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SUMMARY

Implicit approximate factorization techniques (AF) are investigated for
the solution of matrix equations resulting from finite-difference approxima-
tions to the full potential equation in conservation form. For transonic
flows, an artificial viscosity, required to maintain stability in supersonic
regions, is introduced by an upwind bias of the density. Two implicit AF pro-
cedures are presented and their convergence performance is compared with that
of the standard transonic solution procedure, successive line overrelaxation
(SLOR). Subcritical and supercritical test cases are considered. The results
indicate that the AF schemes are substantially faster than SLOR.

I. INTRODUCTION

There are basically three formulations for inviscid transonic flows.
These are, in order of increasing complexity (and in order of decreasing
approximation): (1) transonic small disturbance potential equation (TSD),
(2) full potential equation (FP), and (3) Euler equations (exact inviscid for-
mulation). TSD is valid for thin wings at free-stream Mach numbers near unity
and is an isentropic and irrotational formulation. It offers the advantage of
simplicity, especially in the treatment of wing surface boundary conditions.
The FP formulation can be considered exact under the assumptions of irrota-
tional and isentropic flow. These assumptions, which are less restrictive
than those for TSD, are valid for a wide range of practical transonic flows.
Potential formulations can be written in terms of a single second-order par-
tial differential equation (PDE), whereas the Euler formulation consists of a
yet of first order PDE's (usually four in two-dimensional cases). Hence, for
implicit AF schemes the potential formulations require only scalar matrix
operations, while the Euler formulation requires time-consuming block matrix
operations. The FP formulation is the most efficient of the three formula-
tions in terms of accuracy-to-cost ratio for the majority of inviscid trap-
sonic flow applications.

The object of this investigation has been to determine the feasibility of
using implicit approximate factorization algorithms (AF) to solve the full
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potential equation in conservation form for steady transonic flow fields. The
two AF schemes tested are logical extensions of the schemes previously devel-
oped for the TSD equation (refs. 1,2). These previous studies found the AF
approach to be substantially faster than the standard transonic flow field
solution procedure, successive line overrelaxation (SLOR).

Section II begins with a discussion of the full potential equation in
conservation form. Spatial difference approximations arc '_hen introduced,
including the addition of artificial viscosity required to maintain stability
in supersonic zones. The difference approximations are equivalent to those
introduced by Jameson (ref. 3). Here, however, the artificial viscosity is
not introduced explicitly, as in the Jameson approach, but rather by retarding
the density.

In Section III, two implicit AF iteration schemes are presented. AF and
SLOR convergence histories are then compared in Section IV for both subcriti-
c:" and supercritical cases. Results indicate a substantial increase in com-
putational efficiency for the AF schemes over an SLOR scheme.

The authors express their gratitude to Joseph L. Steger for his many
helpful suggestions during the course of this study.

II. SPATIAL DIFFERENCING OF THE FULL POTENTIAL EQUATION IN CONSERVATION FORM

A. The Full Potential Equation

The full potential equation written in conservation-law form is given by

(P$x) x + W y ) y = 0
	

(1)

where

_	 1
P = 1- Y 1 Ox2 + ^y2)1 Y

- 1	
(2)

In equations (1) and (2) the density (p) and velocity components (fi x and ^y)
are nondimensionalized by the stagnation density (P s) and the critical sound
speed (a* ), respectively, x and y are Cartesian coordinates, and y is the
ratio of specific heats. In addition, other useful relations nondimensional-
ized by p s and a* are given by

2

q2	 a2 _1Y+1
2 + Y- 1	 2Y-1	 (3)

	

p = Y + I P 
	 (4)

a2 = 12	 (5)
P
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where q is the flow speed ( y x + yy ->, a is the speed of sound and p
is the pressure.

Equations (1) and (2) express mass conservation for flows that are isen-
tropic and irrotational.. The corresponding shock-jump conditions are valid
approximations to the Rankine-Hugoniot relations for man, transonic flow
applications. A comparison of the isentropic and Rankine-Hugoniot shock polars
is given in reference 4.

It is essential that the finite difference approximation to equation (1)
be cast in conservation form (ref. 5). Otherwise, the shock rapturing pro-
cedure will not necessarily conserve mass across the shock wave (ref. 3).
Nonconservative rather than conservative difference schemes have been used in
many engineering applications. However, the nonconservative procedures intro-
duce mass sources at shock waves, and the strength of these sources depends on
the local grid spacing, a nonphysical consideration. Erroneous shock solu-
tions therefore result.

