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THE MIXTURE PROBLEM IN COMPUTER MAPPING OF TERRAIN:
IMPROVED TECHNIQUES FOR ESTABLISHING SPECTRAL SIGNATURES,
ATMOSPHERIC PATH RADIANCE, AND TRANSMITTANCE

By Harry W. Smedes, U.S. Geological Survey, Denver, Colorado,
Roland L. Hulstrom, Martin Marietta Aerospace Corporation, Denver, Colorado, and
K. Jon Ranson, Colorado State University, Fort Collins, Colorado

ABSTRACT

Among the results of our LANDSAT and Skylab research programs on the effects of the
atmosphere on computer mapping of terrain, we emphasize the following: (1) The concept of
a ground "truth" map needs to be drastically revised; (2) the concept of training areas and
test areas is not as simple as generally thought because of the problem of pixels that re-
present a mixture of terrain classes; (3) this mixture problem needs to be more widely re-
cognized and dealt with by techniques of calculating spectral signatures of mixed classes,
such as those we used, or by other methods; (4) atmospheric effects should be considered in
computer mapping of terrain and in monitoring changes; and (5) terrain features may be used
as calibration panels on tre ground, from which atmospheric conditions can be determined
and monitored.

The natural terrain comprises a mixture of diverse classes, including combinations of
such things as tree, grass, and other vegetative-cover species, different types of soil and
rock, and water bodies of different size, depth, and clarity. Because the terrain features
generally are small compared to the ground resolution element (= pixel) from multispectral
scanner data, it is unusual for very many contiguous pixels to consist of a single terrain
class. Commonly, each pixel is a mixture of two or more classes.

It has been shown that the spectral signature (radiance) of a mixture of terrain
classes is not representative of any of the component classes composing the mixture. Auto-
matic recognition processors may therefore misclassify mixture-containing pixels, which
often leads to an underestimation of the amount of component classes present in the area
scanned.

Even a single class may have a range in spectral signature depending on such things as
size of pixel (sample size), solar aspect, orientation, and atmospheric conditions.

Because of this problem of mixtures in pixels, we at first attempted to compile ground
control maps whose classes were designated by different increments of the more widely occur-
ring mixtures and to train the computer to recognize them by selecting specific TRAINING
AREAS of known proportions of classes. Not only was this a monumental task, loaded with
subjective judgements and difficult to calibrate, but the TESTING of accuracy of the result-
ing computer-derived map proved to be equally monumental. After much effort we concluded
that--if not impossible--it was certainly not at all feasible to prepare a truly accurate
ground control map. In fact, while checking for errors in the computer map, the ground
control or so-called ground "truth" map continually had to be upgraded. A serious problem
that needs to be faced is: 'What constitutes the ground truth?" Our first major conclusion
was that, if properly trained on end-member and mixed classes, the computer made a more
accurate map of terrain cover than we were able to compile as control data.

However, it is very difficult to measure precise proportions of mixtures and to locate
those areas in terms of LANDSAT MSS, Skylab S-192, or other scanner pixels, especially in
areas of mountainous terrain, This difficulty and the resulting uncertainty and imprecision
led us to experiment with techniques to calculate mixes from data for end members and to
use those calculated signatures in lieu of training areas for the mix classes. Previous re-
search in this problem has largely been confined to classes of crops in flat agricultural
fields. Our data and techniques will apply equally well to conditions ranging from crop-
lands to wilderness.
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Inasmuch as the radiance from a pixel is integrated over the entire area of the pixel
(the instantaneous field of view of the scanner), mixture-class signatures can be determined
from the known mean vectors and covariance matrices of the component classes and the propor-
tional areas occupied by each component in the pixel. Signatures for mixed classes were
calculated using spectral radiance from on-site measurements. In addition, several experi-
ments were conducted with simulated LANDSAT MSS-type data to show the expected improvement
in accuracy of automatic classification using simulated mixture-class signatures. We also
studied methods for determining component class signatures when there were insufficient
data points for conventional signature extraction.

Results are presented of a test area in mountainous terrain of south-central Colorado
for which an initial classification was made using simulated mixture-class spectral signa-
tures and actual LANDSAT-1 MSS data.

Not only are these techniques highly successful in terms of shorter preparation time
and higher accuracy, but the calculated signatures also afford insights into what the appro-
priate increments of mixes and what the optimum wavelength bands are for the most accurate
discrimination among specific classes.

Atmospheric effects must be known in order to combine spectral signatures derived
directly from LANDSAT or Skylab scanner tapedata with those measured on-site and from air-
craft. A few large homogeneous sites such as a large body of deep clear water, a large
expanse of bare rock, dense forest, large nonvegetated dry lake bed or desert sand, and
Snow may serve as known natural calibration panels on the ground. These would be visible
from spacecraft, from which the atmospheric path radiance and transmittance can be derived
for each data set (mission or flight). This calculated path radiance and transmittance
can then be applied to correct the tape data for true radiance values of the terrain classes.
Used in another sense, this technique can serve as a useful means of monitoring atmospheric
quality from spacecraft or aircrait, as atmospheric path radiance and transmittance are
measures of air quality.

INTRODUCTION

Multispectral scanner data from satellites are used as input to computers for automati-
cally mapping terrain classes of ground cover. Some major problems faced in this remote-
sensing task include 1) the effect of mixtures of classes and, primarily because of mixtures,
the problem of what constitutes ground "truth"; and 2) effects of the atmosphere on spectral
signatures. This paper presents the fundamental principles of these problems and some of
the results of our studies of them for a test site in Colorado, using LANDSAT-1 data.

The test site (figure 1) comprises about 2280 sq. km (880 sq. mi) of generally wildland
terrain in south-central Colorado. It includes such landmarks as Pikes Peak, the Cripple
Creek mining district, and Canon City. Altitudes range from 1525 to 4300 m. The terrain
is highly varied and includes a diversity of rock types, soil, and vegetative cover, over a
wide range of angle and aspect of slope.

The research was carried out as an integral part of LANDSAT and Skylab EREP projects
funded by NASA, and by in-house research supported by the Martin Marietta Aerospace Corpo-
ration. Computer support was provided by Colorado State University and a computer-derived
map was made by the Environmental Research Institute of Michigan (ERIM) as their part of a
separate but coordinated LANDSAT project funded by NASA. This map provided further insights
into the nature of the mixtures problem. This research effort was conceived, initiated and
coordinated by Smedes. Hulstrom measured atmospheric properties and studied their effects,
made on-site measurements of spectral signatures, and used these data in a computer program
to calculate signatures of mixtures. Ranson studied the effects of mixtures using simulated
LANDSAT data as part of a dissertation for an advanced degree at Colorado State University.

THE MIXTURE PROBLEM

The natural terrain is composed of mixtures of classes. This is true regardless of the
size of the ground resolution element ( ® pixel) of the sensor system, and holds for satellite
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data with resolution on the order of 100 sq. meters, to that of the microscope with reso-
"lution of the order of a sq. micron or less. Ry tradition, each discipline of the natural
sciences has accommodated this mixtures problem by means of graded orders or hierarchies
of classifications. We thus have, in order of decreasing size of resolution element, such
classes as galaxies; stars and planets: continents and oceans; mountains, ridges, valleys,
plains and deserts; woodlands, meadows, bare rock, and soil: spruce, aspen, bunchgrass,
granite, and quartz veins; bark, needles, leaves stems, quarts, feldspar, and mica grains;
petioles, chloroplasts, mitochondria; perthite, albite with fluid inclusions , and magnetite
inclusions in biotite., Because we are dealing with current satellite scanners, the reso-
lution element or pixel size we are concerned with is 65-80 m square. This results in high
likelihood that any given pixel will contain two or more of such classes as woodlands,
meadow, bare rock, and soil. If a recognition processor (computer) is trained to recognite
only the homogeneous component classes (trees, grass, rock, etc.) the overall consequences
of a mixture of these classes occurring within a pixel is a misclassified or unclassified
pixel, which tends to make estimates of the area covered by a terrain class lower than
actually present (ref. 1). Errors in classifications due to the mixture problem alone will
be 25 to 30 percent (ref. 2 and 3).

There are two basic kinds cof mixtures. One is due to the boundary or edge effect,
where a pixel encompasses the interface of two or more homogeneous end-member component
classes, such as water and dense coniferous forest. The resulting spectral signature would
not be representative of a pixel that contained only one of these classes. The other mixture
is represented by pixels which contain homogencous mixtures of such things as forest canopy
and grass, rock, or soil understory. In the first case, only the pixels along the inter-
face will be misclassified. In the second case, large clusters of pixels throughout the
forest will be misclassified if only the component classes were used to train the computer
(ref. 4, 5, 6).

Variations in the amount of vegetative cover will result in corresponding mixtures of
the vegetation and underlying material, Conscquently, if the camputer is trained to recog-
nize only one vegetation density, then misclassifications would occur for densities above
or below that of the training class, within the constraint of same response threshold. These
misclassifications occur because when a mixture of terrain classes is contained within the
instantaneous field of view (IFOV) of a scanner, the spectral response obtained is unlike
that of any of the component class signatures (ref. 8). To illustrate this concept, three
terrain classes were identified on graymaps of August 20, 1972 (frame no. 1028-17135) LAND-
SAT-1 MSS data that appeared representative of grassland (A), dense forest assumed to be
100% cover (B) and a class representing an assumed 50-50 mixture (C) of classes A and B
and located on the interface betwcen them. Spectral signatures were extracted with 21 data
points sampled for Class A, 72 for class B and 24 for class C. The mean spectral responsc
curves for the three classes are shown in figure 2, Note that the spectral response for
the mixture class C is uncharacteristic of either of its component classes (A and B) but
that the response curves falls between the two components' curves. Researchers investigating
this phenomenon have found that the relationship of a mixture and the signatures of the
camponent classes may be approximated as a function of the area of the pixel occupied by
each component terrain class and their respective spectral signatures.

Because of this problem of mixtures in pixels, we at first attempted to compile ground
control maps whose classes were designated by different increments of the more widely occur-
ring mixtures and to train the computer to recognire them by selecting specific training areas
of known proportions of classes. This method, described in detail in ref. 6 and 7, is ex-
tremely time-consuming, loaded with subjective judgements, and very difficult to calibrate.
Testing the accuracy of the resulting computer-derived map is even more time-consuming

Our conclusion, supported by other work (such as reported in ref, 6, 7, and 9), wvas
that if the computer is properly trained on end-member components and on commonly-occurring
mixtures, it could make a more accurate map of the terrain cover than we were able to compile
as control data. This casts serious doubt upon and ealls for reconsideration of what consti-

tutes the ground "truth".




those areas in terms of LANDSAT MSS, Skylab S-192, or other scanner pixels, especially in
areas of mountainous terrain. This difficulty and the resulting uncertainty and imprecision-
led us to experiment with techniques to calculate mixes from data for end members and to

use those calculated signatures in lieu of training areas for the mix classes. Previous
research in this problem has largely been confined to classes of crops in flat agricultural
fields. Our data and techniques will apply equally well to conditions ranging from crop-
lands to wilderness.

Inasmuch as the radiance from a pixel is integrated over the entire area of the pixel
(the instantaneous field of view of the scanner), mixture-class signatures can be determined
from the known mean vectors and covariance matrices of the component classes and the propor-
tional areas occupied by each component in the pixel.

Two approaches were taken. One was to measure the reflectivity of pure end-memher
components on site and then calculate signatutes of various mixtures. The other was to
use the satellite data itself to extract the radiance signatures of known end-member targets
and then calculate radiance signatures for various mixtures. Simulated LANDSAT MSS-type
data were used. They show the expected improvement in accuracy of automatic classification
using simulated mixture-class signatures. In addition, methods have been developed for de-
termining component class signatures from mixtures when there were insufficient data points
for conventional signature extraction of the end-member components.

CALCULATED SPECTRAL SIGNATURES FOR MIXTURES
Basic Concept

The basic problem of correctly identifying ground resolution elements that contain mix-
tures of terrain classes with simulated mixture signatures is obtaining representative sig-
natures for the component classes. A component class can be defined as a homogeneous or
non-homogeneous group of materials that make up a discrete mapping class or terrain type.

A discrete mapping class may or may not be found in combination with other discrete classes
as mixtures. For example, in an area where there is a sparse covering of grass with bare
soil showing through, the grass and soil may be considered as two discrete mapping classes.
With the 0.4 ha resolution of LANDSAT, the scene would be viewed as a mixture of grass and
bare soil so these two classes would most likely be combined into one component class for
analysis. If another class were identified as dense forest, then any time enough trees
existed on the grass-soil unit to affect the response of a pixel, then a mixture of these
two classes (forest and the grass-soil association) would exist. Discrete mapping class
determinations can usually be considered a function of the natural associations, the objec-
tives of the user, spectral radiance, and the limitations of the MSS data.

