micrograph of tape #435 (Type II)
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phases. The pertinent phase and microstructure data were already pub-

lished. (7)

All the deposits exhibited columnar grain structure with a (200)

texture that was more pronounced in Type I than in Type II samples (see

Section 5.3).

At the boundary between NbsGe and Hastelloy B a diffusion layer

was invariably formed due to nickel diffusion. The Ni^Nb and NiNb phases

have been observed in Debye-Scherrer patterns. Auger spectroscopy

profiles determined for Type I samples deposited at 900 and 1000°C indi-

cated that the diffusion layer was about 1 ym thick. Hence, the ef-

fective superconductor thickness was less that the total deposit

thickness.
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5. SUPERCONDUCTING PROPERTIES

5.1 Critical Temperature

Methods used in this work to determine critical temperatures,

T , were discussed in Ref. 5. Routine characterization, with ± 0.2 K

accuracy, has been performed resistively using the standard four-point

method and calibrated Ge-thermometers. Inductive (susceptibility) and

magnetization measurements verified the consistency of resistive results.

Precision characterization, ± 0.05 K, was performed by extrapolating the

upper critical field vs temperature dependence HC2 (T) determined in

pumped hydrogen at the National Magnet Laboratory.

The dependence of T upon the deposition temperature was deter-

mined for Type I samples containing NbsGes in concentrations necessary to

insure necessary flux pinning. In Figure 11 the T (Tj) curve is com-

pared with the highest T data obtained for single A15 phase samples.

Generally, the second-phase containing samples had T degraded by 0.5 -

1 K compared with pure A15 samples. At T, = 850°C the representative

mid-point value was T = 20.0 to 21.0 K.

The effect of doping with impurity second phases such as NbN,

NbC and also Q£ introduced when doping with carbon using C02 is summarized

in Figure 12 for Type I samples deposited at Td = 900°C. ̂  ^ In the im-

purity concentration range of 0.2 to 0.5 wt. %, necessary to insure flux

pinning, the T degradation was comparable or greater than in the case of

Table 8 gives a representative selection of critical tempera-

ture results obtained for Type II tape samples deposited at T, = 850°C.

The average critical, mid-point temperature was T = 20 K with an average

transition width of 1.5 K, consistent with Figure 11. The critical tem-

perature profiles along tapes of 5 and 10 meter length are shown in
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Table 8

Critical Temperatures of Type II Samples
(Degrees Kelvin)

Sample Number

432 CU

432 DU

433 D (Cu/Ta)

433 D

439 DD

440 (end 2)

441 (end 2)

442 CD

443 E

444-IJ

450 (end 2)

452 A

MEAN

452 C*

452 D*

452 F*

Resistive Measurement,
Ge-Thermometer

Onset

20.4

21.1

19.6

21.1

20.9

20.7

21.5

20.7

21.1

19.9

21.3

21.6

20.8

20.7

20.7

21.7

Midpoint

20.1

19.9

19.0

20.3

20.1

19.9

20.3

19.7

20.3

19.3

20.1

20.9

20.0

20.1

20.2

21.0

Tail

19.7

18.9

18.4

19.8

19.4

19.3

19.3

18.9

19.5

18.6

19.1

20.3

19.3

19.6

19.7

20.3

HC2 CH
Extrapolation

90% pn

20.40

20.45

20.35

20.55

21.05

50% pn

19.80

20.35

20.10

20.20

20.80

10% pn

19.45

20.20

19.90

19.85

20.55

Static, see Section 2.6
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Fig. 13- Critical temperature profiles along Nth Ge tape conductors
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Figure 13. The variations were gradual and mostly monotonic indicating

that properties of the tape depended upon slow, long-term fluctuation of

the process parameters, most likely the s = Nb/Ge ratio, which was con-

trolled manually. The control was apparently more erratic under the

double rate conditions, i.e., in run 444. Degraded T 's were always ob-c*
served at the beginning of runs when the system has not yet attained

equilibrium. After stabilization, under normal rate conditions such as

in run 440, T fluctuated within 0.5 to 1 K.

5.2 Upper Critical Field

The upper critical fields have been determined between 14 and

20 K, i.e., in the pumped hydrogen range, using the four-point resistive

method and either extrapolating to zero measuring current or operating

with very low current densities of the order of 10U Anr2. The temperature

was accurate to ± 0.05 K. All measurements have been performed at the

National Magnet Laboratory. The Hc2 values have been determined from re-

sistive transition curves using 90% of residual normal resistivity, p ,

as a criterion for defining HC2 at a temperature T. Below 14 K the HC2

values have been calculated from dHc2/dT at T .-> T using the theore-

tical HC2 (T) dependence for dirty type II superconductor with no paramag-

netic limiting. Specifically, at 0 Kelvin:

HC2 (0) = 0.69 -

Table 9 summarizes all the dHc2/dT data collected as well as

the T values obtained by extrapolating Hc2 (T) to zero field. Type I

samples deposited at temperatures from 750 to 950°C and containing second-

phase exhibited dHc2/dT in the range of 1.95 to 2.15 tesla/degrec with a

calculated mean of 2.05 T/degree. Single-phase A15 samples showed a

slightly higher mean of 2.14 kG/degree. All these samples were deposited

on Hastelloy substrates and their thickness ranged from 3 to 15 ym. The

above values of dHc2/dT were distinctly below those obtained for 0.5 to
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Table 9

Upper Critical Field Slopes _ dHc2
dT

and Extrapolated Critical Temperatures
(Criterion: 90% p )

Sample
Number

86-9

279-10

279-11

279-12

279-13

229-7

229-9

229-11

229-13

228-9

372-9

372-13

201-5

201-7

201-9

201-11

208-5

208-7

208-9

208-11

310-7

310-9

310-11

335-7

335-9

244-5

254-7

Td

°C

750

800

850

900

950

Phases

A15

A15 + NbsGea

A15 + Nb5Ge3
A15 + Nb5Ge3
A15 + Nb5Ge3

A15 + Nb5Ge3

No Data

A15 ?

A15 ?
?

A15 + Nb5Ge3
A15

A15 + Nb5Ge3

A15 + Nb5Ge3
A15

A15

A15 + Nb5Ge3
A15 + Nb5Ge3
A15

A15

A15 + NbN + Nb5Ge3

A15 ••- NbN

A15 + NbN

A15 + NbC + Nb5Ge3
A15 + NbC

A15

A15 + Nb5Ge3

2im dHC2
T ->• TC dT

tesla/degree

2.13

2.12

2.02

2.07

2.16

2.06 .