B. Spatial Differencing in One Dimension

To begin with, consider the one-dimensional version of equation (1),

(P^ X )x = 0	 (6)

A second-order accurate finite-difference approximation to equation (6) is
given by

xP1+(1/2)6X$i = 0	 (7)

where ^x and dx at-: backward and forward difference operators defined by

(8)

Equation (7) is a suitable finite-difference scheme for subsonic flow
regions; however, for supersonic regions, a properly-chosen artificial vis-
cosity term must be added. For example, Jameson (ref. 3) adds the following
viscosity term:

- 0' ^xx ) x
	

(9)

where u = min[O,p(1 - ^x 2 /a2 )]. This is analog3us
the Murman mixed-difference procedure (ref. 6). It
differentiating the one-dimensional form of equation
lent to adding

to the switching used in
can be shown (ref. 3) (by
(2)) that this is equiva-

-(vpx^x)x
	

(10)
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where v = max [ 0,(1 - a 2 / ^x2 )3. The complete finite-difference approximation
to equation (6) can thus be wriLcen

(nD
x )x 	 ^xP 1.+(1 /2)1x^i - xvi[Pi+(]/2) - P 1-(1/2) )ox^i = 0

	
(11)

(Other difference approximations to equation (10) are possible, and some of
these will be discussed in a subsequent section.) This scheme is centrally
differenced and second-order accurate in subsonic regions. In supersonic
regions, the differencing is a combination of the second -order accurate cen-
tral differencing used in subsonic regions and the first-order accurate upwind
differencing resulting from the addition of artificial viscosity. As the flow
becomes increasingly supersonic, the scheme is increasingly retarded in the
upwind direction.

Equation (11) can be rearranged to give

W x ) x 
__ 

Ixp 1+(1/2) c x^i = 0
	 (12a)

where

P1+(1/2) - C1 - vi )P i+(1/2) + vipi-(1/2)	
(12b)

The addition of the artificial viscosity given by equation (10) is thus equiv-
alent to retarding the density in equation (7). Artificial viscosity is not
added explicitly as in the Jameson (ref. 3) procedure. However, the two
approaches produce identical results. The significance of the present
approach will become apparent in the discussicn of solution algorithms
(Section III).

The choice of v strongly affects the accuracy and stAbility of solu-
tions to equation (12). The particular choice v = max[(1 - a 2 /^x2 ),O] results
in an effective artificial viscosity that corresponds exactly to the form used
by Jameson (ref. 3), and generally satisfactory results are obtained. For
v = 0, the difference scheme reduces to equation (7), which is unstable for
supersonic regions. The choice v = 1 results in a first-order-accurate
approximation that is highly dissipative. However, stable solutions can be
obtained for both subsonic and supersonic regions. Thus, by sacrificing
second-order accuracy in subsonic regions, a scheme can be constructed that
need not be switched in the Murman fashion. Moreover, accuracy can be
improved somewhat by decreasing v. However, in supersonic regions a stabil-
ity limit is encountered for values well above zero. Computed results for
various choices of v are presented in the following section.

C. Computed Results for the One-Dimensional Case

The effect of v on shock wave resolution is studied here using a one-
dimensional test problem illustrated in figure 1. A uniform grid spacing of
unity is esed. Boundary conditions are

4
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y(0) = 0

.pX (0) = U,.	 (13)

-p(XMAX) _ 4,NI (specified)

The slope discontinuity in the y distribution represents a shock wave. The
flow upstream and downstream of the shock is uniform.

Computed results are shown in figure 2. Three different shock strengths
are presented, corresponding to three different choices of U a,. Exact (dis-
continuous) solutions are indicated by the dashed line. The discrete data are
solutions to equation (12) for three different choices of v, representing
three different strategies for choosing a value of artificial viscosity by
retarding the density. The result equivalent to the Jameson viscosity, which
is switched on (in the M'arman fashion) only for supersonic points, is shown by
the triangles. There is a slight overshoot that increases in amplitude with
increasing shock strength. Note that the shock is always captured in a dis-
tance of about three mesh cell widths.

The two other solutions were computed with v constant. The density is
retarded by the same amount in both subsonic: and supersonic regions, so that
there is no Murman-type switching. The solutions represented by the squares
were computed using a constant value of v equivalent to that used in the
(uniform) supersonic region by the Jameson strategy. Shock waves for this
approach are captured in about five to seven mesh cell widths. For the choice
v = 1, shocks are smeared over a substantially greater distance, especially
for the weaker shocks.

