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THE MIXTURE PROBLEM IN C<JUIUTER MAPPING OF TERRAIN: 

IMPROVED TECHNIQUES FOR ESTABLISHING SPECTRAL SIGNATURES, 

ATMOSPHERIC PATH RADIANCE, AND TRANSMITTANCE 

ay Harry W. Smedes, U.S. Geological Survey, Denver, Colorado, 
Roland L. Hulstrom, Martin Marietta Aerospace Corporation, Denver, Colorado, and 
K. Jon Ranson, Colorado State University, Fort Collins, Colorado 

ABSTRACT 

Among the results of our LANDSAT and Skylab research programs on the effects of the 
atmosphere on computer mapping of terrain, we emphasize the following: (1) The concept of 
a ground "truth" map needs to be drastically revised; (2) the concept of training areas and 
test areas is not as simple as generally thought because of the problem of pixels that re­
present a mixture of terrain classes; (3) this mixture problem needs to bp more widely re­
cognized and dealt with by techniques of calculating spectral signatures of mixed classes, 
such as those we used, or by other methods; (4) atmospheric effects should be considered in 
computer mapping of terrain and in monitoring changes; and (5) terrain features may be used 
as calibration panels on t~ground, from whic~ atmospheric conditions can be determined 
and monitored. 

The natural terrain comprises a mixture of diverse classes, including combinations of 
such things as tree, grass, and other vegetative-cover species, different types of soil and 
rock, and water bodies of different size, depth, and clarity. Because the terrain features 
generally are small compared to the ground resolution el~ment (= pixel) from multispectral 
scanner data, it is unusual for very many contiguous pixels to consist of a single terrain 
class. Commonly, each pixel is a mixture of two or more classes. 

It has been shown that the spectral signature (radiance) of a mixture of terrain 
classes is not representative of any of the component classes composing the mixture. Auto­
matic recognition processors may therefore misclassify mixture-containing pixels, which 
otten leads to an underestimation of the amount (If component classes present in the area 
scanned. 

Even a single class may have a range in spectral signature depending on such things as 
size of pixel (sample size), solar Hspect, orientation, and atmospheric conditions. 

Because of this problem of mixtures in pixels, we at first attempted to compile ground 
control maps whose classes were deSignated by different increments of the more widely occur­
ring mixtures and to train the computer to recognize them by selecting specific TRAINING 
AREAS of known proportions of classes. Not only was this a monumental task, loaded with 
subjective judgements and difficult to calibrate, but the TESTING of accuracy of the result­
ing computer-derived map proved to be equally monumental. After much effort we concluded 
that--if not imposlible--it was certainly not at all feasible to prepare a truly accurate 
ground control map. In fact, while checking for errors in the computer map, the ground 
control or so-called ground "truth" map continually had to be upgraded. A serious problem 
that needl to be faced is: ''what constitutes the ground truth?" Our first major conclusion 
was that, if properly trained on end-member and mixed classes, the computer made a more 
accurate map of terrain cover than we were able to compile as control data. 

However, it is very difficult to measure precise proportions of mtxtures and to locate 
thOle areas in terms of LANDSAT NBS, Skylab 5-192, or other scanner pixels, especially in 
areal of mountainous terrain. This difficulty and the resulting uncertainty and imprecision 
led us to experiment with techniques to calculate mixel trom data for end members and to 
use thOle calculated Signatures in lieu of training areal tor the mix classel. Previous re­
learch in this problem has largely been confined to classes of crops in flat agricultural 
fields. our data and techni~ues will apply equally well to conditions ranging from crop­
lands to wildernel •• 



Inasmuch as the radiance from a pixel is integrated over the entire area. ot the pixel . (the instantaneous field of view ot the scanner), mixture-class signatures can be detennined tram the known mean vectors and covariance matrices of the component classes and the propor­tional areas occupied by each component in the pixel. Signatures for mixed classes were c&lculated llsing spectral. radiance tl"Om on-site measurements. In addition, several experi­ments were conducted with simulated LANDSAT MSS-type data to show the expected improvement in accuracy ot automatic classification using simulated mixture-class signatures. We also studied methods tor determining component class signatures when there were insutticient data points tor conventional Signature extraction. 

Results are presented ot a test area in mountainous terrain of south-central Colorado tor which an initial classification was made using simulated mixture-class spectral signa­tures and actual LANDSAT-l MSS data. 

Not only are these techniques highly successful in terms of "horter preparation time and higher accuracy, but the calculated signatures &lso afford insights into what the appro­priate increments of mixes and what the optimum wavelength bands are tor the most accurate discrimination among specitic classes. 

Atmospheric effects must be known in order to combine spectral Signatures derived directly from LANDSAT or Skylab scanner tape data with those measured on-site and trom air­craft. A few large homogeneous sites such as a large body of deep clear water, a large expanse ot bare rock, dense forest, large nonvegetated dry lake bed or desert sand, and snow may serYe as known natural calibration panels on the ground. These would be visible tram spacecraft, fran which the atmospheJ'ic path radiance and tranSIDittance can be derived tor each data set (mission or night). This calculated path radiance and transmittance can then be applied to correct the tape data for true radiance values of the terrain classes. Used in another sense, this technique can serve as a useful means of monitoring atmospheric quality fran spacecraft or aircraL~, as atmospheric path radiance and transmittance are measures of air qual i ty • 

lNTROWCTION 

Multispectral S~Anner data from satellites are used as input to computers for automati­cally mapping terrain classes of ground cover. Some major problems taced. in this remote­sensing task include 1) the effect of mixtures of classes and, primarily because of mixtures, the problem of what constitutes ground "truth"; and 2) effects of the atmosphere on spectral signatures. This paper presents the fundamental principles of these problems and some ot the results of our stUdies of them for a test site in Colorado, using LANDSAT-l data. 
The test site (figure 1) comprises about 2280 sq. km (880 sq. mi) of generally wildland terrain in south-central Colorado. It includes such landmarks as Pikes Peak, the Cripple Creek mining district, and canon City. Altitudes range from 1525 to 4300 m. The terrain is highly varied and includes a diversity of rock types, soil, and vegetative cover, over a wide range of angle and aspect of slope. 

The research was carried out as an integral part of LANDSAT and Skylab EREP projects funded by NASA, and by in-house research supported by the Martin Marietta Aerospace corpo­ration. Computer support was provided by Colorado State University and a computer-derived map vas made by the Environmental Research Institute ot Michigan (ERIM) as their part of a separate but coordinated LANDSAT project funded by NASA. This map provided further inlights into the nature ot the mixtures problem. This research eftort wal conceived, initiated and coordinated by Smedes. Hulstrom mealured atmospheric properties and studied their ettects, made on-site measurements of spectral Signatures, and used these data in a computer program to calculate Signatures ot mixtures. Ranson studied the eftects ot mixtures using simulated LANDSAT data as part ot a dissertation tor an advanced degree at Colorado State University. 

THE MDCroRE PROBLD! 

The natural terrain is canposed ot mixtures ot classes. This is true regardless of the size ot the ground resolution element ( • pixel) ot the sensOr system, and holdl tor satellite 
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data with ~esolution on th urder or 1 sq. m ters, to that of th microscope with reBO· 
"lution of th order of a sq. m ron or 1 SSe :av tradition, @tL h discipline of the natural 
sci n s h s aceommod t d. this mixtur's prohh"!l\ by means of md d oro rs or hierarchi s 
of olassi ftcationa. W thus have, in ord'r f d reasing size of resolution clen nt, such 
cla$s s as galaxios; stars and planets: 'onti cnts and oceans; mountains, ridges, vall -ys, 
plains and d serts; woodlands. m doys, bare rock, Md soil: spru ,asp n, bun hgrass. 
grantt , and quart~ v~ins; bark, needl s, 1 ves stems, quart~, ftlldspar, and mica grains: 
p tioles hloroplasts, mito h ndria; p rthit • &lbit with fluid 1n"lu$ion8 , and m&8n tite 
inclusi ns in biotH. Be aus,,' we ar d &ling with urr nt satcllltc S Mil rs, th reso· 
lution elem nt or pixel si:: w'\ ar concerned with is m squar. '!'hi:': results in high 
likelihood that any Siv n pixel will contain two or mor of such cla88 a a.s woodlands, 
meadow, bare rock, and soil. tf a reCQftniti II proe ss r (comput'1") is train"d to r nis: 
only the homo n us compon nt clnss s (tl' s gnlSs, rock, etc.) th ovurall nsequ neea 
of a mixture of th s class s 0 currin~ ""i hin n pixel is" mis assified o,r unclassified 
pixel, which t nds t l1'l\k estimates f th' area covored by a t rrain clt\sS low r than 
actu&lly pres nt (ref. 1). Er rs in cll\ssificati ns du t th mixtur problem &lon will 
b to per nt (r f. ~ and ). 

Ttl 
where a 

ki nds r mixtur ~s. On", is du t.o th boundary r eN' ct. 
ncompass s th int rfa ~ f t~ or mor h mo n us nd-mem r ornponent 

as vat r nu' ns' nif rous f r st. Th' r~sul Ing sp tr&l si~nature would 
nta i f 0. pix 1 t.hnt ' Ilt.llitwd only n of th '5' 'lasses. The oth r mixtur -

ntatn h rr.o/>\ Il' us mixtur s of su h things as for'st MOPY 
rst ry. In h nrs" se, only h(' pixels :.Uotl{t th int r-
In til· Sl" no as, 1a fP ciust. rs of pix ls thro~h ut th -
if nly the 'ompon nt lllss s w r used to troin h omputcr 

~rio.t1ons in th am unt r v f{ t,lltiVl 'v 'T will rsult ill ~l.'rr sponding mixtures of 
th V' getation I\nd unucrl.vinFt tn~lt ·rilll. nSI.'qll'I\tl.y, if the ampul'r is tmin t r 08-
nit nly on v~g tnt" n d'nsitv then mis'lassifications waul! ur f r 'flsities abov 
or b ow that of th r{\ini n~ :\ss, wi hin th (' nstrai nt of som r sp nsl.' t.hl' sh ld. Ttl s 
mlsclassiN. ations 0 cur b aus ",11'11 1\ mixt,ur f is ntain:xl within th 
instantan us f1 cld l' vi ew (rrov) or a S 'I\nn r th tai ned is unlik 
that of any ot th XlmpOll nt cll\sS S ign{\tllr '5 (r f. ). this n('cpt J thr 
t rr in class a w r id nt iN :t on fn'3.Y"\'lps f At Ilst , 1 I. -171 ) LAND-
SAT-I MSS nata that nppoor ~ rc'pr '5 'n C\t vc f rassl:\nd (A) b 
I cover (B) and d.ass r pr 'S 'n ins an assumed ')0- mixtur 
Md located on th int l'fnc h tw" n thl~. p tml si~nl\tur s w r 
points sanrpl 00 f r Class A, f\)r class R I\nd . 4 for class 'l'he m Illl sJwctr r sponl'\: 
curv s for til thre d.t\ss s are shown :i Il fif(llr~ ". Not that h' sp trt\l r sponst:' for 
th mixtur class C is un hnrn t rist.i· f ith r fits COOlpon nt c t\sses (A and B) but 
that t.1l r s ns llrYeS fulls b tw 'II tho t.wo XlIIpon ntl' llTV s. Reset\r hers inv stiSt\tinF: 
this ph nom non h:\V' f un thnt th rclationtlhip of 1\ mixtuT (\no t,h' signt\tur s r h 
compon nt class s may h(' t\PPl"(X mBt,~d as a fun('tion f th t\r '}\ f th' pix 1 0(' llpicd by 
each compon nt t rrain class t\n" th'ir r'sp tive spc I.~trt\ signst,ur s. 

