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FOREWORD
 

This report describes a generalized rotorcraft small perturbation, linear
 

model and associated computer software which have been refined and documented
 

for NASA, Ames Research Center, Moffett Field, California, under contract
 

NAS2-9374 (November, 1976) as ammended Revision (1) (May, 1977). This work
 

has been performed by the Lockheed-California Company, Burbank, California.
 

Dr. R.T.N. Chen of the Ames Directorate, U.S. Army Air Mobility Research
 

and Development Laboratory (USAAMRDL) was the technical monitor for this
 

project. P.H. Kretsinger, D.H. Saiki and H.P. Weinberger (all of Lockheed-


California Company) performed the software implementation of the linear model
 

and matrix processing routines. A. J. Potthast and Fox Conner (also Lockheed
 

personnel) provided technical assistance and technical editing of the
 

documentation.
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ROTORCRAFT LINEAR SIMULATION MODEL
 

Volume II. Computer Implementation
 

J.S. Reaser
 
D.H. Saiki
 

Lockheed-California Company
 

SUMMARY
 

- This report describes a generalized format rotorcraft small perturbation 

linear model. Rotor flap, inplane and feathering degrees of freedom, as well
 

as control and augmentation systems are defined in addition to the classical
 

vehicle six degrees of freedom. The model simulates a single main rotor air

craft although it can be readily expanded to simulate compound aircraft with
 

auxiliary thrust and wings. The analysis concept can also be expanded to
 

model multiple lifting rotor configurations.
 

This report is divided into three volumes. The first volume contains the
 

development of rotorcraft mechanical and aerodynamic equations. The second
 

volume presents the description of a computer program that can be used to
 

process the equations. The third volume contains the computer program
 

operating instructions and defines the input-output data format.
 

The model development and application assumes that the main rotor control
 

power, i.e., body moment due to blade flapping, has been established analytically
 

or experimentally. These data are used to define the equivalent spring rate
 

of the main rotor to body coupling.
 

The primary application is intended to be an analytic tool to assess the
 

handling qualities of a dynamically combined main rotor and body. To this end,
 

the rotor degrees of freeaom appear explicitly rather than being included in
 

the classical six degrees of freedom through a quasi-steady reduction process.
 

The higher frequency response properties of the rotor are retained, and appear
 

in the handling qualities assessment. Control and stability augmentation sys

tems are therefore evaluated more realistically. The model does not address
 

the area of rotor dynamic stability.
 



The model has been implemented in IBM 360 and CDC 7600 series computer
 

systems. The IBM 360 implementation includes graphic as well as tabulated
 

output capability.
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SYMBOLS 

a -rotor blade section lift slope, rad 
- 1 

aHT horizontal tail lift slope, rad 
- I 

aVT vertical tail lift slope, rad 
- I 

a. wing-body lift slope, rad
-1 

a blade collective flap up angle, rad 

a1 longitudinal flap (up, forward) angle, rad 

A area, ft 2; blade span axis 

A1 longitudinal feather (nose up, forward) angle, rad 

AR aspect ratio 

b wing span, ft 

bI lateral flap (down, right) angle, rad 

B dissipation function, ft-lb/sec; tip loss factor; body 

subscript; blade subscript; blade chord (aft) axis 

B1 lateral feather (nose down, right) angle, rad 
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c 	 cosine component subscript; blade element chord, ft; wing
 

chord, ft
 

o 	 wing mean chord, ft
 

o blade vertical (down) axis 

CD drag coefficient 

C D 	 drag coefficient, input value
 

control gyro fixed coordinate damping rate, ft ib/rad/sec
CF 


lift coefficient
CL 


CM pitching moment coefficient
 

control gyro rotating coordinate damping rate, ft ib/rad/sec
CR 


C Y body-wing side force coefficient
 

CG center-of-gravity subscript
 

(a)R nondimensional rotor thrust, disc axis
 

torque, shaft axis
 
nondimensional rotor 
()R rotor drag, shaft axis
 
nondimensional
()R 

C6 c cosine axis cyclic fixed system damping rate, ft ib/rad/sec
 

C65c cross axis cyclic fixed system damping rate, ft lb/rad/sec
s 
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C5ss sine axis cyclic fixed system damping rate, ft lb/rad/sec 

d collective blade lag angle, rad 

d 1 longitudinal blade inplane (lag, forward) angle, rad 

D rotor disc value subscript 

e1 lateral blade inplane (lag, right) angle, rad 

EX longitudinal rotor inflow gradient 

Flateral rotor inflow gradient 

f1(W main rotor to wing wake effectiveness function 

flifirst flap mode shape (fundamental mode), ft 

f 2 second inplane mode shape (fundamental mode), ft 

F fuselage subscript; referlence axes; force, lb 

g gravity vector, ft/sec
2
 

h height of main rotor hub above fuselage reference axes, ft
 

hTR height of tail rotor shaft above fuselage reference axes, ft
 

hvT vertical tail center of pressure height above fuselage
 

reference axes, ft
 

H main rotor hub reference subscript
 

HT horizontal tail subscript
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i induced value subscript
 

IA blade feathering moment of inertia about the feathering
 

hinge, slug ft
2
 

IAB blade flap-chord product of inertia about flap and feathering
 

hinges, slug ft
2
 

IAC blade inplane-chord product of inertia about inplane and
 
feathering hinges, slug ft2
 

IB blade flap moment of inertia about flap hinge, slug ft
2
 

blade inplane moment of inertia about inplane hinge, slug
 
2
 

ft
 

IsP blade flap-inplane product of inertia about flap and inplane
 

hinges, slug 
ft2
 

IXX helicopter roll moment of inertia, slug ft2
 

IXZ helicopter roll-yaw product of inertia, slug ft
2
 

pitch moment of inertia, slug ft
2
 

IyYYhelicopter 


IZ 
 helicopter yaw moment of inertia, slug ft
2
 

K spring rate (general), ft ib/rad
 

"KF control gyro fixed coordinate spring rate, ft lb/rad
 

"KFB flap feedback spring rate, ft lb/rad
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KR control gyro totating coordinate spring rate, ft ib/rad; 

pitch link stiffness, lb/ft 

KRUD rudder pedals to tail rotor collective gear ratio 

KxCS longitudinal cyclic input gear ratio or spring constant 

\CS lateral cyclic input gear ratio or spring constant 

K6cc cosine axis control gyro spring rate, ft ib/rad 

K cs cross axis control gyro spring rate, ft lb/rad 

K6ss sine axis control gyro spring rate, ft ib/rad 

KGO collective-handle to collective control element gear ratio 

" length, ft 

2GCOL control gyro to swashplate collective gear ratio 

IGCYC control gyro to swashplate cyclic gear ratio 

2HT length from fuselage reference axes to horizontal tail 

center of pressure, ft 

2RC swashplate to feathering gear ratio 

2TR length from fuselage reference axes to tail rotor shaft, ft 

2VT length from fuselage reference axes to vertical tail center 

of pressure, ft 

2i pitch horn crank arm, ft 
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R2 swashplate crank arm, ft 

R3 pitch-flap coupling arm, ft 

R4 pitch-lag coupling arm, ft 

L aircraft rolling moment, ft lb 

m blade element mass, slug/ft 

M aircraft mass, slugs; aircraft pitching moment, ft lb 

MLIF blade flap-radius moment of inertia, slug ft
2 

MR main rotor subscript 

MY blade feathering mass moment, slug ft 

MIF blade flap mass moment, slug ft 

M2L blade inplane mass moment, slug ft 

MPe cosine blade flapping moment, ft lb 

Mo coning moment, ft lb 

Mps sine blade flapping moment, ft lb 

M~c cosine blade inplane moment, ft lb 

% sine blade inplane moment, ft lb 

DMr/t blade inplane damping, ft ib/rad/sec 
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N number of blades; aircraft yawing moment, ft lb 

0 initial value subscript; root value subscript; steady 

component subscript 

p instantaneous roll rate, rad/sec 

P0 initial roll rate, rad/sec 

q instantaneous pitch rate, rad/sec; generalized coordinate 

Q generalized force 

blade root flapping potential energy, ft lb 

QEe 

QE 

Qo 

blade root feathering potential energy, ft lb 

blade root inplane potential energy, ft lb 

initial pitch rate, rad/sec 

QK rotor shaft torque, ft lb 

r instantaneous yaw rate, rad/sec; blade radial distance, ft 

R main rotor blade radius, ft; rotor subscript 

R o initial yaw rate, rad/sec 

s 

S 

SHT 

sine component subscript 

shaft axes subscript; area, ft
2 

horizontal tail area, ft
2 
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SVT vertical tail area, ft
2 

