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EFFECT OF WINGLETS ON A FIRST-GENERATION JET TRANSPORT WING 

I11 - PRESSURE AND SPANWISE LOAD DISTRIBUTIONS FOR A SEMISPAN MODEL AT MACH 0.30 
Lawrence C. Montoya 

Dryden Flight Research Center 

Peter F. Jacobs and Stuart G. Flechner 
Langley Research Center 

SUMMARY 

Pressure and spanwise load distributions on a first-generation jet tran- 
port semispan model at a Mach number of 0.30 are presented. The data were mea- 
sured for the basic wing and for configurations with an upper winglet only, 
upper and lower winglets, and a simple wing-tip extension. To simulate second- 
segment-climb lift conditions, leading- and/or trailing-edge flaps were added to 
some configurations. Selected data are discussed to show the trends for the var- 
ious configurations at high lift conditions. The results show that the upper- 
and-lower-winglet and tip-extension configurations have the highest wing-tip 
loads. At high lift conditions the lower winglet has a higher loading than the 
upper winglet. 

INTRODUCTION 

Winglets, as described in reference 1, are intended to provide reductions 
in drag coefficients, near cruise conditions, substantially greater than those 
obtained with a simple wing-tip extension, which has been designed to impose the 
same bending increments on the wing structure as the winglets. The National 
Aeronautics and Space Administration has been conducting extensive experimental 
investigations of winglets on jet transport wings at high subsonic Mach numbers. 
(See refs. 2 and 3 . )  

This investigation was conducted to determine the effects of winglets and 
a simple wing-tip extension on the longitudinal aerodynamic characteristics, 
surface static-pressure distributions, and cross-flow velocities behind the wing 
tip of a first-generation jet transport. This paper, which is one of a series, 
presents wing and winglet pressure coefficients and spanwise load distributions 
at Mach 0.30 obtained from chordwise static-pressure measurements only. Longi- 
tudinal aerodynamic characteristics and cross-flow velocities are presented in 
reference 4. Chordwise pressure and spanwise load distributions for the wing 
and winglets at high subsonic speeds are presented in reference 5. Results 
herein are given for the basic wing and for configurations with an upper wing- 
let only, upper and lower winglets, and a simple wing-tip extension. To simu- 
late the second-segment-climb lift conditions, which was the primary objective 
of the tests at Mach 0.30, leading- and/or trailing-edge flaps were added to 
some of the configurations. 



Data are presented for a wind-tunnel free-stream Mach number of 0.30 at'a 
constant dynamic pressure of 12 kPa (251 psf) and Reynolds number of 11.68 x 106 
per m (3.56 x lo6  per ft). The angle of attack ranged from about Q0 to 12O. 

SYMBOLS 

Force and moment data have been reduced to coefficient form based on the 
exposed trapezoidal area of the basic wing. 
both the International System of Units (SI) and U.S. Customary Units (ref. 6 ) .  
A l l  measurements and calculations were made in U.S. Customary Units. 

A l l  dimensional values are given in 

Coefficients and symbols used herein are defined as follows: 

b' exposed semispan of wing with basic tip, 124.26 cm (48.92 in.) 

Ab ' incremental increase in exposed wing semispan (tip extension), 0.38 
of span of upper winglet, 7.62 cm (3.00 in.) 

c local chord, cm (in.) 
- 
C mean geometric chord of exposed basic wing, 39.98 cm (15.74 in.) 

Cav average chord of exposed basic wing, S/b', 37.41 cm (14.73 in.) 

Ct tip chord of basic wing, cm (in:) 

CL lift coefficient, Lift/qwS 

Cn section normal-force coefficient obtained from integration of pressure 
measurements 

Cm pitching-moment coefficient, Pitching moment/qwSc 

pressure coefficient, (p, -.pw)/qw 

span of upper winglet from chord plane of wing tip (see 

cP 

h 
fig. 2(b)), cm (in.) 

i incidence of winglet measured from free-stream direction, positive 
with leading edge inward for upper winglet, outward for lower 
winglet (see fig. 2(b)), deg 

free-stream Mach number 

local static pressure, Pa (psf) 

free-stream static pressure, Pa (psf) 

free-stream dynamic pressure, Pa (psf) 

MW 

PI 

PaY 

qW 
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S exposed t r a p e z o i d a l  area of  basic wing, 0.4648 m2 (5.0034 f t 2 )  

X chordwise d i s t a n c e  from leading edge, p o s i t i v e  a f t ,  c m  ( i n . )  

