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SUMMARY

This report presents a comprehensive discussion of the problem
of singular control. Singular control enters an optimal trajectory when
the so-called switching function vanishes identically over a finite time
interval.

Using the concept of domain of maneuvrability, the problem of
optirnal switching is analyzed. Criteria for the optimal direction of
switching are presented. The switching, or junction, between nonsingular
and singular subarcs is examined in detail. It is shown that, in general,
switching with singular arcs falls into one of two categories: a regular
type where the control is discontinuous at the junction point, and a singular
type where not only the control is discontinuous at the junction point, but
1s non-analytic, In this type of junction, entering or leaving a singular
arc is effected by .chattering control.

Junction between nonsingular and singular subarcs in which the
contrel is continuous at the junction point is a rare phenomenon and
usually is effected at some specified points in the phase space. This will
require particular initial and final manifolds. Several theorems concern-
ing the necessary, and also sufficient conditions for smooth junction are
presented.

The concepts of quasi-linear control and linearized control are

introduced. They are designed for the purpose of obtaining approximate
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solution for the difficult Euler-Lagrange type of optimal control in the
case where the control is nonlinear,.
Some illustrative examples are presented as applications of the

theorems formulated and of the concepts introduced.
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I, INTRODUCTION

Optimal control problems in which the control variables appear
only linearly admit the possibility of the existence of singular extremals.
Along 2 singular optimal subarc the so-called switching function 1s identi-
cally zero and necessary condition for optimality is established by
considering higher order variation of the Hamiltonian. In recent years,
this problem of singular control has been studied by a number of authors
[ 1-14] . The case is now no longer considered as just a mathematical
singularity, as its name suggests, but because of frequent occurrence of
optimal singular subarcs in trajectory optimization, singular contreol has
become a reality and the incll%sion of such subarcs in the overall optimal
trajectory has to be considered. This, in turn, leads to the investigation
of the problem of joining optimal singular and nonsingular subarcs [ 15-18] .

On the other hand, the physical nature of the engineering problems
encountered suggests that the linearity of the control variables in the
majority of the cases is merely an approximation in mathematical modeling.
Hence, although sometimes a singular solution is obtained through the use
of linear control, the true solution to the physical problem is nonsingular
since the control is nonlinear, or at most qu;si-linear. It is then inter-
esting to investigate the real physical problem that is quasi-linear in the

control and analyze the solution which can be termed as quasi-singular.



Finally, one of the well established techniques for stability
analysis is through the linearization of the equations of motion about a
c:‘ertain known solution, usually steady state solution, called the reference
solution, The brilliant works of Poincare [ 19] and followers [20] in
establishing periodic solutions in the three and many-body problems, and
also in space dynamics [21,22] , are testimonial of the usefulness of the
approach. It is enlightening to use linearization in purely nonlinear control
problems. One can then assess the behavior of the control about a certain
solution. Furthermore, if this solution is near optimal, then linearization
is a proven technique which allows one to obtain improved solution as long
as the near optimality of the reference solution is valid,

The outline of this report is as follows. After this introductory
section, optimal control problem using the notion of domain of maneuvra-
bility is discussed in Section II. If certain components of the control
vector enter the equations of motion linearly, the domain of maneuvrability ,
which is bounded by a hypersurface, has a portion of its boundary being a
ruled surface on which the optimal contrel is singular. The problem of
switching from one control to ancther one is investigated and the condition
for a smooth junction between singular and nonsingular subarcs is established.
In Section III, optimal control problems in which the control is guasi-linear

is studied. The quasi-singular solution is obtained by the construction of

2 switching function and the fact that the junction between nonsingular and
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quasi-singular subarcs is continuous is established. In Section IV, the
technique of linearization is applied to investigate the behavior of the.
optimal control near a given solution. It is shown that through the
linearization of the Hamiltonian near a suboptimal sclution, a better
solution can be obtzined. In-Section V, some applications of the theory
to trajectory optimization are given and, finally, in the last section,
Section VI, ;a summeary of the new results and their usefulness in solving

optimal control problems is presented.

II. SWITCHING THEORY

Consider a dynamical system defined by a n-vector X subject to
the differential constraint

X = (%, u,t) (1)

- -
where u 1s an m-control vector belonging to a2 certain control space U

—_

U o€ U(x, t) (2)

It is proposed to find the optimal control T % , as function of
time, to bring the system from a certain initial manifold to a certain final

manifold such that 2 certain final component of the state vector is minimized.



-

IT. 1. Selection of The Optimal Control.

Following Contensou, we define the natural domain of maneuvrability
D[g, £} at the time t, with state vector X , as the reachable domain in the
hodograph space [ 2-4]

—_
u

My

V = = f (%,

:t) M (3)

Introducing the n-adjoint vector -1; , the optimal trajectory is
obtained by selecting, at each instant {, the control vector W% in the

control space U such that

ux = arg sup H , or H* = sup H (4)
e U WeU
where the Hamiltonian H is defined by
H=p.f =p. V . (5)

In the domain of maneuvrability (Fig. 1), the optimal condition

{4) leads to the selection of the optimal operating point M#* such that the
- - —

projection of the vector V* = OM?%* on the adjoint vector p is
maximized. The point M* is necessarily on the boundary G of D. Only
the convex portion of the boundary G can be used optimeally. The concave
part of the boundary has to be completed by the smallest convex ruled
surface. In this case, the convex ruled surface is artaficial. In the case
where certain components of the control vector U enter the equations (3)

linearly, there exists a natural, ruled part of the domain of maneuvrability.
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Fig. 1. Selection of The Optimal Velocity In The
Domain of Maneuvrability.

. 2. Switching of Optimal Control.

