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A COMPUTER PROGRAM FOR CALCULATING LAMINAR AND TURBULENT
BOUNDARY LAYERS FOR TWO-DIMENSIONAL TIME-DEPENDENT FLOWS

by

Tuncer Cebeci* and Lawrence W. Carr

SUMMARY

There are many unsteady boundary-layer problems in which it is necessary
to account for fluctuations in the external flow. These fluctuations may
change in direction and magnitude and, in most turbulent flow cases, may be
regarded as low frequency fluctuations superimposed on the turbulence erergy
spectrum. The computer program described here provides solutions of two-
dimensional equations appropriate to laminar and turbulent boundary layers for
boundary conditions with an external flow which fluctuates in magnitude; it
can readily be extended to the more general case. It is based on the numerical
solution of the governing boundary-layer equations by an efficient two-point
finite-difference method developed by Keller and Cebeci [1]. An eddy-
viscosity formulation is used to model the Reynolds shear-stress term.

Here, after briefly describing the main features of the method, we provide
instructions for the computer program with a listing, and present sample
calculations to demonstrate its usage and capabilities for laminar and
turbulent unsteady boundary layers with an external flow which fluctuates in
magnitude. For further details of the metnod, the reader is referred to
reference 2.

*California State University, 1250 N. Bellflower Blvd.,
Long Beach, Calif. 90840.



I. INTRODUCTION

The calculation of the properties of unsteady boundary layers is important
to a wide range of applications including the blades of compressors, turbines
and helicopters. In each of these cases, the wakes of previous blades generate
a freestream velocity for a subsequent blade ./ith regular, time-dependent fluctu-
ations in amplitude and perhaps frequency. In the helicopter arrangement,
variable pitch also leads to a phase relationship between the blade surface and
the freestream flow. Discrete-frequency fluctuations of this type influence the
characteristics of boundary-layer flows at all Reynolds numbers. The present
report is concerned with a method, previously used by Cebeci [2], to allow the
efficient and accurate calculation of two-dimensional, boundary-layer flows in
the presence of a freestream which varies in amplitude at uniform frequencies.
The calculation method is, however, general and is readily capable of extension
to include freestream velocity distributions which vary in amplitude and fre-
quency, albeit over a limited range of frequencies; it can also be extended to
represent the time-dependent flow over arbitrary three-dimensional bodies.

The solution of the two-dimensional, boundary-layer equations with constant
viscosity, an unsteady convective term and a prescribed and unsteady longitudinal
pressure gradient is not novel and corresponding calculations are included here
to allow the capabilities of the present numerical procedure to be compared with
alternatives. McCroskey [3], in a recent and comprehensive review, has sugaested
that the earlier reviews of Riley [4] and Patel [5] provide an essentially com-
plete theoretical understanding of unsteady laminar flow in the absence of strong
pressure gradients. The present method can be used to generate solutions for
strong pressure-gradient situations, if required and, with the aid of the Mechul-
function approach of reference 6, to calculate through small regions of separated
flow. In flows where the direction of velocity reverses and solutions can be
obtained without inverse methods, the zig-zag modification to the Box scheme
used by Cebeci [7] to calculate the properties of the laminar flow over a cylinder
started impulsively from rest, is likely to be necessary.

An important emphasis of the present work is on the application of an effici-
ent, accurate and general numerical procedure to the calculation of unsteady
boundary-layer flows. Accuracy, with efficiency, is necessary if practical



calculations are to be performed through regions of flow separation or over three-
dimensional geometries and the present two-dimensional calculations provide a
basis for the mor: general purposes.

In formulating equations for turbulent flow which are similar in form to
those for laminar flow, it is presumed that the eddy viscosity represents all
turbulent viscous effects. The unsteady effects of the freestream are super-
imposed on the turbulence spectrum through the time-dependent convective term.
Alternative, but invariably more complicated, approaches are possible. For
example, turbulence energy equations can be solved with frequency or wave number
as dependent variables or the subgrid-scale modelling approach can be used with
solutions of time-dependent equations only at the lower frequencies. The present
eddy-viscosity formulation has the advantage of simplicity and has a wide range
of applicability. It is likely, however, that higher-order turbulence models
will be required to represent flows with strong favorable and adverse pressure
gradients even though the present method can be adequate for some separating
boundary layers as shown here.

The report has been prepared with three main sections describing, respec-
tively, the calculation method, the computer program and sample calculations.
The description of the calculation method is brief since the equations, the
turbulence model, coordinate transformations and solution procedure have been
discussed in detail, for example in reference 2. The computer program is
described in sufficient detail to allow it to be used and the samp.e calcula-
tions are also described in a manner which is intended to assist a user. The
results presented, as a consequence of the sample calculations, demonstrate
that the program can conveniently lead to precise results for steady and unsteady
laminar and turbulent flows and suggest that future extensions to include free-
stream velocities which vary in amplitude and frequency, to separated flow and
to three-dimensional flow can readily be achieved. There is, however, an inade-
quate range of experimental data against which to evaluate the calculations.

The report ends with a brief discussion and summary conclusions.

ORIGINAL PAGE IS
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II. DESCRIPTION OF THE METHOD

2.1 Boundary-Layer Equations in Physical Variables

The governing boundary-layer equations for incompressible unsteady
laminar and turbulent boundary layers are:

Continuity
3U , 3V .
x 3y 0 (1)
Momentum
U ou
u u, ,ou__¢€ _e 13 1 RS- rv o
st TUx T Vay Tat Tl oy [“ ay _ PuY ] (2)

and are considered here with the following boundarv conditions for the wall
and for the outer edge of the boundary layer:

y=20 u,v = 0 (3a)
y e u > ug(x,t) (3b)

To complete the formulation of the problem, initial conditions must be
specified in the (t,y) plane for «x = x, and in the (x,y) plane for t = t,
Here we consjder a flow in which at time t = 0, the flow field is given by
steady-state conditions; and, for t > 0, the external velocity ue(x,t)

fluctuatesfrom the steady-state velocity uo(x) according to the expression
ue(x,t) = uy(x)(1 + B cosuwt) (4)

At time t = 0, the flow can be either laminar or turbulent. In the latter
case, the surface distance x must be greater than zero. The initial con-
ditions in the (t,y) plane at x = 0 are obtained from the similarity
solutions of (1) to (3) for laminar flows as described in detail in
reference 2 and later in this report.

2.2 Turbulence Model

The present calculations use the eddy-viscosity concept to model the Reynolds
shear stress term of equation (2). According to the formulation described in



reference [2], the eddy viscosity is defined by
— Ju
-pu'v' = PEM By (5)

with two separate formulas used to reprecent the inner and outer regions of the
boundary layer. In the so-called inner region of the boundary layer, €n is
defined by the formula

(eg)y = 10.4y [1 — exp(-y/A) 1} l% (6)
where

- - T \1/2
A= 26001 - 118001 + 0012, o =(_w_) ,
vu_d

P
(7)
Pt kI an Py * T3 dx
u
e T
In the outer region, ¢, is defined by
(eg)g = & Jlug —uddy (8)
0
where
_ 1.55
a = 0.0168 13> ,
T =0.55 [1— exp(-o.243z}/2 - 0.2982;)1, (9)
and zy = Re/425 -1

The inner and outer regions are established by the continuity of the eddy-
viscosity formulas.

2.3 Governing Equations in Transformed Variables

Before the governing system of equations described above is solved by
the numerical method to be described in the following section, they are first
expressed in transfurmed variables which are defined by

uo(x)Jm
y

vX

X = X, t=t, n= [ (10a)



In addition, a dimensionless stream function f(x,t,n) defined by

v = (vxuo)‘/z f(x,t,n) (10b)

is used to satisfy the continuity equation and to express the momentum equa-
tion (2) as a third-order equation. Here U, is some reference velocity
and y 1is the stream function defined by

= . _ 9
u=gy s vE-g (1)

With equations (10) and (11) and with the definition of eddy viscosity, the
continuity and momentum equations, (1) to (2), and their boundary conditions
(3) may be written as
ll‘. P+] " IZ ! .3f 8'
(") + Il een —p(sr) +P3=x(f'%{—-—f'——+%-—f-—) (12)

n = 0; f=f"=0, n->on_, f' = ue/uo (13)

Here primes denote differentiation with respect to n and

< lgm

du u u
( (14)

v U = X e = X _..__é_ £ = + +

L Uy P u, dx ° P3 ;7 Ye 3x * 3T ) s b=t o
0

The initial conditions at x = 0 in the (n, t) plane for a laminar flow

are obtained by writing (12) as

fll|+ P + 1

o p(f')2 = x_ of'
ff P(f')" + P3 u 3t (15)
Note that, although for a flat-plate flow the right-hand side of (15) is
equal to zero, for stagnation-point flow (uo = Ax) it is not. For this
reason, the slope A(zdue/dx) must be specified for flows which start with
a stagnation point.

The initial conditions at t = 0 in the (n,x)-plane for a laminar or
turbulent flow are obtained by writing eguation (12) as

(bF") + P._;_'_ e — P(F)2 + Py = x(f‘ g: - f" 3 / (16)

1Y
omumAL P"&m
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Equation (16) expresses conservation of momentum in transformed variables for
steady-state conditions. Here P3 is given by

_x e
P3 = "7 Y% (17)
0

In terms of transformed variables, the eddy viscosity formulas become

(ch); = 0.16R/%:2 1£] [1 - exp(-y/A)]1? (18a)
(ch)y = oRV/2 [Fin, ~£.] (18b)

where the subscript o« refers to the boundary-layer edge and the parameters

Ry and y/A are given by

1/4 gy 1/2
u X R, "(f")
A R S LR OS T WIKL (19)

\Y

2.4 Solution Procedure

We use the numerical method of reference 1 to solve the system of equa-
tions described in the previous sections. This is an efficient two-point
finite-difference method developed by Keller and Cebeci L1] and extensively used
by Cebeci for two-dimensional and three-dimensional flows (see for example,
references 8 and 9). A detailed description is presented in references 8 and
10and s not repeated here.

One of the advantages of the numerical method s that nonuniform net
spacings can be used in the t, x directions as well as across the boundary
layer. In the latter case, the nonuniform grid is a geometric progression
with the property that the ratio of lengths of any two adjacent intervals is
a constant; that is, Anj = KAnj_]. The distance to the j-th line is given
by the following formula:

oy = am (K = 1/(K=T) K1 (20)

There are two parameters in equation (20): any, the length of the first step,
and K, the ratio of two successive steps. The total number of points J can
be calculated from the following formula:



[l + (K= 1)(n/any)]
J = Tn K (21)

In the computer program which embodies the present solution method, 4n, and
K are chosen with typical values, for moderate Reynolds numbers, of 0.01

and 1.3, respectively. In general, approximately 50 grid nodes across the
boundary layer are sufficient to represent laminar and turbulent boundary-
layer flows and, for this reason, the present computer program restricts the
number of nodes across the boundary layer to 61. Consequently, the chosen
values of AnT and X must be such that the formula which generates the
number of grid nodes according to a given or estimated n_, i.e. equation (1),
does not allow J to exceed 61. Figure 1 is provided, therefore, to provide
guidance in the selection of J.

1.24¢

d

1.20}
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n/hy x 1072

Figure 1, Variation of K with Any  Tor different n-values.



