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ILCTPACT

! general research fi_hter 1nodecl was tested in the Langley T- by
10-foot high speed tunnel at < !ach number of 0.3. With a conventional
ernernz-e, the model was tested with the wing in a 60° swent back con-
ficuration and in a 32° swept forward confiruration. The 32° swept
forward confijguration was also tested with a strake. Very lirited data
was ottained with a wins in a 50° swep® back confipuration and in a T7°
swept forward confijuration. The ¢n ;le-of-attack range was from approx-
irately -L4° to 40° at sideslivo ansles of 0°, -5°, and 5°. The data are

presented without analysis in order to expedite publication.
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INTRODUMTION

In the late 1940's, as aircraft speeds were approaching Mach one,
investigations were conducted to evaluate swept forward and swept back
wings as a means of delaying the onsiet of transonic compressibility
effects. (See reference 1-3). OSweeping the wings, either forward or
back, delayed the drag rise to a hi_uer Mach number; however, an aero-
elastic divergence problem was found to be associated with swept forward
wings. (See references 4 and 5). This structural instability problem
could be eliminated, but the resulting swept forward wing was significantly
heavier than a corresponding swept back wing. As a consequence of this
fact, most of the subsequent research was concentrated on swept back
wings.

Recently, research interest in forward sweep has been renewed. This
is partly a result of studies, such as reference 6, which indicate that
proper tailoring of composite materials can produce a swept forward
wing with minimal weight penalty. Forward sweep is being studied in
relation to a variety of configurations. When applied to fighter air-
craft, the forward sweep concept offers the potential for improved sub-
sonic and supersonic cruise performance as well as improved transonic
maneuver performance.

Experimental studies have been initiated to expand the existing
data base on sweot forward wings. (See reference T.) The present study
was conducted to obtain the static aerodynamic characteristics of a model
with a conventional emrennage and with swept back and swept forward wing

configurations. The 32° swent forward wing wans also tested with a strake.



It should be noted that the models were built up from wing model
parts previously constructed for swept back configurations. These wings
had circular arc airfoil sections which allowed their use in the reversed
or forward sweep condition. It should be also noted that, because of
the flow separation at the sharp leading edges, the present data will bhe .
generally more applicable to the study o the high angle-of-attack

characteristics.

The tests were performed in the Langley T- by 10-foot speed tunnel
at a Mach number of 0.3. The angle-of-attack range was from approximately

-4° to 48° at sideslip angles of 0°, -5°, end 5°-




SYMBOLS

The International System of Units, with the U.S. Customary Units

- *esented in parenthesis, is used for the physical quantities in this

report (See reference 8). The measurements and calculations were

made in the U.S. Customary Units. The date presented in this report

are referred to the stability axis system. The reference center for

moments is shown in Figure 1(a).

ol

wing reference span, .508m (20.000 in.)
wing veference chord, .233 m (9.185 in.)

drag coefficient, Eigs

Lift

1lift coefficient,
QS

Rolling moment
qSb

rolling moment coefficient,

beta derivative of rolling moment coefficient computed between
B = 5° and B =-5°
pitching moment coefficient, PitChin moment

qQSc

Yawing moment
qSb

yawing moment coefficient,

beta derivative of yawing moment coefficient computed between

B=5°and f=-5



¥

c side force coefficient, oide force

; § qS
CYB beta derivative of side force coefficient computed between
B=5°and 8 = -5°
M free stream Mach number
q free stream dynamic pressure, Pa (lb/ftz)
s ving reference area, .1032 e (1.111C2 fto)
X axial distance from exposed strake theoretical apex (see figure 1(d))
Y local exposed span of strake (see Figure 1(d))
a angle of attack, degrees
B angle of sideslip, degrees

Aw leading edge sweep angle of the wing, degrees

B body

H horizontal tail
S strake

\'/ vertical tail

W wing
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DESCRIPTION OF THE MODEL

Drawings of the model tested are presented in Figure 1. Photographs
of the model installed in the T- by 10-foot high speed tunnel are pre-
sented in Figure 2. The basic model consisted of a fuselage with a wing
and horizontal and vertical tails. The fuselage was sting mounted on
a six-component strain gage balance.

