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SUMMARY
 

A 0.137-m NACA oo2-64 airfoil has been tested in the Langley 0.3-m 

transonic cryogenic tunnel at free-stream Mach numbers of 0.75, 0.85, and 0.95 

over a total pressure range from 1.2 to 5.0 atmospheres. The onset of conden­

sation effects were found to correlate more with the amount of supercooling 

in the free-stream than it did with the supercooling in the region of maximum 

local Mach number over the airfoil. Effects in the pressure distribution over 

the airfoil 'were generally seen to appear over its entire length at nearlythe 

same total temperature. Both observations suggest the possibility of hetero­

geneous nucleation occurring in the free-stream. Comparisons of the present 

onset results are made to calculations by Sivier and data by Goglia. The 

potential operational benefits of the supercooling realized are presented
 

in terms of increased Reynolds number capability at a given tunnel total
 

pressure, reduced drive fan power if Reynolds number is held constant, and 

reduced liquid nitrogen consumption if Reynolds number is again constant.
 

Depending on total pressure and free-stream Mach number, these three benefits 

are found to respectively vary from 7 to 19%, 11 to 25%, and 9 to 20%. 

Appendices are included which give details of the data analysis procedure 

and of the error bar calculation for the differences in pressure distributions. 
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INTRODUCTION
 

Cryogenic wind tunnels should be operated at the lowest possible total
 

temperatures in order to maximize the advantages of cryogenic operation, such 

as increased Reynolds number and reduced operating costs. However, minimum
 

operating temperatures are limited by low temperature effects on the flow,
 

which can be the result of real-gas behavior of the test-gas. Either the equa­

tion of state of the test-gas changes in such a manner that the gas does not
 

properly simulate the nearly ideal-gas behavior of air encountered in flight, 

or the gas begins to condense and consequently does-not properly simulate the 

nearly ideal-gas behavior of air. Analyzing the nitrogen test-gas over the 

operating ranges of existing and proposed transonic cryogenic wind tunnels, 

Adcock reported in reference 1 that low temperature nitrogen gas approximates 

an ideal-gas during flow simulations for total pressures under l0 atmospheres 

and for Mach numbers up to 2. Consequently, the lower temperature boundary 

appears to be determined by condensation of the nitrogen test-gas. The
 

boundary is important from an operational viewpoint because it determines, on 

one hand, the maximum Reynolds number capability for a fixed tunnel total 

pressure and, on the other hand, the most economical total temperature and 

pressure to operate the tunnel for a fixed test Reynolds number. 

Condensation not only has an important role in determining the operational 

envelope for transonic cryogenic tunnels but has a similar role for supersonic 

and hypersonic tunnels. Wegener and Mack in reference 2 give a summary of
 

historical events leading to, and the results from, many of the condensation 

investigations in supersonic and hypersonic tunnels. 
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investigation employs a pressure-instrumentedThe present condensation 

NACA 0012-6h airfoil mounted in the Langley 0.3-m transonic cryogenic tunnel.
 

Changes in the pressure distribution over the airfoil have been used 
to detect
 

as changes in pressure
the onset of condensation effects in a similar fashion 

were used in references 2 to 6 to detect
distributions in divergent nozzles 

the onset of condensation effects at supersonic and hypersonic speeds. 
The
 

free-stream Mach numbers of 0.75, 0.85, and 0.95
airfoil has been tested at 

over a total pressure range of 1.2 to 5.0 atmospheres in order to determine the 

total temperature at which condensation influences the flow about 
the airfoil
 

free-stream Mach number.as a function of total pressure and 
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SYMBOLS
 

a sound, speed 

c airfoil chord, 0.137-m
 
p - pw

C pressure coefficient,
 
p 
ACp difference in Cp defined by equation (A6)
 

p pressure, atm
 

Ap pressure instrumentation accuracy 

q dynamic pressure 

R Reynolds number 

T temperature, K 

AT supercooling defined by equation (1) 

x linear dimension along airfoil chord line 

11 viscosity 

p density 

o standard deviation
 

Subscripts 

e conditions at onset of condensation effects 

L local conditions 

s conditions at intersection of isentrope and vapor pressure curve 

t total conditions
 

wfree-stream conditions
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MINIMUM OPERATING TEMPERATURES 
I 

The maximum Reynolds number capability and the operating costs of a 

cryogenic wind tunnel are both affected by the minimum operating temperatures 

of the tunnel. The reasons for this can be understood by reviewin the effects
 

of changing tunnel temperature upon the test gas, which are shown in fig­

ures l(a) and l(b). In figure l(a) the behavior of the gas properties relative
 

to their ambient temperature values can be seen. The density, p, increases
 

while the viscosity, 1i, and the speed of sound, a, decrease as the total 

temperature, Tt, decreases for a fixed value of tunnel total pressure, Pt. 

As shown in figure l(b), the behavior of the gas properties as Tt decreases
 

leads to a dramatic increase in unit Reynolds number, R, a decrease in drive 

power required, and no change in dynamic pressure, q. Consequently, it is 

desirable to operate the tunnel as cold as is possible in order to'maximize R
 

and reduce drive power. Just how low in temperature the tunnel can be operated
 

is determined by the onset of condensation effects.
 

A conservative first guess for the minimum operating temperature is to 

operate at temperatures which avoid any possibility of saturation occurring
 

anywhere over the model. Since the lowest static temperature over a model
 

occurs at the point of maximum local Mach number, ML , and Pt can be
t 
max
 

chosen to keep the local static values of p, T just on the vapor phase side
 

of the vapor pressure curve for nitrogen. However, it has been found from tests
 

in the Langley 0.3-m transonic cryogenic tunnel and in other facilities that 

condensation effects tend to be delayed to some lower temperature.
 

