Rotorcraft Linear Simulation Model
Final Report

Volume II. Computer Implementation

By J. S. Reaser
D. H. Saiti

January 1978

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS2-9374 by
LOCKHEED-CALIFORNIA COMPANY
P. O. Box 551
Burbank, California 91520

for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Moffett Field, California 94035
This report describes a generalized format rotorcraft small perturbation linear model in three volumes (Vol. I Engineering Documentation, Vol. II Computer Implementation, Vol. III User's Manual). Rotor flap, inplane and feathering degrees of freedom, as well as control and augmentation systems are defined in addition to the classical vehicle six degrees of freedom. The primary application is intended to be an analytic tool to assess the handling qualities of a dynamically combined main rotor and body. The modeling method retains the higher frequency response properties which aid in evaluating control and stability augmentation systems.
FOREWORD

This report describes a generalized rotorcraft small perturbation, linear model and associated computer software which have been refined and documented for NASA, Ames Research Center, Moffett Field, California, under contract NAS2-9374 (November, 1976) as amended Revision (1) (May, 1977). This work has been performed by the Lockheed-California Company, Burbank, California.

Dr. R.T.N. Chen of the Ames Directorate, U.S. Army Air Mobility Research and Development Laboratory (USAAMRDL) was the technical monitor for this project. P.H. Kretsinger, D.H. Saiki and H.P. Weinberger (all of Lockheed-California Company) performed the software implementation of the linear model and matrix processing routines. A. J. Potthast and Fox Conner (also Lockheed personnel) provided technical assistance and technical editing of the documentation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>3</td>
</tr>
<tr>
<td>1 PACKAGE ORGANIZATION</td>
<td>15</td>
</tr>
<tr>
<td>1.1 FLOW CHART</td>
<td>15</td>
</tr>
<tr>
<td>1.2 OPERATION MODES</td>
<td>15</td>
</tr>
<tr>
<td>1.2.1 Trim</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2 Derivatives</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3 Matrix Formulation</td>
<td>17</td>
</tr>
<tr>
<td>1.2.4 Control Systems Analysis Package (CSAP)</td>
<td>17</td>
</tr>
<tr>
<td>1.2.4.1 Modes of Operation</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4.2 Matrix Operations</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4.2.1 Formation of the state matrix</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4.2.2 QR double iteration</td>
<td>21</td>
</tr>
<tr>
<td>1.2.4.2.3 Definition of the QR iteration</td>
<td>21</td>
</tr>
<tr>
<td>1.2.4.2.4 The double QR iteration</td>
<td>22</td>
</tr>
<tr>
<td>1.2.4.3 Output Description</td>
<td>23</td>
</tr>
<tr>
<td>1.2.4.4 Data Storage</td>
<td>24</td>
</tr>
<tr>
<td>1.3 SUBROUTINES</td>
<td>25</td>
</tr>
<tr>
<td>1.3.1 CPUNCH</td>
<td>26</td>
</tr>
<tr>
<td>1.3.2 DERIVE</td>
<td>26</td>
</tr>
<tr>
<td>1.3.3 DPQFB</td>
<td>27</td>
</tr>
<tr>
<td>1.3.4 DPRBM</td>
<td>29</td>
</tr>
<tr>
<td>1.3.5 EIGVAL</td>
<td>30</td>
</tr>
<tr>
<td>1.3.6 EIGVEC</td>
<td>31</td>
</tr>
<tr>
<td>1.3.7 FREQR</td>
<td>32</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1.3.8</td>
<td>GELG</td>
</tr>
<tr>
<td>1.3.9</td>
<td>HSBGNM</td>
</tr>
<tr>
<td>1.3.10</td>
<td>INFLOW</td>
</tr>
<tr>
<td>1.3.11</td>
<td>MAIN</td>
</tr>
<tr>
<td>1.3.12</td>
<td>MATRIX</td>
</tr>
<tr>
<td>1.3.13</td>
<td>MODEL</td>
</tr>
<tr>
<td>1.3.14</td>
<td>NWMTRX</td>
</tr>
<tr>
<td>1.3.15</td>
<td>PDATE</td>
</tr>
<tr>
<td>1.3.16</td>
<td>PKDATA</td>
</tr>
<tr>
<td>1.3.17</td>
<td>PLXDIV</td>
</tr>
<tr>
<td>1.3.18</td>
<td>PLYFRM</td>
</tr>
<tr>
<td>1.3.19</td>
<td>POLRT</td>
</tr>
<tr>
<td>1.3.20</td>
<td>POWER</td>
</tr>
<tr>
<td>1.3.21</td>
<td>PRINT</td>
</tr>
<tr>
<td>1.3.22</td>
<td>PRINTR</td>
</tr>
<tr>
<td>1.3.23</td>
<td>PROD</td>
</tr>
<tr>
<td>1.3.24</td>
<td>QR</td>
</tr>
<tr>
<td>1.3.25</td>
<td>RDMTRX</td>
</tr>
<tr>
<td>1.3.26</td>
<td>READIN</td>
</tr>
<tr>
<td>1.3.27</td>
<td>ROOT</td>
</tr>
<tr>
<td>1.3.28</td>
<td>RTEST</td>
</tr>
<tr>
<td>1.3.29</td>
<td>RTPOLY</td>
</tr>
<tr>
<td>1.3.30</td>
<td>STMTRX</td>
</tr>
<tr>
<td>1.3.31</td>
<td>TIMEN</td>
</tr>
<tr>
<td>1.3.32</td>
<td>TRIM</td>
</tr>
<tr>
<td>1.3.33</td>
<td>VECTOR</td>
</tr>
<tr>
<td>1.3.34</td>
<td>XMAX</td>
</tr>
<tr>
<td>1.3.35</td>
<td>XMIN</td>
</tr>
<tr>
<td>1.3.36</td>
<td>XPLOT</td>
</tr>
<tr>
<td>1.3.37</td>
<td>YPLOT</td>
</tr>
<tr>
<td>1.3.38</td>
<td>ZPLOT</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>2 COMMON/SUBROUTINE DIRECTORY</td>
<td>63</td>
</tr>
<tr>
<td>3 COMPLETE SOURCE LISTING</td>
<td>68</td>
</tr>
<tr>
<td>4 REFERENCES</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure

1-1 Linear Model Flow Chart
1-2 Time History Integrator Format
2-1 Linear Model Subroutine Hierarchy

Page

16
57
64
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Subroutine Directory</td>
<td>65</td>
</tr>
<tr>
<td>2-2</td>
<td>COMMON Directory</td>
<td>67</td>
</tr>
</tbody>
</table>
SUMMARY

This report describes a generalized format rotorcraft small perturbation linear model. Rotor flap, inplane and feathering degrees of freedom, as well as control and augmentation systems are defined in addition to the classical vehicle six degrees of freedom. The model simulates a single main rotor aircraft although it can be readily expanded to simulate compound aircraft with auxiliary thrust and wings. The analysis concept can also be expanded to model multiple lifting rotor configurations.

This report is divided into three volumes. The first volume contains the development of rotorcraft mechanical and aerodynamic equations. The second volume presents the description of a computer program that can be used to process the equations. The third volume contains the computer program operating instructions and defines the input-output data format.

The model development and application assumes that the main rotor control power, i.e., body moment due to blade flapping, has been established analytically or experimentally. These data are used to define the equivalent spring rate of the main rotor to body coupling.

The primary application is intended to be an analytic tool to assess the handling qualities of a dynamically combined main rotor and body. To this end, the rotor degrees of freedom appear explicitly rather than being included in the classical six degrees of freedom through a quasi-steady reduction process. The higher frequency response properties of the rotor are retained, and appear in the handling qualities assessment. Control and stability augmentation systems are therefore evaluated more realistically. The model does not address the area of rotor dynamic stability.
The model has been implemented in IBM 360 and CDC 7600 series computer systems. The IBM 360 implementation includes graphic as well as tabulated output capability.
SYMBOLS

a rotor blade section lift slope, rad\(^{-1}\)

a\(_{HT}\) horizontal tail lift slope, rad\(^{-1}\)

a\(_{VT}\) vertical tail lift slope, rad\(^{-1}\)

a\(_{W}\) wing-body lift slope, rad\(^{-1}\)

a\(_{o}\) blade collective flap up angle, rad

a\(_{l}\) longitudinal flap (up, forward) angle, rad

A area, ft\(^2\); blade span axis

A\(_{l}\) longitudinal feather (nose up, forward) angle, rad

AR aspect ratio

b wing span, ft

b\(_{l}\) lateral flap (down, right) angle, rad

B dissipation function, ft-lb/sec; tip loss factor; body
 subscript; blade subscript; blade chord (aft) axis