The results shown in figure 2 indicate that the Jameson choice of arti-
ficial viscosity, implemented here by retarding the density, is a suitable one
for shocks of weak to moderate strength. Furthermore, if one is willing to
sacrifice second-order accuracy in subsonic regions and accept a greater
degree of shock. smearing, solutions can be obtained without switching differ-
ences; the test for supersonic flow can thereby be eliminated.

D. Spatial Differences in Two Dimensions

A second-order act :rate finite-difference approximation to equation (1)
is given by

116 XP
	 + I Pi,7+(1/2)1 1 i,J = 0	

(14)

where ^y and ^y are backward and forward y-direction difference operators,
respectively, defined similarly to the x-direction operators given by equa-
tion (8). As in the one-dimensional case, equation (14) is a uitable finite-
difference scheme for subsonic flow regions but not for supersonic flow
regions. A properly chosen artificial viscosity term must be added. In two
dimensions, Jameson (ref. 3) adds an artificial viscosity term of the follow-
ing form (ui+(1 /2),j ' 0, vi,J+(1/2) ' 0)
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4xvi,jui+(1/2).jPxi,j
	 IyVi,jvi,j+(1/2)pyi,j	

(15a)

where v = max[O,(1 - a 2 /g 2 )1. For the case when vi,j+(1/2) < 0 the artifi-
cial viscosity term is slightly different and is given by

1xvi,jui+(1/2),jPxi.j
	

Iyvi,j+lvi,j+(1/2)Pyi.j+1
	

(15b)

Other cases arise when u i+(1/2),j < 0 and are handled in a similar fashion.
For convenience of presentation, only the first case will be considered here-
after. The complete finite-difference approximation to equation (1) can thus
be written

(P('x )x + (P^y)y __ [6x°1+(1 / 2 ) , jkx + ^ypi,j+(1/2)Iyi,j

^xvi , jui+( 1 /2),j Pxi.j - aYvi , jvi , j+(1/2)P Yi , j - 0	 (16)

This scheme is centrally differenced and second-order accurate in subsonic
regions. In supersonic regions, the differencing is a combination of the
second-order accurate central differencing used in subsonic regions and the
first-order accurate upwind differencing resulting from the addition of arti-
ficial viscosity. As the flow becomes increasingly supersonic, the scheme is
increasingly retarded in the upwind direction.

As in the one-dimensional case, the two-dimensional scheme can be
rearranged to give

Wx)x + W y ) y ^ [6Xp i+(1/2)Ix + ^ypj+(1/2)1y10i,j = 0	 (17a)

P 1+(1/2) - (1 - vi,j )p i+( l / 2 ).j + vi,jpi-(1/2),j 	 (17b)

Pj+(1/2) - (1 - vi,j)Pi,j+(1/2) + vi,jpi,j-(1/2)	 (17c)

The addition of the artificial viscosity given by equation (15) is thus
equivalent to retarding the density in equation (14). Artificial viscosity is
not added explicitly as in the Jameson procedure. However, the two approaches
produce identical results. As pointed out by Jameson (ref. 3), the difference
scheme given by equation (16) provides automatic upwind differencing of the
streamwise terms in supersonic regions. Thus the full effect of rotated dif-
ferencing is included in the present finite-difference scheme.

The present scheme can easily be extended to include an arbitrary coordi-
nate system. For example, transformation of the full potential equation from
Cartesian coordinates (x,y) given by equation (1) to a general coordinate
system (£,n) yields the full potential equation in the following form:

\ J /z; + UOT1 O
	

(18)
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where J is the Jacobian of the transformation and U and V are the contra-
variant velocities along the E and n directions, respectively, which are

defined by

U = A 1 $ F + A2tn

(19)
V = A 2^^ + A3^n

A l , A 2 , and A 3 are metric coefficients which depend on the type of transfor-
mation. No restrictions have been placed on the (E,n) coordinate system, and,
for example, nonorthogonal coordinates can be used. This allows considerable
flexibility in treating a wide range of geometries.

The spatial differencing scheme for a general (E,n) coordinate system can
be written as follows

+pu	 + pv	 ,.	 u	 F	 v	 =
( J ) F,	 ( J)	 iF, Z+(1 /2)(J 1

+(1/2).j	
n	

0	 (20)
+(1/2) J) j+(1/2)

where vi+(1/2) and pj+(1/2) are defined as before. by equation (17). The
general spatial difference s.•.heme given by equation (20) contains all of the
properties of the simpler Cartesian version (eq. (17)). Namely, this scheme
is second-order accurate and centrally differenced in subsonic flow regions.
The artificial viscosity is obtained solely by an upwind bias of the density
coefficient in both the $ and n directions. This form of spatial differ-
encing fits nicely into the framework of many iteration procedures. Three
procedures will be presented and tested in subsequent sections of this report.
For the sake of simplicity, only the Cartesian form of the full potential
equation will be investigated.