The delay in condensation onset past the vapor-pressure curve is due to
 

an energy barrier blocking stable liquid droplet formation - that is, blocking
 

self-nucleation of the test gas. Thus there will normally be a delay in
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droplet formation and growth, and consequently in effects, unless some catalyst
 

is available to speed the process. (More details of the various condensation
 

processes will be given in the section Implications of the Data.) The delay
 

in condensation can be quantitatively measured by the supercooling at onset of
 

effects, AT, which is defined as
 

AT = T - T Wi) 

where T is the static temperature where the isentrope crosses the vapor
 

pressure curve and T is the static temperature along the isentrope where
e 

effects are first seen.
 

If supercooling does occur then there are two wind tunnel operational
 

benefits that result. First of all, for a given.tunnel Pt the maximum R
 

capability is .increasedbecause at the lower temperature the unit is greater
.R 


as shown in figure l(b). This benefit would not only increase the maximum R 

capability of a tunnel, but would also increase the R obtainable for a model 

that may be q limited since q is proportional to Pt for a given M,. 

Secondly, if maximum R capability is not important, then supercooling can be 

used to reduce operating costs when operating at a fixed R. Operating at a 

lower Tt than needed to avoid saturation permits a decrease in Pt for a 

given value of R. Since drive fan power is proportional to pt and decreases 

with decreasing Tt, both changes reduce the required drive power. Since 

normally over 99% of the injected liquid nitrogen is used to absorb the heat
 

generated by the drive fan once the tunnel has been cooled, a reduction in
 

drive fan power leads to a reduction in the amount of injected liquid nitrogen.
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Both reductions decrease direct operating costs, which are split with about
 

90% going to the injected liquid nitrogen and only 10% going to power the
 

drive fan. Specific details of drive power required and operating costs are
 

given in references 7 and 8.
 



EXPERETMAL APPARATUS
 

Tunnel 

The Langley 0.3-m transonic cryogenic tunnel is a continuous flow, fan­

driven tunnel, which uses nitrogen as a test gas and is cooled by injecting 

liquid nitrogen directly into the stream. Variation of the rate of liquid 

nitrogen injection provides a total temperature range from nearly 77 to 350 K, 

while the total pressure can be varied from 1.2 to 5.0 atm. The combined low 

temperature and high pressure can produce a Reynolds number of over 330 million/m 

(100 million/ft). Some of the design features and operational characteristics
 

of the 0.3-m tunnel have been reported by Kilgore in reference 9, and a sketch
 

of the tunnel is shown in figure 2.
 

The liquid nitrogen used to cool down the tunnel and absorb the heat of
 

the drive fan was injected into the tunnel through a series of eleven nozzles
 

arranged on three different struts, or spray bars, at the three injection
 

stations shown in figure 2. Full details of this arrangement are included in
 

reference 9. However, for one of the tests during the present investigation
 

(details to be mentioned in RESULTS AND DISCUSSION), the spray bar system was
 

removed and injection was carried out by injecting through just four nozzles 

at injection station 1. This change, of course, necessitated larger liquid 

flow rates per nozzle. 

Airfoil and Installation
 

A 0.137-m NACA 0012-64 airfoil was used for these tests. Starting at the
 

leading edge, the airfoil had 20 pressure orifices spaced at 5% chord intervals
 

on both.the top and bottom surfaces. For the tests at M. of 0.75 and 0.95,
 

a rearward-facing orifice was added to the trailing edge of the airfoil. The
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airfoil was installed between flats in the octagonal test section, with the
 

leading edge 0.62-m from the beginning of the test section. The angle of
 

attack of the airfoil was zero for all tests. A sketch of the airfoil is
 

given in figure 3.
 

The pressure distributions over the airfoil may be influenced by wall
 

interference effects because of the relatively large chord of the airfoil
 

compared to the size of the test section. However, wall interference should
 

not have an effect on the occurrence of condensation.
 

Data Acquisition and Error Discussion
 

The tunnel parameters were first recorded and then a differential pressure
 

transducer was used in a scanning valve system to step through and record the 

pressures around the airfoil. The time to acquire all of the data for a 

complete pressure distribution was 50 seconds.
 

The uncertainty in the pressure transducer measurements was less than 0.5 percent
 

of full scale, which was the magnitude specified by the manufacturer. In fact, the scatte
 

in the pressure transducer data was observed to be less than the stated value by more
 

than a factor of 10. For the transducer used in the tests at M = 0.75 and 

0.95, the uncertainty was on the order of 0.0004 atm. For the transducer used in
 

the test at M = 0.85, the uncertainty was about 0.0002 atm. There was no 

Significant error introduced by either the signal conditioning or data acquisition
 

systems. However, during the 50-second acquisition period, the tunnel conditions
 

were observed to fluctuate by the following amounts: M, ±.003; Tt, ±0.5K; and
 

p', approximately ±0.005 atm. A development of the uncertainty in C due to the
 

above fluctuations is contained in appendix B.
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TESTS,
 

Data Sampled 

To determine the total temperature at which effects do occur and to inves­

tigate the influence of total pressure and free-stream Mach number on the onset 

of condensation effects, the airfoil was tested at- free-stream Mack numbers of 

0.75, 0.85, and 0.95 over a total pressure range of 1.2 to 5.0 atm. For each 

of the three values of M,, test envelopes were drawn which covered those
 

tunnel pt and Tt ranges that were of interest and that were obtainable in 

the 0.3-m tunnel.
 

The test envelopes were bounded in pt by the 1.2 to 5.0 atm pressure
 

limits of the tunnel and were bounded in Tt by total temperatures corre­

sponding to saturated flow at ML and those corresponding to saturation 

in the reservoir section. Figure 4 shows the M = 0.85 test envelope as an
 

example. Total con&itions which fall lower in Tt than the reservoir
 

saturation line are unobtainable since the injected liquid nitrogen used for cooling 
would never evaporate when Tt is below the vapor pressure curve and, consequently, furtt
 

cooling can not occur. Total temperatures above those along the line of local
 

saturation offer no possibility of condensation in a pure nitrogen test-gas so
 

they are used in this study only as a way of obtaining unaffected comparison
 

points. The locus of tunnel Pt and Tt which just allow saturation when 

the flow is accelerated to M. is also given in figure 4. 

