General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Observations of Low Luminosity X-Ray Sources in Vela-Puppis

February 1978

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
OBSERVATIONS OF LOW LUMINOSITY X-RAY SOURCES
IN VELA-PUPPI

S.H. Pravdo *, R.H. Becker *, E.A. Boldt, S.S. Holt
P.J. Serlemitsos, and J.H. Swank

Laboratory for High Energy Astrophysics
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

We present results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260°. This region contains at least six low luminosity X-ray sources within ∼10° of PSR0833-45, which is near the center of the Gum Nebula. 4U0833-45, the X-ray source associated with the Vela pulsar, is observed at twice its 4U catalogue intensity. The lack of X-ray pulsations at the pulsar period (> 99% non-pulsed), the non-thermal power law spectrum, and models of the X-ray source distribution in this region suggest that a large fraction of the X-rays come from an extended source ∼1° in radius.

The observation of a high temperature (T_{eff} > 10^8 K) spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OS0752-39. Other spectra from this region are discussed.

Subject headings: pulsars - X-rays: sources - X-rays: spectra

*Also, Department of Physics and Astronomy, University of Maryland
I. INTRODUCTION

This is a report on an observational study of the X-ray emission from the Vela-Puppis region. The previously identified sources, all of which have low apparent luminosities, are 4U0833-45 (Vela pulsar) and 4U0821-42 (Puppis A) (Giacconi et al., 1974), MX0836-42 (Markert et al., 1977), A0835-48 and A0854-46 (Seward et al., 1976), and 4U0813-38 (Forman et al., 1977). Distance estimates exist only for 4U0833-45 (∼500 pc, Milne 1968) and 4U0821-42 (∼1000 pc, Milne 1971, Zarnecki et al., 1977). Both, therefore, are on the low end of the galactic X-ray source luminosity distribution. If the apparent clustering of all the known sources (and a new source discussed in this work) is a true distance indicator rather than a projection effect, then these sources belong to a class of intrinsically weak X-ray sources (10^{33-34} erg sec$^{-1}$) which are resolved only because they are nearby. If so, this region could be a prototype for other more distant and presently unresolved source regions.

II. EXPERIMENT AND ANALYSIS

This observation utilized two gas proportional counters of the OSO-8 Cosmic X-ray Spectroscopy Experiment. Table 1 summarizes the properties of the detectors and the dates of their use. More complete detector descriptions are given in Becker et al. (1976) and Pravdo et al. (1976a). The 5° FWHM circular field of view of the primary forward detector complicates the process of source separation in this confused region. However since the spin axis executed slow scans through the area, it is possible to check the consistency of the count rates with models of the X-ray source distribution. The smaller 3° field of view of the aft detector results in a lesser source confusion.
problem, but a smaller fraction of the region was scanned with this detector. Figure 1 illustrates the three scans which were performed.

The positions of known sources were held fixed in the models. For simplicity and for a homogeneous sample, 4U Catalogue (Forman et al., 1977) positions were used. Model parameters were the intensities of these sources, and the positions and intensities of any new sources. In addition, the angular extent of 4U0833-45 was left as a free parameter in a simple face-on disk model. The background rate was deduced from adjacent source-free regions. Pravdo et al. (1977b) describe further this method of modeling.

Source spectra were deduced by folding model spectra through the detector response matrix and fitting the result to the pulse-height data (cf. Serlemitsos et al., 1975). Although a given source was seldom isolated in the field of view, we could estimate the possible contamination of its spectrum from other sources on the basis of the intensities derived from the models discussed above. Spectral models included thermal spectra, power law spectra, and linear combinations of these. Photoelectric absorption (Brown and Gould, 1970, Fireman 1974) and line features were possible parameters, as well.

The experiment was commanded into the "real time" mode for two days (329-331 see Table 1) when PSR 0833-45 was in the field of view with substantial effective area (\(\approx 200 \text{ cm}^2\)). This mode yields 20 msec temporal resolution for pulse-height-analyzed (PHA) events. The data were folded over the 89 msec period of PSR0833-45 (Manchester et al., 1976) after making time-of-flight corrections for the satellite and Earth motion. The coarse temporal binning would not allow us to distinguish pulse durations from 0.04 to 0.20 of the period, which are the observed duty cycles of the radio pulse (Downs et al., 1973) and the gamma ray pulse (Thompson et al., 1975) respectively.
III. RESULTS

A. Sources

The two forward detector scans revealed the presence of an additional source in this region. The source, OS (OSO-8 source) 0752-39, has a best fit position at right ascension 7h51m36s and declination -38°. Figure 1 shows the best fit positions and 90 per cent confidence areas for the two scans. The second scan was considerably slower than the first, so that the source position was better defined, and the significance of its existence was at the ten sigma level.

