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ABSTRACT
 

As part of an overall study of the scaling laws for the fluctuating
 

pressures induced on the wings and flaps of STOL aircraft by jet engine
 

impingement, an experimental investigation has been made of the near
 

field fluctuating pressures behind a cold circular jet, both when it was­

free and when it was impinging on a flat plate. Minature static pressure
 

probes were developed for measurements in the free jet and on the flat
 

plate; these were connected by plastic tubing to 1/8 inch microphones
 

which acted as pressure transducers. Using a digital correlator together
 

with an FFT program on the CDC 6400 computer, spectral densities, relative
 

amplitudes, phase lags, and coherences were also obtained for the signals
 

from pairs of these probes, and were used to calibrate these probes directly
 

against microphones. This system of instrumentation was employed to obtain
 

single point rms and third-octave surveys of the static pressures in the
 

free jet and on the surface of the plate. Also, two point cross-correlations
 

were obtained, and from these, relative amplitudes, phase lags, and coherences
 

were calculated for a more detailed characterization of the jet flow. These
 

measurements confirmed the existence of a vortex structure in the jet, and 

demonstrated that the jet diameter, velocity and dynamic pressure are appro­

priate scaling dimensions for characterizing fluctuating pressures behind 

j ets. 
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Chapter 1
 

INTRODUCTION
 

STOL (short-take-off and landing) aircraft design has recently
 

become a concept of interest for providing short range aircraft service.
 

These powered life aircraft configurations make it possible to operate
 

from small runways, which can be located close to heavily populated
 

areas. The in-flight characteristics and performance are virtually
 

the same for these aircraft as'for conventional aircraft. However, in
 

the take-off and landing configurations, these aircraft are substantially
 

different from conventional aircraft, indicating the need for both
 

experimental and theoretical investigation.
 

Two forms of STOL aircraft are of special interest, the externally
 

blown flap [EBF] configuration and the upper-surface-blown [USB] 
con­

figuration. The EBF configuration consists of large flap, which is
 

placed in the jet, deflecting air downwards. This powered life concept
 

converts the engine thrust into lift and also gains additional lift due
 

to entrainment of air flow over the wing.. The UBS configuration, with
 

jet engines mounted over the wings, produce extra lift by maintaining
 

circulation over the wing to 
a high effective angle of attack.
 

The pressure loads experienced by these STOL configurations are a
 

result of static pressures and fluctuating or unsteady pressures. 
 The
 

exact nature of these fluctuating pressure loans developed on the flaps
 

is presently unknown. Therefore, protype aircraft now under con­

struction use flaps that are over-designed to account for uncertainty
 

in the levels of these unsteady loads. Careful structural design of
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these flaps is essential to keep the extra weight of additional flaps
 

within econimical bounds. This structural designais not possible with­

out accurate information on the loading to which these flaps will be
 

subject. The objectives of this report is toward the accurate
 

predictions of the levels of these unsteady loads and covers the estab­

lishment and development of pressure measuring techniques, which are
 

applied to the fluctuating pressures behind a small free'cold jet and
 

behind a cold jet impinging on a flat plate. Ultimately, the goal is
 

to establish scaling laws that will make it possible to predict loads
 

on full scale STOL configurations. The important scaling parameters
 

have been found to be qj ['jet exit dynamic pressure[, Uj [jet exit
 

velocity], D. [jet exit diameter]. Three of these combine in-the use
 

of Strouhal number [St=Djf/Uj]. No large variation of the Mach numbers,
 

X, was possible, Through the use of dimensionless groups of these
 

parameters, the results of experimentation behind a cold jet may be
 

used for predicting levels behind a full scale STOL configuration.
 

A brief summary of the theoretical and historical background 

pertinent to the investigation of fluctuating pressures induced on the 

wings and flaps of STOL aircraft due to jet impingement is initially 

presented. Miniature pressure probes were developed for measurement 

of fluctuating pressures in the near field of a cold circular jet, both
 

when it was free, and when it was impinging on a flat plate. In
 

analizing the fluctuating pressures, considerable use has been made of
 

a digital correlator for the cross correlation of pressure fluctuatnons
 

at different points. Also, use has been made of a computer program
 

0F 0ogN 

Qp? 
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which converts the correlations to auto and cross-spectra, and deter­

mines-phase and coherence values between the pairs. Single point 
rms
 

and third-octave surveys of the static pressures behind the jet and
 

fluctuating surface pressures on the plate were also made. 
The data
 

analysis techniques and pressure sensors are described in detail, with
 

evaluation of the data analysis system and investigation of the in­

strumentation induced transfer functions.
 

The measurements confirm the existence of a vortex structure in
 

the jet and also on the flat plate. This investigation also demonstrated
 

that the jet diameter, velocity and dynamic pressure are appropriate sca­

ling demensions for characterizing fluctuating pressure behind jets.
 



Chapter 2
 

HISTORICAL AND THEORETICAL BACKGROUND
 

2.0 	Classical Model of a Circular-Jet
 

The classical model of a circular jet is shown in Figure 2.0.1. 
In
 

this model, the jet is divided into three regions, the initial zone
 

extending from the jet exit to approximately five diameters downstream,
 

the adjustment zone extending from five diameters downstream to between
 

ten and forty diameters, and the fully developed zone which extends
 

beyond the adjustment zone. 
The initial zone is further sub-divided into
 

the potential core, sheared annulus, and entrainment regions.[1]
 

The potential core, conical in shape, which is characterized by low
 

turbulence levels and by a constant mean velocity, diminishes uniformly
 

due to the inward spread of the sheared annulus. The sheared annulus
 

is a region of intense turbulence which totally engulfs the jet flow at
 

the beginning of the adjustment zone. The entire jet is surrounded by
 

the entrainment region which is an area of induced flow.
 

In this classical model, the interaction between the moving fluid
 

flow and the still air creates turbulence in the sheared annulus, this
 

velocity discontinuity-creates broad band turbulent fluctuations 
or eddy
 

currents; This -model gives a broad spectrum of equal energy levels in
 
the iitialzone][2]


the initial zone. In the fully developed zone [self-similar region]
 

both the average velocity and fluctuating velocities decrease, while the
 

lower frequency content of the spectrum increases, with increasing
 

downstream location and region spreading. All quantities, in the fully
 

developed zone; can be non-dimensionalized using downstream distance
 

and jet exit velocity.
 

4 
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Figure 2.0.1 Classical Model of a Circular Jet
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The 	 classical model tails to explain the following observations
 

made in the initial zone of a 
 jet, 	 using hot wire anemometers and 

microphones with nose cones. 
[4] For this reason, a vortex model of a
 

circular jet has been proposed and is explained in the next section.
 

Strong dependence on Strouhal number [D f/U] has been observed in
 

turbulence spectra in the initial zone and in the far field. 
This
 

indicates that the size of the turbulence eddies is determined by jet
 

diameter, whereas the sheared annulus concept argues for independence
 

from 	jet diameter. Also, since peaks at Strouhal numbers of between 

0.3 	and 0.5 are encountered, the eddies must have diameters of the
 

order of the jet diameter, or greater, and must therefore be too large
 

to fit into the annular region unless they are annular themselves.
 

There have been observations of strong near-field pressure-fluc­

tuations in the entrainment region immediately outside the sheared
 

annulus. These 
are near-field disturbances, not sound waves, that
 

convect along the jet axis at about 60% of the jet exit velocity, with
 

a spacing of about two jet diameters. [3] 

2.1 	Vortex Model of a Circular Jet
 

The vortex model of a circular jet is shown in Figure 2.1.1. 
 In
 

this 	model the annular vortex tube formed by the jet 
breaks up into
 

individual vortex rings, these-travel at a convection velocity, Uc' which
 

is near half of the jet velocity, U. [5] 
 Such a model was studied in
 

detail by Crow and Champagne, [6 
 who also found that these vortex rings
 

are spaced on the average of about two jet diameters, Dj, giving rise
 

to a 	spectral peak at Strouhal number of about 0.3 where 

vO0.o 



%.
 