To explore each of the regions of interest in the Pt and Tt plane,
 

paths of constant Rc and M were used to traverse the region of interest. 

Since along each of the paths both M. and were held constant; systematic
Rc 


deviation in pressure coefficients at any x/c position over the airfoil was
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taken to be the result of condensation effects. The paths of constant RC 

and 14 are shown for the M = 0.85 test in figure '5. The Rc along each 

path yaried from 16 million at the low pressure traverse to 42 million at the
 

Pgh pressure traverse. Along these 5 paths, ,atotal of 201 pressure distri­

utions xere recorded and analyzed. Similar envelopes were drawn and 

investigated for M = 0.75 and M = 0.95 except that only 3 paths of 

constant R and M were used in these cases. These envelopes are shown in 

figres ,6 and 7. During the investigation of the high pressure path for the 

M = 0.95 test, a fan drive power limit was encountered so M was reduced 

from 0.95 to 0.93 for that path alone.
 

Data Analysis
 

In order to determine the Pt and at which the onset of condensation
Tt 


effects occurs along a constant M and Rc path, a special data analysis 

procedure was developed. The main Qbjective of the data analysis procedure was
 

to be able to correct values of C on an orifice-by-orifice basis in cases
p 

where the pressure distribution over the airfoil was taken at a slightly 

different M than desired. With such a correction, data along the path that 

normally would have had to be disregarded due to small differences in M could 

be utilized. Having more data available made it easier to detect the total 

temperature at which differences in Cp, ACp, begin to occur because of the 

effects of condensation. 

Once the values of total temperature for the onset of effects at each 

orifice had been determined, a graph of orifice onset total temperature as a
 

function of x/c could be drawn for the path of constant M. and Rc In
. 

this manner, an appropriate onset total temperature could be chosen for the
 

airfoil as a whole. Further details of the data analysis procedure are 

presented in appendix A. 
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RESULTS AND DISCUSSION
 

Data Presentation and Comments
 

The data, taken and analyzed as discussed in the previous section, will be
 

summarized by a series of figures for each value of 
M - 0.75, 0:85, and 0.95­

covered in this study. Each series will include average, condensation-free
 

pressure distributions for each path of constant 
Rc graphs of orifice onset
 

Tt as a function of x/c for each path; and a summary plot for each 
K
 

showing the onset conditions for each path in a Tt versus Pt plane. The 

results for all of the M will then be grouped together assuming either ML 

or M is the important Mach number parameter. 

The first test described is the M = 0.75 test. The average pressure 

distributions are shorwn in figures 8, 9, and 10, and the orifice onset vs.Tt 

x/c graphs are shown in figures 11, 12, and 13. Four different symbols are 

plotted in the orifice onset graphs corresponding to four different situations. 

When normal orifice onset is detected, a circle is plotted at the appropriate
 

x/c, Tt location. When no orifice,onset is detected, a square is plotted at
 

the minimum Tt at which data was taken. When excessive scatter obscures any
 

trends, a triangle is plotted at the minimum T When an orifice pressure
 

tube developed a leak, a diamond is plotted at the minimum 
T It is
 

interesting to note in figures 11, 12, and 13 that the airfoil appears to be 

most sensitive to condensation effects in the 15-25% chord location, as is 

seen most clearly in figures 12 and 13. There does not seem to be any greater 

sensitivity to condensation over the rearward portion of the airfoil, which
 

seems to downplay the importance of any condensate growth over the airfoil 

itself. The summary plot of onset conditions is shown in figure 14.
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The pressure distributions for the 5 lines of constant Rc for the
 

M = 0.85 test are shown in figures 15, 16, 17, 18, and 19 and exhibit a 

recompression shock at the 0.65 x/c location. The graphs showing orifice
 

onset Tt as a function of x/c are shown in figures 20, 21, 22, 23, and 24. 

With the possible exception of figure 24, it appears that effects
 

occur at about the same Tt over the length of the airfoil. That is, there is
 

not an obvious sensitivity to condensation effects behind the shock, or even
 

right before the shock in the region of high local Mach number. Along the.
 

Ra = 42 million path as shown in figure 24, there does appear to be possibl
 

sensitivity behind the shock location. At x/c values of 0.75 and 0.85 the
 

onset value of Tt appeared to be 100.5 K, which is above the trend of effects
 

occurring at about 96 or 96.5 K for the majority of orifices. While the onset
 

Tt of 100.5 K may be correct, there is scatter in the ACp vs. Tt graphs that 

were combined to form figure 24. Because of the uncertainties involved and
 

because of the lack of agreement between orifice onset Tt's behind the shock
 

location at x/c = 0.65 in figure 24, the airfoil onset Tt was chosen to be 

98.5 K with a possible error bar extending from 96.5 to 100.5 K. The summary
 

plot of onset conditions for the M = 0.85 test is given in figure 25.
 