Y spanwise d i s t a n c e  from wing-fuselage junc tu re ,  p o s i t i v e  outboard ,  
c m  ( i n . )  

Z v e r t i c a l  coord ina te  of a i r f o i l ,  p o s i t i v e  upward, c m  ( i n . )  

Z '  d i s t a n c e  a long  wingle t  span from chord plane of  wing, c m  ( i n . )  

a ang le  of  attack, deg 

rl exposed w i n g  semispan s t a t i o n  (based on basic-wing p a n e l ) ,  y /b '  

Abbreviat ions : 

L.S. lower s u r f a c e  

u. s. upper s u r f a c e  

EXPERIMENTAL APPARATUS AND PROCEDURES 

T e s t  F a c i l i t y  

T h i s  i n v e s t i g a t i o n  was conducted i n  t h e  Langley 8-foot t r a n s o n i c  p re s su re  
tunne l ,  a cont inuous s ing le - r e tu rn  tunne l  w i t h  a s l o t t e d  r ec t angu la r  test  sec- 
t i o n .  The l o n g i t u d i n a l  s l o t s  i n  the  f l o o r  and c e i l i n g  o f  t h e  t e s t  s e c t i o n  
reduce tunne l  w a l l  i n t e r f e r e n c e  and al low r e l a t i v e l y  large models t o  be tested 
through t h e  subsonic  speed range.  Cont ro ls  are a v a i l a b l e  t o  permit  independent 
v a r i a t i o n  of Mach number, s t agna t ion  p r e s s u r e ,  t empera ture ,  and dew p o i n t .  A 
more de ta i led  d e s c r i p t i o n  of  t h e  wind tunne l  is  given i n  r e fe rence  7.  

Model Descr ip t ion  

To ob ta in  t h e  h i g h e s t  p o s s i b l e  wingle t  Reynolds number and s u f f i c i e n t  wing- 
l e t  s i z e  i n  which t o  i n s t a l l  s u r f a c e  p re s su re  measurement tubes ,  a semispan 
model was u t i l i z e d .  The 0.07-scale semispan model used i n  t h i s  i n v e s t i g a t i o n  
w a s  of t h e  KC-135A t r a n s p o r t  a i rcraf t .  Photographs of  the  model i n  t he  wind 
tunne l  are shown i n  f i g u r e  1 ,  and drawings of  t h e  model i n  f i g u r e  2 .  

Fuselage.-  The fuse l age  contours  c l o s e l y  s imula te  t h e  f u l l - s c a l e  fuse l age  
shape,  w i t h  the except ion  of  t h e  wheel-well area. An enlargement of  t h i s  area 
was necessary t o  enc lose  the  model mounting appa ra tus .  The fuse l age  midsect ion 
covers  t h e  balance and has a s l o t  i n  it through which the  wing p ro t rudes .  The 
fuse l age  is not  a t t ached  t o  the ba lance ,  but  it does r o t a t e  w i t h  t h e  wing 
through t h e  angle-of-at tack range.  

Wing.- The basic wing of  the  KC-135A model has 7 O  d i h e d r a l  and 2 O  of  i n c i -  
dence a t  the r o o t  chord. The w i n g  has no geometr ic  t w i s t .  A t y p i c a l  outboard 
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a i r f o i l  s e c t i o n  is  shown i n  f i g u r e  3 ,  w i t h  i ts  coord ina te s  presented i n  table I. 
The wing t h i c k n e s s  r a t i o  v a r i e s  n o n l i n e a r l y  from 15 pe rcen t  a t  t he  wing-fuselage 
junc tu re  t o  9 percent  a t  t h e  t r a i l i ng -edge  break and then remains cons t an t  a t  
9 percent  t o  t he  wing t i p .  The t r a p e z o i d a l  planform o f  t h e  t o t a l  wing (extended 
t o  the fuse l age  c e n t e r  l i n e )  has  a sweep a t  t he  quarter-chord o f  35O, an  a s p e c t  
r a t i o  o f  7 .0 ,  and a t a p e r  r a t i o  of  0.35. 
geometry parameters  S ,  b ' ,  c ,  and cav are based on t h e  exposed t r a p e z o i d a l  
planform of  t he  basic wing. 
r e l a t i v e  mode1,bending d e f l e c t i o n  a t  t h e  t i p  was approximately t h e  same as t h a t  
f o r  t h e  a c t u a l  a i r p l a n e  a t  c r u i s e  cond i t ions .  