SW wing area, ft
2 

T kinetic energy, ft ib; rotor thrust, lb 

TTR tail rotor thrust, lb 

TR tail rotor subscript 

u instantaneous longitudinal velocity, ft/sec 

U potential energy function, ft lb 

U initial longitudinal velocity, ft/sec 

v instantaneous lateral velocity, ft/sec 

V
0 initial lateral velocity, ft/sec 

VT trajectory velocity, ft/sec 

w instantaneous vertical velocity, ft/sec 

W work function, ft lb; wing subscript 

W initial vertical velocity, ft/sec 

x nondimensional blade element radial position 

X instantaneous longitudinal axis 

X longitudinal aft stick deflection 
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X
0 

y 

initial longitudinal axis 

blade element chordwise position to trailing edge, ft 

YTR 

Y 

tail rotor hub lateral offset to 

instantaneous lateral axis 

right, ft 

Y 
cs 

Y 
0 

Z 

lateral right stick deflection 

initial lateral axis 

instantaneous vertical (down) axis 

Zo 

a 

initial 

angle 

vertical (down) 

of atack, rad 

axis 

qs shaft angle of attack, rad 

a2 

pblade 

pitch-lag coupling 

flapping up deflection, rad 

PDR 

Ps 

blade droop from feather axis, rad 

side slip angle, rad 

y climb angle, rad 

6 control gyro up deflection, red; infinitesimal increment 

6c cosine component control gyro deflection, rad 
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8o collective component control gyro deflection, rad
 

6s sine component control gyro deflection, rad
 

63 pitch-flap coupling
 

Aswashplate up deflection, rad
 

Ac cosine component swashplate deflection, rad
 

AO collective component swashplate deflection, rad
 

AS sine component swashplate deflection, rad
 

E wake angle function, rad 

blade inplane lag deflection, rad 

SW blade root sweep forward, rad 

load factor 

E pitch euler angle, rad; blade feathering motion, rad; 

3/4 radius collective angle, rad 

Go root collective angle, rad; initial pitch attitude, rad 

Xo nondimensional disc total inflow
 

Xi nondimensional induced inflow
 

XD nondimensional disc plane inflow
 

ks nondimensional shaft total inflow
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A nofidimensional rotor total vector velocity 

velocity normalized to rotor 'tip speed, nondimensional 

vector nondimensional velocity 

1p blade element nondimensional perpendicular velocity 

LT blade element nondimensional tangential velocity 

ILX nondimensional forward velocity, reference axis system 

Iy nondimensional right velocity, reference axis system 

Z nondimensional down velocity, reference axis system 

p air density, slug/ft
3 

w main rotor solidity 

TTR tail rotor solidity 

Tcol collective actuator time constant, sec 

Tcyc cyclic actuator time constant, see 

4, roll euler angle, rad 

o initial roll attitude, rad 

X main rotor wake angle, rad 

yaw euler angle, rad 
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0 

blade to control flap feedback lag angle, rad
 

'PG control gyro to swashplate lag angle, rad
 

'Po swashplate to blade lead angle, rad; initial heading, rad
 

Lps control axis lag angle, rad
 

Wcol collective control natural frequency, rad/sec
 

Wcyc cyclic control natural frequency, rad/sec
 

main rotor speed, rad/sec
 

tail rotor speed, rad/sec
OTR 
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SECTION 1
 

PACKAGE ORGANIZATION
 

The linear model subroutine package consists of members to generate a model
 

matrix and those to perform linear analysis on the matrix. The analysis
 

routines are a subset of a Lockheed in-house library analysis tool. Analysis
 

capabilities pertinent to the linear model use have been retained. The'out

puts available are the characteristic roots, transfer function, frequency
 

response, and time history response.
 

The model generation routines generate a set of trim conditions, deter

mine a set of partial derivatives, and assemble the model matrix. This matrix
 

is then passed to the analysis section of the package mentioned above.
 

1.1 Flow Chart
 

Figure 1-1 shows the computation blocks and information flow of the
 

linear model.- Operation modes and procedure details within the subroutines are
 

expanded in the following sections.
 

1.2 Operation Nodes
 

The linear model program can operate in two modes. First the routines
 

operate as a stand alone matrix analysis package which processes a matrix
 

dictated directly by the user. The sequence of operations in this mode is
 

given in Section 1.2.4.
 

Otherwise a set of subroutines calculates a rotorcraft linear model in matrix
 

form. The matrix generated in this second mode of operation is then processed
 

in the same manner as a direct input of the first mode. The steps in generating
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the matrix are to form a vehicle trim solution, generate a set of partials,
 

and assemble the final matrix.
 

1.2.1 Trim
 

The trim procedure finds the'balance of longitudinal and vertical forces
 

and yawing moments. In the process the main rotor and tail rotor inflow
 

velocities are also found. Trim balances longitudinal forces with angle of
 

attack, and vertical forces are set with collective. The main rotor inflow is
 

found by an inner, iterative computation loop. The yaw moments set the tail
 

rotor thrust. An auxiliary iterative loop then finds the tail rotor induced
 

inflow velocity.
 

1.2.2 Derivatives
 

With the trim solution in hand, the necessary aerodynamic partial deriva

tives are formed. These are made for the main rotor, tail rotor, wing-body,
 

and tail. All these items are one pass calculations.
 

1.2.3 Matrix Formulation
 

The linear model matrix is formed using the trim and derivative results.
 

The dynamic elements are calculated at the same time the aerodynamics are
 

assembled. The result is 20 by 20, second order matrix stored as A, B, and C
 

(constant) matrices. These are combined into a single array, which is then
 

processed by the analysis portion of the package.
 

L.2.4 Control Systems Analysis Package (CSAP)
 

The control systems analysis package (CSAP) is designed to solve the set
 

of simultaneous equations:
 

[A(s)] {X} = [B(s)] IYI 
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where the elements of the A and B matrices are polynomials of the LaPlacian
 

operator, s. The solution of these equations is presented in transfer function
 

form for which various options exist to perform additional analysis.
 

1.2.4.1 Modes of Operation - Besides the standard mode of operation of process

ing the rotorcraft small perturbation linear model matrix, there is an optional
 

mode which allows CSAP to be used as a standalone package.
 

In this mode, the polynomial elements of the dependent and independent
 

matrices are input directly to CSAP (see Section 1.3.2.3, RDMTRX) which then
 

continues normal processing. Also in this mode, it is possible to change ele

ments selectively of both the independent and dependent matrices, redefine the
 

size of the dependent matrix, and to reprocess the revised matrices.
 

1.2.4.2 Matrix Operations - CSAP basically reduces a set of LaPlace trans

formed differential equations from matrix form to transfer function form and
 

provides a number of options encompassing operations on transfer functions
 

typical of control systems analysis. Matrix manipulation operations are found
 

in several of the routines - two of the more critical operations, the formation
 

of the state matrix and the QR double iteration, are discussed in greater
 

detail.
 

1.2.4.2.1 Formation of the state matrix - The basic operation described here
 

involves the formation of a state matrix whose eigenvalues are identical in
 

number and value to those of the input matrix.
 

The first operation is to expand the input matrix into two matrices: D
 

and E which satisfy the equation:
 

IDs + E I = IA(s)I 

For example, the element (O.ls3 + 0.2s2 + 0.3s + 0.4)q2 is equivalent to the
 

element:
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O.lsqN + 2 + 0.2sqN + i + 0.3sq 2 + 0.4q2
 

with the added equations:
 

s q2 - qN + 1 = 0 

s qN+ 1 - qN + 2 = 0 

the program keeps tab of the derivatives it has relabeled in the ITAB array.
 

At this point, some redundancy is possible in that the coefficient of sqi
 

could be placed either in the D matrix or the E matrix if that derivative has
 

been generated as a variable. If a choice exists, after the D and E matrices
 

are formed, the elements are all placed in the E matrix.
 