B\(_{l}\) lateral feather (nose down, right) angle, rad
c

cosine component subscript; blade element chord, ft; wing chord, ft

\(\bar{c} \)

wing mean chord, ft

C

blade vertical (down) axis

\(C_D \)

drag coefficient

\(\bar{C}_D \)

drag coefficient, input value

\(C_F \)

control gyro fixed coordinate damping rate, ft lb/rad/sec

\(C_L \)

lift coefficient

\(C_M \)

pitching moment coefficient

\(C_R \)

control gyro rotating coordinate damping rate, ft lb/rad/sec

\(C_Y \)

body-wing side force coefficient

CG

center-of-gravity subscript

\(\left(\frac{C_N}{\sigma} \right)_R \)

nondimensional rotor thrust, disc axis

\(\left(\frac{C_Q}{\sigma} \right)_R \)

nondimensional rotor torque, shaft axis

\(\left(\frac{C_X}{\sigma} \right)_R \)

nondimensional rotor drag, shaft axis

\(C_{\delta cc} \)

cosine axis cyclic fixed system damping rate, ft lb/rad/sec

\(C_{\delta cs} \)

cross axis cyclic fixed system damping rate, ft lb/rad/sec
$C_{\delta ss}$ \hspace{1cm} \text{sine axis cyclic fixed system damping rate, ft lb/rad/sec}

d_0 \hspace{1cm} \text{collective blade lag angle, rad}

d_1 \hspace{1cm} \text{longitudinal blade inplane (lag, forward) angle, rad}

D \hspace{1cm} \text{rotor disc value subscript}

e_1 \hspace{1cm} \text{lateral blade inplane (lag, right) angle, rad}

E_X \hspace{1cm} \text{longitudinal rotor inflow gradient}

E_Y \hspace{1cm} \text{lateral rotor inflow gradient}

f_1(X) \hspace{1cm} \text{main rotor to wing wake effectiveness function}

f_{1b} \hspace{1cm} \text{first flap mode shape (fundamental mode), ft}

f_{2l} \hspace{1cm} \text{second inplane mode shape (fundamental mode), ft}

F \hspace{1cm} \text{fuselage subscript; reference axes; force, lb}

g \hspace{1cm} \text{gravity vector, ft/sec}^2

h \hspace{1cm} \text{height of main rotor hub above fuselage reference axes, ft}

h_{TR} \hspace{1cm} \text{height of tail rotor shaft above fuselage reference axes, ft}

h_{VT} \hspace{1cm} \text{vertical tail center of pressure height above fuselage reference axes, ft}

H \hspace{1cm} \text{main rotor hub reference subscript}

HT \hspace{1cm} \text{horizontal tail subscript}
i

induced value subscript

\(I_A \)

blade feathering moment of inertia about the feathering hinge, slug ft2

\(I_{AB} \)

blade flap-chord product of inertia about flap and feathering hinges, slug ft2

\(I_{AC} \)

blade inplane-chord product of inertia about inplane and feathering hinges, slug ft2

\(I_B \)

blade flap moment of inertia about flap hinge, slug ft2

\(I_C \)

blade inplane moment of inertia about inplane hinge, slug ft2

\(I_{SP} \)

blade flap-inplane product of inertia about flap and inplane hinges, slug ft2

\(I_{XX} \)

helicopter roll moment of inertia, slug ft2

\(I_{XZ} \)

helicopter roll-yaw product of inertia, slug ft2

\(I_{YY} \)

helicopter pitch moment of inertia, slug ft2

\(I_{ZZ} \)

helicopter yaw moment of inertia, slug ft2

\(K \)

spring rate (general), ft lb/rad

\(K_F \)

control gyro fixed coordinate spring rate, ft lb/rad

\(K_{FB} \)

flap feedback spring rate, ft lb/rad
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_R</td>
<td>control gyro rotating coordinate spring rate, ft lb/rad; pitch link stiffness, lb/ft</td>
</tr>
<tr>
<td>K_{RUD}</td>
<td>rudder pedals to tail rotor collective gear ratio</td>
</tr>
<tr>
<td>K_{XCS}</td>
<td>longitudinal cyclic input gear ratio or spring constant</td>
</tr>
<tr>
<td>K_{YCS}</td>
<td>lateral cyclic input gear ratio or spring constant</td>
</tr>
<tr>
<td>K_{6cc}</td>
<td>cosine axis control gyro spring rate, ft lb/rad</td>
</tr>
<tr>
<td>K_{6cs}</td>
<td>cross axis control gyro spring rate, ft lb/rad</td>
</tr>
<tr>
<td>K_{6ss}</td>
<td>sine axis control gyro spring rate, ft lb/rad</td>
</tr>
<tr>
<td>K_{GO}</td>
<td>collective handle to collective control element gear ratio</td>
</tr>
<tr>
<td>l</td>
<td>length, ft</td>
</tr>
<tr>
<td>l_{GCOL}</td>
<td>control gyro to swashplate collective gear ratio</td>
</tr>
<tr>
<td>l_{GCYC}</td>
<td>control gyro to swashplate cyclic gear ratio</td>
</tr>
<tr>
<td>l_{HT}</td>
<td>length from fuselage reference axes to horizontal tail center of pressure, ft</td>
</tr>
<tr>
<td>l_{RC}</td>
<td>swashplate to feathering gear ratio</td>
</tr>
<tr>
<td>l_{TR}</td>
<td>length from fuselage reference axes to tail rotor shaft, ft</td>
</tr>
<tr>
<td>l_{VT}</td>
<td>length from fuselage reference axes to vertical tail center of pressure, ft</td>
</tr>
<tr>
<td>l_1</td>
<td>pitch horn crank arm, ft</td>
</tr>
</tbody>
</table>
l_2 swashplate crank arm, ft

l_3 pitch-flap coupling arm, ft

l_4 pitch-lag coupling arm, ft

L aircraft rolling moment, ft lb

m blade element mass, slug/ft

M aircraft mass, slugs; aircraft pitching moment, ft lb

ML_{IF} blade flap-radius moment of inertia, slug ft2

MR main rotor subscript

MY blade feathering mass moment, slug ft

M_{IF} blade flap mass moment, slug ft

M_{2L} blade inplane mass moment, slug ft

$M_\beta C$ cosine blade flapping moment, ft lb

$M_\beta o$ coning moment, ft lb

$M_\beta S$ sine blade flapping moment, ft lb

$M_{\beta c}$ cosine blade inplane moment, ft lb

$M_{\beta s}$ sine blade inplane moment, ft lb

\(\partial M_\beta /\dot{\beta}\) blade inplane damping, ft lb/rad/sec
number of blades; aircraft yawing moment, ft lb

initial value subscript; root value subscript; steady component subscript

instantaneous roll rate, rad/sec

initial roll rate, rad/sec

instantaneous pitch rate, rad/sec; generalized coordinate

generalized force

blade root flapping potential energy, ft lb

blade root feathering potential energy, ft lb

blade root inplane potential energy, ft lb

initial pitch rate, rad/sec

rotor shaft torque, ft lb

instantaneous yaw rate, rad/sec; blade radial distance, ft

main rotor blade radius, ft; rotor subscript

initial yaw rate, rad/sec

sine component subscript

shaft axes subscript; area, ft^2

horizontal tail area, ft^2
S_{VT}
vertical tail area, ft2

S_W
wing area, ft2

T
kinetic energy, ft lb; rotor thrust, lb

T_{TR}
tail rotor thrust, lb

TR
tail rotor subscript

u
instantaneous longitudinal velocity, ft/sec

U
potential energy function, ft lb

U_o
initial longitudinal velocity, ft/sec

v
instantaneous lateral velocity, ft/sec

V_o
initial lateral velocity, ft/sec

V_T
trajectory velocity, ft/sec

w
instantaneous vertical velocity, ft/sec

W
work function, ft lb; wing subscript

W_o
initial vertical velocity, ft/sec

x
nondimensional blade element radial position

X
instantaneous longitudinal axis

X_{cs}
longitudinal aft stick deflection
\(X_0 \) initial longitudinal axis

\(y \) blade element chordwise position to trailing edge, ft

\(Y_{\text{TR}} \) tail rotor hub lateral offset to right, ft

\(Y \) instantaneous lateral axis

\(Y_{\text{cs}} \) lateral right stick deflection

\(Y_0 \) initial lateral axis

\(Z \) instantaneous vertical (down) axis

\(Z_0 \) initial vertical (down) axis

\(\alpha \) angle of attack, rad

\(\alpha_s \) shaft angle of attack, rad

\(\epsilon_2 \) pitch-lag coupling

\(\beta \) blade flapping up deflection, rad

\(\beta_{\text{DR}} \) blade droop from feather axis, rad

\(\beta_s \) side slip angle, rad

\(\gamma \) climb angle, rad

\(\delta \) control gyro up deflection, rad; infinitesimal increment

\(\delta_c \) cosine component control gyro deflection, rad
\(\delta_c \) collective component control gyro deflection, rad

\(\delta_s \) sine component control gyro deflection, rad

\(\delta_3 \) pitch-flap coupling

\(\Delta \) swashplate up deflection, rad

\(\Delta_c \) cosine component swashplate deflection, rad

\(\Delta_o \) collective component swashplate deflection, rad

\(\Delta_s \) sine component swashplate deflection, rad

\(\epsilon \) wake angle function, rad

\(\zeta \) blade inplane lag deflection, rad

\(\zeta_{SW} \) blade root sweep forward, rad

\(\eta \) load factor

\(\theta \) pitch euler angle, rad; blade feathering motion, rad; 3/4 radius collective angle, rad

\(\theta_o \) root collective angle, rad; initial pitch attitude, rad

\(\lambda_0 \) nondimensional disc total inflow

\(\lambda_1 \) nondimensional induced inflow

\(\lambda_D \) nondimensional disc plane inflow

\(\lambda_s \) nondimensional shaft total inflow
\(\Lambda \) \hspace{1cm} \text{nondimensional rotor total vector velocity}

\(\mu \) \hspace{1cm} \text{velocity normalized to rotor 'tip speed, nondimensional}

\(\bar{\mu} \) \hspace{1cm} \text{vector nondimensional velocity}

\(\mu_P \) \hspace{1cm} \text{blade element nondimensional perpendicular velocity}

\(\mu_T \) \hspace{1cm} \text{blade element nondimensional tangential velocity}

\(\mu_X \) \hspace{1cm} \text{nondimensional forward velocity, reference axis system}