III. IMPLICIT APPROXIMATE FACTORIZATIONS

A. General Requirements

The finite-difference approximation to the full potential equation intro-
duced in the previous section (eq. (17a)) can be written

	

L4) = 0	 (21)

and is applied to every mesh cell in the flow field. The purpose of this
section is to describe several iteration procedures for solving the resulting
matrix equation to determine ^ (and thus p) at each mesh point.

A general form for a two-level solution procedure is given by

NC  + we = 0	 (22)
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where Cn (=fin+1 - fin) is the correction, Rn (=L^n) is the residual, which is a
measure of how well the finite-difference equation is satisfied by the nth
level solution (fi n), and w is a relaxation parameter. The iteration scheme
given by equation (22) can be regarded as an iteration in pseudo-time, where
the n superscript indicates the time-step level of the solution.

The operator N determines the type of iterative procedure and, there-
fore, determines the rate at which the solution procedure converges. In the
approximate factorization approach N is chosen as a product of two or more
factors indicated by

N=N1•N2-L	 (23)

The factors N 1 and N 2 are chosen so that: (1) their product is an approxi-
mation to L, (2) only simple matrix operations are required, and (3) the
overall scheme is stable.

In what follows, three iteration procedures are discussed, each corre-
sponding to a different choice for N. These methods, which involve only
simple bidiagonal or tridiagonal matrix operations, are: (1) successive line
overrelaxation (SLOR), the standard transonic flow solution procedure;
(2) alternating direction implicit (ADI), one type of implicit approximate
factorization scheme (called AF1 in ref. 1); and (3) A72, another type of
implicit approximate factorization scheme.

B. Successive Line Overrelaxation (SLOR)

The SLOR algorithm used in the present study can be expressed by choosing
N as follows

NC
i,J = [Ax-1 ( P +Ax

/2 
- pi-(1/2)6x) + 

6yp^+( 1
/2) 1y

J
Ci J	

(24)

This difference expression has been time-linearized by evaluating p at iter-
ation level n. Because the cross terms are indirectly included in p, the
form of N chosen here is simpler than the commonly used quasi-linear form of
the full potential equation. This scheme is implicit in the y direction;
that is, the complete y-direction operator is included in N. This requires
the inversicn of a tridiagonal matrix equation for each x = constant line.
The operator is explicit in the x direction because it contains only the
lower d'.agonal part of the x-direction operator. This means that each grid
point is influenced by only a single grid point to the right in the x direc-
tion during one iteration, which contributes to a relatively slow evolution of
the solution. Construction of N in a fully implicit manner, however, means
that each grid point is influenced by every other grid point during each
iteration. As a result, much faster convergence can be obtained. The next
two algorithms presented are both full, implicit and obtain this form by con-
structing N as approximate factorizations of L.
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C. Approximate Factorization, Scheme 1 (AF1)

The First fully implicit algorithm is similar to the AF1 scheme presented
in reference 1, which was used to solve the TO equation. This scheme, which
is a reformulation of the Peaceman-Rachford alternating direction implicit
technique (ADI), can be expressed by choosing N as follows:

aNCi,j
	 -^^	 x i+(1/2) x) ^A
	 p^y)Cn j	

(25)

where a is a free parameter to be defined subsequently. Note that both the
x and y directions are treated implicitly and that N has been written as
the product of two factors which when multiplied out yield

aNCn 	a.' C 	 - D 	 I ^ un 	^ Cn + aLCn 	(26)
i,j	 i,j	 x 1+(1/2) x y J4(i /2) y i,j	 i,j

This expression includes the time-linearized L operator plus two error terms.
The first error term is a fi t-type term and therefore, provides a stabilizing
effect to the iteration process in subsonic flow regions but a destabilizing
ef'fect to supersonic flow regions (ref. 7). The effect of this term is appar-
ent in the computed results, SEction IV.

The scheme can be restated in practical terms using two steps as follows

step 1:	 [a - F p n	 )fn	 awl.n	 (27a)x 1+(1/2) x i,j	 i,j

step 2:	 [a - 
ypj+ ( 1 / 2 ) ^yjCi , j = fi,j
	 (27b)

where w is a relaxation parameter and fi j is an intermediate result
stored at each mesh point in the finite difference mesh. In step 1 the f
array is obtained by solving a tridiagonal matrix equation for each y = con-
stant line. The correction array (0 -) is then obtained in the second step

3.

from the f array by solving a tridiagonal matrix equation for each x = con-
stant line. Thus by writing N as the product of two factors it is possible
to obtain a fully implicit technique involving only simple tri.diagonal matrix
operations.