Bi' ause of this blt!n f mixturl!S in pix s, w t\t 
control IMpS wh Sl~ ass s \oIi~r ~ d's iFtMt d by 
rin« mtxtur I and to traln the computer t 
of kn WTl proportions of class s. This m th Ii, 
trt'mely tim -consuming, lMd with sub.1 
T :; ins th · tl eura f h r 'sult inFt put 

exlr nclus i n supllOrt I by thl'I' W1 rk 
that if the comput r is prop'r1y train \ tl 

mixtur s.it . lun IMk a mor {\ " urat "\Ilp 
as oontrol data. '1'1110 ast.n 6~'ri us d ub 

Itt. s tho ~ und ''trut.h''. 
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tboae areas in terms of LANDSAT MSS, Skylab S-l92, or other scanner pixels, especially in 
areas ot mountainous terrain. This dirticulty and the resulting uncertainty and tmprecision­
led us to experiment vith techniques to calculate mixes tram data for end members and to 
use those calculated signatures in lieu ot training areas tor the mix classes. Previous 
research in this problem has largely been confined to classes ot crops in nat agricultural 
fields. CW' data and techniques will apply equally well to conditions ranging tran crop­
lands to wilderness. 

Inasmuch as the radiance from a pixel is integrated. over the entire area ot the pixel 
(the instantaneous field of view of the scanner), mixture-class signatures can be determined 
from the known mean vectors and covariance matrices of the component classes and the propor­
tional areas occupied by each component in the pixel. 

TWo approaches were taken. One was to measure the renectivity of pure end-memher 
components on site and then calculate signatutes of various mixtures. The other wt'.:-J to 
use the satellite data itself to extract the radiance signatures of known end-member targets 
and then calculate radiance Signatures for various mixtures. Simulated LANDSAT MSS-type 
data were used. They show the expected improvement in accuracy of automatic classification 
using simulated mixture-class signatures. In addition, methods have been developed. for de­
termining component class signatures from mixtures when there were insufficient data points 
for conventional signature extraction of the end-member components. 

O\LCULATED SPECTRAL SIGNA'lURES FOR MIXTURES 

Basic Concept 

The basic problem of correctly identifying ground resolution elements that contain mix­
tures of terrain classes with simulated mixture signatures is obtaining representative sig­
natures for the component classes. A component class can be defined as a homogeneous or 
non-homogeneous group of materials that I'IIBE up a discrete mapping class or terrain type. 
A discrete mapping class may or may not be found in combination with other discrete classes 
as mixtures. For example, in an area where there is a sparse covering of grass with bare 
soU showing through, the grass and soil may be considered as two discrete mapping classes. 
With the 0.4 ha resolution of LANDSAT, the scene would be viewed as a mixture of grass and 
bare soil so these two classe~ would most likely be combined into one component class tor 
analysis. It another class were identified as dense forest, then any time enough trees 
existed on the grass-soil unit to affect the response of a pixel, then a mixture ot these 
two classes (forest and the grass-soil association) would exist. Discrete mapping class 
determinations can usually be considered a function of the natural associations, the objec­
tives of the user, spectral radiance, and the limitations of the MSS data. 

When selecting component classes for mapping mixtures t care must be taken to avoid 
situations vhere the data for a class form a multimodal distribution. Miltimodal distri­
butions occur where the response data for a class are affected by variables such as slope 
and aspect, vegetation vigor, underlying soil spectra, and sensor scan angle effects. The 
standard method tor dealing with this problem is to divide the multimodal class distribution 
into subclasses as a function of slope, etc., claasity the data and then combine the results 
tor each subclass (ret. 10, 11) for final display. 

calculations From On-site Measurements 

Mixtures.- FOr on-site and near-surface measurements (negligible atmospheric transmission 
and path radiance) the radiance, Nt of a pure target end-member can be given as 

N = HP (1) 
t 11'" 

Where H is the tot&! solar irradiance and P is the target renectivity. The radiance from 
a mixture ot targets, Nm, can be given as 

Nm :> .~ (t'l~ .. P2A2 + f( 3A3 + •• ·'nAn) (2) 
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vh 're p , .p, ;te. r t.h r ' fl cttvity siF:natur • of eaeh ompon nt tug t, and A., , ~, 
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ass~tion is made that non of th component tars ts hav strong sp elllar roflectiviti a. 
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th re are atmospheric rr eta to be 
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of mixtures. 
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spectral remote sensing missions. A combination of a few selected measurem~nt8 of solar 
lrradiance and reflectivities, and the subsequent computer calculations of spectral contras~ 
could be used to select film/filter combinations that would yield the highest contrast. 
This method would eliminate costly flights and subsequent data reduction performed in hopes 
of empirically determining optimum bands. 

calculations From LANDSAT Data 

Modeling of spectral signatures of mixture.- Two approaches for modeling were used 1n 
this study. The first is a widely reported method that describes a mixture class signature 
in terms of weighted combinations of component class mean vectors and covariance matrices 
(ref. 1, 2, 8, and 13). The model describes the mean spectral response from a ground re­
solution element as: 

(4 ) 

where ~i --- ~ Mean response vector for a mixture of N component classes; 

P = Relative amount (propol~ion) of class i; 

M1 = Mean response vector for the ith component class. 

The above relationship assumes statistical independence of normally distributed data 
points belonging to class i. 

Assuming statistical independence for variables associated with elements from different 
object classes, the r elationship for a mixture class covariance matrix can be written as: 

N 
C • 'l: P i PiCi 

wher~ Cp = Covariance matrix for a mixture of N component classes; 

P = Relative amount (proportion) of class i; 

Ci = Covariance n~trix describing the distribution of the ith component class. 

Equations (4) and (5) represent the model used for automatic classification of mixtures 
.of classes with a maximum likelihood processing algorithm. For supervised learning recogni­
tion processors/component class mean vectors and covariance matrices must be determined and 
proportions for each possible mixture must be specified. The approach presented here is 
based on modeling the spectral response within a single pixel and should be applicable to 
recosnition processing with the RECOO (ref. 10, 14, 15) maximum likelihood algorithm (GLIKE) 
since classification is point by point. 

Most or the work r eported in the literature utili~ing this modeling technique required 
sophisticated algorithms that calculate various mixture class signatures and select the one 
that gives the closest approxtmation of the response from a given pixel. In our study, 
however, we used the model to obtain a set of spectral signatures for specified mixtures of 
component terrain classes that are used by the RECOG pattern recognition routines to identify 
all MSS data points that exhibit that response. The value of thil method lies in itl Itraight­
forward applicability to the existing RECOO procelsing sequence, thus eliminating the need 
to develop new processing algorithms. 

Equation 4 val used to simulate the spectral response expected from a mixture of the 
two component classes (A and B) whose extracted mean vectors vere shown 1n Figure 2. Figure 
8 shows the resulting simulated mean vector (D) tor a 5~ mixture of the two classes ie. 

6 
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ollecttvcly known as the m n vector. Becaus of the inherent variability 1"0und 1n natural. 
objects an additional set of statisti s 1s obtained that characteriz s the population dis­
tribution of the sampled data points. This set 01" statistics is the class covarianc .. trix 
and d scrib s the Within-channel and b tv n-channels variation of the data. The technique 
used in this vork is contained in th RECOG rout!n 8, specifically Phase (Appendix A). 
Th formulas used in th s routin's ar d s ribed in Appendix B. 

Estimating oruponent·class sp ctral s1gnatur s.- ne m thod for stimBtil'l8 component 
class signatur s fran knovn mixtur claGs signatures involv s sol vins tvo equations vith 
two unknowns. 'nl sp tral signatur s for unknown mixture class s are assumed to be related 
and can be described in eqllation fonn i n th folloYing mann r: 

(7 ) 

whe r P, Ph Proportions of lass s A and B in th training s t, r sp ctlv lYe 

(MSR ) ,(MSI\J ~~ spe tral responses f the ccnponent class s A an - Bt r spectiv ly 
in waveleRgh banM 1. 

~ D Mean sp t ral r spons 
i 

r roo at th ~ anner f r th mirture of class s A and 

B in way length band i. 

'nl t ntiS P , Pb' and M ar' kn Wll f r a ch training s t,l mving tho mean spectral r -
spons s of th ~ n nt clais s A and B t b d'termined. If there exist two sets 01" 
spe tral signatures l s ribing training sets vi th similar compon ~nts bllt of di rfere-nt propor­
tions, then it is possible to luat th two compon nt class s by solvin the tvo qua­
tions slmtutaneously. A S II r . 1 soluti n f r the two-- mpanent ass as t&k s th form: 

P Ph 
a 1 

( ) 

Equation 8 produ s the mean spectral r spons for clasG B. To d ri ve th(' mean spe tral 
r spens for class A, th r Slut n u substituted tnto e4luation 7 vhi -h can b r wrUt n 
as 

~1..')Hl\i ~ MPI - PbMSlbi 

? a 

( ) 

If th '1 m nts of th \ C varian e matrix for a t rr& in class ape tral S1 nature b hav 
1n & similar rashi n, th n this m thod lUct be used to ohtllin f\ cal ulated variance matrix 
for a compon nt t rrai.n ass. Th varian matrix for a four- hannel. ('as su h as LAND-
SAT-l can b tr ated I\S & 1 em nt array to s i nlplify th I\l ulations. This an be don 
since th oft-diagonal elem nts of th' ovnrian e matrix ar mlr r iIIIag"s of a h other. 

A computer program called SIGCALC vas written to tl\k two extract mixtur terrain-
class spectral ligMtur s and al ulat th moan vector I\nd c:ovariM matrix for the COID­

pon nt classes. In ndditi n, th proportions f th~ compon nt cl sst's in the training let 
d t natned from round truth must b sP' i tied. i tuations vh r P Ph • Pb P tnllst b 
Avolded .in(!~ th denominator of quat! n , cannot equal z roe 1 -1 

Th above In thod for dl't mining pon nt class I~ctr&l s i nat.ur s should provid rt'-
Uabl results if ttl proporti n stimat "s f r thr component class s ar accurat. Hev v r. 
it is ott~n dirt! ult to In sur th proportl ns of compon nt class I with th a "uracy 
n oded to stiJrat r pr 'spntattv om n lit class signatur s. Ala, dll to th varll\bilUy 
of sp ctrtti r spons s f r n nt ('l"s ., 'S f und in natur(' it \II a dt'cided to US" anoth r 
III thod that e.ttJMtcs th lpon"nt- f\!lS sp trill signatur s from mor than tv m1xturf"-



clasl a1g~tur s. This m thod involves ud n a steJ'Wis linear r gr asion analysis. 

Th ateptis linear r gr ssion ndysts uaed 18 .n applications program availabl at 
Colorado state Univ raity call d STAT3 R (ref. 14, 15). This program was us d to develop 
a resr saion model that st1mat s th spectral r spons of a terrain class, eith r a com­
pon nt or mixture, given a s t of mixtur .. class spectral signatur sand th' proportions of 
th oompon nt classes. 

Simulations of LANDSAT data.- In ord r to examin th applicability f modeling mixture­
clals s~ctral signatur s for utomatic classification of LANDSAT-l MSS dat , a aeries of 
experiments val perfonned vith simultlt data. They include: identifying the expected 
improvement ot automatic classification us i ng modeled mixture terrain-class signature. versus 
conventional COIIIponent class analysis, canparing modeled and extracted mixture-class mean 
vector. and covari nc matrices, and analyzing the signatur calcul tion technique. 