\(\mu_Y \) \hspace{1cm} \text{nondimensional right velocity, reference axis system}

\(\mu_Z \) \hspace{1cm} \text{nondimensional down velocity, reference axis system}

\(\rho \) \hspace{1cm} \text{air density, \text{slug/ft}^3}

\(\sigma \) \hspace{1cm} \text{main rotor solidity}

\(\sigma_{TR} \) \hspace{1cm} \text{tail rotor solidity}

\(\tau_{col} \) \hspace{1cm} \text{collective actuator time constant, sec}

\(\tau_{cyc} \) \hspace{1cm} \text{cyclic actuator time constant, sec}

\(\phi \) \hspace{1cm} \text{roll euler angle, rad}

\(\phi_0 \) \hspace{1cm} \text{initial roll attitude, rad}

\(\chi \) \hspace{1cm} \text{main rotor wake angle, rad}

\(\psi \) \hspace{1cm} \text{yaw euler angle, rad}
\(\psi_{FB} \) blade to control flap feedback lag angle, rad

\(\psi_{G} \) control gyro to swashplate lag angle, rad

\(\psi_{o} \) swashplate to blade lead angle, rad; initial heading, rad

\(\psi_{s} \) control axis lag angle, rad

\(\omega_{col} \) collective control natural frequency, rad/sec

\(\omega_{cyc} \) cyclic control natural frequency, rad/sec

\(\Omega \) main rotor speed, rad/sec

\(\Omega_{TR} \) tail rotor speed, rad/sec
SECTION 1
PACKAGE ORGANIZATION

The linear model subroutine package consists of members to generate a model matrix and those to perform linear analysis on the matrix. The analysis routines are a subset of a Lockheed in-house library analysis tool. Analysis capabilities pertinent to the linear model use have been retained. The outputs available are the characteristic roots, transfer function, frequency response, and time history response.

The model generation routines generate a set of trim conditions, determine a set of partial derivatives, and assemble the model matrix. This matrix is then passed to the analysis section of the package mentioned above.

1.1 Flow Chart

Figure 1-1 shows the computation blocks and information flow of the linear model. Operation modes and procedure details within the subroutines are expanded in the following sections.

1.2 Operation Modes

The linear model program can operate in two modes. First the routines operate as a stand alone matrix analysis package which processes a matrix dictated directly by the user. The sequence of operations in this mode is given in Section 1.2.4.

Otherwise a set of subroutines calculates a rotorcraft linear model in matrix form. The matrix generated in this second mode of operation is then processed in the same manner as a direct input of the first mode. The steps in generating
Figure 1-1. Linear Model Flow Chart
the matrix are to form a vehicle trim solution, generate a set of partials, and assemble the final matrix.

1.2.1 Trim

The trim procedure finds the balance of longitudinal and vertical forces and yawing moments. In the process the main rotor and tail rotor inflow velocities are also found. Trim balances longitudinal forces with angle of attack, and vertical forces are set with collective. The main rotor inflow is found by an inner, iterative computation loop. The yaw moments set the tail rotor thrust. An auxiliary iterative loop then finds the tail rotor induced inflow velocity.

1.2.2 Derivatives

With the trim solution in hand, the necessary aerodynamic partial derivatives are formed. These are made for the main rotor, tail rotor, wing-body, and tail. All these items are one pass calculations.

1.2.3 Matrix Formulation

The linear model matrix is formed using the trim and derivative results. The dynamic elements are calculated at the same time the aerodynamics are assembled. The result is 20 by 20, second order matrix stored as A, B, and C (constant) matrices. These are combined into a single array, which is then processed by the analysis portion of the package.

1.2.4 Control Systems Analysis Package (CSAP)

The control systems analysis package (CSAP) is designed to solve the set of simultaneous equations:

\[[A(s)] \{X\} = [B(s)] \{Y\} \]
where the elements of the A and B matrices are polynomials of the Laplacian operator, s. The solution of these equations is presented in transfer function form for which various options exist to perform additional analysis.

1.2.4.1 Modes of Operation - Besides the standard mode of operation of processing the rotorcraft small perturbation linear model matrix, there is an optional mode which allows CSAP to be used as a standalone package.

In this mode, the polynomial elements of the dependent and independent matrices are input directly to CSAP (see Section 1.3.2.3, RDMTRX) which then continues normal processing. Also in this mode, it is possible to change elements selectively of both the independent and dependent matrices, redefine the size of the dependent matrix, and to reprocess the revised matrices.

1.2.4.2 Matrix Operations - CSAP basically reduces a set of Laplace transformed differential equations from matrix form to transfer function form and provides a number of options encompassing operations on transfer functions typical of control systems analysis. Matrix manipulation operations are found in several of the routines - two of the more critical operations, the formation of the state matrix and the QR double iteration, are discussed in greater detail.

1.2.4.2.1 Formation of the state matrix - The basic operation described here involves the formation of a state matrix whose eigenvalues are identical in number and value to those of the input matrix.

The first operation is to expand the input matrix into two matrices: D and E which satisfy the equation:

\[|Ds + E| = |A(s)| \]

For example, the element \((0.1s^3 + 0.2s^2 + 0.3s + 0.4)q_2\) is equivalent to the element:
$0.1s_N + 2 + 0.2s_{N+1} + 0.3s_2 + 0.4q_2$

with the added equations:

$$s q_2 - q_N + 1 = 0$$

$$s q_{N+1} - q_N + 2 = 0$$

the program keeps track of the derivatives it has relabeled in the ITAB array.

At this point, some redundancy is possible in that the coefficient of s_{q_1} could be placed either in the D matrix or the E matrix if that derivative has been generated as a variable. If a choice exists, after the D and E matrices are formed, the elements are all placed in the E matrix.

The next operation eliminates the off diagonal elements of the D matrix, where possible. The row which contains the largest element of each successive column is used for that column and a simple Gaussian elimination is used for both that row and column. That row is also scaled such that the magnitude of the pivot element is set to unity. The running product of these scale factors (saved as DET) will be the determinant of the original D matrix and thus the leading coefficient of the characteristic equation. I.e.,

$$|D_s - E| = |D| s^n + \ldots - |E|$$

In the general case, the off diagonal elements cannot all be eliminated, i.e., $|D| = 0$. Three possibilities exist:

- For a null row in D, a nonzero element exists in E at the intersection of a column which has not been pivoted.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$
For this case a Gaussian elimination is performed on the nonpivoted column, DET is updated and that row and column are eliminated. For the above example this would yield

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
X \\
x \\
0
\end{bmatrix}
-
\begin{bmatrix}
1 & x & 0 \\
x & x & 0 \\
0 & 0 & x
\end{bmatrix}
\]

- A second case exists where the pivot element of E is zero.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
X \\
x \\
0
\end{bmatrix}
-
\begin{bmatrix}
x & x & x \\
x & x & x \\
y & z & 0
\end{bmatrix}
\]

For this case, the subject row is treated as an algebraic equation, i.e.,
\[z \, q_2 = -y \, q_1\]
allowing the elimination of one of these variables. The example would be:

\[
\begin{bmatrix}
1.0 & 0 & 0 \\
-y/z & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
X' \\
x' \\
y
\end{bmatrix}
-
\begin{bmatrix}
x' & 0 & x \\
x' & 0 & x \\
y & 0 & 0
\end{bmatrix}
\]

After reducing in order:

\[
\begin{bmatrix}
1 & 0 \\
-y/z & 0
\end{bmatrix}
\begin{bmatrix}
X' \\
x'
\end{bmatrix}
-
\begin{bmatrix}
x' & x \\
x' & x
\end{bmatrix}
\]

Again the product DET is updated. At this point the program returns to the point where we started the elimination of the off diagonal elements of the D matrix.
The third and last case covers the possibility of zero characteristic equation (can be caused only by errors on the input - fewer equations than variables). For this case the matrix may appear as:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} - \begin{bmatrix}
x & x & x \\
x & x & x \\
0 & 0 & 0 \\
\end{bmatrix}
\]

The determinant of which is obviously zero. Control goes to the next data case or numerator transfer function after an error message is printed.

The state matrix is considered complete when its associated D matrix is the identity matrix. An exact zero is used for all numerical tests on zero.

To avoid numerical problems in all the manipulations required to generate the state matrix, a special function is used. Since most of the operations are of the form \(A \times X - B \), a function was designed to set the result to zero if the product \(A \times X \) is the same as \(B \) disregarding the four least significant bits of the mantissas.

The methods described here for the formation of the state matrix are used for both the denominator and numerator functions. Cramer's rule is used to form the matrix which yields numerator information.

1.2.4.2.2 **QR double iteration** - The following discussion concerning the QR double iteration method used to find the eigenvalues of a real matrix is excerpted from IBM's System/360 Scientific Subroutine Package - Programmer's Manual, Reference 1.

1.2.4.2.3 **Definition of the QR iteration** - Let \(A \) be a real or complex non-singular matrix of order \(n \). Then a decomposition of \(A \) exists of the form

\[
A = QR
\]
where Q is unitary and R is upper triangular. If the diagonal elements of R are real and positive, Q is unique. Consider now the sequence of matrices $A^{(p)}$ defined recursively by

$$
A^{(0)} = A,
$$
$$
A^{(p)} = Q^{(p)} R^{(p)},
$$
$$
A^{(p+1)} = R^{(p)} Q^{(p)} \quad p \geq 0.
$$

Note that $A^{(p + 1)} = Q^{(p)^\ast} A^{(p)} Q^{(p)}$ for $p \geq 0$; hence it follows that $A^{(p)}$ is similar to A for all p.