2.03

2.13

2.11

1.90

2.01

2 . "^

2.00

2.04

2.14

2.07

1.95

2.05

2.15

2.18

2.06

2.15

2.08

2.09

1.82

2.17

2.00

Tc

K

18.56

18.59

17.43

19.77

19.88

20.28

19.71

20.00

18.54

19.05

21.16

21.61

20.80

21.00

21.15

22.05

21.90

20.60

20.90

21.80

20.78

21.20

20.98

18.18

19.93

21.73

20.38

Comments

•

• Type I

(continued)
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Table 9 (continued)

Sample
Number

439 DD

440 (end 2)

443 AD

433 AU

455 KU

455 OU

452 C

452 D

452 F

Td

°C

850

850

850

Phases

A15 + Nb5Ge3

A15 + NbgGe3

A15 + Nb5Ge3

A15 + Nb5Ge3

A15 + Nb5Ge3

A15 + Nb5Ge3

A15 + Nb5Ge3

A15 + Nb5Ge3

A15 + Nb5Ge3

Him dHc2
T -»• TC dT

tesla/degree

2.19

2.22

2.31

2.28

2.13

2.20

2.21

2.26

2.27

Tc

K

20.40

20.45

19.75

19.70

19.55

20.15

20.35

20.20

21.05

Comments

[ Type II on Hastelloy

J.

| Type II on Ta/Cu

j

2 h < < 1 ym

'v 2 ym

^ 2 ym

6 to 8 ym

42 ym

45



1 ym thick NbsGe sputtered on sapphire. The sputtered specimens had

dHc2/dT = 2.4 ± 0.1 T /degree, and correspondingly higher Hc2 (T) values.

Since for Type I CVD samples the dHC2/dT values were so remarkably con-

stant and independent of the synthesis conditions, the calculated Hc2 (T)

values scaled well with T as shown in Figure 14 for 0 and 4.2 K. At

4.2 KwithT = 20 K (90% p ) Hc2's were between 26.0 and 28.0 tesla while

for sputtered samples having the same critical temperature 31 to 34 tesla

would be typical.

Standard Type II samples (long tapes) had a slightly higher

dHC2/dT = 2.2 T/deg, perhaps owing to an improvement in deposits unifor-

mity obtained in the modified CVD reactor. At 4.2 K, Hc2 = 29.0 to 29.5 T.

The question why dHc2/dT is by 15 to 20% lower than in sputtered

sampled is not yet fully answered. According to the Ginzburg-Landau

theorv:

HC2 (0) = A Pn

where y is the electronic coefficient of the specific heat which is pro-

portional to the density of states and A is a constant. Hence:

£im dHc2VA. DC A Y
T -> T dT Mn T

It has been speculated earlier that fine-grained sputtered

films have higher effective p than coarse-grained CVD deposits. How-

ever, in fine-grained, very thin CVD films on Hastelloy that were prepared
*

and studied under an independent program dHc2/dT = 2.0 to 2.1 T/degree

(see, e.g., Table 9, sample 455 KU). It is therefore more likely that Y

and, consequently, the density of states is lower in CVD films. For ex-

ample, the density of states should be affected by strains induced in the

Air Force Office of Scientific Research Contract No. F44620-74-C-0042.
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lattice and caused by the thermal contraction mismatch between Mb360 and

Hastelloy. Indeed, better matched CVD tapes on copper-coated tantalum

substrates (Table 9, sample 433) had dHc2/dT =2.3 T/deg. thus attaining

the lower limit for sputtered films. Also, early CVD samples deposited

on polycrystalline A1203 had dHc2/dT = 2.2 to 2.3 T/deg. althpugh they

were probably far from optimum phase uniformity. As seen above internal

strains due to the presence of NbsGes inclusions could be the cause of

dHC2/dT reduction by ̂  0.1 T/deg. Single-phase CVD deposits on tantalum

could attain dHC2/dT = 2.4 T/deg. and thus a Hc2 typical of sputtered

samples. Further investigation of the effect of strains on HC2 should be

conducted.

5.3 Critical-Current Density and Flux Pinning

High-field J measurements were performed at 4.2 K by the four-

point transport method on copper-coated tape sections ^ 3 cm long and

0.6 cm wide. Measurements were made with the magnetic field perpendicu-

lar (H ) or parallel (H ) to the sample surface using a universal probe,

4 cm in diameter, built by Westinghouse for this program and having a

current capability >_ 300 A. The probe size allowed its use in 18 tesla

magnets at the National Magnet Laboratory (NML). A smaller < 1.5 cm

probe was used in the 1.5 cm dewar bore, 22 tesla NML magnet. In this

probe, however, insufficient heat exchange invariably produced thermal

runaway of tape samples so that no reliable data could be obtained. Con-

sequently, the upper measuring field limit was 18 tesla.

For flux pinning characterization J's were also determined in

the 14 to 20 K range. In this case small samples 1.27 x 0.3 cm were used

without any copper stabilization. In all NML transport measurements the

voltage of 1 yV across 1 cm of the sample was used to define the transi-

tion to normal state.

Lower field J measurements up to 6.5 T have been carried outc r

in-house by both, transport and magnetization methods. The purpose was

to preselect samples for high-field measurements, to provide quick
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feedback information for the CVD experiments and to obtain data for flux

pinning characterization.

The high-field properties of Type I samples were summarized in

Ref. 21 which is attached to this report as Appendix III. Since that

paper did not include J (H) graphs covering the high- field range these

graphs are reproduced in Figure 15 for NbN, NbC and NbsGes-doped samples

characterized by transport method. All of the critical -current densities

were calculated for the nominal measured thickness values. Subtracting

the NisNb + NiNb diffusion layers would increase the J 's by approximately

15%. The highest J values at 18 tesla were determined for

samples deposited at T, = 750°C and having relatively low T and HC2 (see

Table 9 and Figure 11). As pointed out in Ref. 22 at a comparable mid-

point T of = 18 to 19 K the best J results were close to the upper

limit obtainable for Nb3Sn. In all of these samples J (H ) was higherc |
than J (H, ,). This indicated that the flux pinning on columnar grain

\_. i I

boundaries* made a nonnegligible contribution to the average total pin-

ning force, F , in addition to flux pinning on Nb5Ge3 impurities. On the

other hand these impurities were most effective when intragranular parti-

cle sizes were comparable to the coherence length, £ri = 50 A. Such
VjJ_i

sizes could be obtained at lower deposition temperatures as shown in

Figure 9. Figure 1 (c) in Appendix III is a representative micrograph de-

picting these particles.

Experimental curves of the flux pinning force, F = J x H at

4.2 K vs the reduced magnetic field, h = H/HC2> are shown in Figure 16,

again for samples doped with NbN, NbC and Nb5Ge3. Expectedly, highest

peak flux pinning forces were obtained for NbsGes-doped samples, with

F = 4.5 x 1010 newtons/m3 (4.5 x 109 dynes/cm3) for sample 277-13, apmcix
value typical for best Nb3Sn tapes fabricated by the diffusion process.