In the present program we march along the t-direction. For a specified
x-location, the governing equations are solved for each specified t-station.
Since a linearized form of the equations is being solved, we iterate at each
t-station until some prescribed convergence criterion 1s satisfied. For both
laminar and turbulent flows we use the wall-shear parameter f; as the basis
for the convergence criterion. For laminar flows the calculation is termin-
ated when

o] < 107 (22a)

For turbulent flows the error in f& is expressed as a percentage and the
calculations terminated when

25f),
6?“ + ??ll < ]0
w

w

-l (22b)

In the present method, the flow is laminar at the leading edge, starting
either as a flat-plate flow or as a stagnation-point flow, and can become
turbvlent at any specified x-station greater than zero. When the transition
location is not known experimentally, Michel's transition correlation formula
given in reference 6 is used. According to this formula, transition is pre-
dicted by the expression

' - 0.46
Retr 1.174[1 + (22,400/Rx)]Rx (23)

0.1 x 10° < R_ < 40 x 10°

Previous comparisons with experimental data have shown that this formula works
well for steady incompressible flows.

For & given time-dependent external velocity distribution, according to
equation (4), and geometric configuration, the present computer program deter-
mines the profiles of f, f', f", b as well as the axial distributions of the
boundary-layer parameters &%, 6, Ces Rs*, Re’ Rx’ H. It also computes the
reduced frequency &, the phase angles between wall shear and external veloc-
ity, the phase angle between displacement thickness and external velocity for
both laminar and turbulent flows, the in-phase and out-of-phase components

GE B
AL PA
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of an oscillating turbulent flow. The basic details of the computational pro-
cedure is described in the next two sections.
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ITI. DESCRIPTION OF THE COMPUTER PROGRAM

3.1 Input

Essentially tne input tc the computer program consists of five types of
cards. Card 1, shown below, contains the title of the flow problem under
consideration.

T3]

b
E

11213 a]sfef2|ele 19!:11;1;1"15}!61 u{lcz'x::"i?;i[uurs?';:f
TITLE

A \ :-sunlas;\«]"‘m 1A g Pebrimprvpc

Li 4t r t i 84t 0 0 0 2 2 & s ¢ 8 L B $ 2 B 2 8 1 .1 LA 4 1 8 3 8 8 4 8 2.2 0 2 2 92 2. 1 g

Load Sheet for Card 1

The input is punched as an 80-column alphanumerijc field.

Card 2 requires the following information to be specified. The input is
in 1013 format.

12131418 (8]7 8 o3 1P ljllllilon'! 19120021822 J?‘L 212728 VJ(J
NxT] NzT| NTR | 180¥ 15D | 1P2 |INTR|KPHAlIPOR] N
I | 11 1) 41 i | 11 L1 1.3 11 LI_J/

Load Sheet for Card 2

NXT Total number of t-statjons to be calculated

NZT Total number of x-stations to be calculated

NTR x-station where transition begins. For all laminar flows, or flows
for which transition is to be calculated input
NTR > NZT.

IBDY Specifies whether the flow at x = 0 starts as a flat-plate flow or

as a stagnation-point flow.
=1 flat-plate flow
=2 stagnation-point flow

URIGINAL PAGE IS
CF POUR QUALITY,
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ISD Surface distance flag. If surface distance is calculated the
pressure gradient parameter P denoted by P2 1is also calculated
from the external velocity distribution specified in card 5.
=] surface distance calculated
=2 surface distance input

IP2 P, flag: This option allows the pressure gradient parameter to be
either input or calculated from the given external velocity distri-
bution. If 1ISD=1, IP2 must also be equal to 1.
=1 P, calculated
=2 Py input

INTR Transition flag
=1 transition calculated according to (23)
=2 transition input

KPHA Phase angle flag. This flag provides the calculation of phase angle
between wall shear and external velocity and phase angle between
displacement thickness and external velocity for both laminar and
turbulent flows.
=0 phase angle is aot calculated
=1 phase angle is calculated

IPOP Flag for in-phase and out-of-phase components of an oscillating
turbulent flow on a flat plate.
=0 not computed
=1 computed

N Number of t-stations in one cycle to perform the phase angles or

in-phase angles or out-of-phase components.

Card 3 requires the following information to be specified. The input is
in 7F10.0 format.

L)
12]3]a}s 517 sfofrofihaf msuon‘ul;mnn N24j24 26| nsl:nc.v 33]34135136[37038 vy

ETAE DETA(1) VGP ~ YINF

L1 b 1)t i L i 4 ¢t 1 @ [ IO O Y N T N | (T TR TN YA T T N O 1

Load Sheet for Card 3

12



1A L!l!{‘olﬂﬂlhqdd)! b3 AILE wﬂ“\a:wldmln{oloa Qo‘iu[w"(]

CB OMEGA CA ; E

t a4 Lt 1 ¢t 2.l (IO B T W T W T ) [N WO S W N I S T |

Load Sheet for Card 3 {(continued)

ETAE iransformed boundary-layer thickness, n_

DETA(1) Initial an spacing, any

VGP Variable grid parameter, K
UINF Reference freestream velocity, u_ (ft/sec)
c8 Amplitude of the fluctuating external velocity B

OMEGA Radial frequency « (rad/sec)
CA Slope of velocity at the stagnation point of an airfoil, (duO/dx)x=0

Card 4 contains the input t-stations which are read in F10.0 format.

!:Jaselrsom

X

U T W T T

Load Sheet for Card 4

Card 5 contains the geometry of the two-dimensional body and the steady-
state external velocity distribution uo(x), or the dimensionless pressure
gradient parameter P(x) in 3F10.0 format. The geometry of the body is
either read in by specifying the surface distance of the body or is computed
from the (x/c) and (y/c) coordinates of the body. Here ¢ is a
reference length of the body, which for an airfoil is usually taken as the
chord. The computer names for the usual (x/c), (y/c) coordinates are
denoted by ZC and YC, respectively. Note that when surface distance
denoted by Z in field 1, is to be calculated, then the third field must
contain the external velocity distribution from which the pressure gradient
P2 must be calculated. If surface distance Z 1is input, and P2 is to be
calculated, the third field may be blank. There will be NZT cards of this tvoe.

13



t{2{374]s|of ~|8[o 12 quum{uezon}::{z:qujasx:rbaln

ICor Z YC or U0 uo or P2

[T D I S | | T T B P 2 0. ¢ 1 3 .t 1

L ad Sheet for Card 5

3.2 Output

Station header

NX number of t-station

NZ number of Xx-station

X t, time coordinate

Z X, Space coordinate
Iteration print

V(WALL) f;

DELVW afy

Transition values — if INTR=1 (Card 2), these values will be printed
close to transition
RTHETA Rg > determined from the boundary-layer calculations.
RTHT (Rg)¢ps computed according to formula (23) for a given R_.

If transition occurs and a station is interpolated, we print out rew values
of P2, U0 and Z which correspond to P, Uo and «x.

The output boundary-layer parameters include profides f, f', f" and b
function of the similarity variable n and grid parameter Jj. Here

ETA n

F f! ORIGINAL PAGE IS
y " OF POOR QUALITY
v f

B b (=1 + e;) equals 1.0 for laminar flows

Thev also include disnlacement thickness &*, momentum thickness 6, local
skin-friction coefficient Ces Reynolds numbers based on &*, 6 and x, that

is, Rd*’ Re and Rx shape factor H. The definition of these parameters and
their computer notation is

14



DELSTR

THETA

CF

RDELST

RTHETA

RZ

H

Irn terms of transformed

In addition to the
reduced frequency ¢ (=

§* = { (1 - u/uy)dy

0 = gr u/ue(l - u/ue)dy

Cf'—'Z'rw/pus
- *
R* suolv
Re = Ouo/v
Rz = -uolv
§*/6
variables, 6&*, 8 and Cg can be written as
* = _2Z '
& = —[n_~—f_/f]
R
2
n‘”fl )
0 = fer (1= {r)dn
xo x o0
fll
cf=2_w__
R,

above data, the computer program also prints out the
mx/uo), the phase angle between wall shear and external

velocity, phase angle between displacement thickness and external velocity for

both laminar and turiulent flows.

For turbulent flows it also computes the

in-phase and ou.-of-phase components of an osci]l%ting turbulent flow on a
flat plate ¢, described in section 4.4.

15



IV. SAMPLE CALCULATIONS

The present computer program can be used to determine the properties of
two-dimensional laminar and turbulent boundary layers for steady and unsteady
flows. In order to demonstrate its capability and its input requirements, a
number of sample calculations are presented in the following subsections.

4.1 Steady Laminar Flows

The nonsimilar laminar flow for which the inviscid velocity distribution
is given by

u = u_(1 —-§-x) (24)

is commonly referred to as Howarth's flow and has been computed extensively

and accurately. Since this is a steady flow, we choose NXT=1. According to
previous calculations, flow separation takes place at x = 0.96 and thus, by
choosing Ax *o be uniform and equal to 0.05, there are 21 x-stations to

x = 1.0. Consequently, we set NIZT=21. By setting NTR greater than NIT, say
50, we avoid the turbulent flow calculations. Since this flow starts as a
flat-plate flow (P2 = 0), we let IBDY=1. We also set ISD=2, INTR=2 and by
choosing IRZ=1, we ask the program to compute P2. We also set KPHA, IPOP N
equal to zero.

The transformed boundary-layer thickness is constant for most steady
laminar flows and a value of 8 is sufficient. For this reason a value of 8
is read in for ETAE at the first x-station. If needed, for other x-stations,
the boundary-layer thickness would grow internally.

In general 40 to 50 node points across the boundary layer are sufficient
and, for laminar flows, VGP should be set equal to 1.0. Therefore, by choosing
VGP=1.0 and DETA(1)=0.20, we take 41 points uniformly spaced across the
boundary layer. We let UINF=1.0. Because this is a steady laminar flow, we
set CB=0, OMEGA=0. Also we set CA=0 since the flow starts as a flat-plate
flow.

16



In card 4, we set t(=x)=0, and in card 5, since the surface distance is
read in, we fill in the 21 x-values as 0, 0.05, 0.10, etc. under 2z, and the
values of U0 as 0, 0.9937, 0.98750, etc. under UOQ.

Figure 2 shows the computed wall shear parameter f"(0) as a function of
x. The results agree well with those reported in the literature, see for
example [8]. The wall shear parameter f"(0), which is positive at x = 0.95,
becomes negative at the next input station, x = 1.0, indicating that flow sepa-
ration has taken place between 0.95 < x < 1.0. According to the extrapolation
shown in figure 1, the flow separation takes place at x = 0.96, and this agrees
well with other calculations. When f"(0) becomes negative, the calculations
are terminated internally.

4.2 Steady Turbulent Flows

To test the computer program for steady turbulent flows, we have chosen
three experimental incompressible flows from the data reported at the Stanford
Conference on Computation of Turbulent Boundary Layers [11], i.e. the flows
identified as 1400, 2100 and 3300.

0.40[
0.30f
GE ¥°
P e
JoINAL Ty
o
fu 0.20}
0.10}
2 . - . 3
0 0.2 0.4 0.6 0.8 1.0

X

Fiqure 2. Computed wall shear parameter variation with x for Howarth's flow.
The circles denote those computed by Cebeci and Smith [8].
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Flow 1400 corresponds to a boundary layer with zero pressure gradient and
the experimental data is due to Wieghart. Flow 2100 corresponds to a boundary
layer with an initially favorable pressure gradient followed by a zero pressure
gradient and an adverse pressure gradient that causes the flow to separate; the
experimental data is due to Schubauer and Klebanoff. Flow 3300 is an equilibrium
boundary layer with an adverse pressure gradient, and is due to Bradshaw.

In making these calculations we have first computed a zero pressure gradient
flow to matcn the initial conditions provided by the experiment. Then we
specified the measured external velocity distribution as a function of x and
performed the boundary-layer calculations. In all cases, we have taken Any = 0.01
and K= 1.3.

For flow 1400, an arbitrary x-distribution was selected with x = 0, 0.01,
0.05, 0.10, 0.25, 0.50, 0.75, 1, 1.6, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18,
21 and U = 108 ft/sec. The transition location was specified at x = 0.01
and the calculations performed for NXT=1 and NZT=22.