Table 2 summarizes the fluxes and one sigma errors derived for each source. There are indications of variability in 4U0813-38 and MX0836-42. The scan 1 fluxes for A0835-48 and A0854-46 were held fixed at their Scan 2 values because the speed of Scan 1 made their determination extremely uncertain. Based on a comparison of their Ariel 5, 4U, and OSO-8 values, A0854-46 has roughly constant intensity, while A0835-48 appears to be variable.

The flux of 4U0821-42 (Puppis A) is about 0.6 of its 4U Catalogue value. This discrepancy could be due in part to the soft Puppis spectrum (Zarnecki et al. 1977) and the enhanced efficiency of the UHURU detectors (Giacconi et al. 1971) below 2 keV relative to this detector. The intensity of 4U0833-45, conversely, is about twice the 4U value, although it is consistent with the Ariel 5 intensity (Seward et al. 1976). We also find that the best-fit model for 4U0833-45 has non-zero angular extent. On the basis of an increase in the minimum value of χ^2 for 99% confidence (cf. Lampton et al. 1976, Avni 1976) the angular extent is 1. ± 0.2° in radius. An equally acceptable fit is obtained with a combination of a point source at the
PSR0833-45 position and the 4U catalogue level and an extended source which is equally luminous. We see no evidence for variability of this source during the two scans (an upper limit of \(\sim \) 10 per cent) or for a flare event such as the one observed by Smith and Pounds (1977).

MX0836-42 was the only known source scanned with substantial efficiency by the aft detector. The upper limit at that time to the flux of this source was \(9.5 \times 10^{-12} \) erg cm\(^{-2}\) sec\(^{-1}\). There is evidence at the two sigma level for an additional source near right ascension 8h55m36s and declination -41.1°. It is marked as "S" in Figure 1.

B. Spectra

Figure 2a shows the derived incident spectrum from a position which includes Puppis A but excludes all other known sources. This spectrum is complex and cannot be fit by a single simple model, although it is fit acceptably by a two-component model. The high temperature component is inconsistent with previous observations of the X-ray spectrum of Puppis A (Seward et al. 1971, Zarnechi et al. 1977), and was the first indication of the presence of OS0752-39 in our analysis of these data. The temperature of the soft component can not be accurately determined because the detector window is opaque to X-rays with energy less than 2 keV. It is, however, consistent with a temperature of \(\lesssim 10^7 \) K. The hard component has a temperature \(> 10^8 \) K and also is fit with a power law spectrum of number index 1.44 ± 0.20. Figure 2b shows the spectrum of OS0752-39 when it alone is in the field of view. This power law spectrum is consistent with the hard component of the previous spectrum, and its parameters are listed in Table 3.

The spectrum shown in Figure 3 was obtained from a pointing position closer to Puppis A and farther from OS0752-39. In this two-component spectrum
the ratio of low to high temperature component flux is at least twice as high as in the spectrum shown in Figure 2a. This is, of course, consistent with the low temperature component originating from Puppis A and the high temperature component from OS0752-39. Figure 3a demonstrates a 3.6 sigma excess near 7 keV which can be attributed to a line with one sigma limits of 6.9 ± 0.3 keV in energy and 0.57 ± 0.06 keV in equivalent width. A thermal iron line with this equivalent width is not expected in the low temperature continuum from Puppis A (cf. Raymond and Smith 1977). The increased statistical significance of this line relative to that in Figure 2a (a two sigma excess) may be due simply to the factor of two increase in net high energy counts.

The spectrum from 4U0833-45 is shown in Figure 4. The continuum is fit well by a power law (Table 3) and can not be fit by a thermal model. There is also an emission feature with 3.6 sigma statistical significance at 6.4 ± 0.3 keV with equivalent width 0.11 ± 0.01 keV. We estimate the contamination of this spectrum by nearby sources to be less than 0.12 of the photons.