Creation of siJnulate data fields: Th autoaatic classification procedure onduct d 
for these exp rim nts approx~tes that of conventional RECOG LANDSAT-l MSS nalysis (r f. 
10, 14, 15) vith the exception f using modeled mixture class signatur a nd simulated 
LAImSAT-l data. Th st J)S &re: l)Eltamin control data on site to stabliah 10 ationl of 
represent ttv training s tSt II t nnining the lin and column numb .rs of th training sets 
on N)'1II&ps nnd extra ting th me n v ctors and covarianc matri s from th data. 2 ) Simu­
late mixture signatur s with th COInponent class signatur S obt ined in St p 1 llsin Prognur. 
MIX. MIX r quires th m n v ctors nd covarianc matrices of the compon nt classes as in­
put, as vell as th mixture proport 10ns d sired for ch mixtuJ'\.· class. The s imulat m n 
v~ctors nd covarian matri s ar pun ht!d on canpIlter cards by MIX f r futur u~, ) Gener-
at random··nonnal data f1 d f r Il. h ass in RECOG fOl"lno.t with p ram DTAFn.E. This 
program uses a r&ndom-number n rator that sleets points as b in to a -iven class 
bas on th m n sp tmJ. respans n .h LANDSAT-l p.:sS band and the appropr1at covarianc 
matriX, all within a normal. Gaussian Ii i tri uti n. Th ov"rlying assumption h re is that 
vildland t rr in 1 t:SI!S ar 1\ nnnlly i str i ut d, whi h c nfonns t th assumpti ns iJllPOS 

on th mixtur mod ling m th (r f. ) nli t.h maximum ik lihood patt rn r cognition Illg -
rithym (GLIXE) or RECOO (r "f. ] DTAn ' was d sign d (l r t simulat d data fields of 
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componEnt-class signatures (top 3 rows, fig. 9) and used to classify the entire set of simu­
lated data. The classification display is shown in figure 11 with the Grassland field at 
the top and the Forest field at the bottom. The mixture class fields are located between 
the components with C nearest the Grassland field, D in the middle and E nearest the Forest 
field. Note the number of unclassified points (seen as blanks in the display) in each of 
the mixture-class fields. These points were thresholded out at the 11.100 percentile as 
not belonging to either of the component classes. Misclassificationa of the mixture-class 
fields occur only in fields C and E, with points being miscla6sified as the component class 
Which has the highest proportion in the mixture. 

The absolute classification accuracies were determined for each clas _ Since eacb data 
point vas created as a specified class, a point ¥as considered misclassified if it vas classi­
fied as any class other than that specified. The re.ults are summarized in the follOWing 
classification confusion matrix (CCM) listing each class, the number of points that were 
classified correctly, and the number of points misclassified as other classes. 

CLASS F E D C G 

FORES'!' (,) 1000 

251. GRASSLAND - 148 
75~ FOREST (E) 

~ GRASSLAND -
~ FOREST (D) 

75~ GRASSLAND -
2~ FORffiT (C) 376 

GRASSLAND (G) 1000 

The table is read with the true class name and symbol on the lett and the symbols of classes 
that a point was classified as across the top. The diagonal elements of the matrix represent 
accurate classifications. The off-diagonal element. represent either Type I or Type II errors, 
defi~ed as follows. 

Decision True Classification 

X belongs to A X Does Not Bel .. :mg t o ' A 

Classity AS A Correct Decision Type I Error 

Do Not Classity AS A Type II Error Correct Decision 

The overall accuracy of this classification was only 40.~ which in most LAND&T-l appli­
cations should be considered quite poor ~ though !h! oomponent classes ~ cla •• ified 
perfectly. 

Clas.itication of tvo CClIIIpOnent and three mixture cla •• es: The objectives of the study 
presented in this .ection vere twofold. The first was to verity that the mixture-cla.s 
.pectral •• ignature modeling technique produces Signatures that can be used by RECOG to classi­
ty pixels that contain mixtures. The .econd, a,sWling the fir.t to be satisfied, was to de­
termine the increaae in information acquired u.ing modeled mixture-class signatures over 
classification conducted with only component-class 'ignatures. 

The same data-field generated for the analysis of component claaaes was used for this 
experiment. Treating the data file as actual LANDSAT-l MSS data, component-clast mean vectors 
and covariance matrices were extracted. Signatures for the mixture-class fields were not 



extra t d from the data, bu 'II 'f t.: rr. d led from th compon nt-class m an vect rs and 
covariall c matri s. !hi roc ure f 11 ws that whi h ul b USc with a tUal LAJ\ SAT-l 
data slnc r pr sentaUv mixtur '-class tr inin sets ari'l usually difficult to 10 at in 
na.tural s1tuati IlS. Th w extrtl t~d nlpon nt and thr e mod d mixture-class signl\tur s 
wre used to classifY the ~~in\l1.lat d data fn . 

At this point it was 
ane matri s. Th ignatlU" S 

and ompared wUh thos that w re m 

mod and extraet d mean v ctors and covari-
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Th cl ssification results indicat thnt simu18t d mlxtur -class spectral signRtures 
can be us d to classify MSS dat!\ using the RECOO program. The lassification information 
and accu.raC)' were allo lre6t~ increased by the use ot mixture" signatures. The overall 
claalit1cation accuracy ulins thil technique increaled to over ~. with only a aUght de­
crease in the Bccuract ~ of compon nt class s. It stould b not ed h rt.' that. automatic classi­
fication of gt!n rated data fi elds will normally produce high classification accurades du 
to the lack of "alien objects"which are often found in renllife situations (ref. 3). The 
accuracies produced her should, inst ad, be consider d B measure of the effectiveness of 
the classification technique. These results do indicate that g iven a pixel containing a 
mixture, it should be possible to accurately identity it with this m thode 

Classification of three compon nt and six mixtur classes: The successful results ob­
tained with th flve-class analysis warrant d further stud,v, so an additional compon nt class 
was added to the signature set. A m an vector and covariance matrix for Water (W) was ex­
tracted from August 20 , 1972 LANDSAT-l MSS data. Mixtur signatures w re modeled from the 
Grassland component clas3 and the n w WHter class with a proportion increment of 0. 25. The 
resulting three mixture clHSS ~ and the component class combined with the original signatur 
set bring the total number of signatures used to nine. Figure 13 shows the mean spectral 
response curves for the Grossland-Water mixture classes. The separation of these classes 
was adequate in all bands. Th mean spectral response curves for all nine classes are illus­
trated in figure 14. 

The classification procedur followed that of all previous experim nts with a n W data 
field bing generated to include nll nine classes. The classification display is shown in 
figure 15. A classification confusion matrix (CCM) for the 9-class analysis is as follows: 

CLASS F E D C G Q R S w 

FOREST (F) 997 

25~ GRASSLAND -
751, FOREST (E) 8 8 10 

5<)1, GRASSLAND -
~ FOREST (D) 8 

ORlGlNAD PAGE 1& 
OF pOOR QUALrrY 

25~ rRASSLAND -
751, FOREST (C) 10 954 12 24 

GRASSLAND (G) 11• 986 

751, GRASSLAND -
251, WATER (Q) 6 18 976 

501, GRASSLAND -
501, WATER (R) 999 

251, GRASSLAND -
75~ WAT~R (S) 

WATER (W) 

These relult, show a good classification accuracy for all the clas es, with an average classi­
tication accuracy of~. Not that the greatest contusion exists b tw en mixture classes 
that have th same proportion factor tor a given component class, i •• , 75~ Grassland-25~ 
Porest and 75~ Grassland-2~ Water. This is probably the result ot malking of the 1 sser 
components by the Grassland r sponse. 
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cult to find any pixls that ont in nly on t r~in cl as (r f. 16). Consequently, methods 
to bt in component t rr in- lass slgnatur s from pixels containins mixtur s ot t rrain 
class s in known proportions hay b n inv s 19 t d (tor exaJaple, se ret. 17). The method 
involves solving s t of 11n .. r equations assllming that the dat is from a Gaussian diatri­
button and h signatur h s a ammon varian matrix. ~r study used a similar, but 
much simplified t chnlqu t attempt to acquir compon nt- 1 S8 s ctrsl signatur S from 
training- et data f t rr in class s of kn wn mixtur e. A t st f th m thod to obtain 
compon nt-class sp tral sign tur s using quat ions nd w s ndu ted using simulated 
at fi lds cr t d in th sam mann r as th pr eding experim nts. The spcifi objectives 

ot this t st were: 1) to v rify that this m thad could b llSed t.o determin canpon nt class 
signatl~s suitabl ~ r automatic mapping of LANDSAT-l typ MSS data when only mixture ter­
rain cl as s were avail bl' for signatur extraction, . nd ) find out the type ot claaai-
fi tion accura 1 s th t can b expected when i.mpl.em nting th s st1mated signatures as 
input into th model &nd ru;coo. 

The initial test used the r ndam-normal data ti lds for th nine-~~ass analysi~ deecrib 
abov. Spectral si natur s were extract d from the data for mixtur class s 75j Grassland-
~ Forest (C), ~ Gr ssl nd-m For st (D), 7 1, Grassland- 5' W t r (Q), and 5Q1, Grassland­
~ Wat r (R). Th pairs of extract algnatur s and th ir rr spending proportion factors 
w r input into SIGCALC nd th compon nt sig~tur s for Grassland, For st nd W ter w r 
calcul t d. 

CoII\parlson b tw n mpon nt cl ss m nn and standard d viat! n v ct.ors ~xtracted from 
th data a t and thoso al ulat d with SIGCALC is as follOWS: 

OOr, t rl Cal ulat d 

CLASS GRASS 
BAND 1 4 1 4 

~.EAN 31. .64 ) . 5 1 . .05 .7 8. 1.0 

TD. DEV. 1.14 1.1 1. 1. 1. 1.4 .97 

lASS FOREST 
BAND 1 4 1 4 

MEAN 1 . 4 1 . 1 • 10.1 1 .41 1. 1 . 

STD. DEY. 1.1 1. 1.05 1. 1 1. 1.31 

ClASS WATt:R 
BAND 1 4 1 3 4 

MEAN 1 1 7. 1 .04 16.17 7.70 .64 .00 

S'rD. Dt:V. 3 .1 . 1 .76 

Th calculated compon nt class aignatur s c10a ly pproxlmat th extracted" with th av rag 
d vlation bein for m n v~ t ra nd .1 tor st n a~l deviation •• 

In oro r to canpar th I)fr ttv n 8S of stLnat d signatur s with xtra t 8ignat~1' a. 
by th omput r. Th clal8 aignatur s used I n-

nt sign tur's nd six mixtur -clan aignatur I mod 1-
asaiti 'at! n a ura y obtained val aPJ rox1mately 

d ompon nt 8ignatur s . Th la8s1 fl aU n -p 



shown in figure 16. The classification contusion matrix (CCM) of this data set is as follows: 

CLASS F E D C G Q R S W 

FORClT (F) 984 13 

25~ GRASSLAND -
75'" FOREST (E) 17 973 10 

~ GRASSLAND -
~ FOREST (D) 20 11 4 1 

25~ GRASSLAND -
75~ FOREST (e) 27 876 25 65 
GRASSLAND (G) 59 t:p7 

75~ GRASSLAND -
25~ WA'l'ER (Q) 28 24 2 

m GRASSLAND -
~ WATER (R) 1000 
25~ GRASSLAND -
75~ WATER (S) 1000 

WATER (W) 1000 

An overall classification accuraey of 96.l~ was obtained, indicating that good classification results can be expected using this methcd. 