When selecting component classes for mapping mixtures, care must be taken to avoid
situations where the data for a class form a multimodal distribution. Multimodal distri-
butions occur where the response data for a class are affected by variables such as slope
and aspect, vegetation vigor, underlying soil spectra, and sensor scan angle effects. The
standard method for dealing with this problem is to divide the multimodal class distribution
into subclasses as a function of slope, etc., classify the data and then combine the results
for each subclass (ref. 10, 11) for final display.

Calculations From On-site Measurements

Mixtures.- For on-site and near-surface measurements (negligible atmospheric transmission
and path radiance) the radiance, Nt of a pure target end-member can be given as

_ e
N =7 (1)

Where H is the total solar irradiance and P is the target reflectivity. The radiance from
a mixture of targets, Nm, can be given as

H
Nm ='7l'1'(§’].k'.1 +92‘/_"‘2 +(J3A3 * "‘enAn) (2)
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vhere e ..ﬁ,,, cte. are the reflectivity signatures of each component target, and A , A,
. ete, arl thé fractional proportions of the pixel that each component target occupi®s. “The
assumption is made that none of the component targets have strong specular reflectivities.

Note that even for the near-surface conditions, there are atmospheric effects to be
considered (H, in equations 1 and 2, above),

In order to simulate mixed target radiance signatures, a knowledge of the total in-
coming solar irradiance (H), the pure target reflectivity signatures, and the fractional
area of each target need to be known. In this study the spectral distribution and magni-
tude of the incoming solar irradiance is measured for various sun angles and atmospheric
conditions; and the pure target reflectivities are measured on site and from a helicopter.
The fractional area occupied by each target is simply varied to simulate various combinations
of mixtures.

The first mixture problem addressed was that of Plkes Peak Granite and Coniferous
Forest. This represents a very simple and common mixture. The reflectivity for the Pikes
Peak Granite and the total incident solar irradiance were measured on site (as discussed in
the following sections) while the reflectivity signature for Coniferous Forest was taken
from ref. 12. Fgure 3 shows all three of the parameters. The resultant simulations of
component and mixture signatures for the LANDSAT bands and for the continuous spectral
region from 500 to 1100 nm are shown in figures 4 and 5. 1t is interesting to note that
(as shown in fig. 4 and 5) for a 50-50 mixture of rock and trees, the resultant mixture
radiance signature no longer contains the characteristic chloryphyll absorption feature.
The resultant radiance signature would most likely be interpreted as a grayish, low-albedo
rock.

Spectral contrast.- In addition to computer simulations of pure and mixed target radi-
ance signatures, the spectral inherent contrast of various targets and their background can
be calculated. The inherent contrast, ¢, of a target versus its background is

NT - Ny
C - (3)

where N is the radiance signntare of the tarpet and N‘ ¢ the radiance signature of the
backgroxnd. The target and/or background can be any p&rr target or mixture of targets,

Sprctral contrast was calenlated in order to determine if there existed any particular
spect.ral region or band that pave a better contrast than other spectral regions or bands.
The goal of these spectral contrast calceulations is not to exclusively attempt to determine
if "optimum" bands existed for the discerimination of rock types, vegetation types, etc.
Rather, the goal is to determine "optimum" bands for maximum spectral contrast between a
selected target(s) and its backgroundi beeause, for the natural terrain existing in the
Colorado test site, this goal is in line with the actual terrain conditions. For example,
two rock types rarely exist side-by-side with goed exposures instead, a given rock type is
exposed and surrounded by a background made up of a complex mixture of other terrain, If
the rock types do exist side-by-side they usually do not £i11 the entire field of view of
the sensor. This is due to the fact that they occur as small outcrops and/or they exist in
layers exposed on extremely steep slopes or cliffs,

An example of the computer spectral contrast calculations is shown in figure 6. The
pure target is Pikes Peak Granite, and the background consists of mixtures of granite and
coniferous forest, It is obvious that there are “optimum" spectral regions; and, if the
background comprises a mixture, the contrast is reduced tremendously. The same case, only
applied to the broader bands of LANDSAT, 1s shown in figure 7. As can be seen, "opt {mum"
bands still exist; however, the overall contrast is reduced because of the broader bands.

The computer calculations of spectral contrast are not limited to the LANDSAT spectral
resolution, but can be used to dotermine speetral contrast for any selected wavelength re-
solution or band width, The resolution iz only limited by the resolution of the instrument
used to measure solar irradiance and reflect ivity. Such computer simulations of radiance
signatures and spectral contrast would be a very useful tool for planning aircraft multi-
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spectral remote sensing missions. A combination of a few selected measurements of solar
irradiance and reflectivities, and the subsequent computer calculations of spectral contrast
could be used to select film/filter combinations that would yield the highest contrast.

This method would eliminate costly flights and subsequent data reduction performed in hopes
of empirically determining optimum bands.,

Calculations From LANDSAT Data

Modeling of spectral signatures of mixture.- Two approaches for modeling were used in
this study. The first is a widely reported method that describes a mixture class signature
in terms of weighted combinations of component class mean vectors and covariance matrices
(ref. 1, 2, 8, and 13). The model describes the mean spectral response from a ground re-
solution element as:

N
", " (k)
I % BN
Woaze MPi = Mean response vector for a mixture of N component classes;
P = Relative amount (proportion) of class i;
Mi = Mean response vector for the ith component class.

The above relationship assumes statistical independence of normally distributed data
points belonging to class i.

Assuming statistical independence for variables associated with elements from different
object classes, the relationship for a mixture class covariance matrix can be written as:

0. =
P '{1 P,C, (5)

where CP = Covariance matrix for a mixture of N component classes;
P = Relative amount (proportion) of class i;

Ci = Covariance matrix describing the distribution of the ith component class.

Equations (4) and (5) represent the model used for automatic classification of mixtures
of classes with a maximum likelihood processing algorithm. For supervised learning recogni-
tion processors,component class mean vectors and covariance matrices must be determined and
proportions for each possible mixture must be specified. The approach presented here is
based on modeling the spectral response within a single pixel and should be applicable to
recognition processing with the RECOG (ref. 10, 14, 15) maximum likelihood algorithm (GLIKE)
since classification is point by point.

Most of the work reported in the literature utilizing this modeling technique required
sophisticated algorithms that calculate various mixture class signatures and select the one
that gives the closest approximation of the response from a given pixel. In our study,
however, we used the model to obtain a set of spectral signatures for specified mixtures of
component terrain classes that are used by the RECOG pattern recognition routines to identify
all MSS data points that exhibit that response. The value of this method lies in its straight-
forward applicability to the existing RECOG processing sequence, thus eliminating the need
to develop new processing algorithms,

Equation 4 was used to simulate the spectral response expected from a mixture of the
two component classes (A and B) whose extracted mean vectors were shown in Figure 2. Figure
8 shows the resulting simulated mean vector (D) for a 50% mixture of the two classes ie.
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= P =0,5, A likely explanation for the difference between curves C and D is the difri-
1ty 3!‘ accurately estimating cover densities from high altitude aerial photographs used
ground control (in this case Mission 205, NASA RB-57 photographs with an approximate
ale of 1:100,000) and the difficulty of locating non-homogeneous (mixture) training sets

[} 8mp’ (l‘ef. 16).

When a set of representative component terrain class signatures are obtained then the
lgnature of any mixture of these component classes may be determined using Equations 4 and
+ A computer program MIX was written to take two component class signatures and two propor-
lon vectors and calculate the spectral response of any caombination. The method involves
caling the mean vector and covariance matrix of a component class by a proportion factor
nd adding the result to the scaled mean vector and covariance matrix of another component
lass, The proportion factors p; must be within the set 0 < P< 1l and Pj = 1. The re-
ulting spectral signature may then be used to classify all pixels in a set of LANDSAT MSS
ata that exhibit a gmilar spectral response.

The second modeling technique used linear regression to predict the spectral response

f a mixture-containing pixel based on the mean response vectors ror known mixtures of
errain classes., The regression molel for a two-camponent mixture takes the form:

Y, = C + B(X) (6)

estimated mixture response in wavelength band i

=
9
2
<
]

constant (Y intercept);
coefficient (slope of regression line):
proportion of one component of the mixture in the pixel scene.

> w O
«. & =

Mead (ref. 5) indicated that this method may be useful in estimating the spectral re-
sponse for varying densities of ponderosa pine, but also noted that the mean spectral re-
sponse may be affected by the arrangement or distribution of ponderosa pine within a train-
ing set as described by the standard deviation,

The methods presented below, with the exception of signature extraction, were developed
for mixtures of two camponent classes, The following is a synopsis of the techniques used
to obtain component- and mixture-class spectral signatures for automatic analysis of MSS
data:

METHOD TECHNIQUE COMPUTER PROGRAM
Signature Statistical sampling RECOG (Mase ., Appendix A, R)
Extraction of MSS data points (see ref. 14 & 15)

Cosponent. Signature Solving simul taneous SIGCALC
Estimation equat ions

Linear regrossion STAT38R
Mixture Signature
Simulation Addition of weighted

mean vectors and

covariance matrices MIX

Signature Extraction.- When areas on the ground have been satisfactorily identified as
containing a known terrain class or mixture of terrain classes and the graymap cooridinates
have been determined, then spectral signatures may be obtained by statistically sampling
these pointa, This pmcoaa is known as signature extraction and represents the conventional
mode for obtaining signatures that are assumed to characterize a class of objects. The de-
signated data points known to contain a terrain class are sampled and the overall mean is
determined for each channel of MSS data, These means, four in the case of LANDSAT-1, are




collectively known as the mean vector. Because of the inherent variability found in natural
objects an additional set of statistics is obtained that characterizes the population dis-
tribution of the sampled data points. This set of statistics is the class covariance matrix
and describes the within-channel and between-channels variation of the data, The technique
used in this work is contained in the RECOG routines, specifically Fhase 2 (Appendix A).

The formulas used in these routines are described in Appendix B.

Estimating component-class spectral signatures.- One method for estimating component
class signatures from known mixture class signatures involves solving two equations with
two unknowns. The spectral signatures for unknown mixture classes are assumed to be related
and can be described in equation form in the following manner:

Pa(MSRa)i * Pb(MSRb)i B Mpi (7)

where P&, P

N Proportions of classes A and B in the training set, respectively.

(MSR_) .(MSRH) = Mean spectral responses of the component classes A and B, respectively
in nveleﬂgéh ban l.

Hp = Mean spectral response recorded at the scanner for the mixture of classes A and
i

B in wavelength band i.

The terms P , P, , and M_ are known for each training set,leaving the mean spectral re-
sponses of the c%mpo ent cla¥ses A and B to be determined. If there exist two sets of
spectral signatures describing training sets with similar components but of different propor-
tions, then it is possible to calculate the two component classes by solving the two equa-
tions simultaneously. A general solution for the two-component class case takes the form:

MSR, = M B, - M P
Py B Py ™y (8)
P’*.?Pbl ) Pbep"l

Equation 8 produces the mean spectral response for class B. To derive the mean spectral
response for class A, the result can be substituted into equation 7 which can be rewritten
as

MSR, = MP, - P MSR . (9)

! ?
a

If the elements of the covariance matrix for a terrain class spectral signature behave
in a similar fashion, then this method could be used to obtain a calculated covariance matrix
for a component terrain class. The covariance matrix for a four-channel case such as LAND-
SAT-1 can be treated as a 10 element array to simplify the calculations. This can be done
since the off-diagonal elements of the covariance matrix are mirror images of each other.

A computer program called SIGCALC was written to take two extracted mixture terrain-
class spectral signatures and calculate the mean vector and covariance matrix for the com-
ponent classes. In addition, the proportions of the component classes in the training set
determined from ground truth must be specified. Situations where P Pb = Pb P‘ must be
avoided since the denominator of equation 8§ cannot equal zero. 20 el |

The above method for determining component class spectral signatures should provide re-
liable results if the proportion estimates for the component classes are accurate. However,
it is often difficult to measure the proportions of component classes with the accuracy
needed to estimate representative component class signatures. Also, due to the variability
of spectral responses for component classes found in nature it was decided to use another
method that estimates the component-class spectral signatures from more than two mixture-
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class signatures. This method involves using a stepwise linear regression analysis.