Furthermore, if A satisfies certain conditions, it can be proved that $A^{(p)}$ tends to an upper triangular matrix as $p \to \infty$; thus the eigenvalues of A are the diagonal elements of this limit matrix.

1.2.4.2.4 The double QR iteration - Let A be a diagonalizable real upper Hessenberg matrix. Such a matrix must be expected to have complex conjugate pairs of eigenvalues. If these pairs are the only eigenvalues of equal modulus, it can be shown that they will appear as the latent roots of main submatrices of order 2. In this case, if a shift is close to one of these roots, it will be complex, and we will have to deal with complex matrices, although the initial one is real. The use of the double QR iteration avoids this inconvenience.

Taking $s^{(p + 1)} = s^{(p)}$, consider the transformation giving $A^{(p + 2)}$ from $A^{(p)}$:

$$
A^{(p + 2)} = Q^{(p + 1)^\ast} Q^{(p)^\ast} A^{(p)} Q^{(p)} Q^{(p + 1)}
$$

It can be proved that the product $Q^{(p)} Q^{(p + 1)}$ derives from the QR decomposition of the matrix $M = (A^{(p)} - s^{(p)} I) (A^{(p)} - s^{(p + 1)} I)$, which is real.

It can be shown that only the first column m_1 of M is necessary for determining the transformation which gives $A^{(p + 2)}$ from $A^{(p)}$, if they both have the Hessenberg form.
Practically, the first part of the double iteration consists of the application of an initial transformation $N_1^* A^{(p)} N_1$ where N_1 is unitary and such that $N_1 m_1 = \pm \|m_1\| e_1$. This leads to a matrix which no longer has the Hessenberg form.

Thus, the remaining part of the iteration will involve the application of $(n - 1)$ successive transformations, which have the same form as the initial one whose matrices N_1 are such that the resulting matrix $A^{(p + 2)}$ has the Hessenberg form.

This process can fail when a subdiagonal term of the given matrix is zero. In this case, the matrix can be split, and the iteration is performed on the lower main submatrix only.

1.2.4.3 Output Description - All matrix definition input data are printed. Nondefined elements are assumed zero and are not printed. The dependent matrix data are printed first and the independent matrix data are printed next. Each element of the dependent and independent matrices are polynomial in the transform operator and are printed with the highest order coefficient first.

The characteristic equation in both factored and polynomial form is printed with the denominator title. The polynomial is formed by the product:

$$P(s) = \prod_{i=1}^{N} (s - s_i)$$

The polynomial that is printed is the characteristic equation with the leading coefficient divided out. This coefficient is printed.

Additional information such as time to one-half amplitude in seconds, damping ratio, damped and natural frequencies (Hz) is supplied.

Eigenvectors are listed for each root with nonnegative imaginary part. These vectors are solutions to the equation:

$$[A(s)]_{s=s_i} \{V\} = 0$$
where \(V \) is the vector that is listed and \(A \) is the input matrix. The special case of multiple roots is not treated.

Output similar in form to that given for the characteristic equation is given for each numerator requested with the exception of the eigenvectors. For each numerator, \(X_K(s) / Y_L(s) \) so obtained, any one of several options may be exercised:

- root locus
- frequency response
- power spectral density
- time history

See the individual output option routines for further discussion.

1.2.4.4 Data Storage - In order to conserve the storage requirements of the control systems analysis package (CSAP), the input dependent and independent matrices data are compressed into two arrays - IDATA and DATA.

IDATA is a two-dimensional array, whose rows represent code, row, column, and order information defining the matrix polynomial element. The DATA array contains the values of the coefficients of each matrix element.

An example is given to illustrate the compressed data storage technique used:

e.g.,

```
Code: IDATA(1,1) = 0    DATA(1) = 1
Row:  IDATA(2,1) = 2    DATA(2) = -5
Column: IDATA(3,1) = 1    DATA(3) = 4
Order: IDATA(4,1) = 2
```

The first element stored defines the \((2,1)\) element of the dependent matrix as:
\[s^2 - 5s + 4 \]

Element stored

<table>
<thead>
<tr>
<th>Code: IDATA(1,2)</th>
<th>DATA(4) = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row: IDATA(2,2)</td>
<td>1</td>
</tr>
<tr>
<td>Column: IDATA(3,2)</td>
<td>1</td>
</tr>
<tr>
<td>Order: IDATA(4,2)</td>
<td>0</td>
</tr>
</tbody>
</table>

The second element stored is the (1,1) element of the independent matrix and has the value of:

0.5

Note that the code (i.e., row 1) found in the IDATA array translates as follows:

- 0 - element belongs to the dependent matrix
- 1 - element belongs to the independent matrix
- 2 - end of matrix definition data

When selectively redefining matrix elements (subroutine NWMTRX), the original element definition information in the IDATA array is effectively nulled by setting the row definition to zero. The new definition is then added after the last definition of both the IDATA and DATA arrays. This technique is used because the order of the revised polynomial is not necessarily the same as the original and simply storing the new over the old would cause subsequent erroneous retrieval of the data.

1.3 Subroutines

The following subsections treat each of the subprograms in the linear model package. The function of each routine, call arguments and programming notes are given. The level of detail is intended to be sufficient to enable one to work with the coding to troubleshoot or make modifications.
1.3.1 CPUNCH

The function of this routine is to punch the dependent and independent matrices in the order specified form (see Section 1.3.25 RDMTRX).

Routine access:

Call CPUNCH (DATA, MD, IDATA, MI)

Input:

- DATA - Compressed matrices value vector
- MD - Dimension of DATA vector
- IDATA - Compressed matrices definition array
- MI - Dimension of IDATA array

Output:

- Punched cards

Notes:

- Logical unit 7 is assumed to be the card punch unit
- Currently, only second-order polynomials or less are punched. (This is due to the format statement which can be easily changed.)

1.3.2 DERIVE

Subroutine DERIVE computes the aerodynamic partial derivatives for the rotorcraft main rotor, tail rotor, and fixed surfaces. The main rotor derivatives are formed in array DERIV. This array is made from the basic derivatives, which also use DERIV, and inflow compounded partials
from the basic derivatives, LAMDRV. The fixed surface partials are computed in the array FIXED. Tail rotor and some fixed surface partials are individually named.

The FIXED array elements are developed in section 3.1.3 of Volume I. Tail rotor terms are given in section 3.1.4. Inflow derivatives and the method of forming the inflow array LAMDRV are in section 3.3.2, and the derivative compounding scheme is in section 3.3.3 of Volume 1. The main rotor partials are given in sections 3.3.3.1 through 3.3.3.4, and are used to form the DERIV array.

Routine access:

Information is transmitted via common statements.

Input:

/ABC/ Common; Input physical constants.
/PASSTR/ Common; Trim and preliminary calculations.
/TRIMAC/ Common; Trim data and physical inputs.
/PASSIN/ Common; Inflow partial derivatives from INFLOW program.

Output:

/PASSDE/ Common; Contains DERIV and FIXED arrays.
/TRIMAC/ Common; Contains vertical tail and tail rotor partial derivatives.

Notes

- Array arrangement scheme is given in Volume 3. under Section 3.5, Output Description.

1.3.3 DPQFB

The purpose of the routine DPQFB is to find an approximation of the form
\[Q(x) = Q_1 + Q_2 x + x^2 \]
to a quadratic factor of a given polynomial, \(P(x) \), with real coefficients. Bairstow iteration is used. See Reference 1.
Routine access:

CALL DPQFB (C, IC, Q, LIM, IER)

Inputs:

C - Vector containing the coefficients of P(x), with C(1) being the constant term.

IC - Order of polynomial

Q - Q(1) and Q(2) are initial trials for Q₁ and Q₂.

LIM - Limit number of iterations

Outputs:

Q - Q(1) and Q(2) contain the refined coefficients of Q₁ and Q₂.

Q(3) and Q(4) are the coefficients of the remainder A + Bx of the quotient P(x)/Q(x).

IER - Error flag:

= 0 no error

= 1 no convergence within allowed iteration limit

= -1 polynomial P(x) is constant or undefined

= -2 polynomial P(x) is of degree 1

= -3 no further refinement of the approximate quadratic factors is feasible, initial guess is not close enough.

Notes:

- No subroutines are called.

- Checks on overflow have been removed from the CDC version. Subroutine OVERFL is an IBM service routine

- Variables EPS and EPS1 are used in the accuracy tests. Values are set to be compatible with IBM DOUBLE PRECISION. These coefficients may be set to achieve the desired accuracy.
1.3.4 **DPRBM**

Subroutine DPRBM calculates the roots of a given polynomial with real coefficients. The roots are computed by successive quadratic factorization using the Bairstow iteration method via calls to routine DPQFB.

Routine access:

```
CALL DPRBM (C, IC, RR, RC, POL, IR, IER)
```

Inputs:

- **C** - Vector containing the coefficients of the given polynomial. The coefficients are ordered from low to high, and on return they are divided by the last non zero term.

- **IC** - Number of coefficients in vector C.

Outputs:

- **RR** - Vector containing real part of the roots.
- **RC** - Vector containing complex parts of the roots.
- **POL** - Vector containing coefficients of the polynomial using the calculated roots. The coefficients are ordered from low to high.
- **IR** - Number of calculated roots.
- **IER** - Error flag:
 - = 0 no error
 - = 1 poor convergence of subroutine DPQFB
 - = 2 polynomial is degenerate
 - = 3 subroutine bypassed due to zero 'divide or unsatisfactory accuracy
 - = -1 poor accuracy of calculated roots; less than three correct significant digits.
Notes:
- Subroutine calls: DPQFB
- Checks on overflow have been removed from the CDC version. Subroutine
 OVERFL is an IBM service routine.
- Vectors are arranged so that the constant term is in position 1.
- Variable EPS is used in accuracy tests. Value currently compatible
 with IBM DOUBLE PRECISION, but can be set for desired accuracy.