Figure 2.1.1 
Vortex Model of a Circular Jet
iv \ 



st fj/UJ 

'-c t/j 

and X is the average vortex ring spacing. Batchelor and Gill [71 
studied
 

the linear stability of axisymmetric waves on a jet column, which would
 

correspond to incipient break up of the vortex tub; into individual
 

vortices. 
This vortex tube at the jet exit, is found to be inherently
 

unstable and to roll up upon itself a short distance downstream
 

to 
form a vortex ring [Figure 2.1.2]. [4] Widnall and Sullivan[8 ] 
also
 

observed that the circular structure of the vortices is unstable, with a
 

tendency to form circumferential lobes that are continuously changing around
 

these vortex rings, eventually causing the rings to break up. 
 Laufer,
 

Kaplan and Chu [9 ] presented evidence that these vortices coalesce as
 

they move downstream. These interacting vortex rings have been found to
 

have two major points of coalescence, 2.5 and 4.5 diameters downstream,
 

the latter region marking the end of the potential core.[l0]
 

With each vortex ring is associated a lo pressure, which accounts
 

.for the pressure and velocity effects in the entrainment region and in the
 

potential core. 
Hot wire velocity spectra in the entrainment region
 

and in the potential 
core indicate strong peaks at Strouhal number of
 

0.3 to 0.5. These peaks 
are still seen in the sheared annulus, although
 

a low frequency component of the spectrum is 
also seen. Moving downstream
 

into the adjustment 
zone the low frequency component dominates beginning
 

to mask out the peak at S
 = t 0.3. The vortex rings eventually begin
 

to break up 
and become dominated by the surrounding turbulence so that
 

they are no longer detectable in the fully developed zone.[ll]
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Figure 2.1.2 a) Vortex sheet Roll Up
 

Figure 2.1.2 b) Lobed VortEc Ring 

QfOf? 
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Davies [1 2 measured the first four moments of the axial velocit]
 

in the sheared annulus and back into the adjustment zone up to a dis­

tance of nine jet diameters. 
 He found that these values were constant
 

along constant values of the angle extended from the lip of the jet,
 

as 
shown in Figure 2.1.3. He defined a new coordinate 1n,where n = tan e 

(r­ yD)/x. He found that the skewness and flatness were functions 

of n within the limits -0.15 < n < 0.2 but that-they had Gaussian valves in 

the potential cor& ffl -0.15] and in the entrainment region [rI> 0.21. 

Through this newly defined coordinate, he was able to define the 

limits of the sheared annulus clearly.
 

Lau, Fisher, and Fuchs demonstrated that measurement of static
 

pressures can be made with 1/4" microphones fitted with nose cones. 
A
 

hot wire, measuring u., and the microphone were placed along side each
 

other at the centerline of the jet and were found to have a correlation
 

coefficient of about -0.85. 
When the nose cone was removed, the microphone
 

imeasuredtotal axial pressure, and the cross-correlation was about 0.90.
 

These results conform with the vortex model as shown in Figure 2.1.4.
 

When the microphone and hot wire were moved to 
the edge of the jet, 

the cross-correlation value was 900 out of phase, becoming positive in 

the entrainment region. Then hot wire was changed to measure the radial 

component, ur, the pair always measured signals that were 900 out of 

phase. When ur and ux were compared, the signals measured were always
 

near 900 out of phase, changing sign as r/D increased beyond unity. These
 

trends are all consistent with the vortex model.
 

This vortex model satisfies all the inconsistencies encountered in
 

the classical model. Thus, the vortex model is the one that was
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assumed throughout this report.
 

2.2 ScalingtLaws for a Circular Jet
 

Meechum and Hurdle 117] measured fluctuating static pressures in a
 

T-58 jet engine, using a i/4 ince B&K microphone with a nose, and
 

obtained 1/3 octave band spectra which peak between Strouhal numbers of
 

0.3 and 0.5, the same range as the observed model tests. Because flow
 

conditions in a full scale jet are far from the ideal flows encountered
 

in models, it is highly improbable 'that full-scale measured data will
 

collapse as fully as do the data from model jet. 
However, it is
 

believed that the full scale behavior can be predicted from suitably.
 

scaled model tests, using the scaling parameters given below:
 

Strouhal Number
 

Allijet spectra should be similar when scaled on Strouhal number.
 

The mean velocity distribution across 
 the model should simulate the
 

full scale values, and the overall average velocity based on total flow
 

should be used as 
the reference jet velocity, UJ..' 
 When non circular
 

jetaare in USB applications, an 'effective' diameter must be found, so
 

that test data will collapse into a single plot.
 

Impingement Pressure Coefficients
 

Dimensionless pressure coefficients (Prms/ 1/2U i2 ) measured in
 

jet impingement should be similar, where Uj 
is also referenced to as the
 

overall average velocity of thejet, as described above. Likewise,
 

power spectral densities of pressure coefficients, when presented
 

against Strouhal number, should collapse into one single plot.
 

Temperature Effects
 

Temperature effects of a full scale jet make it impossible to
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completely scale all parameters of a coaxial jet using cold air. There­

fore, two designs should be studied. By choosing the exit area so that
 

the volume flow rates scale, it is possible to achieve a kinematically
 

scaled design, in which convection velocities and Strouhal numbers of
 

vortices can be scaled. The second option would be to scale dynamic
 

pressures and mass flow ratio at the expense of kinematic scaling.
 

To most accurately model a full-scale jet; a coaxial jet should be
 

used. 
The-jet used in this work was not, however, coakial. -

Mach Number
 

There was an indication of a weak Mach number effect in the results
 

[16][of the tests on the "Beach" facility . The nature of the air blowers 

used in the current work made simulation of Mach numbers impossible. 

2.3 Jet Impingement
 

Fluctuating pressures in jet impingement on a flat plate were
 

measured by Strong, Suddon, and Chu 
 , who found values for the 

dimensionless fluctuating presslires [ps yU7 2]. They reported 

results at seven diameters downstream, and found a maximum value of 0.12 on 

a plate normal to the flow. The values decreased with increasingly-oblique
 

angles, approaching a value of .006 which is typical of wall boundary layers.
 

They also took pressure correlation values between the centerline of the 

plate and various other points. They found no evidence of vortices
 

striking the plate, however, they never reported any measurements within
 

the initial zone where the vortices are most prevalent.
 

Foss and Kleis did an extensive study with oblique impingement
 

of an axisymmetric jet. They found that the jet is upward curved, if
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impinged on a plate with slight angle from the horizontal plane.
 

However, if the impingement angle is greater than 120, approaching
 

normal impingement, a complex interaction between jet curvature and
 

jet spreading occurs. This distortion occurs primarily near the
 

surface of the plate while the upper portion retains its axisymmetric
 

structure. 
They found that streamwisevorticity is-introduced into the
 

flow field bythe lateral surface predsre gradient, due to wall j.et 

effect 
and the vorticity of the approaching jet near the plate. 
This
 

phenomenon accounts for the'distortion of the fluctuating'pressure
 

levels measured below the jet centerline:
 

Westley, Wooley and Brosseau [15] studied jet impingement and- found
 

that the plate can be divided into two areas, the impingement area
 

with fluctuating pressures similar to those of the jet, and the
 

remaining surface-with pressure fluctuations typical of a developed
 

wall jet. They found that fluctuating pressure levels in the developed
 

jet region were sensitive to the nozzle's separation from the flat
 

plate, and inversely prbportional to 
the excess nczzle pressure ratio.
 

They found evidence of Strouhal number peaking in the energy spectra
 

near the exit of the jet.
 

Full size jet tests have also been made again confirming the 

presence of high levels of fluctuating pressures [16] Tests were 

done both on the externally blown flap [EBF], and on the upper-surface­

blown flap [USB] configuration giving maximum levels of 165 dB and
 

157 dB, respectively. 
It was also found through auto-spectra analysis
 

of fluctuating pressures, that the EBF configuration had its energy
 



16 

concentration below 1000 Hz on 
the lower surface of the wing and
 

below 400 Hz on 
the upper surface. It was determined that 0.2 is 
a
 

reasonable upper limit for the dynamics pressure coefficient [PrmsIqj]
 

for both configurations.
 



Chapter 3 

INSTRUMENTATION AND DATA ANALYSIS TECHNIQUES FOR PRESSURE MEASUREMENTS 

This chapter deals with the instrumentation and data analysis
 

techniques that were developed for the investigation of fluctuating
 

pressures behind a free jet and behind a jet impinging on a flat plate.
 

The same techniques could be used to investigate any regions containing
 

pressure fluctuations, however, all applications examined in this work
 

were behind a cold jet at relatively low velocities. Measurement of
 

pressure fluctuations about the mean was of primary interest and
 

encompasses the majority of the data collected. 
A limited amount of
 

mean pressures were measured.
 

Several forms of data analysis were used and are explained in
 

this chapter. Of these, Fast Fourier Transform [FFT] analysis of
 

correlations was the principal method of data reduction, and this is
 

explained in detail because of its importance.
 

All pressure fluctuations are expressed in decibels referenced to 

the dynamic pressure at the jet exit, q., (10 lOgl0 prms/ q) and 

the frequency, f, is expressed in non-dimensional Strouhal number form 

(S- = fD./Uj). These dimensionless parameters are used in order to 

help in the derivation of scaling laws based on jet exit velocity and 

jet diameter. 