The stepwise linear regression analysis used is an applications program available at
Colorado State University called STAT38R (ref. 14, 15). This program was used to develop
a regression model that estimates the spectral response of a terrain class, either a com-
ponent or mixture, given a set of mixture-class spectral signatures and the proportions of
the component classes.

Simulations of LANDSAT data.- In order to examine the applicability of modeling mixture-
class specfﬁ signatures for automatic classification of LANDSAT-1 MSS data, a series of
experiments was performed with simulated data. They include: identifying the expected
improvement of automatic classification using modeled mixture terrain-class signatures versus
conventional component class analysis, comparing modeled and extracted mixture-class mean
vectors and covariance matrices, and analyzing the signature calculation technijue.

Creation of simulated data fields: The automatic classification procedure conducted
for these experiments approximates that of conventional RECOG LANDSAT-1 MSS analysis (ref.
10, 14, 15) with the exception of using modeled mixture class signatures and simulated
LANDSAT-1 data. The steps are: 1) Examine control data on site to establish locations of
representative training sets, determining the line and column numbers of the training sets
on graymaps and extracting the mean vectors and covariance matrices from the data. 2) Simu-
late mixture signatures with the component class signatures obtained in Step 1 using Program
MIX. MIX requires the mean vectors and covariance matrices of the component classes as in-
put, as well as the mixture proportions desired for each mixturc class. The simulated mean
vectors and covariance matrices are punched on computer cards by MIX for future use, 3) Gener-
ate a random-normal data field for each class in RECOG formot with program DTAFILE. This
program uses a random-number generator that selects points as belonging to a given class
based on the mean spectral response in each LANDSAT-1 MSS band and the appropriate covariance
matrix, all within a normal Gaussian distribution. The overlying assumption here is that
wildland terrain classes arc normally distributed, which conforms to the assumptions imposed
on the mixture modeling method (ref. 8) and the maximum likelihood pattern recognition algo-
rithym (GLIKE) of RECOG (ref. 10). DTAFILE was designed to create simulated data fields of
specified size for each class described by a mean vector and covariance matrix. The gener-
ated data points are written on a permanent file and stored for later use by any routine
tat uses data in a RECOG format.

The simulated data fields for each of the component and mixture classes were generated
to contain 1000 spectral response values in each wavel ength band ,with each point being de-
scribed by four variables (spectral response in each wavelength band).

The data riels as generated by DTAFILE represent LANDSAT-1 MSS data with the added ad-
vantage of "absolute" ground truth information. With these fields it is possible to analyze
the accuracy of automatic classification using the conventional RECOG maximum likel ihood
routine and the mixture terrain-class modeling method. An example data field is shown in
figure 9 as a graymap of a nine-class fi=ld. The class fields can be seen as horizontal
bands 100 points across and 10 points down.

Classification of component classes: The initial experiment performed involved using
a classification of simulated data that contained fields of two component classes and three
mixture classes modeled from these components. Two component classes, Grassland (denoted by
the symbol, G) and Forest (F), were identified on NASA RB-57 (seale 1:100,000) color IR
aerial photographs and located on a graymap of August 20, 1972 LANDSAT-1 MSS (Frame no. 1008-
17135) data over south-central Colorado. Signatures were extracted and then used to obtain
mixture class signatures with program MIX. The mixture classes were simulated with a speci-
fied proportion increment of 0.25, producing three mixture classes of 75% Grassland - 25%
Forest (C), 50% Grassland - 50% Forest (D), and 25% Grassland - 75% Forest (E). The mean
spectral-response curves for the five classes are shown in figure 10,

The simulated data fields were then treated as actual LANDSAT-1 MSS data for purposes
of classification. Component-class signatures were extracted from those fields created with
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component-class signatures (top 3 rows, fig. 9) and used to classify the entire sét of simu-
lated data., The classification display is shown in figure 11 with the Grassland field at
the top and the Forest field at the bottom. The mixture class fields are located between
the components with C nearest the Grassland field, D in the middle and E nearest the Forest
field. Note the number of unclassified points (seen as blanks in the display) in each of
the mixture-class fields. These points were thresholded out at the 11.100 percentile as

not belonging to either of the component classes. Misclassifications of the mixture-class
fields occur only in fields C and E, with points being misclassified as the component class
which has the highest proportion in the mixture.

The absolute classification accuracies were determined for each clas . Since each data
point was created as a specified class, a point was considered misclassified if it was classi-
fied as any class other than that specified. The results are summarized in the following
classification confusion matrix (CCM) listing each class, the number of points that were
classified correctly, and the number of points misclassified as other classes.

CLASS F E D c G
FOREST (F) 1000
254 GRASSLAND - 148
75% FOREST (E)

50% GRASSLAND -
50% FOREST (D)

75% GRASSLAND - 376
25% FOREST (C)

GRASSLAND (G) 1000

The table is read with the true class name and symbol on the left and the symbols of classes
that a point was classified as across the top. The diagonal elements of the matrix represent
accurate classifications. The off-diagonal elements represent either Type I or Type II errors,
defined as follows.

Decision True Classification
X belongs to A X Does Not Belong to A
Classify AS A Correct Decision Type I Error
Do Not Classify AS A Type II Error Correct Decision

The overall accuracy of this classification was only 40.0% which in most LANDSAT-1 appli-
cations should be considered quite poor even though the component classes were classified

perfectly.

Classification of two component and three mixture classes: The objectives of the study
presented in this section were twofold. The first was to verify that the mixture-class
spectral~signature modeling technique produces signatures that can be used by RECOG to classi-
fy pixels that contain mixtures. The second, assuming the first to be satisfied, was to de-
termine the increase in information acquired using modeled mixture-class signatures over
classification conducted with only component-class signatures.

The same data-field generated for the analysis of component classes was used for this
experiment. Treating the data file as actual LANDSAT-1 MSS data, component-class mean vectors
and covariance matrices were extracted. Signatures for the mixture-class fields were not
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extracted from the data, but instead were modeled from the component-class mean vectors and
covariance matrices. This procedure follows that which could be used with actual LANDSAT-1
data since representative mixture-class training sets are usually difficult to locate in
natural situations. The two extracted component and three modeled mixture-class signatures
were used to classify the simulated data file.

At this point it was desirsble to compare modeled and extracted mean vectors and covari-
ance matrices. The signatures of the mixture classes were extracted from the simulated data
and compared with those that were modeled from the two component classes, as follows:

Extracted Simulated
CLASS GRASS
BAND 1 2 3 4 .
MEAN 2,45 3W.13 39.10 19.40 ORIGINAL PAGE IS

Qr

STD. DEV. 1.07 1.8¢ 1.5 .88 OF POOR QUALITY.
CLASS 75% GRASS-25% FOREST
RAND 1 ) 3 L 1 2 3 L
MFAN 28,57 28.48 3w k0 17.26 28,57 28.46 3W.35 17.21
STD. DEV. 1.06 1,80 1.65 1.01 1.04 72 1,66 .90
CLASS 50% GRASS-50% FOREST
BAND 1 2 3 L 1 2 3 4
MEAN ob.TY 22,86 29.62 15.04 ol 68 22,78 29.61 15.01
STD. DEV, 1.05 1.54 1.7% 1.1 1.00 1.5 1,76 1.09
CLASS 25% GRASS-75% FOREST
BAND 1 2 3 L 1 2 3 L
MEAN 20 .84 17.14% 24,93 12,91 20,80 17.11 24,86 12.82
STD. DEV. .99 1.4 1.87 1.2 .97 1.3%5 1.8 1.18
CLASS FOREST
BAND 1 2 3 N
MEAN 16.92 11.44 20,12 10.63

STD. DEV. .95 1,12 1.9 1.20

The results indicate that the extracted and modeled mean and standard deviation vectors vary,
at most, by less than 0.1 of one standard deviation unit, which can be considered as quite
adequate for this analysis. Figure 12 shows the classification display of the results. A
classification confusion matrix (CCM) was also compiled for this analysis. It is a comparison
of extracted and modeled mean and standard deviation errors., The standard deviations shown
represent the square root of diagonal covariance elements. The results are as follcws:

CLASS F E D c G
FOREST (F) 297 3
25% GRASSLAND - - - 2

75% FOREST (E)

50% GRASSLAND - .
50% FOREST (D) = L

75% GRASSLAND - . ) ‘
25% FOREST (C) 12 aro 18
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The classification results indicate that simulated mixture-class spectral signatures
can be used to classify MSS data using the RECOG program. The classificaticn information
and accuracy were also greatly increased by the use of mixture signatures. The overall
classification accuracy using this technique increased to over 98%, with only a slight de-
creasc in the accuracies of component classes, It stould be noted here that automatic classi-
fication of generated data flelds will normally produce high classification accuracies due
to the lack of "alien objects" which are often found in real life situations (ref. 3). The
accuracies produced here should, instead, be considered a measure of the effectiveness of
the classification technique. These results do indicate that given a pixel containing a
mixture, it should be possible to accurately identify it with this method.

Classification of three component and six mixture classes: The successful results ob-
tained with the five-class analysis warranted further study, so an additional component class
was added to the signature set. A mean vector and covariance matrix for Water (W) was ex-
tracted from August 20, 1972 LANDSAT-1 MSS data. Mixture signatures were modeled from the
Grassland component class and the new Water class with a proportion increment of 0.25. The
resulting three mixture classes and the component class combined with the original signature
set bring the total number of signatures used to nine. Figure 13 shows the mean spectral
response curves for the Grassland-Water mixture classes. The separation of these classes
was adequate in all bands. The mean spectral response curves for all nine classes are illus-
trated in figure 14,

The classification procedure followed that of all previous experiments with a new data
field being generated to include all nine classes. The classification display is shown in
figure 15. A classification confusion matrix (CCM) for the 9-class analysis is as follows:

CLASS F
FOREST (F) 997 3

25% GRASSLAND -
75% FOREST (E) 8 982 10

50% GRASSLAND - AL PAGE I8
50% FOREST (D) 8 962 %RF‘GPRO!QR QU

25% CRASSLAND -
75% FOREST (C) 10 954 12 2l

n
n
(o<]

GRASSLAND (G) 1h 986

75% GRASSLAND -
25% WATER (Q) 6 18 976

50% GRASSLAND -
50% WATER (R) 999

25% GRASSLAND -
75% WATER (S) 996

WATER (W) 962

These results show a good classification accuracy for all the classes, with an average classi-
fication accuracy of 98%. Note that the greatest confusion exists between mixture classes
that have the same proportion factor for a given component class, i.e., 75% Grassland-25%
Forest and 75% Grassland-25% Water. This is probably the result of masking of the lesser
components by the Grassland response.




The following comparison of the modeled and extracted mean and standard deviations was
made as an additional check of the mixture modeling method:

Extracted e
CLASS GRASSLAND
BAND 1 e 3 b

STD. DEV. .11 1,91 1.he SR

CLASS FOREST
BAND 1 2 3 L
MEAN 16,95 11,48 20,19 10.67

STD. DEV. .2 115 1.95 1.6 \
; : ORIGINAL PAGE 1

CLASS WATER OF POOR QUALITY.
BAND 1 2 3 L

MEAN 16,72 8,13 3.9 2h

STD. Dw. 055 -7“ -63 ohh

CLASS T5% GRASSLAND-25% FOREST

BAND 1 o 3 4 1 R 3 L
MEAN 28,57 28,48 W40 17.06 28,60 28,51 3,36 17.56
STD, DEV. 1,06 1.8 1.6 1.01 1.06 1.7% 1.6 1.00
CLASS 500 GRASSLAND-50% FOREST

BAND 1 2 3 l 1 2 3 b
MEAN 24,68 20,91 20,40 15.01 7o 2084 o6k 15,06
STD. DEV. 1.00 1.5 1.77 1.08 1,020 1,57 1,73 1.0
CLASS 5% GRASSLAND-75% FOREST

BAND 1 2 3 N 1 2 3 W
MEAN 20,83 17.10 2h, 80 10.83 20,80 1716 2h,91 12,87
STD, DEV. 1.01 1,33 1.8 1.7 A8 0 1,38 1.8 1.8
CLASS T5% GRASSLAND-25¢ WATER

BAND 1 2 3 L 1 2 3 4
MEAN 28,49 27,00 20,30 1h.n0 Q8,55 27.67 0.3 k.65
STD., DEV., 1.01 1.62 1.3% 83 1.00 1,60 1.1} )
CLASS 50% GRASSLAND-50% WATER

BAND 1 - 3 i 1 ] 3 L
MEAN 2h.55 21,00 2107 9,77 ohBl 21,16 21,53 9.8%
STD. DEV. 850 1,30 1,00 (76 A7 1 10k N
CLASS 25% GRASSLAND-79% WATER

RAND 1 A 3 L 1 2 3 h
MEAN 20,07 1h,03 12,75  5.00 20,66 1, 0h 12,76 5,04
STD. DEV, q1 1 . o8 J3 1.0k L0 .50

Az in the case of the five-class classification, the simulated mixture signatures closely
approximate those extracted from the peonerated datafields. These results imply that if a
representative set of component signatures can be found, then mixtures of these classes may
be succeasfully modeled and used to classify pixels containing those nmixtures,

Test of sipnature eatimation technique: In wildland arcas whore large areas of homogene-
ous terralin classes are diffienlt Lo locate, it becomes necessary to obtain representative
spectral signatures from a relatively small number of pixels, In some areas it {8 even diffi-




cult to find any pixels that contain only one terrain class (ref. 16). Consequently, methods
to obtain component terrain-class signatures from pixels containing mixtures of terrain
classes in known proportions have been investigated (for example, see ref. 17). The method
involves solving a set of lincur equations assuming that the data is from a Gaussian distri-
bution and each signature has a common covariance matrix. Our study used a similar, but
much simplified technique to attempt to acquire component-class spectral signatures from
training-set data of terrain classes of known mixtures. A test of the method to obtain
camponent-class spectral signatures using equations 8 and 9 was conducted using simulated
data fields created in the same manner as the preceding experiments, The specific objectives
of this test were: 1) to verify that this method could be used to determine component class
signatures suitable for automatic mapping of LANDSAT-1 type MSS data when only mixture ter-
rain classes were available for signature extraction, and 2) find out the type of classi-
fication accuracies that can be expected when implementing these estimated signatures as
input into the model and RECOG.