1.3.5 EIGVAL

Subprogram EIGVAL is an executive subroutine which finds and prints the
eigenvalues of a state matrix. Routine HSBGNM converts the state matrix into
Hessenberg form which is then passed to the QR routine which computes the
eigenvalues of the input matrix. Using the computed roots, subroutine PLYFRM
forms a polynomial. The roots are then printed by routine PRINTR.

Routine access:

CALL EIGVAL (IB, D, JJ, ITITLE, DET, RR, RI, PN)

Inputs:

 D - Matrix whose eigenvalues are to be found
 IB - Dimension of D
 JJ - Order of the input matrix
 DET - Determinant of the input matrix
 ITITLE - 80 byte title associated with the input matrix

Outputs:

 RR - Vector containing real parts of the roots
 RI - Vector containing imaginary parts of the roots
 PN - Vector containing coefficients of the polynomial ordered low
 to high.
Notes:

- Subroutine calls:

 HSBGNM, QR, PLYFRM, PRINTR

- Ordered low to high means the constant term is in P(1).

1.3.6 EIGVEC

The original dependent variable matrix is utilized to determine eigenvectors. Thus the vectors which are printed represent the relationships of the original problem variable (not necessarily the state variables) for each mode. This is accomplished by evaluating the dependent variable matrix at each root \(s = s_i \):

\[
\begin{bmatrix}
A(s)
\end{bmatrix}
\bigg|_{s=s_i} = \begin{bmatrix}
A_{R_i} + jA_{I_i}
\end{bmatrix}
\]

The two matrices \(A_{R_i}, A_{I_i} \) are then passed to the subroutine VECTOR which (usually) returns the non trivial solution \(V \) to the equation

\[
\begin{bmatrix}
A_R + jA_I
\end{bmatrix}
\begin{bmatrix}
V_R + jV_I
\end{bmatrix} = 0
\]

This process is repeated for each root with zero or positive imaginary part.

Routine access:

CALL EIGVEC (IB, D, E, MD, DATA, MI, IDATA, RR, RJ, NRUT, N)

Inputs:

DATA, IDATA - matrices containing compressed form of both the dependent and independent matrices

MD, MI - dimension of DATA and IDATA arrays
RR, RI - Vectors containing the real and complex parts of the roots of the dependent matrix

NRUT - number of roots

N - number of dependent variables

D, E - work arrays used to compute and print the eigenvectors

IB - dimension of D and E

Outputs:

Print only

Notes:

• Subroutine calls: VECTOR

• The conjugate root (i.e., negative imaginary part) will produce the conjugate vector. (i.e., VR - jVI) and therefore is not computed.

1.3.7 FREQR

The frequency response option will provide the gain and phase response of the selected transfer function, G(jω).

The transfer function is calculated using the following equation:

\[
G(j\omega) = \frac{X_K(s)}{Y_L(s)} = \frac{\text{DET}}{\text{DETD}} \prod_{i=1}^{JJ} \frac{\left(j\omega - RR(i) - j(RI(i))\right)}{\left(j\omega - RRD(i) - j(RID(i))\right)}
\]

where \(\omega \) is the frequency

RR, RI are the roots of the numerator polynomial

RRD, RID are the roots of the denominator polynomial
The frequency is incremented in geometric progression to yield equal spacing on the typical Bode log frequency plot.

Gain and phase information are printed for each frequency and saved for later plotting (optional). Note that a full page of print is generated before a check is made on the maximum frequency.

Routine access:

CALL FREQR (IPLOT, DAT)

Inputs:

IPLOT - Vector containing plot control data
DAT - Vector containing frequency response control data
/TITLE/ - Common; denominator and numerator titles
/REALA/ - Common; Vectors containing the real and imaginary parts of the roots of the denominator and numerator
/PLOTB/ - Common; plotting information
/OPTION/ - Common; miscellaneous information passed from MAIN routine.

Outputs:

Print only

Notes:

* Subroutine calls: PLXDIV, YPLOT

* A full page of print contains information about 72 points printed in two columns; 36 print lines per page.
1.3.8 GELG

GELG solves the set of linear equations \(AX = B \) by Gaussian elimination. See Reference 1 for a complete description.

Routine access:

Call GELG \((B, A, M, N, \text{EPS}, \text{IER})\)

Input:

- \(B \) - Input matrix of dimension \(M \) by \(N \) containing right-hand sides of the equation \(AX = B \). (destroyed)
- \(A \) - Input matrix of dimension \(M \) by \(M \) containing the matrix of the equation \(AX = B \). (destroyed)
- \(M \) - Number of equations in the system (order of \(A \) and number of rows in \(B \)).
- \(N \) - Number of right-hand sides (vectors).
- \(\text{EPS} \) - Input constant used as relative tolerance for test on loss of significance.

Outputs:

- \(B \) - The \(m \) by \(m \) solution.
- \text{IER} - RESULTING ERROR PARAMETER CODED AS FOLLOWS

 \(\text{IER}=0 \) - NO ERROR.
 \(\text{IER}=-1 \) - NO RESULT BECAUSE OF \(M \) LESS THAN 1 OR PIVOT ELEMENT AT ANY ELIMINATION STEP EQUAL TO 0.
 \(\text{IER}=K \) - WARNING DUE TO POSSIBLE LOSS OF SIGNIFICANCE INDICATED AT ELIMINATION STEP \(K+1 \), WHERE PIVOT ELEMENT WAS LESS THAN OR EQUAL TO THE INTERNAL TOLERANCE \(\text{EPS} \) TIMES ABSOLUTELY GREATEST ELEMENT OF MATRIX \(A \).

Notes:

- \(\text{EPS} \) between \(10^{-14} \) and \(10^{16} \) is suggested by 64-bit word computations.
The purpose of this routine is to convert an input state matrix into Hessenberg form and to compute a scaled Euclidean norm.

The scaled Euclidean norm is computed using the following equation.

\[N_2(x) = \left[\sum_{i=1}^{\text{IORD}} \left(\sum_{j=1}^{\text{IORD}} A(i,j)^2 \right) \right]^{1/2} \]

The real matrix \(A \) is reduced by a similarity transformation to Hessenberg form. Each row, starting from the last one, is reduced by applying a suitable right elimination matrix and similarity is achieved by also applying the left inverse transformation. The end result is an upper almost-triangular matrix whose eigenvalues are the same as the original input matrix.

Routine access:

\[\text{CALL HSBGNM}(A, \text{IORD}, \text{MAXS}, \text{ENORM}, N) \]

Inputs:

- \(A \) - matrix to be converted
- \(\text{IORD} \) - order of \(A \)
- \(\text{MAXS} \) - dimension of input matrix and work vector, \(N \)

Output:

- \(A \) - Hessenberg form of original input matrix
- \(\text{ENORM} \) - Scaled Euclidean norm
Notes:

- The Euclidean norm is scaled by the formula:

\[
ENORM = \sqrt{A} + 2^{-\text{NBITS}}
\]

where \text{NBITS} is the number of significant bits used. The value of \text{ENORM} is used to find computational zero.

1.3.10 INFLOW

INFLOW calculates the steady state, sine and cosine components of the main rotor induced velocity as a function of the degrees of freedom. An implicit relation is formed for the three variables. The resulting array is inverted using GELG to find the explicit partial derivatives. The inflow array is given in Section 3.3.2 of Volume I.

Routine access:

The routine information is processed via COMMON statements.

Input:

/ABC/ Common; Input data physical constants
/PASSTR/ Common; Calculations from TRIM program.
/TRIMAC/ Common; Input data and TRIM calculations.

Output:

/PASSIN/ Common; LAMDRV array of inflow partials.

1.3.11 MAIN

This routine controls the linear model sequence of computations as illustrated in Figure 1-1. First, a call is made to PDATE which returns the current day's date. Then information about the matrices is read and depending upon
the specified mode of operation, control is passed to either routine \texttt{MODEL} or \texttt{RDITRX} which return the independent and dependent matrices in compressed form. Before these matrices are analyzed, their nonzero values are printed (subroutine \texttt{PRINT}).

Next, routine \texttt{STMTRX} forms the state matrix and then the denominator title is read and the eigenvalues and eigenvectors are computed (subroutines \texttt{EIGVAL} and \texttt{EIGVEC}).

After reading the numerator title and determining that output options are desired, control information about the output options is read. The numerator state matrix is formed (routine \texttt{STMTRX}) and its roots are computed (subroutine \texttt{EIGVAL}). Control is then passed to the appropriate output option routine (subroutines \texttt{ROOT}, \texttt{FREQR}, \texttt{TIMEN} or \texttt{POWER}). This loop repeats until all the output options indicated have been completed.

If changes to the original matrices are desired, routine \texttt{NWMTRX} reads the selected matrices elements to be changed and then the revised matrices are printed (subroutine \texttt{PRINT}). The program then repeats from the point where the original state matrix is computed.

When the particular case is done, the program checks if another configuration is to be run. If another case follows, control cycles back to the point where the input data is read.