Characteristically, all of these samples exhibited peak pinning forces at

For Hi the Lorentz force is in the plane of the film while it is normal
for H||. In the film plane the number density of grain boundaries is
greater than along the columns normal to the plane.
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Fig. 16 -Typical flux pinning curves for type I samples doped with various impurities
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(231h = h =0.2. In the light of Kramer's flux pinning model one could

be thus tempted to conclude that all of these samples had nearly optimum

pinning strength. Such a conclusion would be, however, premature since

the samples did not obey well the model for h > h . The scaling law of
(24) P (251Fietz and Webb also described the CVP NbaGe only very approximately.

This is illustrated in Figure 17 which shows normalized flux

pinning curves at 4.2 K and 10 K for another "optimum" sample, 279-12.

The curves clearly did not superpose, contrary to the scaling law. At

h > h a good fit to Kramer's expression^ ^ F (h) = K h1/2 (1 - h)2 in

which K is a constant could, however, be obtained by adjusting h such
o

that the derived HC2 values were lower than the experimental data. Lines

drawn in Figure 17 correspond to HC2 indicated as "fit." At 4.2 K this

fit value was typically 15 to 20% lower than HC2 determined using the 90%

p criterion and at least 10% lower than that obtained from 10% p . In

the case of sputtered NbsGe the discrepancy was much larger. It is thus

probable that all the characterized samples suffered from compositional

inhomogeneity. Alternatively, a pin breaking model different from the

flux lattice line shear could be operative. Thi? question has not yet

been resolved. From a practical point of view it is tempting to believe

that improved homogeneity could bring further, dramatic improvement of

NbsGe high-field properties. For the present material one should use the

scaling laws with caution.

The critical currents and critical-current densities determined

for Type II samples at 4.2 K are shown in Figure 18 for the field range

from 5 to 18 tesla. Current densities much below 5 tesla could not be

measured because of the limitation imposed by the available power supply,

I = 300 A. Only magnetization measurements were thus performed be-

tween 0.5 and 5 tesla. These were usually consistent with transport

measurements. The uncertainty factor was higher, however, than for

Type I samples. This was due to greater sample damage occurring when

punching discs out of a tape coated on both sides. The J values were
\Z

degraded by a factor of 2 to 3.
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Fig. 17 - Normalized flux pinning curves at two temperatures. Drawn lines represent
fit to Kramer1 s expression'2^ for h> h
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Comparison of Figures 15 and 18(a) shows that at similar

thickness of 6 to 8 ym the 18 tesla, 4.2 K critical- current densities of

Types I and II samples were comparable and slightly lower than the value

J = 5 x 108 A/m2 considered as the necessary minimum for building a
° (211practical magnet operating at that field and temperature. Interest-

ingly, data of Figure 18(a) and lower field magnetization measurements

showed J (H ) >_ J (H ) thus suggesting that the columnar structure ofc c \
deposits was suppressed in Type II samples. No convincing SEM con-

firmation of an equiaxial microstructure was, however, obtained to date.

Figure 18(b) shows I (H.) and J (H ) curves for a thinner
c 1 c 1

Type II sample, having a total thickness of 2 ± 0.3 ym (i.e., ̂  1 ym per

side) determined by SEM. This sample, and several similar to it, was de-

posited over a very short period of time, of the order of 60 sec., in

order to obtain a fine grain size, more comparable to that of sputtered

specimens. The critical-current density increased dramatically as a

result of either an increase in the number density of grain boundaries or

relatively larger surface pinning contribution, or both. At 18 tesla,

4.2 K J was between 7.5 x 108 and 10 x 108 A/m~2 (taking into account

the accuracy of thickness determination) . It was thus in excess of the

required minimum. Extrapolation to 20 tesla gave J = 5 x 108 A/m~2 as a

maximum value. This result was still below that for the best sputtered

sample (J = 10 x 108 A/m"2 at 21 tesla) but not by much. It indicated

convincingly that a CVD material could be optimized to the sputtered

sample level by forming fine-grained samples of a required total thick-

ness, e.g., by layering. Layering could also insure a high relative con-

tribution of surface pinning.

Alternatively, fine-grained deposits could perhaps be obtained

by direct control of CVD parameters, e.g., by insuring a higher than pre-
(22)

sent nucleation rate.

The flux pinning characteristics of Type II samples were vir-

tually the same as for Type I. Figure 19 shows the pinning force vs h at

4.2 K for one typical tape (#440) and for the thin sample 452C. The
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latter curve had a visible kink at h > h suggesting the presence of two

pinning mechanisms or a pronounced nonuniformity. The peak force was im-

pressive: F = 93 x 109 newton/m3. The fit to theory again produced

depressed Hc2 values indicated in Figure 19.

Figure 20 shows the J profile determined for the long tape

#440 at 4.2 K and 5 tesla. Comparison with Figure 13 indicates once more

that at the beginning of a run tape properties were degraded. Variation

of J along the tape was relatively slight and gradual indicating a slow

drift of deposition parameters (most likely the s = Nb/Ge ratio) with

time. The transport J 's varied within ± 10%. The magnetization measure-

ment produced J values lower than the direct, transport measurement due

to punched sample damage.

The critical-current densities of samples "layered" by varing s

were generally inferior to reference sample properties. Introduction of

silane deteriorated the properties even more. Renucleation experiment

consisting of pulling the samples cyclically in and out of the deposition

zone produced J 's identical to those of reference samples. Random renu-

cleation did not occur apparently, and the columnar growth continued

through all cycles. Microstructures of these samples were not investi-

gated to date.

Clearly the "layering" experiments were too crude to produce

meaningful results. The enhanced properties of single thin films such as

452C indicated that this approach has a significant potential.
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6. DISCUSSION

6.1 Preamble

The preceding section describes what was the first relatively

detailed study of high-field superconducting properties of NbsGe. Other

"firsts" were the successful attempts to fabricate lengths of Nb3Ge tape

conductors and to achieve high levels of flux pinning on second-phase im-

purities. It is not surprising, therefore, that this program left many

significant questions unanswered, and problems unsolved. While some of

these problems are or, hopefully, will be studied within independent pro-

jects it is appropriate to discuss here the major directions of future

work aimed at developing NbsGe tape conductors for high-field magnet ap-

plications. While this goal may appear restrictive it should be obvious

that progress in tape conductors will form a necessary foundation for an

ultimate development of filamentary MbsGe.