The last test condition was that of M = 0.95. As mentioned under the
 

section Data Sampled, the high pressure path at R- 40 million was tested
c 

at M = 0.93 instead of 0.95, so there is a M difference between the first
 

2 paths and the Rc = 40 million path. The unaffected pressure distributions 

are shown in figures 26, 27, and 28, and the orifice onset Tt vs.x/c graphs
 

are presented in figures 29, 30, and 31. The onset Tt's for the Rc = 16 million
 

path do not seem to have any one area more sensitive than any others, as
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seen in.4fgure 29. However, onset Tt5 for the R = 27 million path in
 

t c 

figure 30 may be showing signs of an increased sensitivity at about x/C = 0.40 

in the region of increasing local Mach number, although the trend 

is not conclusive. The third path at R. = 40 million shows a very uniform
 

onset Tt over the airfoil. There was no data taken along this path between
 

Tt = 100.5 and Tt = 103.5; consequently, there is no resolution of effects
 

between these 2 temperatures and this may contribute to the fairly uniform
 

distribution of onset Tt. The lack of'resolution is indeed unfortunate as
 

seen in figure 32, which shows AC vs. Tt for x/c = 0.95, because there
 

are no effects at Tt = 103.5 K but well developed effects at 100.5 K. For
 

this path, onset Tt for the airfoil was chosen to be 102.0 K with the error
 

bar spanning 100.5 to 103.5 K. The summary plot for onset conditions for the
 

M = 0.95 test is given in figure 33.
 

The results for all of the M tests will now be gtouped together assuming
 

first that ML is the important Mach number parameter and then assuming
 
max 

that M. is the important parameter. The question of which Mach number is 

important arises because of the uncertainty in the mode of nucleation that is 

occurring, which is discussed in the next section. 

The first pair of figures comparing all of the onset results is constructed
 

for the supercooling as defined in equation (1).
 

AT = T -T (1) 
s e 

In equation (1), the value of T is the static temperature at which the 
s 

isentrope, starting at the onset values of Pt and Tt, crosses the vapor­

pressure curve. The value of Te is the static temperature along the same 

isentrope at M = MI in figure 34 (a) and at M = M in figure 34(b).
 
max 
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In both cases the value of AT is plotted as a function of the onset Pt along 

each path of constant R . In figure 34(a), the supercooling was nearly constant 

at 7 K over the pressure range for Mb = 0.75, was roughly equal to 11 K over 

the pressure range for M = 0.85, and was 12 and 14 K for the two lower 

pressure paths at M. = 0.95 and then dropped to 10 K for the high pressure path. 

In figure 34(b), the supercooling based on M remained between 2 and 3 K over 

the pressure range for both M. = 0.75 and' 0.85. However, the supercooling for 

the b = 0.95 test was 1 and 2 K for the lower pressure paths, but dropped to 

-2 K for the upper pressure path. Regardless of the behavior of the high pressure 

path for the M = 0.95 test, there seems to be-much better correlation of the 

values for supercooling when assuming N is the pertinent Mach number rather 

than ML
 
max
 

The second pair of figures again compares all of the onset results, but the 

comparison is now made in a logl 0 p versus T plane. Static values of p, T 

are calculated from the Pt and at onset and are calculated assuming anTt 


isentropic expansion to either ML or M.. Figure 35(a) shows the p, T 
max 

as calculated assuming ML is the'Mach number of interest while figure 35(b) 
max 

shows the p, T as calculated assuming M. is the important Mach number. it 

would again appear from figure 35, as in figure 34, that the onset data correlates 

much better with K than with ML
 
max 

The seemingly early onset of effects in the high pressure path of the 

= 0.95 test may be the result of a tunnel configuration change that was made 

before the data for this path was taken. The spray bars system used for injection
 

of the liquid nitrogen as described under the tunnel apparatus was removed for
 

another investigation in the .3-m tunnel and remained out for the tunnel entry
 

during which the data was obtained for the high pressure path of the MW = 0.95
 

test. With the spray bars removed the liquid was injected from four nozzles
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flush with the interior tunnel wall at injection station 1 instead of the
 

eleven nozzles at the three different stations. Consequently, the liquid
 

injected may not have broken up and evaporated as effectively as it did with
 

the eleven nozzles. The unevaporated drops may have formed the increased number
 

of nucleating sites necessary to decrease the amount of supercooling realized.
 

Because of this uncertainty due to the tunnel configuration change, the data
 

from the high pressure path of the M = 0.95 test will-not be presented in 

further data comparison graphs. 

Implications of the Data
 

Condensation effects can be caused by three different modes of nucleation,
 

where nucleation is taken as the formation of a stable liquid droplet. The
 

three different modes are homogeneous, heterogeneous, and binary nucleation.
 

These three processes differ by the manner in which they overcome an energy
 

barrier to droplet formation and hence growth. In depth discussion of the
 

three types can be found in references 2, 3, 4, 10, 11, 12, and 13. The
 

different modes can briefly be summarized as follows.
 

Homogeneous nucleation can occur when the gas undergoes supercooling, which
 

will decrease the energy barrier to liquid droplet formation. When enough
 

supercooling occurs, the gas molecules will be able to overcome the energy
 

barrier to droplet formation and massive nucleation rates are likely. Hetero­

geneous nucleation may occur when there are liquid or solid impurities
 

suspended in the vapor at the time the flow first expands past the vapor­

pressure curve and begins to supercool. The energy barrier of formation,
 

which is so important for homogeneous condensation, is not so significant here
 

because the impurities can act as a catalyst for the condensation process.
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Consequently, little or no supercooling is needed before stable droplet growth
 

occurs. What prevents heterogeneous nucleation from always dominating the
 

homogeneous process is that it requires extremely large concentrations of
 

impurity sites to influence the flow as was pointed out by Wegener and Mack
 

in reference 2. The third type of nucleation possible is binary. This process
 

occurs when a mixture of two different gases condenses into droplets which are
 

composed of both types of molecules. The binary process is discussed
 

specifically in references 10 to 13. The combination of the two species can
 

effectively change the energy barrier to nucleation in such a manner that 

condensation will occur earlier than analysis would predict for either of the 

species acting singly.
 