C. 89 msec Pulsations

We continued the search for X-ray pulsations from 4U0833-45 at the 89 msec PSR0833-45 period. None were observed with a 3σ upper limit of 2.9×10^{-5} photons cm$^{-2}$ sec$^{-1}$ keV$^{-1}$ at 5 keV. This upper limit is a factor of 10 below the previous upper limit at this energy (Pravdo et al. 1976b). It falls close to an interpolation of the pulsed flux observations of the optical emission (Wallace et al. 1977) and the integrated gamma ray
emission (Bennett et al. 1977). However, an extrapolation of the 0.1 -
1.0 GeV pulsed spectrum from the previous reference is at least a factor
of ten above the present pulsed flux upper limit. This indicates a turnover
in the pulsed spectrum between the X-ray and gamma ray regimes.

IV. DISCUSSION

A. OS0752-39 and Puppis A

An additional weak source of high energy X-rays has been discovered
in this region. Its hard spectrum would indicate an X-ray binary (Ulmer
1975, Rappaport et al. 1977), if indeed the source is galactic. Although we
could not isolate Puppis A in our field of view, we conclude that the soft
component of the two-component spectra is associated with it. We can not
obtain meaningful confidence limits on this low temperature but our estimate
is consistent with the $\lesssim 10^7$ K temperature observed by others (Seward et al.
1971, Zarnecki et al. 1977), and with the predicted temperature based on the
age of the supernova remnant and the shock wave model (cf. Gorenstein et

B. Vela Pulsar

The X-ray intensity of 4U0833-45 determined by OSO-8 is about twice
that reported by Kellogg et al. (1973), who used a detector with a smaller field
of view. This is perhaps consistent with our determination that at least half of this flux originates in an extended source 1° in radius around the pulsar. The angular extent, the non-thermal spectrum, and the > 99% non-pulsed fraction suggest that an extended synchrotron source exists around the Vela pulsar (see also Silk 1976).

Vela and the Crab are the only known pulsars with both optical and gamma ray pulsations. The pulsed spectrum of the Crab has been shown to extend from X-rays to gamma rays over almost nine decades in energy with a single power law spectrum (Bennett et al. 1977). However, the Vela pulsed spectrum apparently turns over between 10 keV and 100 MeV. A spectral break in this energy range would be expected if the pulses originate from magnetic bremsstrahlung of relativistic electrons near the pulsar speed of light radius (Shen 1972, Thompson 1975), although the prediction of pulsed X-rays in the preceding model is a factor of 5 above the observed upper limit. A model of Massaro and Salvati (1977) proposes that the pulse duty cycle will increase with decreasing energy from the gamma rays. This effect, if large, would decrease our sensitivity to observe pulsations. For example, a pulse duty cycle of 0.95, would increase our intensity upper limit by a factor of 20.

C. MX0836-42

MX0836-42 has been reported to be a variable X-ray source which at one time was the brightest source in this region (Markert et al. 1977). Cominsky et al. (1977) observed this high state at an intensity of 9 \times 10^{-10} \text{ erg cm}^{-2} \text{ sec}^{-1} for about 50 days in 1972. Our intensity upper limit from May 1976 demonstrates a factor of at least 100 in variability.
During the remainder of times covered by OSO-7 (Markert et al. 1977), Uhuru (Cominsky et al. 1977), and the times sampled by OSO-8, the source intensity was \(\lesssim 3 \times 10^{-11} \text{ erg cm}^{-2} \text{ sec}^{-1} \). The soft spectrum observed by the experimenters above, as well as the prolonged high state, are typical of X-ray transients similar to A0620-00 (Kaluzienski 1977). An additional characteristic of this proposed class is an intrinsic X-ray luminosity of \(\gtrsim 10^{37} \text{ erg sec}^{-1} \) during high states. This would imply that the distance to MX0836-42 is \(\gtrsim 10 \) Kpc, or \(\gtrsim 10 \) times the distances to the other sources discussed here.