6.2 Fabrication

With regard to tape fabrication it is clear that the present

CVD process needs further improvement in uniformity control, both in

coating geometry and in time, to produce long conductors having well de-

fined, constant properties. Capability of producing layered deposits

should be insured by modifying the CVD system. A system modification

allowing the use of ohmic heating of substrates with the aim to improve

productivity would also be desirable. Quality assurance procedures have

to be established and implemented. Cladding of long conductors with high-

resistance-ratio copper must be developed and test solenoids fabricated

to characterize the composite conductors in realistic environments prior

to building a prototype magnet. All of the above tasks are relatively

trivial, well within the present technological capability of h'estinghouse
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and other qualified groups. It is essentially a problem of adequate

funds and time, but not a long time at that. A preliminary description

of that type of fabrication program was submitted to NASA-Lewis in

November of 1976.1-26-1

A broader question should be asked, however. Is CVD really the

preferred approach to Nb3Ge conductor fabrication? In 1976 this group

had serious doubts about it, thinking that physical vapor deposition (PVD)

would offer a better road to success, this being a cleaner and easier to

control process possibly resulting in finer microstructures. Perhaps

that holds true, but after another year and a half CVD still leads both

in process development and superconducting properties achieved on practi-

cal, metallic substrates. In the case of low energy and magnetron sput-

tering the properties of NbsGe on sapphire substrates could not be
f211reproduced when depositing on metallic surfaces. A better under-

standing of the high-T A15 phase nucleation and stabilization is a pre-

requisite for progress in sputtered NbsGe. Such improved understanding

would automatically benefit CVD as well.

Much more study and data is needed on the electron-beam depo-

sition of NbaGe. One very promising and important discovery was that of

"polycrystalline epitaxy" on a metallic A15 Nbslr surface. A

study of high-field properties of E-beam deposited NbsGe is highly de-

sirable and could be carried out taking advantage of the capability of

Stanford University with their unique E-beam machine suitable for prepar-

ing some lengths of NbsGe tape. It is, however, difficult to assume a_

priori that the results of such a study will surpass those of CVD work.

By the end of 1977 the CVD fabrication of Mb366 appears to represent the

safest bet.

6.3 Mechanical Properties, Load Tolerance

For NbsGe this is gtill a virgin territory. One would expect

the material's properties to be analogous to other AlS's, particularly

The type of substrate used and the resulting prestressing of the
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superconductor should determine the mechanical load tolerance. That

tolerance must be tested experimentally prior to the final substrate se-

lection. A test study in collaboration with the National Bureau of

Standards, Cryogenics Division was initiated recently under an indepen-
*

dent program and ,it should permit an eventual optimization of tape con-

ductor mechanical properties. Until test results became available the

rejection of present Hastelloy B substrate will be premature. If copper^

clad tantalum or niobium were used it will be advantageous to form an

asymmetrical tape, with the superconductor on one side of the substrate.

Upon bending on a mandrel the superconductor will then be subject to only

one, least deleterious type of applied stress, either compressive or ten-

sile, so that the intrinsic strain could be minimized. As in the case of

fabrication processes the problems related to mechanical properties are

relatively well defined. Approaches to further development work are

clear.

6.4 Superconducting Properties Vs Microstructure and Phase Homogeneity

For high- field applications the maximization of the critical

temperature of Mb 366 is of concern primarily as a means to maximize

The present level of T in NbsGe tapes (20 to 21 K) is less than maximum

as a result of trade-offs necessary to insure high critical current den-

sities and the conductor practicality. The presence of Nb5Ge3 second-

phase, and other impurities, e.g., unreduced chlorides in tapes deposited

at relatively low temperatures depresses T by 0.5 to 1 K. The substrate
tZ

mismatch strains possibly reduce T by another 0.5 to 1 K. Ideally, one

would like to deposit fine-grained, unstrained, single-phase deposits at

higher temperatures, 900 to 950°C. That might be possible by layering

the films. The layering approach should be pursued vigorously, in
(27)analogy to the E-beam work on layered Nb3Sn films. Results of

Section 5.3 clearly show the significant improvement in the high- field

critical- current density that results from reducing the layer thickness

Air Force Office of Scientific Research Contract No. F44620-74-C-0042.
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and, presumably, the grain size. An alternative approach could be to in-

hibit grain growth by suitable impurity, third element substitution or

deposition process modification. Layering, of course, will not reduce

the effects of strain upon T , Hc2 and J . These effects should be

studied in conjunction with the investigation of mechanical properties.

For HC2 and T they do not appear dramatic in the light of data presented

in Section 5.2.

The problem that stands out as a result of the present study is

the flux pinning mechanism at high fields. This problem is common to CVD

and sputtered NbaGe and it would be interesting to see whether it is

shared by E-beam evaporated films, especially the "epitaxial" ones.

The flux lattice line (FLL) shear model should be applicable to

all strongly pinned, hard superconductors. One is thus tempted to believe

that the strongly depressed HC2 values necessary to fit the FLL model

suggest a major A15 phase inhomogeneity. There is, however, no X-ray

evidence of it. Why? If, on the other hand, the A15 phase is homogene-

ous, what makes the pinning mechanism in NbsGe different? The strength

of pins and their number density have apparently no effect here as wit-

nessed by the data of Section 5.3. Were the flux pinning force dependent

upon field in the same way as in other superconductors then the high-

field J 's would be very much higher for present T and Hc2 values. Fromc c
the point of view of high-field application of NbsGe it is important,

therefore, to solve the above problem.
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7. CONCLUSIONS

The objective of this study have been attained and

in certain areas surpassed.

The study confirmed that chemical vapor deposited

NbsGe has potential for application in high-field

magnets.

The study has shown that present Nb3Ge tape con-

ductors can be used at 4.2 K in fields up to 16 to

18 tesla.

Flux pinning on second-phase particles was success-

fully used to enhance critical -current densities.

Possibility of improved NbsGe performance up to at

least 20 tesla was demonstrated.

Tape conductors up to 10 meters long were demon-

strated.

Problems requiring further study were identified.
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8. RECOMMENDATIONS

Future research on NbaGe for high-field applications should in-

clude several parallel studies on topics listed below in order of prior-

ity:

1. Mechanism of flux pinning and pin breaking in high

magnetic fields in relation to A15 phase hpmogene-

ity and stability.

2. Correlation of microstructure with flux pinning

strength, effect of layering on critical-current

density, grain growth inhibition by additives or

deposition control.

3. Effect of strain upon critical temperature, upper

critical field and critical-current density.

The next steps in the development of chemical vapor deposited

tape conductors for magnets should be as follows:

1. Develop fabrication methods for long composite,

i.e., copper-clad NbsGe tapes.

2. Test mechanical load tolerance and select optimum

substrate tape.

3. Develop, fabricate and test experimental NbsGe

solenoids.

4. Establish and implement quality assurance proce-

dures .

5. Build a prototype magnet.
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APPENDIX I

STATEMENT OF WORK
(NAS3-20233)

A. Task 1 - Optimization of Deposition Parameters

Using chemical vapor deposition (CVD) methods, the contractor

shall optimize deposition parameters of NbsGe on substrates of Hastelloy

and/or stainless steel at substrate temperatures of 900 ± 10°C. The

parameters to be optimized shall be at least those of reactant rates, de-

livery rates, and dilution; ± 10% thickness uniformity and ± 10% J (H, T)

uniformity over 1 foot lengths are desired.