Figure 3 allows a comparison of calculated and experimental values of the
local skin-friction coefficient, Ce» as a function of Re‘ The agreement
between calculated results and experimental results is similar to those shown
by Cebeci and Smith calculations for steady flows [8].

For flow 2100, we have chosen a flat-plate of length approximately 2 ft
with Up = 117 ft/sec to match the experimental velocity profiles at x = 2 ft.
Further downstream, the experimental velocity distribution, Ugs Was
specified as a function of x and the calculations performed for a total of
30 x-stations (NZT=30) and for one-time station t = 0 (NXT=1). Figure 4
allows a comparison of the calculated and experimental shape factor H, Reynolds
number based on momentum thickness, Rg» and local skin-friction coefficient,
c.. As before, the agreement between calculated and experimental results is
similar to that demonstrated previously by Cebeci and Smith in steady flow
calculations [8].

18
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Figure 4. Comparison of calculated and experimental results for flow 2100.
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For flow 3300 we have again chosen a flat-plate of length 6 ft and
Uo = 125.63 ft/sec to match the first experimental velocity profile given by
Bradshaw at x = 2 ft. After that, the experimental velocity distribution was
specified and the calculations performed for a total of 22 x-stations (NZT=22),
14 of them corresponding to the flat-plate flow. Figure 5 shows the calculated
and experimental shape factor H, Reynolds number baseu on momentum thickness,

Re’ and local skin-friction coefficient, Cee

4.3 Unsteady Laminar Flow on a Flat Plate

According to Lighthill's analysis [12], the phase anale (¢) between the wall
shear and the external velocity distribution for a laminar flow on a flat plate
for which the external flow is oscillating according to equation (4) is given
by separate formulas depending on whether the reduced frequency w(wa/uo) is
much smaller or much greater than unity. In order to test the present method
for this flow and with a range of reduced frequencies, the following procedure
was adopted to determine the phase angle between ue(xo,t) and f&(xo,t). The
values of uo(xo) and ?g(xo) are first computed from the expressions

] o P
uy(xy) = 5 f ug(x,ot)dt (31a)
t0
1 o.P
Xy = 5 f £ (x»t)dt (31b)
t0

where p = 2¢r/w and represents the period of the oscillation of the mainstream.
From equation (4),
ue(xo,t) —-uo(xo) = A coswt (32)
where A = uo(xo)B. Similarly, we can write

f&(xo,t) —»f;(xo) = C cos[ut + ¢(x0)] = C[cosut cos¢(x°) - sinut sin¢(xo)]

(33)

ORIGINAL PAGE IS 21
OF POOR QUALITY



2.0 ¢

aQ A o) We) (0] @) (o) (¢]
H 1.0
0 e { ] | 1 L
0 1 2 3 4 5 6 7
x-ft
30,000 [
20,000 }-
RB
10,000 |-
0 L L 1 ] J
0 1 2 3 4 5 6 7
x-ft
0.004 ¢ PRESENT METHOD

o DATA OF BRADSHAW

OON\
-~ ©
ce 0.002 0 o o o
0 1 1 L 1 L ) J
0 1 2 3 4 5 6 7
x-ft

Figure 5. Comparison of calculated and experimental results for flow 3300.

22



with ¢(xo) denoting the phase angle between u,

Integration of the product of equations (32) and (33) leads to

and fw at x = Xy

t0+p
S Dglt) — (1)1 - D830t - T e
cos¢(x ) = 0 y (34)
with
£+
A2 - ‘-:— f [ue(xo,t) - uo(xo)]zdt (35a)
tO
t0+p —
=2 f [£olxg.t) — fa(x )T dt (35b)
tO

In order tv perform the calculations for one cycle, we must choose al
according to the formula

At = '(N—E-Ty (36a)

where N corresponds to the total number of t-stations, that is, NXT. Intro-
ducing the definition of p into equation (36a), we get

At = ;(-N—_z_lry (36b)
and compute
t, = nat, n=1,2, ..., N (36¢)

In our calculations for this case, we have chosen B = 0.125, « = 1.57 rad/sec,
u, = 160 ft/sec, on; = 0.25, K =1.0 and computed at from (36b). For
N = 20, corresponding to one cycle, equation (36b) gives

GEB
{GINAL PA
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- 2n -
At = T.57(20) - 0.20

Then t, = 0, t, = 0.20, t, = 0.40, ..., ty = (21 —1)at = 4.0. If we want
to perform the calculations for two cycles, then NXT=41 with at = 0.20 so
that ty = 8.0. For three cycles, NXT=61 with At = 0.2 and ty = 12.0.

Figure 6 presents results obtained from the present procedure and those
predicted by Lighthill's analysis: as can be seen, the results are in close
agreement at the two asymptotes. The res.lts are also ir good a;reement with
the numerical computations of Ackerberg and Phillips [13]. They show that if

B < 0.125, Lighthill's low-frequency approximation to the phase angle is satis-

factory for % < 0.2 and his high-frequency approximation is satisfactory
for w > 2.6.

The calculations _own in Table 1 also indicate that it is desir-
able to compute or two periods in order to determine the phase angle
accurately. The results of figure 6 were obtained by computing two periods.
Additional calcalations indicated that the phase angles computed for three
periods did not differ from those computed for two periods.

50 [ ,  LIGHTHILL, HIGK FREQUENCY APPROX
— . // - -
40 [ /
O
¢ / LIGHTHILL, LOW FRESUENCY APPROX
T
20
0
O 4 | i J
0.25x /2 0.75n
Y
[}

Figure 6. Comouted phase angle between wall shear and external velocity for a

laminar flat-nlate flow.
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Table 1. Computed Phase Angles Between Wall Shear and
External Velocity According to (4)

¢'l'
One Two
N\

o Cycle Cycles
0.157 14.64 14.64
0.314 25.40 25.30
0.477 32.25 31.79
0.628 36.28 35.20
0.785 38.86 36.99
C.942 40.60 37.91
1.099 42.00 38.58
1.256 43.13 39.20
1.413 44.13 39.95
1.57 44.96 40.77
1.°.7 45.70 41.64
1.884 46.31 42.45
2.041 46.85 43.18
2.198 47.29 45.76
2.355 47.67 44.23
2.512 47.98 44 .57
2.669 48.26 44.82
2.826 48.49 44.98
2.983 48.70 45.09
3.140 48.87 45.13

The procedure used for calculating the phase angle betweer the wall shear
and the external velocitv distribution can also be used to compute the phase
angle b~tween the displacement thickness, ¢&*,

&* z‘J/~(1 —-g—ody
0 e

and the external velocity. This is achieved by replacing equation (31b) by

] fo:P
6*lxo§=5- f 6*(xo,t)dt
t

and modifying equations (33), (34) and (35b) in a similar way. In general, at
low frequencies and at high frequencies, the computed phase angles for one
cycle and for two cycles are nearly the same (see Table 2). At moderate fre-
quencies the ones computed by using tw ycles differ from those
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Table 2. Computed Phase Angles Between Displacement
Thickness and External Velocity According

to (4)
OG*
. One Two
W Cycle Cycles
0.157 169.56 169.57
0.314 163.03 163.16
0.477 160.06 160.71
0.628 159.70 161.20
0.785 160.73 163.42
0.942 162.35 166.50
1.099 164.12 165.85
1.256 165.87 173.06
1.413 167.50 175.80
1.57 168.99 177.58
1.727 170.35 177.68
1.884 171.57 176.88
2,041 172.66 176.18
2.198 173.60 175.76
2.355 174.37 175.60
2.512 174.92 175.56
2.669 175.30 175.53
2.826 175.49 175.42
2.983 175.49 175.05
3.140 175.40 174.47

obtained by using one cycle. The difference is probably due to the truncation
error and can be avoided bv taking more points across the boundary layer.

Figure 7 presents the computed phase angle results, using one cycle for
this case. It is seen that at about the same reduced frequency @ = 3.0 for
which ¢ reaches it maximum value of 45°, b g reaches its maximum value of
175.5° (one cycle).

4.4 Unsteady Turbulent Flow on a Flat Plate

An unsteady turbulent boundary-layer flow on a flat plate is considered
in this subsection which indicates how the computer program can be used to cal-
culate the flow characteristics corresponding to the configuration of Karlsson
[14]. The procedure for computing the in-phase and out-of-phase compcenents of
an oscillating turbulent fiow over a flat plate is also cutlined. For simplicity,
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Figure 7. Computed phase angle between displacement thickness and external
velocity for a laminar flat-plate flow.

Karlsson's notation is used and denotes the x-component of the velocicy within
the boundary layer by

u(x,y.t) = ulx,y) + ot cos¢ coswt ~uf) sing sinut (37)

Since f' u/uo, this expression can be written as

u f' (1) (1) sing sinwt (38)

0

ulx,y) + u''’ cos¢ coswt —u

Using equation (4) and denoting u B = u(l), equation {38) can be written as

0

[ e ]) (])

u f u u( cOs¢ u 51n .

= = + coswt — ———n—y——l sinwt (39)
ulli LN uS])

u

o0

To compute the in-phase component u(]) cos ¢/ui]) from equation (39) we
multiply both sides of that expression by coswt and integrate with respect to
t from 0 to 2w/m to obtain

(]) 2ﬂ/w

u__cos f f'(n,t) cosutdt (40)
0

o} —

= &
m
u

o«

Similarly, we multiply both sides by sinwst and integrate to determine
the out-of-phase component, i.e.
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(]) 217/0)

“_.(Tg_f_"i,-

u, 0

f'(n,t) sinutdt (a1)

of =

2 |e

As in the phase-angle calculations, the in-phase and out-of-phase component. of
the oscillating flow must be computed with uniform steps in at as discussed in
section 4.3. We approximate equations (40) and (41) by [recalling (f')g

= f‘(nj,tn)]

(1) N-1
X3 2 )
u un‘):os TBW-T) ‘\?5 (F})" cosut, “2)
© n=
u(]) sin 2 - n
_:n_)__l= ..-B-(N—:—n-zo (fj) sinut, (43)
0 n=

Figure 8 shows the caiculated values of the in-phase and out-of-phase components
for ui”/u0 = 14.7% and w = 25.133 radians/sec or w/2r = 4 cycles/sec.

These calculations ware started as laminar at x = 0 for the external flow

given by equation {4) with Uy = 17.5 ft/sec. The ax-spacing for turbulent
flows was one foot. The turbulent flow calculations were started at x = 0.01 ft
and the experimental velocity profile matched at x = 12.5 ft (see fig. 6 of
[7]). Altogether a total of 14 x-stations and 25 t-stations corresponding to

two cycles were used. Computed results for one cycle and for two cycles show
that for all practical purposes the results are the same.

1.2

1.0

0.2

IN-PHASE 5. 40.1  OUT-OF-PHASE

0.4
— ORIGINAL PAGE 13
0.2 T ————— 0 OF POOR QU
ol n ] L A 1

0 16 20 30 " 40 50 60 70

Fiqure 8. Computed in-phase (——) and out-of-phase (-~ — -—) components of an
oscillating turbulent flow for Karlsson's data.
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Table 3.

N

.
11.49
12.93
14.36
15.80
17.23
18.67

Computed Phase Ang'es Between Wall Shear and
External Velocity According to Equation (4)
for Turbulent Flows, w/2r = 4 cycles/sec,

B = 14.7%.
¢T
One Two
Cycle. Cycles
21.83 20.17
22.44 21.44
22.92 21.89
23.36 22.34
23.61 22.61
23.87 23.06

According to the computed results, we aiso observe tnat the phase angle
petween the displacement thickness and axternal velocity show some sensitivity
depending on whether one uses one cycle or two cycles as shown in Table 4.
However, the difference is relatively smut1 and can probably be avoided by
taking more x-stations and more grid points across the boundary layer.