The uncambered, untwisted wings and horizontal and vertical tails
employed circular arc airfoil sections with a thickness ratio of 6%
at the fuselage juncture and 4% at the tip. The primary wing tested had
one edge with a nominal sweep of 60° and one edge with a nominal sweep
of 32° (See Figures 1l(a), (b), (c)). This wing could be set up in either
a 60° swept back leading-edge configuration or a 32° swept forward
leading-edge configuration. The other ving tested had one edge with &
nominal sweep of 50° and one edge with a nominal svcep of T7°. This
wing could be set up in either a 50° swept back leading-edge configuration
or a T° swept forward leading-edge configuration.

A strake was tested in combination with the 32° swept forward
wing. The strake consisted of a sharp edged flat plate (See Figure
1(d)). The exposed area of the strake was 5.4 percent of the wing
reference area.

The horizontal tail, which is shown in Figure 1l(e), had an exposed
area of 28 percent of the wing reference area. The centerline mounted
vertical tail, which is shown in Figure 1(f), had an exposed area of

15.3 percent of the wing reference area.



APPARATUS, TESTS, AND CORRECTIONS

The investigation was conducted in the Langley T- by l1l0-foot
high spzed tunnel (See reference 9). Forces and moments were measured
on a six component strain gage balance mounted internally in the model.
The test was run at a Mach number of 0.3, corresponding to a Reynolds
number of 1.4 x 106 based on the wing reference chord. The model was
tested over an angle-of-attack range from -4° to approximately L8°
at sideslip angles of 0° and +5°. The angles of attack and sideslip
have been corrected for the effects of sting and balance bending under
aerodynamic load. It should be noted that the sting support system which
permits testing over this large angle range is designed specifically
for stability testing. Therefore, the level of the drag data is questionable
for use in performance analysis.

Jet boundary and blockage corrections have beeu applied to the
data based on references 10 and 11, respectively. The balance chamber
pressure was measured and the drag measurements were adjusted to a con-
dition of free stream static pressure acting over the base of the model.
Transition strips 0.16 cm (.0625 in.) in width of No. 120 Carborundum
grams were placed 2.54 cm (1.0 in.) aft of the leading edge of the
wings, strake, horizontal tail, and vertical tail as well as 3.05 cm

(1.2 in.) aft of the nose of the fuselage (reference 12).



PRESENTATION OF RESULTS

The results are presented without enalysis in order to expedite
publication. Figure 3 presents surface oil flow photographs.
The longitudinal and lateral-directional aerodynamic characteristics

at 0° sideslip are presented in tne following figures:

Figure
Swept back configuration. L
Swept forward configuration:
Strake off 5
Strake on 6
Effect of sweep g 3

The lateral-directional aerodynamic stability derivative characteristics

are presented in the following figures:
Swept back configuration 8
Swept forward configuration
Streke off 9

Strake on 10
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, Side view.
Figure 3.- Continued,
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(€ a = 30°, A, = 60°, plan view.
Figure 3.- Continued, :
e e e O SO




da= 300. /\w = 600, side view,
re 3.- Continued.
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fla=15, /\W = -32. strake off, side view, "
Figure 3.- Continued.
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Figure 3.- Continued.




— - O‘.
=30, A = 32

surate off, side view,
Flgure 3.~ Continued,
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Figure 3.- Cunitinued,
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(a) Longitudinal characteristics
Figure &, Characteristics of the swept back configuration, M *0.3,8= 0",




a, deyrees

(b) Lateral -directional characteristics

Figure 4, Concluded,
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a, degrees

(a) Longitudinal characteristics
Figure 5. Characteristics of the swept forward configuration with the strake off. M 0.3, 8+0°
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(b) Lateral directional characteristics

Figure 5, Concluded,
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M=0.3, 800,

a, degrees
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(a) Longitudinal characteristics

Figure & Characteristics of the swept forward configuration with the strake on,
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(b) Lateral directional characteristics

Figure 6 Concluded.
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(a) Longitudinal characteristics

Figure 7, Characteristics as a function of sweep. M =13 B« 0°,
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Flgure 9. - Lateral -directional aerodynamic stabliity derivative characteristics of the swept forward conflguration with strake off. M = 0.3,
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