\subsection{1.3.12 \texttt{MATRIX}}

The routine \texttt{MATRIX} uses the coefficients from \texttt{TRIM} to establish the linear model in matrix form. \texttt{MATRIX} calls \texttt{INFLOW} and \texttt{DERIV} in order to compute the required aerodynamic partial derivatives. The matrix elements are calculated as four arrays. \texttt{MTRXA} contains the second order terms, \texttt{MTRXB} has the first order terms, and \texttt{MTRXB} is the array of constants. The \texttt{INDEP} array contains the forcing functions. The matrix model is given in Figure 4-1 of Volume I.
Routine access:

This routine handles information via COMMON statements.

Input:

/PASSDE/ Common; Aerodynamic derivatives.
/ABC/ Common; Input physical data.
/TRIMAC/ Common; Trim rates and aerodynamic derivatives.

Output:

/PASSMX/ Common; Contains the MTRXA, MTRXB, MTRXC and INDEP matrices.

Notes:

- This routine calls INFLOW and DERIVE.

1.3..j MODEL

The program MODEL is an executive routine that calls the subroutines necessary to create and assemble the linear model matrix, and submit it for analysis processing. There are no direct input or output functions. The routines READIN, TRIM, MATRIX and PKDATA are called in order.

1.3.:4 NWMTRX

NWMTRX allows changes to be made to either a model defined by MATRIX or direct input by the user.

The revised definition for the original dependent or independent matrix element is read. Then, if the original matrix element definition exists, it is nulled. The revised definition is added to the next free location in the compressed matrices. This process is repeated until the revisions are exhausted.

If a change to the dependent matrix size is indicated, then this change is made.
Routine access:

CALL NWMTBX (LI, LX, INPUT, IDATA, MI, DATA, MD, N)

Input:

INPUT - Input method flag
IDATA, DATA - Matrices containing compressed form of both the original dependent and independent matrices
MI, MD - Dimensions of the IDATA and DATA arrays
LI - Pointer to the next available location in the IDATA array
LX - Pointer to the last used location in the DATA array
N - Number of dependent variables

Notes:

1. This routine has no output other than to change the model matrix.

1.3.15 PDATE

Routine PDATE is a dummy date routine which is replaced by the particular installation's own date routine. The calling routine expects a one word, eight character literal to be returned.

Routine access:

CALL PDATE (NDATE)

Output:

MM-DD-YY, Month, day, year

Notes:

1. The argument NDATE is typed DOUBLE PRECISION for the IBM version and REAL for CDC and is left-justified.
1.3.16 **PKDATA**

Routine PKDATA packs the general A, B, and C matrices calculated in subroutine MATRIX into the form required by the matrix analysis section of this program.

Routine access:

```
CALL PKDATA (IDATA, MI, DATA, MD, LX, LI, N, INV, IER)
```

Input:

- **MI** - Column dimension of IDATA array
- **MD** - Dimension of DATA vector
- **N** - Number of dependent variables
- **INV** - Number of independent variables
- `/PASSMX/` - Common; general A, B, C and INDEP matrices

Output:

- **IDATA** - Compressed dependent and independent matrices definition data array
- **DATA** - Compressed dependent and independent matrices coefficient data vector
- **LX** - Pointer to the last used location in the DATA vector
- **LI** - Pointer to the next available location in the IDATA vector
- **IER** - Error flag
 - 1 number of defined matrix elements exceeds dimension of IDATA array
 - 2 number of defined matrix elements exceeds dimension of DATA vector
1.3.17 PLXDIV

The function of this routine is to perform the complex division:

\[u + jv = \frac{(A + jB)}{(C + jD)} \]

The input values A, B, C and D are first normalized such that MAX (C, D) is unity. The solution is then obtained from:

\[u = \frac{(A' * C' + B' * D')}{(A' * A' + B' * B')} \]
\[v = \frac{(B' * C' - A' * D')}{(A' * A' + B' * B')} \]

The original A, B, C and D are not destroyed.

Routine access:

CALL PLXDIV (A, B, C, D, U, V)

Input:

A, B - Complex numerator variable
C, D - Complex denominator variable

Output:

U, V - Complex quotient of division operation

1.3.18 PLYFRM

The subroutine PLYFRM forms a polynomial from its roots. I.e.,

\[P(s) = \prod_{i=1}^{NRUT} (s - s_i) \]

where the \(s_i \) are the real or complex roots which define the system. The method used is a straightforward multiplication which will handle the
N=0 case. Conjugate roots are assumed. The constant term is in the P(0) slot and the leading coefficient (1.0) is placed in P(N).

Routine access:

CALL PLYFRM (NRUT, RR, RI, P)

Inputs:

NRUT - Number of roots
RR - Vector containing real parts of the roots
RI - Vector containing imaginary parts of the roots

Outputs:

P - Vector containing the coefficients of the computed polynomial ordered low to high

Notes:

- Conjugate roots are assumed
- The N=0 case is handled
- Ordered low to high means the constant term is in the P(1) location.

1.3.19 POLRT

Subprogram POLRT computes the roots of a polynomial with real coefficients using the Newton-Raphson successive approximation iterative technique. See Reference 1.

Routine access:

CALL POLRT (XCOF, COF, M, ROOTR, ROOTI, IER)

Inputs:

XCOF - Vector containing the coefficients of the polynomial ordered low to high
COF - Working vector of length M + 1
M - Order of the polynomial.
Outputs:

ROOTR - Vector containing real parts of the roots
ROOTI - Vector containing imaginary parts of the roots
IER - Error flag

- 0 no error
- 1 order of polynomial less than one
- 2 order of polynomial too big (i.e., > 36)
- 3 unable to find roots

Notes:

- The program contains a section of code to test the accuracy of each root and print a warning of insufficient accuracy.
- The accuracy test numbers are compatible with IBM DOUBLE PRECISION. These values can be changed to achieve the desired accuracy.

1.3.20 POWER

This routine forms a power spectral density solution to a selected transfer function. This operation is not part of the usual linear model procedures, but is included here to fully describe the analysis package routines.

Subroutine POWER computes the turbulence power spectral density and the density integral of the transfer function, $X_K(s)/Y_L(s)$. The power spectral density is calculated from the equation:

$$PSD(\omega) = \left| G(j\omega) \right|^2 \frac{2L}{v} \frac{\frac{1}{3} + \frac{8}{3}(1.339\omega L/v)^2}{\left(1 + (1.339\omega L/v)^2\right)^{11/6}}$$
where

\[G(j\omega) = \frac{X_K(j\omega)}{Y_L(j\omega)} \]

\(\omega \) is the frequency

\(L \) is the characteristic length

\(v \) is the velocity

Note that

\[\frac{1}{x^{11/6}} = \frac{1}{x^2} e^{\ln(x)/6} \]

which is used to simplify to previous equation.

Then the density integral at each frequency is calculated using the equations

\[\text{PHI} (\omega_i) = \text{PSD} (\omega_i) \left(\frac{\Delta \omega - 1}{2}\right) \left(1 - \frac{\omega_i}{2\pi} \right) \frac{\omega_i}{2\pi} + \text{PHI} (\omega_{i-1}) \]

where \(\Delta \omega \) is the frequency increment \(\text{PHI} (\omega_i) = 0 \)

Frequency, the magnitude of the transfer function (i.e., \(|G(j\omega)|^2 \)), the power spectral density and density integral information are printed. The frequency and PSD, are also saved for later plotting (optional).

Routine access:

\[\text{CALL POWER (DAT, IPLOT)} \]

Input:

- DAT - Vector containing control data for this option
- IPLOT - Vector containing plot control data
- /TITLE/ - Common; denominator and numerator titles
/REALA/ - Common; vectors containing the real and imaginary parts of the roots of the numerator and denominator

/OPTION/ - Common; miscellaneous information passed from MAIN routine

/PLOTCC/ - Common; plotting information

Outputs:

Print only

Notes:

- Subroutines PLXDIV and ZPLOT are called.
- The frequency is incremented in geometric progression to yield equal spacing on logarithmic frequency scales.
- Note that for a unity transfer function (i.e., \(G(j\omega) = 1 \)), the integral will approach unity as \(\omega_{\text{min}} \to 0 \) and \(\omega_{\text{max}} \to \infty \). The resulting power spectral density will be that of the isotropic turbulence model with unity standard deviation.

1.3.21 PRINT

The function of this routine is to print the dependent and independent matrices.

The dependent matrix is printed beginning with row 1. All the polynomial elements in row 1 are collected, sorted in column order and printed. This process is repeated for all the rows of the dependent matrix.

The independent matrix is then printed using the same method.

Routine access:

CALL PRINT (D, IB, DATA, MD, IDATA, MI, N)
Input:

D - Working array
IB - Dimension of D
DATA, IDATA - Matrices containing the compressed form of both the independent and dependent matrices
MD, MI - Dimensions of the DATA and IDATA arrays
N - Number of dependent variables

Output:
Print only

Notes:
• Only the defined (i.e., non-zero) input are printed
• For each row, the number of lines of print per row is determined by the highest order polynomial in that row.
• The constant term appears last.

1.3.22 PRINTR

This routine is used to print polynomial, root and stability information.

The routine recognizes three possible cases where the information printed is dependent upon the imaginary part of the root. If the imaginary part of the root is:

1) negative - only polynomial and root information is printed
2) zero - polynomial, root and time to half amplitude information is printed.
3) positive - polynomial, root and all stability information is printed.
The formulas used to compute stability information are:

Time to half amplitude = -.69314718/RR

Damping ratio = -RR/WN

Damped frequency (D) = RI/6.2831853

Damped frequency (N) = WN/6.2831853

where

\[WN = (RR^2 + RI^2)^{1/2} \]

and each root is located at RR + j RI.