Consider a rectilinear part of the smallest convex domain D of
the domain of maneuvrability D. This part can be natural R, or artificial
R by convexizing. The convex domain D and the adjoint vector ; vary

with the time t. There may exist a time to such that, through the ruled
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part R, or R , the optimal operating point changes brusquely from

e
—_

M, to MZ . At that point, the optimal control changes from u to

1 1
L © o
u 2’-’* . We have a switching of the optimal control,
The sequence in Fig. 2 shows a switching Ml - I\/I‘2 . If the
o C

sequence of the events is in the reverse direction, we have a switching

M, -~ M
[o] (o]

P
* ¥
HY | M)
* ¥
H, M
O
t <ty N _
H, P
MI
*
M2
¢
t > fo
Fig. 2. Optimal Switchaing 1\1’.‘[1 - MZ
o e}

To study'r the direction of the switching, we consider the convex

parts Gl and GZ of the boundary G of D near of the point Ml and MZ
O o
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respectively, Near the switching point, the optimality condition leads to

the selection of the operating point, either on Gl , with the velocity {Fl

—

or on G with the velocity Vz (Fig. 3).

2 b
Let

Vo= (1-)) V, e2 Y, = (1_x)?(§,€1,t) A FE 9,0 (6)

where 1—;1 and 1_,1’2 are the values of U corresponding to the point M1 € Grl

and MZ € GZ respectively. By varying \ in its interval X ¢ [ 0,1] we

obtain all the points M on the segment I\/I1 MZ which is obviously 'waithin

the convex domain of maneuvrability D. The parameter ), introduced
artificially as defined in Eq. (6), constitutes a normalized linear control.
We observe that, near the switching point, the optimal value of A is

either X\ = 0, point M_, or A =1, point MZ,' Hence, it suffices to first

l ’
select gf“ and '1';2* , and then the optimal value A% to have the optimal

- —_
velocity V¥, We have

w, = ul—r(p,x,t) = arg sup I—I1
MleGl

uz-r = uz-r(p,x,t) = arg sup H2
Mze G2

with the corresponding maximized Hamiltonians

e
=

H = H_* (;, ;,t) = sup I—I1

1 1
MleGl

S .



Fig. 3. Domain of Maneuvrability Near a Switching
Discontinuity.



H.*+ = H=*(p,%,t) = sup H,
Mze C‘r‘2

Since H = p. V, we have the Hamiltonian by using Eq. (6)

H = (1-\) Hl-v- + X HZ-— (7}

To maximize H with respect to A, we have the following optimal solution

o .. 8H _ . .
o= . if 5-— = Hz'r- Hlﬂ*g 0

At the time of the switching, we have

= * =
HZ I--Ll 0 (8)
Furthermore, the switching is from Ml to MZ if at that time
S omxoHE) > 0 9
z (H*F - : (9)
If the inequality is reversed, the switching 1s from I\/I2 to Ml.
We define the switching function
(10)

® = H#* - H=* = &(p, x,%)

At the switching point, & = 0. It suffices to analyze the sign of d&/dt

at & = 0 to determine the optimel direction for switching. In this

respect we write the maximized Hamiltonian

(11)

*
e

B = (L-N¥)E * + N¥E¥ = H ¥+



Now, consider an arbitrary function F = F(;,g t}. Its total

3

derivative is

dF _ 9F 45 | F dX  3F
at ~ pp dt oy 4t ot
Since along an optimal trajectory
&= /HE e . _ BH (12)

we can use the Eq. (11) to write the derivative of ¥

e L
daF  ax °H or  OH OF
= - + - —
dt 8% 0% 8% Op ot
+ (—")—i 28 = -——83) , (13)
9x op ap ax

We define the temporary derivatives DlF = dF/dtl , DZF = dr/ dtz of

a function F as the derivative of F using the Eq. (12) as generated by the

Hamiltonian Hl* and HZ* respectively., Then the derivative DF = dF/ dt

has the form

&
DF=DF+K*(8—EE§-£E . (14)
1 9x 9p op ©ox

Since 3F/ 81:1 = JF/ dt, , we can write the coefficient of A% in this

equation
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o 23 _ oF 28 _ for T ar PHp op
9%  op 9% ox 9% op 9p  ox 9ty
H * 3
er C or BT or
9%  9p a; 5% oty
= DZF-— DlF .
Hence, we can write Eq. (14) in the operational form
DF = DlF + )\*(DZF- DIF) (15)

valid for any arbitrary function F along an optimal trajectory.
When F = &, the condition (9) coupled with Eq. {14), provides the

condition for a switching from Ml to M2

dHZ'r 8H1'r

1 dtl 9 tl

> 0 . (16)

This condition, first derived in [ 18] , is a generalization to nonautonomous
system of the condition given in [ 23] . (Application of this switching
condition will be given in Section V.) By comparing the Egs. (14) and (15),

we see that, for F = &, the coefficient of A % is zero and we have

D.& = D, & . (17)

Hence the equivalent condition for a switching from Ml to MZ is

dI—Il—r BI—IZ*
dtz 9 i:z

< 0. (18)

~-11-



D

In the case where D & 1

& D, &

0 at the time t of
2 o

the switching, the direction of the switching is decided upon analyzing
The successive

higher order derivatives of the switching function.

derivatives of & may contain the control which is discontinuous across

the switching point so that in the neighborhood of the time t = to

the

2

switching function is not analytic. To circumvent the difficulty, we

consider separately the development &

respectively in the neighborhood of the points M

expansion.

where

and 1:11 and n

Then

2

2, (%)

3, (t)

]

1}

1 and @2 of the function @,
1 and MZ as a series
0 o
n
(-t ) *
B, nc: +
1
n
(t-t) 2
B + (19)
1
2 nz
b I £ 0
1 t=t%t
O
)
D‘2 & t=to # 0 (20)

are the order of the first non zero successive derivatives

at the time t = to .

odd or even, of n

of t= to , the plots of the function

1

The direction of the switching depends on the orders,

and n

2

and the signs of B

&
1

~-12-

and &

1

2

and B_,

> In the neighborhood

are one of the four types



shown in Fig. 4. These four types are denoted byl kand Ik, k=1,2,3,4

with the definition given in Table 1 for the types Ik.