D. Approximate Factorization, Scheme 2 (AF2)

The second fully implicit algorithm presented here is similar to the AF2
scheme presented in reference 1, which was applied to the TO equation. The
AF2 scheme, first investigated by Ballhaus and Steger (ref. 8) for unsteady
flows, can be expressed by choosing N as follows:

aNCi 
j	 - \asx - ^v^J+(1/2)^y^ (a - 

Pi+( 1
/ 2 ) x)Ci j	

(28)
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where again N has been written as the product of two factors, which, when
multiplied out, yield the time-lin g_, ized L operator plus two error terms.

The fir=t error term is an upwind r xt type term and therefore, provides time-
dependent dissipation for the convergence process, which is especially conven-
ient for supersonic flow. When constructing N in this form, care must be
taken to ensure that this term has the proper sign and is differenced in the
upwind direction. Implementaticn of the AF2 scheme is achieved by writing it
in a two step form given by

step 1:(udx - Iyp3+(1 /2)Jy)fi,'
	 awLoi ,3	(29a)

step 2:	 \\	 ( Y - ^1+(1/2)Ix) Ci,i - fi,3	
(29b)

where w is a relaxation parameter and fi 	 is an intermediate result
stored at each mesh point in the finite difference mesh. In step 1, the f
array is obtained by solving a tridiagonal matrix equation for each x = con-
stant line. The correction array (Ci ,j ) is then obtained in the second step
from the f array by solving a simple bidiagonal matrix equation for each
y = constant line. Note that with AF2 the x-direction difference approxima-
tion is split between the two steps. This generates the desired ')xt term as
mentioned above and also places a sweep direction restriction on both steps,
namely, downwind for the first step and upwind for the second step.

Several variations of the AF2 scheme are possible. Some of these include:
(1) splitting the y-direction term instead of the x-direction term,
(2) changing the order of the steps, and (3) moving the x-direction density
coefficient (ni+( 1 / 2 )) from the second factor to the first factor. These
three variations have been tried and were found to be stable.

Normally, flow-field, type-dependent differencing is used to achieve
stability in transonic flow calculations. Incorporating these different oper-
ators into iteration procedures, such as the AF schemes presented here, would
be cumbersome if not impossible. Using the upwind bias of the density coeffi-
cient, which is always evaluated at the nth iteration level, allows the
simple two- and three-banded matrix form of the AF schemes to be retained over
the entire flow field, even in regions of supersonic flow. In fact, use of
upwinded density coefficients in any general iteration scheme (i.e., for any
arbitrary N operator) could be used to remove the difficulties introduced by
type-dependent differencing. The resulting general scheme would retain the
same basic differencing (at the n+l iteration level) throughout the entire
flow field, relying on the upwind bias of the density (at the nth iteration
level) to provide the artificial viscosity in supersonic flow regions. This
represents a significant simplification in the handling of supersonic flow
regions for transonic flow calculations.

E. a Selection for the Approximate Factorization Schemes

In both the AF1 and AF2 schemes the quantity a is an as yet undefined
free parameter. If a were chosen to be At-1 then both schemes could be

A-7 33810



considered to be iterations in pseudo time. This provides one strategy for
obtaining fast convergence, namely, advance time as fast as possible with
large time steps (i.e., small a's). As pointed out in reference 1, this is
effective for attacking the low-frequency errors but not the high -frequency
errors. The best overall. approach is tc use an a sequence containing several
values of a. The small values are particularly effective for reducing the
low-frequenc ,, errors, and the large values are particularly effective for
reducing th•i high-frequency errors. Endpoints for a suitable a sequence can
be approximated analytically; for the present case these approximations are
given by

AF1: a  = 4p/Ay2	 a  = p	 (30)

AF2: aH = 1/Ay	 U  = 1	 (31)

where p is a representative value of density (e.g., p.), and Ay is the
minimum y-direction spacing in the finite-difference mesh. Refinement of
these estimates by numerical experiment increases the efficiency of the itera-
tion procedure. The it sequence used in the present study is given by

r!u 1(k-'.)/ (M-1)

c ,	 a L
1 	

k = 1, 2, . . . , M	 (32)H f a
\\ B

where M is the number of "elements in the sequence. This (geometric)
seque4,_e has been found to be effective (ref. 1), although other sequences
could perhaps provide equivalent or improved convergence performance.