The initial test used the random-normal data fields for the nine-class analysis described
above, Spectral signatures were extracted from the data for mixture classes 75% Grassland-
25% Forest (C), 50% Grassland-50% Forest (D), 75% Grassland-25% Water (Q), and 50% Grassland-
50% Water (R). The pairs of extracted signatures and their corresponding proportion factors
were input into SIGCALC and the component signatures for Grassland, Forest and Water were
calculated.

Comparison between component class mean and standard deviation vectors extracted from
the data set and those calculated with SIGCALC is as follows:

Extracted Calculated
(B:k:gs GR?SS e 3 h 1l 2 3 4
MEAN 31.93 33.64 38.58 18.8a 32.05 33.70 38.62 19.05
STD. DEV, 1.14 1,01 1,53 e 1,30 1.97 1.48 97

CLASS FOREST

BAND 1 2 3 b | 2 3 b
MEAN 16.43 10.93 19.69 10.13 16,41 10.9%% 19.58 9,95
STD. DEV. .92 1.19 1.99 .96 1.05 1.21 1.98 1.3
gk;gs w:rsa o 3 b 1 2 3 4
MEAN 16,210 7.60 3.50 .04 1617 7.70  3.64 .00
STD. DEV. .63 .8 66 .19 NS BN J6 .52

The calculated component class signatures closely approximate the extracted with the average
deviation being 0.08 for mean vectors and 0,15 for standard deviations.

In order to compare the effectiveness of estimated signatures with extracted :;gnlt\;::-a,
the nine-class data field was classified by the computer. The class signatures u: :‘a\odel-
put included the three estimated component gignatures and six mixture-class signature
ed from the estimated signatures. The classification accuracy obtained was approx:mtely 2%
less than that obtained when using extracted component signatures. The classification map




is shown in figure 16. The classification confusion matrix (CCM) of this data set is as
follows:

CLASS F E D c G Q R S W
FOREST (F) 984 13

25% GRASSLAND -
75% FOREST (E) 17 973 10

50% GRASSLAND -
50% FOREST (D) 20 964 B L 1

25% GRASSLAND -
75% FOREST (C) 27 876 25 65

GRASSLAND (G) 59 907

75% GRASSLAND -
25% WATER (Q) 28 2L 2

50% GRASSLAND -
50% WATER (R) 1000

25% GRASSLAND -
75% WATER (S) 1000

WATER (W) 1000

An overall classification accuracy of 96,14 was obtained, indicating that good classification
results can be expected using this methed.

The simulated data fields that contained the mixture-class signatures used to calculate

the component classes represent uniform data. That is, each data point (pixel) represents

& similar class of obgects. Because this situation is sometimes difficult to find in natural
situations, the technique was tested for mixture signatures extracted from non-uniform data

or training sets. Non-uniform training sets can be defined as areas that contain a mixture
of component classes with single pixels containing various proportions of the components,

If the non-uniform training set is considered in its entirety the mean spectral response
should approximate that from a uniform training set with the same proportions of component
classes. The concept of uniform and non-uniform data is illustrated in figure 17 as two
20-pixel training sets, one containing a uniform mixture of two component classes (white and
shaded) (a) and one containing a non-uniform mixture (b), but both with identical overall
proportions of component classes. In the uniform training set each pixel (outlined by heavy
black lines) contains a 50% mixture of two component classes, producing a 50% mixture within
the entire training set. Since the spectral response from a pixel is integrated at the
scanner optics,the within-cell distribution of the components does not affect the between-
cell variance of the training set. The non-uniform training set is composed of some pixels
containing 100% of one class, some containing 100% of the other class and some that contain
various mixtures of the two components. The overall mixture proportion averaged over the
entire training set is 50% of each component class. Referring to the equation 28 (Appendix)
it can be easily deduced that the mean vectors obtained from each training set should equal
each other assuming constant illumination and no within-class variability. By equation 30
(Appendix) however, it can be seen that covariance matrices will most likely vary due to the
between-pixel variability existing in the non-uniform training set.

’

extracted and compared with thos extracted from uniform date

To verify these statements mixture-class signatures from simulated non-uniform data were




signatures. A comparison of extracted and calculated mean and standard deviation vectors of
the component classes for uniform and non-uniform(#*) data are as follows:

Extracted Calculated
CLASS GRASS :
BRAND 1 2 3 L 1 2 3 L
MEAN 32.02 33.68 38.60 18.97 31.81 33.69 38.67 18.77
STD. DEV. 1.16 1.97 1.52 .96 1.08 1.86 1.64 1.00
CLASS GRASS*
BAND 1 2 3 L 1 2 3 N
MEAN 32.02 33.68 38.60 18.97 31.98 33.67 38.61 18.95
STD. DEV. 1.16 1.97 1.%52 .96 5.17 8.59 11.15 6.02
CLASS FOREST
BAND 1 2 3 L 1 2 3 L
MEAN 16.43 10.93 19.69 10.13 16.53 10.93 19.55 10.13
STD. DEV. .92 1.19 1.99 1.29 1.04 1.21 .88 1.31
CLASS FOREST#*
BAND 1 2 3 L 1 2 3 L
MEAN 16.43 10.93 19.69 10.13 16.47 10.93 19.75 10.18
STD. DEV. 92 1.19 1.99 1.29 5.02 7.32 6.33 L.,35
CLASS WATER
BAND 1 P 3 L 1 2 3 L
MEAN 16.23 7.62 3.47 0.03 16.27 T7.71 3.53 0.00
STD. DEV. .63 .79 .67 +17 .63 .84 .56 A7

CLASS WATER*

BAND 1 2 3 b 1 2 3 L
MEAN 16.23 T7.62 3.47 0.03 16.28 7.71 3.47 0.09
STD. DEV, .63 .79 .67 W17 10.10 16.50 22.20 12.10

Note the close agreement of means and standard deviations from the uniform data and the close
agreement of means but non-agreement of standard deviations calculated from the non-uniform
data.

The consequence of using such large covariance matrices obtained from the non-uniform
data is illustrated in Figure 18. The nine-class simulated data fields were classified with
the calculated component signatures listed above. The first classification map (fig. 18a)
was obtained using signatures calculated from uniform training sets and the second (fig. 18b)
was obtained using signatures calculated from non-uniform training sets. The classification
accuracy of component classes obtained for the uniform case was 99.1% whereas the accuracy
obtained for the same classes in the non-uniform case was only 33.3%. The latter figure is
misleading in that the nine-class data set was classified as 97.9% Grassland, 1.7% and .4%
water., These figures indicate that the class distribution for Grassland was improperly de-
fined by the covariance matrix.

The above study, coupled with the frequent lack of uniform mixture-class training sets
in natural situations, lends itself to implementing an artificial covariance matrix for de-
scribing distributions of component classes, The use of a covariance matrix common to each
class was discussed (ref. 8)for another, more sophisticated, signature calculation technique.
Mean vectors for component classes can be successfully calculated from non-uniform mixture-
class training sets. If a common covariance matrix that describes the proper distribution
can be found, then with the calculated mean vectors, the signature should be representative
of its respective class. To verify this, the component-class mean vectors calculated from
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non-uniform mixture class training sets and various common covariance matrices were used to
classify the simulated nine-class data fields.

The first classification utilized a covariance matrix with diagonal elements ( a%i) of
(1,3,3,1) and off-diagonal elements of 0.5. The determinations for the covariance elements
were made by a priori inspection of covariance matrices for component and mixture classes
extracted from simulated uniform data. The standard deviations in each band represent an
estimate of the average standard deviations for all classes. The off-diagonal elements were
established to be 0.5 as an estimated average of the correlation values for all of the 9-
class correlation matrices.

The classification procedure followed that of all earlier runs with the mixture class
mean vectors being modeled from the component class mean vectors calculated from non-uniform
data. The classification map is shown in figure 19; its corresponding CCM is as follows:

CLASS F E D C G Q R S W

FOREST (F) 993 5

25% GRASSLAND -
75% FOREST (E) 13 975 1 1

50% GRASSLAND -
50% FOREST (D) 17 959 15 9

no

25% GRASSLAND -
75% FOREST (C) 19 897 21 63

GRASSLAND (G) 26 a7k

75% GRASSLAND -
25% WATER (Q) 20 23 956

50% GRASSLAND -
50% WATER (R) 1000

25% GRASSLAND -
75% WATER (S) 1000

WATER (W) 1000

The acceptable level of classification accuracy cbtained (97.3%) indicated that utilizing a
common covariance matrix may help solve the problem of establishing representative spectral
signatures for component classes when there oxist insufficient points for conventional sig-
nature extraction.

An additional classification was conducted with the same class mean vectors as the above
analysis, but with a common covariance matrix with the same diagonal elements and off-diagonal
elements set to 0.0, The purpose of this run was to establish the expected classification
accuracy for 0.0 correlations between channels. The classification results were again pro-
mising,with the average accuracy obtained being 96.5%. 'The classification map is shown in
fig. 20; its corresponding CCM is as follows:




CLASS F E D c G Q R s W
FOREST (F) 970 25

25$ GRASSLAND -
75% FOREST (E) 26 939 35

50% GRASSLAND -
50% FOREST (D) 20 942 13 20 5

25% GRASSLAND -
75% FOREST (C) 13 896 25 66

GRASSLAND (G) 15 983

75% GRASSLAND -
25% WATER (Q) 20 22 958

50% GRASSLAND -
50% WATER (R) 1000

25% GRASSLAND -
75% WATER (S) 1000

WATER (W) 1000

One additional common covariance matrix was calculated, and tested as suggested by
Nalepka and others (ref. 8, p. 17). This matrix consisted of an average of the covariance
matrices of their signature set. One immediately recognizable disadvantage of this method
-8 that a set of representative covariance matrices must be obtained from the MSS data which
have small values such as those expected from component class covariance matrices extracted
from uniform data. The results of using this technique for calculating the diagonal elements,
but setting the off-diagonal elements to 0.0 are shown in figure 21. The corresponding CCM
is as follows:

CLASS F E D C G Q R S W

FOREST (F) 960 23

251; GRASSIAND -
75% FOREST (E) 25 939 35

50% GRASSLAND -
50% FOREST (D) 20 9l 13 22 L

25% GRASSLAND -
75% FOREST (C) 10 893 26 70

GRASSLAND (G) 18 977

75% GRASSLAND -
25% WATER (Q) 23 25 952

50% GRASSLAND -
50% WATER (R) 1000

25% GRASS -
T75% WATER (S 1000




Note that the 9-class data classification results are slightly less (95.0%) than those ob-
tained using an estimated average of the diagonal elements and setting the off-diagonal ele-
ments to 0.0.