D. Iron Line Emission

X-ray spectra of several galactic objects have revealed iron line emission features which have been attributed to both thermal (cf. Pravdo et al. 1976a, Becker et al. 1976) and non-thermal (Pravdo et al. 1977a) processes. Iron line emission at the observed equivalent width would arise naturally if the hard component associated with OSO752-39 is a thermal spectrum with temperature \(\lesssim 10^8 \) K (cf. Raymond and Smith 1977). This temperature, however, is only marginally consistent with the OSO752-39 spectrum. Line emission in the power law spectrum of 4U0833-45 suggests other line formation mechanisms. Iron line fluorescence is an efficient mechanism which requires a hard X-ray source and a fluorescence target (cf. Hatchett and Weaver 1977). Note that we can not effectively differentiate between these two on the basis of the line energy, as our statistics do not allow us to formally exclude either possibility in any of the spectra obtained. For normal cosmic abundance of iron (cf. Cameron 1973), hydrogen column densities in the
target $N_H \sim 10^{24}$ cm$^{-2}$ are required for significant fluorescence emission. Unless these high density regions are very patchy and not directly in the line of sight, this value for N_H appears too high relative to the previous determinations for this region of $\sim 10^{20}$ cm$^{-2}$ (Gorenstein et al. 1974).

Alternatively, the possibility exists that this is a diffuse emission feature from the extended X-ray source around the pulsar. Charge exchange between low energy cosmic ray iron nuclei released in a supernova and the interstellar gas can account for the line luminosity in this region (Ramaty et al. 1971, Bussard et al. 1977). The product of hydrogen column density times cosmic ray energy density must equal 10^{19} H atoms cm$^{-2}$ x eV cm$^{-3}$ to produce the observed line strength (Bussard et al. 1977). With $N_H \sim 10^{20}$ cm2, cosmic ray energy density in this model is 0.1 eV cm$^{-3}$. The intrinsic line width of 2 keV, which is characteristic of a charge exchange iron line, can not be identified in this measurement because of the low statistical level of the feature.

We add that the line emission region could extend beyond the immediate vicinity of Vela and into the Gum Nebula. The cosmic ray energy density estimated above is not in conflict with the observed ionization state (Ramaty et al. 1971, Reynolds 1976b) or the (OIII) line emission (Reynolds 1976a) from this larger region. It is interesting to note that the observed iron line flux from both the Vela pulsar region and the OS0752-39 region is $\sim 4 \times 10^{-4}$ photons cm$^{-2}$ sec$^{-1}$.

E. The Gum Nebula and the Galactic Ridge

If the low luminosity sources (excluding MX0836-42) observed from this region are at a distance of ≤ 1 kpc, there may be both local and
galactic implications. Locally, the sources would appear to form a cluster of X-ray sources. They would reside within the Gum Nebula, an extended low density ionized region of the local interstellar medium (cf. Brandt et al. 1971, Reynolds 1976b). One possible X-ray cluster production mechanism is a supernova cascade event (Opik 1953, Ogelman and Maran 1976) although the time scale for this process may be larger than the expected X-ray source lifetimes. More simply, a cluster could result from the evolution of a group of short-lived stars formed at the same time (e.g. an OB association).

These sources could be representative of a class of intrinsically weak X-ray sources which are now observed only in this nearby region of the galactic plane. An estimate for the space density of such sources in a disk distribution may be deduced from the result of Bleach et al. (1972), who observed excess X-ray emission associated with the galactic disk at longitude \(\alpha \approx 60^\circ \) -- the so-called galactic ridge. They suggested that a distribution of weak, unresolved sources is responsible for the measured integral source function of \(7 \times 10^{-30} \text{ erg cm}^{-3} \text{ sec}^{-1} \) (2-10 keV). This corresponds to a space density of \(19/L_{34} \text{ Kpc}^{-3} \), where \(L_{34} \) is the average source luminosity in units of \(10^{34} \text{ erg sec}^{-1} \). There is no obvious contradiction between this value with \(L_{34} \approx 1 \), and the density of sources in the proposed Gum Nebula cluster, although the cluster volume is difficult to determine. In addition, if the source distribution is a disc with thickness \(D \text{ Kpc} \), then the number of such sources, \(1 \times 10^4 D/L_{34} \), and their total luminosity, \(1 \times 10^{38} D \text{ erg sec}^{-1} \), is not in conflict with observations or estimates of the total galactic X-ray luminosity. The longitudinal distribution of all low-latitude X-ray sources indicates that another cluster of low luminosity sources may be located near \(\chi^{II} = 80^\circ \).
V. CONCLUSIONS

Observations of the Vela-Puppis region have shown it to be densely populated with low luminosity sources. The existence of iron line emission and an extended source near the Vela pulsar are interesting possibilities which require further confirmation. Models for the pulsed emission from PSR0833-45 must address the question of a spectral break between 10 and 10^5 keV. Finally, we add that HEO-1 will increase the resolution horizon for low luminosity sources and continue the search for this class of objects.