Table 1
Different type of curves representing & L

™

Il : B 1 > 0 (-1) < 0
"1

I2 i B1 < 0 , (=1 > 0

ny .

13 : B 1 < 0 , (=1} < 0
i

14 : B, > 0 , (1) > 0
We have similar definition for the types II k.

499,
t : {o—
' 2 3 4

Fig. 4. Plots of tI)l and @2 in the Neighborhood of to .
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We distinguish two cases:

The Regular Case

This 1is the case where the first non zero successive derivative

does not contain the control. The orders n, and n, on the one hand, and

the coefficients B1 and BZ on the other hand are identical. The possible

switchings are the following:

(X1, II1)

M, M,
(T2, 2y M, - M,
(I3, II3) M, -~ M,
(T4, IT14) M, =~ M,

The proof is simple. For example, we consider the case (11, I 1)

of Fig. 5. We see that before the time t = t, we must take @ = &, since

E)l = Hz* - Hl* < 0, thatis Hl* > I-Iz* in agreement with the
maximum principle, and after the time t = to’ we must take @ = @2 for
@2 = Hz* - I—Il* > 0, that is Hz* > Hl* . The switching is then

from Ml to MZ' In this regular case, the switching occurs at the junction
between two nonsingular subarcs., The cases (11, IIl) and (I3, II13) are

the ordinary switchings and the cases (I 2, IT1 2) and (I 4, II 4) are the

false switchings.

144



Fig, 5. Switching in the Case (I1,1I1), Ml -~ MZ .

The Singular Case

This is the case where upon successive differentiation, the first
non zerco derivative contains the linear control A%, In general, this case
corresponds to a junction with a singular arc as will be apparent from the
discussion below.

We have seen that, at 21l ame ¢

= = . 2
D& =D ® =D, o (21)

By taking the derivative of this equation, using the operational

relation (15), we have

-15.



2 2 2 2
D¢ = D,"@ + 2* (D,"2 - D,"3) . (22)

It may occur that the coefficient of A # vanishes identically. For

this case, we have for all t in a closed interval containing 1:0
D" =D & = D, & . (23)

Continuing the operation until the coefficient of A% does not

vanish identically, we have

k k k k '
D¢ = D @+ 2% (D, &-D a) . (24)

In the case where u enters linearly the differential constraint (1),
Kelley has shown in Ref.[ 5] that in taking the successive derivative of
the switching function, the linear control appears for the first time only
with an even derivative k = 2q, where g 15 the order of the singular arc,
This is also true with respect to the artificial normalized linear control
A in the present formulation where @ can be non-linear. A simple
proof of this property can be found in Ref. [ 18] .

In summary in the singular case, we have n,=n, = 2q,
D. %9 2q

;@ # D, " &. In the neighborhood of a singular arc, the derivative

of the switching function @ is

p2dg - p*ls + 2x(0,*%2 - b *q) (25)

-16.



with all the le@ = D, @ for k £ 2q - 1. Furthermore, all these
derivafives vanish at t = to. The integer g is called the order of the

singular arc.

Let
- 2q
B, = Dl & |t=t
_ 2q
B, = D, 2 |t=t (26)
o
and consider first the simplest case where B1 £ 0 and BZ £ 0.
I Bl and .'ES2 have the same sign that is if BlBZ > 0 , then since
n, =0, = 2q, we have the false switching cases (I2, I12) if B1 < 0
and (14, II14) if B1 > 0 , with M1 - Ml for B1 < 0 ancll\zi‘2 - MZ,

for B1 > 0 respectively. As can be expected, these cases are rare,
I B, and B, have different signs, that is if BB, < 0, we
distinguish two cases. The first case is B1 <0, }3‘2 > 0, hence it is the
case (I2, II4) as shown in Fi1g. 6. This case has some ambiguities. We
can take either @ or &_ beforet and also either & or &, after to.

1 2 c 1 2

Furthermore, by writing

& = (l-2%) 3 + A% @&, (27)

since @1 and @2 have different signs, we can select A% [0, 1] to
make & 1identically zero before or afier to. If the rectilinear part of
the domain of maneuvrability is natural, R, A% has an intermediary
value between 0 and 1; the arc is z singular arc. If the rectilinear part
15 artificial, E, obtained by convexizing, we can render @ identially

zero by switching rapidly A * between 0 and I; the arc is a chattering arc.

-17-



4o

O t

/@2

@,

Fig. 6. Switching in the Case (12, IL4).

In summary, for the case (12, II4) of Fig. é, we have the following

possible switchings

1 1
i 2
MZ MZ
Ml Ml
- 5 S - M
MZ 2
S - S5

~18-



where S denotes the singular arc, either natural or artificial by chattering.
In practical applications, the ambiguity is removed by considering the

initial and the final conditions.

There remains the case where Bl > 0, B2 < 0, that is the case

(I4,112) as shown 1n Fig. 7.

Of

qﬁ: h Q?!
\\ /
/
\\ /
\ 7/
5\ /
\ /
N 7
N /
~ P
o~ -4
=~ el
- = T~ - B
-
O -’ 1'0 N T
7 N
Vs N\
’ \
/ \
!/ kY
/ A
/ \
(IDI \ @2
2

Fig. 7. Switching in the Case (14, I12).