The simulated data fields that contain d the mixture-cl~ss si~natures used to calculate the component classes represent uniform data. That is, each data point (pixel) represents a similar class of objects. Because this situation is sometimes difficult to tind in natural Situations, the techn1que was testcd for mixture signatures extracted from non-uniform data or training sets. Non-uniform training sets can be defined as areas that contain a mixture of component classes with single pixels containing various proportions of the components. If the non-uniform training set is considered in its entircty the mean spectral response should approximate that from a unifonm training set with the same proportions of component classes. The oncept of uniform and non-uniform data is illustrated in figure 17 as two 2O-pixel training sets, one containing a uniform mixture of two component classes (white and shaded) (a) and one containing a non-uniform mixture (b), but hoth with identical overall proportions ot component classp.s. In the uniform training set each pixel (outlined by heavy black lines) contains a ~ mixture of two component classes, producing a 5~ mixture within the entire training set. Since the spectral response from a pixel is integrated at the scanner optics1the within-cell distribution of the ~ponents does not affect the between­cell variance of the training set. Th non-uniform training set is composed of some pixels containing lOO~ of one class, some containing l~ of the other class and some that contain various mixtures of the two components. The overall mixture proport ion averaged over the entire training set is ~ of each component class. Referring to the equation 28 (Appendix) it can be asily deduced that the mean vectors obtained from each training sot should equal each other assuming constant illumination and no within-class variabUity. By equation 30 (Appendix) however, it can be sr.cn that covnriance matrices will most likely vary due to the between-pixel variabll i ty exist i~ in the non-unitorm training set. 

To verifY these statements/mixture-'lass Signatures extracted and compared with thoEextractad trom uniform 



signatures. A comparison of Extracted and calculated Inean and standard deviation ·vectors of 
the component classes for uniform and non-uniform(*) data are as follows: 

Extractpd Calculated 

CLASS GRASS 
BAND 1 2 3 4 1 2 3 4 
MFAN 32.02 33.68 38.60 18.97 31.81 33.69 38.67 18.77 
STD. DEV. 1.16 1.97 1.52 .96 1.08 1.86 1.64 1.00 

CLASS GRASS* 
BAND 1 2 3 4 1 2 3 4 
MEAN 32.02 33.68 38.60 18.97 31.98 33.67 38.61 18.95 
STD. DEY. 1.16 1.97 1.52 .96 5.17 8.59 11.15 6.02 

CLASS FOREST 
BAND 1 2 3 4 1 2 3 4 
MEAN 16.43 10.93 19.69 10.13 16.53 10.93 19.55 10.13 
STD. DEV. . 92 1.19 1.99 1.29 1.04 1.21 .88 1.31 

CLASS FOREST* 
BAND 1 2 3 4 1 2 3 4 
MEAN 16.43 10.93 19.69 10.13 16.47 10.93 19.75 10.18 
STD. DEY. .92 1.19 1.99 1.29 5.02 7.32 6.33 4.35 

CLASS WATER 
BAND 1 2 3 4 1 2 3 4 
MEAN 16.23 7.62 3.47 0.03 16.27 7.71 3.53 0.00 
STD. DEV. .63 .79 .67 .17 .63 .84 .56 .47 

CLASS WATER* 
BAND 1 2 3 4 1 2 3 4 
MEAN 16.23 7.62 3.47 0.03 16.28 7.71 3.47 0.09 
STD. DEY. .63 .79 .67 .17 10.10 16.50 22.20 12.10 

Note the close agreement of means and standard deviations from the unifo~ data and the close 
agreement of means but non-agreement of standard deviations calculated from the non-uniform 
data. 

The consequence of using such large covariance matrices obtained from the non-uniform 
data is illustrated in Figure 18. The nine-class simulated data fields were ClBssified with 
the calculated component signatures listed above. The first classification map (fig. lBa) 
was obtained using signatures calculated f~ uniform training sets and the second (fig. 18b) 
was obtained using signatures calculated from non-uniform training sets. The classification 
accuracy of component classes obtained for the uniform case vas 99.l~ whereas the accuracy 
obtained for the same classes in the non-uniform case was only 33.3~. The latter figure i. 
misleading in that the nine-class data set vas classified as 97.~ Grassland, l.~ and .4~ 
water. 'nlese figures indicate that the class distribution for Grassland was improperly de­
fined by the covariance matrix. 

The above study, coupled with th~ frequent lack of uniform mixture-class training set. 
in natural situations, lends itself to implementing an artificial covariance matrix for de­
scribing distributions of component classes. The use of a covariance matrix common to each 
class was discussed (ref. 8)for another, more sophisticated, signature calculation technique. 
Mean vectors for component classes can be successfully calculated from non-uniform mixture­
class training sets. If a common covariance matrix that describes the proper distribution 
~an be found, then with the calculated mean vectors, the signature should be representative 
of its respective class. To verify this, the component-class mean vectors calculated from 
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non-uniform mixture class training sets and various common covariance matrices were used to 
classify th simulated ntne-class data fields. 

a. The first classification utiliz d a covariance matrix with diagonal elemlmts «(T .. ) of 
(1,3,3,1) and off-diagonal l~mcnts of 0.5. n,e determinations for the covariance el~ents 
were made by ! priori inspection of covariance matrices for component and mixture classes 
extract d from simulated uniform data. Th standard deviations in ach band represent an 
estimate of the average standard d viat 10ns for all classes. The off-diagonal elements were 
established to be 0.5 as an stimated av rag of the corr lation valu s for all of the 9-
class correlation matrices. 

The classification procedure followed that of all earlier runs with the mixture class 
mean vectors being modeled from th component class m an v ctors cal ulated from non-unifonn 
data. Th classification map is shown in figur 19; its corresponding CCM is as follows: 

CLASS F E D C G Q R S W 

FOREST (F) 993 5 

25~ GRASSIAND -
15~ FOREST (E) 1 5 11 1 

5O~ GRASSLr\ND -
5Q1, FORl::ST (D) 17 5 15 

25~ GRASSLAND -
75~ FOIID)T (C) 19 1 ° 1 6 

GRASSLAND (G) 6 974 

75~ GRASSLAND -
25~ WATER (Q) ~' 6 

50~ GRASSLAND -
501f WATER (R) 1000 

5~ GRAS:)LAND -
75~ WATER (S) 1000 

WATER (W) 1000 

The acceptable lev 1 f lassificat ion a 'IIrncy btain('d ( • %) 1n \ Ilted that utilhin 
common covarian mat r ix may help solv th prabl m f stablish1:i repr s ntativc spectral 
signatures for co.llponent class'-'s wh II ther l!Xist i nsufficient points for conventional sig­
nature extraction. 

An additional classification was conuucted wi th the sam class mean vectors as the above 
analysis, but with a common covnrianc matrix with th same diagonal el m nta Rnd off-diagonal 
elem ~ts s~t to 0.0. Th~ pumas of thi~ run was to r.tablish th expected classification 
accuracy for 0.0 corr ralations b twe n hann~lG. Th c}/\s:;itication .r 8ulta were at; in pr -
mialng"with the averag accurn:,' ohtll1n d b ins 96.~. 'rh classification map is shown in 
fil. . its corr sponding CCM l~ as follows: 



CLASS r E D e G Q 

FOREST (r) 970 25 

25~ GRASSLAND -
75$ FOREST (E) 26 939 35 

m GRASSLAND -m FOREST (D) 20 942 13 20 

25~ GRASSLAND -
75$ FOREST (e) 13 896 25 66 

GRASSLAND (G) 15 983 

75$ GRASSLAND -
25$ WATER (Q) 20 22 958 

m GRASSLAND -
5<>$ WATER (R) 1000 

25$ GRASSLAND -
7~ WATER (s) 1000 

WATER (w) 1000 

One additional common covariance matrix was calculated, and tested as suggested by 
Nalepka and others (ref. 8, p. 17). This matrix consisted of an average of the covariance 
matrices of their Signature set. One immediately recognizable disadvantage of this method 
_s that a set of representative covariance matrices must be obtained from the MBS data which 
have small values such as those expected from ca.ponent class covariance matrices extracted 
fl'Olll uniform data. The results of using this technique for calculating the diagonal elements, 
but setting the off-diagonal elements to 0.0 are sbown in figure 21. The corresponding CCM 
is as follows: 

CLASS F E D e G Q R S W 

FOREST (r) 960 23 

25~ GRASSLAND -
75~ FOREST (E) 25 939 35 

~ GRASSLAND -
~ FOREST (D) 20 941 13 22 4 

2~ GRASSLAND -
7~ FOREST (e) 10 893 26 70 

GRASSLAND (G) 18 977 

7~ GRASSLAND -
2~ WATER (Q) 23 25 952 

m GRASSLAND -
~ WATER (R) 1000 

2~ GRASSxm -
7 WATER S 1000 



Wote that the 9-class data classification results are slightly less (95.~) than those ob­
tained using an estimated average of the diagonal elements and setting the off-diagonal ele­
ments to 0.0. 

The overall results obtained from using common covariances appear promising tor classi­
fying LANDSAT-l type MSS data when signatures must be obtained trom non-uniform mixture class 
training sets. This technique applied to automatic classitication ot actual wildland data, 
is described in the next chapter. 

Tests using LANDSAT-l MSS data.- Experiments similar to those pertormed with simulated 
N;S data were conducted with actual IANDSAT-l MSS data. An initial experiment was performed 
Wling extracted assumed "pure" component-class spectral signatures and mixture-class spectral 
Signatures simulated fran these component classes to classify an area designated as the 11-
Mile study area. An additional experiment using estimated component signatures and simulated 
mixture signat'.lres was perf'onned using several plots located in the Manitou study area where 
ground control data were more detailed. Both of these experiments utilize methods described 
above. The objective of these experiments was to relate the concepts just presented to a 
real-world application. Hopefully, this will provide insight as to how well these techniques 
work to improve classification accuracies and/or what other f'actors may need to be considered 
to obtain optimum results. 

LANDSAT-l MSS data acquisition and description: The set of LANDSAT-l MSS data analyzed 
is from an August 15, 1973 (frame number 1388-17134) overpass of the test site. The data 
set was provided by Dr. Richard S. Driscoll, Remote Sensing Project Leader at the U.S. Forest 
Services Becky Mountain Forest and Range Experiment Station located in Fort Collins, Colorado. 
The data were geometrically corrected (deskewed) by the Laboratory for Applications of' Remote 
SenSing (LARS) located at Purdue University, West Lafayette, Indiana (ref. 5, 18). The ad­
vantage of the deskewed data i~ its better conformity to aerial photographs, especially when 
displayed as a microfilm graymap or recognition map. A large section of this LANDSAT-l frame 
was also studied by Heller ~nd others (ref. 4) and Fleming (ref. 19). 

Two areas from this frame were selected for study. They are referred to below as the 
Elevenmile canyon Reservoir Study Area and the Manitou Study Area. 

Experiments were conducted in these study areas using extracted component class and 
simulated mixture-class spectrdl signatures to classify a portion of LANDSAT-l MSS data. 
The steps involved in the classifications are: (1) selecting component classes, (2) extract­
ing representative spectral Signatures, (3) Simulating specif'ied mixture-cla8s spectral 8ig­
natures, (4) classifying the data with a maximum likelihood processor, and (5) analyzing the 
results. 

Elevenmile canyon Reservoir Study Area: This area was ,elected because it is represent­
ative ot the diversity of topography, geology, and vegetative cover throughout much of the 
total test site; and because of the availability of LANDSAT-l MSS tape data. The location ot 
the site is shown in tigure 1. Elevations range trom 2500 to 3020 m. The site 18 at the 
southwest margin of South Park: it includes the eastern part of' Eleverunile canyon Reservoir. 
Mountainous terrain lie8 to the north and east; a wide rolling gras8land area lies primarily 
to the 80uth of the reservoir. Wet meadow8 occur primarily along 8tream courses. 