IV. TWO-DIMENSIONAL RESULTS

The three schemes presented in the previous section (SLOR, AF1, and AF2)
are evaluated in this section. A two-dimensional, 10% thick circular-arc
airfoil with small-disturbance boundary conditions is used as a test case.
Both subcritical (Case A) and supercritical (Case B) M^cn numbers are consid-
ered (see table 1). The finite-difference grid is Cartesian with variable
spacing in both the x and y directions, as shown in figure 3. Use of the
Cartesian grid with small-disturbance boundary conditions was motivated from
the standpoint of simplicity and does not reflect the desired ultimate use of
the full potential schemes under investigation.

The subcritical and supercritical pressure coefficient distributions
(Cases A and B, respectively) are presented in figure 4. These results were
computed with a 90 x 21 mesh containing 47 points on the airfoil surface. The
boundaries were located 5 chord-lengths away from the airfoil in the x
direction and 6 chord-lengths away in the y direction. In the AF cases, the
a sequence contained eight elements (M=8).
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A. Convergence Performance for the Subcritical Case

Convergence characteristics for the Subcritical case in terms of maximum
residual histories are displayed in figure 5. The AF results were established
by plotting the maximum residual every eighth iteration, which always corre-
sponded to u = (IL in the eight element sequence. The SLOR results were
established by plotting the residual every 20 iterations. All of the conver-
gence parameters (wSLOR , `AH, and aL) have been selected by a trial and error
optimization process. (Results for two choices of relaxation parameter

(w SLOR = 1.95 and 1.975) are presented for SLOR. The larger value produced
faster convergence for a maximum residual drop greater than four orders of
magnitude, while the smaller value produced faster convergence for smaller
drops in the residual.) The relaxation factor used in both the AF1 and AF2
schemes (w in eqs. (27) and (29)) was held fixed at 2 for all test cases.
Based on a six order of magnitude drop in maximum residual, the AF1 scheme is
about twice as fast as the AF2 scheme, and about 16 times faster than the SLOR
scheme. These speed ratios are in terms of iteration count. The AF1 and AF2
schemes take about 50% and 30% more CPU time per iteration than SLOR. This
should be taken into account when considering the speed ratios based on the
total amount of computational work.

For several reasons, exact determination of speed ratios for these
schemes is difficult to assess. Firstly, use of grid sequences usually pro-
vides as much as a factor of 2 speed increase for SLOR schemes, but only a
small speed increase for the AF schemes (ref. 1). Grid sequences were not
used for any results reported here. Secondly, use of nonoptimal convergence
parameters does slow convergence by as much as a factor of 2 or more for both
the SLOB and AF schemes. Because the AF schemes have two parameters to opti-
mize (uH and aL), as opposed to only one for SLOR (wSLOR), optimization is more
difficult for the AF schemes. Finally, and most importantly, the AF schemes
reduce the errors associated with all frequencies equally well, approximately,
while the SLOR scheme is efficient for only the high frequencies. Since the
residual is heavily biased toward the high frequency end of the error spectrum,
using a specified drop in the maximum residual to define convergence heavily
favors the SLOR scheme (ref. 2). More discussion on this last point is pro-
vided in this section, part C.

B. Convergence Performance foi the Supercritical Case

Convergence characteristics for the supercritical case (Case B) in the
form of maximum residual histories are displayed in figure 6. Again the

wSLOR, uH , and uL values have been obtained by trial and error optimization.
Based on a six order of magnitude drop in the maximum residual and in terms of
iteration count, AF2 is slightly more than twice as fast as AF1, and about
11 times faster than SLOR.

The number of supersonic points (NSP) plotted versus iteration number for
Case B is shown in figure 7. The final NSP is 187. The AF2, AF1, and SLOR
results reach this level in 29, 103, and 320 iterations, respectively. The
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small number of iterations required by AF2 to establish the supersonic zone is
another indication of how rapidly the solution evolves with this approach.

The AF2 scheme was relatively consistent in convergence speed for both
the subsonic and supersonic cases (79 and 118 iterations, respectively). The
AF1 scheme, on the other hand, displayed remarkable speed for the subsonic
case (39 iterations) but was a disappointment for the supersonic case
(254 iterations). Perhaps this is because the $xt error term produced by
the AF2 factorization is more suitable for supersonic regions than the &t
error term resulting from the AF1 factorization.