The next operation eliminates the off diagonal elements of the D matrix,
 

where possible. The row which contains the largest element of each successive
 

column is used for that column and a simple Gaussian elimination is used for
 

both that row and column. That row is also scaled such that the magnitude of
 

the pivot element is set to unity. The running product of these scale factors
 

(saved as DET) will be the determinant of the original D matrix and thus the
 

leading coefficient of the characteristic equation. I.e.,
 

IDs- El = IDIsn + .... -JEJ 

In the general case, the off diagonal elements cannot all be eliminated,

i.e., IDD= 0. Three possibilities exist:
 

e 	For a null row in D, a nonzero element exists in E at the intersection
 

of a column which has not been pivoted.
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For this case a Gaussian elimination is performed on the nonpivoted
 

column, DET is updated and that row and column are eliminated. For the
 

above example this would yield
 

* A second case exists where the pivot element of E is zero.
 

X 
0 01S zxXx 

For this case, the subject row is treated as an algebraic equation, i.e.,
 
= z q2 - y ql allowing the elimination of one of these variables. The 

example would be:
 

-y/z 0 s x 0 X 

0 000 0
 

After reducing in order:
 

Again the product DET is updated. At this point the program returns
 

to the point where we started the elimination of the off diagonal ele

ments of the D matrix.
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a 	The third and last case covers the possibility of zero characteristic 

equation (can be caused only by errors on the input - fewer equations 

than variables). For this case the matrix may appear as: 

1 s- x 

0 0 

The determinant of which is obviously zero. Control goes to the next
 

data case or numerator transfer function after an error message is
 

printed.
 

The state matrix is considered complete when its associated D matrix is
 

the identity matrix. An exact zero is used for all numerical tests on zero.
 

To avoid numerical problems in all the manipulations required to generate
 

the state matrix, a special function is used. Since most of the operations
 

are of the form A X - B, a function was designed to set the result to zero if
 

the product A X is the same as B disregarding the four least significant bits
 

of the mantissas.
 

The methods described here for the formation of the state matrix are used
 

for both the denominator and numerator functions. Cramer's rule is used to
 

form the matrix which yields numerator information.
 

1.2.4.2.2 QR double iteration - The following discussion concerning the QR
 

double iteration method used to find the eigenvalues of a real matrix is
 

excerpted from IBM's System/360 Scientific Subroutine Package - Programmer's
 

Manual, Reference 1.
 

1.2.4.2.3 Definition of the QR iteration - Let A be a real or complex non

singular matrix of order n. Then a decomposition of A exists of the form
 

A = QR 
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where Q is unitary and R is upper triangular. If the diagonal elements of R
 

are real and positive, Q is unique. Consider now the sequence of matrices
 

A (p ) defined recursively by
 

A(o) = A, 

A(P) =QCP) R(P) 

R( p ) A(P + 1) Q(P) p 0. 

Note that A (p + 1) q(P)* A(p ) Q(P) for p 0; hence it follows that A(P) 

is similar to A for all p.
 

Furthermore, if A satisfies certain conditions, it can be proved that A
(p )
 

tends to an upper triangular matrix as p - w; thus the eigenvalues of A are 

the diagonal elements of this limit matrix. 

1.2.4.2.4 The double QR iteration - Let A be a diagonalizable real upper
 

Hessenberg matrix. Such a matrix must be expected to have complex conjugate
 

pairs of eigenvalues. If these pairs are the only eigenvalues of equal modulus,
 

it can be shown that they will appear as the latent roots of main submatrices
 

of order 2. In this case, if a shift is close to one of these roots, it will
 

be complex, and we will have to deal with complex matrices, although the initial
 

one is real. The use of the double QR iteration avoids this inconvenience.
 

Taking s(p + 1) = s(p ) , consider the transformation giving A(p + 2) 

from A( p ) : 

ACp + 2) = Q(p + i)* Q(P)* A(p) Q(p) Q(p + 1) 

It can be proved that the product Q(P) Q(P + 1) derives from the QR de

(A(p ) (p ) I) (A(p ) (p 
composition of the matrix 1 = - s - s + 1) 1), which is 

real.
 

It can be shown that only the first column m1 of M is necessary
 

2) from A(p ) , if
for determining the transformation which gives A(P + 

they both have the Hessenberg form.
 

22 



Practically, the first part of the double iteration consists of the
 

application of an initial transformation N A (p ) N where N is unitary and
1 N1 whr 1 i ntr n 

such that N1 ml ± Jim el. This leads to a matrix which no longer has 

the Hessenberg form. 

11 

Thus, the remaining part of the iteration will involve the application of
 

(n - 1) successive transformations, which have the same form as the initial one
 

whose matrices N1 are such that the resulting matrix A (p + 2) has the Hessenberg
 

form.
 

This process can fail when a subdiagonal term of the given matrix is zero.
 

In this case, the matrix can be split, and the iteration is performed on the
 

lower main submatrix only.
 

1.2.4.3 Output Description - All matrix definition input data are printed.
 

Nondefined elements are assumed zero and are not printed. The dependent matrix
 

data are printed first and the independent matrix data are printed next. Each
 

element of the dependent and independent matrices are polynomial in the trans

form operator and are printed with the highest order coefficient first.
 

The characteristic equation in both factored and polynomial form is printed
 

with the denominator title. The polynomial is formed by the product:
 

N
 

P(s) = [ - s.) 

The polynomial that is printed is the characteristic equation with the leading
 

coefficient divided out. This coefficient is printed.
 

Additional information such as time to one-half amplitude in seconds,
 

damping ratio, damped and natural frequencies (Hz) is supplied.
 

Eigenvectors are listed for each root with nonnegative imaginary part.
 

These vectors are solutions to the equation:
 

[A(s)] tvl = 0 
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where V is the vector that is listed and A is the input matrix. The special
 

case of multiple roots is not treated.
 

Output similar in form to that given for the characteristic equation is
 

given for each numerator requested with the exception of the eigenvectors.
 

For each numerator, K(s)/YLCs) so obtained, any one of several options may be
 

exercised:
 

• root locus
 

* frequency response
 

* power spectral density
 

* time history
 

See the individual output option routines for further discussion.
 

1.2.4.4 Data Storage - In order to conserve the storage requirements of the
 

control systems analysis package (CSAP), the input dependent and independent
 

matrices data are compressed into two arrays - IDATA and DATA.
 

IDATA is a two-dimensional array, whose rows represent code, row, column,
 

and order information defining the matrix polynomial element. The DATA array
 

contains the values of the coefficients of each matrix element.
 

An example is given to illustrate the compressed data storage technique
 

used:
 

e.g.,
 

element stored
 

Code: IDATA(l,l) = 0 DATA(l) = 1 

Row: IDATA(2,1) = 2 DATA(2) = -5 

Column: IDATA(3,1) = 1 DATA(3) = 4 

Order: IDATA(4,l) = 2 

The first element stored defines the (2,1) element of the dependent matrix
 

as:
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s - 5s + 4 

element stored
 

Code: IDATA(l,2) = 1 DATA(4) = .5
 

Row: IDATA(2,2) = 1
 

Column: IDATA(3,2) = 1
 

Order: IDATA(4,2) = 0
 

The second element stored is the (1,1) element of the independent matrix
 

and has the value of:
 

0.5
 

Note that the code (i.e., row 1) found in the IDATA array translates as
 

follows:
 

* 0 - element belongs to the dependent matrix
 

o 1 - element belongs to the independent matrix
 

* 2 - end of matrix definition data
 

When selectively redefining matrix elements (subroutine NWMTRX), the origi

nal element definition information in the IDATA array is effectively nulled by
 

setting the row definition to zero. The new definition is then added after the
 

last definition of both the IDATA and DATA arrays. This technique is used
 

because the order of the revised polynomial is not necessarily the same as the
 

original and simply storing the new over the old would cause subsequent
 

erroneous retrieval of the data.
 

1.3 Subroutines
 

The following subsections treat each of the subprograms in the linear
 

model package. The function of each routine, call arguments and programming
 

notes are given. The level of detail is intended to be sufficient to enable
 

one to work with the coding to troubleshoot or make modifications.
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1.3.1 CPUNCH
 

The function of this routine is to punch the dependent and independent
 

matrices in the order specified form (see Section 1.3.25 RDMTRX).
 