ACKNOWLEDGEMENT

We would like to thank Dr. L. Kaluzienski and R. Bussard for helpful discussions.
<table>
<thead>
<tr>
<th>DATES OF OBSERVATIONS</th>
<th>DETECTOR</th>
<th>FIELD OF VIEW</th>
<th>TEMPORAL RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>315* - 331 (11/11/75-11/27/75)</td>
<td>Forward Xenon (237 \text{ cm}^2)</td>
<td>Pointed</td>
<td>160 msec/20 msec</td>
</tr>
<tr>
<td>506 - 507 (5/20/76-5/21/76)</td>
<td>AFT Argon (36.7 \text{ cm}^2)</td>
<td>Pointed</td>
<td>160 msec</td>
</tr>
<tr>
<td>678 - 697 (11/13/76-11/27/76)</td>
<td>Forward Xenon</td>
<td>Pointed</td>
<td>160 msec</td>
</tr>
</tbody>
</table>

*Day of 1975
<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DAYS 315-331 SCAN 1</th>
<th>DAYS 315-331 SCAN 2</th>
<th>DAYS 678-697 SCAN 1</th>
<th>DAYS 678-697 SCAN 2</th>
<th>4U INTENSITY</th>
<th>ARIEL V INTENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4U0813-38</td>
<td>2.0 ± 0.6</td>
<td>0.2 ± 0.2</td>
<td></td>
<td></td>
<td>4.8 ± 0.9</td>
<td>---</td>
</tr>
<tr>
<td>4U0821-42</td>
<td>8.2 ± 0.5</td>
<td>6.7 ± 0.3</td>
<td></td>
<td></td>
<td>12.8 ± 1.0</td>
<td>12.8</td>
</tr>
<tr>
<td>4U0833-45</td>
<td>33.7 ± 0.4</td>
<td>33.4 ± 0.2</td>
<td></td>
<td></td>
<td>15.5 ± 1.7</td>
<td>20.4 - 30.6</td>
</tr>
<tr>
<td>MX0836-42</td>
<td>2.8 ± 0.5</td>
<td>0. ± 0.3</td>
<td></td>
<td></td>
<td>80. (variable)</td>
<td><5.1</td>
</tr>
<tr>
<td></td>
<td>(4U0836-42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0835-48</td>
<td>---</td>
<td>0. ± 0.5</td>
<td></td>
<td></td>
<td>5.0 ± 1.4</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>(4U0842-47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0854-46</td>
<td>---</td>
<td>5.8 ± 0.8</td>
<td></td>
<td></td>
<td>6.7 ± 1.0</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>(4U0854-44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS0752-39</td>
<td>2.6 ± 0.5</td>
<td>3.7 ± 0.3</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 2: Apparent Source Luminosities (x 10^{11} erg cm^{-2} sec^{-1})
<table>
<thead>
<tr>
<th>SOURCE</th>
<th>NORMALIZATION COEFFICIENT</th>
<th>POWER LAW INDEX</th>
<th>N_H cm$^{-2}$ x 10$^{-21}$</th>
<th>REDUCED / DEGREE OF CHI SQUARED/FREEDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>080752-39</td>
<td>0.007 ± 0.002</td>
<td>1.19 (+ 0.29)</td>
<td>13. (+23, -13)</td>
<td>1.2 / 13</td>
</tr>
<tr>
<td>4U0833-45</td>
<td>0.221 ± 0.004</td>
<td>2.17 (+ 0.08, -0.04)</td>
<td>3.6 (+7.2, -3.6)</td>
<td>1.3 / 17</td>
</tr>
</tbody>
</table>
REFERENCES

Becker, R. H., Boldt, E. A., Holt, S. S., Pravdo, S. H., Rothchild, R. E.,

Bennett, K., Bignami, G. F., Boella, G., Bucher, R., Nurmsoen, W., Kanbach,
G., Lichti, G. G., Masnov, J. L., Mayer-Hasselwander, H. A., Paul,

Brandt, J. C., Stecker, T. P., Crawford, D. L., and Maran, S. P. 1971,

Culhane, J. L. 1977, Supernovae, David N. Schramm (ed.), D. Reidel

181, L143.