3.0 Flow and Traverse System
 

The flow was created by a cold jet having a circular cross-section
 

nozzle, with exit diameter of 3.17 cm. The traverse system used enabled
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investigation of the jet by a siigle pressure probe or by two probes
 

simultaneously.
 

The 	jet consisted of a Staco adjustable AC voltage supply attached
 

to line voltage, a Rotron centrifugal blower, outlet duct, flow
 

straightening screen sections and a converging nozzle [Figure 3.0.1].
 

The 	adjustable power supply enabled the jet exit velocity to be varied
 

up to a maximum of about 36 m/s. 
 The flow straightening section was a
 

plenum 60 
cm long and containing three fine-meshed screens roughly 5 cm
 

apart. 
A pressure port was located in this plenum chamber, and the mean
 

static pressure measured at this port was shown to have the same value
 

as the dynamic pressure, qj, measured at 
the jet exit. The fiberglass 

nozzle had a contraction ratio of approximately 22 to 1 giving the
 

desired "top hat" profile at the jet exit.
 

The jet was secured upon a lathe bed which 
 contains an adjustable 

table [Figure 3.0.2]. 
 This table has two degrees of freedom, it can be
 

moved along the axis of the jet and radially across the jet, making it
 

possible to survey the different regions of the jet. 
Another traverse
 

can be mounted on this table when 	 two probes are used simultaneously. 

The 	second traverse adds 
two more degrees of freedom, one in the radial,
 

the other in the axial directions, so that one probe can be moved 

relative to the other to obtain such quantities as convection velocity, 

correlation coefficients, and cross-correlations.
 

3.1 	Pressure Sensors
 

Pressure probes placed in the flow system were used to measure mean
 

pressures and pressure fluctuations about these mean pressures.
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The fluctuating pressures were of primary concern.
 

The mean pressures were measured by attaching a pressure probe
 

to a manometer. 
In most cases, fluctuating pressures were measured by
 

pressure probes connected through 1/8 in (3.175 mm) inner diameter
 

plastic tubing to Bruel and Kjaer Type 4148 1/8 in (3.175 mm) condenser
 

microphones. It is important to realize that the pressure sensed by
 

the pressure probes and the pressure measured by the microphone will be
 

altered by the transfer function of the probe and of plastic tubing.
 

These transfer functions are studied in detail in Chapter 4.
 

Several different types of pressure probes were used. 
Originally
 

an investigative survey of the free jet was made using a conventional
 

1/8 in (3.175 mm) pitot probe. 
After satisfactory results had been
 

obtained.with these probes, hypodermic total pressure probes and hypodermic
 

static probes were made to the designs in Figure 3.1.1, and were used
 

in all later measurements.
 

Fluctuating pressures of jet impingement were studied. 
A flat
 

plate containing many pressure ports was made to 
the design in Figure
 

3.1.2. The plate 
can be moved on 
the traverse system and the inclination
 

angle, 8,
can be varied to give a complete variation of the significant
 

parameters.
 

Kulite 1/8 in (3.175 mm) CQ-125 Ultra-miniature pressure tranducers
 

and flush mounted 1/8 iii 
(3.175 mm) B&K microphones were also used to
 

measure fluctuating pressures on a flat plate. 
These were mounted on
 

a special plate to facilitate comparisons between different pressure
 

sensors [Chapter 4]. 
 A homemade amplifier featuring Fairchild operational
 

amplifier, was used for the kulite transducers to amplify their output
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about iOOO.:l- to obtain useful output voltages. 

3.2 Data Analysis Equipment 

Two different data analysis procedures were used to measure fluc­

tuating pressures (prms). In one procedure, a B&K type 2113 Audio
 

Frequency Spectrometer was used in conjunction with pressure sensors 
to
 

measure fluctuating pressures. 
 The ialibration for the 2113 came from a
 

B&K Type 4220 Pistonphone which supplies a constant 124 dB, 250 Hz signal
 

to the microphone. This system measures the overall prms level in
 

decibels, however, it is referenced to pref (= 2 x 10­ 5 N/m2). To
 

reference the measured value to qj, 
the dynamic head in the jet, a
 
q.


constant term of 20 logl0 
1ref was subtracted. The spectrometer was also
 
ref
 

connected to 
a B&K type 2305 level recorder to 
give 1/3 octave spectral
 

levels for center band frequencies of 35 Hz to 20 kHz. 
These frequencies
 

were then converted to Strouhal number.
 

In the second procedure, a Federal Scientific Model UC 202-B
 

Ubiquitous Correlator was used for analyzing pressure fluctuations. This
 

correlator provides 512 point correlations to an accuracy of 9 binary
 

bits plus sign, however, procedures 
can be used to obtain double precision
 

adcuracy of 18 bits plus sign. 
The input from the 1/8 inch microphones
 

into the correlator went through B&K preamps and through a Nagra SJ
 

recorder. [The tape recorder is used so 
that internal electrical transfer
 

functions are identical for simultaneous analysis of two probes.]
 

In making readings, the 
zero time point was delayed one half time
 

window, so 
that positive and negative correlation intervals were obtained.
 

Seven readings were made for each analysis:
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Channel I & 2 calibration signal [from pistonphone].
 

Channel I & 2 noise with everything on except jet
 

Channel I & 2 pressure sensor signals
 

Cross-correlation of channels I & 2
 

This is the most general case when two probes 
are used. When a single 

probe is used, only the three readings on channel 1 are needed. The 

output voltage from the correlator varies from -5 volts to +5 volts 

and can be displayed on an oscilloscope or reproduced on an x-y plotter. 

For determination of correlation coefficients, a Fluke Digital Voltmeter 

was used to obtain direct readings.
 

Alternatively, all readings can be transferred from the correlator
 

storage to paper tape output of 
a teletype for input to the CROSSPECT
 

Fast Fourier Transform (FFT) program on the CDC 6400 computer. 
These
 

readings are preceded by manually inserted information about settings of
 

the correlator, and the gain settings 
on the amplifiers. Using the
 

inserted data, plus the mean square calibration readings [the zero
 

point auto-correlations of the calibration signals] the remaining data
 

can be scaled, and the following can be calculated in decibel/phase
 

form in the CROSSPECT program:
 

Channel 1 & 2 auto-spectra of signals and background noise
 

Cross-spectra of Channels I & 2
 

The computer prints out and plots the signal and noise auto spectra for
 

both channels, as well as 
the transfer function magnitude and phase,
 

and the coherence. 
All of this data is in decibels and degrees, the
 

spectra being in decibels referenced to qj, and the frequency being
 

given in Strouhal number form. 
A more detailed analysis of the FFT
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output and model used, is in the following section.
 

3.3 Fast Fourier Transform Analysis
 

The CROSSPECT program used for FFT analysis of fluctuating pressure
 

data is shown in Figure 3.3.1. 
The input I is from the coherent part of
 

the turbulent structure of the jet flow, and this is modified by two
 

hypothetical "external" transfer functions TE1 
and TE before arriving

12 

at the two pressure sensors. Additional uncorrelated pressure disturb­

ances, n, and n2 
are also felt at these probes. Although these are
 

truly pressure disturbances, which add to the total pressures, they are
 

treated analytically as incoherent noise.
 

Between the pressure sensors and the B&K 1/8 in 
(3.175 mm) micro­

phones, the pressure disturbances 
are further modified by "internal"
 

t2ansfer functions TI and TI 
 Later, during the analyses performed
 

by CROSSPECT, these transfer functions are predicted analytically as
 

the "calculated" transfer functions TC1 
and TC2, and these are used to
 

cancel the effect of the internal transfer function. [TI 1 and TI2 
are
 

typically the transfer functions introduced by the probes and by the
 

plastic tubing. In the next chapter, these transfer functions are
 

derived, and it is shown how they can be input as 
TC1 and TC2 to cancel
 

out the effect of the tubing before the one-sided spectra are printed 

out.] Finally, output of the two transducers is obtained channelson 

I and 2 as 01 and 02 

The input to CROSSPECT is the three correlations R1 1 , R2 2, and R
 

together with the calibration auto-correlation RC11 , and RC2 2, as well
 

as 
the background electronic noise auto-correlations Rn and Rn22'
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Each correlation is given for 512 time steps.
 

CROSSPECT obtains the Fast Fourier Transforms of these auto­

correlations, corrects 
them for instrumentation settings, calibration
 

levels, and calculated transfer functions TC1 
and TC2 to-obtain the
 

three one-sided spectra G1
 , G22' and G12 , for 257 frequency steps
 

including zero frequency. 
 At the same time, auto spectra are obtained
 

of the"electr6nid noise, Gnll and Gn22.
 

By definition
 

= /_f(f) B(f>
 
AB /N
 

where A(f) is the frequency dependent Fourier transform of A(t), <\
 
denotes the mean value of N samples, and * 
 denotes the complex conjugate.
 