For a l l  d a t a  a n a l y s i s ,  t h e  r e fe rence  

The model wing s t i f f n e s s  was designed so  t h a t  t he  

Nacelles.- Flow-through n a c e l l e s  were used w i t h  an i n l e t  diameter of  5.64 c m  
(2.22 i n . )  and e x i t  diameter  of  3.45 cm (1.36 i n . ) .  The i n l e t  diameter was 
maintained back t o  approximately 0.66 of  t he  n a c e l l e  l e n g t h  and then tapered  l i n -  
e a r l y  t o  t h e  e x i t .  

Flaps.-  Fixed-posi t ion leading-. and t r a i l i n g - e d g e  f l a p s  were attached t o  
the  model on some o f  the  conf igu ra t ions  t o  s imula t e  second-segment-climb charac- 
ter is t ics .  The f l a p s  tested were designed merely t o  be r e p r e s e n t a t i v e  and are 
not  modeled a f t e r  the a c t u a l  KC-135A f l a p s .  The leading-  and t r a i l i ng -edge  
f l a p s  were deflected 120° and 20°, r e s p e c t i v e l y .  F lap  d e t a i l s  are shown i n  f ig-  
u r e  4 .  The conf igu ra t ions  tested w i t h  and without  f l a p s  are shown i n  the follow- 
ing  table:  

F l i l i n g  edge 

X 

X 

I Leading and t r a i l i n g  edge I X 
1 1 

T e s t  con f igu ra t ion  
~- 

Upper 
wing 1 e t  

X 

X 

Upper and lower 
wing le t s  

X 

X 

X 

ex t ens ion  

X 

Tip extension.-  The 7.62-cm (3.00-in.)  wing-tip ex tens ion  (see f i g .  2 ( a ) )  
The span w a s  estimated had the  same coord ina te s  as t h e  outboard wing s e c t i o n .  

so t h a t  the  t i p  ex tens ion  produced e s s e n t i a l l y  the  same increments  i n  bending 
moment a t  the  wing-fuselage j u n c t u r e  as t h e  wing le t s .  

Winglets.-  A d e t a i l e d  drawing of  t h e  wing le t s  used i n  t h i s  i n v e s t i g a t i o n  
is presented i n  f i g u r e  2 ( b ) .  
a v i a t i o n  a i r f o i l .  Winglet a i r f o i l  coo rd ina te s  are presented  i n  table 11. 

The wing le t s  employed an 8-percent- thick g e n e r a l  

The upper wingle t  has  a span equa l  t o  the  wing-t ip  chord,  a r o o t  chord 

The planform area of  the  upper wing- 
equa l  t o  65 percent  o f  the wing-tip chord,  a leading-edge sweep o f  38O, a t a p e r  
r a t i o  of  0.32, and an a s p e c t  r a - t i o  of  2.33. 
l e t  is 3.8 percent  o f  t he  exposed t r a p e z o i d a l  planform area o f  t he  b a s i c  w i n g .  
The upper wingle t  is canted outboard 1 5 O  from v e r t i c a l  ( 7 5 O  d i h e d r a l )  and toed 
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out 4O (leading edge outboard) relative to the fuselage center line. The upper 
winglet is untwisted and therefore has constant negative geometric incidence 
across its span. The "upper surface" of the upper winglet is the inboard 
surf ace. 

The lower winglet has a span equal to 23 percent of the wing-tip chord, a 
root chord equal to 40 percent of the wing-tip chord, a leading-edge sweep of 
5 2 O ,  a taper ratio of 0.40, and an aspect ratio of 0.82. The planform area of 
the lower winglet is 0.6 percent of the exposed trapezoidal planform area of the 
basic wing. The lower winglet is canted outboard from vertical 36O (54O anhe- 
dral) and toed in 7 O  relative to the fuselage center line (trailing edge out- 
board for negative incidence). The lower winglet was twisted about its leading 
edge.with 4O washout at the tip. The "upper surfacef1 of the lower winglet is 
the outboard surface. 

To smooth the transition from the wing to the winglets, fillets were added 
to the inside corners at those- junctures and the outside corners were rounded. 

Boundary-Layer Transition Strips 

Boundary-layer transition strips were placed on both surfaces of the wing 
and winglets. These strips were comprised of a 0.159-cm (0.06-in.) wide band of 
carborundum grains sized on the basis of reference 8 and set in a plastic adhe- 
sive. The transition strip patterns for the wing and winglets are shown in 
figure 5. 