This is the case of singular switching., The junction between
subarcs 158 connected in a singular manner. In this case, immediately

~

before and after the time to’ we cannot take & = @l for any finite time

-19.



interval for &, > 0, thatis H_* > H *

1 > ¥ in violation of the maximum

principle. On the other hand, for the same reason, we cannot take

&

@2. The only natural possibility is to combine & 1 and @2 to make

&

0. By Eq. (27}, since @1 and @2 have different signs, if the
rectilinear part of the dormain of maneuvrability is natural, A * has an
intermediary value in its interval A*¢ [ O, 1] . The arc before or after,
or both before and after the time to is a singular arc. If the rectilinear
part is artificial, obtained by convexizing, h* can only have the value
0Oorl, we can rend\_er =0 b& switching A % rapidly between its extreme
values. The arc is a chattering arc.

The chattering arc can occur with a linear control, that is for a
natural rectilinear part of the domain of maneuvrability. Referring to
Fig. 7, we consider the case where the trajectory is not totally singular
in a time interval t e[ tl , tz] containing to. Let us assume that the
singular arc occurs after the time to. By assumption, before to, the
arc 18 not singular, obtained by using an intermediate value of A %*,

Also since neither & j nor @2 can be used for any finite time interval,

the entering of 2 singular arcatt = to can only be obtained, with &

neither positive, & = @1, nor @ negative, @ = @2 , that is with & = 0,

by rapid switching of A\ % between its limits 0 and 1. The same arguments

apply when the trajectory leaves a singular arc. In this case, although

the control 1s linear, with the possibility of using an intermediate value

-20-



cf A%, entering or leaving a2 singular arc is effected by chattering. For
this reason, we refer to the case of Fig, 7 as the case of singular
switching. The results of the discussion are summarized in Table 2,

with %, denoting singular switching.

11 Iz 13 14
. . .| singular
o2 - My >~ M, - switching

&

IT3 #* b M _,_Ml b
II 4 * 2 2 2 M. - M
Mis sah 2 e
M3z M2
S-=5
Table 2, Optimal Switchings.
v, =
(Bl# 0, BZ # 0, n, = n, < 2q)
Remark

Table 2 is not complete in the sense that it does not present all

the possible cases of optimal switching., The reason is that Table 2 is

restricted to the case

B.# 0, B, # 0 (28)

-21-



where Bl and B2 are the first non vanishing values of the derivatives

evaluated at t = to for an order n, = n2 = 2q where g is the order of
the singular arc. Nevertheless, it will be shown in the following that the
condition (28) is generally satisfied. Under this condition, junction with
a singular arc only occurs in two cases. In case (14, II2), entering ox
leaving a singular arc is effected by chattering control with increasing
frequency as t approaches to.

To clarify the meaning in subsequent analysis we use the following
definitions as given in [ 16] :

Definition 1. A real-valued function g is said to be piecewise analytic

on an interval (a,b) if for each to e (a,b), there exist tl e (a, to) and

t, & (to, b} such that g is analytic on the open subintervals (¢

5 t ) and

1’0o

(t. 1)

Definition 2, A junction between singular and nonsingular subarcs of the

control is said to be a nonanalytic junction if the control is not piecewise
analytic in any neighborhocd of the junction.

From the Definition 1, chattering control is no1; piecewise analytic
in the neighborhood of to and the junction in case (I4, II2) is a nonanalytic
junction.

On the other hand, in case (I2, IT4) where junction between singular
and nonsingular arcs is also possible, the normalized control A% 1s
either A% = 0 or A* = 1 on the nonsingular arc, and from Egq. (30}, is
given by

-22-



) ey = 0 (29)
on the singular arc. At the junction point, we have

B, + \¥(B, - B

. = 0. (30)

1)

< 0 and B_ > 0, it is clear that at the

Since this is the case where Bl 5

junction point, on the singular side, \* is specified by 0 < A* <1. Hence

the control is piecewise analytic but is discontinuous at the junction.

II. 3. Junction With Singular Arc.

By a systematic discussion of optimal switching, we have seen that
junction with singular arc is usually through chattering con:::rol or if the
control is piecewise analytic, it is discontinuous at the junction. It remains
to investigate the cases where the control is continuous, or even smooth
at a junction between nonsingular and singular arcs. In this respect
several interesting theorems have been formulated by McDanell and
Powers [ 16] . The objective of the present analysis is to c9mplement
their results for non symmetric control and to supply additional rules with
practical applications, From now on, we shall restrict ourselves to the
case where certain components of the control vector 4 enter the eguations
of motion linearly. Also, at any given interval, on the singular arc,
there is only one linezr component of the control that is singular. If u(t)

is that component, then ue¢ U( ;, t), or explicitly

-23.



K, (x,t) = u < K, (x,t) . S (31)

-

We shall rule out the trivial case where at the switching point t = to
K (F(t),t) = K (X(t),t 32
JEE ) = KEE).t) (32)

Then obviously IB1 = BZ and we either have a false switching or a

regular switching between non singular arcs with the control being
continuous at the junctiont=t , u{t ) = K, = K._.
o o 1 2
We continue to use our normalized linear control A% and the
temporary differential operators D1 and D2 which prove to be very effective
in formulating practical rules for continuous control across a junction.

Along a singular arc, the switching function vanishes identically.

Hence, from Eq. (25) we constantly have

D295 = Anx 4+ C = 0 (33)
where
A = Dzzq@ - Dl?‘q@
c = D12q@ . (34)

Equation (33) can be solved for the singular control A*. The
necessary condition for optimality of a singular subarc derived by Kelley
and Contensou [ 3-5], also called the generalized Legendre-Clebsch

condition states that

~24-



Theorem (Generalized Legendre-Clebsch condition). On an optimal

singular subarc of order g, it is necessary that

2q
q 8 d gH*
-7 55 424 (87\* 0 - (35)

In the present formulation, it is expressed by the condition

q

(-1)* A = 0 . (36)

In the following, we shall refer to the condition as the GLC condition
and by the strengthened GLC condition we mean that strict inequality holds
in (36).