Table 4. Computed Phase Angles Between Displacement

v
W

11.49
12.93
14.36
15.80
17.23
18.67

Thickness and External Velocity According
to Eq. (4) for Turbulent Flows, w/2n = 4
cycles/sec, B = 14.7%.

L

One Two
Cycle Cycles
1R2 02 1A1.89
169.57 155.11
170.13 163.51
169.93 170.04
174.08 173.96
172.23 171.25

4.5 Unsteady Laminar and Turbulent Flow on an Airfoil

To compute a Taminar and turbulent flow on an airfoil in which the external
velocity distribution varies according to ea. (4), we considered NACA 0012 at

zero angle of attack.

The pressure distribution for steady flow is giyépﬁgn
PR

Qﬁdﬁﬁﬁ;Jﬁ-C93
of ¥
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ref. [15]. A total of 25 x-stations and 15 t-stations were used. In the latter
case a constant At spacing of 0.2 was used.with « = 1.57 rad/sec, any = 0.05,
K=1.2, u_=160 ft/sec, and B = 0.125. The slope of Uy (duoldx) at the
stagnation point was determined to be 200/sec. The airfoil geometry was read in
as (x/c), (y/c) and the surface distance calculations for the given uo(x)
distribution were performed internally by setting ISD = 1. The transition point
was not specified in the input and the computer program was asked to compute it
by setting INTR=1.

Figure 9 shows the computed local skin-friction coefficient and figure 10
the computed displacement thickness values as a function of x for various values
of t. We note that, according to equation (23), transition occurs between the
two input x-stations, x = 0.50027 and x = 0.55027; the interpolated x-station
that corresponds to the transition station is x = 0.5361. The results in
these figures show slight wiggles for turbulent flows. This is due to the
neglect of the finite length of the transition region that exists between a
laminar and turbulent flow. Although this region is small at low Reynolds num-
ber, it is not at high Reynolds number and the step change to turbulent flow
represented by the calculations, lead to oscillations. This can be avoided
by using an intermittency expression such as that described in [8].
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Figure 9. Computed local skin-friction distribution for the NACA 0012 airfoil.
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Figure 10. Computed displacement thickness distribution for the NACA 0012 airfoil.
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V. DISCUSSION AND SUMMARY CONCLUSIONS

In addition to providing a potential user with a guide to the computer program
embodying the present calculation method, the results provide information of cur-
rent and future value. It is clear from the steady-state solutions, that accurate
resuits can be obtained with an algebraic eddy-viscosity hypothesis for a wide
range of pressure gradients including severe adverse gradients which lead <o
separation. The execution time, on a CDC 6600, for a typical calculation (e.q.
that of figure 2) was of the order of 0.09 sec.

The unsteady laminar results indicate that calculations have to be completed
through two periods to provide converged and precise results for the phase angles
between the wall-shear stress and the freestream velocity and betweea the displace-
ment thickness and the freestream velocity. As expected, the displacement-thickness
phase angle is less amplitude dependent than is the shear-stress phase angle and
has considerably larger value. Two cycles are also necessary to calculate phase
angles for turbulent flow which are significantly Tower than those for laminar
flow; the calculated values for shear-stress phase angle agree with available
measurements within experimental accuracy. The execution time to obtain the
unsteady turbulent results of figures 6 and 7, was approximately 16 sec and
suggests that the numerical solution of unsteady, three-dimensional equations
is a practical and not excessively expensive proposition.

The airfoil results show that the present procedure may readily be applied
to practical configurations with calculations from a leading to trailing edge.
Extensions to include the wake and airfoil separation require the incorporation
of known techniques ana, Tike extensions to three-dimensional flow, offer no
obstacles of principle. The precision of the calculation of transition from
laminar to turbulent flow is, however, a major unknown. The review of Loehrke,
Morkovin and Fejer [16 ] suggests, as might be expected, that the transition
Reynolds number decreases with the amplitude of freestream fluctuations and is
also influenced by their frequency. The results upon which conclusions might be
based are not in quantitative agreement but it is orobable that Michel's steady-
state transition [8] overestimates the transition Reynolds number of up to a

factor of two.
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The following paragraphs provide a summary of the more important conclusions

which may be extracted from the preceding text:

1.

The calculation method can be used, in the form embodied in the
presently described computer program, to calculate the properties of
laminar and turbulent boundary layers with pressure gradient and with

a freestream velocity which fluctuates in time with arbitrary amplitude.

The times, approximately 0.09 sec and 16 sec of CDC 6600 for
steady and unsteady calculations are modest and suggest that three-
dimensional calculations can also be performed with acceptable cost.

The calculated phase angles between wall-shear stress and freestream
velocity increase with amplitude for laminar flow and are greater than
the almost constant value of approximately 20 degrees obtained for
turbulent flow. The corresponding phase angles between displacement
thickness and freestream velocity are around 170 degrees for both
laminar and turbulent flow. Two cycles are required to obtain converged
solutions.

The properties of the boundary layer on an airfoil from the stagnation
line through transition into the downstream turbulent boundary layer
have also been determined with a varying-amplitude freestream velocity.
Experimental information is required to confirm the precision of these
calculations and particularly to indicate the influence of freestream
fluctuations or transition. The transition correlation of Michel has
been used for these calculations but alternatives can readily be
incorporated.
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VII. COMPUTER LISTING AND A SAMPLE CALCULATIOM

In this section we present a listing of the computer programs and
to illustrate the use of the computer program we present a sample calculation
for a two-dimensional laminar flow discussed in Section 4.1. Although the
calculations in that example were done for a total of 21 NZ-stations, we
only show the first ten stations to illustrate a typical output of our
computer progranm,
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COMMON/BLCO/ NXT,N2T,NX,NZ,NTR,NP,ITMAX,INTR,IBDY,KPHA,IPOP,N,

1 NPT,CNU,ETAE,VGP,A(61) ,ETA(61) ,DETA(61)

COMMON/BLC1/ CA,CB,OMEGA,OMX,REDFR,X(41),2Z(30),U0(30),R2Z2(30),

1 P1(30),P2(30),P3(41,30),UE(41,30)

COMMON /PROF/ DELV(61) F(e1,41,2), U(61 41 2) V(61 41,2),B(61,41,2)

C ---------------- - @ e ® @-m o o @ ® W o - ® - - - - o -

CALL INTIAL

WRITE(6,9000)

25 WRITE(6,9100) NX,NZ,X(NX),2(N2)
oOMX = OMEGA*X (NX)

30 IT =0
IGROW = 0

60 IT = IT+1
IF(IT .LE. ITMAX) GO TO 65
WRITE(6,2500)
STOP

65 IF(NZ .GE. NTR) CALL EDDY
IF(NZ2 .GT. 1) GO TO 70
CALL BCONX
GO 70 95
70 IF(NX .GT. 1) GO TO 90
CALL BCONZ
GO TO 95
90 CALL COEFG
Y5 CALL SOLV3
IF(V(1,NX,2) .GE. 0.0) GO TO 61
IF(NZ .GE. NTR) GO TO 61
WRITE (6,9300)
STOP
C CHECK FOR CONVERGENCE
61 IF(NZ2 .GE. NTR) GO TO 62
C - LAMINAR FLOW
IF (ABS(DELV(1)) .GT. 0.001) GO TO 60
GO TO 100
C - TURBULENT FLOW
62 IF (ABS(DELV(1)/(V(1,NX,2)+0.5*DELV(1))) .GT. 0.02) GU TO 60
100 IF(NP .EQ. NPT) GO TO 200
IF(ABS(V(NP,NX,2)) .LE. 0.001) GO TO 200
IF(IGROW .EQ. 1) GO TO 200
IGROW = 1
LL = 2
CALL OUTPUT(LL)
GO TO 30
200 LL = 1
CALL OUTPUT(LL)
GO TO 25

25G0 FORMAT(1HO,16X,25HITERATIONS EXCEEDED ITMAX)
9000 FORMAT(1H1,30H** BOUNDARY LAYER CALCULATIONS//)
9100 FORMAT(1HO,4HNX =,13,5X,4HNZ =,13,5X,3HX =,F10,.5,5%X,3H2 =,F10.5)
9300 FORMAT(1HO,33H** LAMINAR SEPARATION OCCURRED ##¥)
END

ORIGINAL PAGE 13

OF POOR QU
37



OO0O0O0OO0ON0O0O00000O00

C

10

20
30

50
60

55

1

1

SUBROUTINE INTIAL
COMMON/BLCO/ NXT,NZT,NX,NZ,NTR,NP,ITMAX, INTR,IBDY,KPHA,IF"P,N,

JPT,CNU,ETAE,VGP,A(61) ,ETA(61) ,DETA(61)

COMMON/BLC1/ CA,CB,OMEGA,OMX,REDFR,X(41),2(30),U0(30),RZ2(30),

P1(30),P2(30),P3(41,30),VUE(41,30)

COMMON/PROF/ DELV(61),F(61,41,2),U(61,41,2),v(61,41,2),B(61,41,2)
DIMENSION TITLE(20),2C(30),YC(30)

IBDY
IBDY
IsD
IsD
IpP2
IP2
INTR
INTR
KPHA
KPHA
IrOP
IPOP
N
NPT
CNU
ITMAX

W nunn

1 FLAT PLATE

2 AIRFOIL

1 CALCLULATED SURFACE DISTANCE

2 INPUr SURFACE DISTANCE

1 P2 CALCULATED

2 P2 READ IW

1 CALCULATED TRANSITION

2 INPUT TRANSITION

0 DO NOT CALCULATE PHASE ANGLES

1 CALCULATE PHASE ANGLES

c DO NOT CALCULATE PHASE COMPONENTS

1 CALCULATE PHASE COMPONENTS
NUMBER OF X-STATIONS IN ONE CICLE

61

1.6E-04

6

READ(5,8001) TITLE

WRITE(6,9011) TITLE

READ(5,8000) NXT,NZT,NTR,IBDY,ISD,IP2,INTR,KPHA,IPOP,N
READ(5,8100) ETAE,DETA(1),VGP,UINF,CB,OMEGA,CA

READ(5,8300) (X(I),I=1,4XT)

WRITE!6,9200) NXT,NZT,NTR,ETAE,DET2(1),VGP,CB,OMEGA,UINF,CA
GO TO (10,30), ISD

READ(5,8400) (2C(I),Yn(I),00(1),I=1,42T)

WRITE (6,9400) (I,2C(I),Y¥C(I),I=1,N2T)

CALCULATE 2

2(1) = 0.0

UO(1) = UO(1)*UINF

IF(NZT .EQ. 1) GO TO o0

SuM1 = 0.C

DO 20 I=2,NZT

UO(I) = UO(I)*UINF

SUM1 = SUM1T+SQRT((2C(I)=2C(I=1))**2+(YC(I)=-YC(I~1))**2)
Z2(1) = sum

GO TO 960

READ5,8400) (2(I),v0(I),P2(1),I=1,42T)
IF(IP2 .EQ. 2) GO TO 55

IF(IBDY .EQ. 1) P2(1) = 0.0

IF(IBDY .EQ. 2) P2(1) = 1.0

DO 90 I=1,NZT
IF(I .EQ. 1) GO TO 82
IF(IP2 .EQ. 2) GO TO 41

IF(I
Al
A2

+E

i

]

Q. N2T) GO TO 70
(Z(I)=2(I~1))*(2(I+1)=2Z(I-1))
(Z(I)=2(I=1))*(Z(I+1)=2(I))
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70

80
31

82
88

71

73
83
85
90

100
110

105
112

115

120

a3 = (Z(I+1)=2(I))*(2(I+1)=-2(I=1))