The overall results obtained from using common covariances appear promising for classi-
fying LANDSAT-1 type MSS data when signatures must be obtained from non-uniform mixture class
training sets. This technique applied to automatic classification of actual wildland data,
is described in the next chapter.

Tests using LANDSAT-1 MSS data.- Experiments similar to those performed with simulated
MSS data were conducted with actual LANDSAT-1 MSS data. An initial experiment was performed
using extracted assumed "pure" component-class spectral signatures and mixture-class spectral
signatures simulated from these component classes to classify an area designated as the 11-
Mile study area. An additional experiment using estimated component signatures and simulated
mixture signatures was performed using several plots located in the Manitou study area where
ground control data were more detailed. Both of these experiments utilize methods described
above. The objective of these experiments was to relate the concepts just presented to a
real-world application. Hopefully, this will provide insight as to how well these techniques
work to improve classification accuracies and/or what other factors may need to be considered
to obtain optimum results.

LANDSAT-1 MSS data acquisition and description: The set of LANDSAT-1 MSS data analyzed
is from an August 15, 1973 (frame number 1388-17134) overpass of the test site. The data
set was provided by Dr. Richard S. Driscoll, Remote Sensing Project Leader at the U.S. Forest
Services Rocky Mountain Forest and Range Experiment Station located in Fort Collins, Colorado.
The data were geometrically corrected (deskewed) by the Laboratory for Applications of Remote
Sensing (LARS) located at Purdue University, West Lafayette, Indiana (ref. 5, 18). The ad-
vantage of the deskewed data is its better conformity to aerial photographs, especially when
displayed as a microfilm graymap or recognition map. A large section of this LANDSAT-1 frame
was also studied by Heller and others (ref. 4) and Fleming (ref. 19).

Two areas from this frame were selected for study. They are referred to below as the
Elevenmile Canyon Reservoir Study Area and the Manitou Study Area.

Experiments were conducted in these study areas using extracted component class and
simulated mixture-class spectral signatures to classify a portion of LANDSAT-1 MSS data.
The steps involved in the classifications are: (1) selecting component classes, (2) extract-
ing representative spectral signatures, (3) simulating specified mixture-class spectral sig-
natures, (4) classifying the data with a maximum likelihood processor, and (5) analyzing the
results,

Elevenmile Canyon Reservoir Study Area: This area was .elected because it is represent-
ative of the diversity of topography, geology, and vegetative cover throughout much of the
total test site; and because of the availability of LANDSAT-1 MSS tape data. The location of
the site is shown in figure 1. KElevations range from 2500 to 3020 m. The site is at the
southwest margin of South Park: it includes the eastern part of Elevenmile Canyon Reservoir.
Mountainous terrain lies to the north and cast; a wide rolling grassland area lies primarily
to the south of the reservoir. Wet meadows occur primarily along stream courses.

Two principle types of rocks occur; volcanic rock and granodiorites. The most commonly
found volcanics are upper and lower andesite members of the Thirty-nine Mile volcanic field.
The upper member is generally associated with high flat-topped mountains and the lower with
the low rolling hills characteristic of South Park.

The granodiorite found in the site is dark gray, medium to coarsely crystalline and con-
tains gneiss. It is correlated with the precambrian Boulder Creek Granodiorite of the central
front range of the Rocky Mountains. It is found mainly in the northern portion of the test
area where it forms high steep mountains. Several outcrops can be found to the east of FEleven-
mile Canyon Reservoir and on both sides of Elevenmile Canyon, but their aerial extent is limit-
ed. Elsewhere, most of the bedrock is covered by some form of vegetation.




The vegetation in the area consists of a variety of forests and grasslands. The forests,
which cover approximately one-third of the test site,include: (1) ponderosa pine, (2) Douglas-
fir, (3) spruce fir, subalpine fir, and (4) Aspen. According to Heller and others (ref. 4),
these forest species occur as "pure" types, but in many places there are various mixtures of
species. There also exists a wide range of tree canopy densities,from very open to so dense
that crowns nearly touch. In open stands of trees enough sunlight exists to allow the de-
velopment of extensive herbaceous and/or shrubby understory, but under conditions of dense
tree cover, little understory cover has developed.

The principle understory vegetation associated with Ponderosa pine forest includes
Arizona fescue and mountain muhly. At higher elevations these species give way to Idaho
fescue and Thurber fescue and oatgrass.

Approximately one-third of the study site consists of low rolling hills covered with
vegetation characteristic of the short-grass prairie found throughout South Park. The prin-
ciple species are blue grama and slim stem muhly. Mountain bunchgrass communities can also
be found at the interface between grassland and forest.

Also occuring in the area are wet meadow and stream bank communities. These communities
occur along the shore of Elevenmile Canyon Reservoir and along streams. Various species of
sedges, rushes, and bulrush occur either as monospecific or mixed stands in the moist areas.
In drier areas, blue grass and tufted hairgrass are found in mixed communities. The promi-
nent shrubby communities consists of willow and shrubby cinQuefoil. Although they occur
sparsely throughout the study arca, these communities are generally found associated with
the wet meadows.

Five component classes were selected for use in this study area. They are Forest, Grass-
land, Water, Mountain Grassland and Wet Meadow. These classes were selected because of their
importance in the area and also because mixtures of these various types occur. The Forest
class is composed of several types of trees with a minimal amount of understory vegetation
showing through the canopy. The Grassland class is characteristic of the short grass prairie
community found throughout South Park and usually has much bare soil associated with it. The
Water class is representative of the water of the reservoir. The Mountain Grassland class
represents grassland communities found at higher elevations and at the interface between Forest
and Grassland. The Wet Meadow class was selected to represent irrigated meadow areas and
stream bank communities.

Homogeneous areas representative of each class were delineated on aerial photographs.
These areas (training sets) were then transferred to LANDSAT graymaps and the line and point
coordinates were determined, Figure 22 shows the microfilm graymap of MSS BAND 5 for the
study site. Some modification of the photo locations were made on the graymaps as dictated
by the graylevels associated with each training set. In this way,anomalous data points were
avoided before signatures were extracted. A number of training sets were located for each
class to provide statistically representative signatures. The number of points used to cal-
culate each class signature were: Forest (75), Grassland (28), Mountain Grassland (20),

Wet Meadow (20), and Water (96). The number of points for Grassland, Mountain Grassland and
Wet Meadow was small due to difficulties encountered in locating training sets on computer
graymaps, but are assumed representative for this study.

Mean vectors and covariance matrices were extracted for each training set for each class.
The mean vectors for a class were compared with one another and the eigenvalues and eigenvec-
tors of each class training set were determined and analyzed. Those trainirg sets exhibiting
dissimilar mean vectors and eigenvector plots were discarded so that final signatures obtain-
ed were as representative as poszible.

The final component=class signatures were then used to classify the area. The resulting
classification map is shown in Figure 23 as a microfilm display. As a check of how well the
signatures identify their respective classes, the number of correct classifications in each
training set was determined., All of the classes had training-set classification accuracies
of 100% except Water which had 99%. A total of 60.5% of the test area was classified as one
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need to be added in order to classify the entire area. To satisfy this need, the following
mixture classes were selected:

1. Grassland-Forest--selected to identify pixels covering areas with trees growing
over Grassland areas and interfaces between the two communities.

2. Grassland-Wet Meadow--selected to identify pixels falling on the interface of the
Erass covered areas and irrigated meadows and stream bank communities.

3. Forest-Mountain Grassland--selected to identify pixels covering the interfaces be-
tween the two communities and locate areas of Mountain Grassland that appear as
openings in the Forest which are smaller than the resolution of the LANDSAT-1 MSS
scanner,

A proportion increment of 0,25 was selected for each combination of classes, and mixtu
class spectral signatures were simulated with program MIX. The final signature set used to
classify the test area included the five extracted component classes and nine intermediate
mixture classes. The micrefilm classification map at the 11.100 Chi-Square threshold level
is shown in Figure 24, An increase in the number of classified points resulted in 86.35%
of the area being classified, rather than 60.5{. Most of the unclassified points are associ
ated with the interface between Grassland and Water since no spectral signatures character-
istic of these mixtures were used in the classification. Classification of Grassland-Wet
Meadow and Forest-Mountain Grassland mixtures appear reascnable, Grassland-Forest mixtures
of 50% Grassland-50% Ferest and 05¢ Grassland-75% Forest also appear to be classified well.
The 75% Grassland-25% Forest mixture class contained a large amount of obvious misclassifi-
cativns in areas where 1o Forest was present,

To investigate the source of these misclassifications, spectral signatures were extracte
ed from the data for areas classified as the 754 Grassland-25% Forest class. A comparison
of the mean and standard deviation vectors for the extracted signature and the simulated mixe
ture siguature showed them to be almost ldentical, as shown below:

Extracted Simulated
MSS BAND 1 o) 3 4 1 2 3 4
Mean 20,42 28,72 7.3 10,2 28,97 08,87 37.19 19.00
Std. Dev. O 1.0 1.5 1.00 1,60 2,00 2,10 1.5

This indicates that the raterial that is Leing classified as a Grassland-Forest Mixture
has a vegetation or soi) type that produces a response similar to that calceulated for the
mixture, The consequences of such a misclassification are an overestimation of the amount
of Forest i{n the scene and an underestimation of Grassland, Because of the difficulties en-
countered in establishing mixture densities from high altitude aerial photographs no quanti-
tative accuracy analysis was obtained for this oxperiment ,

Because of the groas misclassifications of the 75 Grassland-25% Forest class, the pro-
portion increment uvsed to s!mulate mixture class signatures was changed to 0.33 and new sig-
natures were simulated. The resulting signature set included the five component classes and
ten two-component mixture classes. Combinations of Grassland and Water and Water and Wet
Meadow were made as an attempt to identify those pixels left unclassified around the reservoi
in the previous experiment.

A classification was made, producing the microfilm display shown in figure 25, The re-
salts indicated that the areas previously misclassified as 75¢ Grassland-25% Forest were stil
being incorrectly identified, A number of points along the shoreline of the reservolr were
identified as either O7T% Grassland- 33¢ Water or 33% Grassland-07% Water. There appeared to
be some confusion of 67% Wet Meadow-33% Water and 33% Wet Meadow-67% Forest as the component,
class with the greatest amount occuring in the mixture. The other mixture classes appear to
be classified correctly since they appeared where mixtures would logically exist,

Manitou study area: The Manitou study area is located to the northeast of the Klevenmile
Canyon Reservoir area in and around the U.8. Forest Service Manitou Experimental Forest., Only
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a few selected plots identified by Mead (ref. 5) were studied in this work.

The plots lie within an area located between 38° 52' 30" and 39° 22' 30" north latitude
and 105° 00" and 105° 37' 30" west longitude, along and just north of the area shown in fig.
1. The area typifies the mountainous part of the east slope of the Rocky Mountains, with a
large variation of slopes and aspects. The topography is daminated by mountains and valleys
with a north-south orientation due to extensive faulting that occured during the Pliocene
epoch and earlier,

For the most part, geologic materials in the area are covered with vegetation. The
principle materials are pinkish to reddish soils developed from Pikes Peak granite. The
underlying geologic unit is the Fountain Formation, but exposuresare limited.

Variations in topography in the area have resulted in a complex mixing of plant commun-
ities generally aligned with the topography. For the most part, the plant communities are
similar to those described for the forcsted hillslopes, mountains, and wet meadow areas of
the Elevenmile Canyon Reservoir study area.

In this study area, experiments were performed to classify LANDSAT-1 MSS data with com-
ponent class signatures estimated by solving simultaneous equations and linear regressions.
Both of these techniques require data where the component classes and their respective pro-
portions of the scene are known.

Several plots located in the Manitou study area and identified by Mead (ref. 5) were
analyzed to obtain a number of plots suitable for signature estimation. Mead was specifically
interested in the percent cover of ponderosa pine of the plots so it was & logical choice for
one of the component classes. The second component class was identified as the other materials
in the scene and denoted as Background. The Background class is actually a mixture in itself
of soil, bare rock, and understory vegetation. Use of this Background class necessitated
using only those plots which contained similar species occuring in the same relative amounts.
It was also necessary to identify plots with similar slopes and aspects to avoid the signature
variability associated with these factors. In summary, the criteria used for selecting the
plots used for signature estimation were:

1. The plots must have known percent covers of ponderosa pine. (The Background percent
cover was determined by subtracting the ponderosa percent cover from 100).