First, we have seen that, under the condition in Table 2, the
control at a junction between singular and nonsingular subarcs is
discontinuous.

Hence, we have
Lemma

Let
— 2
B = D, wry 5 £ 0

_ 2qtr;
B, = D, & # 0 (37)

be the first non vanishing derivatives evaluated at a junction point between
a nonsingular subarc and a singular subarc of order q. Then, a necessary

-25-



condition for the control to be continuous at the junction point 1s that

either rl > 0 or r2 >0 or both :L'1 >0 and r2 > 0.

This simple rule 1s in fact very useful. In an optimal control
problem in which optimal singular subarcs are suspected one can
immediately single out the region where a continuous junction is possible

by writing the necessary condition at the junction point

g () = 0
D" & = 0 (38)
1
=t
o]
i=1o0or 2
n= 1,2, ..., 20 .

This condition, together with other necessary conditions given
below can restrict further the region where junction is continuous. Hence
in general, continuocus control at a junction point only occurs in very
special cases.

We can now prove the following main theorem. .

Theorem 1.

Suppose the strengthened GLC condition is satisfied at a point t,
on an optimal trajectory, where a nonsingular control u; is joined with a
singular control ug. ILet q be the order of the singular arc. Then, for
the control to be continuous at to, it is necessary that

~26-



D, @ = 0, D & £ 0 (39)
i i
=t =t
o o
i = lor?2
n = 1,2,..., 2+~

where r > 0 and g + r 15 an odd integer.

Proof: From the lemma, for the control to be continuous at the

. -1
junction with a singular subarc, it is necessary that Dr1 & |t—t =0

29 2q
= R . = =0 = =0
forn=1,2,...,2q, and B, = D78 [ _, or B, = D,"" & o 3

The strengthened GLC condition prevents the case where both Bl and 332

are zero. On the singular side of the junction, the normalized singular

control A * 1s given by

* - B
B +)\(B2

1 = 0 . (£0)

P
If ZB1 = 0, h*{to) = (0 and since, on the nomsingular side, A% = 0

corresponds to ul(t), continuous junction is made with u,. Similarly,

1

if B2 = 0, A% = 1 on the singular side and since on the nonsingular

side x*¥* = 1 corresponds to uZ(t), continuous junction is made with u,.

This question of junction settled we next consider:
a. Case of g even, If B1 = 0, junction is made with w and

@l < 0 on the nonsingular side. Since q is even, by the strengthened

GLC condition ]32 < 0 and =znd the representative curve for @2 is of the
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type I12 (Fig. 8). ¥or singular arc to exist & and &_ must have

1 2
different signs on the singular side. Therefore 6_51 > O on the singular

side and the representative curve for @1 has an inflection point at t = to.

The function @, in the neighborhood of t = t_is of the form

1
(t-t )"
@l(t) = Bl '——;1-;—-—— + cee {41)
where
_— n )
Bl = Dl i) £ 0 (42)
t=to

andn = 29 + r is an odd integer. Hence, r is an odd integer and q + r is

an odd integer.

Fig. 8. Switching in the Case (Il, II2).
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We notice that the curve 3, is of the type Il or I3, If El > 0, it is of

the type 11 as shown in Fig. 8 and the switching is MI - 5. If El < 0

the curve &, is of the type I3 and the switching is S+ M

1 1°

Similarly, if BZ = 0, junction is made with u, and @2 >0 on the
nonsingular side. Since ¢ is even, by the strengthened GLC condition,

B1 "> 0 and the representative curve for &, is of the type 14 (Fig. 9).

1

For singular arc to exist, @l and @2 must have different signs on the

singular side. Therefore @2 < 0 on the singular side and the representative

curve for @2 has an inflection point at t = to. In the neighborhood of

s

t = to, the series expansion of @2 15 of the form

n
(t-2 )

o, (%) B,

H

— ... (43)

where

twl
0
)
1B
e
o

(44)
t=t
o

and n = 2q + r is an odd integer. Hence q + r is an odd integer.
We notice that the curve &, is of the type IIl or II3. B, <0,

2 2
it is of the type II3 as shown in Fig. 9 and the switching is MZ -+ S. If

-

gz > 0, the curve is of the type II1 and the switching is S - M2

. b, Caseofqodd. I£B 1= 0, junction is made with uy and @1 <0
on the nonsingular side. By similar arguments, as carried above, we can

deduce that Bz > 0 and @1< 0 on the singular side. Hence the curve
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Fig. 9. Switching in the Case(l4, II3) .

@1 is of the type I2 and the curve @2 1s of the type 14 as shown previously

in Fig. 6. In this case, in the neighborhood of t = to, the series expansion

of @1 is given by Eq. (41) with El < 0 and n=2q+ r 1s an even integer.

Therefore r is even and again g + r is an odd integer.

Similarly, if BZ = 0, continuous junction is made with q, and

we have the same case (12,1I14)with B, <0, §2 > 0. In the neighborhood

1

of t = to’ the series expansion of @, is given by Eq. (43) withn = 2q + r

2

being an even integer. Hence g + r is an odd integer,

The results of discussion, in terms of the direction of switching,

are summarized in Table 3 below.
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I1 I2 i3 i4
IT1 * % % S_"Mz
q even
M1—>S S—-—M1 .
Itz * *®
q even q even
M_-> S
2
3 * * *
) q even-
M
M Mz N K
IT4 % 2 vsle x
M; My
Ld-+s EL*L&
2 g.s 2
g odd

Table 3. Optimal Switching, (-1)% (B,-B,) < O.