Two principle types ot rock8 occur; volcanic rock and granodiorites. The JIIOst cOllllllOnly 
tound volcanic8 are upper and lower andesite members ot the Thirty-nine Mile volcanic field. 
The upper member is generally associated with high nat-topped mountain8 and the lower with 
the low rolling hills characteristic of South Park. 

The granodiorite found in the 8ite is dark gray, medium to coarsely crystalline and con­
tain8 gnei8s. It i8 correlated with the precambrian Boulder Creek Granodiorite ot the central 
tront range ot the Rocky Mountains. It i8 tound mainly in the northern portion ot the test 
area where it torm8 high steep mountains. Several outcrop8 can be found to the east ot Eleven­
mile canyon Reservoir and on both sides of Elevenmile canyon, but their aerial extent is limit­
ed. Elsewhere, most of the bedrock is covered by 80me form of vegetation. 



The v getation in th~ area consists of a variety of forests and grassla.nds. The forests, 
which cover approximately one-third of th o test site/include: (1) pond rosa pine, (2) Douglas­
fir, (3) spruce fir, Gubalpine fir, and (4) Aspen. According to Heller and others (ret. 4), 
these forest species occur as "pure" types, but in many places there are various mixtures ot 
species. There also exists a wide range of tr e canopy densities, from very open to so dense 
that crowns nearly touch. In open stands of trees nough sunlight exists to allow the de­
velopment o! ext~nsive herbaceous and/or shrubby understory, but under conditions of dense 
tree cover, little understory coy r has developed. 

The principle understory vegetation associated with Ponderosa pine forest includes 
Arizona fescue and mountain muhly. At higher elevations these species give way to Idaho 
fescue and Thurber fescue and oatgrass. 

Approximately one-third of the study site consists of low rolling hills covered with 
vegetation characteristic of th short-grass prairie found throughout South Park. The prin­
ciple species are blue grama and slim stem muhly. Mountain bunchgrass communities can also 
be found at the inter!ace between grassland and forest. 

Also occuring in the area are wet meadow and stream bank communities. These communiti s 
occur along the shore of Elevenmlle canyon Reservoir and along streams. various species of 
sedges, rushes, and bulrush occur either as monospecitic or mixed stands in the moist areas. 
In drier areas, blue grass and tufted hairgrass are found in mixed communities. The promi-
n nt shrubby communities consists of willow and shrubby cinquefoil. Although they occur 
sparsely throughout the study area, these communities are generally found associated with 
the wet meadows. 

Fiv component classes vere selected !or use in this study area. They are Forest, Grass­
land, Water, Mountain Grassland and W t Meadow. These classes were selected because of their 
importance in the area and nlso because mixtures of these various types occur. The Forest 
class is composed of several types of tr es with a minimal amount of understory vegetation 
shoving through the ano~. The Grassland class is characteristic of the short grass prairie 
community !ound throughout South Park and usually has much bare soil associated with it. Th 
Water class is representative of the water of the reservoir. Th Mountain Grassland class 
represents grassland cammuniti s found at high r 1 vations and at th interfac b tween For st 
and Grassland. Th Wet Meadow class vas s 1 ct d to represent irri ated m dow ar as and 
stream bank communities , 

Homog neous areas r pr s ntativ' of each class wer dclineat >d on aeriAl photographs. 
These areas (trainin s ts) w'r th n transf rr d to LANDSAT raymaps and the line and point 
coordinat s w re dctennin d. Fi ur shows the microfilm graymap of MSS BAND 5 for the 
study site. Some modU'i ntion of th photo locations w r' mad on th graymaps as dictat d 
by th grayl v Is 8Rsocin d with 6 h trainirw s t. In this ",'ay" nomal llS dntn points w r 
avoid db-for slgnatur s w r extra t 'do A numb r of trllinillg s ts v r 1 at d for each 
class to provld' statistically r pr s ntativ' si natures. Til numb r of points us d to cal­
culate each cl~ss si natur w r: FOr st (75), Grassland (28), MountAin Grassland ( 0), 
W~t M adov (20), and Wat r (96). The numb r of points for Grassland, Mountain Grassland and 
Wet M adow was small du to difficult! It en count r d in 10 8 in trainin s(>ts n comput r 

raymaps, but are I'Issum d r pr s ntattv tor this study. 

Me n vectors nd covarianc ~4tric s were extracted for a h training s t for ach class. 
Th m an vectors for class v r' ompar d with on anoth r an th igenvnlu s and IS nve -
tora of (,8ch class training set v r d tennin d and analyzed. Thos training s ts exhibit!n 
dissimilar m n v ctors and i nv~ctor plots v r discardrd so that final si natur s obt in-

d w r as repr s ntativ 8S pos ~ lble. 

Th tinal compon nt-class signatur' w r th n us d t classify th ar a. Th r Rlll inB 
cllUlslfic tion map is shown in ,i ure 3 I\S a microfUm displ .. 0 A a h k of how w 11 th 
signatur R identify th ir r sp ctiv class s, th numb r f corr clnssifi ati ns in nch 
training s twas d t -:rmi.II ;i. All f tlH' laSI' shad trul n1 11p.-s ot -1 /'lsin ati 1\ {\ 'cllra i. s 
of l~ except Water which had m. A total of 60.5~ of the test ar. va. clu.itied a. one 
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a t 8 le ted plots identiti.ed by Mead (ret. 5) were studied in thia work. 

Ttl plots lie within an ar 10 ated betw en 3 - 5 ' 30" and 3 - 22' ., n rtb latitud., 
and 105- " and 105- J7' " west longitude, along and just north ot the ar shown in fig. 
1. The arM typiti s th mountainous part of th at slop ot th RIOclty Mountains, with a 
lars variation ot slopes and aspe ts . The topography is daninat by mountains and vall ys 
with a north-south orientation du to ext nsive faulting that occured during the Pl.iocen 
epoch and earli r. 

For the moat part, gealogi mat rials in th ar ar COY red with tation. '1'h 
prin iple materials are pinkish to reddish soils developed fran Pik s Peak: grani t. Th 
und rlying geologic unit is th FoWltain Formation, but exposures are li.lnited. 

variations in topography in th area have resulted in a complex mixing of plant commun­
itt s g nerally &1i n d with the topography. For th m st part, the plant communities are 
s1lnUar to tho a d scrib d tor th for sted hillslopea, mountains, and w t meadow areas ot 
th Elevenmile C&r\yon Res rvoir study r • 

In this study ar' rim nts wer performed to classify LANDSAT-l MSS d ta with 0111-

poncnt class Iignatur s st1rnat d by solvin simultaneous quations and lin regr ali ns. 
Both of th se t ehniqu s r quir data vh r th compon nt ass sand th ir respective pro­
portions f the se n ar kn w. 

S v ral pl ts locat in th ~Bnit u study area and identified by M ad (r t. 5) v r 
analyzed to obtain a numb r of plots suitabl for signature estimation. ad was Ip ttl ally 
tnt rested in th p r nt v r of pond rosa in of th plots s 1 was a 1 'i al hoi e t r 
on of th compon nt class s. Th s nd pon nt class was identified as th oth r mat ri&1s 
in the se ne and d n t as Ba k round. Th Bt\ck roun class is ctually a mixtur in its If 
ot SOil, bar ro ,and UII rst ry v g ta t n. Us ot this BIlckt;round class ne slitated 
using nly thos plots vhi h nt-ain d similar spe i suring in th sam rclativ am unts. 
rt was also n c ssary t o idpntity pl ts with simUar sl p sand aspe ts to void th ligna ur 
variability ass i ted with ' _h s fa t l'S. In UlTllMl'Y, th i trla used for sting h 
pl ts used for signatur stimat i n w r : 

1. nt 

2 . Th plots must ntain similar 1IA rolln mat rials su at ! n, rocks an 
bar s H. 

• Th pl ts must ha similar r i nt tin as ct min by 61 P and sp t. 

Ttl 
th 

t rs fr m 

ot occuranc • 
slop S I\I\d as 

). 

Analyzing all of th plota with th • 
r pr a ntins 1 total LANDSAT-l MSS d t 

f. 

rit ria produ ed a small subs f nly Ii pl t. 
into. Ttl plot.s are f 1 vs: 



PLar 
NUMBER 

MEAD'S PLOT 
NUMaER 
(ret. 5) 

PONDEHOSA PINE 
PERCENT COVER 

SLOPE 
(~) 

ASPECT FREQUENTLY 
OCCURDfG 

BACKGROUND 
vrogfATION 

(see species list, ~~low) 

1 

2 

3 

4 

1 

2 

3 

6 

14 

46 

74 

76 

64 

22 

7.9 96 

17.0 53 

6.9 108 

5.0 59 

8.1 77 

J, B, M, P, Q, D 

B, J, M, P, D 

J, B, M, Q, P, D 

B, M, J, Q, F, D 

B, M, F, P, B 5 

6 17 16 9.9 134 tot, AF, P, Q, BB 

ABBREVIATION 

F 
B 
AF 
J 
P 
M 
Q 
D 

BB 

SPECIES LIST 

NAME 

fringed ~aGcbruch (Artemisia frisid~ Willd) 
bear berry (Ar ctosta h los u"va-ursi (L.) Spr ng.) 
Arizona fe~ ue Festuca arizonica Vas ~y) 
common juniper (Juni erus communis (L.» 
prairie junegrast. Koelaria cristata (L.) Pers.) 
mountain muhly (Muhlenbergia montana (Nutt.) Hit~h.) 
quaking a pen (Populus trcmUloidec Michx.) 
Douglas-Fir (Ps udot suga menz iesi! var. glauca 
(Beissn.) Franco) 
bottlebrush squirreltail (S1tanion hystrix (Nutt.) 
J.G.Sm.) 

Spectral signatures for the s x mixturl? plots were extracted from the LANDSAT-l MSS data. 
The mean spectral response curve~ for the six plots arc shown in Figure 26. Several pairs 
ot signatures along with their respective mixture proportions of ponderosa pine and background 
were used as input for program SIGCALC. The results showed a wide variation in the estimated 
mean vectors for both of the component cl asses. In addition, the est1mat~d covariance matr ices 
cont~ined very unrealist ic values including negative varianc s. Consequently, this method 
was tound to be unreliable for estimating component class spectral signatures for this case. 
Since results obtained with simulated data described above were acceptable, the error was 
probably due to inaccurate estimates of percent cover and variations of materials associated 
with the Background class. Sin e no representative spectral signatures could be obtained, 
no modeling of mixture class signatur s or classification of MSS data was Btternpted. 

Since the Signature estimation t echniqu used in the above study uses only data tor two 
mixture training seta , slight errors in p rccnt cover stimates will result in large errors 
tor the calculated signature values. Also, the signatures, if successfUlly estimated, may 
only be representat i ve of the mAteri al found in the specific training Breas. TO compensate 
for this all of the mixture training nets w re used to determin ~ component class Signatures 
by means of linear regression techniques. 