2. The plots must contain similar background materials such as vegetation, rocks and
bare soil.

3. The plots must have similar orientation as determined by slope and aspect.

The first criterion was met by analysis of aerial photography by five photo interpreters from
the U.S. Forest Service., The second was accomplished by field studies by Mead using a line-
transect method to establish the materials present in each plot as well as their frequency

of occurance. The third was met by locating the plots on topographic maps and determining
llc);pea and aspects by a computer program called TOPOGO (Mead , ref. 5; Sharpnack and Akin, ref,
m -

Analyzing all of the plots with these criteria produced a small subset of only six plots
representing 120 total LANDSAT-1 MSS data points. The plots are as follows:




PLOT MEAD'S PLOT PONDEROSA PINE SLOPE ASPECT FREQUENTLY

NUMBER NUMBER PERCENT COVER (%) OCCURING
(ref. 5) BACKGROUND
VEGETATION
(see species list, vLelow)
1 1 46 7.9 9% J, B, M, P, Q, D
2 2 (" 17.0 53 By, J, My P, D
3 3 76 6.9 108 J, B, M, Q, P, D
N 6 6l 5.0 59 B, M, J, Q, F, D
5 1k 22 8.1 77 B, M, F, P, B
6 17 16 9.9 134 M, AF, P, Q, BB

SPECIES LIST
ABBREVIATION NAME

fringed sagebrush (Artemisia frigida Willd)

bear berry (Arctostaphyles uva-ursi (L.) Spreng.)
Arizona fescue (Festuca arizonica Vasey)

common juniper (Juniperus communis (L.))

prairie junegrass (Koelaria cristata (L.) Pers.)
mountain muhly (Muhlenbergia montana (Nutt.) Hitch.)
quaking aspen (Populus tremuloides Michx.)
Douglas-Fir (Pscudotsuga menziesii var, glauca
(Beissn.) Franco)

bottleb;ush squirreltail (Sitanion hystrix (Nutt.)
J.G.Sm,
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Spectral signatures for the six mixture plots were extracted from the LANDSAT-1 MSS data.

The mean spectral response curves for the six plots are shown in Figure 26. Several pairs

of signatures along with their respective mixture proportions of ponderosa pine and background
were used as input for program SIGCALC. The results showed a wide variation in the estimated
mean vectors for both of the component classes. In addition, the estimatqd covariance matrices
contained very unrealistic values including negative variances. Consequently, this method
was found to be unreliable for estimating component class spectral signatures for this case.
Since results obtained with simulated data described above were acceptable, the error was
probably due to inaccurate estimates of percent cover and variations of materials associated
with the Background class. Since no representative spectral signatures could be obtained,

no modeling of mixture class signatures or classification of MSS data was attempted.

Since the signature estimation technique used in the above study uses only data for two
mixture training sets, slight errors in percent cover estimates will result in large errors
for the calculated signature values. Also, the signatures, if successfully estimated, may
only be representative of the material found in the specific training areas. To compensate
for this all of the mixture training sets were used to determine component class signatures
by means of linear regression techniques,

The method used for estimating componen!. lass signatures with linear regression was
discussed above. The necessary input data were the mean spectral response recorded from each
of the plots in each wavelength band and the propertions of the two component classes, ponderosa
pine and Background. Models were develeoped for each wavelength band as follows:
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MSS BAND Regression Model
.5-.6 am MSR=24.07-5.98(Pp)
6-.7 am LSR=20.92-7.60(PP)
.7-.8 Am MSR=32.05-7.44(Py)
.8-1.1 am --

where MSR=Estimated mean spectral response
PP-Proportion of ponderosa pine in the scene

No regression model could be developed for the .8-1.1 m wavelength band so a review of
estimates of percent cover for the plots was made. It was found that for some plots, the
cover estimates made by the five photo interpreters varied by as much as 30%. The standard
deviations for the mean cover estimates ranged from 5.4 to 13.0 for the six plots. Additional
cover estimates were then made using & dot grid superimposed on enlarged photos of the six
plots., For these estimates no species determinations were made, but all trees were counted
as belonging to a Forest class and all non-tree materials were counted as Background. New
regression models were developed as follows:

MSS Band Regression Model

.5-.6 um MSR=°5.70-10.22(FP)
6-.7 am Msa=:3.h6-1h.o3(rp)
.7-.8 am ntsx==32.2h-13.23(rp)
8-1.1 um MSR=19.55-8.73 (Fp)

where MSR=Estimated mean spectral response
FpnPropcrtion of Forest in the scene

o

High R* valucs indicate that the grid estimates for the plots are reasonable values for
the amounts of Forest and Background. Since only six plots were used in developing the re-
gression models they may only be applicable for analysis of these plots. Component-class sig-
nature ostimates can be determined from the models by setting the Forest proportion (F,) to
1.0 and calculating the MSR's in each band to determine the Forest signature and setting F
to determine the Background signature. The mean spectral response curves for the estimateg
Forest and Background Signatures are shown along with the extracted mixture curves for each
of the plots in Fig. 26.

The estimated mean vectors for the Forest and Background classes were input into program
MIX and mixture class signatures were simulated. The proportion increment used was set at
0.25, producing three intermediate mixture signatures. No covariance matrices for the com-
ponent-class signatures were estimated by the regression models due to the non-uniformity of
the mixture plots, so a common covariance matrix with diagonal elements of 1.0, 3.0, 3.0, 1.0
and off-diagonal elements of 0.0 was used for each of the classes.

The six plots selected for the study were classified with a maximum likelihood pattern
recognition processor. Initially, only the estimated signatures for Forest and Background
were used to classify the plots. The total number of points classified as these classes was
only five of 120, or approximately 4%, illustrating the need to account for pixels that con-
tain mixtures, A second classification was conducted with the two component class signatures
plus the three simulated mixture class signatures. The number of classified points increased
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to 117, or approximately 23, with implementation of the mixture-class signatures.

The total amount of each component claas in the plots was determined by summing the
number of points classified as a class and multiplying by the proportion of each component
class. A comparison of the nercent cover vstimates for Forest for each plot as determined
by the dot-grid method and the classification map are as follows:

PLOT GRID COVER ESTIMATE(%) CLASSIFICATION

COVER ESTIMATE
(%)

1 55.0 03.7%

2 65.0 T1.25

3 60.0 .25

L %0.0 LB, 75

5 0.0 28.75

6 0.0 37.50

If the dot-grid cover estimates can be assumed accurate then the amount of Forest cccuring in
the six plots was over-cstimated by 11.459%.

EFFECT OF THE ATMOSPHERE ON SPECTRAL REFLECTANCE
Remote Sensing of Target Sipnatures

The signature of a target, as viewed from a satellite remote sensor (LANDSAT, Skylab
EREP), is a radiance signature, N_, given by
, _ PHT
:\s" ? . N.‘ (10)

L

where H i{s the total (180°, global) incoming solar irradiance, T is the beam transmittance
(either the reflected target beam or the solar beam) of the atmosphere, N, is path (between
the satellite sensor and the target) radiance introduced by atmospheric sg:\t.terlng of sun-
light, and P is the target refloctivity. This target reflectivity, @, is the true signa-
ture of the target, As can be scen in equation (10), the target's radiance signature is
made up of three parameters other than the true target reflectivity signature. These para-
meters are the total incoming solar irradiance-H, the atmospheric beam transmittance-T, and
the atmospheric path radiance-Np. They will be discussed in the following section, where
all three will be referred to as atmospheric effects. The wavelength region considered in
this paper is the solar reflective region from L0 to 13X nanometers(mnm), This region in-
cludes the LANDSAT bands (500-000, 600-700, 70080, and f0-1100 nm) and most of the Skylab
EREP S-192 scanner bands,

Because the target radiance signature is dependent upon atmospheric effects, one goal
of this program {s to correct the satellite aata for these atmospheric effects. Comparisons
can then be made concerning what improvements can be realized in automatic terrain mapping
by computer by using algorithmus for correcting for atmospheric efrects,

It s not within the scope of this paper to discuss cach of these paramet:~s in great
detall in terms of atmospheric physics (radiative transfer): instead, the following sub-
sections discuss them in sufficient deta!)l to relate ther to remote sensing,

Atmospheric 3eam Transmittance

Atmospheric bean transmittance, T, can be given by the following expression (Beers,
Lambert's, or Bouguer's law)

-M
T=e¢ P (11)
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where 1p is the path length, relative to the vertical path length of the beam, and 7" is the
atmospheric optical depth. The atmospheric path length is given by sec @, or sec 0, where
©. is the solar zenith angle, sec ©, is the path length of the solar beam, © is the nadir
angle of observation, and sec © is the path length of the target reflected beam (see fig. 27).
At low sun angles or oblique observation angles, 6, or @ > 70°, the path length needs to be
corrected for atmospheric refraction (ref. 21). The atmospheric optical depth is wavelength
- dependent () and made up of three components: molecular (Rayleigh) scattering,Th ; part-
icle (Mie) scattering, TD; and, selective gaseous absorption,q_ . Hence, the total optical
depth is given as >

T = 7, * h *Ta (12)

The molecular-scattering optical-depth is proportional to )rt This accounts for the blue

sky, since the short wavelengths are scattered much more than the longer wavelengths. The
wavelength-dependence of particle scattering is proportional to)?f‘wherec& is dependent upon
particle size. For extremely small particles, o< approaches 4.0 (as in Rayleigh scattering)
and for large particles (clouds, fog, etc. ) o approaches 0.0, which indicates gray scattering.
The gaseous absorption optical depth is highly wavelength-selective, depending on the location
of the various absorption bands of atmospheric constituents. Figure 28 illustrates the gener-
al nature of atmospheric beam transmittance of solar radiation.

Total Incoming Solar Irradiance

The total solar irradiance, H, is the sum of the direct-beam solar irradiance, on a
horizontal surface, and the diffuse skylight, S; hence,

H=1I cos9, +8S (13)

where I is the normal incident direct beam. This normal incident direct beam can be given,
in terms of atmospheric effects, as

Io e-1'sec6b (1&)

where I, is the extraterrestrial solar irradiance, commonly referred to as the "solar constant".

For "clear" days the diffuse skylight is normally blueish, which is indicative of the domi-
nance of molecular (Rayleigh) scattering. However, the magnitude and spectral distribution
of the diffuse skylight is a complex function of particle size, density, solar evelation and
azimui*i, optical depth, ground albedo, particle scattering phase function, particle albedo,
and irdex of refraction. For representative measurements of total and diffuse irradiance
see reference 22,

The diffuse skylight is also strongly influenced by clouds. Generally, clouds increase
the skylight and change its spectral distribution from blue to white. Clouds can also strong-
1y reflect solar radiation and cause "bright spots" (as opposed to shadows) on the ground,
which can very significantly affect remote sensing of ground targets (ref. 23).

The total incident solar irradiance is very strongly influenced by the solar zenith angle
cos 0, (equationl3). Since the solar zenith angle is that angle between the target's
normal and its planar surface, topography plays a significant role. For example mountainous
terrane has very complex topography comprising north-, south-, east-, and west-facing slopes
of various inclinations.

Atmospheric Path Radiance

Atmospheric path radiance results from molecules and large particles scattering sunlight
in the field of view of the sensor. The magnitude and spectral distribution of path radiance
is determined by all the variables that were given for diffuse skylight.

Atmospheric path radiance presents a special problem because it cannot be directly meas-
ured with ground-based instruments. Currentlg6there are three techniques for deriving pathu
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_radiance:

(1) Calculations using radiative transfer models
2) indirect ground-based measurements
3) combination of model calculations and ground-based measurements

Radiative-transfer mcdels have been the subject of considerable research., A review and dis-
cussion of such models is given in reference 12. Models are useful fcr parametric studies

of the influence of the atmosphere, given hypothetical situations. However, for specific
conditions they are difficult to apply because, without measurements, one simply cannot con-
fidently choose a "representative" atmospheric state. This is due to the fact that atmos-
pheric aerosols and water vapor are known to be extremely variable as a function of geographi-
cal locations, altitude, and local conditions.

Indirect ground-based measurements of path radiance have been employed by Duntley (ref.
24) and Rogers, (ref. 25). This technique uses ground-based measurements of downward scatter-
ed sky radiance at a geometry (sun-sensor) similar to the satellite-sun-target geometry. The
measured sky radiance is then extrapolated to yicld a path radiance for the satellite sensor
(sce ref.'s 2k and 25).

The third technique was used recently by Hulstrom (ref. 22) to analyze the performance
of the Skylab EREP sensors (S-190 A, S-191, and $-192). This technique uses ground-based
measurements of optical depth/transmittance, target reflectivity, ground albedo, and total
solar irradiance (see equation 10); then, the optical depth and ground albedo measurements
are used as inputs for a radiative-transfer computer model that calculates path radiance.