It should be pointed out that use of the standard definition for v in
two dimensions (see eq. (10)) produced pre-shock overshoots which often
resulted in numerical instability. This instability was experienced for both
the standard rotated (see eq. (17)) and nonrotated difference schemes. (The
nonrotated difference scheme simply has no y-direction artificial viscosity
term. This causes the term (p¢y) y to remain centrally differenced in super-
sonic regions.) Therefore, an alternative definition for v %.s introduced,

1-(
aeP 1	 M>0

0	 M < 1

where p* is the sonic value of density and ae has been chisen by numerical
experiment to be six. Use of equation (33) instead of the standard definition
for v increases the amount of upwinding or, equivalently, the amount of
artificial viscosity in supersonic flow regions. Shock wave overshoots were
thereby prevented for the supercritical case presented here.

Several variations of the artificial viscosity term have been investi-
gated. In all cases, only the x-direction artificial viscosity term has been
included (i.e., nonrotated differencing). Two of these variations are given
by

xvi,]ui,Jpxi,J
	

(34)

and

x1)i+( 1/2),]ui+(1/2),Jpxi,J
	

(35)

The artificial viscosity term introduced previously (eq. (15)) corresponds
exactly to the term reported by Jameson (ref. 3). This form is incorrectly
reported in that Jameson actually uses the artificial viscosity given by
equation (34) (private communication from A. Jameson, Courant Institute of
Mathematical Sciences, N.Y.). The artificial viscosity term given by equa-
tion (35) is still another successful version. All three variations of arti-
ficial viscosity (with suitably tailored forms for v) have been tested for
Case B and give essentially the same results.
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(36)

ith grid point and the

C. Residual vs Error

Relative levels of convergence for AF2 and SLOR for given reductions in
maximum residual are compared in figure 8. The solid line represents the
final solution, which has been converged until the maximum residual dropped
six orders of magnitude. The other results represent intermediate AF2 and
SLOR solutions in which the maximum residual has been reduced by one, two, and
three orders of magnitude. It is immediately obvious that reducing the maxi-
mum residual by equal amounts for AF2 and SLOR does not produce intermediate
results with the same level of error. In fact, the error reduction for these
two schemes can be substantially different for the same degree of residual
reduction. For instance, the AF2 solution after a two order of magnitude
reduction in maximum residual (fig. 8(b)) is closer to the final solution than
the SLOR solution is after a residual drop of three orders of magnitude
(fig. 8(c)).

This behavior can also be observed by comparing the maximum residual his-
tory curves of figure 6 with the RMS error history curves given in figure 9.
The RMS error at iteration n (E RM S) was computed from the surface pressure
coefficient distribution by the following formula

iTE	 t/2
1

q^
n

CPi - Cpi)

n _ 1_-LE
ERMS	

iTE - LE + 1

were CP is the surface pressure coefficient at the
i

nth iteration, Cpi is the surface pressure coefficient at the ith grid

point taken from the converged solution, and iLg and iTE are the indices
indicating the leading and trailing edge grid points. The SLOR residual drops
very rapidly initially and then levels off. The SLOR RMS error drops grad-
ually. Therefore, at the "knee" in the residual history curve, even though
the residual has dropped by about three orders of magnitude, the actual RMS
error has dropped by only one order of magnitude. In contrast, both maximum
,residual and RMS error results for the AF schemes are nearly straight lines
with about the same slope.

This behavior is the result of two factors (ref. 2): (1) the AF2 scheme
treats all error components equally well (approximately), whereas the SLOR
scheme performs efficiently on only the high-frequency error components; and
(2) it can be shown that the residual is a weighted sum of errors, over the
entire error frequency spectrum, weighted by the eigenvalue of the finite
difference scheme. The eigenvalue for the high-frequency error components is
O(Ax 2 ), while the eigenvalue for the low-frequency error components is 0(1).
Hence, the residual is heavily influenced by the high-frequency errors. During
the initial phase of a calculation, equal residual drops for AF2 and SLOR
indicate the same drop in high frequency error, but the reduction rates for
the low-frequency errors are significantly different. For this reason the AF
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approach reduces the total error much faster, and consequently, the solution
evolves much more rapidly. Therefore, the maximum residual operator should
not be used as the basis for comparison between AF and SLOR schemes. RMS
errors are much better suited for this purpose. In practice, use of the maxi-
mum residual operator for either AF or SLOB is the most convenient method for
monitoring convergence (since the error is unknown). However, the convergence
criterion must be adjusted in accordance with the solution procedure in use.