The data from the present experiment does seem to suggest which nucleation
 

process might have occurred. First, no condensation seems to be occurring until 

at least 7 K of supercooling has taken place at the M. location. If binary 
max 

nucleation is occurring with some sort of impurity vapor in the nitrogen used 

for cooling the tunnel, then its effects were either undetectable or occurred 

at low enough temperature to be confused with homogeneous or heterogeneous 

nucleation of the nitrogen test gas. The purity of the liquid nitrogen injected 

for cooling was approximately 99.95 percent in the present experiments, so it is 

assumed that binary nucleation would be unlikely. Second, none of the orifice 

onset Tt versus x/c plots show any systematic trend toward condensation first 

appearing in the region of maximum supercooling, which is the region of high 

local Mach number. Since the amount of supercooling is so important for 

homogeneous nucleation, these results do not seem consistent with what one would 

expect if homogeneous nucleation was occurring. In fact, there seems to be no 
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generally preferred location over the airfoil for effects to occur. 
Hence the
 

effects may actually be the result of heterogeneous nucleation occurring upstream
 

of the model in the test section. Under these circumstances the airfoil would
 

experience the influence of these droplets over its length at about the same 
Tt 

although local sensitivity to the condensate in the free-stream may vary over the 

airfoil because of differences in ML or pressure gradient. If condensate in 

the free-stream is the cause of the effects, the possible source for the impurity 

sites could be the injected liquid nitrogen used for cooling the tunnel. At the
 

very low temperatures of these tests, the injected liquid may not be completely
 

evaporating in the time it takes to travel from the injection stations to the
 

test section (see figure 2). The partially evaporated droplets may provide the
 

high concentration of nucleation sites needed for heterogeneous condensation.
 

Some evidence for heterogeneous nucleation from unevaporated drdnlets in the
 

free-stream comes from figures 34 and 35, which show stronger correlation
 

between the onset of effects and M than the onset of effects and ML 

max
Further evidence comes from the smaller amount of supercooling realized with
 

the high pressure path of the M = 0.95 path. Because the configuration without
 

spray bars is less efficient at breaking up the injected liquid nitrogen, it
 

would seem that the smaller amount of supercooling was due to an increased 

number of liquid drops on which condensation growth could occur. Light 

scattering tests should be made in the test-section to determine conclusively
 

if indeed there are unevaporated .injection droplets. 

Comparison to Other Works
 

While it appears that heterogeneous nucleation is the cause of condensation
 

in the present experiments, most of the previous condensation investigations have
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concentrated on homogeneous nucleation. Some of these investigations were
 

c
qoncerned with nitrogen gas, and two references, 14 and 15, will be used here
 

for comparison to the present data. A traditional means of presenting onset of
 

effects data is in the lOglo p vs. T plane. As mentioned in the previous
 

section, there is some question as to the process of nucleation and hence in
 

the relevant condition to plot in the log1 0 p vs. T plane. For the present
 

comparisons, it was decided to use the static values of p and T as calculated
 

for the ML condition because regardless of the source of the effects, this
 
max
 

amQunt of supercooling was realized in the region of maximum local Mach number
 

before effects were detected.
 

Using the log10 p vs. T format, the present results can be compared with
 

the analytical nitrogen-gas work done by Sivier in reference l. His computer
 

cqmputations assumed homogeneous nucleation and used classical liquid droplet
 

theory. An unpublished curve fit by Adcock to Sivier's calculated onset points
 

for conditions of higher pressure and lower onset Mach number has been plotted
 

along with the present onset conditions in figure 36, where Adcock's curve- fit
 

is represented by
 

10-2 
1 1.461 x 4.,962 x 10 3 
1 0 p + 2- x lOg 1.959 x (2) 

T e 910 P+ 1959x 1 xClog10 p 

There is good agreement in trends between the curve fit to Sivier's prediction 

and the present results although the present onset points fall closer to the 

vapor-pressure curve than predicted. If Sivier Is calculations are accurate. the 

results would imply that effects are occurring earlier than predicted for
 

homogeneous nucleation. Again, heterogeneous nucleation would be consistent
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with the data. However, many of the M = 0.85 and 0.95 onset points do 

approach Sivier's onset line for homogeneous nucleation. If heterogeneous 

nucleation is indeed occurring then significantly more supercooling may not be 

possible for the M. = 0.85 and 0.95 tests even if the impurity sites were 

eliminated and homogeneous nucleation took place. 

The present results can also be compared to previous experimental results. 

Goglia in reference 15 has taken data that shows nitrogen onset in the same
 

static pressure and temperature range as considered in the present study. 

When Goglia's data and the present experimental data are plotted together,
 

as in figure 37, the agreement is especially good considering the fact that the
 

present data consisted of subsonic and supersonic onset points over a 0.137-m
 

airfoil and Goglia's work consisted of rapid expansions in a 0.31 4-m long nozzle a
 

onset at Mach numbers from 2.0 to 3.25. Although one would normally expect 

more supercooling with the larger velocity gradients in the nozzle, it does
 

not show up in the data comparison. In fact, the trend of Gcglia's data falls
 

close to the present M. = 0.75 data but seems to have somewhat less super­

cooling than was experienced during the present M = 0.85 or 0.95 data. Goglia
 

states in his conclusion that the condensation he detected 

appeared to be the result of the self-nucleation, or homogeneous condensation, 

of the nitrogen test gas. However, the gas used by Goglia was only 95 percent 

pure nitrogen and contained a 5 percent impurity of oxygen. Even though this 

fact was well recognized and investigated by Goglia, there may be some effects 

of heterogeneous nucleation on his onset points. (Arthur and Nagamatsu in 

reference 6 detected a mild decrease in supercooling of about 1 to 2 K for a 

5 percent oxygen impurity.) 
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Whether or not the condensation in the present investigation was the result
 

of heterogeneous or homogeneous nucleation, it appears that the magnitude of the
 

supercooling is comparable to what others have seen or predicted in the same
 

pressure range.
 