Routine access:
 

Call CPUNCH (DATA,MD,IDATA,MI)
 

Input:
 

DATA - Compressed matrices value vector
 

MD - Dimension of DATA vector
 

IDATA - Compressed matrices definiton array
 

MI - Dimension of IDATA array
 

Output:
 

Punched cards
 

Notes:
 

" Logical unit 7 is assumed to be the card punch unit
 

" Currently, only second-order polynomials or less are punched.
 

(This is due to the format statement which can be easily
 

changed.)
 

1.3.2 DERIVE
 

Subroutine DERIVE computes the aerodynamic partial derivatives for
 

the rotorcraft main rotor, tail rotor, and fixed surfaces. The main
 

rotor derivatives are formed in array DERIV. This array is made from the
 

basic derivatives, which also use DERIV, and inflow compounded partials
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from the basic derivatives, LAMDRV. The fixed surface partials are computed
 

in the array FIXED. Tail rotor and some fixed surface partials are individ

ually named.
 

The FIXED array elements are developed in section 3.1.3 of Volume I. Tail
 

rotor terms are given in section 3.1.4. Inflow derivatives and the method of
 

forming the inflow array LAMDRV are in section 3.3.2, and the derivative com

pounding scheme is in section 3.3.3 of Volume 1. The main rotor partials are
 

given in sections 3.3.3.1 through 3.3.3.4, and are used to form the DERIV array.
 

Routine access:
 

Information is transmitted via common statements.
 

Input:
 

/ABC/ lCommon; Input physical constants.
 

/PASSTR/ 'Common; Trim and preliminary calculations.
 

/TRIMAC/ Common; Trim data and physical inputs.
 

/PASSIN/ Common; Inflow partial derivatives from INFLOW program.
 

Output:
 

/PASSDE/ Common; Contains DERIV and FIXED arrays.
 

/TRIMAC/ Common; Contains vertical tail and tail rotor partial
 

derivatives.
 

Notes
 

e Array arrangement scheme is given in Volume 3. under Section 3.5,
 

Output Description.
 

1.3.3 DPQFB
 

The purpose of the routine DPQFB is to find an approximation of the form 

Q(x) = Ql + Q2 x + x2 to a quadratic factor of a given polynominal, P(x), 

with real coefficients. Bairstow iteration is used. See Reference 1. 
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Routine access: 

CALL DPQFB (C, IC, Q, LIM, IER) 

Inputs: 

C - Vector containing the coefficients of P(x), with C(1) being 

the constant term. 

IC - Order of polynominal 

Q - Q(1) and Q(2) are initial trials for Q, and Q2 " 

LIM - Limit number of iterations 

Outputs: 

Q - Q(1) and Q(2) contain the refined coefficients of Q1 and Q2 " 

Q(3) and Q(4) are the coefficients of the remainder A + Bx 

of the quotient P(x)/Q(x). 

IER - Error flag: 

= 0 no error 

= 1 no convergence within allowed iteration limit 

= -1 polynomial P(x) is constant or undefined 

= -2 polynomial P(x) is of degree 1 

= -3 no further refinement of the approximate quadratic 

factors is feasible, initial guess is not close enough.
 

Notes:
 

" No subroutines are called.
 

* 	 Checks on .overflow have been removed from the CDC version. Subroutine 

OVERFL is an IBM service routine 

a 	 Variables EPS and EPSI are used in the accuracy tests. Values are set 

to be compatible with IBM DOUBLE PRECISION. These coefficients may 

be set to achieve the desired accuracy. 
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1.3.4 DPRBM
 

Subroutine DPRBM calculates the roots of a given polynomial with real
 

coefficients. The roots are computed by successive quadratic factorization
 

using the Bairstow iteration method via calls to routine DPQFB.
 

Routine access: 

CALL DPRBM (C, IC, RR, RC, POL, IR, IER) 

Inputs: 

C - Vector containing the coefficients of the given polynomial. 

The coefficients are ordered from low to high, and on return 

they are divided by the last non zero term. 

IC - Number of coefficients in vector C. 

Outputs:
 

RR - Vector containing real part of the roots.
 

RC - Vector containing complex parts of the roots.
 

POL - Vector containing coefficients of the polynomial using the 

calculated roots. The coefficients are ordered from low to 

high. 

IR - Number of calculated roots.
 

IER - Error flag:
 

= 0 no error 

= 1 poor convergence of subroutine DPQFB 

= 2 polynomial is degenerate 

= 3 subroutine bypassed due to zero 'divide or unsatisfactory 

accuracy 

= -1 poor accuracy of calculated roots; less than three cor

rect significant digits. 
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Notes:
 

* 	Subroutine calls: DPQFB
 

* 	Checks on overflow have been removed from the CDC version.. Subroutine
 

OVERFL is an IBM service routine.
 

" Vectors are arranged so that the constant term is in position 1.
 

" 	Variable EPS is used in accuracy tests. Value currently compatible
 

with IBM DOUBLE PRECISION, but can be set for desired accuracy.
 

1.3.5 EIGVAL
 

,Subprogram EIGVAL is an executive subroutine which finds and prints the
 

eigenvalues of a state matrix. Routine HSBGNM converts the state matrix into
 

Hessenberg form which is then passed to the QR routine which computes the
 

eigenvalues of the input matrix. Using the computed roots, subroutine PLYFRM
 

forms a polynomial. The roots are then printed by routine PRINTR.
 

Routine access:
 

CALL EIGVAL (IB, D, JJ, ITITLE, DET, RR, RI, PN)
 

Inputs:
 

D - Matrix whose eigenvalues are to be found
 

IB 	- Dimension of D
 

JJ 	- Order of the input matrix
 

DET - Determinent of the input matrix
 

ITITLE - 80 byte title associated with the input matrix
 

Outputs:
 

RR - Vector containing real parts of the roots
 

RI - Vector containing imaginary parts of the roots
 

PN - Vector containing coefficients of the polynomial ordered low
 

to high.
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Notes: 

* Subroutine calls:
 

HSBGNM, QR, PLYFRM, PRINTR
 

a Ordered low to high means the constant term is in P(1).
 

1.3.6 EIGVEC
 

The original dependent variable matrix is utilized to determine eigen

vectors. Thus the vectors which are printed represent the relationships of
 

the original problem variable. (not necessarily the state variables) for each
 

mode. This is accomplished by evaluating the dependent variable matrix at
 

each root s = si:
 

[A(s)] [A +iATi] 

The two matrices Ai, AIi are then passed to the subroutine VECTOR which
 

(usually) returns the non trivial solution V to the equation
 

[AR+jA1I] {VR +ijVT} = 0 

This process is repeated for each root with zero or positive imaginary
 

part.
 

Routine access:
 

CALL EIGVEC (IB, D, E, ND, DATA, MI, IDATA, RR, RJ, NRUT, N)
 

Inputs:
 

DATA, IDATA - matrices containing compressed form of both the depen

dent and independent matrices
 

MD, MI - dimension of DATA and IDATA arrays
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RR, RI - Vectors containing the real and complex parts of the
 

roots of the dependent matrix
 

NRUT - number of roots
 

N - number of dependent 'variables
 

D, E - work arrays used to compute and print the eigenvectors
 

IB 	- dimension of D and E
 

Outputs:
 

Print only
 

Notes:
 

* 	Subroutine calls: VECTOR
 

* 	The conjugate root (i.e., negative imaginary part) will produce the
 

conjugate vector. (i.e., VR - jVI) and therefore is not computed.
 

1.3.7 FREQR
 

The frequency response option will provide the gain and phase response
 

of the selected transfer function, G(jc).
 

The transfer function is calculated using the following equation:
 

Jj 

k~s DE (.jco- RR(i) - (RI (i))) T
Q K(s) DET i=l 

G YL (S) DETD NRUT E(c - j(RID(i)))Oi I -RRD(i) 

where w is the frequency
 

RR, RI are the roots of the numerator polynomial
 

RRD, RID are the roots of the denominator polynomial
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The frequency is incremented in geometric progression to yield equal
 

spacing on the typical Bode log frequency plot.
 

Gain and phase information are printed for each frequency and saved for
 

later plotting (optional). Note that a full page of print is generated before
 

a check is made on the maximum frequency.
 

Routine access:
 

CALL FREQR (IPLOT, DAT)
 

Inputs:
 

IPLOT - Vector containing plot control data
 

DAT - Vector containing frequency response control data
 

/TITLE/ - Common; denominator and numerator titles
 

/REALA/ - Common; Vectors containing the real and imaginary parts
 

of the roots of the denominator and numerator
 

/PLOTC/ - Common; plotting information
 

/OPTION/ - Common; miscellaneous information passed from MAIN
 

routine.
 

