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I. general research fi,'.iter i c^c', 1 was testes: in tLe Langley 7 .- by

10 . -foot high !;need tunnel at	 "nch nu. ber of r).-,. With a conventional

emnermt,-e, the model was tested with the ,AnC in P. CC° sweat back con-

°is'uration end in a ;-° _ Ì rward confi-uration. Lhe 3- 0 swe-)t

forward confi;;ur • stion was alto tested with a strake. Very lL,: ited data

was ottained with	 winr- in a 50° swei± bacl- confivuration and in a 70

swept forward confir;uraticn. The .n ;le-of-attack rarre was fror. a pprox-

imately -4' to =lu° at sideslin rx.i-le^ of 0 0 , - 5 0 , and 5 0 . The data are

presented without analysis in or('er to expedite publication.
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i	 INTRODUrTION

In the late 1940's, as aircraft speeds were approaching Hach one,

investigations were conducted to evaluate swept forward and swept back

wings as a means of delaying the on:.et of transonic compressibility

effects. (See reference 1 -3)• Sweeping the wings, either forward or

back, delayed the drag rise to a hi,;:ier "loch number; however, an aero-

elastic divergence problem was found to be associated with swept forward

wings. (See references 4 and 5). '11is structural instability problem

could be eliminated, but the resulting swept forward wing; was significantly

heavier thar a corresponding swept back wing. As a consequence of this

fact, most of the subsequent research was concentrated on swept back

wings.

Recently, research interest in forward sweep has been renewed. This

is partly a result of studies, such as reference 6, which indicate that

proper tailoring of composite materials can produce a swept forward

wing with minimal weight penalty. Forward sweep is being studied in

relation to a variety of configurations. When applied to fighter air-

craft, the forward sweep concept offers the potential for improved sub-

sonic and supersonic cruise performance as well as improved transonic

maneuver performance.

Experimental studies have been initiated to expand the existing

data base on swe pt forward wings. (See reference 7.) The present study

was conducted to obtain the static aerodynnnic characteristics of a model

with a conventional empenna;;e and with swept back and swept forward wind;

configurations. :''he 3,'r° sweat forward wind vns also tested with a strake.
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It should be noted that the models were built up from wing model

parts previously constructed for swept back configurations. These wings

had circular arc airfoil Sections which allowed their use in the reversed

or forward sweep condition. It should be also noted that, because of

the flow separation at the sharp leading edges, the present data will be 	 ,

generally more applicable to the study o^'. the high angle-of-attack

characteristics.

The tests were performed in the Langley 7- by 10-foot speed tunnel

at a Mach number of 0.3. The angle-of-attack range was from approximately

-40 to 480 at sideslip angles of 00 , -50 , and 50-



3

'i-7	 - 
---,

SYMBOLS

The International System of Units, with the U.S. Customary Units

•esented in parenthesis, is used for the physical quantities in this

report (See reference 8). The measurements and calculations were

made in the U.S. Customary Units. The data presented in this report

are referred to the stability axis system. The reference center for

moments is shown in Figure 1(a).

b	 wing reference span, .508m (20.000 in.)

c	 wing -eference chord, .233 in (9.185 in.)

Dra
CD 	drag coefficient, ag

q

C	 lift coefficient, Lift
L	 qS

C^	 rolling moment coefficient, Bolling
moment

q

C^	 beta derivative of rolling moment coefficient computed between

I^
R = 5 0 and ^ =-5°

Cm 	pitching moment coefficient, 
Pitching mome nt

qSc

Cn 	yawing mom	
q,

ent coefficient, 
Yawingbmoment

C	 beta derivative of yawing moment coefficient computed between
n3

R = 5 0 and	 -5



CY 	side force coefficient, Side force
qs

C 
	 beta derivative of side force coefficient computed between

8 = 5 0 and i = -50

14	 free stream Mach number

q	 free stream dynamic pressure, Pa (lb/ft2)