The transition strips on the lower surface of the winglets were located 
rearward in an attempt to simulate full-scale Reynolds number boundary-layer 
conditions (ref. 9). The strips on the upper surface of the winglets were 
located forward to insure transition ahead of the shock wave for the various 
test conditions. 

The fluorescent-oil-film flow-visualization technique described in refer- 
ence 10 was employed to verify the presence of laminar flow ahead of the transi- 
tion strip. 

Test Conditions 

The data presented herein are for a wind-tunnel free-stream Mach number of 
0.30 at a constant dynamic pressure of 12 kPa (251 psf) and angle-of-attack 
range from approximately 40 to 12O. The Reynolds number was 11.68 x IO6 per m 
(3.56 x IO6 per ft) . 
tained at 322 K (1200 F), and the air was dried until the dew point was suffi- 
ciently low to prevent condensation effects. 

During the tests, the stagnation temperature was main- 

Measurements 

Force and moment 
strain-gage balance. 

data were obtained using a five-component electrical 
Side-force measurements were not taken. An accelerometer 
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a t t ached  t o  t h e  wing mounting block i n s i d e  t h e  f u s e l a g e  was used t o  measure 
angle o f  attack. 

Chordwise s t a t i c - p r e s s u r e  d i s t r i b u t i o n s  were measured a t  t h e  0.26,  0.77, 
0.92, and 0.99 semispan s t a t i o n s  o f  t h e  basic wing ( f ig .  6 ( a ) ) .  I n  a d d i t i o n ,  
they were measured a t  t h r e e  s t a t i o n s  on the  upper wingle t  and a t  one s t a t i o n  
on t h e  lower wingle t  ( f i g .  6 ( b ) ) ,  f o r  t h e  upper-and-lower-winglet conf igu ra t ion  
only .  These s t a t i o n s  were loca ted  a t  0.15, 0 .50,  and 0.80 of  t h e  upper-winglet 
span and a t  0.50 o f  t h e  lower-winglet span,  which correspond,  r e s p e c t i v e l y ,  t o  
t h e  1.01, 1.03, 1.05, and 1.01 wing semispan s t a t i o n s .  (Note t h a t  semispan sta- 
t i o n s  are def ined  as a f r a c t i o n  of  the  d i s t a n c e  from t h e  wing-fuselage junc tu re  
t o  t h e  t i p  of  the  basic wing panel .  As t h e  upper and lower winglets extend 
beyond t h i s  d i s t a n c e ,  semispan s t a t i o n s  can be greater than 1.0.) The wing and 
wingle t  p r e s s u r e s  were measured with pressure-scanning va lves .  
p re s su re  senso r s  i n  t h e  va lves  w a s  s i zed  f o r  the  upper o r  lower wing o r  wingle t  
s u r f a c e s  and wind-tunnel t e s t  cond i t ions .  

The range of  t h e  

Wing-tip d e f l e c t i o n s  were determined from photographs of  a chordwise l i n e  
on the  edge of  t h e  wing t i p  and are shown i n  f i g u r e  7 .  

Correc t ions  

The s l o t t e d  wind-tunnel t es t  s e c t i o n  is designed t o  reduce w a l l  e f f e c t s  on 
l i f t .  Data from t h i s  i n v e s t i g a t i o n  show t h a t  t h e  wing spanwise load d i s t r i b u -  
t i o n s  f o r  a l l  conf igu ra t ions  a t  the same-condi t ions  are nea r ly  i d e n t i c a l  over  
t h e  major p o r t i o n  o f  t h e  span. 
s i d e r e d  sys t ema t i c ,  and no c o r r e c t i o n  is made t o  t h e  data f o r  t h e s e  effects .  
The w i n g  semispan and t h e  model f r o n t a l  area were s u f f i c i e n t l y  small (1.5 percent  
of  t h e  t e s t - s e c t i o n  c ros s - sec t iona l  area) t o  avoid having t o  c o r r e c t  Mach number 
f o r  wind-tunnel blockage effects  ( ref .  1 1 ) .  The ang le  o f  at tack of  t h e  model 
was co r rec t ed  f o r  flow a n g u l a r i t y  i n  t h e  wind tunne l .  