At the completion of this task the contractor shall deliver to

the NASA Project Manager a one (1) foot long state-of-the-art high T
0̂

NbsGe tape. This tape shall be the highest J , H , and T over longestc c c
length.

The contractor shall characterize the substrate material, in-

cluding identification of phase, composition, microstructure, and thermal

expansion.

B. Task II - Determination of Effects of Deposition Temperatures

The contractor shall determine the effects of deposition tem-

perature on J (H, T), within the temperature range of 700 to 900°C. The

contractor shall deliver to the NASA Project Manager a one (1) foot sec-

tion of high T NbsGe tape which is optimized to the highest J , H , and

V
The contractor shall characterize the substrate material, in-

cluding identification of phase, composition, microstructure, and thermal

expansion.
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APPENDIX II

CHEMICAL VAPOR DEPOSITION AT THE
TERMINATION OF ERDA'S PROGRAM

The purpose of this appendix is to summarize the information on

the fabrication process which may be helpful in discussing the data not
(1 2)

reported in earlier publications. ' Furthermore, the results leading

to a moving tape CVD reactor design are presented and the reactor de-

scribed.

2. Deposition of Single Elements and Parameters of Co-Deposition

Work on deposition of elemental Nb and Ge was performed prior
* (1)to Phase II under a different program, and was already reported. It

is, however, useful to present data which served as a basis for selecting

the parameters used in the present program for Nb and Ge co-deposition by

reducing a generated mixture of NbCl, and GeCl,j vapors with hydrogen.

The single element data are limited to low values of r <^ 15, where r is

the molar ratio of hydrogen to chloride, NbCl, or GeCl~, in the gas phase

delivered to the reaction tube. As a result of the discovery of the
(2)

tetragonal T2 phase, much higher r values, 80 to 330, were subsequently

used to prevent the T2 occurrence. Nevertheless, the single element data

provided useful qualitative guidelines for the interpretation of co-

deposition results. Measured were: (1) the total reaction yield or ef-

ficiency, Y, defined as the ratio of the element mass deposited to the

element mass delivered in the form of the chloride, and (2) the longitu-

dinal profile of growth rate in the deposition tube. The experiments

have been performed using quartz substrate tubes of ^ 2.5 cm ID and

*Contract No. AFOSR-F44620-74-C-0042.
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various length. Helium was used as inert carrier gas. The total gas

phase velocity, v, was considered as one of the parameters of the process.

Figure 1 shows Y(r) for niobium at three temperatures. Yield

increases with T, and r (and eventually saturates at high r values).

Analogous results were obtained for Ge.

Figure 2 compares Y(r) for Nb and Ge at T = 800°C. The effi-

ciency of germanium chloride reduction was found to be higher than in the

case of NbCl, in the whole temperature range investigated (750 to 950°C).

Hence, a preferential deposition of germanium, and the resulting prefer-

ential depletion of gas phase, could be expected in the case of co-

deposition.

Figure 3 shows Ge growth rate profiles as a function of r.

With increasing r the reaction rate increased, the gas phase depleted

more, and consequently the profiles show a pronounced peak even before

the temperature reaches the plateau (T, = 800°C) on the inlet side of the

tube. Analogous results were obtained for Nb. The use of low r to

obtain flat film thickness profiles thus appeared desirable.

Figure 4 shows Ge growth rate profiles as function of total gas

velocity at r = 10. Higher gas velocities at constant GeCl™ delivery

were obtained by increasing the delivery rate of carrier gas. Hence,

changes in v are associated with changes in vapor phase dilution by the

inert carrier. Increasing v resulted in flattened rate profiles. This

was interpreted as the result of finite residence time required for the

reaction, rather than the effect of dilution. The effect of dilution was

separately studied by setting v and r constant at T, = 800°C, and varying

the delivery rate from 0.02 to 0.3 mole/hour. The yields were found to

be almost independent of the delivery within the above limits. The re-

sults for Nb were again analogous. Hence, the Y(r, T,, v) data provided

directly usable information for scaling and predicting growth rates.

The results shown above formed a base for assuming standard

conditions used in early co-deposition experiments. Assumed were:

T, ̂  900°C, r = 10, v = 500 cm/sec. The chloride delivery level was
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0.15 mole/hour for thick deposits and 0.03 mole/hour for thin layers. In

these conditions it was indeed possible to obtain relatively flat growth

rate profiles so that deposition of stationary substrate tapes, up to

0.3 m long appeared possible. However, once much higher r values were

implemented (to eliminate the T2 phase) with other deposition parameters

unchanged the rate profiles became much steeper. From that point on the
*

program centered on studying the x-profiles of the tape properties. No

attempts were made to flatten the profiles by increasing v significantly
X

above 500 cm/sec.

The gas delivery rates were already pretty high: <\/ 20 2,/min

for the H + He mixture. Also, v could not be increased significantly

without a transition from laminar to turbulent flow regime. Consequently,

the gas velocity, and the chloride delivery rates were maintained on the
**

previous level. Varied were: T,, r and s.

3. The CVD Gas Phase; Nb/Ge Ratio

An earlier publication described the CVD reactor and the

manner in which the gas phase Nb/Ge molar ratio, s, was controlled by the

Cl,, gas flows through the Nb and Ge chlorination beds. It was evident,

however, that the s value for the gas phase at the deposition zone was

somewhat different because of the formation of deposits in the reactor

mixing zone. Consequently, the deposits in the reactor mixers were

analyzed and some idea of the magnitude of the correction required for s

was obtained.

Two types of deposits occurred in the mixing zone: (1) a black

granular material and (2) a metallic coating. Chemical analyses of the

black deposit gave an average value of 42.2 wt. % Nb, 9.4 wt. % Ge,

48.4 wt. % Cl. This composition recalculates to (Nb, Ge)Cl_ „, consis-

tent with the existence of a black niobium chloride phase having NbCl-
"~

x is the position coordinate along the stationary tape.

**
s = NbCl4/GeCl2.
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composition. It is quite probable, however, that a mixture of chloride

phases was present. The metallic phase was chloride-deficient and very

variable in composition. In all cases, the black chloride-rich material

was predominant, e.g., for a typical series of runs (total running time

120 minutes) at deposition temperature, T, = 900°C, the total accumulated

black deposit in the mixing zone was 15.4 grams. The metallic deposit

amounted to less than a gram.

Material lost in the mixing zone has two effects: (1) the

total amount of Nb and Ge delivered to the deposition zone is reduced,

and (2) the value of s at the deposition zone is changed. For the series

of runs described above, the amount of Nb and Ge delivered was reduced by

26% and 36% respectively. Because of the larger reduction in Ge, the s

value correspondingly increased 14%. For economic reasons the loss of

material is a more important problem than a change in s value. Therefore,

in a commercial process, a system using NbCl- and GeCl, as sources of Nb

and Ge would offer advantages since gas mixing can then be done at low

temperature where mixing-zone deposits do not form.