Benefits Realized
 

One of the primary motivations for the present experiments was to determine
 

the increase in Reynolds number capability that might be possible when testing 

an airfoil with supercooled flow. This increase was determined for the NACA
 

0012-64 airfoil and figure 38 shows the percent increase realized at the tem­

perature at which condensation effects were first detected. The percent increase
 

was calculated by (1) dividing Rc corresponding to Pt and Tt at onset
 

by Rc corresponding to Pt at onset but with Tt being that which just allows 

local saturation, (2) subtracting one from the resulting ratio, and (3) multiplying 

by one hundred. As can be seen in figure 38, the M = 0.75 test realized the 

smallest percent gain in capability at 7%, while the M = 0.95 test realized 

the largest at 19%. The M = 0.75 and 0.85 tests appear to show a decrease in 

gain with increasing Pt, while a trend for the M = 0.95 test cannot 

easily be predicted because of -the lack of a high pressure path data point. 

Error bars shown are calculated from the uncertainty in the value of Tt for the 

onset of condensation effects over the airfoil. 

The second motivation for the present experiment was to determine percent 

decreases in drive fan power required and in the amount of liquid nitrogen (LN2) 

injected when unit Reynolds number is held constant and the supercooling is 

utilized to decrease both Pt and Tt. Since the energy required for producing 
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the amount of LN2 injected is much greater than the energy used by the drive fan, 

reductions in direct operating costs while at test conditions will be much 

closer to the percent decrease in LN2 required than to the decrease in drive 

fan power required. 

The decrease in drive fan power realized is shown in figure 39. The 

trends are, of course, similar to the increase in Reynolds number capability 

shown in figure 38. For M = 0:85 the decrease in drive power required varied 

from 21% at low pressure to about 19% at the high pressure end. Decreases of 

23 and 25% were found for the two low pressure paths in the = 0.95 test. 

The decrease in LN2 required to absorb drive fan heat is shown in figure 40.
 

For an insulated tunnel such as the Langley 0.3-m tunnel, the injected LN2 

required to absorb the heat flow into the tunnel through the tunnel shell 

insulation is relatively constant ov&r the temperature range of the present tests 

and is only on the order of I percent or less of the amount required to absorb
 

the heat of the drive fan. Consequently, heat leakage through the shell, has 

no effect on figure 40 and has not-been included. For the Mk - 0.T5 test, the 

reductton in LN2 required varied from 1% down to 9% at "the higher pressures. 

For'Mb = 0.85, the reduction varied from 17% at the lower pressures to 15% 

at the higher pressures. The M = 0.95 test had a reduction high of 20% 

and a low Of 18%. 
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CONCLUDING REMARKS
 

An experimental program was undertaken to determine the onset of conden­

sation effects in the pressure distribution about a 0.137-m NACA 0012-64 

airfoil tested in the Langley 0.3-m transonic cryogenic tunnel at free-stream 

Mach numbers of 0.75, 0.85, and 0.95 over a total pressure range from 1;2 to 5;0 

atmospheres. -Orifice pressure measurements were recorded at 5% chord intervals 

and were analyzed to determine the total temperature at which deviations first 

occurred in the orifice pressure coefficient.
 

The onset of condensation effects were found to correlate more with the
 

amount of supercooling in the free-stream than with the supercooling in the
 

region of maximum local Mach number over the airfoil. Effects in the pressure
 

distribution over the airfoil were generally seen to appear over its entire
 

length at nearly the same total temperature. Both observations suggest the
 

possibility of heterogeneous nucleation occurring in the free-stream.
 

Comparisons of the present onset results are made to calculations by Sivier
 

and data by Goglia.
 

The potential operational benefits of the supercooling realized were
 

analyzed in terms of increased Reynolds number capability at a given tunnel 

total pressure, reduced drive fan power if Reynolds number is held constant, 

and reduced liquid nitrogen consumption if Reynolds number is again constant. 

Depending on total pressure and free-stream Mach number, these three benefits 

are found to respectively vary from 7 to 19%, 11 to 25%, and 9 to 20%. Since 

operating costs at typical test conditions are approximately 10% due to fan 

drive-power and 90% due to liquid nitrogen injection, reduction in operating 
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costs will be very close to the percentage reduction in liquid nitrogen con­

sumption. 

Although the present experimental data form a preliminary basis for 

predicting minimum operating temperatures for nitrogen-gas wind tunnels, it is 

just one of several steps that are needed for a more complete understanding of
 

the problem. More work is needed in the following areas: tests of other airfoil
 

pressure distributions to determine the sensitivity of the onset of condensation
 

effects to different local velocities and gradients, experiments designed to
 

determine conclusively if condensation is caused by homogeneous or heterogeneous
 

nucleation, studies to determine scaling effects so that the present results may
 

be extended to other sizes of tunnels, and studies to extend the results to
 

higher total pressures. 
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APPENDIX A
 

DATA ANALYSIS PROCEDURE
 

Because of the importance of the data reduction technique upon the detection
 

of the onset of condensation effectsi this appendix is included in order to
 

describe in detail the M1 correction procedure and to explain the procedure
 

for determining airfoil onset Tt . Examples of the various steps are included
 

for the b= 0.85 and Rc = 16 million path.
 

The Mb correction procedure was employed in order to take out as much
 

Mach number effects as possible when comparing C 's along a path of constant p 

M and Ra. While M0 was nominally constant along a path, many pressure 

distributions were recorded at values of 'M1 that varied from the nominal value 

by ±.010o To determine if a M0, dependence did exist at a given x/d location; 

a linear regression technique was applied to condensation-free values of C
P
 

plotted as a function of M.. In this manner, if there was a correlation
 

between Cp and M , all of the data could be corrected to a single value of
 

M . If there was little correlation between C and M , then a weak dependence
 

was assumed to exist and no correction was assumed necessary. Thus all the
 

data along a given path of constant M ~cand R could be utilized, 

The first step of the M correction procedure is to apply a linear
 

regression technique to values-of C at a given x/c as a function of M..