Here, N is the number of measurements which is selected on the correlator.
 

The transform of the output signals in Figure 3.3.1 are
 

01 = TCI TI1 (TE1 I + n1 )
 

02 = TC2-
1 TI1 (TE2 I + n2)
 

Thus, on substitutioniinto the expression for GAB 
 and noting that, by
 

definition of noise,
 

GIn,, GIn2 
' Gn1n2 + 0
 

it is found that, within small variances resulting from large finite
 

values of N4 

2
Gil = j(TC 1 )- 112 ITI1 (ITEl12 GII + nn)1
 

22 = 1(102 )112 ITT 2
2 1 (iTE21 + C 2
 

G12 = (TCl)-1 (TC*2)- TI1 TI*2 TE 1 TE 2 * GI 
The variance on the magnitude of G, where G represents Gill G22' or G12 is 
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S = %/M G = i/ vrY 

where aG is the standard duration and 14G is the mean value of G, B is 

the bandwidth which is the inverse of the correlator window W, and T 

'is the total time duration of the measurement.
 

For the UC-202B correlator,
 

[18,19]

where M (=512) is the nunber of time steps
 

The coherence.of the two output signals is given by
 

2 1012. 
G11G22 

Thus, if an overall transfer function TI2 is defined by
 

- (TC1) TI1 TE1
 

12 (TC2)­1 TI2 TE2
 

and if the signal to noise ratios at the pressure probes are defined by 

SN1 = 1TE112 Gl/Gnnl 

SN2 = ITE2 1
2 G, /Gn2n2 

it can be shown that
 
2
 

(Y12) = 1/(1 + 1/SN1 ) (1 + 1/SN2 ) 

then, from the previously derived expressions for the spectra
 

1 G11 G12
T12 = (1 + 1/SN) 1G2* (1 + 1SN2 ) G22 

so that the true magnitude of TI2 is known between the following limits 

IG121 / G22 < 1T121 < G1l / 10121 

However, because G12 is the only complex quantity in the equation for 

TT12 , the phase angle of T12 is known. 

or 'V 
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The geometric mean of the two limits, 
 is also the value
 

of IT12 1 when the two signal to noise ratios are equal. It is given by
 

TlT= vrG11122
 

Thus, the limits on IT1 2 1 can be defined in terms of (Y1 2)2, the coherence, 

so that
 

Y12 lTT< IT121<
 
TI2 

Converting G12 to decib&l/phase notation, gives 

LG1 2 = 10 logl 0 IG121 - 10 logl 0 (q 2)' 

where q. is the reference dynamic pressure. Also, the phase angle of
 

012 is
 

OGl2 = tan-i '1
 

where 1{ fandjffj Jstand for real and imaginary part of, respectively. 

Thus, 

OGII = eG22 = 0 

The variance on LG (i.e., LGi, LG22, or LG1 2) is given in decibels by
 

LVG = 10 log10 (i+ G)
 

6 9 5 Min(W.100,i) 
I21og2 N 

so that the one-sigma or 68% confidence limits on LG are 

LG + LVG 

For the values of N and W generally used, LVG is about .136 dB. Then,
 

expressing the transfer function in decibels
 
1 

TI2 = -1 (LGI - LG22
 
LT 1 2 L 22
1 1 

OT12 = eOG12 
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Also, expressing the coherence in decibels as L(y1 2)
2
 

2
L(y 1 2 ) = 2LG12 - - LG22LG11 


so that the true level of the transfer function T112 varies between the 

limits 

1 (y 2 )2 LI 2 LT12 - 11 L(y 1 2 ) 2 

This equation emphasizes the significance of the coherence as the range
 

of uncertainty is the magnitude of the transfer function.
 

It is important to realize that if the tubing lengths 
are " 

identical then TI, equals =TI2.. If this is trus, the magnitude 

and phase of the transfer function, and the coherence, are accurate
 

and unaffected by this internal transfer function.
 

All spectral output of CROSSPECT is referenced to q. and the
 

frequency scale is changed to Strouhal number form. Normally, to 

present the power spectral density of pressure vs frequency, it would
 

be calculated in units of N 2 /m4/Hz, so that the area under the curve 
2 

would be p rns. 
 To present the spectral density of pressure coefficient
 

against Strouhal number, the previous values have to be divided by qj 2
 

fref [where fref is the value of frequency when Strouhal number equals
 

one], so that the area under the curve is now (p rms/q.) 2 
. Therefore, 

when the dimensionless values are presented in decibels, the reference
 

quantity for spectral density is qj 2/fref or, in decibel form,
 

10 logl0 (q 
2/fref) . Examples of the output from CROSSPECT are given
 

in Chapter 4.
 



Chapter 4
 

EVALUATION OF DATA ANALYSIS TECHNIQUES AND PRESSURE SENSORS
 

4.0 Evaluation of Data Analysis Techniques
 

Fluctuating pressures were measured, using two static probes behind 

the jet, to evaluate the CROSSPECT program. Channel I and 2 inputs into
 

the correlation were from probes located on the jet centerline, 9.0 cm and
 

11.0 cm downstream, respectively. Figures 4.0.1-4.0.4 show the complete
 

plotter output from CROSSPECT, giving two power spectra, two background
 

level spectra, transfer function amplitude and phase angle, and the
 

coherence. 
 [The peaks and valleys in the auto-spectra are caused by
 

the tubing system transfer function.]
 

The wild fluctuations at the larger Strouhal numbers are the result
 

of reaching the limit of the instrumentation dynamic range. 
 It was
 

found that this dynamic range is about 27 dB, which can be attributed
 

to the fact that the correlator outputs only nine bits plus sign.
 

Internally, however, the correlator has 
a capacity of 27 bits per word.
 

The ten bits [nine bits plus sign] that are used, are selected by the
 

operator so that maximum output without overflow is obtained. The
 

CROSSPECT program is capable of accepting an additional nine bits of
 

data, which has the potential of increasing the dynamic range another
 

27 dB. When this procedure was tried, the dynamic range was found to
 

increase by only about 3-6 
dB [shorm in Figures 4.0.5 and 4.0.6]. There
 

seem to be further limitations, internal to 
the instrumentation, that
 

are not readily apparent. Since the increase in dynamic range is
 

fairly insignificant at the expense of considerable effect, this
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CROSSPECT OUTPUT - RUN NO. 23
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CROSSPECT OUTPUT - RUN NO. 23
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CROSSPECT OUTPUT - RUN NO. 23
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procedure was not used in obtaining the results reported in this work.
 

The CROSSPECT computer program has the capability of artificially
 

adding zeros 
to both sides of the correlator input. 
This has the effect
 

of increasing the time window, and thus reducing the frequency interval,
 

and providing a more detailed spectral plot. 
This approach has been used
 

for presenting some of the data. 
However, in order to make comparisons
 

simpler, a fixed frequency scale was used for presenting most of the
 

data, and the high frequency noise was allowed to,remain on the plots.
 

Measurement of pressure fluctuations were taken 2 diameters down­

stream on the jet axis, to compare a 1/3 octave spectrum and the CROSSPECT
 

spectrum [Figures 4.0.7 and 4.0.8]. 
 The 1/3 octave spectrum shows a
 

definite Strouhal number peaking [St = .456], comparing favorably to
 

other literature. However, there seems 
to be almost no peaking in the
 

CROSSPECT spectrum. 
Figure 4.0.9 shows how these two spectra compare
 

after the 1/3 octave spectrum has been convertid to the same, constant
 

bandwidth as 
the digital spectrum. Obviously, these two spectra are
 

identical, illustrating some of the importances of each method.
 

The 1/3 octave spectra are most useful for showing the dependence
 

of energy levels on Strouhal number. 
The digital technique is most
 

useful in that it is capable of supplying cross-correlation information.
 

This cross-correlation capability-makes it possible to 
calculate quantities
 

such as coherence,rphaseolags (used-tot.obtain convection functions),
 

transfer functions: (used to-take spectralcomparisons), andlcorrelation.
 

coefficients: - -. 2'-)Y4J-iets. 

4.1 Theoretical Pressure Sensor Transfer Functions
 

The model assumed for calculation of the transfer functions is
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shown in Figure 4.1.1. 
This model represents a microphone connected
 

through plastic tubing to a pressure probe. The external pressure to be
 

measured-is represented in its complex form by PEe i
 t and the pressure
 

measured by the microphone is given as P i
e 
 The ratio of complex
 

pressures, PM/E 
is the desired transfer function, T.F.
 