4. The Nb-Ge Growth Rates and Yield

The deposited tapes have been cut into ^ 5 cm sections, and the

growth rate, h (in ym/hour) determined from each section deposit weight,

assuming a standard substrate weight. This way the growth or deposition

rate profiles h (x), where x is the position coordinate in the deposition

zone, could be obtained. The value x = 0 was assigned to a point where

the gas temperature reached a constant level, T . For x > 0, T = T, while

for x < 0, T < T,.

Table 1 presents h (x) data obtained at T, F 900°C, in the con-

stant temperature deposition zone, for various r and s values where s is

the molar ratio Nb/Ge in the generated chloride mixture (uncorrected for

losses in the mixing zone). Table 2 gives h (x) data for various T, and

extreme s values at a constant r = 200.
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** "̂ ĵ" ^^ in *^ -^ co co co co "vj" ^"

^d" *3~ voco r^*in coco cooo r^crv
vO <T r̂  vO CO vO in vO vO vO vO in

rHCO rHCO VOCO rHCO inCO rHCO

COvO COvO COvO COvD CMvO COvO

0 0 O 0 O O
m o m o in o
r̂ * co oo ON ON o

rH

mco rHi^> mcM -J-CM cTico mrH
r~r-- COCM i~~r~ oo oo mm vovo
CMCM CMCM COCO rHrH C M C M . C M C M

78



Both tables show that the growth rates decrease along the de-

position zone, i.e., with increasing x. This is a result of the gas

phase depletion, and generation of HC1 in the chloride reduction reaction

with hydrogen. At high deposition temperatures, and higher r values,

the reduction efficiency of both elements is high and the depletion more

pronounced. Hence, h. (x) decreases more steeply with increasing x. How-

ever, in the whole range of T,, from 750 to 1000°C, the rates are compar-

able, 40 to 80 ym/hour at x = 0, if r is sufficiently high, i.e., in the

range shown. For low r ̂ _ 10, rates are prohibitively low at 750°C due to

low reduction efficiency. Since low r values have been originally used

for Nb-Ge deposition, temperatures below T, = 800 to 850°C were con-

sidered impractical. The need for high r to prevent the formation of the

T2 phase automatically extended the temperature range down to 750°C.

However, the presence of Nb chloride lines (NbCl- ,,) was observed in
2. * D D

X-ray diffraction patterns of some deposits grown at 750°C thus indicat-

ing that the reduction was not complete.

Figures 5 and 6 show the h (x) profiles over the whole deposi-

tion zone, including the inlet zone (x < 0) where T < T,. In addition to

illustrating the stronger gas phase depletion effect at higher T, and/or

r, the graphs show that deposition occurs at a high or peak rate in the

inlet zone (x < 0) . For low s, set such that the tetragonal Nb,-Ge- (a

phase) deposits at x = 0, the h peaks at x <^ 0 are much higher than in

the case of A15 and shifted to lower x (lower temperature). This sug-

gests that the free energy of formation of the tetragonal phase is lower

than that of A15, and also that the gas phase is preferentially depleted

in Ge already at x = 0. A larger fraction of the deposit is thus lost in

the inlet zone. In consequence, for given T, and r the rates at x > 0

are similar for both, a and A15 deposits.

Table 3 gives effective yield data for the investigated range

of T,, r and s. The effective yield, Y ff, is defined as the ratio of the

mass of solid deposited on the 1.27 cm wide tape substrate in the constant

temperature zone (x = 0 to 40 cm) to the mass of metal converted into

chlorides. The values of Y ,.,. are uniformly low, 7 to 15%, due to:
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Table 3 - Yield of Solid Deposit on Substrate in
the Constant Temperature Zone, Yeff,
for Various Values of T^, r, and s

Run No.

275
273

231
227

375
372

211
212

195
183

196
191

259
253

265
261

Td
°C

750

800

850

900

950

1000

m

200

200

200

80

200

330

200

200

s

3.1
6.3

3.1
6.3

3.6
6.3

2.5
8.3

2.5
8.3

2.5
8.3

2.5
6.3

3.1
6.3

Yeff
%

15.9
13.6

12.8
15.3

10.4
12.8

14.9
15.4

10.4
14.1

9.0
8.3

7.2
10.0

9.6
10.1
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(1) losses in the mixing zone (Section 3), (2) deposition in the .inlet

zone (x < 0), (3) deposition on the walls of the reactor tube in the de-
.=•

position zone. The effective yield decreases slightly with increasing T,

and r, due to stronger depletion in the inlet zone which is also respon-

sible for the fact that in most cases Y cc (A15) > Y ._ (a). The total
efr eff

yield of the reduction reaction at high r is very high, approaching 100%,

when taking into account the mixing zone loss.

The level of h and Y „ appears acceptable for a fabrication

process, although higher values of h , of the order of 100 to 200 ym/hour

would be preferable from the economical point of view. However, if (2)

and (3) could be prevented, then at comparable h and Y a much flatter

h (x) profile could be obtained due to reduced depletion of the gas phase.

This possibility is discussed in Section 6.

5. Substrate Materials and Deposition Geometry

During the course of the work, the Nb-Ge films have been depo-

sited on various substrate materials. The typical substrate material was

a Ni-base stainless steel, Hastelloy B which was in the form of a tape

1.27 cm wide and 50 ym thick. Additional substrate materials were Cu,

Nb, polycrystalline alumina, single-crystal sapphire, Type 303 stainless

steel, and Cu-clad Nitronic stainless steel. No adhesion problems were

encountered in the case of Cu or Cu-clad materials, polycrystalline

alumina, or sapphire. Deposits on Nb required that the Nb be carefully

cleaned by etching (for oxide removal) with a solution composed of 50 ml

HNO-, 50 ml HF, 10 ml H.O. for the deposit to adhere. Unfortunately,

this was established by the end of the program. Deposits on Type 303

stainless steel were easily spalled away from the substrate due to strain

caused by thermal expansion mismatch.

For most of the studies, the substrate material was held on a

flat quartz sample holder designed to be positioned along the deposition

zone of the CVD reactor. In this geometry, therefore, deposition occurred

only on one side of the substrate, that surface exposed to the gas phase
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in the CVD reactor tube. As a result the tape was always deformed with

the top (Nb_Ge) side convex. A substrate uniformly coated by Nb_Ge on

both sides is necessary to fabricate a flat, undeformed conductor.

6. Moving-Tape CVD Reactor

In Section 2 it was shown that, because of reactor design and

the nature of the CVD gas-phase reaction, it was not possible to achieve

uniform Nb-Ge deposit properties in the stationary substrate reactor.

This was especially true after increasing r from 10 to 80 to 330.

It was also found that the reactor was unsuitable for tape coating

on all surfaces. Hence, the design, construction and test of a new

system was needed to obviate the above difficulties.