This technique eliminates uncertainties in atmospheric state, optical depth, and total (direct
plus diffuse) irradiance. However, values for the particle scattering, phase function, and
albedo have to be assumed.

A fourth technique of deriving path radiance is being attempted in this program. This
technique employs the satellite data itself and helicopter measurements of selected ground
targets. If one plots equation 10, as shown in Figure 29, it can be seen that the y intercept
is the path radiance and the slope is equal to the product HT/ir . The natural target reflect-
ivities are measured from a helicopter platform. This is performed by having nearly identical
spectral radiometers measure the target radiance, N¢ , from the helicopter; and, the other
radiometer measure the total incoming solar irradiance, H. The target reflectivity can then
be cst :rmined by

f; QQLgE. (assumes Lambertian target) (15)

Hence, one can determine the path radiance and the product HT/;z . Therefore the reflectivity
signatures of other (unknown) targets can be derived by

P - (r:s-np) x T/HT (16)

The advantages of this technique are

|

(1) it measures path radiance as "seen" from the satellite sensor

(2) it measures the combined atmespheric effects of total solar irradiance, H, and atmos-
pheric transmittance, T.

(3) if the selected natural ground target reflectivities remain nearly constant over
periods of time (as was found to be valid for this test site) numerous simultaneous
ground-based measurements are not required in order to calibrate atmospheric effects.

The possible short-comings of this technique are

(1) It assumes fairly uniform atmcspheric conditions of the surface area within which
the natural target "culibration™ sites are located.
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(2) The accuracy of the technique depends on the accuracy and repeatibility‘of the
measurements of natural target reflectivity, and radiances measured by sensors
in the satellite.

(3) It assumes that the sun angle with respect to the targets, both natural "calibratior
and unknown targets, are similar. This is apparent when one considers the sun angle
dependence, I o8 6.of the total solar irradiance and the product HT/q- .

Initially, during the summer and fall of 1975, this technique will be employed for LANDSAT
data.

Four techniques of deriving atmospheric path radiance and atmospheric effects have been
presented. Each has it's advantages and short-comings. Unfortunately almost no data or
experiments exist for checking and comparing the accuracy and validity of these techniques.
All four techniques will be attempted during this program, and such comparisons subsequently
made.

FIELD MEASUREMENTS OF ATMOSPHERIC EFFECTS
AND TARGET REFLECTIVITY

Brief descriptions of the techniques and intrumentation used to measure atmospheric
effects ;nd target reflectivity are given. For a more detailed description see Hulstrom
(ref. 22).

Atmospheric Effects

Atmospheric effects that are directly measureable by ground-based instruments are the
total solar irradiance, H, and the beam transmittance, T.

The total solar irradiance was measured with an I.S.C.0. (Instrumentation Specialties
Company) model SR (spectroradiometer) equipped with a SRR (spectroradiometer recorder) unit.
This instrument consists of the SR and SRR units and a 6 ft fiber-optics bundle that has a
flat teflon diffuser, 180° F.0.V., aperture at the end of the bundle. Light travels through
the diffusser, through the fiber-optics bundle into the SR unit, where it is passed through
a chopper, slit, and monochromator. The monochromator is a wedge interference filter. The
wavelength of the instrument is varied by lengthwise movement of the wedge interference filter
between the slit and the sensor. The wavelength region from 380 to 750 nm is measured with
a silicon~junction photocell; and, the region from 750 to 1350 nm is measured with a germanium
Jjunction photocell. The 1/2 bandwidth is 15 nm from 280 to 750 nm, and 30 nm from 750 to
1350 nm. The total solar irradiance was measured by positioning the flat teflon diffuser so
that it was horizontal/level. Hence, the 180°F.0.V. diffuser was exposed to the total irradi-
ance (direct + diffuse). The diffuse skylight can be measured by s‘mply shading the diffuser
from the direct sunlight. A complete spectral scan, from 330 to 1350 nm, requires about 3
minutes. During this time interval, the total broadband irradiance (400-1100 nm) was continu-
ously monitored with a Y.S.I. (Yellow Springs Instrument Co.) model 68 pyranometer. This was
done in order to assure that stable conditions existed during the I.S.C. 0. spectral scan.

The complete I.S.C.C. unit was calibrated with an I.S.C.0. S.R.C. (Spectroradiometer
Calibrator) unit, which uses a ribbon-filament tungsten lamp, and a N.B.S., coil filament type
lamp (1963 standard No. E.P.I. 1523). These standard: were used to derive an absolute cali-
bration factor, C.F., for the I.S.C.0 unit., This is derived by viewing the standard irradi-
ance, ISTD’ and recording a raw intensity Ir. The calibration factor is then

c.7. - Tsto/1_ (17)

The raw field measurement, I , is then multiplied by the calibration factor in order to ob-
tain absolute quantitics., However, this calibration factor is only valid for measurements of
normal-incident (to the diffuser) irradiance, For measurements of total solar irradiance,
where the sun is at various zenith angles (angles off of the normal to the diffuser),
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the cosine resperse of the diffuser has to be considered. This is evident from equaticn 13,
i.e., I cos 0,. Ifa diffuser has a true cosine response, the intensity of a constant paral-
lel source as measured at a 60° angle tc the source, I (60°), would be 1/2 (cos 60°) that
measured on normal incidence (0°). In more general terms,

I(#)=1(f=0) cos b (18)

where @ is the angle between the source and the normal to the diffuser. In the case of solar
irradiance, § = 0,. 1In order to determine the actual cosine response of the I.S.C.0.diffuser,
extensive measurements of collimated light were made over a range of incident angles. This
resulted in a cosine correction factor, C.C.F.,

C.C.F, = & (¢=‘I’)(;‘)’s¢ (19)

Examples of the cosine correction factors are shown in Figure 30. As can be sesn the cosine
response in the visible region is fairly true, while that in the infrared deviates by as
much as 500%. The absolute total solar irradiance, HABS’ is obtained by

Hygg = (H,) (C.F.) (c.c.F.) (20)

Investigators have used the I.5.C.0. unit to measure target spectral albedo by pointing
the diffuser up to measure the total incoming irradiance, H¢ , then pointing the diffuser
down to measurc the total outgoing irradiance, H$. The target's global albedo, p (180“),

oy _ Ht
p (180°) = m (1)

If the diffuser's cosine response is not considered in this calculation, large errors (up to
500%) will result, especially in the infrared wavelengths, because the incoming irradiance
has to be corrected for the cosine response (because the incoming irradiance is directional),
while the outgoing irradiance is generzlly not directional, requiring no cosine correction.

In addition to tne I.S.C.C. unit, Exotech Model 100 radiometers are also used for making
total s lar irradiance measurements in the speeific LANDSAT wavelcngth bands. These units
are calibrated in the same manner us discussed for the I.5.C.0. unit. At the time of this
writing, no cosine responce has been determined for these units.

The beam transmittance of tijc atmosphere was/is determined by using the Langley method.
This method determines atmospheric optical depth by peforming several measurements of the
solar direct-beam irradiance 1s it varies with relative air mass. Zquation 14 can be re-
written tc give

In I+ <Tiec 8, + 1n T, (22)

In order to derive T, a plot of the var.ous measurements of I versus relative airmass-sec @,
is made. The y-intercept is I,, hence T can be calculated knowing I, I., and sec 9,. If
the meter reading of the instrument, M, is linecar with respect to I, then I cgn be replaced
with M and I, by M,. Mo is the extraterrestrial meter reading of the instrument. For the
measurements of direct solar irradiance, the ISCO unit was equipped with a 3° collimator.
This resulted in beam transmittance for 27 wavelength measurements from LOO to 1300 nm. An
example is shown in figure 31, where the four transmittance curves are for four sites lccated
within and near the Colorado test. site, Simultaneous measurements of beam transmittance re-
veal the uniformity of the atmosnhicre over t:r region,  For the day shown in Figure 31, the
atmosphere was fairly uniform,

Target Reflectivity

Both the I.S.C.0. and EXOTECH urits were used to measure target reflectivity. The I.S.c.C.

is modified witt a 30° F.0.V, baffled collimator.

r
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For ground measurements of target reflectivity, standard "gray" and standard "white"
reflectance panels are used to determine target reflectivity. These panels are accurately
calibrated with a Beckman DK-2A/Gier-Dunkle Integrating Sphere. Field measurements consist
of the radiance of the "gray" card, N , the radiance of the target, Ny , and the radiance
of the "white" card, ch. The target®feflectivity can then be derived by

= M (23)
Pt Ngc = ch
and
e - - x Pwe (2b4)
we

where P and P_ _ are the reflectivities of the "gray" and 'white" cards. The two derived
target réflectivi¥fes are then averaged. This technique was verified by plotting radiance,
N, and N, versus reflectivity, °, and P_ , and extrapolating this plot to zero radiance
afid reflecfivity. If the card caliﬁsations ¥fe accurate and if the field measurements are
accurate, the plot should go through the origin. Several of these verifications revealed
the technique and measurements to be consistent to within 1 to 2% reflectivity. Examples
of absolute reflectivity for 15 targets and their backgrounds are listed below:

Identification
Target Description Number

Pikes Peak Granite
Lichen Rock Cover
Soil/Grass Background for
Pikes Peak Granite
Cripple Creek Granite
Soil/Grass Background for
Cripple Creek Granite
Volcanic Fine-Grain Mafic
Soil/Grass Background for
Volcanic Mafic
Meadow Grass
Volcanic Crystal Tuff
Yellow Grass Background
Volcanic Andesite
Background Soil for Vol-
canic Andesite
Background Grass for Vol=-
canic Andesite
Background Soil at Cameron
Mountain
Background Soil/Grass at
Cameron Mountain
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No. Percent Reflectance
0.5 to 0.6 to 0.7 to 0.8 to
0.6 0.7 0.8 1.1 m
i 1L.0 18.4 22.6 25.6
2 23.6 28.5 36.1 35.2
3 12.7 14.8 20.7 23.4
L 17.3 22.6 24,5 25.6
5 11.1 13.6 19.3 22.6
6 T 14.5 19.1 19.4
7 10.8 16.8 19.5 26.0
8 5.8 5.4 30.8 42,5
9 27.5 31.8 35.8 Lo.u
10 11.8 13.6 19.1 18.9
11 14,5 17 7 19.8 20.9
12 9.3 133 18.0 18.7
13 6.5 8.5 12.7 17.3
1k 10.8 16.3 19.2 23.2
15 9.6 12.8 19.8 2k.1

In order to measure signatures from mixtures and for areas that are on the same order
of size as the satellite sensors, helicopter measurements are employed. Helicopter measure-
ments consist of using one EXOTECH radiometer, with a 1° FOV, in the helicopter to measure
the target radiance, Ny and cne EXOTECH radiometer located on the ground to measure total
incoming solar irradiance, H. The reflectivity, @ is then

p T (25)

In addition, the helicopter measurements of Ny will be compared with the computer simulations
of the radiance signature.

SUMMARY AND CONCLUSIONS

Methods have been discussed for simulating spectral signatures of mixtures of two terrain
classes for automatic analysis of LANDSAT-1 MSS data using on-site measurements, simulated
LANDSAT data, and actual LANDSAT-1 data. Tests of the methods for estimating component-class
spectral signatures and simulating two component-class mixture signatures with simulated
MSS data indicated that improvements in classification results over conventional component
class analysis are possible using these techniques. Applying these techniques to actual LAND-
SAT-1 MSS data of wildland areas showed an increase in classification information over conven-
tional analysis, but no quantitative accuracy analysis could be made due to difficulties of
estimating mixture proportions from tne control or "ground truth" data.

It was found that misclassification of pixels as mixtures can occur when the simulated
spectral signatures apprcximate those of component classes or other mixtures in the scene.
There was also =vidence of misclassifications duz to more than two component classes existing
within a single pixel. Within-clacs variability, slepe and aspect variability, and the sen-

 sitivity of the scanner in detecting changes in mixture proportions may also contribute to

degrading the classification performance using these methords,

These techniques may prov~ valuable in areas where vegetaticn masks the characteristic
spectral response of the underlying geologic materinl, and future werk should include an ex-
amination of this application. &zmphasis should alsc be placed on methods of acquiring better
"ground truth"information upon which the spectral signature estimation and simulation techni-
ques are baged,




Properties of the atmosphere play an important role in affecting the spectral radiance
received at the satellite by the scanner. Some atmospheric properties can be measured on
site., Others must be determined by comparing satellite data with the on-site measurements.
Once their signatures have been determined, it may be possible for some large natural terrain
features to serve as calibration panels from which atmospheric properties can be calculated
by the satellite data. When the desired remote sensor product is an image having only rough
spectral information, atmospheric effects can be ignored. However, when quantitative spectral
information is required, atmospheric effects cannot be neglected.
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Figure l.-Location of test site.