P . 

Using standard definitions as found for example in reference 16, the slope 

of the linear regression fit would be given by
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n 
S(Mi - )(C - p) 

m=1 ip (Al) 

i=l i
 

where
 

n 
Z M. 

R- i=l ± (2)
Co n 

and
 

n 
Z C
 

i=l Pi (3) 

p n 

The correlation coefficient, r, which is an indication of goodness of fit is
 

given by
 

n 
S (M W - )(c - ) 

r- 1 (A4) 
- ,)2
(M (C
 

1S n (0 2 
i1 i l P 

where if r = 0 there is no correlation and if Irl = 1 then there is perfect
 

correlation. For the present analysis if Irl > 0.5, then the correlation is
 

considered strong enough to use m in correcting a given M. to another
 

value. If Irl < 0.5, the dependence between C and M is considered weak,
p 

and m is assumed to be zero. Three examples of various values of r are 

shown in figure hi for the M = 0.85 and Re = 16 million path. Figure 4i(a) 

shows the value of Cp for x/c = 0.00 (the orifice at the leading edge of 

the airfoil) as a function of M. In this case r = 0.15 and, indeed, there 

seems to be little correlation between M and C . Consequently, no attempt 
p 
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is made to manipulate or correct this data for small differences in M.
 

Figure 41(b) shows the values of C for x/c = 0.40 as a function of MM.
 

In this case r = 0.49, and so this linear curve fit barely fails to meet the
 

correiation test. Figure 41(c) illustrates the values of CP for x/c = 0.80
 

that lead to a value of r equal to 0.92. As seen in figure 41(c), there is
 

good correlation between C and M., and differences in C due to'differences
 

in M can be removed by correcting values of C to a given M by setting 
p 
 0
 

C = C - m • (M - MW ) (A5) 

where C is the corrected value of C and m is the slope of the linear
P0 P
 

fit. Again, m is assumed to be equal to zero if Irl < 0.5.
 

Once the linear regression technique has been applied to the values of C
P
 

for each orifice along the path, a set of intermediate graphs are drawn before
 

the airfoil onset Tt is determined. For each orifice a value of AC is
 

plotted as a function of Tt where
 

AC = C - C
 
P PO Pave 
 (A6)
 

In equation (A6), C is corrected with respect to M and C is an
 
Po Pave
 

average of condensation-free values of C for that orifice. (Condensation­

free values were determined by establishing crude onset values of without
Tt 


the benefit of correction procedures and then adding at least a 2 K temperature
 

buffer. Final onset values of T were then checked to insure that C
 
t Pave
 

was indeed free from condensation effects.) An example of a AC vs. Tt
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with and without correction is shown in figure 42 for x/c = 0.80 and where
 

r = 0.92. Figure 42(a:) shows the uncorrected data while figure 42(b) shows the 

values of C after being corrected. As can be seen, considerable "order" is 
p 

added to the data by the correction process and this "order" permits easier 

identification of the Tt at which Cp at this x/c locatdoff begins to 

depart from its unaffected average value. Not always, however, was Irl > -5 

and so this simplification was not always possible. Graphs similar to fig­

ures 42(a) or 42(b) are then drawn for each orifice location over the airfoil.
 

These graphs are used to determine at what each of the orifices first
Tt 


experience systematic departure from its unaffected average value of CPO
 

These orifice onset temperatures are then plotted as a function of x/c
 

as was shown in figure 20. These orifice onset T vs. x/c plots are the
 
t
 

key analysis graphs because they provide an overview of the effects on the
 

airfoil as a whole. There is experimental uncertainty in the onset point for
 

each orifice and consequently it is helpful to see all of the orifice onset
 

Tt's together so that a particularly low or high value can be checked for
 

possible error. The airfoil onset 
Tt is not taken to be an average of
 

orifice onset. Tt's
 , but rather is taken to be the warmest orifice onset Tt
 

that appears systematic. Uncertainty bars are normally drawn to encompass
 

the highest orifice onset Tt, whether the deviation appears systematic or not.
 

The data analysis procedure described herein was more sensitive'to
 

condensation onset than previous analyses described in references 17, 18 and
 

19. In references 17 and 18 pressure distributions were superimposed to detect
 

differences - no correction was made to Cp for differences in M and,
 

consequently, much of the data could not be used. Reference 19 utilized the
 

AC vs. T format at 0, 25, 50, and 75 percent chord locations but still did
 
p t 

not include the Mach correction technique.
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APPENDIX B
 

ERROR ANALYSIS FOR ACp VS. Tt -GRAPHS 

During the present experiment, fluctuations in wind tunnel conditions were
 

the prime source of error during the 50 second period required to record the data. 

Tunnel conditions were observed to fluctuate with standard 

deviations of the following approximate magnitudes: aPt of +.005 atm (varied with Mand 

R ); am of ±.003; and oTt of ±0.5 K. The manufacturer's stated uncertainty in
 

the static pressure measurements' Ap, was 0.5% of full scale. A representative
 

standard deviation for AC due to these fluctuations is calculated herein
 
p
 

using normal error propagation techniques, see reference 20 for example.
 

As defined in equation (A6),
 

ACp = C - C (A6)
P o Pave
 

in which C is the value of the pressure coefficient, corrected to-some
 
P0
 

value of free-stream Mach number, M, from data taken at a free-stream
 
0 

Mach number of M. The correction is defined as
 

C = C -m ( - M) (A5) 

where m is the slope of the linear regression fit as defined in equation (Al).
 