Routine access:

CALL PRINTR (J, RR, RI, P)

Input:

J - Number of roots

RR, RI - Vectors containing real and imaginary parts of the roots

P - Vector containing coefficients of the polynomial formed using the roots. Ordered low to high.

Output:

Print only.

1.3.23 PROD

Subroutine PROD performs the calculation:

\[\text{PROD} = A - B \times C \]
If the difference between A and B * C is equal to or greater than the fifth least significant bit of the mantissa of A, otherwise PROD = 0.0.

Routine access:
Function subroutine: X = PROD (A, B, C)

Input:
A, B, C - Input variables

Output:
Value of the computation A - BC

1.3.24 QR

Subroutine QR calculates the eigenvalues of the input Hessenberg matrix using the QR double iteration process. See Section 1.2.4.2.2.

Routine access:
CALL QR (A, N, MAXS, E, RR, RI, ITER)

Input:
A - Input matrix in Hessenberg form.
N - Order of A
MAXS - Dimension of A and ITER
E - Scaled Euclidean norm
ITER - Work vector

Output:
RR - Vector containing real parts of the eigenvalues
RI - Vector containing imaginary parts of the eigenvalues
Notes:

- No subroutines are required.
- At each iteration, the latent roots X_1 and X_2 of the lower main submatrix of order 2 are computed. The following situations can occur:

 a) $A(N, N-1) \neq 0$. $A(N, N)$ is an eigenvalue. The order is reduced by one.

 b) $A(N-1, N-2) = 0$. X_1 and X_2 are eigenvalues of the original matrix. The order is reduced by two.

1.3.25 RDMTRX

An optional mode of the linear model allows the user to use the program as simply a control systems analysis tool (CSAP). In this mode the dependent and independent matrices are directly inputted to the program in one of two forms:

1) K, I, J, M, DAT FORMAT (4I2,6F10.0)

2) K, I, J, DAT FORMAT (3I2,3F10.0)

where

$K = 0$ dependent matrix element

$= 1$ independent matrix element

$= 2$ end of matrix data
I \quad \text{row of matrix element}

J \quad \text{column of matrix element}

M \quad \text{order of polynomial}

DAT \quad \text{coefficients of polynomial}

for method #1, DAT = A_m, A_{m-1}, \ldots, A_0

#2, DAT = A_2, A_1, A_0

This input data is stored in compressed form. See Section 1.2.4.4.

Routine access:

CALL RDMTRX (IDATA, MI, DATA, MD, LX, LI, INPUT)

Input:

MI - Dimension of IDATA array

MD - Dimension of DATA vector

INPUT - Flag indicating input format

Output:

IDATA - Compressed matrices definition array

DATA - Compressed matrices value vector

LI - Pointer to next available location in IDATA array

LX - Pointer to last used location in DATA array

Operation of the program in this direct mode is discussed in Sections 3.2 and 3.3 of Volume III.
1.3.26 **READIN**

The routine reads the linear model case definition data, and prints an echo of this data with group titles.

Routine access:

```
CALL READIN (0)
```

Input:

Input data cards numbers 2 through 19.

Output:

0 - Omega frequency used in plotting the time history option
/ABC/ - Common; input case configuration data.

1.3.27 **ROOT**

The root locus option, via subroutine ROOT, finds the roots of the system:

\[1 + \text{GAIN} (i) \times \frac{X_K(s)}{Y_L(s)} = 0 \]

Replacing the numerator and denominator \((X_K \text{ and } Y_L)\) of the transfer function by their respective polynomial form (i.e. \(P_N\) and \(P_D\)) and multiplying by the denominator, the following equation is formed which is the actual equation whose roots are found:

\[F(s) = P_D(s) + k \times \frac{\text{DET} \times P_N(s)}{\text{DET}} \]

for each value of \(k\) (GAIN).

The numerator polynomial is input to this subroutine which calls PLYFRM to form the denominator polynomial. Subroutine RTPOLY is then used to calculate the roots which are printed by the PRINTR routine.
The denominator roots and the roots of the above equation are saved in a data array for plotting. Also, the largest and smallest roots of the denominator, numerator and the above equation are found for plotting purposes.

Routine access:

CALL ROOT (MI, PN, DAT, IPlot, ZEROX, ZERoy)

Input:

NI - Order of ZEROX and ZERoy vectors
PN - Numerator polynomial
DAT - Root locus control data vector
IPlot - Plotting control data vector
ZEROX - Vector containing real parts of the numerator roots
ZERoy - Vector containing imaginary parts of the numerator roots.

/REALA/ - Common; real and imaginary parts of the roots of the denominator and numerator.
/TITLE/ - Common; numerator and denominator titles
/PLOTc/ - Common; plotting information
/OPTION/ - Common; miscellaneous information passed from MAIN routine.

Output:

Print only.

Notes:

- Subroutines required. PLYFRM, PRINTR, RTPOLY, XMAX, XMIN, ZPLOT.
- Plotting capability has not been implemented on the CDC version.

1.3.28 RTEST

This routine creates the polynomial from the trial roots.
The polynomial \(P(s) \) is evaluated at \(s = s_1 \) using the following equation:

\[
P(s) = a_0 + \sum_{k=1}^{n-1} a_k s^{k-1}
\]

Routine access:

CALL RTEST (COEF, RE, N, IMAG, FC, FD)

Input:

- COEF - Vector containing the coefficients of the polynomial ordered high to low.
- RE - Real part of \(s = s_1 \)
- IMAG - Imaginary part of \(s = s_1 \)

Output:

- FC - Vector containing real part of evaluated polynomial
- FD - Vector containing imaginary part of evaluated polynomial.

1.3.29 RTPOLY

Subroutine RTPOLY is an executive routine for finding the roots of a given polynomial. Three attempts to compute the roots are made.

Control is first passed to routine DPRBM which attempts to calculate the roots by successive quadratic factorization using the Bairstow iteration method.

If subprogram DPRBM is unable to find the roots of the polynomial, then an initial guess is made on the roots to be found. Control then passes to subroutine POLRT which employs the Newton-Raphson iterative method to compute the roots of the polynomial.

If the first pass through POLRT fails, another initial guess is made and subprogram POLRT is again invoked. If this third attempt to find the roots
of the polynomial fails, an error message is printed and control returns to the calling routine.

Both the Bairstow and the Newton-Raphson iterative techniques are used in order to ensure that the roots will almost always be found. This is due to the fact that the class of polynomials for which one method fails to converge is not the same as the other.

Routine access:

CALL RTPOLY (N, C, L, F, RR, RC, POL)

Input:

N - Order of the polynomial
C - Coefficients of the polynomial ordered high to low
F - Dummy argument

Output:

RR - Vector containing the real parts of the roots.
RI - Vector containing the imaginary parts of the roots.
POL - Vector containing the polynomial coefficients using the calculated roots.
L - Error flag.

Notes:
- Subroutines required: DPRBM, POLRT

1.3.30 STMTRX

The basic function performed by routine STMTRX is to form a state matrix whose eigenvalues are identical in number and value to those of the input matrix. The method used is explained in Section 1.2.4.2.1 Formation of the state matrix.

Routine access:

CALL STMTRX (MD, MI, IDATA, DATA, JD, JN, JB, N, D, E, DET, J, IER)
Input:

MD, MI - Dimensions of DATA and IDATA arrays

IDATA, DATA - Arrays containing compressed matrices data

JD - Dependent variable column number j used for transfer function computations

JN - Independent variable column number i used for transfer function computations

IB - Size of D and E arrays

N - Number of dependent variables

E - Work array

Output:

D - State matrix

DLT - Determinant of input matrix

J - Order of state matrix

IER - Error flag

Notes:

- Subroutine calls: PROD

1.3.31 TIMEH

The time history option computes a step response time history for a specified transfer function. The equation:

\[f(t) = \frac{\text{DET}}{\text{DETD}} L^{-1}\left\{ \frac{1}{s} \frac{p_N(s)}{p_D(s)} \right\} \]

Where \(L^{-1} \) is the inverse LaPlace transformation
is solved by integration where the integration formula used is the fourth order Taylor series expansion:

\[x(t + T) = \sum_{k=0}^{4} \frac{t^k}{k!} \left(\frac{d}{dt} \right)^k x(t) \]

This formula was chosen to take advantage of the fact that the derivatives of each state variable are available at each point in time when the polynomial form is utilized. The conceptual form is given in Figure 1-2.

Note that the derivatives of each state variable, \(x \) are available. The derivatives of the lead integrator are found from the equation:

\[\left(\frac{d}{dt} \right)^k x_{n-1} = \sum_{i=1}^{N-1} P_D(i) \times (i + k - 1) \]

where \(\text{STEP} \times \text{DET/DETD} \) is added for \(k=1 \) to account for the step input-magnitude.

Values for position, rate and acceleration as a function of time are printed and saved for later plotting (optional). An integration interval of approximately \(0.2/R \) is recommended where \(R \) is the distance in the S plane from the origin to the largest denominator root. Note that in order to make the print time (TP) a near integer multiple of the integration interval (DT), the following adjustment is made:

\[DT = \frac{(1 + 10^{-6}) \times TP}{TP/\text{STEPI}} \]

where \(\text{STEPI} \) is the integration step.