The method used for estimating ompcmenL ass signatures with linear r gression was 
discussed above. The nec saary input data w re the mean spectral r cponse r ordcd from each 
of the plot. in each w&velenpth band and th proport ions of th two component lasses, ponderosa 
pi nc and Background. r~ 1 W I' d vr ) pcd for ach wav l ength bOon as follows : 



MSS BAND R gre.sion Model 

• 5- .6 ~m MSR=24 • 7-5. (pp) 

.6-.7 AIm ~~R= -7.60(pp) 

.7-. Am MSR" • r:-7.44(Pp) 

. -1.1 Arm 

vh r MSIPEstimat d m n sp ctra! r spons 
Pp Proporti n of pond rosa pin in th s n 

No r' rt'ssion mod 1 could d v loped for th .8-1.1 m wavelength band so a review of 
stimates of perc nt V' r f r h plots was m:l.de. It "'8S found that for sam plots, th 

cov r stimat s mad by th flv ph tint rpr ters var! d by as mu h as 30. Th standard 
deviations for th stimntes ranged from 5.4 to 13. f r th six plots. Additional 
cover s ilMt :; w usi ng a dot grid sup rim s d on nlsr ed phot .. of the six 
plots. F r th s sl ies t rmin t' ns w r m~d, but all tr es were ounted 
as b 1 ngins t a cla.ss and all non-trc mat ri ls w runt d as &, kground. N • 
r gr ssion mod'ls v re d v 1 p.d s f llow!': : 

~'.S nd R r ssi n t>1od 1 

. 5-.6 .um ~ R: 5.7 -1 . (lo' ) p 

.6-.7 Aim t- It-: ... . 4 -14. (F p) 

. 7- • "Ill f.1SR= • 4-1 . (F p) 

. -1. 1 ~m M R::l .55- .7 (Fp) 

...,her to Estimat tral r s 
F =Pro 

P 
rtion in th 

stimAt s f r t) plots ar 
Illy six plo s w r us in dey loping the re-

f r analysis f th s pl ts. C ml n nt-clus s1 -
n II 1& by stUn th r st pr portion (F p) to 

t ,t rmin th For st sign urp an s ttlng Fp 
'rh m an sp trill r spons urv s f r the stimatCQ 

shown &l. ns vi th th xtrnct mixtur' urv s f r (\ h 

Ttl mean YO rs f r th For st and Ba 'k r und 1 se elS v re input into prosrrun 
MIX and mlxtur 1 as signatur s .... r slmu)at d. Th proporti n illcrem nt llS vas 8 t t-

. 5, produ ing thr lnt rm dint -. mix ur sisnatur s. N var\~nc matri s f r th om-
pon nt- 11\81 6i natur s ver stimat I by h r~ ress! n m deb du to th n n-uniform1t.y ot 
th mixture plots, var! n m!Lt. rix with diag no,1 nts of .0, 3. ' , 
and otf-d1f\1oMl r r , h ot th lass G. 

Th six lots 
r cosnition p 
v r us t 
only th ot 1 
t In mix ur 
plu tht' thr 

wi th 
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where lp is the path length, relative to the vertical. path length ot the beam, and r is the 
atmospheric optical. depth. The atmospheric path length is given by sec 9. or sec 9, where 
Q. is the solar zenith angle, sec 9. is the path length ot the solar beam, 9 is the nadir 
angle of observation, and sec 9 1s the path length ot the target reflected beam (see tig. 27). 
At low sun angles or oblique observation angles, 9. or 9 > 70·, the path length needs to be 
corrected tor atmospheric retraction (ret. 21). The atmospheric optical depth is wavelength 
- dependent (~) and made up of three components: molecular (Rayleigh) scattering,""'.; part­
icle (Mie) scattering, 'Tp; and, selective gaseous absorption,.,.. Hence, the total optical 
depth is given as a 

T :: Tm + Tp +Ta (12) 

--f. 
The molecular-scattering optical-depth is proportional to '}\. This accounts for the blue 
sky, since the short wavelengths are scattered much more than the longer wavelengths. The 
wavelength-dependence of particle scattering is proportional toA-: where« is dependent upon 
particle size. For extremely small particles, 0< approaches 4.0 (as in Rayleigh scattering) 
and tor large particles (clouds, tog, etc.) 0( approaches 0.0, which indicates gray scattering. 
The gaseous absorption optical. depth is highly wavelength-selective, depending on the location 
ot the various absorption bands of atmospheric constituents. Figure 28 illustrates the gener­
al nature of atmospheric beam transmittance of solar radiation. 

Total Incoming Solar Irradiance 

The total solar irradiance, H, is the sum of the direct-beam solar irradiance, on a 
horizontal surface, and the diffuse skylight, S; hence, 

H :: I cos 9. + S (13) 

where I is the normal incident direct beam. This normal incident direct beam can be given, 
in terms of atmospheric effects, as 

I = Ie e -,,- sece(.. (14 ) 

where I. is the extraterrestrial solar irradiance, canmonly referred to as the "solar constant" 
For "clear" days the diffuse skylight is normally blueish, which is indicative of the domi­
nance of molecular (Rayleigh) scattering. However, the magnitude and spectral distribution 
ot the diffuse skylight is a complex function of particle size, density, solar evelation and 
az1ml1i~ :1, optical depth, ground albedo, particle scattering phase function, particle albedo, 
and index of refraction. For representa.tive measurements of total and diffuse irraciiance 
see reference 22. 

The diffuse skylight is also strongly influenced by clouds. Generally~clouds increase 
the skylight and change its spectral distribution from blue to white. Clouds can also strong­
ly retlect solar radiation and cause ''bright spots" (as opposed to shadows) on the ground, 
which can very significantly affect remote sensing of ground targets (ref. 23). 

The total incident solar irradiance is very strongly influenced by the solar zenith angle 
co. Q. (equation 13 ) • Since the solar zenith angle is that angle between the target' s 
normal and its planar surface, topography plays a significant role. For example mountainous 
terrane has very complex topography comprising north-, south-, east-, and west-facing slopes 
of various inclinations. 

Atmospheric Path Radiance 

Atmospheric path radiance result3 fram molecules and large particles scattering sunlight 
in the field ot view of the sen30r. The ~itude and spectral distribution of path radiance 
1s determined by all the variableG that were given for diffuse skylight. 

Atmospheric path radiance presents a special problem because it cannot be di rectly meas­
ured with ground-based instruments. Currently there are three techniques for deriving path 
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radiance: 

(1) 
(2) 
(3) 

calculations using radiative transfer models 
indirect ground-based measurements 
combination of model calculations and gro\ln!l-based measurements 

Radiative-transfer models have been the subject of considerable research. A review and dis­
cussion of such models is given in reference 12. Models are useful fer parametric studies 
of the influence of the atmosphere, given hypothetical situations. However, for specific 
conditions they are difficult to apply because, without measurements, one simply cannot con­
fidently choose a "representative" atmospheric state. This is due to the fact that atmos­
pheric aerosols and water vapor are known to be extremely variable as a function of geographi­
cal locations, altitude, and local conditions. 

Indirect ground-based measurements of path radiance have been employed by Duntley (ref. 
24) and Rogers, (ref. 25). This technique uses ground-based measurements of downward scatter­
ed sky radiance at a geometry (sun-sensor) similar to the satellite-sun-target geometry. The 
measured sky radiance is then extrapolated to yield a path radiance for the satellite sensor 
(see ref.'s 24 and 25). 

The third technique was used recently by Hulstrom (ref. 22) to analyze the performance 
of the Skylab EREP sensors (S-l90 A, S-19l, and S-l92). This technique uses ground-based 
measurements of optical depth/transmittance, target reflectivity, ground albedo, and total 
solar irradiance (see equation 10); then, the optical depth and ground albedo measurem~nts 
are used as inputs for a radiative-transfer computer model that calculates path radiance. 
This technique eliminates uncertainties in atmospheric state, optical depth, and total (direct 
plus diffuse) irradiance. However, values for the particle scattering, phase function, and 
albedo have to be assumed. 

A fourth technique of deriving path radiance is being attempted in this program. This 
technique employs the satellite data itself and helicopter measurements of selected ground 
targets. If one plots equation 10, as shown in Figure 29, it can be seen that the y intercept 
is the path radiance and the slope is equal to the product I~/1r. The natural target reflect­
ivities are measured from a helicopter platform. This is performed by having nearly identical 
spectral radiometers measure the target r~dianc( , Nt , from the helicopter; and, the other 
radio~eter measure the total incoming solar irradiance, H. The target reflectivity can then 
be l..~ ~nnined by 

o =·rr~ (a.ssumes Lambertian target) 
't H 

(15) 

Hence, one can determine the path raJiauce and the product wr/r.. Therefore the reflectivity 
signatures of other (unknown) targets ~n be derived by 

n = (N -N ) x 'fr/HT (16) ,- s p 

The advantageG of this technique are 

(1) it measures path radiance as "seen" from the satelltte sensor 

(2) it measures the combined atmespheric effects of total solar irradiance, H, and at~~s­
pheric transmittance, T. 

(3) if the selected natu~al ground target raflectivities remain nearly constant over 
periods of time (as w&.s fOllnc. to be valid for this test site) numerous simultaneous 
ground-based measurements are not requireU 1n order to calibrate atmospheric effects. 

The posGible sh rt-comin6s of this technique are 

(1) It assumes fairly uni!'onn atmc.; s:p,heri c conditi ons of the Gurface area wi thin which 
the natural targF.!t "cI1.1jhra~ ion I &i.tes are located. 



(2) The accuracy of the technique depends on the accuracy and repeatibility of the 
measurements of natural target reflectivity, and radiances measured by sensors 
in the satellite. 

(3) It assumes that the sun angle with respect to the targets, both natural "calibration" 
and unknown targets, are similar. This is apparent when one considers the sun angle 
dependence, I oos Goof the total solar irradiance and the product HT/~ • 

Initially, during the summer and fall of 1975, this technique will be employed for LANDSAT 
data. 

Four techniques of deriving atmospheric path radiance and atmospheric effects have been 
presented. Each has it's advantages and short-comings. Unfortunately almost no data or 
experiments exist for checking and comparing the accuracy and validity of these techniques. 
All four techniques will be attempted during this program, and such comparisons subsequently 
made. 

FIELD MEASUREMENTS OF A~FHERIC EFFECTS 
AND TARGET REFLECTIVITY 

Brief descriptions of the techniques and ll~rumentation used to measure atmospheric 
effects and target reflectivity are given. For a more detailed description see Hulstrom 
(ref. 22). 

Atmospheric Effects 

Atmospheric effects that are directly measureable by ground-based instruments are the 
total solar irradiance, H, and the beam transmittance, T. 

The total solar irradiance was measured with an I.S.C.O. (Instrumentation Specialties 
Company) model SR (spectroradiometer) equipped with a SRR (spectroradiometer recorder) unit. 
This instrument consists of the SR and SRR units and a 6 it fiber-optics bundle that has a 
nat teflon diffuser, 180° F.O. V., aperture at the end of the bundle. Light travels through 
the diffusser, through the fiber-optics bundle into the SR unit, where it is passed through 
a chopper, slit, and monochromator. The monochromator is a wedge interference filter. The 
wavelength of the instrument is varied by lengthwise movement of the wedge interference filter 
between the slit and the sensor. The wavelength region from 380 to 750 om is measured with 
a silicon"junction photocell; and, the region from 750 to 1350 nm is measured with a gennanium­
junction photocell. The 1/2 bandwidth is 15 nm from 380 to 750 om, and 30 nm from 750 to 
1350 nm. The total solar irradiance was measured by positioning the flat teflon diffuser so 
that it was horizontal/level. Hence, the 180 0 F.0.V. diffuser was exposed to the total irradi­
ance (direct + diffuse). The diffuse skylight can be measured by s3~ply shading the diffuser 
from the direct sunlight. A complete spectral scan, from 300 to 1350 nm, requires about 3 
minutes. During this time interval, the total broadband ir~diance (400-1100 ~~) was continu­
ously monitored with a Y.S.I. (Yellow Springs Instrument Go . ) model 68 pyranometer. This was 
done in order to ab3ure that stable conditions existed dllr tng the loS.C. O. spectral scan. 