Remarks,

As compared with Table 2, we have 4 new cases of junction with
singular arc for q even. For the. case of ¢ odd we have the same
ambiguities as in Taeble 2. The difference here is that since the first

non-vanishing derivative, either for @l or @2 , occurs for an order n > 2q,

there is a possibility of continuous control at the junction with the singular

arc., In other words, if B1 = 0, the switchings Ml -+ S and S = Ml are

continuous, while the other two possible switchings M2 -+ Sand S -~ MZ

are discontinuous, Similarly, if B, = 0, the switchings MZ - S and

2

S — MZ are continuous, while the two other possible switchings Ml - S
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and 8 -+ M.1 are discontinuous. Theorem }, for q odd only provides the
necessary condition for continuous junction. On the other hand, for the
case of g even, as shown in Table 3, not only that continuous junction

between nonsingular and singular subarcs is established but the direction

of the switching is uniquely determined. Hence, we have

Theorem 2,
For a continuous junction between nonsingular subarc and singular
subarc of an even order, the condition in Theorem 1 is also sufficient.

Furthermore, the conditions for entering/leaving the singular subarc are

() B. =0, B, 2 0 ‘ (45)

) B,=0, B, S 0 . (46)

Of course, in the theorem, condition (i) a}:plies to junction with

W and condition {ii) applies to junction with u_ while the upper inequality

2
sign is for entering and the lower insquality sign for leaving the singular
subarc,

We now can prove the following important theorem, first discovered

by McDanell and Powers for symmetric control [16].

Theorem 3.
Under the condition in Theorem 1 and, in addition, if the control

is piecewise analytic in a neighborhood of t , then r is the lowest order
derivative of u which is discontinuous at f,.

Proof: The normalized linear control A * is related to u by the

relation
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o= (- 3y o+ NEou (47)
where

w = Kl(i',t)

u, = K1) . (48)

The analyticity of u implies the analyticity of Kl and KZ’ which in turn,
from Eq. (47) implies the analyticity of A%, In fact, for the proof we
only require that A* possesses successive derivatives up to a certain

order r. We define

«) = D°%e = FE,51Y
2 2 -
e = D,"%2.-D%s - GFE,XY (49)
and write the equation (29)
at) = -aE B . (50)

This equation is constantly satisfied along a singular arc, and since W %

possesses successive derivatives up to a certain order r, we have

T

G R Z(I) FS(r-i} s 3 () (51)
i

i=0

where (]__:.L) are the binomial expansion coefficients. KEquation (51) is in
the form for the proof in the case of junction with Uy A% = 0. By

writing the condition (39) in Theorem 1, for r =1, 2,..., and noticing
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that D() = Dl( ) for junction with U and B (to) # 0 because of the

strengthened GLC condition, we have at t = to on the singular side

A =0 ,1i=1,2,...,r-1
T
LI (52)
Since on the nonsingular side A # (3) = 0 foralli=0,1, ..., the control

. . . th . .
is discontinuous at the r derivative,

For junction with u,, we have the same proof, using the change

2
of variables
% = 1 \%®
2
a() = D, 5
2 2
B(f) = qu@_DZq@. (53)

Of course, when r = 0 we have the condition of the lermma, that is, of
Table 2, and the control is discontinuous,

Theorem 3 generalizes McDznell and Powers main theorem to
nonsymmetric control, Furthermore, when used in conjunction with
Theoremll, not only that it predicts that the two-order q and r are of
different types; that is, if q is odd, then r is even, and if q is even, r is
odd, but also, in many cases, by using Theorem l we can actually compute

the integer r without evaluating the singular control itself. This assess-

ment will be illustrated by examples given in Section V.
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To complete the anlysis, we shall prove the following theorem:

Theorem 4.

At the junction point between nonsingular and singular subarcs,
the jump in the discontinuous rth derivative of the control is given by

D 2Zq+r *
s ®. u(lr) = (o -u,) 1 z - (54)
1 D.“%s
2
for a junction with w = Kl (;, t), and
D22q+r ®
(r) (r} _
v - u, = (uz - ul) > (55)
2 D,“%3
1
for a junction with u, = KZ(;’ t) .

Proof: For a junction with u, , evaluating the rth derivative of

]. H
Eq. (47) att = to’ using the relations (52) we have

(r} (r) . (7)
u = o + A% (u2 - ul) . (56)
1
On the other hand, from Eq. (51), att= to
- D12q+r &
W = - -—-—-;_;:a—-'——' . (57
D2 i

Using (57) into (56), we have the relation (54). For junction with u, we
can either use the transformation (53) or simply permute the indices in

Eq. (54) to have Eq. (55).
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II. QUASI - SINGULAR CONTROL

In most engineering problems, the control is hardly linear, Most
often, it enters linearly the equation of motion of 2 dynamical system
through approximating in mathematical rmodeling, With such an approxi-
mation, the optimal control, if it is not of the bang-bang type, is singular
and hence at the junction point it is subject to discontinuity as discussed
in the previous section. Although the singular solution obtained may be
satisfactory, the true solution is nonsingular. It is then of interest to
consider the real physical problem that is quasi-linear in the control and
analyze the approximation necessary to obtain the intermediate solution
which can be termed as quasi-singular.

In this exploratory work, we shall restrict ourselves to the case
of one single component for the control.