Outputs:
 

Print only
 

Notes:
 

* 	Subroutine calls: PLXDIV, YPLOT
 

* 	A full page of print contains information about 72 points printed 

in two columns; 36 print lines per page. 
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1.3.8 	GELG
 

GELG solves the set of linear equations AX B by Gaussian elimination.
 

See Reference 1 for a complete description.
 

Routine access:
 

Call GELG (B,A,M,N,EPSIER)
 

Input:
 

B - Input matrix of dimension M by N containing right-hand sides
 

of the equation AX = B. (destroyed)
 

A - Input matrix of dimension M by M containing the
 

matrix of the equation AX = B. (destroyed)
 

M - Number of equations in the system (order of A and number of
 

rows in B).
 

N - Number of right-hand sides (vectors).
 

EPS - Input constant used as relative tolerance for test on loss
 

of significance.
 

Outputs:
 

B - The m by m solution.
 

IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS
 

IER=O - NO ERROR.
 

IER=-l - NO RESULT BECAUSE OF M LESS THAN 1 OR PIVOT
 

ELEMENT AT ANY ELIMINATION STEP EQUAL TO 0.
 

IER=K - WARNING DUE TO POSSIBLE LOSS OF SIGNIFICANCE
 

INDICATED AT ELIMINATION STEP K+1, WHERE PIVOT
 

ELEMENT WAS LESS THAN OR EQUAL TO THE INTERNAL
 

TOLERANCE EPS TIMES ABSOLUTELY GREATEST ELEMENT
 

OF MATRIX A.
 

Notes:
 

a 	 EPS between 1014 and 1616 is suggested by 64-bit word 

computations. 
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1.3.9 HSBGNM
 

The purpose of this routine is to convert an input state matrix into
 

Hessenberg form and to compute a scaled Euclidean norm.
 

The scaled Euclidean norm is computed using the following equation.
 

2 
I 


=(X)N2 

i=l j=l
 

The real matrix A is reduced by a similarity transformation to Hessenberg
 

form. Each row, starting from the last one, is reduced by applying a suit

able right elimination matrix and similarity is achieved by also applying
 

the left inverse transformation. The end result is an upper almost

triangular matrix whose eigenvalues are the same as the original input
 

matrix.
 

Routine access:
 

CALL HSBGNM (A, IORD, MAXS, ENORM, N)
 

Inputs:
 

A - matrix to be converted
 

IORD - order of A
 

MAXS - dimension of input matrix and work vector, N
 

N - work vector
 

Output:
 

A - Hessenberg form of original input matrix
 

ENORM - Scaled Euclidean norm
 

35 



Notes:
 

a The Euclidean norm is scaled by the formula:
 

-
N BITS
= qA + 2ENORM 


where NBITS is the number of significant bits used. The value of
 

ENORM is used to find computational zero.
 

1.3.10 INFLOW
 

INFLOW calculates the steady state, sine and cosine components of the
 

main rotor induced velocity as a function of the degrees of freedom. An
 

implicit relation is formed for the three variables. The resulting array
 

is inverted using GELG to find the explicit partial derivatives. The inflow
 

array is given in Section 3.3.2 of Volume I.
 

Routine access:
 

The routine information is processed via COMMON statements.
 

Input:
 

/ABC/ Common; Input data physical constants
 

/PASSTR/ Common; Calculations from TRIM program.
 

/TRIMAC/ Common; Input data and TRIM calculations.
 

Output:
 

/PASSIN/ Common; LAMDRV array of inflow partials.
 

1.3.11 	MAIN
 

This routine controls the linear model sequence of computations as illus

trated in Figure 1-i. First, a call is made to PDATE which returns the current
 

day's date. Then information about the matrices is read and depending upon
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the specified mode of operation, control is passed to either routine MODEL
 

or RDITRX which return the independent and dependent matrices in compressed
 

form. Before these matrices are analyzed, their nonzero values are printed
 

(subroutine PRINT).
 

Next, routine STMTRX forms the state matrix and then the denominator
 

title is read and the eigenvalues and eigenvectors are computed (subroutines
 

EIGVAL and EIGVEC).
 

After reading the numerator title and determining that output options
 

are desired, control information about the output options is read. The
 

numerator state matrix is formed (routine STMTRX) and it's roots are com

puted (subroutine EIGVAL). Control is then passed to the appropriate
 

output option routine (subroutines ROOT, FREQR, TIMEH or POWER). This loop
 

repeats until all the output options indicated have been completed.
 

If changes to the original matrices are desired, routine NWMTRX reads
 

the selected matrices elements to be changed and then the revised matrices
 

are printed (subroutine PRINT). The program then repeats from the point
 

where the original state matrix is computed.
 

When-the particular case is done, the program checks if another con

figuration is to be run. If another case follows, control cycles back to
 

the point where the input data is read.
 

1.3.12 MATRIX
 

The routine MATRIX uses the coefficients from TRIM to establish the
 

linear model in matrix form. MATRIX calls INFLOW and DERIV in order to
 

compute the required aerodynamic partial derivatives. The matrix elements
 

are calculated as four arrays. MTRXA contains the second order terms,
 

MTRXB has the first order terms, and MTRXB is the array of constants. The
 

INDEP array contains the forcing functions. The matrix model is given in
 

Figure 4-1 of Volume I.
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Routine access:
 

This routine handles information via COMMON statements.
 

Input: 

/PASSDE/ Common; Aerodynamic derivatives. 

/ABC/ Common; Input physical data. 

/TRIMAC/ Common: Trim rates and aerodynamic derivatives. 

Output: 

/PASSMX/ Common; Contains the MTRXA, MTRXB, MTRXC and INDEP 

matrices. 

Notes: 

* This routine calls INFLOW and DERIVE.
 

1.3..j MODEL
 

The program MODEL is an executive routine that calls the subroutines
 

necessary to create and assemble the linear model matrix, and submit it
 

for analysis processing. There are no direct input or output functions.
 

The routines READIN, TRIM, MATRIX and PKDATA are called in order.
 

1.3.:4 NWMTRX
 

NWMTRX allows changes to be made to either a model defined by MATRIX
 

or direct input by the user.
 

The revised definition for the original dependent or independent matrix
 

element is read. Then, if the original matrix element definition exists,
 

it is nulled. The revised definition is added to the next free location
 

in the compressed matrices. This process is repeated until the revisions
 

are exhausted.
 

If a change to the dependent matrix size is indicated, then this change
 

is made.
 

38 



Routine access:
 

CALL NWMTRX (LI, LX, INPUT, IDATA, MI, DATA, MD, N)-


Input:
 

INPUT - Input method flag 

IDATA, DATA - Matrices containing compressed form of both the 

original dependent and independent matrices 

MI, MD - Dimensions of the IDATA and DATA arrays 

LI - Pointer to the next available location in the IDATA 

array 

LX - Pointer to the last used location in the DATA array 

N - Number of dependent variables 

Notes: 

* This routine has no output pther than to change the model matrix.
 

1.3.15 PDATE
 

Routine PDATE is a dummy date routine which is replaced by the particular
 

installation's own date routine. The calling routine expects a one word,
 

eight character literal to be returned.
 

Routine access:
 

CALL PDATE (NDATE)
 

Output:
 

MM-DD-YY, Month, day, year
 

Notes:
 

a The argument NDATE is typed DOUBLE PRECISION for the IBM version and
 

REAL for CDC and is left-justified.
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1.3.16 PKDATA
 

Routine PKDATA packs the general A, B, and C matrices calculated in
 

subroutine MATRIX into the form required by the matrix analysis section of
 

this program.
 