Therefore ,  w a l l  e f f e c t s  on w i n g  l i f t  can be con- 

PRESENTATION OF RESULTS 

The r e s u l t s  df t h i s  i n v e s t i g a t i o n  are presented  i n  t h e  fo l lowing  f i g u r e s :  

Var i a t ion  of  pitching-moment c o e f f i c i e n t  and ang le  o f  a t t a c k  wi th  
l i f t  c o e f f i c i e n t  f o r  t h e  va r ious  conf igu ra t ions  . . . . . . . . . . .  

Chordwise p re s su re  d i s t r i b u t i o n s :  
Bas ic - t ip  conf igu ra t ion  . . . . . . . . . . . . . . . . . . . . . . .  
Basic- t ip  conf igu ra t ion  with t r a i l i ng -edge  f l a p s  . . . . . . . . . . .  
Basic- t ip  conf igu ra t ion  with leading-  and t r a i l i ng -edge  f l a p s  . . . .  
Upper-winglet conf igu ra t ion  w i t h  t r a i l i ng -edge  f l a p s  . . . . . . . . .  
Upper-winglet conf igu ra t ion  with lead ing-  and t r a i l i ng -edge  

f l a p s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Upper-and-lower-winglet conf igu ra t ion  . . . . . . . . . . . . . . . .  
Upper-and-lower-winglet conf igu ra t ion  wi th  trailing-edge f l a p s  . . . .  

Figure 
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9 
10 
1 1  
12 

13 
14 
15 
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Figure  

Upper-and-lower-winglet conf igu ra t ion  wi th  leading-  and t r a i l i ng -edge  
f l a p s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

Tip-extension conf igu ra t ion  wi th  t r a i l i ng -edge  f l a p s  . . . . . . . . .  17 

t r a i l i ng -edge  f l a p s  . . . . . . . . . . . . . . . . . . . . . . . .  18 

Comparison o f  upper-winglet and upper-and-lower-winglet 
conf igu ra t ions  wi th  t r a i l i ng -edge  f l a p s  and leading-  and 

Spanwise load  d i s t r i b u t i o n s :  
Comparison o f  t h e  b a s i c - t i p  and upper-and-lower-winglet 

Comparison of  s e v e r a l  conf igu ra t ions  wi th  t r a i l i ng -edge  f l a p s  . . . .  20 
Comparison of s e v e r a l  conf igu ra t ions  with leading-  and t r a i l i n g -  

conf igu ra t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

edge f l a p s  . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

DISCUSSION OF RESULTS 

The d i scuss ion  presented  h e r e i n  is l i m i t e d  t o  a few selected cases. The 
data d iscussed  are considered r e p r e s e n t a t i v e  of  t h e  t r e n d s  f o r  t h e  va r ious  con- 
f i g u r a t i o n s  a t  high l i f t  cond i t ions .  
c o e f f i c i e n t  from re fe rence  4 has  been included t o  show t h e  r e l a t i o n s h i p  between 
ang le  of  a t t a c k ,  f o r  t h e  f i g u r e s  presented  h e r e i n ,  and l i f t  c o e f f i c i e n t .  

The v a r i a t i o n  of  ang le  of  a t t a c k  with l i f t  

Throughout t he  f i g u r e s  of  t h i s  paper ,  a conscious e f f o r t  has  been made t o  
r e t a i n  a p a r t i c u l a r  symbol wi th  each of t h e  fou r  conf igu ra t ions  t e s t e d  (basic 
wing, uppe r .wing le t ,  upper and lower w i n g l e t s ,  and t i p  ex tens ion ) .  This  practice 
is intended t o  f ac i l i t a t e  i d e n t i f i c a t i o n  of a p a r t i c u l a r  se t  of  d a t a .  Also,  f o r  
t h e  p re s su re  d i s t r i b u t i o n s  ( f i g s .  9 t o  171, t h e  conf igu ra t ion  is i n d i c a t e d  a t  
t h e  top  of  each page. 
ments of  t h e  i n s e r t  p l o t s  are larger than t h e  main scale increments .  

Note t h a t  i n  f i g u r e s  9 t o  18, t h e  v e r t i c a l  scale inc re -  

The chordwise s t a t i c - p r e s s u r e  d i s t r i b u t i o n s  f o r  t h e  basic-wing and t i p -  
ex tens ion  conf igu ra t ions  are r e p r e s e n t a t i v e  of  f i r s t - g e n e r a t i o n  j e t  t r a n s p o r t  
a i r f o i l s  and are not  d i scussed .  