DUDS = =(Z2(I+1)-2(I))/A1%00(I=1)+(2(I+1)=-2.0%Z(I)+
Z(I=1))/RA2*UO(I)+(Z2(I)=-2(I-1))/A3*UD(I+1)

GO TO 80

A1~ = (Z(I-1)=2(I-2})*%(2(I)=2(I-2))

A2 = (Z(I-1)=-2(I-2))*(2(I)=2(I-1))

A3 = (Z(I)=2(I-1))*(2(1)-2(1I-2))

DUDS = (Z(I)=Z(I-1))/A1*U0(I-2)=(2(I)=4(X=2))/A2*UO(I~1)+

(2.C*Z(I)-Z2(1I-2)=-2(I-1))/A3*U0O(I)

P2(I) = 2(I)/UO(I)*DUDS
REDFR = OMEGA*2Z(I)/UO(I)
GO TO 84

IF(IBDY .EQ. 1) GO TO 31

REDFR = OMEGA/CA

R2{l) = UO(I)*2(I1)/CNU

DO 85 K=1,NXT

OMX = OMEGA*X(K)
UE(K,I)=U0(I)*(1.0+CB*COS(0OMX))

IF(K .GT. 1 .AND. I .GT. 1) GO TO 83
IF(K .EQ. 1 .AND, I .GT. 1) GO TO 73
IF(K .GT. 1) GO T0 71
IF(IBDY .EQ. 1) P3(K,I)
IF(IBDY .EQ. 2) P3(K,I)
GO TO 85

IF(IBDY .EQ. 1) P3(K,I)
IF (IBDY .EQ. 2) P3(K,I)
GO TO 85
P3(K,I)=P2(I)*(1.0+CB*COS(0OMX))*#*2

GO TO 85
P3(K,I)=P2(I)*(UE(K,I)/UO(I))**2-CB*REDFR*SIN (OMX)
CONTINUE

CONTINUE

WRITE(6,9000) (2(I),U0(I),P2(I),I=1,N2T)

DO 110 I=1,N2T

P1(I) 0.5*(P2(I)vi.0)

NX 1

NZ 1

0.0
(1.0+CB*COS (ONX) ) **2

0.0
(1.0+CB*COS (OMX) ) **2-REDFR*CB*SIN (OMX)

nonn

IF((VGP-1.0) .LE. 0,001) GO TO 105

NP = ALOG((ETAE/DETA(1))*(VGP-1,0)+1,0) /ALOG(VGP) + 1.0
GO TO 112

NP = ETAE/DETA(1: + 1.0

IF(NP .LE. NPT) GO TO 115

WRITE(6,9300)

STOP

ETA(1)= 0.0

DO 120 J=2,NPT

DETA(J) =VGP*DETA (J=-1)

A(J) = 0.5*DETA(J-1)

ETA(J)= ETA(J=-1)+DETA(J~1)

ETAJPQ= 0.25*ETA (NP)

ETAU15= 1.5/ETA(NP)

DO 13C J=1,NP

ETAB ETA(J) /ETA(NP) AGE B

*E
ETAB2 = ETAB**2 Omxsﬂﬂh“EMJAX“
of B0
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F(J,NX,2)= ETANPQ*ETAB2*(3.0-0.5*ETAB2)
V(J,NX,2)= ETAU15*%(1,0-ETAB2)
B(J,NX,2)= 1.C
130 CONTINUE
RETURN
C- ...... - e = wm m m W @ e W @ wm w > e @m @ =W = - w W e e > = = -
8000 FORMAT(1013)
8001 FORMAT(20A4)
8100 FORMAT(8F10.0)
830C FORMAT(F10.0)
8400 FORMAT(3F10.0)
9C00 FORMAT{///1HC,46H** EXTERNAL STEADY STATE VELOCITY DISTRIBUTION/
1 1H ,24H** AND PRESSURE GRADIENT/1HO,4X,1HZ,9X, 2HUO,8X,2HP2/
2 (111 ,3F10.5))
9011 FORMAT(1H0,20A4)
9200 FORMAT(///1110, 12H** CASE DATA/1HO, 3X,6HNXT =,I3,14X,6HNZT =,
1 I3,14X,6HNTR =,I3/1H ,3X,6HETAE =,E14.6,3X,6HDETAl=,
2 E14.6,3X,6HVGP =,E14.6/14H ,3X,6HCB =,E14,.6,3X,
3 6HOMEGA=,E14,6,3X,6HUCINF =,E18,6/1H ,3X,5HCA =,E14,6)
9300 FORMAT (11C,37HNP EXCEEDED NPT -- PROGRAM TERMINATED)
9400 FORMAT(//1ilC,22li** INPUT BODY GEOMETRY/1HC,3H J2,6X,3H2/C,11X,
1 3uy/c/(\1 ,13,2E14.6))
END
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SUBROUTINE EDDY
COMMON/BLCO/ NXT,N2T,NX,N2Z,NTR,NP, ITMAX, INTR, IBDY,KPHA,IPOP,N,

1 sPT,CNU,ETAE,VGP.A(61) ,ETA(61) ,DETA(61)
COMMON/BLC1/ CA,CB,OMEGA,OMX bOFR,X(“l),Z(30).UO(30),RZ(30),
1 P1(30),pP2(30),Ps 1,30),UE(41,30)
COMMON/PROF/ DELV(61) ,F(61,81,2), U(61 41,2),v(61,481,2),B(61,81,2)
IFLG =0
R22 = SQRT(RZ(N2Z))
RZ216 = R22%0,16
RZ8 = SQRT(RZ22)
CRSQV = CN*RZ4*SQRT(ABS(V(1,3X,2)))/26.0
SuM = 0.0
F1 = 0.0
DO 30 J=2,NP
F2 = U(J NX,2)*(1.0-U(J,NX,2))
SuM = SUM+(F1+F2)*A(J)
30 F1 = 7F2

RT = RZ2*SUM

IF(RT .LE. 325.) GO TO 35
IF(RT .GT. 6000.) GO TO 38
XPI = RT/825.-1.0

PI = o55*{1.0-EXP(~-.283*SQRT(XPI)-2.98*XPI))
GO TO 40
35 PI = 0.0
GO TO 40
38 PI = .35
40 EDVO = ,0168*(1.,55/(1.0+PI))*RZ2*(U(NP,NX,2)*ETA(NP)~F(NP,NX,2))
J = 1
50 IF(IFLG .EQ. 1) GO TO 100
YOA = CRSQV*ETA(J)
EL = 1.0

IF(YOA .LT. 4.0) EL = (1.0-EXP(=YOA))**2
EDVI = RZ216*ETA(J) **2*V(J,NX, 2)*EL
IF(EDVI .LT. EDVO) GO TO 200

IFLG =1
100 EDV = EDVO
GO TO 300

200 EDV = EDVI
300 B(J,NX,2) = 1,0+EDV
J = J+1
IF(J .LE. NP) GO TO 50
RETURN
END
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SUBROUTINE  ONX

COMMO./BLCO/ NXT,NZT,NX,NZ,NTR,NP, ITMAX, INTR, IBDY,KPHA, IPOP, i,
NPT,CNU,ETAE, VGP,A(61) ,ETA(51) ,DETA(61)

COMMO./BLC1/ CA,CB,OMEGA,OMX, REDFR,X(41),2(30),U0(30),RZ(30),
P1(30),P2(30),P3(41,30),UE(41,30)

COMMOJ/PROF/ DELV(61) ,F(61,41,2),U(61,41,2),V(61,41,2),B(61,41,2)

COMMON/BLCC/ S1(61),52(61),53(61),S8(61),55(61),56(61),
R1(61),R2(61) ,R3(61)

CEL = 0.0
IF(NX .EQ. 1) GO TO 30C
IF(IBDY .EQ. 1) GO TO 300

DELX = X(NX)-X(NX-1)

CEL = 2.0/ (CA*DELX)
U(NP,0X,2) = 1.0+CB*COS (0OMX)
p22 = =2,0%¥P2(N2)

po 500 J=2,NP

UB = 0.3*(U(J,NX,2)+U(J=1,0X,2))

VB = 0.5%(V(J,NX,2)+V(JI=-1,NX,2))

FVB = 0.5*%(F(J,JX,2)*V(J,NX,2)+F(J-1,3X,2)*V(J-1,NX,2))

USB = 0.5%(U(J,NX,2)**2+U(J-1,NX,2) **2)

DERBV = (B(J,JdX,2)*V(J,NX,2)=-B(J-1,NX,2)*V(J=-1,NX,2))/DETA(J=-1)
IF(NX .GT. 1) GO TO 400

R2B = 0.0

GO TO 450

CUB = 0.,5*%(U(J,NX-1,2)+U(J~1,3X-1,2))

CFVB = 0.5*(F(J,NX-1,2)*V(J,NX=1,2)+F (J=1,NX=-1,2)*V(J=1,3%~-1,2))
CUSB = C.5%(U(J,NX-1,2)**¥2+U(J=-1,NX=1,2) **2)

CDERBV= (B(J,NX-1,2)*V(J,NX-1,2)-B(J-1,4X=-1,2)*V(5-1,NX~1,2))/
DETA(J=~1)

CR2B = CDERBV+P1 (NZ)*CFVB-P2 (NZ) *CUSB+P3 (NX~-1,N2Z)
R2B = -CR2B-CEL*CUB

P1Aa = A(J)*P1(N2)

S1(J) = B(J,.dX,2)+P1A*F(J,NX,2)

§2(J) = -B(J-1,NX,2)+P1A*F(J-1,13X,2)

$3(J) = P1A*V(J,NX,2)

S4(J) = P1A*V(J-1,NX,2)

§5(J) = A(J)*(P22*U(J,NX,2)=CEL)

S6(J) = A(J)*(P22*%U(J-1,NX,2)=-CEL)

R1(J) = F(J-1,NX,2)-F{(J,NX,2)+DETA(J-1) *UB

R3(J-1)=U(J-1,NX,2)=-U(J,NX,2)+DETA(J~-1) *VB

R2(J) = DETA(J-1) *(R2B-P3 (NX,NZ)~(DERBV+P1(NZ) *¥*FVB3~-
P2 (NZ) *USB-CEL*UB) )