D. Use of Nonoptimal Convergence Parameters

Only "optimal" convergence (i.e., cases with convergence parameters
adjusted for optimal convergence) have been considered thus far. Because in
practice the optimal values for aH, aL , and mSLOR are not known a priori, it
is of interest to know the effect of nonoptimal parameters on the convergence
speed. The RMS error histories for AF1, AF2, and SLOR for nonoptimal param-
eters are shown in figure 10. The nonoptimal SLOR relaxation factor was
chosen to be 1.8, and the aH and aL parameters for AF1 and AF2 were chosen
from equations (30) and (31). For a four order of magnitude reduction in RMS
error (which is well beyond plottable accuracy) nonoptimal AF2 is approxi-
mately 2.5 times slower than the optimal AF2 results. The AF1 and SLOR results
are similarly affected, being about 1.5 and 3 times slower, respectively. For
the nonoptimal case, in terms of iteration count, AF2 is about 1.5 times
faster than AF1 and about 12 times faster than SLOR. In terms of actual com-
puter time, AF2 is about 1.7 times faster than AF1 and nearly an order of
magnitude faster than SLOB.

Another indication of how fast the AF2 scheme can establish the global
solution even for nonoptimal acceleration parameters is shown in figure 11.
The solid line in each case is the final solution, which has been converged
until the maximum residual dropped six orders of magnitude. The other results
presented are AF2 and SLOR intermediate solutions in which the maximum resid-
ual has been reduced by one, two, and three orders of magnitude. As before
(fig. 8), it is again obvious that reducing the maximum residual by equal
amounts for AF2 and SLOR solutions does not produce equivalent error reduction.
In the present nonoptimal case, the difference between the AF2 and SLOR solu-
tions for a given drop in residual is even larger than in the previous optimum
case. This is because the smaller value of mSLOR used in the nonoptimum
case puts even more emphasis on the high-frequency errors, thus causing the
SLOR residual to drop faster, while the RMS error is dropping slower.

Obtaining nearly optimal a-sequence endpoints (a L ,aH) fer the AF2 scheme
is not difficult. The most important influence on the a values is the
finite-difference mesh. If the mesh remains fixed from one case to another,
then the same a's will still be approximately optimum. If the mesh does
change, estimates for the new optimal a endpoints (anew newg	 l	 p	 L	 aH ) can be
obtained (from eq. (31)) as follows:
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new	 old
aL = aL

(37)
new _ old old new

^x H	 ^H	 ^^y min^^aymin

where 
Lld 

and 
tHld 

are the old hand-optimized (trial and error) endpoints,
old	 new

and Aymin and Aymin are the minimum Ay spacings in the old and new meshes,
respectively. This philosophy has been tried in a limited number of cases,
and seems to be acceptable. However, because of the limitations of the pres-
ent formulation (nonlifting and small disturbance boundary conditions) more
investigation is needed.

V. CONCLUSIONS

New fully implicit algorithms for solving the full potential aquation in
conservation form have been developed. These new schemes are of the
approximate-factorization variety. Computed results indicate a substantial
increase in computational efficiency over an SLOR algorithm.

The spatial difference scheme used to approximate the full potential
equation is equivalent to the one developed by Jameson. However, in the pres-
ent approach, the artificial viscosity required to maintain stability in
supersonic regions is not added explicitly. It is introduced by spatially
retarding the density in the finite-difference equation. This strategy
greatly simplifies the solution procedure, so that only bidiagonal or tridiag-
onal matrix operations are required.

Results indicate that the standard measure of convergence (i.e., a speci-
fied reduction in the maximum residual) is not a good means for comparing AF
and SLOR convergence rates. Using the maximum residual as a criterion to
determine relative levels of convergence for either technique individually, is
not questioned. However, AF schemes definitely reach a greater degree of con-
vergence in terms of the error at higher residuals than do SLOR techniques.

The new AF schemes although applied in this report only to circular-arc
airfoils with small-disturbance boundary conditions and Cartesian finite-
difference grids, are extendibl q to arbitrary geometries in both :wo- and
three-dimensional flows. The principal difficulty is the handling of the
cross derivative terms arising from general geometry transformations. Solu-
tions for cases with airfoil adapted grids have been obtained, and the effi-
ciency of the AF procedure does carry over to these more practical flows.
Details are presented in a report in preparation by T. L. Holst.
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TABLE 1.- TABULATION OF SOLUTION PARAMETERS
Case  Scheme WSLOR a  off

SLOB 1.975 -
Optimum A AF1IAF2 --- 0.04 100,000--- .4 100

SLOR 1.95 -
Optimum B AFl(AF2 --- 1.3 4,000.6 60

SLOR 1.8
Nonoptimum B AF1(AF2 --- .8 128,000'--- 1.0 200
a Case A: MW = 0.7 (subcritical); Case B: Mm =0.84
(supercritical).

1
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Figure 1.- One-dimensional full potential equation solution.
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