The hodograph is given by

VvV = x = I(x,ut) (58)
where
u < u < u, {59)

and ) and u, are two arbitrary functions of ¥ and t as defined 1n

Eq. (48). If the control u is linear

Vv = f

s (,t) + u E‘z (X, 1) (60)
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o

Fig. 10. Chattering Control For Nonlinear Control.

and the domain of maneuvrability is a segment of a straight line (Fig. 10).
If u is quasi-linear, the segment is quasi-rectilinear. We have two
cases,

I the domain of maneuvrability is concave as shown in a dashed line
in Fig. 10, the control is either u* = u, or u¥ = u, depending on

1 2

whether Hlm > I-Iz-r- or Hz'v > Hl—:- where
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HI'- = p. £ (X,ul,t)
Hz—r = p - f (x,uz,t) . (61}
In the case where we have
& = HZ* - H1 (62)

identically zero for a finite time interval, the resulting arc is a chattering
arc. This type of control, also called sliding control, is studied extensively
in [ 24,27]. The condition for chattering control 1s obviously, for a

finite time interwval

oH
(*é'a-) <- o . (63)
u=u1

It 1s more frequent that the domain of maneuvrability is convex

{(Fig. 11). The optimal control is either u%* = u,, or u* = u., of the

2

boundary type, or u, < u¥ < u,- In the latter case, it is said to be of the

Euler-Lagrange type. In this case, u%* is obtained by solving

SH . o (64)
gu
In general, we have
uk = uwk (p, %t . (65)
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If the equations for the adjoint vector ; cannot be integrated analytically,
the optimal control cannot be expresgsed in terms of the state vector x
and possibly the time t, and usually numerical solution-has to be sought.
In the case of linear control, because of additional relations.from the
equation Dn & = 0, n=0,1, ..., 2g, we may obtain more information
about the control, and even about the trajectory itself. Hence, in problems
in which the control is quasi-linear, simplification is made by linearizing
the control. In dc?ing s0, singular control may be obtained explicitly, but
the equations of motion suffer in accuracy since they no longer describe
the actual trajectory. Hence, it 1s better to maintain the exact equations
with quasi-linear control and use approximate method to obtain near
optimal solution for the control.

A —

[ V

e
‘_<l

O

Fig. 1l. Euler-Lagrange Type of Optimal Control
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Referring to Fig. 11, if the control is quasi-linear, then the
domain of maneuvrability is near rectilinear. This means that during the

time interval where the control is of the Euler-Lagrange type

H¥ =~ H* = H* (66)

The optimal velocity V#* can be approximated by

Tx o= (Lax) ¥ + MV, (67)

where A* is an intermediary value between 0 andl., This in turn leads

to the approximation for the maximired Hamiltonian H¥*

H*x = (1-xx%) I—Il* + A® OHox (68)

The control is now linear and since A * has an intermediary value, it is
singular. In other words, the Euler-Lagrange type of optimal control
has been approximated by a singular type control. While the physical
equations of motion are retained in their exact form for the purpose of
evaluating the actual performance, the near optimal control, with the
assumption of quasi-linear control, is sought using the approximate
maximized Hamiltonian as given in Eq. (68). Using this Hamiltohian, we

have for the state and adjoint equations, the canonical system

a% EE dp pHx*
._,,_?.{_‘ = ha..:-n s ..—P.._. - . g . (69)

The normalized linear control \ % is a handy device in developing
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the switching theory. In practical application, we can return to the physical
contrel u through Eq. (47). Then, the approximate Hamiltonian H* is
given by

el (2, Hy ™ -y 9 (H* - 5, %)
H* = RPN + T:—ET oo (70)
2 1 2 1

If singular control to this transformed problem is sought, then we
have the condition for singular arc

(H,* - H_*)
5 = z 1 = 0 (71)

and along the singular arc

— (uZHl*- u H -r~) ’
Hx = R ) . (72)
2 1

Once the problem has been solved, and in the case where the suboptimal
intermediary control u* has been obtained either explicitly as function of
the time, or in terms of the state variable 'Z, and the time, actual perfor-
mance can be evaluated using the original state equations which, as

previously stated, are quasi-linear in the control. The error committed,

using this approach, is of the order of € (H_* - Hl*)/(uz- ul). Its

2

analysis requires further investigation.
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IV, LINEARIZED SINGULAR CONTROL

In the case where the control is strongly.nonlinear, it may be
impossible to obtain analytical solution for the Euler-Lagrange type of
optimal control (Fig. 12), Yet, in the numerical search for the optimal
trajectory, it is helpful to know an approximate optimal control for this
type of subarc. In some favorable case, using some physical properties
of the trajectory, say a certain equilibrium condition, or steady state
condition which occurs when a certain numbex of state variables vary
slowly, one may readily obtain an approximate contrel uo(;;, t) called the
reference sclution. The objective is to improve this solution to obtain a

better control,

B
O

Fig. 12. Linearization of the Domain of Maneuvrability,

-42-



If the reference solution is near optimal, then
—c e
3 = . t . .
H HO (P,X,UO, ) (73)

Therefore, as first-order approximation we can use the linearized

Hamiltonian

— 9H’
HY = H o+ (529, (@-u) . (74)

Geometrically, this is the same as replacing the domain of maneuvrability,
near the point u = us by the tangent at that point. The transformed problem
is linear in the control u and since the optimal control is not of the boundary
type, it is singular, We have the condition for the singular control

oH.

8u’'o

t
o

( (75)

By solving the transformed problem, the pertinent state and adjoint

equations are

aF _ omx dp _  oems 76)

Once the problem has been solved, and in the case where the suboptimal
intermediary control u* has been obtained either explicitly as function of
the time, or in terms of the state variable :?, and- the time t, actual
performance can be evaluated using the original state equations. The error
committed, using this approach is of the order of ¢ = (8H/d u)0 . Its

analysis requires further investigation,
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V. APPLICATIONS

In this section we shall give some applications of the theory
dev;aloped in the previous sections, The first two examples are applications
of the switching theory developed in Section II. The last two examples are
illustrations of the theory of quasi-linear control given in Section I, and

linearized control given in Section IV.