Routine access:
 

CALL PKDATA (IDATA, MI, DATA, MD, LX, LI, N, INV, IER)
 

Input: 

MI - Column dimension of IDATA array 

MD - Dimension of DATA vector 

N - Number at dependent variables
 

INV - Number of independent variables
 

/PASSMX/ - Common; general A, B, C and INDEP matrices
 

Output: 

IDATA - Compressed dependent and independent matrices definition 

data array 

DATA - Compressed dependent and independent matrices coefficient 

data vector 

LX - Pointer to the last used location in the DATA vector 

LI - Pointer to the next available location in the IDATA vector 

IER - Error flag 

= 1 number of defined matrix elements exceeds dimension 

of IDATA array 

= 2 number of defined matrix elements exceeds dimension 

of DATA vector 
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1.3.17 	 PLXDIV
 

The function of this routine is to perform the complex division:
 

u + jv =, (A + jB) / (C + jD) 

The input values A, B, C and D are first normalized such that MAX (C, D)
 

is unity. The solution is then obtained from:
 

u (A' * C' + B' * D') / (A' * A' + B' * B') 

v (B' * C' - A' * D') / (A' * A' + B' * B') 

The original A, B, C and D are not destroyed. 

Routine access: 

CALL PLXDIV (A, B, C, D, U, V) 

Input: 

A, B - Complex numerator variable
 

C, D - Complex denominator variable
 

Output:
 

U, V - Complex quotient of division operation
 

1.3.18 PLYFRM
 

The subroutine PLYFRM forms a polynomial from its roots. I.e.,
 

NRUT
 

P(s) = J (s-s i) 
i= 1
 

where the s. are the real or complex roots which define the system. The

I 

method used is a straight forward multiplication which will handle the
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N=0 	case. Conjugate roots are assumed. The constant term is in the P(0)
 

slot 	and the leading coefficient (1.0) is placed in P(N).
 

Routine access:
 

CALL 	PLYFRM (NRUT, RR, RI, P)
 

Inputs:
 

NRUT 	- Number of roots
 

RR -	Vector containing real parts of the roots
 

RI - Vector containing imaginary parts of the roots
 

Outputs:
 

P -	Vector containing the coefficients of the computed polynomial
 

ordered low to high
 

Notes:
 

" Conjugate roots are assumed
 

* The N=0 case is handled
 

* Ordered low to high means the constant term is in the P(1) location.
 

1.3.19 	 POLRT
 

Subprogram POLRT computes the roots of a polynomial with real coef

ficients using the Newton-Raphson successive approximation iterative tech

nique. See Reference 1.
 

Routine access:
 

CALL POLRT (XCOF, COY, M, ROOTR, ROOTI, IER)
 

Inputs:
 

XCOF - Vector containing the coefficients of the polynomial
 

ordered low to high
 

COF - Working vector of length M + I
 

M -	 Order of the polynomial.
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Outputs:
 

ROOTR - Vector containing real parts of the roots
 

ROOTI - Vector containing imaginary parts of the roots
 

IER - Error flag
 

= 	 0 no error 

= I order of polynomial less than one 

= 2 order of polynomial too big (i.e., >36) 

= 3 unable to find roots 

Notes:
 

" 	The program contains a section of code to test the accuracy of
 

each root and print a warning of insufficient accuracy.
 

* 	The accuracy test numbers are compatible with IBM DOUBLE PRECISION.
 

These values can be changed to achieve the desired accuracy.
 

1.3.20 POWER
 

This routine forms a power spectral density solution to a selected
 

transfer function. This operation is not part of the usual linear model
 

procedures, but is included here to fully describe the analysis package
 

routines.
 

Subroutine POWER computes the turbulence power spectral density and
 

the density integral of the transfer function, XK(S)/YL(S). The power
 

spectral density is calculated from the equation:
 

2PSD(O) = G(jw) 2L 1 + 8/3(l.339wL/v)2 
v (I + (l.339wL/v)2 ) 11/6 
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where
 

G(j) = XK(J)/YL(0C) 

w is the frequency
 

L is the characteristic length
 

v is the velocity
 

Note that
 

1 eln(x)/6
1 
11/6 2 x x 

which is used to simplify to previous equation.
 

Then the density integral at each frequency is calculated using the
 

equations
 

PH i = PSD (i) ( - 1)(1 - Y( _)1i 
PHI(w) 2 211 + PHI (o1 ) 

where Awis the frequency increment PHI (wi) = 0 

Frequency, the magnitude of the transfer function (i.e., JG(jw)12), 

the power spectral density and density integral information are printed. 

The frequency and PSD, are also saved for later plotting (optional). 

Routine access: 

CALL POWER (DAT, IPLOT) 

Input:
 

DAT - Vector containing control data for this option
 

IPLOT - Vector containing plot control data
 

/TITLE/ - Common; denominator and numerator titles
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/REALA/ - Common; vectors containing the real and imaginary
 

parts of the roots of the numerator and denominator
 

/OPTION/ - Common; miscellaneous information passed from MAIN
 

routine
 

/PLOTC/ - Common; plotting information
 

Outputs:
 

Print only
 

Notes:
 

a' Subroutines PLXDIV and ZPLOT are called.
 

e The frequency is incremented in geometric progression to yield
 

equal- spacing on logarithmic frequency scales.
 

o Note that for a unity transfer function (i.e., G(jQw) = 1), the 
integral will approachunity as wmin ' 0 and w -m W. The 

mm max 

resulting power spectral density will be that of the isotropic
 

turbulence model with unity standard deviation.
 

1.3.21 PRINT
 

The function of this routine is to print the dependent and independent
 

matrices.
 

The dependent matrix is printed beginning with row 1. All the poly

nomial elements in row 1 are collected, sorted in column order and printed.
 

This process is repeated for all the rows of the dependent matrix.
 

The independent matrix is then printed using the same method.
 

Routine access:
 

CALL PRINT (D, IB, DATA, MD, IDATA, MI, N)
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Input:
 

D - Working array
 

IB - Dimension of D
 

DATA, IDATA - Matrices containing the compressed form of both the
 

independent and dependent matrices
 

MD, MI - Dimensions of the DATA and IDATA arrays
 

N - Number of dependent variables
 

Output:
 

Print only
 

Notes:
 

* 	 Only the defined (i.e., non-zero) input are printed
 

e 	 For each row, the number of lines of print per row is determined
 

by the highest order polynomial in that row.
 

* 	 The constant term appears last. 

1.3.22 PRINTR
 

This routine is used to print polynomial, root and stability information.
 

The routine recognizes three possible cases where the information printed
 

is dependent upon the imaginary part of the root. If the imaginary part of
 

the root is:
 

1) negative - only polynomial and root information is printed
 

2) zero - polynomial, root and time to half amplitude information
 

is printed.
 

3) positive - polynomial, root and all stability information is printed.
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The 	formulas used to compute stability information are:
 

Time to half amplitude = -. 69314718/RR 

Damping ratio = -RR/WN 

Damped frequency (D) = RI/6.2831853 

Damped frequency (N) = 1N/6.2831853 

where
 

2 	 2 1/22 )
(RR

2 + RI 
=WN 


and each root is located at RR + j RI.
 

Routine access:
 

CALL PRINTR (J, RR, RI, P)
 

Input:
 

J - Number of roots
 

RR, RI - Vectors containing real and imaginary parts of the roots
 

P - Vector containing coefficients of the polynomial formed
 

using the roots. Ordered low to high.
 

Output:
 

Print only.
 

1.3.23 	PROD
 

Subroutine PROD performs the calculation:
 

PROD =A - B * C
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If the difference between A and B * C is equal to or greater than the 

fifth least significant bit of the mantissa of A, otherwise PROD = 0.0. 

Routine access: 

Function subroutine; X = PROD (A, B, C) 

Input: 

A, B, C - Input variables
 

Output:
 

Value of the computation A - BC
 

1.3.24 QR
 

Subroutine QR calculates the eigenvalues of the input Hessenberg
 

matrix using the QR double iteration process. See Section 1.2.4.2.2.
 

Routine access:
 

CALL QR (A, N, MAXS, E, RR, RI, ITER)
 

Input:
 

A - Input matrix in Hessenberg form.
 

N - Order of A
 

MAXS - Dimension of A and ITER
 

E - Scaled Euclidean norm
 

ITER - Work vector
 

Output:
 

RR - Vector containing real parts of the eigenvalues
 

RI - Vector containing imaginary parts of the eigenvalues
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Notes:
 

" No subroutines are required.
 

" At each iteration, the latent roots X I and X 2 of the lower main
 

submatrix of order 2 are computed. The following' situations can
 

occur:
 

a) A (N, N - 1) 0. A (N, N) is an eigenvalue. The order is
 

reduced by one
 

b) A (N - 1, N - 2) = 0. and X 2 are eigenvalues of the original
X I 


matrix. The order is reduced by two.
 