After preliminary experiments simulating the geometry of the

deposition zone, a moving tape reactor was designed and constructed. Al-

though the delivery of NbCl,. was found to be desirable (Section 3) , the

previous NbCl, generator was retained due to the lack of time for experi-

ments with low-temperature niobium chlorination. Use was made of fur-

naces, controllers, etc. employed in the previous, stationary system.

All the new, additional parts were supplied and/or fabricated at

Westinghouse expense.

The new, T-shaped reactor is again horizontal, due to laboratory

.space restrictions. All the tubing is made of vitreous silica. A sche-

matic diagram is shown in Figure 7 and the general view of the system is

shown in Figure 8. A special T-section furnace is employed to allow the

vapor mixture injection from the side (T-leg) while the substrate tape

runs through the straight tube (T-arms). Vapor locks and cooling chambers

at each side of this straight section permit the use of external drive

mechanisms. Adjustable stainless steel tracks inside the deposition zone

were initially provided to allow control of the deposition zone length

and position. After preliminary deposition experiments these stainless

steel tracks were replaced by quartz tubes to avoid deposit contamination

by steel components. Both symmetrical and asymmetrical (one side) tape
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coating should be possible owing to the use of exchangeable tracks.

Tape widths between 3 and 13 mm (1/8 to 1/2 in.) can be accommodated.

The motorized drive mechanism employing reels, 30 cm in diame-

ter, is fitted with a gear mechanism ensuring the tape speed control over

two orders of magnitude, from ^ 30 cm/hour (1 ft) up. In preliminary ex-

periments it was found that the drive operates satisfactorily at speeds

>^ 60 cm/hour. All the drive system components are mounted on carriages

positioned on a track bench to permit easy reversal of the tape motion.

The electric current heating of the tape was implemented to

reduce the gas phase depletion due to coating of reactor tube walls

(Section 4), and thus to extend the length of the useful deposition zone.

The tape was energized through carbon brush fixtures shown in Figure 3,

and attached to the vapor locks at the cold ends of the reactor. The

whole drive mechanism was electrically insulated from the track bench.

Temperature calibration was performed for Hastelloy tape substrates 6 mm

wide and 25 ym thick. Tape temperatures up to T = 850°C were attained

for deposition zone temperatures >_550°C.
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Nb3Ge AS A POTENTIAL CANDIDATE
MATERIAL FOR 15 to 25 T MAGNETS
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Pittsburgh, Pennsylvania 15235

ABSTRACT

Nb3Ge in tape form is presently the most likely material to

offer the promise of superconducting magnets in the 15 to 25 T range.

The purpose of this work was to determine at 4.2 K the field dependence

of critical current density, J (H), in fields up to 18 T parallel and

perpendicular to the plane of Nb3Ge films. The value of J - 1 x 109 Am"2,

obtained at 21 tesla for fine-grained, sputtered Nb3Ge having a critical

temperature of T =22 to 23 K and an upper critical field (HC2) in the

range 37 to 40 T served as a target for coarse-grained Nb3Ge samples pre-

pared by chemical vapor deposition (CVD). In such samples the elementary

fluxoid pinning was achieved by doping with a second phase such as tetra-

gonal Nb5Ge3, NbN, NbC, or NbCl3 in the form of fine particles dispersed

in the A15 matrix. At 18 T values of J = 1 to 4 x 108 A m~2 could be
c

obtained. However, the impurities responsible for effective flux pinning

Work supported in part by NASA-Lewis under Contract No. NAS3-20233.

Work supported in part by AFOSR under Contract No. F44620-70-C-0042
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also resulted in a reduction of T to 18 to 20 K and H_? to < 30 T. Ac-c a c -

cordingly, high field J values were depressed. A better trade-off be-

tween the level of flux pinning and T , HC2 degradation must be sought

for Nb3Ge grown by CVD.
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Nb3Ge AS A POTENTIAL CANDIDATE
MATERIAL FOR 15 to 25 T MAGNETS

* t
Michael R. Daniel, A. I. Braginski,

G. W. Roland,* J. R. Gavaler1" and A. T. Santhanam"1"

Westinghouse R&D Center
Pittsburgh, Pennsylvania 15235

1. INTRODUCTION

The Nb3Ge compound offers the promise as a candidate material

for superconducting magnets in the 15 to 25 T range at 4.2 K. Preliminary

work on thin films of the sputtered material revealed this A15 super-

conductor possessed an upper critical field (Hc2) typically around 37 T

at 4.2 K and a critical temperature (T ) of 22 to 23 K. Measurements of

the critical current density (J ) gave a value of 1 x 109 A m~2 at 21 T,

4.2 K, the highest recorded value at. this field. J values in the range

5 x 108 to 1 x 109 A m~2 at the operating field density and temperature

are considered adequate for constructing a magnet. Hence, Nb3Ge is

indeed a promising material for very high field applications. Growth of

Nb3Ge by chemical vapor deposition (CVD) lends itself readily to the

manufacture of lengths of conductor in tape form. The work reported on

herein concentrates on the CVD material. Other fabrication techniques

such as electron beam evaporation or high rate magnetron sputtering could

also be amenable to the production of lengths of tape conductor.
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2. TECHNIQUE

The CVD technique was a hydrogen reduction of Nb and Ge chloride

(2)
vapor mixture onto 50y thick, 1.3 and 0.6 cm wide Hastelloy B tape.

Reduction occurred in cylindrical tubes held at a deposition temperature

*
between T = 750 and 1000°C. Deposits of Nb3Ge were formed on one or

both sides of the Hastelloy B tape substrate and ranged in thickness from

5 to 10 y , typically. Both short samples and up to 4 meter long tapes

have been deposited.

For high-field magnet application, work concentrated on opti-

mizing J through the controlled introduction of second-phase impurities

into Nb3Ge. Scanning and transmission electron microscope analysis (SEM

and TEM) had revealed that single-phase (A15) Nb3Ge deposits possess large

grain structures (up to ly). These grain sizes were considered too large

for effective fluxoid pinning and thus high J values. The three princi-

pal impurities or dopants concentrated upon were tetragonal Nb5Ge3, NbN,

and NbC. At the deposition temperature of T, = 900°C the nitrogen and

carbon were introduced in gaseous form to the CVD reactor (as N2 and C2Hg,

respectively) while the Nb5Ge3 could be made to occur naturally in the

*
Nb3Ge represents here a generic formula for the high T superconducting

A15 phase. The actual composition of the deposit may deviate from the

ideal A3B structure.
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deposit through a control of the Nb/Ge ratio in the deposition atmosphere.

At deposition temperatures below T, = 900°C Nb5Ge3-doping was used. In

the range of T, = 750 to 800°C the hydrogen reduction of niobium chloride,

NbCl^, was incomplete due to low conversion efficiency. As a result, de-

posited films contained occasionally a dispersed lower chloride phase,

NbCl3, particles of which could also serve as fluxoid pinning centers.