The equations of wave propagation are:
 

p(xt) P -ikxkikx+P L ) eiWt
1
 

u(x,t) = e A' - L e 'kJeilt 

and boundary conditions at x=O are: 

p(o,t) = 	 M ei~t 

ii(o,t) =-(PM/ZM) e i Wt 

leading to 	the following relationships at x=0 

P I = PR + PL 

-PI/ZM = PR/PC - PL/PC 

Solving for 	PL and PR
 

i
 

L 2 PM (1 + pc/ZN)
 

PR 2 PM
M
T (I- PC/ZN) 

Eliminating PL and PR 

p(x,t) = PM (i- pc/Z) e-ikx + (1 + Pc/Z e ikx }eit 

= PNcos lot +' i i 1xe 
zM~ n 

0 '5' 
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Additional definitions of terms:
 

a=Total area of pressure sensing holes
 

X=Volume flow rate
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X (x,t) = u(x,t) A = 2- (1 S_ ji - (1 + ) eikj iWt 

PC X ZM 
- sin ic +j Pc os k} e1t 

The k in these equations is complex to account for decay of the signal
 

ii the plastic tubing.
 

k =k' - i 

where 

kt = -

Figure 4.1.2 shows the pulsating slug of air contained within the one
 

small pressure sensing.hole of diameter d. 
The viscous pressure term,
 

Pvisc, is derived as follows, with the aid of Figure 4.1.3.
 

-2P1pt dv
 
visc- %--j2 do
 

where v is the velocity at a distance from the centerline, and/Acis the
 

viscosity. 
Assuming a parabolic velocity distribution
 

- (2)2]v = 2 El 2 

p 	. = 32 11Y §
 
ViSC d2
 

Assuming several h-oles of equal diameter, with total area,a
 

32 X(L,t)
p .
 
visc ad2
 

where 

§ = X(L,t)/a 
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Since a parabolic velocity distribution was assumed, a multiplication 

factor, MF, must also be.used to compensate for any effects due to a
 

different profile.* It should be noted that the assumption of a parabolic 

profile is unrealistic for such 'shortholes as 
are used here. The final
 

viscous pressure term is
 

2Pvis c = 32 NFVdX(L,t)	a 

ad2 

The radiation pressure is derived for two cases. In case (1), a
 

surface pressure port consists of a group of holes 6n a flat surface,
 

as shown in Figure 4.1.4. This pressure port is treated as a piston
 

inset in a infinite plane. In case (2), 
 the holes in a static pressure
 

probe are assumed to simulate a pulsating sphere, as shown in Figure 4.1.5.
 

Case (1) Equivalent Piston
 

The group of holes shown in Figure 4.1.4 has a combined area of a,
 

and approximates a piston of diameter d'. Then
 
1 2d ,  + i4kd '_ 

Prad = upc[- + j 

where
 

= 4i(L,t) 
p rd' 

therefore 

pcX(L,t) Fkdd'2 +il6kd' 
Prad - d'2 + 

+ + 

radiation effective mass
 

The expression used for Prad 
, the external radiation pressure, is
 
e 

identical to the above expression. The expression used for P rad, the 
rad.I 
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internal radiation pressure, is assumed to consist only of the effective
 

mass 	term.
 

The final solution for the' transfer function is obtained by combining 
all of the forces acting on a single slug of air, as 
shown in'Figure 4.1.2.
 

742 
rd = -d2 [p(L,t) 
- P - PRAD - PRAD. - e1i t]

4 4visc RA) RA) 
e Ithen 	with
 

= X(L,t)/a 

Z(L, t) F(L\ 
aF Pvisc prad prad. E 

so that
 

hipX(L,t) P(L,t) {Pk- + i32pck +"32M1 i(L t Q - ft 
aI2d' + 	 P(Ld)- Ee 

and on substitution for X(L,t) and p(L,t)
 

T.F. 	= PM/PE 

[ cos kL + sin* kL f-( d'k 2 - 2 

id2MFVA- sin - cosU 	 --pc k4 i-
ZN 

Case (2) Equivalent Sphere
 

The group of holes shown in Figure 4'.1.5 has an effective area of
 

a, but it approximates a pulsating sphere of diameter d'. 
 It is intended
 

to represent a static pressure probe. 
Then
 

= pcu [k2d'2/4 + ikd'/22
rad s 
 J 
RcX(L, t)2 [k2d2

raitdo + 
ikd' 

m 
++­

radiation effective mass 
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where
 

'
 u = X(L,t)/ird 

Asbfr,
Aseis radei aCrd
taken as above, while the Prad 
 term is neglected.
 

The final solution is obtained as before
 

T.F. = PM/PE 

= [{cos kL+ M sin -f + k 
47
ZM2d' 


-
321lTVA% p 

2 sin kL - PCcos kL
 

ad d ( ZM 

Assuming thatk' is much greater than a, so that k is almost a real
 

quantity, and that the microphone impedance, ZM, is very high, the two 

transfer functions given above will have peaks and valleys corresponding 

to the zeros of cos 
kL and sin kL. 
If the second inner bracketted term
 

is small, as will be the 
case if the holes are large [the tube is
 

effectively open-ended], then the transfer function will peak at the
 

zeros of cos kL. 
If this term is large, corresponding to small holes,
 

the transfer function will peak at the zeros 
of sin kL, as would be
 

the case with a closed ended tube. If the external pressure were 

sufficiently large, the total head loss would become predominant. This 

would create apparent noise, and it would make the system nonlinear, so
 

that the concept of a transfer function would be an approximation. [The
 

formulae for radiation pressure and for attenuation in a tube, were
 

taken from Kinsler and Frey [20].]
 

4.2 Evaluation of Pressure Sensors
 

Pitot Probes vs.-Static Probes
 

Fluctuating pressures were measured, 10 cm downstream on 
the jet
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axes, 
to compare the CROSSPECT and 1/3 octave spectra of a pitot probe
 

and a static probe [Figures 4.2.1-4.2.3]. 
 In bbth cases, the probes
 

were connected to a 1/8 in. (3.175 mm) B&K microphone through 149 
cm.
 

of plastic tubing. Comparison of these spectra indicates that the pitot
 

probe measures higher overall pressure levels with a larger low frequency
 

content. The static probe, having a lower signal to noise ratio, shows 

a more pronounced Strouhal number peaking.
 

It was found, that when two pitot probes were used simultaneously, 

the cross-correlation values decreased rapidly when radial'probe-sep­

aration was increased. When static probes were used, the cross­

correlation values remained much higher through identical probe separations.
 

Table 1 shows the comparison of maximum correlation coefficients between
 

the pitot and static probes, where X is the axial location downstream 

from the jet and Y is the radial location from the jet centerline. 

Table 1 

X Y Pitot Probe 
 Static Probe
 
D. 
 D. 
 Maximum 
 Maximum
 

- Correlation Coefficient 
 Correlation Coefficient
 

2 
 .142. 
 .684 
 .849
 
2 
 .25 
 .511 
 .688
 
2 .50 
 .081 
 .383
 
2 
 .75 
 .012 
 .374
 
2 1.00 
 .006 
 .423
 
4 
 .142 
 .674 
 .877
 
4 
 .25 
 .201 
 .694
 
4 .50 .068 
 .485
 
4 
 .75 
 .018 
 .403
 
4 1.00 
 .001 
 .356
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The apparentreason for this:is,-pitot pressureBis dependent on ­

cross-components of velocity fluctuations and vortex front passages.
 

In the regions of the sheared annulus and vortex ring breakup, the flow
 

becomes extremely-complex and irregular, making it advantageous to
 

use the static probes which depend only on static pressure fluctuations.
 

The pitot probes were found to be useful in calculating convection
 

velocities because of their higher signal to noise ratio.
 

Static Probes vs. Microphone
 

The transfer function of one of the original static probes with
 

four .01 in (.254 mm) holes was found experimentally by positioning it
 

outside the direct flow, next to 
an exposed microphone, 2 diameters
 

downstream of the jet exit and 1 diameter radially outward from the jets
 

axis. 
 Channel 2 input into the correlator was 
from the exposed micro­

phone, Channel 1 input was from a static probe through 100 cm plastic
 

tubing to another microphone. The transfer function [Figure 4.2.4]
 

indicates that the probe and tubing system not only give the expected
 

peaks and valleys, but also causes an overall attentuation of the
 

measured pressure. 
To correct for this attenuation, one 
of the probes
 

was modified by doubling the diameters of the pressure sensing holes
 

to 
.02 in [.508 mm] and the experimental procedure was 
repeated. The
 

transfer function for this new probe [Figure 4.2.5] 
no longer shows this
 

overall-attentuation. 
The Strouhal number range of the transfer function
 

is limited because of the weak effect of the jet flow in the measured
 

region.
 

Surface Probes vs.Microphone.
 