If sufficient correlation, r, as defined in equation (A),is not found, m
 

is assumed to be equal zero. Since CPave is just the average of the corrected
 

condensation-free data, the variance of C can be approximated by

Pave
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C 

2 
C
 

2 PO (Bi) 
Pave
 

where N would be the number of samples used in the average. The variance of
 

can be written from equation (A5) as
 
* Po
 

2 2 2 
aC =aC +aF (B2) 

PO P 

where F is defined as
 

F = m(M. - MW )(B3) 
-0 

Assuming there is much more relative error in (M - M ) than m, the variance 
0 

in F will be primarily due to the variance in the difference in Mach numbers. 

Since M. is an arbitrarily defined constant, we may write' 
0 

2 22 
(B4)aF ma,,. 

Consequently, equations (A5), (A), (Bi), (B2), and (B3) lead to 

2A N -lU2 + m~ca (B5) 

It now remains to discuss , the variance associated with error in the 
'p
 

values of C before Mach correction. The value of C is defined as
 
p p 

p - p0C = (B6) 

ORIGflN' PAGE IS 
OF pOOR QUALITY 
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Though C is strictly a function of R and M as Schlichting explains in
P 

reference 21, the calculated value of C from an experiment may be sensitive
 

to errors or fluctuations in p, pt, Tt, and M.. -In other words, one must
 

distinguish between actual Cp, Cp (act), and calculated Cp, Cp (cal). During
 

the present experiment, the prime difference between C (act) and C (cal)
P P 

was lack of simultaneity - tunnel conditions were recorded at some time t and 

the static value of p at an orifice may have been recorded at a time up to 50 

seconds later. Calculation of the impact of all the fluctuations upon the 

possible error in C (cal) will be presented below except for the dependence
P 

of Cp (cal) on T . Since Tt only enters the dependence of Cp (cal) through 

R, and since the R dependence was weak, no error in Cp due to Tt was 

calculated. An equation for the variance of C can be written as 

C2 2 C2 

2 (cal) 20 + 2 a 2 

The next three sub-sections describe the calculation of the partial derivatives.
 

SCp(cal) 
Solving for pt, R, x 

Equation (B6) can be rewritten as
 

p
p0tc)= q (B8) 

Pt 
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Since 14 and R are held constant during the process, then C (act), -, 

q. p Pt 

and - all remain constant. Thus for a Pt fluctuation, equation (B8) 
Pt
 

yields
 

P Constant (B9)

Pt
 

or that
 

3p 114 R (Blo) 
t ,, c Pt 

Now, turning back to Cp(cal) and remembering that pt, p. and thus ql
 

are all recorded at some time t and theh p is recorded later at some t,
 

equation (B8) can be written as
 

P.
 
p - 1
 

Cp (cal) Pt= Pt (Bll)
 

pp
 
Pt1
 

so that
 

DC (cal) (Bl2) 
c 1 Pt , c 

or with equation (Blo) and dropping the subscripts 'T'
 

DC (cal)
 

-(BI3)
I x = 
,c qPt 
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Assuming the isentropic relation for a perfect gas with its ratio of specific
 

heats equal to 1.14, equation (B13) can be written as
 

DC-(cal) 1 (C + 1 ) (B14) 

apt 

Solving for ap(cal)
 

This partial derivative is found when the linear regression step in the
 

Mach correction technique is performed as outlined in appendix A. The
 

value of 30 (cal) is equal to the value of the slope, m,
 

30 (cal) = 	 (B15) 
(Bl5 

because m is just the linear regression fit to calculated values of C
 

p 

As before, when the correlation coefficient, r,
as a function of M .
 

does not reflect good correlation, then Cp (cal), 	like m, will be assumed
 

equal to zero.
 

Solving for a
 
x


3Ap I pttoRDM c 

This is just the simple case where Cp(cal) is in error because of
 

instrument error in p. That is,
 

(B16)
p(cal) = p(act) + Ap 


so
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Consequently,
 

30 (cal) 
 B7
 
3Ap q.
 

or in terms of M and Pt for the isentropic flow of a perfect gas with a
 

ratio of specific heats equal to 1.4
 

Bi)3
 

(i +
3C (cal) 

_ (B18) 

3Ap . MPt2
 

At this point, all of the partial derivatives in equation
 

(B7) are known and can be combined with the observed or known values of
 

rPt , ,aand aAp . The value of a p was first taken to be the
 

manufacturer's value of 0.5 percent of full scale, but this value gave a
 

contribution to the error bar in C that was on the order of 10 times
 
p 

the actual fluctuations in C . Apparently the two pressure transducersP 

performed with much better precision than expected. In fact, instead
 

of the expected respective uncertainties of 0.0170 and 0.0085 atm for
 

the M = 0.75, 0.95 and the M = 0.85 tests, the uncertainties were on the
 

order of .0004 and .0002 atm, respectively. These low magnitudes in Ap
 

made the contribution of the instrument error to the total error negligible. 

Assuming isentropic relations for a perfect gas with the ratio of 

specific heats equal to 1.4 and assuming a is negligible, equations
.AP 

CB5), (B7), (BI4), and (B15) can be combined to give
 

2 1 2 2 2 
= (N + i) {t(c +- P 2 a 4 (B20) 

pC N p 7e .t tM 

The error bars used in the ACp vs. Tt graphs in the data analysis procedure
 

were calculated with the above value of AC
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Figure 1.- Effect of temperature reductioi for M. = 1.0, constant Pt 

and 'constant reference length. 
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Figure 2.- Schematic of Langley 0.3-m transonic cryogenic tunnel. 
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Figure 3.- Two dimensional NACA 0012-64 airfoil has orifices 
spaced at 5 % chord locations. trailing edge orifice 
was added for tests with M. = 0.75 and 0.95. 
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Figure 13.- Orifice onset T 's and resulting airfoil onset Tt for the 
41 x 106 path of the M = 0.75 test. 
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Figure 14.- Onset of condensation effects for M = 0.75 test. 
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