Forman, W., Jones, C., Cominsky, L., Julien, P., Murray, S., Peters, G.,

Giacconi, R., Kellogg, E., Gorenstein, P., Cursky, H., and Tananbaum, H.
Document X-661-77-107
Kellogg, E., Tananbaum, H., Harnden, F. R. Jr., Gursky, H., and Giacconi,
Markert, T. H., Canizares, C. R., Clark, G. W., Hearn, D. R., Li, F. K.,
Massaro, E. and Salvati, M. 1977, Proceedings of the Frascati Conference,
in press.
Pravdo, S. H., Becker, R. H., Boldt, E. A., Holt, S. S., Rothschild, R. E.,
Pravdo, S. H., Becker, R. H., Boldt, E. A., Holt, S. S., Rothschild, R. E.,
Pravdo, S. H., Mushotzky, R. F., Becker, R. H., Boldt, E. A., Holt, S. S.,
Rappaport, S., Markert, T., Li, F. K., Clark, G. W., Jernigan, J. G., and
159, L35.
Serlemitsos, P. J., Boldt, E. A., Holt, S. S., Rothschild, R. E., and
Seward, F. D., Burginyon, G. A., Grader, R. J., Hill, R. W., Palmieri,
177, 13.
Thompson, D. J., Fichtel, C. E., Kniffen, D. A., and Ogelman, H. B. 1975,
Wallace, P. T., Peterson, B. A., Murdin, P. G., Danziger, I. J., Manchester,
R. N., Lyne, A. G., Goss, W. M., Smith, F. G., Disney, M. J., Hartley,
Zarnecki, J. C., Culhane, J. L., Toor, A., Seward, F. D., and Charles, P. A.
FIGURE CAPTIONS

Figure 1. The Vela-Puppis region. The three scans (marked with day number of 1975) performed by the OSO-8 pointed detectors are shown with arrows. Previously known sources and their error boxes are shown. The hatched region is the error box for OS0752-39 which intersects with the larger error box derived from another scan. A possible source is marked "S".

Figure 2a. Composite spectrum including both Puppis A and OS0752-39 in the field of view.

Figure 2b. Derived incident spectrum for OS0752-39.

Figure 3. PHA histogram and derived incident spectrum from position near Puppis A which shows a 3.6σ excess near 7 keV.

Figure 4. PHA histogram and derived incident spectrum for 4U0833-45.
BIBLIOGRAPHIC DATA SHEET

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TM 78087</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATIONS OF LOW LUMINOSITY X-RAY SOURCES IN VELA-PUPPIS</td>
<td>February 1978</td>
<td>661</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S.H. Pravdo (U. MD.), R.H. Becker (U. MD)</td>
<td></td>
</tr>
<tr>
<td>E.A. BOLDT, S.S. HOLT, P.J. SERLEMITSOS, J.H. SWANK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmic Radiations Branch</td>
</tr>
<tr>
<td>Laboratory for High Energy Astrophysics</td>
</tr>
<tr>
<td>Code 661</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Work Unit No.</th>
<th>11. Contract or Grant No.</th>
<th>12. Sponsoring Agency Report No.</th>
<th>13. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E.A. BOLDT,</td>
<td>TM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To be published in The Astrophysical Journal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>We present results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260°. This region contains at least six low luminosity X-ray sources within 10° of PSR0833-45, which is near the center of the Gum Nebula. PSR0833-45, the X-ray source associated with the Vela pulsar, is observed at twice its 40° catalogue intensity. The lack of X-ray pulsations at the pulsar period (> 99% non-pulsed), the non-thermal power law spectrum, and models of the X-ray source distribution in this region suggest that a large fraction of the X-rays come from an extended source > 10° in radius. The observation of a high temperature (T eff > 10⁸ K) spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OS0752-39. Other spectra from this region are discussed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Key Words (Selected by Author(s))</th>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-rays--pulsars, sources, spectra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

For sale by the National Technical Information Service, Springfield, Virginia 22151. GSFC 25-44 (10/77)