A special plate [Figure 4.2.6] was designed to make experimental
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comparisons between a surface probe and a 1/8 in [3.175 mm] flush
 

mounted microphone. 
The plate was inserted into the flow at an in­

clination angle, 5, 
 of 300, 9.0 cm downstream of the jet exit, and all
 

pressure sensors were symmetrically located 3/8 in [9.525 mm] from jet
 

axis. Comparisons were made by computing transfer functions using
 

the CROSSPECT program in the following cases:
 

Tubing Length
 

The effect of different tubing lengths was investigated. Channel
 

2 input into the correlator was from the flush mounted microphone
 

and Channel 1 input was from a .02 in [.508 mm] diameter pressure port 

through plastic tubing of different lengths to another microphone.
 

Figures 4.2.7-4.2.9 show the transfer functions for tubing lengths of
 

0.5 m; 1.0:m-.and 2.0 m, respectively. 
The tubing length comparison
 

shows how the peaks of the transfer function vary. As expected, the
 

shorter the tubing the-greater the separation between resonance peaks,
 

the longer the tubing the closer the peaks 
are together.
 

Pressure Port Hole Diameter
 

The effect of different pressure port diameters was-also ifives­

tigated. 
Channel 2 input into the correlator was again the flush mounted 

mike, Channel 1 input was from different diameter pressure ports through
 

1.0 m long plastic tubing to 
the other microphone. Figures 4.2;10-4.2.12
 

show the transfer functions for pressure port diameters of .01 in [.254 mm],
 

.02 in [.508 mm], and .04 in [1.016 mm], respectively.
 

The effect of pressure port diameter is in accordance with the
 

theoretical predictions. At diameter equal to 
.01 [.254 mm] the transfer
 

o)RIG TL, 'PAGF 
%tpooQGAY 

http:4.2;10-4.2.12
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function followsan inVerse sine function [same as a closed-closed system].
 

At a diameter'of .02 in [.508 m] the1peaks'have shifted over and now are
 

a combination of inverse sine plus cosine. 
At a diameter of 0.4 in
 

[1.016 mm] 
the peaks have shifted over to an inverse cosine function [same
 

as an open-closed system].
 

Kulite Transducer
 

A comparison was made between the flush mounted microphone [channel 2]
 

and a Kulite transducer [channel 1]. 
 The transfer function [Figure 4.' .13]
 

indicates that these two pressure sensors measure the same pressure
 

fluctuations. 
 The signal to noise ratio from the homemade .amlifierswere
 

low making meaningful data from the Kulites hard to obtain.
 

Tubing Material
 

The effect of different tubing material connecting a surface probe
 

to a 1/8 in [3.175 mm] B&K microphone was investigated by examining the
 

transfer function between a 1.0 in long plastic tube connected to a
 

.02 in [.508 mm] diameter pressure port and a 1.0 m long stainless tube
 

connected to an identical pressure port. 
The transfer function [Figure
 

4.2.14] is approximately equal to 0.0 dB throughout the frequency range,
 

indicating that tubing material does not effect the transfer function
 

of the tubing system.
 

4.3 Calculated Transfer Functions
 

The transfer functions were calculated for both a static probe, with
 

<.02 inch diameter holes, and a .04 indh [1.016"mm] surface probe using the 

equations derived in-Section 4.1. Multiplication factors,'ME,'[defined in 
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Section 4.1] of 150 for the static;,probe and 31 for the pressure port
 

were found to give the best representations of the transfer functions
 

found experimentally [Section 4.2].
 

The phase lag and transfer function amplitude of the calculated
 

transfer function for the static probe is shown in Figure 4.3.1.
 

Figures 4.3.2 and 4.3.3 show the spectral density, phase lag and
 

transfer function amplitude for the static probe, calculated by
 

CROSSPECT after the calculated transfer function has been inserted
 

to compensate for the tubing system transfer function. 
The phase lag
 

and transfer function amplitude of the calculated transfer function for
 

the pressure port is shown in Figure 4.3.4, Figures 4.3.5 and 4.3.6
 

show the compensated spectral density, phase lag and transfer function
 

amplitude for the pressure port.
 

The calculated transfer functions do improve the spectral density
 

and transfer function amplitude. However, the compensation does not
 

completely erase the amplitudes caused by the tubing system and does
 

not correct for the phase shifting that occurs. More work is needed
 

to develope more accurate transfer functions. Such things as area
 

changes in the probes are not accounted for and a more precise method
 

of calculating tubing length is needed. 
These transfer functions
 

do show the correct tendencies and are helpful in reducing the
 

amplitude peaks.
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Chapter 5
 

EXPERIMENTAL RESULTS
 

This chapter deals with experimental investigations into the
 

fluctuating pressures behind a cold round jet, both with the jet free,
 

and with the jet-impinging on a flat plate. In all the date presented, 

the jet exit diameter is 3.17 cm, with exit velocity of approximately 

35 m/s, giving a jet exit Reynolds number of about 74,000. 

- Figute 5.0.1 indicates the coordinate systems used in this in­

vestigation. The X coordinate gives the downstream location from the 

jet exit and Y is the lo'cation radially outward from the jet centerline. 

For measurements on the flat plate, '? is the coordinate along the 

projected jet centerline and 5 is the coordinate perpendicular to 

this centerline. G is the angle of impingement. 

5.0 Free Jet - Prms and Mean Dynamic Pressure Levels
 

Fluctuating "static" and mean dynamic pressure profiles were
 

taken from zero to eight diameters downstream. The static pressure
 

probes described in Chapter 3 were used with four pressure sensing
 

holes .02 inches in diameter. These profiles are shown in Figures
 

5.0.2 and 5.0.3. In these figures, the levels are given in decibel
 

form referenced to the jet exit dynamic pressure, q.
 

The fluctuating pressure levels are lowest in the potential core­

region, indicating low turbulence levels. The levels are higher behind
 

the lip of the jet due to the increased turbulence levels associated
 

with the sheared annulus. The relative levels in the potential core
 

OF 1pO08­65 
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5.0.1 Definition of Coordinate Systems
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increase as the downstream distance from the jet exit is increased,
 

eventually approaching a normal type distribution.
 

The mean dynamic pressure profiles indicate that the centerline
 

level remains fairly constant throughout tWe.potential core region.
 

These profiles show the downstream spreading of the jet and indicate
 

how the centerline pressure begins to decrease beyond the potential
 

core region.
 

5.1 Free Jet - 1/3 Octave Spectra
 

Figures 5.1.1 - 5.1.7 show the 1/3 octave fluctuating "static" 

pressure levels measured behind the free jet using the static pressure 

probes. The fluctuating levels are given in decibel form referenced to 

q and the frequency scale has been converted to Strouhal number form, 

St. No. = fD/Uj-. In each of the figures, five -spectra are shown 

corresponding to probe locations varying from the jet centerline 

radially outwards to one jet diameter. Each figure corresponds to a 

different location downstream from the jet exit, the locations ill­

ustrated are between 2 and 10 jet diameters. 

The spectra corresponding to locations of 2,3 and 4 jet diameters
 

downstream indicate a Strouhal number dependence, as predicted by the
 

vortex model of a free jet. At a downstream location of 2 jet diameters,
 

the spectra peak at a Strouhal number-of 0.3 to 0.5. This peak is
 

present in all the sprectra, however, at a location of Y/D=0.5 the
 

spectrum is more uniform because of the increased fluctuating pressure
 

levels encountered in the sheared annulus region of the jet. The peak
 

again is apparent outside of this sheared annulus region. The presence
 

of this Strouhal peak becomes less pronounced with increased distance
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downstream, due to spreading of the sheared annulus. At locations of
 

6, 8 and 10 diameters downstream this peak is no longer present.
 

These spectra indicate that there is, within the initial zone,
 

a dependence of the fluctuating pressure spectral content on the jet
 

exit diameter. This dependence, noticed not only within the jet
 

but also outside, is due to the spacing and rate of the low pressure
 

wave passage associated with the vortex rings. The dependency is no
 

longer present beyond the initial zone because the Vortex rings are no
 

longer dominant.
 

5.2 Free Jet - Correlation Coefficients
 

The maximum correlation coefficients versus radial probe
 

separation at downstream locations between 2 and 10 jet diameters down­

stream are shown in Figures 5.2.1 amd 5.2.2. Auto correlations
 

and cross-correlations were taken with one probe on the jet center­

line while the other probe was varied radially to give separations
 

of up to 1.5 jet diameters. The definition of the maximum cor­

relation coefficient is:
 

R12max
 

Correlation Coefficient = RI() R22(0)1
 

The figures indicate high correlation coefficient values within
 

the initial zone, the lowest point being within the sheared annulus 

region. Once outside the sheared annulus, the values of the cor­

relation coefficients increase before they begin to decrease again.
 