500 COJTINUE

R1(1)
R2(1)
R3 (NP)
RETURW
END

0.0
0.0
c.0
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SUBROU

TINE BCONZ

COMMON/BLCO/ NXT,N2T,NX,NZ,d9R,J4P, ITMAX, INTR,IBDY,KPHA,IPOP,N,
1 NPT,CNU,ETAE,VGP,A(61) ,ETA(61) ,DETA(61)
COMMOW/BLC1/ CA,CB,0OMEGA,OMX,REDFR,X(41),2(30),00(30),RZ2(30),
1 P1(30),P2(30),P3(41,30),UE(81,3C)
COMM40N/PROF/ DELV(61),F(61,41,2),U(61,41,2),V(61,41,2),B(61,41,2)
COMMON/BLCC/ S1(61),S2(61),53(61),S4(61),55(61),S6(61),
1 R1(61),R2(61),R3(01)
C --------- - - d e wE oo = 9 = @ & o ®©® o T " T O & ®» TV S T T ° -
U(NP,NX,2) = 1,0+CB*COS (OMX)
BEL = G.C
IF(NZ .GT. 1) BEL = 0.,5*(Z(NZ2)+2(NZ-1))/(2(NZ2)=2Z(N2~1))
P1P = P1(NZ)+BEL
P2P = P2(NZ)+BEL
DO 10C J=2,NP
C DEFINITION OF AVERAGED QUANTITIES
F3 = Co5*(F(J,uX,2)+F(J=1,3NX,2))
UB = 0.5%(U(J,NX,2)+U(J-1,NX,2))
VB = C.5%(V(J,NX,2)+V(J-1,NX,2))
FVB = 0.,5*(F(J,NX,2)*V(J,3X,2)+F(J=1,58X,2)*V(J-1,3X,2))
USB = C.5%(U(J,NX,2) **2+U(J=1,4X,2) **2)
DERBV = (B(J,NX,2)*V(J,NX,2)-B(J-1,NX,2)*V(J=-1,3X%,2)) /DETA(J-1)
IF(NZ2 .GT. 1) GO TO 10
CFB = 0.0
CVB = (.0
GO TO 2C
10 CFB = 0.5*(F(J,NX,1)+F(J=-1,NX, 1))
CUB = C.5*(U(J,5X,1)+U(J=-1,3%,1))
CVB8 = 0.5%(V(J,3X,1)+V(J-1,NX,1))
CFVB = 0.5*(F(J,dX,1)*V(J,dX,1)+F(J-1,3X,1)*V(J=-1,NX,1))
CUSB = 0,5%(U(J,NX,1)**2+U0(J=1,3X,1) **2)
CDERBV= (B(J,.JdX%, 1) *V(J,NX,1)=B(J=-1,0%X,1)*V(J=-1,4X,1))/DETA(J=1)
C
C COEFFICIENTS OF THE DIFFERENCED MOMENTU:X EQUATION
20 S1(J) = B(J,NX,2)/DETA(J-1)+(P1P*F(J,NX,2)-BEL*CFB)*(C.5
S2(J) = =-B(J=-1,NX,2)/DETA(J=1)+(P1P*F(J~1,NX,2) -BEL*CFB) *0.5
S3(J) = 0.5*(P1P*V(J,NX,2)+BEL*CVB)
S4(J) = C.5*%(P1P*V(J=-1,NX,2) +BEL*CVB)
S5(J) = =P2P*U(J,3X,2)
S6(J) = =-P2P*U(J-1,NX,2)
C
C DEFINITIONS OF RJ
R1(J) = F(J=-1,NX,2)=-F(J,NX,2)+DETA(J-1) *UB
R3(J=1)=U(J=1,08X,2)=U(J,NX,2)+DETA(J~1) *VB
IF (N2 .EQ. 1) GO TO 30 '
CLB = CDERBV+P1(NZ-1)*CFVB=P2(N2-1)*CUsB+P3 (NX,N2=1)
CRB = =-P3(NX,NZ)+BEL*(CFVB=CUSB)~CLB
GO TO 40
30 CRB = =P2(N2)
40 R2(J) = CRB-(DERBV+P1P*FVB~P2P*USB-BEL* (CFB*VB=-CVB*FB))
10C CONTINUE
R1(1) = C.0
R2(1) = 0.0
R3§¥;&= 0.C
RETURN
END ORKHNAJ'Pﬁg§£$

43 OF POOR QU



SUBROUTINE COEFG
COMMON/BLCO/ NXT,NZT,NX,N2,NTR,NP,ITMAX, INTR, IBDY,KPHA,IPOP,N,

1 ~NPT,CNU,ETAE,VGP,A(61) ,ETA(61) ,DETA(61)
COMMON/BLC1/ CA,CB,OMEGA,OMX, REDFR,X(41),2(3C),U0(30),RZ2(30),
1 P1(30),P2(30),P3(41,30) ,UE(41,30)

COMMON/PROF/ DELV(61),F(61,41,2),U(61,41,2),V(61,41,2),B(61,41,2)
COMMON/BLCC/ S1(61),52(61),53(61),354(61),55(61),56(61),

U(NP,NX,2) = 1.C+CB*COS (OMX)

DELX = X(NX)=X(NX-1)

DELZ = 2Z(NZ)-2(N2-1)

2B = 0.53%(2(NZ2)+2(N2-1))
UOB = 0.5%(U0O(NZ)+UO(NZ=1))
CEL = 2B/DELZ

BEL = ZB/ (DELX*UOB)

CEL2 = G.5*%*CEL

PIB = 0,5*(P1(N2)+P1(NZ=1))
P2B = 0.,5%(P2(N2)+P2(N2-1))
P3B = 0,25%(P3(NX,NZ)+P3 (NX-1,NZ2)+P3 (NX,NZ2=1)+P3 (NX=-1,NZ2~1))
P2B2 = 2,0%*P2B

P3B4 = 4,0*P3B

BEL2 = 2.,0*BEL

Do 560 J=2,NP

FB = 0.5*(F(J,NX,2)+F(J=-1,NX,2))

FVB = 0.5*(F(J,NX,2)*V(J,NX,2)+F(J-1,NX,2) *V(J=-1,NX,2))

FB4 = 0.5%(F(J,NX-1,2)+F(J=-1,8x-1,2))

FVJ2 = F(J,NX,1)*V(J,5X,1)+F(J,NX-1,1)*V(J,NX-1,1)+

1 F(J,NX=1,2)*V(J,NX=-1,2)

FVJ1 = F(J-1,NX,1)*V(J=1,8X,1)+F(J=1,8X~1,1) *V(J-1,NX=-1,1)+

1 F(J-1,NX=-1,2)*V(J~1,N%X-1,2)

FBI1 = C.25%*(F(J,3X=1,1)+F(J=1,NX-1,1)+F(J,NX,1)+F(J-1,3X,1))
FVB234= 0,5* (FVJ2+FVJ1)

UB = 0.5*(U(J,NX,2)+U(J-1.NX,Z))

USB = 0.5%(U(J,NX,2)**¥2+U(J=-1,NX,2)**2)

UB2 = 0.5*(U(J,NX,1)+U(J=-1,NX,1))

UB4 = 0,5¥(U(J,NX=1,2)+U(J-1,NX=-1,2))

UJ1 = U(J-1,3X,1)+U(J-1,NX~1,1)+U(J=-1,8%X-1,2)

UJ2 = U(J,NX,1)+U(J,NX=-1,1)V+U(JT,NX-1,2)

UBIT = (,25*%(U(J,NX-1,1)4U(J=1,3X=-1,1)+U(J,NX,1)+U(J-1,8X,1))
UBK1 = 0.25*(U(J,NX-1,1)+U(J-1,NX-1,1)+U(J,NX=-1,2)+U(J=1,8X-1,2))
USJ2 = U(J,NX,1)*¥*24U(J,NX-1,1) **¥2+U(JT,NX=1,2) **2

U™21 = U(J=1,NX,1)**2+U(J=1,NX=1,1) *¥*¥24+U (J=1,NX~1,2) **2
UB234 = 0.,5%(0J2+UJ1)

USB234= 0.5%(USJ2+USJ1)

VB = 0.5%(V(J,NX,2)+V(I=1,KX,2))

VJ1 = V(J=1,NX,1)+V(I=-1,NX=1,1)+V(J=1,dX=1,2)

VJ2 = V(J,NX,1)+V(J,NX=1,1)+V(JI,\NX-1,2)

VB234 = 0.5*%(VJ2+VJ1)

BVJ1 = B(J=1,4X,1)*V(J-1,NX,1)+B(J=1,4X~1,1)*V(J=1,NX=1,1)+

1 B(J-1,NX=1,2)*V(J=1,NX=-1,2)

BVJ2 = B(J,NX,1)*V(J,NX,1)+B{J,NX=1,1)*V(J,NX=1,1)+

1 B(J,NX=1,2)*\V(J,NX-1,2)

DERBV = (B(J,NX,2)*V(J,NX,2)-B(J~1,dX,2)*V(IJ-1,NX,2))/DETA(JI-1)
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cM1 = UB234
CM2 = UB2-2.0*UBK1
CM3 = VB234
CM4 = FB4=-2,0*FBI1
CM5 = FVB234
CM6 = UB4=-2,0%*UBI1
CM7 = CM1*CM6-CM3*CMY4
CM8 = BVJ2-BVJ1
CM9 = CM1+CM6
CM10 = =CM8+DETA(J-1)*(-P1B*CM5+USB234*P2B=P3BU+CEL2*CM7+BEL2#*
1 CcM2)
C
S1(J) = B(J,nX,2)+A(J)*(P1B*F(J,NX,2)+CEL2*(FB+CMU4))
S2(J) = =B{(J-1,NX,2)+A(J)* (PI1B*F(J~-1,NX,2)+CEL2*(FB+CM4))
S3(J) = A(J)*(P1B*V(J,NX, 2) +CEL2* (VB+CM3))
S4(J) = A(J)*(P1B*V(J-1,NX,2)+CEL2* (VB+CM3))
S5(J) = A(J)*(-P2B2*U(J,NX,2)=-CEL2*(2,0*UB+CM9) -BEL2)
S6(J) = A(J)*(-P2B2*U(J-1,NX,2)~CEL2*(2.0*UB+CM9) -BEL2)
c
R1(J) = F(J-1,3X,2)-F(J,NX,2)+DETA(J-1)*UB
R2(J) = CM10-DETA(J=1) * (DERBV+P1B*FVB~P2B*USB=-CEL2* (UB*UB+CM9*

1 UB-VB*FB-CM4*VB-CM3 *FB) -BEL2*UB)
R3 (J'1)=U(J-1 fopz)"U (JcNX02)+DErA(J-1)*VB
500 CONTINUE

R3(NP)= 0.0
R1(1) = 0.0
R2(1) = 0.0
RETURN

END
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SUBROUTINE SOLV3

COMMON/BLCO/ NXT,N2T,NX,N2,NTR,NP,ITMAX, INTR, IBDY,KPHA, IPOP,N,

1 NPT,CNU,ETAE,VGP,A(61) ,ETA(61) ,DETA(61)

COMMON/PROF/ DELV(61) ,F(61,41,2),U(61,41,2),V(61,41,2),B(61,41,2)
COMMON/BLCC/ Si(61),S2(61),S3(61),S4(61),S5(61),S6(61),

1 R1(61) ,R2(61),R3(61)

DIMENSION A11(61),A12(61),A13(61),A21(61),A22(61),A23(61),
1 Gi1(61),G12(61) ,G13(61) ,G21(61),G22(61) ,G23(61),
2 Wwi(61),w2(61),w3(61) ,DELF(61) ,DELU(61)

W1(1) = R1(1)
w2(1) = R2(1)

W3(1) = R3(1)

A11(1)= 1.0
A12(1)= 0.0
Al13(1)= C€.0
A21(1)= 0.C
A22(1)= 1.0
A23(1)= 0.0
G11(2)=-=1.0
G12(2)==-0.5*DETA (1)

G13(2)= 0.0

G21(2)= su(2)
G23(2)=-2.0%S2(2)/DETA(1)
G22(2)= G23(2)+586(2)
DO 500 J=2,NP
IF(J .2Q. 2) GO TO 100
DEN = (A13(J-1)*A21(J~1)=-A23(J-1)*A11(J=1)=-A(J)*
1 (A12(J=1)*221(J-1)=A22(J-1) *A17 (J=1)))
G11(J)= (A23(J-1)+A(J)*(A(J)*A21(J=-1)-A22(J=1)))/DEN
G12(J)=-(1.0+G11(J) *Aa11(J=1) ) /221 (J=1)
G13(J)= (G11(J)*Aa13(J-1)+G12(J)*A23(J=1))/A(J)
G21(J)= (S2(J)*A21(J=1)-SU(J)*A23(TJ-1)+A(J)*(SU(J)*
1 A22(J-1)-S6(J)*A21(J-1))) /DEN
G22(J)= (S4(J)=G21(J)*Aa11(J-1))/A21(J=1)
G23(J)= (G21(J)*A12(J=1)+G22 (J)*a22(J-1)-S6(J))
100 A11(J) 1.0
A12(J)==A(J)=-G13(J)
Al13(J)= A(J)*G13(J)
A21(J)= S3(J)
A22(J)= S5(J)=G23(J)
A23(J)= S1(J)+A(J)*G23(J)