The compl~te I.S.C.O. unit was calibrated with an I.S.C.O. S.R.C. (Spectroradiometer 
Calibrator) unit, which uses a ribbon-filament tungsten lamp, and a N.B.S., coil filament type 
lamp (1963 standard No. E.P.I. 1523). These standardc were used to derive an absolute cali­
bration factor, C.F., for the loS.C. O. unit. This is derived by viewing the standard irradi­
ance, ISTD' and recording a raw i.ntensity I r • The calibration factor is then 

C.t' • ." ISTD/I (17) 
r 

~he raw field mCRsurpm~ nt, I , is then multiplied by the calibration factor i~ rder to ob-
r 

~~in ~bsolute qu~ntiti ec . However, this calibration f9ctor is only valid for measurements of 
n~rmal-incident (to the d iffus ~r) irradtance . For me· surements of totel solar irrBdiance, 
wh,re the sun is at V8rtous z€ni~h angles (&llIgles off of the normal to the diffuser), 
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the cosine respcns of the diffuser has t.o be considered. This is evident from equation 13, L p. ., I cos Qo ' If a diffuu r has a tru cosine rt'3ponse, the intensi.1.. of a constant parlil­leI source as me l'>ur d ot a 60° a ngle tc th· ~ol1 rce , I (60°), would be 1/2 (cos 60°) that measur d on normal incidence (0 0
). In more '''meral ter.1!s, 

I (¢) = I (¢ ~ 0) cos ¢ (18) 
where ¢ is the angle betw en t.he source and the nonnlil to the diffuser. In the case of solar irradiance, ¢ = Qo • In ord r to determin the actual cosine response of the I.S.C.O.diffus r, extensive measurements of collimated light were made over a l'angC'! of incident angles. This resulted in a cosine correction factor, C.C.F., 

": I (¢=o) cos ¢ 
C.C.". I (¢) 

Examples of the co::;in(~ correction factors arc shown in Figure 30. As can be se '~n the cosine response in the visible region is fairly true, while that in the infrared deviates by as much as 500~. The absolute total solar irradiance, H
ABS

, is obtained by 

HAPS = (H ) (C.F.) (C.C.F.) r aw (20) 

Investigatort: have used the I.S.C.O. uni.t to measur target spectral albedo by pointing the diffuser up to J. as'.lrp. tit total incomine irradiance , H+ , then pointing the diffuser down to measur~ th total outl:;oi n irrad i:i '1 C , H t. The target's elobal albedo, p (180 0
), 

(21) 

If the diffuser's cosi~e r esrO!1s e i s not consider ed i n this calculation , large errors (up to ~) will result, . spedally in the infrared wav,·l ngths, because t he incoming irradiance has to be corrected for the cos i ne response (because the incomtnt~ irrad ianc is rlirectional), while the outgoing 1 rradi;ulc _ j s en .T(llly not di r ect ional, requiring no co!;ine correct ion. 
v In ~ddition to the I.S.C .. unit, ExotscbMod 1 100 r ad iometers are also used for making total tI . lar irradian measur'rr.e uts in th ' sp ~ cific LANDSAT wavel ngth bands. These units are calibrated in the S;lM' rnarm e r ~ s is cuss d for the I.S.C.O. unit. At the time of this writing , lIO cosine respons f' h~s been det rmined for these units. 

The beam transmi ttar.ce of th e: atmosph 'e 'Wfl.s/ is determined b,l using the Langley method. This method determines atrrosphcric optical d pth by peformjng several measurements of the solar direct-bearr. irradiance ').s it varil!:; wjt, l relative air mass. Squation 14 can be re­written tc givc 

J n I .,. - ·r i.cc Qo + In Io (22) 
In order to derive T, a plot of t he vur.ous measurcm~nts of I ve rsus relative airmass-sec Qo is made. The y-intercept is 10 , henc " r can be ca lculated knowirl£: I, 1 0 , nnll :; c Qo. If the met r reading of the instrument, t-l , i~ 11 near with r.~ spect t.o I, then I e~n be repla ced with M and 10 by Mo. Mo is the xtraterrl!st.rial m ~t r reading f the inst.rument. F r the mcnsurem nts of direct solar irradiance, the ISCO unit was equipped with a 3° collimator. This resulted in beam transmittance for '?7 wavelength measurements from 400 to 1300 nm. An xample is shown In fl p;urc 31, where the four tra.nsmittnne ~ curv s are for four sites locat t'd within and near th Colorado t.est sit". Simultaneous measurementG of beam tra nsmittance ,'e­veal the uniformity of the atmos ~)h re over t :-fl !'f.'gion. For the nay shown in Figure 31, the F.i.tmooph ere was f airly ur if rm. 

Both th Lv.C.O. nnd EXO'l'l::CII ut:its were used to mel1sur~' target r eflectivity. The I.S.C •• is modified witt. a 30 0 F .0. V. b rfJ c 'all i 'l tor. 
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For ground measurements of target reflectivity, standard "gray" and standard · "white" 
reflectance panels are used to determine target reflectivity. These panels are accurately 
calibrated with a Beckman DK-2A/Gier-Dunkle Integrating Sphere. Field measurements consist 
of the radiance of the "gray" card, N ,the radiance of the target, Nt , and the radiance 
of the ''white'' card, N • The targetgfeflectivity can then be derived by wc 

(23) 

and 

~ = ~ x pwc 
t wc 

(24 ) 

where p and P are the reflectivities of the "gray" and ''white'' cards. The two derived 
target rlnectivi!ies are then averaged. This technique was verified by plotting radiance, 
Nand l\, , versus reflectivity, P and P ,and extrapolating this plot to zero radiance 
afi8 refle~ivity. If the card cali§tations Ire accurate and if the field measurements are 
accurate, the plot should go through the origin. Several of these verifications revealed 
the technique and measurements to be consistent to within 1 to 2~ reflectivity. Examples 
of absolute reflectivity for 15 targets and their backgrounds are listed below: 

Target Description 

Pikes Peak Granite 
Lichen Rock Cover 
Soil/Grass Background for 

Pikes Peak Granite 
Cripple Creek Granite 
Soil/Grass Background for 
Cripple Creek Granite 

Volcanic Fine-Grain Mafic 
SOil/Grass Background for 
Volcanic ~afic 

Meadow Grass 
Volcanic Crystal Tuff 
Yellow Grass Background 
Volcanic Andesite 
Background Soil for Vol-
canic Andesite 

Background Grass for Vol­
canic Andesite 

Background Soil at cameron 
Mountain 

Background Soil/Grass at 
cameron Mountain 

Ident ift cat ion 
Number 

1 
2 

3 
4 

5 
6 

7 
8 
9 

10 
11 

12 

13 

14 

15 



ORIGINAL PAGE I& 
Target or POOR QUALl'fYJ 

No. Percent Renectance 

0.5 to 0.6 to 0.7 to 0.8 to 
0.6 0.7 0.8 1.1 m 

1 14.0 18.4 22.6 25.6 
2 23.6 28.5 36.1 35.2 
3 12.7 14.8 20.7 23.4 
4 17.3 22.6 24.5 25.6 
5 11.1 13.6 19.3 22.6 
6 11.7 14.5 19.1 19.4 
7 10.8 16.8 19.5 26.0 
8 5.8 5.4 30.8 42.5 
9 27.5 31.8 35.8 40.4 

10 11.8 13.6 19.1 18.9 
11 14.5 17 7 19.8 20.9 
12 9.3 13.::; 18.0 18.7 
13 6.5 8.5 12.7 17.3 
14 10.8 16.3 19.2 23.2 
15 9.6 12.8 19.8 24.1 

In order to measure signatures from mixtures and for areas that are on the same order 
of size as the satellite sensors, helicopter measurements are employed. Helicopter measure­
ments consist of using one EXOTECH radiometer, with a 1° FOV, in the helicopter to measure 
the target radiance, Nt and one EXOTECH radiometer located on the ground to measure total 
incoming solar irradiance, H. The reflectivity, r is then 

(25) 

In addition, the helicopter measurer:lents of Nt will be compared with the computer simulations 
of the radiance signature. 

SUMMARY AND CONCLUSIONS 

Methods have been discussed for simulating spectral signatures of mixtures of two terrain 
classes for automatic analysis of LANDSAT-l MSS data using on-site measurements, simulated 
LANDSAT data, and actual LANDSAT-l data. Tests of the methods for estimating component-class 
spectral signatures and Simulating two component-class mixture signatures with simulated 
MSS data indicated that improvements in classification results over conventional component 
class analysis are possible using these techniques. Applying these techniques to actual LA1~­
SAT-l I.mS data of wildland ar~as sho\"ed an i::1crease in r.lassification information over conven­
tional analysis, but no quantitative accuracy analysis could be made due to difficulties of 
estimating mixture proportions from the control or "ground truth" data. 

It was found that misclansif;l:ation of p1.xels as nixturcs can o-::cur when the simullltp.d 
spectral Signatures apprcxir.latc those of con.ponent classes or other mixtures in the scene. 
There was also -:!videncc of misclassificativns du·~ to more than tw" COIJiponeut claf:ses existi ng 
within a single pixel. With) n- cln.~s var1abHtty, slope and aspect variability, and the sen­
sitivity of the scanner in det ctint; changeR in :nixture proportions may also contribute to 
degrading the classification performance using these methols. 

These techniquc3 may prov.-' va.l uable tn areas whcr~ vcgetat i n ~}~sks the character' stie 
spectral response of the '..;.nder):"ing geologic mn.tcrL l J and future work should include an ex­
amino.tion of this application. ~p:las1s ohould also be placed till rrethods of acquiring bett er 
"ground truth"infonna.tion UPOIl wh'ch the opectral sisnatlre cs';lmat·o:1 and simulation techni­
ques are haned. 



Properties of the atll)spbere play an important role in attectil18 the spectral 'radiance 
received at the satellite by the lcanner. Some atmospberic properties can be measured on 
site. Others must be detennined by comparing aatell1te data with the on-Bite measurementl. 
Once their signatures have been determined, it _y be poslible for sane large natural terrain 
features to serve as calibration panels from ¥bich atmospheric properties can be calculated 
by the satellite data. When the desired remote sensor product 11 an image baving only rouch 
spectral intormation, atmospheric effects can be ignored. Hovever, vben quantitative spectral 
information is required, atmospheric effects cannot be neglected. 
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EXTRACTED SPECTRAl SIGNATURE PLOTS 

MSSBAND 

'l~ure .-Spe trs1 r apon. f tvo COII\pon nt t.,rrsin 1all (I (A.B) 
and "mlxtur or thean (C) extract d from LANDSAT-l MSS data. 
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forest. CUrv s : 1= G F, 7 . G , F, 4= G 

F, 1 F. 



EXTRACTED SPECTRAL SIGNATURES W. CALCULATED MIXTURE SIGNA'l'URE 

4 5 6 7 

MSS BAND 

Figure B.-Spectral response of two component terrain clas8es (A,B) 
and a mixture ot them (C) extracted trom LANDSAT-l MSS data, 
and the mixture response (D) calculated using equation 4. 
A, B, and C, 8a~e data as in rig. 2. 
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Figure 9.-Microfilm graymap of 9-class stmulated data set. Each horizontal 

band represents a field of simUlated data for a given class, as 

labelled. F=Coniferous forest, G=grassland, WWwater. 

SIMULATED SPECTRAL SIGNATURE PLOTS 
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Figure lO.-Mean .pectral re.pon.e for two component classes and modeled mix­

ture clas.es. Curves: a-l~ graSlland, "l~ forest, C-7~ G 25~ F, 

D-~ G ~ F, E-25~ G 7~ F. Dotted lines represent standard deviations. 
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75~ G 2~ F 

~G~F 

25~ G 75~ F 
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Figure ll.-Microfilm classification display for component-class 
analysis. Blanks de~ote unclassified points. Symbols 
are: • =grassland(G) , .=forest(F). C,D,E same as i.n fig. 10. 