Downstream of the initial zone (X/D=6,8,10), values of the correlation
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coefficient decreases rapidly and approach zero with increased
 

probe separation.
 

These figures of correlation coefficients tend to support the
 

vortex model of a free jet. In the initial zone, the high value of
 

correlation coefficients over large distances isAdue to the strong
 

dependence on the vortex passage. Beyond the initial zone, cor­

relation coefficients decrease rapidly with increased probe sep­

aration as is expected,/because the vortex rings are no longer
 

dominant.
 

5.3 Free Jet - Phase Lag, Transfer Function Amplitude and Coherence
 

The phase lag, transfer function amplitude and coherence re­

lationships behind the free jet were investigated. Cross correlation 

information was obtained from two probes simultaneously, one always 

located on the jet centerline, while the other'would be varied both 

radially and streamwise from this first probe. This information 

was then fed through the CROSSPECT computer program, giving phase lags, 

transfer function amplitudes and coherences versus Strouhal number. 

Radial Relationships
 

The radial phase lag, transfer function amplitude and coherence 

relationships are shown in Figures 5.3.1 - 5.3.3. In the illustrated 

examples, one probe was located on the jet centerline, the other was 

varied radially outward from this first probe, at downstream locations 

of 2, 4, and 10 jet diameters. 

The phase lags are found to be roughly equal to z'ero throughout
 

the frequency range in all cases. This suggests that the fluctuating
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pressure disturbances are being sensed simultaneously by both probes
 

and that the disturbances are not propagating in the radial direction.
 

The transfer function amplitude curves show the relative frequency
 

contents of the two probes.
 

The coherence at 2 diameters downstream is relatively high through­

out the frenquency range, with a maximum value of zero decibels at a
 

Strouhal number of roughly 0.4. At 4 diameters, the coherence is generally
 

lower, but still peaks at St. No. = 0.4. The coherence is low every­

where at a downstream location of 10 diameters. The vortex model of a
 

jet predicts these high coherence peaks, at 2 and 4 diameters down­

stream, to be associated with the vortex ring passage, with no apparent
 

passage at 10 diameters downstream, where the surrounding turbulence
 

dominates.
 

Axial Relationships
 

The axial phase lag, transfer function amplitude and coherence
 

relationships as a function of Strouhal number are shown in Figures
 

5.3.4 and 5.3.5. The probes are located along the jet centerline,
 

radially next to each other, but with a 1.0 cm streamwise separation.
 

The illustrated examples are at 1, 2, 4, and 10 jet diameters downstream.
 

The transfer function amplitude curves are roughly equal to zero
 

throughout the frequency range and also the coherences are high. These
 

high values are expected, because of the proximity of the probes,
 

degenerating with increased downstream location.
 

The phase lags between the two probes show a small variation with
 

frequency. The average slopes of these phase lag curves give the
 

mean convection velocity of the propagated pressure disturbances by the
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following relationship [relative to jet exit velocity]:
 

= 360 A x ASt. No. (Ax= probe separation)
Uc 

uj D A9 

The streamise convection velocities, calculated from these plots,
 

are shown in Table 2. The values of convection are found td be be­

tween 0.6 to 0.8 times the jet exit velocity. This demonstrates that
 

the pressure disturbances are propagating downstream at relative
 

convection speeds.
 

Table 2
 

Free Jet - Convection Velocities
 

Downstream Location Uc/U
 

1 .6 

2 .8
 

4 .8
 

10 .6
 

5.4 Jet Impingement - Fluctuating Pressure Levels
 

The overall surface fluctuating pressure levels on the flat plate
 

at various downstream locations and angular orientations were investi­

gated. The center of the plate was positioned at 2, 4, and 6 jet dia­

meters downstream and the plate impingement angle was set at 0' (normal
 

impingement), 300, 60° , and 900 (grazing impingement). Figure 5.0.1
 

shows how the plate was situated in the jet flow except for the special
 

case of grazing impingement, where the plate was located along the lip
 

of the jet. The rms surface pressure levels for these different
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orientations are illustrated in Figures 5.4.1 - 5.4.4. In these
 

figures, the levels are given in decibel form referenced to q.
 

The variation of downstream locations at the various impingement
 

angles indicates that initially the potential core region is present
 

at 2 and 4 diameters downstream, with peak fluctuations occuring within
 

the sheared annulus region. The largest fluctuating pressure levels are
 

seen to occur upstream of the plate center, along the projected jet
 

centerline.
 

The study of the effects of plate inclination angle indicated that
 

the overall fluctuating surface pressure levels tend to decrease with
 

increasing plate inclination angle, the highest levels occuring at
 

normal impingement. For the special case of grazing impingement, the
 

lowest overall levels were measured, with the levels of the upstream
 

plate locations only slightly higher than at other p1ate locations.
 

Also, the levels in the radial direction begin to drop off quickly
 

at larger distances from the plate center, indicating that the edge of
 

the jet has been reached.
 

These figures indicate that the area of highest fluctuating
 

pressure levels is found at the upstream locations of the jet. This
 

is a complex flow region, for both induced flow down the plate and
 

direct impingement flow up the plate are encountered. The levels de­

crease with increasing impingement angle, grazing impingement having
 

the lowest levels.
 

5.5 Jet Impingement - 1/3 Octave Spectra
 

Figures 5.5.1 - 5.5.9 show the 1/3 octave fluctuating surface
 

pressure surface at various locations on the flat plate. The levels are
 



e. 

--.; 
A-- .... 

X/D= 2 

.X/D=.4 
i/D=6 

-15­

-20 

S 

'Tis 

-30 

-35 

-40 

0 .5 1.0 1.5 

Figure 5.4.1 Jet 

Probe Location 

Impingement Fluctuating Pressure Levels: =00 

c~OD 



0X/D=2
 

m- - - x/=4 
A.. X/D)=6
... 


-155 

-151
 

~ 20 

-30 
P-i­

-35 -35­

-40 -______ S I I I I 

0 .5 1.0 1.5 -1.5 -1.0 -.5 0 .5 1.0 1.5 

Probe Location Probe Location
 

Figure 5.h.2 Jet Impingement Fluctuating Pressure Levels:/=300
 



-15 

G=-=== 

-­k -n."-

XlD-2 

X/D46x/n=3 

-15­

-20 

-25 

-3n 

-20 

imp 

-35 -35 

-40 

0 .5 

- - -- - -­ -

1.0 

W1I 

1.5 -1.5 

I 

-1.0 

I 

-.5 

? 

0 .5 

I 

1.0 1.5 

-. Probe Location 

Figure 5,4.3 

Probe Location 

Jet Impingement Fluctuating Pressure Levels: f=600 



15 --

C- -

--... 
- X/D=4 

X/D=6 

-15 -

ci 

20 

-25 

-20 

-25 

-30 .- N -. 

-35 I -35 

-40 0La0 .5 i.o 1.5 -1.5 - . .5 .0 .1.5 

Probe Location 

Figure 5.4.4 

Probe Location 

Jet Impingement Fluctuating Pressure Levels: P=900 



93
 

given in decibel form referenced to q and the frequency scale has been
 

converted to Strouhal humber form. In each figure (except for symmetric
 

case of normal impingement) eight spectra are presented, corresponding
 

to different pressure port locations in the radial and streamwise dir­

ections. The plate was positioned at 2, 4, and 6 diameters downstream
 

with impingement angles of 00, 300, 600, and 900.
 

These spectra display the same basic phenomena as the free jet
 

except for a few notable exceptions. The most important influence of
 

the plate inserted into the free jet, is the overall increase in the
 

fluctuating pressure levels, the Strouhal number peak dependence being
 

even more predominant, again at 0.3 to 0.4.
 

A second peak, not evident in the free jet study, appears at
 

port locations within the projected diameter of the jet. The cause of
 

this phenomena is not as yet clearly understood. It does not seem to
 

be acoustical in nature, for it is not sensed at all port locations,
 

as would be expected because of the large wave length associated with
 

this low frequency. It also does not seem to be vibrational in
 

character for again the fluctuations at these particular frequencies
 

are confined to a specific area.
 

This phenomenon is dominant when the plate is closest to the jet
 

exit and this dominance decreases with increased impingement angle. A
 

possible cause for this secondary peak is a disturbance of the fluctuating
 

dynamic pressure component of the field caused by the rotational
 

speed of the tet fan blower system. This fan rotation could cause a trip­

ping of the flow disttrbances equivalent to the.disturbances tripped
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acoustically in the studies of Crow and Champagne.( 6) These dis­

turbances are confined to the potential core and increasing the impinge­

ment angle increases the vortex type structure propogates up the plate
 

wiping out these diiturbances. However, when the fluctuating pitot
 

probes were used behind the jet this secondary peak was not evident.
 

this 	evidence also seemsto indicate that the phenomenon is associated
 

with an interaction between;the plate and the exit of the jet. It
 

has been reported that an acoustical feed back mechanism has been ex­

perienced in other studies, (21) however, they found that at low speed,
 

equal to those in this investigation, the mechanism, if present at all,
 

would be extremely weak and unstable. Thus, the true nature of this
 

secondary peak is as-yet unclear and needs some further investigation.
 