2	 0
S	 wing reference area, .1032 m` (1.1110 ft`)

X	 axial distance from exposed strake theoretical apex (see figure 1(d))

Y	 local exposed span of strake (see Figure 1(d))

a	 angle of attack, degrees

R	 angle of sideslip, degrees

A
w	

leading edge sweep angle of the wing, degrees

Model
y,

B	 body

H	 horizontal tail

S	 strake

V	 vertical tail

W	 wing

x i

i
r
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DESCRIPTION OF THE MODEL

Drawings of the model tested are presented in Figure 1. Photographs

of the model installed in the 7- by 10-foot high speed tunnel are pre-

sented in Figure 2. The basic model consisted of a fuselage with a wing

and horizontal and vertical tails. The fuselage was sting mounted on

a six-component strain gage balance.

The uncambered, untwisted wings and horizontal and vertical tails

employed circular arc airfoil sections with a thickness ratio of 6%

at the fuselage ,juncture and 4/0 at the tip. The primary wing tested had

one edge with a nominal sweep of 60 0 and one edge with a nominal sweep

of 32 0 (See Figures l(a), (b), (c)). This wing could be set up in either

a 60° swept back leading-edge configuration or a 32 0 swept forward

leading-edge configuration. The other wing tested had one edge with a

nominal sweep of 50 0 and one edge with a nominal sweep of 7 0 . This

wing could be set up in either a 50 0 swept back leading-edge configuration

or a 70 swept forward leading-edge configuration.

A strake was tested in combination with the 32 0 swept forward

wing. The strake consisted of a sharp edged flat plate (See Figure

1(d)). The exposed area of the strake was 5.4 percent of the wing

reference area.

The horizontal tail, which is shown in Figure 1(e), had an exposed

area of 28 percent of the wing reference area. The centerline mounted

vertical tail, which is shown in Figure 1(f), had an exposed area of

15.3 percent of the wing reference area.
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APPARATUS, TESTS, AND CORRECTIONS

The investigation was conducted in the Langley 7- by 10-foot

high sp-;ed tunnel (See reference 9) 	 Forces and moments were measured

on a six component strain gage balance mounted internally in the model.

The test was run at a t:ach number of 0.3, corresponding to a Reynolds

number of 1.4 x 106 based on the wing reference chord. The model was

tested over an angle-of-attack range from -4 0 to approximately 48°

at sideslip angles of 0 0 and ±5°. The angles of attack and sideslip

have been corrected for the effects of sting and balance bending under

aerodynamic load. It should be noted that the sting support system which

permits testing over this large angle range is desif;ned specifically

for stability testing. Therefore, the level of the drag, data is questionable

for use in performance analysis.

Jet boundary and blockage corrections have bee%i applied to the

data based on references 10 and 11, respectively. The balance chamber

pressure was measured and the drag measurements were adjusted to a con-

dition of free stream static pressure acting over the base of the model.

Transition strips 0.16 cm (.0625 in.) in width of No. 120 Carborundum

grams were placed 2.54 cm (1.0 in.) aft of the leading edge of the

wings, strake, horizontal tail, and vertical tail as well as 3.05 cm

(1.2 in.) aft of the nose of the fuselage (reference 12).
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PRESENTATION OF RESULTS

The results are presented without analysis in order to expedite

publ'cation. Figure 3 presents surface oil flow photographs.

The longitudinal and lat eral-directional aerodynamic characteristics

at 0 0 sideslip are presented in the following figures:

Figure

Swept back configuration.	 4

Swept forward configuration:

Strake off	 5

Strake on	 6

Effect of sweep

The lateral-directional aerodynamic stability derivative characteristics

are presented in the following figures:

Swept back configuration 	 8

Swept forward configuration

Strake off	 9

Strake on	 10
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la) General arrangement.

Figure 1. Drawinqs of the model tested. All dimensions are normalized by a fuselage
length of 0.97155 m. 1 38.25 in. 1
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Continued.
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