Figure 12.-Microtllm clalsitication display tor 5-clall analYlil. 
Symbol 1 are: . .. G, l=C, \ =D, '·E, .-F. Letters reter to 
claslel and mixtures al 1n tig. 10. 



SIMULATED SPECTRAL SIGNATURE PLOTS 

28r----____ 

4 5 6 7 

"lure l3.-Mean apectral. real'On.e curve. tor aimulated Gl'uIIIland­
Wat r mixture •• Dott d linea indicate atandArd d~ : lationa. 
Letter aymbol. are tame a. in _trix on p. 1 • 
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Figure 14.-Mean lpectral response curves tor component and 
mixture elass Signatures used tor 9-clals analysis. 
Dotted lines indicate standard deviations. Letter 
symbols are aame as in natrix on p. 12 • 
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Figure 15.-Microfilm classification display of 9-clas8 analysis. True class 
field symbols noted at lett of display are same as in matrix on p. 12. 
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Figure l6.-Microfilm classitication display tor 9-class analysis with calculated com­
ponent cla.s Signatures from uniform data. True class field symbols noted at 
lett ot display are same as in matrix on p. 12. 
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a. 

b. 

ril\U'e 17.-Graphical representation ot unitorm and non-unitorm trainina letl. 

a). Unitorm mi.xture ot ~ White - ~ Shaded. b). lon-unltom mix­

ture or ~ White - ~ Shaded. 
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P1sure 18.-Microtila claalitication dilplays tor component-cla.1 analYli. using elti­

_ted mean vectorl and covariance matrices. a) Spectral lignatures eatiMted 

tram unitorm training sets. b) Spectral signature. estt.ated tram non-unitorm 

tl"linil18 letl. Symbols are: . -Gralsland, '-'orest, • • -Water. True tield 

clallel note4l at lett ot di.plays have same ')'1110011 iii in _trix on p. 12. 



P' 

G 

W 

C 

D 

E 

Q 

R 

S 

REPRODUCffiLLITY OF THE 
ORIGINAL PAGE IS POoR 

Figure 19.-Microtilm classification display ot 9-class analysis using 
calculated component clan mean vectors and common covariance 
_trix. Truecla •• tield symbols noted to lett ot display are 
IUI8 a. in matrix on p. 12. 
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Figure 2O.-Microt1l..m classitication display ot 9-clus analysis using cal­
culated mean vectors and common covariance matrix. Tr~e tield cluB 
syn.~ls noted at lett ot display are same as in matrix on p. 12. 

F 

E 

D 

C , ... 
: 

G 

Q 
R 

S 

W 

" or .. 
. " . ....... .-: 

Fisure 2l.-Nlcrot1lm cluaitication display tor 9-clas8 analy8t. u'i", c:&l­
culated a-.n vectors and ave"'8ed ~n covariance .trix. !rue cla .. 
field. noted at lett ot display are ... e a8 1n matrU on p. 12. 



ftgure 22.-Mierotila graymap ot MSS !and 5 ot the ElevenaUe 

canyon Reaenolr study Area. 
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rtsure 23.-M1crofilm el .. sification display of £levenaile canyon 

Reler.oir Telt Area witb 5 Component Clallel. s,.boll are: 

• -roreat, '-Oralsl.&Dd, , -Water, ,-Mountain GI'&IIl&nd, 

• -Wet Meadow, Blank tJnclala1tied. 



nsure 24.-Mierotilm classUication map ot Elevenmile canyon Reservoir study area with 5 component classes and 9 mixture classes. Because ot limitations ot the aicro­til.Jll display, separate symbols could not be shown tor the mixtures; however, tor studJ purposes they were printed separately by a conventional line-printer. oa.ponent classes: 

Mixture classes: 

• Grassland (G) 
\ Forest (F) 
, Mountain' Grassland (MJ) 
\Wet Meadow (WM) 
_water (W) 

x • 7~ G 25~ r, ~ G, ~ r, 25~ G 7~ F, 
7~ G 2~ WM, ~ G ~ WM, 25~ G 7~ WM, 
7~ r 2~ NJ, ~ r ~ foil, 25~ r 75~ foil 



.. 

Figure 25.-Microt'ilm classifi tiO'.l map of Elevenmile Can.von R servoir study area witt; 
5 component classes and 1 mixture class s. Because of 1 im it. fLt ions of the micro­
film display, separate symbols ould not be shovn for the mixtures· however, for 
study purposes they v r e printed s eparately by ~ onventional line printer. 
Component classes: 

Mixture classes: 

• 671, G 3]1, F 
• 67~ G ~ W 

• Grassland (G) 
\ Forest (F) 
'Mounta i n Grassland (r.r;) 
,w t M adov (WM) 
" W t r (w) 

X • 67~ WM 33~ w, ~ WM 6~ w, 3~ G 671, F, 
31, G 67~ W, 671, F Ki, 3 1, P' 6~ "10 
6~ G 6~ WM, 33~ G 671, WM 

Blank, unclassified 
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MSS BAND 

"pre 26.-MIaD Spectral Relponse CUrveI tor Manitou study Plotl and Eatblatect 
eo.poneDt Clalles. Syabol1 are: A-Est_ted Fore.t CUrve, ~Plot #2, 
C>Plot #3, D-Plot #1, E-Plot 114, F-Plot 1/6, G-Plot 15, H-Eatt.ated Back­
l1'Ound curve. 
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ngur~ 27.-Satellite remote sensing ot target on the ground. 
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Figure 28.-Typic:al spectrum or Bolar enersY reaching the surrace ot the earth. 

rro. Handbook ot Geophysics and Space Environment) S. L. valley, Editor 
(lew York: McGraw-Hill Book Company, Inc.), p. lb.2 
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FIGURE 32. Color composite LANDSAT-l image of test site region. IllIa e 
1028-17135 of August 20,1972. Annotations same as for figure 1: 
P=Pikes Peak, C=Cripple Creek, CC=Canon City, EMC =Elevenmile Canyon 
Reservoir. Because rectangular pixels are printed as squares by 
the computer the image is distorted, both in azimuths and distance. 
The scale shown is an average. 



· FIGURE 33 (ON FOLLo\~ING PAGE). --Computer-generated recognition map of 
test site. Compare with figure 32 for location of features. Made 
by Environmental Research Institute of Michigan (ERIM) from computer 
compatible tapes from LANDSAT-1 image 1028-17135 of August 20, 1972. 
Because rectangular pixels are printed as squares by the computer, 
the image is distorted both in azimuths and distances. The scale 
shown is an average. 

EXPLANATION OF COLOR CODE 

1. Niobrara Shale 

2. Pierre Shale 

3. Limestone 

4. Canopy of Ponderosa Pine greater than 25 percent 

5. Dakota Sandstone 

6. Fountain Formation 

7. Volcanic and plutonic rocks, undivided 

8. Granite-Tundra composite 

9. Granitic grus 

10. Meadow 

11. Water 

12. Cloud shadow 

13. Cloud 
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APPENDIX A 

RECOO Computer Program Blocks 

At Colorado state University, conventional automatic analysis of MSS data is accomplished 
through the use of a series of pattern recognition programs called ~OO. RECOO consists of 
six program blocks which are a modification of an original version, called LARSYS, dev~J.oped 
at PUrdue University (ref. 10). These programs provide a logical procedure for processing 
MSS data using supervised learning techniques. A brief description of each program block 
or phase is presented here. 

Pbase 1 

Pbase 1 is a display routine that provides the user with a computer line-printer or 
microfilm representation of the scene that is to be automatically analyzed. The MBS data are 
displayed as a graymap representing the radiation response from each pixel. A range of radi­
ation responses (either specified or default) are coded as a symbol and displayed for a select­
ed wavelength band. This display provides a pictorial representation of the MBS data from 
which the user may delineate field boundaries of terrain classes that he may wish to map. 

Pbase 2 

The fields identified on the Phase 1 graymaps are used as training sets from which the 
mean spectral response and standard deviation vectors and correlation and covariance matrices 
are determined by Phase 2. The mean spectral response vector and covariance matrix provide 
a statistical spectral signature for a terrain class that is used in a later Phase to auto­
matically classify each point in the MSS data set. 

Pbase 3 

When the multispectral scanner has a large number of channels available, processing the 
data using all of the information becomes quite expensive. Phase 3 is designed to select 
a subset of optimum channels for identifying all of the terrain classes utilizing divergence 
criteria. 

Phase 4 

The spectral Signatures obtained for each terrain class from Phase 2 can be analyzed as 
to how well they represent the class by selecting a subset of the MBS data and classitying 
it with Phase 4. Phase 4 is designed as an instructional mode and allows classification of 
the data set with three algorithms: LEVELS, a level-slicing routine; EUCLID, a Euclidian­
distance routine; and GLIKE, a maximum-likelihood routine. GLIKE is the algorithm used to 
classify the data in the next Phase so it is valid to test the representativeness of the 
signature set with it. This allows refinement of each spectral signature by redefining the 
training set to discrad any point that would tend to make a signature unrepresentative of its 
respective terrain class. 

Phase 5 

Pbase 5 is the actual. classification mode for the ~OG pattern recognition sequence. 
'!'be mean vector and covariance matrix for each terrain class are used with the maximua likeli­
hood decision rule GLIXE to classify each pixel in the specified MSS data set. As the clasl1-
fication results are generated they are written onto a magnetic tape and stored as a permanent 
file. 

Phase 6 

The final step in the processing scheme, Phase 6, displays the results generated by Phase 
5. The user 1s given the option to specifY a threshold level which sets a confidence limit 
for the classified data points. This is designed to eliminate talse classifications of data 



whicb do not tit any ot the terrain clallel. CUrrent display JDOdel avaUable vith ·Phue 6 
include a thematic map produced on the computer line-printer and/or microtilm s~ilar to 
those produced by Phase 1, except each pixel is identitied by a symbol or intenaity leTel 
(line printer and microtilm relpectively) representing a terrain class. A more detailed de­
scription ot RECOG can be found in ret. 4 and 15. 

APPENDIX B 

EQUATIOKS 

The a.an vector and covariance ... trix that describe tbe spectral response ot a terrain 
class are detemined trom a let ot MSS data points known to contain that clan. The statisti­
cal equation. ued to canpute them are discussed below. 

Since the radiation response from a ground resolution element sensed by a multispectral 
scanner can be delcribed by tbe column vector 

• 

wbere each x compvnent rrpresenta the radiance recorded in a sPrctral channel, we can tind 
expreSSions for Mr and ~. in terms of the radiation responses~. (ref. 10) 

The mean vector tf is given by the column vector 

= 

(26) 

(27) 

were ai is the mean spectral reaponse in wavelength band i (for ERl'S-1 i=1, •••• ,4) given by 

nA 

m
i '~I X1k (28) 

k-l 

where nA 18 tbe number ot pixels (aample points) in the training set describing terrain class 
A, &Del k is tbe s&lllpl.e point index. 

The covariance matrix wbicb indicates bow the radiation response in one MSS channel varies 
witb tbe respon.e in tbe otber channels can be described as 

-- --- - ~~ ~ 



, ... 

2 
CT 44 

2 where ij is the covariance between channels i and j given by 

2 
cr ij 

A 
n 

= ~A ~ (Xik - mi ) (Xjk - mj ) 

k=l 

(29) 

(30) 

Tbe standard deviation for channel i in class A is , and the correlation coefficient r ij 
between channel i and channel j for class A is given by 

2 
= (1".21. (31) 

cri~ 
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