5.6 	 Jet Impingement - Correlation Coefficients
 

Figures 5.6:1 - 5.6.5 show maximum correlation coefficients
 

of surface probes in jet impingement versus probe separation at
 

various downstream locations and impingement-angles. The coefficients
 

were calculated by correlating the signal from two of the plates
 

pressure ports. The plate center port was always used and the other
 

was varied, giving different lateral or streamwise separation along
 

the plate, up to 1.5 jet diameters.
 

These figures indicate high coefficient values, which increase as
 

impingement varies from normal to grazing. However, the correlation
 

coefficients are low for-the upstream separations. This is due to the
 

complexity of the flow field caused by the interaction of the induced
 

flow and the direct impingement flow. These figures seem to indicate
 

that the disturbances spread outwards after impinging on the plate
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with 	greatest correlation occuring up the plate in a relatively stream­

wise 	direction.
 

5.7 	 Jet Impingement - Phase Lag, Transfer Function Amplitude and Coherence
 

Figures 5.7.1 - 5.7.19 show examples of the phase lag, transfer
 

function amplitude and coherences on a flat plate. Cross correlations
 

were obtained from two pressure ports simultaneously, one port always
 

at the plate center, while the other'could be varied both radially and
 

streamwise along the plate surface from this first pressure port. 
This
 

information was then fed through CROSSPECT to obtain phase lags, transfer
 

function amplitudes and coherences versus Strouhal number.
 

The illustrated examples are for plate locations of 2, 4, and 6
 

diameters downstream with impingement angles of 00, 30, 600, and
 

the special core of grazing impingement (900). The examples are for
 

ports located 1 diameter apart in the upstream, downstream, and radial
 

directions along the plate. [With exceptions at 300 impingement angle
 

2 diameters downstream].
 

The 	coherence curves in all the cases of 0', 30 
, and 60 angular
 

orientation still indicate a dominant frequency (St. No. 
= 0.3) as was
 

the case for the free jet. The dominance of this peak coherence decreases
 

with increased downstream plate location. In the case of grazing im­

pingement, the coherence is high throughout the frequency range, indicat­

ing highly correlated pressure disturbances.
 

The transfer function amplitude curves show how the spectral
 

frequency contents vary between the two positions examined. At small
 

impingement angles and plate locations near the exit of the jet, the
 

influence of the secondary peak is quite apparent through the large dip
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in the curves at low Strouhal number values.
 

The phase lag curves indicate convection velocities that are
 

tabulated in table 3 (positive convection velocity corresponds to 

disturbances that convect from the center of the plate to the variable
 

probe). The convection velocities were found to vary from .6 to .9
 

times the jet exit velocity, corresponding to the induced flow along
 

the plate. These values agree with convection velocities found in full
 

scale tests. It is apparent that the reliability of these calculations
 

are dependent upon the impingement angle. The secondary peak is the
 

cause for these problems for all comparisons are made relative to the
 

center of the plate. The trends of these convection velocities show
 

that at small impingement angles the flow becomes extremely complex
 

upstream of the centerpoint of the plate. This region encounters both
 

flows convecting down the plate after being turned and also flow
 

convecting up the plate after direct jet impingement. When the im­

pingement angle is increased the vortex type disturbances seem to
 

dominate and progress up the plate thus causing convections towards
 

the plate centerpoint [negative convection velocity].
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Table 

Jet Impingement - Convection Velocities 

f5X/D __T/D_ '/D ucl/Ui 

0 2 1.0 .8 
00 4 1.0 - .7 
00 10 1.0 .5 

300. 2 1.5 .9 
300 2 .25 - .3 
300 2 - - .25 -

300 2 -1. 5. 
300 2 -. 25 
300 2 - 1.5 -• 
30 ° 4 1.0 .6 
300 4 -1.0 
300 4 - 1.0 .9 
300 6 1.0 .5 
300 6 -1.0 
300 6 - 1.0 .9 

600 2 1.0 .8 
600 2 -1.0 .4 
60a 2 - 1.0 1.0 
600 4 1.0 .8 
600 4 -1.0 - - .8 
600 4 - 1.0 1.0 
600 6 1.0 .8 
600 6 -1.0 -- .9 
600 6 - 1.0 .9 

90 4 1.0 .8 
900 4 -1.0 - - .8 
900 4 - 1.0 0 
900 6 1.0 .8 
900 6 -1.0 - - .8 
90 6 - 1.0 

%0' QU If 



Chapter 6
 

SUMARY 

An experimental investigation of the.near field fluctuating
 

pressure behavior behind a cold free round jet and this jet impinging
 

on a flat plate was made. The vortex model of a free jet was assumed
 

tddy.
and zas-'further-verified in-this 


It was also found that the jet diameter, velocity and dynamic
 

.pressure are appropriate scaling dimensions for characterizing fluctua­

ting pressures behind the jet.
 

An experimental texhnique was developed to use specially designed
 

pressure sensative probes to investigate these different flow fields.
 

Cross-correlation techniques were developed and used extensively to
 

obtain quantities such as correlation coefficients, phase lags, transfer
 

function amplitudes and coherences. Evaluation of the various probe
 

systems were made and internal transfer functions were investigated.
 

The techniques and instrumentation developed was found to be reliable
 

The
and capable of extracting the desired fluctuating pressure behavior. 


theoretical transfer functions evaluated for the pressure sensing probe
 

found to be close to the transfer functions determined ex­systems was 


a need for refinement of these
perimentally, however, there still is 


calculations. The majority of the presented results were obtained using
 

identical pressure sensing systems, thus, cancelling the effect of these
 

internal transfer functions for measured values of coherence, phase lag
 

and transfer function amplitude.
 

ORIGINAL PAGE IS 
OF POOR QUALITY 

131
 



132
 

A short summary of some of the results obtained behind the free jet
 

and the jet impinging on a flat plate follow:
 

1. 	The Prms pressure profiles for the free jet indicate the highest
 

levels occur behind the lip of the jet with lowest levels in the
 

potential core region. Eventually these profiles approach a
 

normal typeldistribution further downstream.
 

2. 	Mean dynamic pressure for the free jet remains fairly constant
 

in the potential core region. The centerline pressures de­

crease as the jet spreads further downstream.
 

3. 	The 1/3 octave spectra behind the free jet show a spectral
 

peak at Strouhal number of 0.3 to 0.4. This peak is associated
 

with vortex ring passage as indicated by the vortex model of
 

a free jet.
 

4. 	Correlation coefficients are very high in the initial zone of
 

the free jet due to the dependence on the vortex passage.
 

5. 	Coherences behind the free jet are found to be very high at
 

St. No. = 0.4, associated again with the vortex passage,
 

verifying the vortex model. Phase lag information indicated
 

that these pressure disturbances are convecting at .6 - .9
 

times the velocity of the jet.
 

6. 	The fluctuating pressure levels for the cases of jet impinge­

ment indicates that the presence of the potential core, noted
 

by low fluctuating pressure levels, is still experienced
 

close to the jet exit. The overall pressure levels tend to
 

decrease with increasing impingement angle and increased down-
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stream location. The area of highest fluctuating pressure
 

levels is located upstream from the plate centerpoint. The
 

overall fluctuating surface pressure levels on the plate were
 

found to be higher than the static levels in the free jet.
 

7. 	The 1/3 octave spectra on the flat plate display the same
 

basic phenomena as the free jet, with Strouhal peaks at
 

roughly 0.3, except that the levels are much higher. Also a
 

secondary peak is found at a lower Strouhal number, that as yet
 

is not fully understood.
 

8. 	Correlation coefficients on a flat plate are relatively high,
 

decreasing with decreasing impingement angle. The coefficients
 

are lowest for upstream separations and seem to indicate
 

that the pressure disturbances are generally propagating up
 

the plate in the streamwise direction.
 

9. 	Coherence, phase lag and transfer function amplitude relation­

ships on the flat plate indicate that the presence of the
 

vortex type structure is still felt, However, at small im­

pingement angles, the presence of the secondary peak does tend
 

to confuse the available information. The convection velocities
 

were again found to vary between .6 - .9, times the jet exit
 

velocity. The direction of the convection was found to be out­

wards from the center of the plate with upstream component that
 

becomes more dominant with increased impingement angle.
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