A comparison of t h e  upper-winglet and upper-and-lower-winglet configura-  
1 t i o n s  a t  an ang le  of a t t a c k  of  approximately 12O wi th  f l a p s  is presented  i n  fig-.  
I ure  18. With t h e  t r a i l i ng -edge  f l a p s  ( f i g .  1 8 ( a ) ) ,  both conf igu ra t ions  show 

good agreement on t h e  inboard s t a t i o n s  with some d i f f e r e n c e s  on t h e  outboard 
s t a t i o n s .  A t  q = 0.92, t h e  upper-and-lower-winglet conf igu ra t ion  has  less  
negat ive  p re s su re  c o e f f i c i e n t s  near  t h e  upper-surface l ead ing  edge, whi le  a t  
q = 0.99, t h e  upper-and-lower-winglet conf igu ra t ion  has  more nega t ive  p r e s s u r e  
c o e f f i c i e n t s  on t h e  upper-surface l ead ing  edge and more p o s i t i v e  p re s su re  coef-  
f i c i e n t s  on t h e  lower s u r f a c e  near  t h e  l ead ing  edge. The t r a i l i ng -edge  p res su re  
recovery a t  a l l  t he  wing s t a t i o n s  is t h e  same f o r  both conf igu ra t ions .  

Comparison between t h e  upper-winglet and upper-and-lower-winglet configura-  
t i o n s  wi th  leading-  and t r a i l i ng -edge  f l a p s  ( f i g .  1 8 ( b ) )  shows good agreement on 
t h e  inboard s t a t i o n s  wi th  d i f f e r e n c e s  a t  rl = 0.99. The upper-winglet configura-  
t i o n  has  more nega t ive  p re s su re  c o e f f i c i e n t s  on t h e  upper c e n t e r  reg ion  of t h e  
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wing with better trailing-edge pressure recovery. On the lower surface near 
the leading edge, the pressure coefficients for the upper-and-lower-winglet 
configuration are much more positive because of the lower winglet. 

The effects of the various configurations with trailing-edge flaps on the 
span loads for an angle of attack of approximately 12O is shown in figure 20(e). 
The tip-extension and upper-and-lower-winglet configurations have the highest 
loading on the wing tip. The winglet span load data show the lower winglet at 
a higher load level than the upper winglet at these high lift conditions. 

SUMMARY OF RESULTS 

A wind-tunnel investigation of winglets mounted on the tip of a 0.07-scale 
KC-135A jet transport model wing has been conducted. Wing and winglet pressure 
and spanwise load distributions at a Mach number of 0.30 have been presented for 
the basic wing and for configurations with an upper winglet only, upper and 
lower winglets, and a simple wing-tip extension. To simulate second-segment- 
climb lift conditions, leading- and/or trailing-edge flaps were installed on the 
various configurations. 

A comparison of the span loads of all the configurations with trailing-edge 
flaps at the high lift conditions (angle of attack greater than g o )  shows the 
upper-and-lower-winglet and tip-extension configurations to have the highest 
loads at the wing tip. The winglet span loads at these conditions show the 
lower winglet at a higher load level than the upper winglet. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
April 20, 1977 
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TABLE I.- COORDINATES OF T Y P I C A L  OUTBOARD WING S E C T I O N  

[Wing sec t ion  a t  2 O  incidence] 

x/c 

0 
.0011 
.0022 
.0034 
.0058 
.0095 
.0132 
.0180 
.0234 
.0324 
.0415 
.0536 
.0716 
.0897 
.0990 
.I132 
.1408 
.1589 
.I740 
.I861 
.2011 
.2192 
.2342 
.2584 
.3432 
.3729 
.4090 
.4572 
.5054 
.5416 
.5897 
.6379 
.6862 
.7343 
.7582 
.7823 
.8040 
.8344 
.8642 
.8874 
.9223 
.9492 
.9718 
.9920 

1.0001 

Z/C 

0 

I 
.0042 
.0056 
.007 1 
.0090 
.0116 
.0136 
.0161 
.0186 
.022 1 
.0253 
.029 1 
.0338 
.0377 
.0394 
.0417 
.0454 
.047 1 
.0483 
.0492 
.050 1 
.0510 
.0516 
.0522 
.0522 
.0524 
.0513 
.0489 
.0454 
.0420 
.0367 
.0304 
.0226 
.0153 
.0108 
.0065 
.0027 