W1(J) = R1(J)=G11(J)*W1(J=1)-G12(J) *W2(J=1)-G13(J) *W3(J~-1)
W2(J) = R2(J)=G21(J)*W1(J=1)=G22(J) *W2 (J=1)~G23(J) *W3(J=1)
W3 (J) = R3(J)

500 CONTINUE
DELU(NP) = W3 (NP)
E1 = W1 (NP)~A12(NP) *DELU(NP)
E2 = W2 (NP)~A22 (NP)*DELU(NP)
DELV(NP) = (E2*A11(NP)~-E1*A21(NP))/(A23(NP)*A11(NP)~A13(NP)*
1 A21(NP))
DELF(NP) = (E1=-A13(NP)*DELV(NP))/A11(NP)
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60C

J = NP

J = J=-1

E3 = W3(J)=-DELU(J+1)+A(J+1) *DELV(J+1)

DELV(J) = (A11(J)*(W2(J)+E3*A22(J))=A21(J)*W1(J)-E3*%A21(J)*A12(J)
1 )/ (A21(J) *A12(J) *A(J+1)=A21(J) *A13(J)=A(T+1)*

2 A22(J)*A11(J)+A23(J) *A11(J))

DELU(J) ==A(J+1)*DELV(J)-E3

DELF(J) = (W1(J)=-A12(J)*DELU(J)~A13(J)*DELV(J))/A11(J)

IF(J .GT. 1) GO TO 600
WRITE(6,9100) V(1,3%,2),DELV(1)
DO 700 J=1,NP

F(J,NX,2)= F(J,NX,2)+DELF(J)
U(J,NX,2)= U(J,NX,2)+DELU(J)

vV(J,NX,2)= V(J,NX,2)+DELV(J)

u(1,3X,2)= 0,0

RETURN

FORMAT(1H ,5X,8HV(WALL)=,E14.6,5X,6HDELVW=,E14.6)
END

EIS
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SUBROUTING OUTPUT(LL)
COMMON/BLCO/ NXT,N2T,NX,NZ,NTR,NP,ITMAX,INTR,IBDY,KPHA,IPOP,N,

1 NPT,CNU,ETAE,VGP,A(61) ,ETA(61) ,DETA(61)
COMMON/BLC1/ CA,CB,OMEGA,OMX, REDFR,X(41),2(30),00(30),RZ2(30),
1 P1(30),P2(30),P3(41,30) ,UE(41,30)

COMMON/PROF/ DELV(61) ,F(61,41,2),U(61,41,2),V(61,41,2),B(61,41,2)
DIMENSION NPK(41),RTHT(3C),RTHETA(30) ,ALFAA(61,41),ALFAB(61,41),

1 SUMA(61) ,SUMB(51)
C -----------------------------------
IF(LL .EQ. 2) GO TO 150
NPK (NX) =NP
IF (RZ (NZ) .EQ. 0.0) GO TO 140
ZRZ = 2Z(NZ)/SQRT(RZ(N2Z))
DELSTR= ZRZ* (ETA(NP)-F (NP,NX,2) /U(NP,NX,2))
CF = 2,0*V(1,NX,2)/SQRT(RZ (NZ))
RDELST= UO (NZ) *DELSTR/CNU
SUM1 = 0.0
F1 = U(1,NX,2)/U(NP,NX,2)*(1.0-0(1,NX,2) /U(NP,NX,2))
nno 50 J=2,NP
F2 = y(J,NX,2)/U(NP,NX,2)*(1.0~U(J,NX,2) /U(NP,NX,2))
SUM1 = SUM1+(F1+F2) *A (J)
50 F1 = F2
THETA = ZRZ*SUM1
RTHTA = UO(NZ)*THETA/CNU
H = DELSTR/THETA
C

C CHECK FOR TRANSITION IF IT IS TO BE CALCULATED
IF(INTR .EQ. 2) GO TO 150
IF (P2(NZ2) .GE. 0.0) GO TO 150
IF(N2 .GE. NTR) GO TO 150
IF(NX .GT. 1) GO TO 150
IF(NZ .EQ. 1) GO TO 150
IF(NZ .EQ. NZT) GO TO 150
RZTR = RZ(N2)
RTHETA (NZ) =RTHTA
RTHT (N2) = 1.174%(1,.+22400./RZTR) *RZTR**0,46
WRITE(6,9500) RTHETA(NZ) ,RTHT (N2)
IF (RTHETA(NZ)-RTHT (N2)) 150,110,120

110 2TR = 2(N2)
WRITE(6,9600) 2ZTR
GO TO 150
120 ZTR1 = Z(NZ-1)
2TR2 = 2(N2)
DRTH1 = RTHT (NZ=1) ~-RTHETA(NZ-1)
DRTH2 = RTHT (NZ)~RTHETA(NZ)
ZTR = ZTR1+(DRTH1*{2TR2-2TR1))/ (DRTH1-DRTH2)
UOTR = UO(NZ2=1)+((2TR=-2TR1)/(ZTR2=-2TR1))* (UO(NZ)=-UO(N2=1))
P2TR = P2(NZ=1)+((ZTR=-ZTR1)/(2TR2-2TR1))* (P2 (NZ)=-P2(NZ2=-1))
I = NZT+2
IF(N2T .EQ. 30) I = N2T+1
100 I = I=-1
Z2(1) = 2(I-1)
RZ(I) = RZ(I=1)
UO(I) = UO(I-1)
P1(I) = P1(I-1)
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90

125

130

140

15C

160

180

1
1

P2(I) = k¥2(I-1)

DO 90 K=1,J3XT

UE(K,I)=UE(K,I-1)

P3(K,I)=P3(K,I-1)

IF(I .GT. (N2+1)) GO TO 100

P2(N2)= P2TR

P1(NZ)= 0,5*(1.0+P2(N2Z))

2(N2) = ZTR

UO(NZ)= UOTR

RZ (NZ)= Z(NZ)*UO (N2) /CNU

UE(1,N2) UO(NZ)* (1.0+CB*COS (OMEGA*X(1)))
P3(1,:2) P2(NZ)*(1.0+CB*COS (OMEGA#*X(1))) ¥#%2
DO 125 K=2,NXT

UE(K,NZ) = DO(N2Z)*(1.0+CB*COS (OMEGA*X (K)))
REDFR = OMEGA*Z (NZ) /UO(NZ)

P3(K,N2) = P2(NZ)*(UE(K,N2) /UO(N2Z)) **2-CB*REDFR*SIN (OMEGA*X (K))
TONTINUE

4TR = N2

IF (N2T .LT. 30) NZT = N2T+1

DO 130 J=1,nP

F(J,NX,2)= F(J,NX,1)

U(J,NX,2)= U(J,NX,1)

V{(J,NX,2)= V(J,NX,1)

B(J,NX,2)= B(J,JdX,1)

WRITE(6,9900) P2TR,UOTR, ZTR

IF(NTR .EQ. NZ) RETURN

RTHTA = 0.0

RTHETA(NZ)=0.0

]

NPO NP

NP1 NP+1

IF(LL .EQ. 2) NP = NP+2
IF (NP .GT. NPT) NP = NPT
DO 160 J=NP1,NPT

F(J,3X,2) = U(NPO,NX,2)*(ETA(J)=-ETA(NPO))+F (NPO,NX,2)
u(J,NX,2) = U(NPO,NX,2)
V(J,NX,2) = V(NPO,NX,2)
B(J,38X,2) = B(NPO,NX,2)

IF(LL .EQ. 2) RETURN

WRITE (6,9010)

NPM1 = NP=1

WRITE (6,9000) (J,ETA(J),F(J,NX,2),U(J,NX,2),V(J,NX,2),B(J,NX,2),
J=1,NPM1,3)

WRITE (6,9000) NP,ETA(NP),F(NP,NX,2),U(NP,NX,2),V(NP,NX,2),
B(NP,NX, 2)

IF(NZ .EQ. 1) GO TO 10

WRITE(6,9200) DELSTR,THETA,CF,RDELST, RTHTA,R2(N2Z) ,H, REDFR

IF (NXT .EQ. 1) GO TO 10

DELX = X(z)=X(1)

IF (IPOP .EQ. 0) GO TO 196

IF(NZ .LT. NTR) GO TO 195

CALCULATE IN-PHASE AND OUT-OF-PHASE COMPONENTS OF AN OSCILLATING
TURBULENT FLOW

COMX = COS(OMX)
SOMX = SIN(OMX)
ORIGINAL PAGE 18 49
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DO 190 J=1,NPT

ALFAA(J,8X)= U(J,NX,2)*COMX
190 ALFAB(J,NX)= U(J,dX, 2)*SOMX

IF(NX .LT. NXT) GO TO 10

I1 = 2
I2 = N=1
191 COEFF = 2.0/ (CB*FLOAT(N~1))

poO 195 J=1,NP

SUMA(J)=0.0

SUMB(J)=C.C

DO 198 I=I1,I2

SUMA(J)=SUMA(J)+ALFAA(J,I)
198 SUM3(J)=SUMB(J)+ALFAB(J,I)

SUMA(J)=(0.5* (ALFAA(J,I1=1)+ALFAA(J,I2+1))+SUMA(J)) *COEFF
195 SUM3(J)==(0.,5*%(ALFAB(J,I1-1)+ALFAB(J,I12+1))+SUMB(J)) *COEFF

WRITE(6,9300) Xx(12+%),(J,SUMA(J) ,SuMB(J) ,J=1,NP)

IF(I2 .EQ. (NXT-~1)) GO TO 196

I1 I1+(N=1)

I2 I24(N=-1)

IF(I2 .LE. (NXT=1)) GO TO 191

WRITE (6,9700)

196 IF(KPHA .EQ. 0) GO TO 10
IF(NX .LT. NXT) GO TO 10
C CALCULATE PHASE ANGLES

I = 2

I2 = N=1
211 A1 = 0.0

ADLSTR= 0.0

DO 210 I=I1,12
ADLSTR= ADLSTR+ (2RZ*(ETA(NP)-F(NP,I,2)/U(NP,I,2)))
210 Avi = AV1+V(1,I,2)
D1 = ZRZ* (ETA(NP)-F(NP,I1-1,2)/U(NP,I1-1,2))
= ZRZ*(ETA(NP)-F(NP,I2+1,2)/U(NP,I2+1,2))
ADLSTR= OMEGA/6,2832*(0.5*(D1+D2) +ADLSTR) *DELX
OMEGA/6.2832*(0,5*(V(1,I1-1,2)+V(1,12+1,2))+AV1)*DELX

BETASQ= 0,0

DO 220 I=I1,I2

DLS = ZRZ*(ETA(NP)-F(NP,I,2)/U(NP,I,2))

ALF2 = ALF2+(UE(I,NZ)-UO(NZ))*(DLS~-ADLSTR)

BTA2 = BTA2+ (DLS=-ADLSTR) *#*2
ALFBTA= ALFBTA+ (UE(I,NZ)-UO(NZ))*(V(1,I,2)=-AV1)
ALFASQ= ALFASQ+ (UE(I,NZ)=-UOQ(NZ))**2

220 BETASQ= BETASQ+(V({1,I,2)-AV1)*#2

C CALCULATE PHASE ANGLE BETWEEN WALL SHEAR AND UE

ALFBTA= (045*((UE(I1=1,N2)=UO(NZ))*(V(1,I1=1,2)=AV1)+

1 (UE(I2+1,82)=UO(NZ))*(V(1,1I2+1,2)=-AV1))+ALFBTA)*DELX
ALFASQ= (0.5*((UE(I1=1,NZ)=UO(NZ))**2+(UE(I2+1,N2)=-UO(N2Z))**2)+
1 ALFASQ) *DELX