1.3.25 RDNTRX
 

An optional mode of the linear model allows the user to use the pro

gram as simply a control systems analysis tool (CSAP). In this mode the
 

dependent and independent matrices are directly inputted to the program
 

in one of two forms:
 

1) K, I, J, M, DAT FORMAT (412,6FI0.0)
 

2) K, I, J, DAT FORMAT (312,3F10.0)
 

where
 

K 	 = 0 dependent matrix element
 

= 1 independent matrix element
 

= 2 end of matrix data
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I 
 row of matrix element
 

J column of matrix element
 

M order of polynomial
 

DAT coefficients of polynomial
 

for method #1, DAT = A , A .... , A 

#2, DAT = A2, Al, A 0
 

This input data is stored in compressed form. See Section 1.2.4.4.
 

Routine access:
 

CALL RDMTRX (IDATA, MI, DATA, MD, LX, LI, INPUT)
 

Input:
 

MI - Dimension of IDATA array
 

MD - Dimension of DATA vector
 

INPUT - Flag indicating input format
 

Output:
 

IDATA - Compressed matrices definition array
 

DATA - Compressed matrices value vector
 

LI - Pointer to next available location in IDATA array
 

LX - Pointer to last used location in DATA array
 

Operation of the program in this direct mode is discussed in Sec

tions 3.2 and 3.3 of Volume III.
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1.3.26 READIN
 

The routine reads the linear model case definition data, and prints an
 

echo of this data with group titles.
 

Routine access:
 

CALL READIN (0)
 

Inpt:
 

Input data cards numbers 2 through 19.
 

Output:
 

0 - Omega frequency used in plotting the time history option
 

/ABC/ - Common; input case configuration data.
 

1.3.27 ROOT
 

The root locus option, via subroutine ROOT, finds the roots of the
 

system:
 

1 + GAIN (i) * Xk(s)/YL (s) = 0 

Replacing the numerator and denominator (K and YL) of the transfer
 

function by their respective polynomial form (i.e. PN and PD) and multiplying
 

by the denominator, the following equation is formed which is the actual equa

tion whose roots are found:
 

F(s) = PD (s) + k * DET/DET * PN (s) 

for each value of k (GAIN).
 

The numerator polynomial is input to this subroutine which calls PLYFRM
 

to form the denominator polynomial. Subroutine RTPOLY is then used to calcu

late the roots which are printed by the PRINTR routine.
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The denominator roots and the roots of the above equation are saved in a
 

data array for plotting. Also, the largest and smallest roots of the denomi

nator, numerator and the above equation are found for plotting purposes.
 

Routine access:
 

CALL ROOT (MI, PN, DAT, IPLOT, ZEROX, ZEROY)
 

Input:
 

NI - Order of ZEROX and ZEROY vectors
 

PN - Numerator polynomial
 

DAT - Root locus control data vector
 

IPLOT - Plotting control data vector
 

ZEROX - Vector containing real parts of the numerator roots
 

ZEROY - Vector containing imaginary parts of the numerator roots.
 

/REALA/ - Common; real and imaginary parts of the roots of the
 

denominator and numerator.
 

/TITLE/ - Common; numerator and denominator titles
 

/PLOTC/ - Common; plotting information
 

/OPTION/ - Common; miscellaneous information passed from MAIN routine.
 

Output:
 

Print only.
 

Notes:
 

* Subroutines required. PLYFRM, PRINTR, RTPOLY, XMAX, XMIN, ZPLOT
 

* Plotting capability has not been implemented on the CDC version.
 

1.3.28 RTEST
 

This routine creates the polynomial from the trial roots.
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The polynomial P(s) is evaluated at s = s.1 using the following equation: 

n-i
 

P(s) = a0 + E aksk 

s+s.
 
k=l
 

Routine access:
 

CALL RTEST (COEF, RE, N, IMAG, FC, FD)
 

'Input:
 

COEF - Vector containing the coefficients of the polynomial
 

ordered high to low.
 

RE - Real part of s = s.1
 

IMAG - Imaginary part of s = s.
1 

Output:
 

FC - Vector containing real part of evaluated polynomial
 

FD - Vector containing imaginary part of evaluated polynomial.
 

1.3.29 RTPOLY
 

Subroutine RTPOLY is an executive routine for finding the roots of a
 

given polynomial. Three attempts to compute the roots are made.
 

Control is first passed to routine DPRBM which attempts to calculate the
 

roots by successive quadratic factorization using the Bairstow iteration
 

method.
 

If subprogram DPRBM is unable to find the roots of the polynomial, then
 

an initial guess is made on the roots to be found. Control then passes to
 

subroutine POLRT which employs the Newton-Raphson iterative method to
 

compute the roots of the polynomial.
 

If the first pass through POLRT fails, another initial guess is made and'
 

subprogram POLRT is again invoked. If this third attempt to find the roots
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of the polynomial fails, an error message is printed and control returns to
 

the calling routine.
 

Both the Bairstow and the Newton-Raphson iterative techniques are used
 

in order to ensure that the roots will almost always be found. This is due
 

to the fact that the class of polynomials for which one method fails to con

verge is not the same as the other.
 

Routine access:
 

CALL RTPOLY (N, C, L, F, RR, RC, POL)
 

Input:
 

N - Order of the polynomial
 

C - Coefficients of the polynomial ordered high to low
 

F - Dummy argument
 

Output:
 

RR - Vector containing the real parts of the roots.
 

RI - Vector containing the imaginary parts of the roots.
 

POL - Vector containing the polynomial coefficients using the
 

calculated roots.
 

L - Error flag.
 

Notes:
 

* Subroutines required: DPRBM, PORT
 

1.3.30 STMTRX
 

The basic function performed by routine STMTRX is to form a state matrix
 

whose eigenvalues are identical in number and value to those of the input
 

matrix. The method used is explained in Section 1.2.4.2.1 Formation of the
 

state matrix.
 

Routine access:
 

CALL STMTRX (MD, MI, IDATA, DATA, JD, JN, JB, N, D, E, DET, J, IER)
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Input:
 

MD, MI - Dimensions of DATA and IDATA arrays
 

IDATA, DATA - Arrays containing compressed matrices data
 

JD - Dependent variable column number j used for transfer function
 

computations
 

JN - Independent variable column number i used for transfer func

tion computations
 

IB - Size of D and E arrays
 

N - Number of dependent variables
 

E - Work array
 

Output:
 

D - State matrix
 

DLT - Determinant of input matrix
 

J - Order of state matrix
 

IER - Error flag
 

Notes:
 

o Subroutine calls: PROD
 

1.3.31 TIMEH
 

The time history option computes a step response time history for a
 

specified transfer function. The equation:
 

DET -1 1PN (s)f(t) DETD 1 D 


Where L is the inverse LaPlace transformation
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is solved by integration where the integration formula used is the fourth
 

order Taylor series expansion:
 

x(t + T) = x (t) 
k=0 

This formula was chosen to take advantage of the fact that the derivatives of
 

each state variable are available at each point in time when the polynomial
 

form is utilized. The conceptual form is given in Figure 1-2.
 

Note that the derivatives of each state variable, x are available. The
 

derivatives of the lead integrator are found from the equation:
 

N-1
 

t) - = "-PD (i) * x(i + k - 1) 

i=l 

where STEP * DET/DETD is added for k=l to account for the step input-magnitude.
 

Values for position, rate and acceleration as a function of time are
 

printed and saved for later plotting (optional). An integration interval of
 

approximately .2/R is recommended where R is the distance in the S plane
 

from the origin to the largest denominator root. Note that in order to make,
 

the print time (TP) a near integer multiple of the integration interval (DT),
 

the following adjustment is made:
 

S(1 + 10- 6) *TP

TP/STEPI
 

where STEPI is the integration step.
 

Routine access:
 

CALL TIMEH(PN, DAT, IPLOT, 0)
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INPUT) DETD
 

PD (N-1) ] 

Figure 1-2. Time History Integration Format
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Input:
 

PN - Vector containing coefficients of the numerator polynomial
 

DAT - Time history control data
 

IPLOT - Plotting control data
 

0 - Frequency used for scaling purposes
 

/TITLE/ - Common; numerator and denominator titles
 

/REALA/ - Common; numerator and denominator roots
 

/PLOTC/ - Plotting information
 

/OPTION/ - Miscellaneous information passed from MAIN routine
 

Output:
 

Print and plot only.
 