One immediate and important consequence of the doping was a de-

(4)pression of T to 18 to 20 K and a corresponding reduction of Hc2.

This is shown later to lead to a depression of the high field values of

J .
c

The highest critical current and field values that have been

o
reported for Nb3Ge were measured on thin ("v 2000 A) films that were sput-

tered onto sapphire or alumina substrates. To make a more direct com-

parison between the CVD films discussed in this paper and sputtered Nb3Ge

films, the attempt was made to sputter high-T Nb3Ge onto metallic sub-

strates. The substrates used were Hastelloy and tantalum. Although

onset T 's were obtained, in some cases, over 20 K, it was found that re-

sults were not reproducible from run to run. Also even in the best sam-

ples, transition widths were large, AT being 'v 2 K or greater. Critical

current and field values in these films were found to be greatly inferior

to those obtained in sputtered Nb3Ge films which were deposited on sap-

phire and alumina. These results therefore cannot be used to make a

valid comparison between CVD and sputtered Nb3Ge. A final conclusion to

explain the difficulties thus far encountered in sputtering Nb3Ge on

metal substrates has not been reached. However it is tentatively believed
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to be associated with the greater difficulty in nucleating the high-T

phase when Nb-Ge is sputtered onto metallic substrates.
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3. MEASUREMENTS

High-field J measurements were performed at 4.2 K by the four-

point transport method on copper clad sections 3 cm long and 0.6 cm wide.

Measurements were made with the magnetic field both perpendicular (H )

and parallel (H ) to the sample surface. Measurements of the transition

ed on

(3,4)

temperature (T ) and upper critical field (Hc2) were performed on 1.3 cm

long samples using standard techniques described previously.
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4. RESULTS

Figure 1 compares TEM micrographs of Nb3Ge films prepared by

two deposition methods — low energy sputtering and CVD. Micrograph (a)

is typical of thin (< ly) sputtered films exhibiting high critical densi-

ties such as quoted in reference 1. Micrograph (b) shows a coarse micro-

structure of a 2.1y thick CVD deposit having a low J . Such a material

is of no practical interest. Finally micrograph (c) shows fine particles

of second phase dispersed in large grains of a Nb3Ge matrix. This micro-

structure is typical of CVD samples deposited at 750°C and having a J in

excess of 1 x 108 A m~2 at 18 T. The second phase particle size of

9 °a, 100 A is of the same order as the Nb3Ge coherence length - £ = 30 A at

4,2 K and should thus result in effective flux pinning. The X-ray phase

analysis of such samples allows one to infer that the second phase parti-

cles are Nb5Ge3. Direct electron diffraction evidence could not be ob-

tained due to the small volume fraction of particles not exceeding

5 vol. %. Samples deposited at 900°C contain particles of larger size,

300 to 600 A, irrespective of the nature of the second phase, i.e.,

whether it is Nb5Ge3, NbN or NbC. For Nb5Ge3 the second phase identity

could be established directly by electron diffraction. Of samples de-

posited at 900°C and characterized to date none had a J value as high as

those deposited in the 750 to 850°C temperature range. The degree of flux

pinning thus correlates with the particle size. Sections of all samples
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investigated exhibit a columnar microstructure which is easily visualized

(2)
by SEM. The X-ray diffraction data indicates texture which becomes

more pronounced with increasing film thickness. This texture is not

visibly affected by the presence of second phase impurities.

Table 1 illustrates the depressant effect of an impurity dopant

and of substrate on T and also on Hc2 of Nb3Ge. The data in Table 1

thus include Mb366 sputtered and chemical vapor deposited on sapphire as

well as Hastelloy B. The CVD samples deposited on Hastelloy are under

much higher compressive stress due to thermal contraction mismatch be-

tween Nb3Ge and the substrate. The resulting strain contributes to the

depression of T , and Hc2, even in the absence of doping. Additionally

a deposition on Hastelloy results in the formation of a Ni-rich diffusion

(2)
layer which has an adverse effect on T and Hc2 especially in thinner

films. Examples of high-field J values of CVD samples are given in

Table 2 for various deposition temperatures and second-phase dopants.

Figure 2 shows the high-field segment of J (H) curves determined for one

of the representative "best" samples deposited at 750°C . In this and

all other measured samples J (H ) > J (H ) at all field intensities.
c 1 - c M
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5. DISCUSSION

In a previous publication upper limits were put on J for

Nb3Ge which were based on Kramer's ideas of flux lattice shearing in

high field and used the J value of 1 x 109 A m~2 at 21 T to fix a nu-° c

merical constant. Figure 3 compares this limit with the highest J

values so far measured for CVD Nb3Ge (sample 277-12 contained

. This plot is particularly instructive. At low fields, below

10 T, optimization of J through doping is clearly well advanced. The

experimental curve of Figure 3 is approaching the theoretical upper limit

asymptotically. However, shortcomings are evident in the high-field

region where J is determined more by a flux shearing mechanism than

by flux, pinning through metallurgical defects. Optimum low-field pinning

has been achieved at the expense of the superconducting properties T and

HC2 and thus at the expense of the high-field pinning strength. Degrad-

ing T to 18 K and HC2 to 27 T has produced a superconductor with similar

properties to NbsSn (T = 18 K, Hc2 = 22.5 T) the dashed curve of

Figure 3.

A better trade-off between T , Hc2 and J will be necessary to

suitably raise J for making Nb3Ge tape for a high-field magnet. From

the properties of thin sputtered films we are led to conclude a best

trade-off is obtained for single-phase (A15) fine-grained deposits where

flux pinning occurs predominantly on grain boundaries. This could be

94



achieved by CVD, for example, by drastically affecting the Nb3Ge rate of

nucleation from the gas phase or through layering. Alternatively, high-

rate E-beam evaporation or magnetron sputtering could perhaps be developed

to achieved fine-grained high J deposits.

Whichever the fabrication method used such deposits should have

a nearly equiaxial, random microstructure to maximize flux pinning and to

achieve J (H ) = J (H ). This is of importance for superconducting
c _L c ||

solenoids since in center section the field is essentially in plane while

at the coil ends it is perpendicular. Finally, a tape substrate should

be sought which will minimize the strains and the diffusion of substrate

components into the superconductor.
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(a)

Single-phase (A15) sputtered film,
average grain size 350 A, deposition
temperature 750°C.

(b)

Single-phase (A15) CVD film, average
grain size 2000 A, deposition tem-
perature 750°C.
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(c)

Two-phase CVD film, average grain sizes, Nb3Ge
3000 A, Nb5Ge3 50 to 200 I, average particle
spacing, 300 to 500 A, deposition temperature 750°C.

Figure 1 - TEM micrographs of Nb3Ge films.
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