- .0023 
- .0076 
-.Oll9 
-.0180 
-. 0229 
-. 0269 
- .(I308 
- .0347 

L o w e r  su r f ace  

Z / C  i x/c 
1 

0 
.0020 
.0035 
.006 1 
.0092 
.020 1 
.039 1 
.063 1 
.0950 
.lo16 
.1445 
.I826 
.2235 
-2597 
.2950 
.3326 
.3726 
.4276 
.4690 
.5110 
.5560 ~. 5967 
.6386 
.6818 
.7243 
.7620 
.795 1 
.8308 
.8662 
.go29 
.9392 
.9790 
.9999 

0 

-. 0063 

- .008 1. 
- .0097 
-.0116 
-.0139 
-.0168 
-.0174 
-.0212 
-. 0245 
- .0284 
-.0314 
-.0341 
- .0366 
-.0391 
-.0418 
- .0429 

- .Oh30 
-. 0424 
-.0414 
- .0406 

. - .0054 

- -0073 

- .0433 

- .0397 
-. 0389 

- -0377 
-.0371 

-.0381 

- .0363 
- .0358 
- .0348 
- .0350 
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TABLE 11.- A I R F O I L  COORDINATES FOR WINGLETS 

I 
i x/c 

0 
-0020 
.0050 
.0125 
.0250 
.0375 
.0500 
.0750 
.IO00 
. I 250  
. I500  
. I750  
.2000 
.2500 

.3500 

.4000 

.4500 

.5000 

.5500 

.5750 

.6000 

.6250 

.6500 

.6750 

.7000 

.7250 

.7500 

.7750 

.8000 

.8250 

.8500 

.8750 

.goo0 

.9250 

.9500 

.9750 
1 .oooo 

.3000 

Upper surface 

0 
.0077 
.0119 
.0179 
.0249 
.0296 

.0389 

.0433 

.0469 

.0499 

.0525 

.0547 

.058 1 

.0605 

.062 1 

.0628 

.0627 

.0618 

.0599 

.0587 

.0572 

.0554 

.0533 

.0508 

.048 1 

.045 1 

.Ob19 

.0384 

.0349 

.0311 

.0270 

.0228 

.0184 

.0138 

.0089 

.0038 
- .0020 

* 0333 

z/c f o r  

I 
- 

L o w e r  surface 

0 

-.0041 
-. 0060 
- .0077 -. 0090 
-.0100 
-.0118 
-.0132 
-.0144 
-.0154 
-.0161 
-.0167 
-.0175 
- .0176 
-.0174 
- .OI68 
- .0158 
-.0144 
-.0122 
-.0106 
- .oogo 
-.0071 
-. 0052 
- .0033 
- .0015 

.0004 

.0020 

.0036 

.0049 
-0060 
.0065 
.0064 
.0059 
.0045 
* 002 7 

-.0013 
- .0067 

- -0032 
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L-75-8430 
( a )  Complete conf igu ra t ion .  

L-75-8429 
(b) Winglets.  

F i g u r e , l . -  Photographs of model. 
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Basic tip Tip extension 

7.62 ( 3.00) 

Moment reference center 

(a) General layout of model. 

Figure 2.- Drawing of semispan model. Dimensions in centimeters (inches). 
.+ 
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Typical winglet section ,- Upper surface 

/ 
--a 

Winglet i ,deg 
Upper - 4  
Lower, root - 7 
Lower, t ip  - I  I 

Section A -A  

surface 

(b) Winglet  d e t a i l s .  

F i g u r e  2 . -  Concluded. 



Figure 3.- Typical outboard wing a i r f o i l  sec t ion .  



of leoding-edge flap 

.O 

( a )  F lap  d e t a i l s .  

Figure 4.- Drawings of  leading-  and t r a i l i ng -edge  f l a p s .  
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Wing-fuselage juncture 

i-- 
30.73 (12.10) 

(b) Flap locations. Dimensions are in centimeters (inches). 

Figure 4 .- Concluded. 
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In board 
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Figure  5.- Location of boundary-layer t r a n s i t i o n  s t r i p s .  
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( a )  On wing. 

u , l  u , l  u , l  u , l  
u l u  u 

u, 1 u , l  u , l  u , l  
u u  

u u , l  u , l  u , l  

u , l  u , l  u , l  u , l  
u u u  

Figure 6.- Wing and winglet s t a t i c -p res su re  o r i f i c e  loca t ions .  