Notes:
 

* Plotting capability has not been implemented on the CDC version.
 

* Subroutine calls: PLYFRM, XPLOT
 

1.3.32 TRIM
 

The routine TRIM establishes a free flight force and moment equilibrium
 

from the rotorcraft defined by the input data. Angle of attack is iterated
 

to null the longitudinal force summation. Collective is used to null the
 

vertical force sum. The tail rotor thrust is set to balance the main rotor
 

torque. The main rotor inflow velocity is calculated as a convergence loop
 

within the vertical and longitudinal force balance loops. The balance equations
 

and coefficients are given in section 3.9 of Volume I.
 

Routine access:
 

CALL TRIM (IER)
 

Input and output information is handled by COMMON statements and
 

diagnostic printouts except for error indicator.
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Input:
 

/ABC/ Common; This is the input physical constants.
 

Output:
 

/PASSTR/ Common; The trim constants calculated and frequently
 

used coefficient groupings.
 

/TRIMAC/ Common; Partially composed of TRIM computation outputs.
 

Trim conditions and coefficient groupings are printed by this
 

routine.
 

IER = Error flag:
 

= 0 no trim errors
 

= 1 convergence failure
 

Notes:
 

e The inflow iteration uses a weighted average of new and old trials
 

to achieve convergence. This weighting is internally scheduled
 

versus speed to optimize to convergence process for rotorcraft data
 

sets tried so far. The weighting coefficient mix or speed scheduling
 

may have to be altered if plus-minus iteration cycle problems develop.
 

1.3.33 VECTOR
 

The function of the VECTOR routine is to accept the complex matrix A
 

whose determinant is supposedly null and produce the complex vector V which
 

represents the solution to the equation:
 

[A] V = 0 

The method used is to reduce A to a diagonal matrix through Gaussian elimina

tion and back-solve the column whose (n, n) term is zero for the vector.
 

The A matrix is destroyed and the vector is left in the JV column where JV
 

is an integer passed in the calling sequence.
 

59 



Note 	that a zero is defined to be:
 

10-8 *Z JAR (I,J)j + JAI (I,J)I)/N
 

-8 -NBITS/2
 
-
for all zero tests. The factor 10 approximates 2 . Where NBITS is
 

the mantissa length (48 for CDC 7600).
 

Subroutine access:
 

CALL VECTOR (IB, AR, Al, JV, N)
 

Inputs:
 

IB - Dimensions of AR, AI
 

AR - Work array; on input, contains real parts of input matrix
 

AI - Work array; on input, contains imaginary parts of input
 

matrix.
 

N - Order of input matrix
 

Output:
 

AR - Work array; on output, contains real part of solution
 

vector
 

AI - Work array; on output, contains imaginary part of solution
 

vector
 

JV - Column of AR, AI matrix which contains solution vector
 

Notes:
 

* Subroutine calls: PLXDIV
 

1.3.34 	XHAX
 

The purpose of the XMAX function is to return the maximum value of the
 

input real array of length N.
 

Routine access:
 

Function BMAX = XMAX (A, N)
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Input:
 

A - Real array
 

N - Size of A
 

Output:
 

XMAX - Maximum value of the input matrix
 

1.3.35 XMIN
 

The purpose of the XMIN function is to return the minimum value of the
 

input real array of length N.
 

Routine access:
 

Function BMIN = XHIN (A, N)
 

Input:
 

A - Real array
 

N - Size of A
 

Output:
 

XMIN - Minimum value of the input matrix
 

1.3.36 XPLOT
 

Subroutine XPLOT is the dummy plotting routine used by the time history
 

option (subprogram TIMEH).
 

Routine access:
 

CALL XPLOT
 

Notes:
 

* 	An active plotting routine can be constructed using the arguments
 

listed in the original call to this routine, the labeled cotnon
 

/PLOTC/ and knowledge of the installation's plot routines.
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1.3.37 	YPLOT
 

Subroutine YPLOT is the dummy plotting routine used by the frequency
 

response option (subprogram FREQR).
 

Routine access:
 

CALL YPLOT
 

Notes:
 

* An 	active plotting routine can be constructed using the arguments
 

listed in the original call to this routine, the labeled common
 

/PLOTC/ and knowledge of the installation's plot routines.
 

1.3.38 ZPLOT
 

Subroutine ZPLOT is the dummy plotting routine called by the power 

spectral density and root locus options (subprograms POWER and ROOT). 

Routine access: 

CALL ZPLOT 

Notes: 

* An 	active routine can be developed using the data array PDATA, the
 

labeled common /PLOTC/ and the plotting routines of the particular
 

installation.
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SECTION 2
 

COMMON/SUBROUTINE DIRECTORY
 

Figure 2-1 and Tables 2-1 and 2-2 are presented here as aids to under

standing the hierarchical structure of the linear model programming,. Fig

ure 2-i shows the calling sequence, or tree, of the package routines.
 

Table 2-1 lists each subroutine and the routines which it calls. The
 

called routines have a level number associated with them which indicate
 

whether the called routine in turn calls any other routines. A zero shows
 

no further 'alls, a one shows one additional sub level, etc.
 

Table 2-2 lists each COMMON block and the routines in which they are
 

used. All COMMON blocks are labeled.
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TABLE 2-1. SUBROUTINE DIRECTORY
 

ROUTINE CALLS LEVEL ROUTINE CALLS LEVEL 

CPUNCH -- (4) 

DERIVE -- MODEL MATRIX (4). 

PKDATA (0) 

DPQFB READIN (0) 

TRIM (0) 

DPRBM DPQFB (0) NWMTRX --

EIGVAL HSBGNM (0) PDATE 

PLYFRM (0) PKDATA --

PRINTR (0) PLXDIV --

QR (0) PLYFRM --

EIGVEC VECTOR (1) POLRT RTEST (0) 

FREQR PLXDIV (0) POWER PLXDIV (0) 

YPLOT (0) ZPLOT (0) 

GELG 

HSBGNM -- PRINT --

INFLOW GELG (0) PRINTR --

MAIN CPUNCH (0) 

EIGVAL (1) PROD 

EIGVEC (2) QR 

FREQR (1) RMTRX 

MODEL (5) READIN --

NWMTRX (0) ROOT PLYFRM (0) 

PDATE (0) PRINTR (0) 

POWER (1) RTPOLY (2) 

PRINT (0) XMAX (0) 

RD1MTRX (0) XMIN (0) 

ROOT (3) ZPLOT (0) 

STMTRX (1) RTEST (1) 

TIMEH (1) RTPOLY DPRBM (1) 

MATRIX DERIVE (0) POLRT (1) 

INFLOW (3) 
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TABLE 2-1. 

ROUTINE CALLS 

STMTRX 

TIMEH 

TRIM 

VECTOR 

XMAX 

-

PROD 

PLYFRM 

XPLOT 

--

PLXDIV 

-

XMIN 

XPLOT 

--

SUBROUTINE DIRECTORY (Cont)
 

LEVEL ROUTINE CALLS LEVEL
 

(0) YPLOT -

(0) ZPLOT -

(0)
 

(0)
 

(0) 
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TABLE 2-2. COMMON DIRECTORY 

LABELED ROUTINE LABELED ROUTINE 
COMMON USED IN COMMON USED IN 

/ABC/ DERIVE /TITLE/ FREQR 

INFLOW POWER 

MATRIX ROOT 

READIN TIMER 

TRIM /TRIMAC/ DERIVE 

/OPTION/ FREQR INFLOW 

POWER MATRIX 

ROOT TRIM 

TIMEH 

/PASSDE/ DERIVE 

MATRIX 

/PASSIN/ DERIVE 

INFLOW 

/PASSMX/ MATRIX 

PKDATA 

/PASSTR/ DERIVE 

INFLOW 

TRIM 

/PLOTC/ FREQR 

POWER 

ROOT 

TIMEH 

/REALA/ FREQR 

POWER 

ROOT 

TIMEH 
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SECTION 3
 

COMPLETE SOURCE LISTING
 

The linear model package has been supplied to NASA, Ames Research Center,
 

under contract NAS2-9374. The program is under the auspices of Dr. R.T.N. Chen,
 

and available from this source. The coding has been arranged for operation on
 

CDC 7600 Series computer equipment.
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SECTION 4
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