EMC=Elevenmile Canyon Reservoir Study

Area, P=Pikes Peak, C=Cripple Creek, CC=Canon City.
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EXTRACTED SPECTRAL SIGNATURE PLOTS
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Figure 2.-Spectral response of two component terrain classes (A,B)
and a mixture of them (C) extracted from LANDSAT-1 MSS data.
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Figure 3.-Comparison of total solar irradiance and reflectivity of coniferous
forest and Pikes Peak Granite.
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Figure 4,-Radiance signatures of Pikes Peak Granite, coniferous forest and mix-

tures of the two. Curves: G=100% Pikes Peak Granite, F=1004 coniferous

forest, 1=90% G 10% F, p=80% G 20% F, 3=70% G 30% F, h=50% G 50% F. Data
from May 29, 1974; lat. 38.83° N, long. 105.26° W, solar elevation 6h.51°,
solar azimuth 126.62°, time 10:30 AM MST. Curves traced from computer
printout.
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Figure 5.-Spectral radiance of Pikes Peak Granite, coniferous forest, and mix-

tures of the two. Curves, date, time, and other documentation same as
in fig. &,
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forest. Curves: 1-90% G 104 F, 2=80% G 20% F, 3=70%.G 301 F, L=50% G
50% F, 5=100% F.
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EXTRACTED SPECTRAL SIGNATURES VS. CALCULATED MIXTURE SIGNATURE
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Figure 8.-Spectral response of two component terrain classes (A,B)
and a mixture of them (C) extracted from LANDSAT-1 MSS data,
and the mixture response (D) calculated using equation k.
A, B, and C, same data as in fig. 2.
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Figure 9.-Microfilm graymap of 9-class simulated data set. Each horizontal
band represents a field of simulated data for a given class, as
labelled. F=Coniferous forest, G=grassland, W=water.
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Figure 10.-Mean spectral response for two component classes and modeled mix-
ture classes. Curves: G=100% grassland, F=100% forest, C=75% G 25% F,
D=50% G 50% F, E=25% G 75% F. Dotted lines represent standard deviations.
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Figure 11.-Microfilm classification display for component-class
analysis. Blanks denote unclassified points. Symbols
are: e=grassland(G), .=forest(F). C,D,E same as in fig. 10.

Figure 12.-Microfilm classification display for 5-class analysis.
Symbols are: e =G, A=C, \=D, v=E, .=F. Letters refer to
classes and mixtures as in fig. 10. '
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T

RESPONSE

Figure 13.-Mean spectral response curves for simulated firassland-
Water mixtures. Dotted lines indicate standard doviations.
Letter symbols are same as in matrix on p. 12.
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Figure 14,-Mean spectral response curves for component and
mixture class signatures used for 9-class analysis.
Dotted lines indicate standard deviations. Letter
symbols are same a8 in matrix on p. 12.
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Figure 15.-Microfilm classification display of 9-class analysis. True class
field symbols noted at left of display are same as in matrix on p. 12.
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Figure 16.-Microfilm classification display for 9-class analysis with calculated com-
ponent class signatures from uniform data. True class field symbols noted at
left of display are same as in matrix on p. 12.
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Pigure 17.-Graphical representation of uniform and non-uniform training sets.
a). Uniform mixture of 50% White - 50% Shaded. b). Non-uniform mix-
ture of 50% White - 50% Shaded.
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Figure 19.-Microfilm classification display of 9-class analysis using
calculated component class mean vectors and common covariance
matrix. Trueclass field symbols noted to left of display are
same as in matrix on p. 12.
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Figure 20.-Microfilm classification display of 9-class analysis using cal-
culated mean vectors and common covariance matrix. True field class
synools noted at left of display are same as in matrix on p. 12.
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Figure 21.-Microfilm classification display for 9-class analysis using cal-
culated mean vectors and averaged common covariance matrix. True class

fields noted at left of display are same as in matrix on p. 12.
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-Microfilm graymap of MSS Band 5 of the Elevenmile

Canyon Reservoir Study Area.

Figure 22.




Figure

asanse v

N
Oy
LI

8.8

N Ay
Wi Ty
S

~
X ..
.
TLN) . .
. N -~
.

~ ~

. N .

23.-Microfilm classi

fication display of Elevenmile

Reservoir Test Area with 5 Component Classes.
» =Forest, * =Grassland, v =Water, \, =Mountain Grassland,
Rlank

¢ =Wet Meadow,

Unclassified.

Canyon
18 are:




Figure 24,-Microfilm classification map of Elevenmile Canyon Reservoir study area with

5 component classes and 9 mixture classes. Because of limitations of the micro-
film display, separate symbols could not be shown for the mixtures; however, for
study purposes they were printed separately by a conventional line-printer.
Component classes:

* Grassland (G)

\ Forest (F)

YMountain Grassland (MG)
\Wet Meadow (wm)
e Water (W)

Mixture classes:

X'7”025$P, 50‘(}: 50%,.:25‘675*?'
75% G 25% WM, 50% G 50% WM, 25% G 75% WM,
75% F 25% MG, 50% F 50% MG, 25% F 754 MG

Blank, unclassified




Figure 25.-Microfilm classification map of Flevenmile Canyon Reservoir study area with

5 component classes and 10 mixture classes. Because of limitations of the micro-
film display, separate symbols could not be shown for the mixtures; however, for
study purposes they were printed separately by a conventional line printer.
Component classes:

« Grassland (G)

\ Forest (F)

\ Mountain Grassland (MG)
YWet Meadow (wM)
x Water (W)

Mixture classes:

® 67% G 33% F
e 67% G 334 W

X = 67% WM 33% W, 33% WM 67% W, 33% G 67% F,
33% G 67% W, 67% F 33% MG, 33% F 67% MG
67% G 67% WM, 33% G 67% WM

Blank, unclassified
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Figure 26.-Mean Spectral Response Curves for Manitou Study Plots and Estimated
Component Classes. Symbols are: A=Estimated Forest Curve, B=Plot #2,
C=Flot #3, D=Plot #1, E=Flot #4, F=Plot #6, G=Flot #5, H=Estimated Back-
ground Curve.
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Figure 27.-Satellite remote sensing of target on the ground.
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Figure 28.-Typical spectrum of solar energy reaching the surface of the earth.

From Handbook of Geophysics and Space Environment S L. Valley, Editor
(New York: McGraw-Hill Book Company, Inc.), p. 16.

w



-1 lr'l
&
b

-2

x
;u:
5
4 N 2 3
< k ©
- 5 ®
o L
1 § g E’
T Intercept=Np, | § ]
4 Atmospheric
§ 4 Path Radiance
3 0 "+ i} T l T = t ™ f T -+ T — ||
10 20 30 1o 50 60 70

NATURAL TARGET REFLECTIVITY,

Fgure 29.-Relation of atmospheric effects and the radiance of targets on the
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H = Total incident solar irradiance
P = Target reflectivity
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Figure 31.-Fractional transmittance for sites in south-central Colorado. All sites are separated by about
80 xm. Granite Hills site lies within study area of figure 1.

All data from October 2, 197h.
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FIGURE 32. Color composite LANDSAT-1 image of test site region. Image
1028-17135 of August 20, 1972. Annotations same as for figure 1:
P=Pikes Peak, C=Cripple Creek, CC=Canon City, EMC=Elevenmile Canyon
Reservoir. Because rectangular pixels are printed as squares by
the computer the image is distorted, both in azimuths and distance.
The scale shown is an average.
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FIGURE 33 (ON FOLLOWING PAGE).-~Computer-generated recognition map of
test site. Compare with figure 32 for location of features. Made
by Environmental Research Institute of Michigan (ERIM) from computer
compatible tapes from LANDSAT-1 image 1028-17135 of August 20, 1972.
Becaqse rectangular pixels are printed as squares by the computer,
the image is distorted both in azimuths and distances. The scale
shown is an average.

EXPLANATION OF COLOR CODE

1. Niobrara Shale

2. Pierre Shale

3. Limestone

4. Canopy of Ponderosa Pine greater than 25 percent
5. Dakota Sandstone

6. Fountain Formation

7. Volcanic and plutonic rocks, undivided
8. Granite-Tundra composite

9. Granitic grus

10. Meadow

11. Water

12. Cloud shadow

13. Cloud
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APPENDIX A
RECOG Computer Program Blocks

At Colorado State University, conventional automatic analysis of MSS data is accomplished
through the use of a series of pattern recognition programs called RECOG. RECOG consists of
six program blocks which are a modification of an original version, called LARSYS, deveioped
at Purdue University (ref. 10). These programs provide a logical procedure for processing
MSS data using supervised learning techniques. A brief description of each program block
or phase is presented here.

Phase 1

Phase 1 is a display routine that provides the user with a computer line-printer or
microfilm representation of the scene that is to be automatically analyzed. The MSS data are
displayed as a graymap representing the radiation response from each pixel. A range of radi-
ation responses (either specified or default) are coded as a symbol and displayed for a select-
ed wavelength band. This display provides a pictorial representation of the MSS data from
which the user may delineate field boundaries of terrain classes that he may wish to map.

Phase 2

The fields identified on the Phase 1 graymaps are used as training sets from which the
mean spectral response and standard deviation vectors and correlation and covariance matrices
are determined by Phase 2. The mean spectral response vector and covariance matrix provide
a statistical spectral signature for a terrain class that is used in a later Phase to auto-
matically classify each point in the MSS data set.

Phase 3

When the multispectral scanner has a large number of channels available, processing the
data using all of the information becomes quite expensive. Phase 3 is designed to select
a subset of optimum channels for identifying all of the terrain classes utilizing divergence
criteria.

Phase 4

The spectral signatures obtained for each terrain class from Phase 2 can be analyzed as
to how well they represent the class by selecting a subset of the MSS data and classifying
it with Phase 4, Phase b4 is designed as an instructional mode and allows classification of
the data set with three algorithms: LEVELS, a level-slicing routine; EUCLID, a Euclidian-
distance routine; and GLIKE, a maximum-likelihood routine. GLIKE is the algorithm used to
classify the data in the next Phase so it is valid to test the representativeness of the
signature set with it. This allows refinement of each spectral signature by redefining the
training set to discrad any point that would tend to make a signature unrepresentative of its
respective terrain class.

Phase 5

Phase 5 is the actual classification mode for the RECOG pattern recognition sequence.
The mean vector and covariance matrix for each terrain class are used with the maximum likeli-
hood decision rule GLIKE to classify each pixel in the specified MSS data set. As the classi-
fication results are generated they are written onto a magnetic tape and stored as a permanent
file,

Phase 6

The final step in the processing scheme, Phase 6, displays the results generated by Phase
5. The user is given the option to specify a threshold level which sets a confidence limit
for the classified data points. This is designed to eliminate false classifications of data



which do not fit any of the terrain classes. Current display modes available with Phase 6 g
include a thematic map produced on the computer line-printer and/or microfilm similar to
those produced by Phase 1, except each pixel is identified by a symbol or intensity level
(1ine printer and microfilm respectively) representing a terrain class. A more detailed de- |
scription of RECOG can be found in ref. 4 and 15.

APPENDIX B

EQUATIONS

The mean vector and covariance matrix that describe the spectral response of a terrain
class are determined from a set of MSS data points known to contain that class. The statisti-
cal equations used to compute them are discussed below.

Since the radiation response from a ground resolution element sensed by a multispectral
scanner can be described by the column vector
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where each x cqn?nent rgpresents the radiance recorded in a spgctral channel, we can find ‘
expressions for M and C in terms of the radiation responses X . (ref. 10) ’

The mean vector MA is given by the column vector
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where m, is the mean spectral response in wavelength band i (for ERTS-1 1i=1,....,4) given by
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where n~ is the number of pixels (sample points) in the training set describing terrain class
A, and k is the sample point index.

The covariance matrix which indicates how the radiation response in one MSS channel varies
with the response in the other channels can be described as
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where i j is the covariance between channels i and j given by
A
> n
a ij = _lA 2 (xik = mi) (xdk = md) (30)
n
k=1
The standard deviation for channel i in class A is , and the correlation coefficient ry j
between channel i and channel j for class A is given by
2
riy T T ' 14, (31)
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