Routine access:

\[\text{CALL TIMEH(PN, DAT, IPlot, 0)} \]
Figure 1-2. Time History Integration Format
Input:

PN - Vector containing coefficients of the numerator polynomial

DAT - Time history control data

IPLLOT - Plotting control data

O - Frequency used for scaling purposes

/TITLE/ - Common; numerator and denominator titles

/REALA/ - Common; numerator and denominator roots

/PLOTC/ - Plotting information

/OPTION/ - Miscellaneous information passed from MAIN routine

Output:

Print and plot only.

Notes:

• Plotting capability has not been implemented on the CDC version.

• Subroutine calls: PLYFRM, XPLOT

1.3.32 TRIM

The routine TRIM establishes a free flight force and moment equilibrium from the rotorcraft defined by the input data. Angle of attack is iterated to null the longitudinal force summation. Collective is used to null the vertical force sum. The tail rotor thrust is set to balance the main rotor torque. The main rotor inflow velocity is calculated as a convergence loop within the vertical and longitudinal force balance loops. The balance equations and coefficients are given in section 3.9 of Volume I.

Routine access:

CALL TRIM (IER)

Input and output information is handled by COMMON statements and diagnostic printouts except for error indicator.
Input:

/ABC/ Common; This is the input physical constants.

Output:

/PASSTR/ Common; The trim constants calculated and frequently used coefficient groupings.

/TRIMAC/ Common; Partially composed of TRIM computation outputs.

Trim conditions and coefficient groupings are printed by this routine.

IER = Error flag:

= 0 no trim errors

= 1 convergence failure

Notes:

- The inflow iteration uses a weighted average of new and old trials to achieve convergence. This weighting is internally scheduled versus speed to optimize to convergence process for rotorcraft data sets tried so far. The weighting coefficient mix or speed scheduling may have to be altered if plus-minus iteration cycle problems develop.

1.3.33 VECTOR

The function of the VECTOR routine is to accept the complex matrix A whose determinant is supposedly null and produce the complex vector V which represents the solution to the equation:

\[
[A] \mathbf{V} = 0
\]

The method used is to reduce A to a diagonal matrix through Gaussian elimination and back-solve the column whose \((n, n)\) term is zero for the vector. The A matrix is destroyed and the vector is left in the JV column where JV is an integer passed in the calling sequence.
Note that a zero is defined to be:

\[10^{-8} \cdot \sum(|AR(I,J)| + |AI(I,J)|)/N \]

for all zero tests. The factor \(10^{-8}\) approximates \(2^{-NBITS/2}\). Where \(NBITS\) is the mantissa length (48 for CDC 7600).

Subroutine access:

```
CALL VECTOR (IB, AR, AI, JV, N)
```

Inputs:

- IB - Dimensions of AR, AI
- AR - Work array; on input, contains real parts of input matrix
- AI - Work array; on input, contains imaginary parts of input matrix.
- N - Order of input matrix

Output:

- AR - Work array; on output, contains real part of solution vector
- AI - Work array; on output, contains imaginary part of solution vector
- JV - Column of AR, AI matrix which contains solution vector

Notes:

- Subroutine calls: PLXDIV

1.3.34 XMAX

The purpose of the XMAX function is to return the maximum value of the input real array of length \(N\).

Routine access:

```
Function BMAX = XMAX (A, N)
```
Input:
 A - Real array
 N - Size of A

Output:
 XMAX - Maximum value of the input matrix

1.3.35 XMIN

The purpose of the XMIN function is to return the minimum value of the input real array of length N.

Routine access:

 Function BMIN = XMIN (A, N)

Input:
 A - Real array
 N - Size of A

Output:
 XMIN - Minimum value of the input matrix

1.3.36 XPLOT

Subroutine XPLOT is the dummy plotting routine used by the time history option (subprogram TIMEH).

Routine access:

 CALL XPLOT

Notes:

- An active plotting routine can be constructed using the arguments listed in the original call to this routine, the labeled common /PLOTC/ and knowledge of the installation's plot routines.
1.3.37 YPLOT

Subroutine YPLOT is the dummy plotting routine used by the frequency response option (subprogram FREQR).

Routine access:

CALL YPLOT

Notes:

- An active plotting routine can be constructed using the arguments listed in the original call to this routine, the labeled common /PLOTC/ and knowledge of the installation's plot routines.

1.3.38 ZPLOT

Subroutine ZPLOT is the dummy plotting routine called by the power spectral density and root locus options (subprograms POWER and ROOT).

Routine access:

CALL ZPLOT

Notes:

- An active routine can be developed using the data array PDATA, the labeled common /PLOTC/ and the plotting routines of the particular installation.
SECTION 2
COMMON/SUBROUTINE DIRECTORY

Figure 2-1 and Tables 2-1 and 2-2 are presented here as aids to understanding the hierarchical structure of the linear model programming. Figure 2-1 shows the calling sequence, or tree, of the package routines.

Table 2-1 lists each subroutine and the routines which it calls. The called routines have a level number associated with them which indicate whether the called routine in turn calls any other routines. A zero shows no further calls, a one shows one additional sub level, etc.

Table 2-2 lists each COMMON block and the routines in which they are used. All COMMON blocks are labeled.
Figure 2-1. Subroutine Hierarchy Linear Model
<table>
<thead>
<tr>
<th>ROUTINE</th>
<th>CALLS</th>
<th>LEVEL</th>
<th>ROUTINE</th>
<th>CALLS</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUNCH</td>
<td>--</td>
<td></td>
<td>MODEL</td>
<td>MATRIX</td>
<td>(4)</td>
</tr>
<tr>
<td>DERIVE</td>
<td>--</td>
<td></td>
<td>PKDATA</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>DPQFB</td>
<td>--</td>
<td></td>
<td>READIN</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>DPRBM</td>
<td>DPQFB</td>
<td>(0)</td>
<td>NWMTRX</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EIGVAL</td>
<td>HSBCNM</td>
<td>(0)</td>
<td>PDATE</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLYFRM</td>
<td>(0)</td>
<td>PKDATA</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRINTR</td>
<td>(0)</td>
<td>PLXDIV</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QR</td>
<td>(0)</td>
<td>PLYFRM</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EIGVEC</td>
<td>VECTOR</td>
<td>(1)</td>
<td>POLRT</td>
<td>RTEST</td>
<td>(0)</td>
</tr>
<tr>
<td>FREQR</td>
<td>PLXDIV</td>
<td>(0)</td>
<td>POWER</td>
<td>PLXDIV</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>YPLOT</td>
<td>(0)</td>
<td></td>
<td>ZPLOT</td>
<td>(0)</td>
</tr>
<tr>
<td>CELG</td>
<td>--</td>
<td></td>
<td>PRINT</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>HSBCNM</td>
<td>--</td>
<td></td>
<td>PRINT</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>INFLOW</td>
<td>GELG</td>
<td>(0)</td>
<td>PRINTR</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MAIN</td>
<td>CPUNCH</td>
<td>(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIGVAL</td>
<td>(1)</td>
<td>PROD</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIGVEC</td>
<td>(2)</td>
<td>QR</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREQR</td>
<td>(1)</td>
<td>RWMTRX</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODEL</td>
<td>(5)</td>
<td>READIN</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NWMTRX</td>
<td>(0)</td>
<td>ROOT</td>
<td>PLYFRM</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>PDATE</td>
<td>(0)</td>
<td>PRINTR</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER</td>
<td>(1)</td>
<td>RTPOLY</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRINT</td>
<td>(0)</td>
<td>XMAX</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RWMTRX</td>
<td>(0)</td>
<td>XMIN</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROOT</td>
<td>(3)</td>
<td>ZPLOT</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STMTRX</td>
<td>(1)</td>
<td>RTEST</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIMEH</td>
<td>(1)</td>
<td>RTPOLY</td>
<td>DPRBM</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>MATRIX</td>
<td>DERIVE</td>
<td>(0)</td>
<td>POLRT</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>INFLOW</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-1. SUBROUTINE DIRECTORY (Cont)

<table>
<thead>
<tr>
<th>ROUTINE</th>
<th>CALLS</th>
<th>LEVEL</th>
<th>ROUTINE</th>
<th>CALLS</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STMTRX</td>
<td>PROD</td>
<td>(0)</td>
<td>YPLOT</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>TIMEH</td>
<td>PLYFRM</td>
<td>(0)</td>
<td>ZPLOT</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>TRIM</td>
<td>--</td>
<td>(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VECTOR</td>
<td>PLXDIV</td>
<td>(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAX</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMIN</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABELED COMMON</td>
<td>ROUTINE USED IN</td>
<td>LABELED COMMON</td>
<td>ROUTINE USED IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/ABC/</td>
<td>DERIVE</td>
<td>/TITLE/</td>
<td>FREQR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFLOW</td>
<td></td>
<td>POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATRIX</td>
<td></td>
<td>ROOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>READIN</td>
<td></td>
<td>TIMEH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRIM</td>
<td>/TRIMAC/</td>
<td>DERIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/OPTION/</td>
<td>FREQR</td>
<td></td>
<td>INFLOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER</td>
<td></td>
<td>MATRIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROOT</td>
<td></td>
<td>TRIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PASSDE/</td>
<td>DERIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATRIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PASSIN/</td>
<td>DERIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PASSMX/</td>
<td>MATRIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PKDATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PASSTR/</td>
<td>DERIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PLOTC/</td>
<td>FREQR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIMEH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/REALA/</td>
<td>FREQR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIMEH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 3

COMPLETE SOURCE LISTING

The linear model package has been supplied to NASA, Ames Research Center, under contract NAS2-9374. The program is under the auspices of Dr. R.T.N. Chen, and available from this source. The coding has been arranged for operation on CDC 7600 Series computer equipment.
SECTION 4

REFERENCES