BETASQ= (0e5*((V(1,I1=1,2)=AV1)**¥2+(V(1,12+1,2)~aV1)**2)+

1 BETASQ) *DELX

PHI = ARCOS (ALFBTA/SQRT(ALFASQ*BETASQ)) *#57.29578
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CALCULATE PHASE ANGLE BETWEEN DISPLACEMENT THICKNESS AND UE
ALF2 (0.5*((UE(I1-1,N2)=UO(NZ))* (D1-ADLSTR)+(UE(I2+1,N2)~-
1 UO(NZ) ) *(D2-ADLSTR) ) +ALF2) *DELX
BTA2 = (0.5*((D1-ADLSTR) **2+(D2-ADLSTR) **2) +BTA2) *DELX
PHI2 = ARCOS(ALF2/SQRT(ALFASQ*BTA2))*57.29578
WRITE(6,9400) X(I2+1),PHI,PHI2

IF(I2 .EQ. (NXT=1)) GO TO 10
I1 = I1+(N=1)

I2 = I2+{N=-1)
WRITE(6,9700)

10 IF(NX .EQ. NXT) GO TO 200
NX = NX+1
300 IF(NZ .GT. 1) GO TO 350
INITIAL GUESS IN NX DIRECTION (N2Z=1)
310 DO 400 J=1,NPT
F(J,NX,2)= F(J,NX-1,2)
U(J,NX,2)= U(J,NX-1,2)
vV(J,NX,2)= V(J,NX=1,2)
B(J,NX,2)= B(J,d%X~=1,2)
400 CONTINUE
GO TO 370
350 IF(NX .EQ. 1) GO TO 500
INITIAL GUESS IN NX DIRECTION (NZ .GT. 1)
GO TO 310
370 IF(NZ .EQ. 1) RETURN
NP = NPK(NX)
IF(NX EQ. 1) RETURN
IF(NP .LT. NPK(NX-1)) NP = NPK(NX-1)
RETURN
200 NX =1
WRITE(6,9800)
IF(NZ .EQ. NZT) STOP
NZ = NZ+1
SHIFT ALL NX PROFILES IN THE N2 DIRECTION
500 DO 550 K=1,NXT
DO 520 J=1,NPT
F(J,K ,1)= F(J,K ,2)
U(J'K '1)= U(J'K '2)
V(I,K ,1)= V(J,K ,2)
B.J,K ,1)= B(J,K ,2)
520 CONTINUE
550 COJTINUE
GO TO 370
9010 FORMAT(1HO,2X, 1HJ, 4X, 3HETA, 10X, 1HF, 13X, 1HU, 13X, 1HV, 13X, 1HB)
9000 FOKMAT(VH ,I3,F10.6,4E14,6)
9200 FORMAT(1H0, 7HDELSTR=,E14,6, 3X, THTHETA =,E14.6,3X, 7lHCF =,

1 E14.6/1H ,7HRDELST=,E1“ 6,3X, THRTHTA =,E1“ 6,3X, 7HRZ =,
2 E14,6/1H ,7HH =,E14,6,3X, 7THREDFR =,E14, 6)

93C0 FORMAT(/1HO,4X,22H** PHASE COMPONENTS *+#/1H ,18HCYCLE ENDS WITH X=
1, E14,6/1H0,2X, 1HJ, 3X, 8HIN=-PHASE, 4X, 12HOUT-OF-PHASE/
2 (1H ,13,2E14.6))
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94C0 FORMAT(1iH0, 18HCYCLE ENDS WITH X=,E14.6/

1 141 ,38HPHASE ANGLE BETWEEN WALL SHLCAR AND UE=,12X,E14.6/
2 14 ,501PHASE ANGLE BETWEEN DISPLACEMENT THICKNESS AND UE=,
3 E14.6)

9500 FORMAT(1i10,7HRTHETA=,E14,6,3X,5HRTHT=,E14,6)

9600 FORMAT(1:H0,28H** TRANSITION OCCURRED AT 2=,E14,6)

9700 FORMAT(1HOQ,67H** INPUT NXT DOES NOT CONTAIN EQUAL INTERVALS OF PHA
1SE ANGLE PERIOD)

98C0 FORMAT(1HC, 39 (2Hi*=)//)

990C FORMAT(1HO, 3HP2=,E14.6, 3X,3HUO=,E14.6,3X,2H2=,E14,6)
24D



*%% TEST CASE 1 - HOWARTH'S LAMINAR FLOW

**+ CASE DATA
N¥T = 1 NAL =
ETAT = 0.8000CCE+01 DETAl=
cB = < OMEGA=
CA = (.2uC000E+C3

21
0.200C0CE+00
C.100000E+01

** EXTERNAL STEADY STATE V-.LOCITY DISTRIBUTION

k%

Z

0.0

0.05000
0.13000
0.15000
0.20000
0.25000
0.30000
0.35¢00
0.40000
0.45000
0.50000
0.55000
0.60000
0.65000
€.”3060
0.75009
6.80000
0.85000
G.9C¢200
€.95000
1.00000

uo
1.C0000
0.99375
0.98750
0.98125
0.97506
0.96875
0.96250
0.95625
0.95000
0.94375
0.93750
0.93125
0.92500
0.91875
0.91250
0.90625
0.920000
6.89375
0.88750
0.88125
0.87500

AND PRESSURE GRADIENT

P2
0.0
-0.00629
-0.01256
-0.01911
-0.02564
-0.03226
-0.03896
-0.0a575
-0.05263
-0.05960
-0.06667
-0.07369
-0.08102
-0.08825
-0.09579
-0.10345
-0.11092
-C.11880
-0.12651
-0.13461
-0.14294

** BOUNDARY LAYER CALCULATIONS

NTR = 99
VGP = 0.1CC000E+01
UINF = 0,1G0000E+C1
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NX = 1 NZ = 1 X = 0.0 2= 0.0
V(WALL)= 0.187500E+00 DELVW= (.198620E+C0
V(WALL)= 0.38612CE+00 DELVW= =0.486990E-01
V(WALL)= 0.337421E+00 DELVW= =C,536625E=~02
V(WALL)= 0.332055E+C0 DELVW= ~0.669347E-04
J  ETA F U v B
1 0.0 0.0 0.0 C.331988E+00 0.1CC000E+C1
4 0.600000 0.597017E=C1 0,198830E+00 C.329903E+C0 0.1CCO00E+C1
7 1.200000 0.237744E+00 0.393448E+00 0.316348E+0C 0.100000E+01
10 1.799999 0.528925E+C0 C.574169E+00 0.282737E+00 0.100000E+C1
13 2.393999 0.921103E+00 0.728224E+00 0,228076E+00 C.100CCCE+01
16 2.999998 0.139494E+01 0.845316E+00 0.161549E+00 0.100000E+01
19 3.599998 0.192707E+01 0.922807E+C0 0.983551E-01 0.100000E+01
22 4,199997 0.249519E+01 0,966684E+00 0.507159E~01 G.100C00E+C1
25 4.799996 0.308226E+01 0,987634E+00 C.219445E-C1 0.100000E+01
28 5.399996 0.367779E+01 0.996142E+00 C.792393E-02 0.100009E+C1
31 5.999995 C.427648E+01 0.998981E+CC 0.237917E-02 0.1C0CO0E+01
34 6.599995 0.487618E+01 C.999776E+00 0.592262E-C3 0.100000E+01
37 7.199994 0,547611E+01 0.999961E+00 0.121874E~03 0.1C0000E+01
40 7.79999% C.607631E+01 0.999997E+00 ©,.206583E-04 G.10CCCOE+01
41 7.999993 0.627636E+01 0,100000E+01 G.1C9428E-04 0.1COCOOE+C1
toatefatatfalalfatlafefafafalatalatalalfcfafalfeatfalteafatfuafelfafafatfafatfutaktafa
NX = 1 NZ = 2 X= 0.0 Z= 0.05000
V(WALL)= (.331988%+00 DELVW= -(.972310E-C2
V(WALL)= 0,32226ZE+00 DELVW= =0,450226E-04
J aTA F §) v B
1 6.0 0.0 0.0 0.322220E+60 0.100000E+C1
4 0,600000 0.581813E-01 0,194094E+00 0.323867E+00 0,.100000E+C1
7 1.200000 0.232522E+00 0.386156E+00 0.313812E+00 0.100000E+01
10 1.799999 0.513068E+00 0.566277E+00 0.283169E+00 0.100000E+01
13 2.399999 0.906733E+00 C,721254E+00 €.230550E+00 C.100000E+01
16 2.999998 0.15/691E+C1 0.8401335+0C 0.164844E+CC 0.1000G0E+01
19 3,599998 0.190651C+01 C.919551E+Gd C.101347E+00 C,100000E+01
22 4.199997 0.247316E+C1 0.964962E+00 0.527956E~01 C.100CO0E+01
25 4,799996 0.305951E+C1 0.986931E+00 0.230901E=C1 0.100000E+G1
28 5.399996 0.365474E+C1 0.995860E+00 0.843160E~02 0.1C0G00E+01
31 5.999995 0.425332E+01 0.998894E+00 0.256168E~02 0.100000E+01
34 6,599995 0,485297E+01 0.999754E+00 C.645788E-03 0.100000E+01
37 7.199994 ~.545289E+01 0.999957E+00 0.134743E-C3 0.100000E+01
40  7.799934 0.605288E+01 C.999996E+00 0.232829E-C4 0.100000E+01
41 7.999993 G.625288E+C1 0.100000E+01 G.124532E-04 0.100000E+C1
DELSTR= 0,495709E-02 THETA = 0.189808E-C2 CF = (.365695E-01
RDELST= 0.307882E+02 RTHTA = 0,117888E+02 RZ = 0,310547E+C3
H = 0.,261164E+01 REDFR = 0.114286E+01
foteafaltoatatataleafalatcafclealateclatatfafeafalalatotatealfcatlatlealtcatatataltalta fa



NX =

41

DELSTR=
RDELST=

H

NX =

41

NELSTR=
RDELST=

H

1 NZ
V(WALL)=
V(WALL) =

ETA
C.0
0.600000
1.200000
1.799999
2.399999
2.999998
3.599998
4,199997
4.799996
5.399996
5.999995
6.599995
7.199994
7.799994
7.999993

1 NZ
V(WALL)=
V(WALL) =

ETA
G.C
0.600000
1.200000
1.799999
2,399999
2,999998
3.599998
4,199997
4,799996
5399996
5.999995
6.599995
7.199994
7.799994
7.999993

0.713040E-02
0.440079E+C2

= 0.262788E+01
Fobabakototobakakakaktata ke kaka

0.888743E=-02
C.545049E+02

= 0.264529E+01
¥obafakebobatatbakaka ko baka®aka

3 X =

22220E+00

12236E+00
F

o O

«3
3
.0
0.566133E-01
0.227123E+00
0.508849E+00
0.891792E+00
0.135810E+01
0.188502E+01
0.245010E+01
0.303568E+01
0.363058E+01
0.422905E+01
0.482866E+01
0.542858E+01

0.602857E+01
0.622857E+C1

= 4 X =
0.312170E+00
0.301887E+00
F

0.0

0.549919E-~01
0.221523E+00
0.498217E+00
0.876195E+G0
0.133841.+01
0.186247E+01
0.282585E+01
0.301658E+01
0.360513E+01
0.420347E+C1
0.480295E+01
0.540296E+01
0.600294E+01
0.620294E+01
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THETA
RTHTA
REDFR

THETA
RTHTA
REDFR

0.0

DELVW’ -0 .
DEva= -0 .

U

o.O
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