WINGLET ORIFICE LOCATIONS 

[u, upper surface orifice; 
1, lower surface orifice] 

x/c 

0.000 
.020 
.050 
.150 
.2 50 
.350 
.4 50 
.550 
.6 50 
.750 

.950 

.a50 

Upper winglet - 
1.01 
- 
1.03 
I 

1.05 

Lower winglel 

1.01 

(b) On winglets. 

Figure 6.- Concluded. 
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No flaps 
- - - - -  Trai ling- edge flaps 
--- Leading- and trailing-edge flaps 06 I-------------- 

I 

Tip deflection 

b' .02 

0 

Figure 7.- Wing-tip de f l ec t ion  f o r  bas ic - t ip  configurat ion.  



12 

I Q  

.7 .8 

CL 

( a>  No f l a p s .  

9 

7 

6 

5 

4 

3 

Figure 8.- Varia t ion  of  pitching-moment c o e f f i c i e n t  and ang le  of a t t a c k  wi th  
l i f t  c o e f f i c i e n t .  M, = 0.30. 
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(b) Trailing-edge flaps. 

Figure 8.- Continued. 
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I... ,.I 

Tip configuration KH 
0 
0 
0 

Basic 
Upper winglet 
Upper + lower winglets 

.8 .9 I .o I .I 
CL 

I .2 I .3 

12 

I I  

0 

9 

a 
a,deg 

7 

6 

5 

4 

3 

I .4 1.5 

( c >  Leading- and t r a i l i n g - e d g e  flaps. 

F i g u r e  8.- Concluded. 
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-l -*I% 

-7 
L 4 
LE T 

.E L 

1 cp -.E 

Basic tip 

(a) a = 4.1O. 

0 Upper surface 
0 Lower surface 

Figure  9.- P re s su re  d i s t r i b u t i o n s  f o r  b a s i c - t i p  conf igu ra t ion .  
v e r t i c a l  scale increment of i n s e r t  p l o t s  is l a r g e r .  

Note tha t  
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Basic tip 

0 uppersurface 
0 Lower surface 

0 .2 -6 

1 
1 
1 

1 1 
I 1 
1 j 
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I 1 7 
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(b) = 7.0°. 

Figure  9.- Continued. 
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Figure  9.- Continued. 
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0 Basic tip 

0 uppersurface 
0 Lowersurface 

( d )  cx = 10.Oo. 

Figure  9.- Continued. 
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Basic tip 
-2 .9 

-2.0 

-1 -6 

-1.2 

Cp -.a 

- -9 

C 

-9 

.E 

0 Upper surface 
0 Lower surface 

(e )  a = 11 .8O.  

Figure 9.- Concluded. 
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Basic tip 

0 Upper surface 
0 Lower sur€ace 

t ra i 1 ing  - 
is larger.  

x/c 

( a )  a = 

x/c 

4.20. 

Figure  10.- P re s su re  d i s t r i b u t i o n  for b a s i c - t i p  conf igu ra t ion  wi th  
edge f l a p s .  Note t h a t  v e r t i c a l  scale increment of  i n s e r t  p l o t s  
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Figure  10 .- Continued. 

31 



Basic tip 
-2 -4 

-2.0 

-1 -6 

-1 -2 

c p  -.a 

- .4 

0 

.4 

.0 

0 -2 

- wing 

~ 

7E0.26 

wing I 
I 

n I -.9\ 
7 

1 

I 

T 
k O . 9 2  

0 -2 

I 

J 7 
I 

I 

l!lz -2 -3 

0 .  

I 
J 

%I 
I 
I 
I 

1.0 

0 uppersurdace 
0 Lower surface 

0 .2 -4 -6 

d c  

CY = 9 .00 .  

I 
I 
I 
I 
I 
I 
I 
I 

O-t" 

I 
I "t"' 
I 
I 
I 
I 
-8 1 .o 

Figure 10.- Continued. 
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Figure  10.- Continued. 
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Figure  11.- Pressure  d i s t r i b u t i o n s  f o r  b a s i c - t i p  conf igu ra t ion  wi th  leading-  
and t r a i l i ng -edge  f l a p s .  Note t h a t  v e r t i c a l  scale increment of i n s e r t  p l o t s  
is larger. 
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Figure  11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure  12.- P re s su re  d i s t r i b u t i o n s  f o r  upper-winglet c o n f i g u r a t i o n  wi th  
t r a i l i ng -edge  f l a p s .  
p l o t s  is larger. 

Note t h a t  v e r t i c a l  scale increment of i n s e r t  
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Figure 13 .- Pressure distributions for upper-winglet configuration with 
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