V. 1. Smooth Junction With g Odd.

The dynamical system is governed by

X = X,

3 TN i=l,...,4; qodd; qil

Xq+l - v

’ 1 2 2

ez & T %) (77)
with the linear control u subject to the constraint

-1 < uw< 1 . (78)
It is assumed that the vector % = (Xl, coe ’xq+1) belongs to a certain
initial manifold Gi at the initial time ti and a certain final manifold Gf
at the final time tf while

Xq+2(ti) = 0, xq+2(tf) minimum . (79)

This example is given in [16] with g=1 ,
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The Hamiltonian of the system is

q
H = x + u -+ L (x 2 x” 80
- Z Pi¥ip1 F Pgu Z Parz %2 1) (80)
i=1
We notice that Pq-!-Z = constant = -1. The other adjoint components
are governed by
L
P2 7 20 B
Pi = ""'Pi..l 3 123,; -,q+1 . (81)
We take
Hl-r- = (H)u‘«’ﬁ - .1
Hzm = (H)u* -1 (82}

Hence, the switching function is

Loi] = H*-I—Il* = Z,P

) . (83)

g+l

In evaluating the derivatives Dl“ and D2 () , the equations for the adjomnts
are the same, while in the equations for the states, we simply have for

the components Xq-i- 1

d 4

g, T T 7t

) = 1. (84)
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Taking the derivative of & g times we have

D,® = -qu = D2 P
2 2
Dl & = 2 Pq-l = DZ, 3
q _ g-1 _ q
D1 & = (-1) Z(Xz-pl) = D2 @ (85)

where it should be noted that signs alternate. We notice that q is odd,
-1
hence (--1)q = 1. Taking the derivative of the last equation in (85) q more

times and applying (77) to eliminate time derivatives,

qtl _ g+l
D, & 2=, +x) = D, e
q+2 N _ qt2
D, @ = 2(x,F %,) = D, B
2q-1 2g-1
= 2 =
D1 i3 (xq+1 + Xq_ 1) D2 e
2q . _ 2q o _
D e = Z(Xq -Lh, D,V e = Z(xq +1) . (86)

Hence, the order when g is odd is the order of the singular arc. Also, we

notice that
2
A = D% _p°%g = 2 . (87)

Hence, the strengthened GLC condition (-l)q A < 0 is satisfied, not only
at the junction point but everywhere along the singular arc.

On the singular arc

Dlzq@ 1
Nk = - = = (l-x) . (88)
5
DZ?‘q@-qu@ z d
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Since

u=(1-)\*)u1+?t*u2=2}s.*-—l {89)
we have
u = =X (90)
q
Therefore _
) >
X x -+ Xq+1 Xq+1 = 0 . (91)
In the (xq, Xq+1) plane, singular arcs are the circles
Z 2 2
Xq T Xq-[-l = R . (92}
If we are interested in continuous junction, then either Bl = 0, or
BZ = (0. Therefore we have the possibilities
Xq = 1, junction with w = - 1
or
:xq = -1 , junction with u, = +1 . (93)

Furthermore, since q is odd, r is even. Hence, for junction with uy

2g+l _
Dl o) = 2 Xq—}-l = 0

2g42
D1q+¢> = -2 < 0 . (94)

Without knowing the singular control, from our Theorems 1 and 3 we have
found that its derivative is discontinuous at r = 2.

For junction with u we have similarly

2 2

-47-



2
a+l oo} = 2 x = 0

DZ g+l

2q+2
p. “4te &

) = 2 > 0 (95}

For the case of q odd, the theorems only give the necessary conditions.
This means that, in the (xq, qul) plane the only points with possible
continuous junction for the control, with discontinuity for the second

derivative, are the points

x = 1, x

q g+l 0, jonction withu, = -1

1

1}

x = -1, x

a gl 0, junctionwithu, = +1 . (96)

2
Furthermore, since all the derivatives in Eq. (86) have to be zero, up to

2g-.1, we have

v
E(Cl-l)

Xl = -X3 = x5 = ..., = (-1} Xq
1
={g-1)

X, = eX. o= XK, T ... = (-1) . (97

These equations are valid zlong the singular arc. Hence, the projection
of the singular arc into the plane with odd ordered, or even ordered
coordinates are straight lines. For a pair of coordinates with different

orders, we notice that

i 1+1

.

i+l 42 1
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Hence,

x_ii_ + x - 0

i i i+l i+l

The projections of the singular arc are concentric circles.

i = 1,...,q9 . (98)

Returning to the points with possible continuous junction for the control,
since (96) have to be satisfied at the junction point, in addition to ($7)
these relations uniquely determine 2 points for the position vector X = (Xl’
R ,Xq+1) where continuous junction is possible. The component Xq~!— >
represents the cost and is additive. It can be taken arbitrarily at the
junction point if one proposes to construct artificially optimal trajectory

with continuous junction from that point,

For example, let us take the point Xq = 1. Then

This junction point is uniguely defined. For the case of ¢ odd the conditions
are only necessary. We must impose the condition that junction between
nonsingular and singular subarcs exists, and the junction is made with

u, = -1l. As seen in Table 3, the singular arc can be before or after the

1

junction point. If it is before we can integrate backward with u = u_ and
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forward with u = w, = -1 to a certain initial manifold Gi and a certain
final manifold G £ Hence this type of continuous junction is indeed rare
and depends on the boundary condition. The equations are simple enough
so that the integration can be performed easily and the solution obtained
in closed form. We have the same discussion for junction with u, = 1
at the point x_ = -1.
q
Before obtaining explicitly the singular control, we would like to

use our Theorem 4 of Section II to predict that the jump in the discontinuous

second derivative of the control is

-Iz's -{ilz (..2)%@:1

at the junction with uy = -1, and

X = x s Xq+l=u , u = -X {(99)
the equation for xq is

¥ +x = 0 . (100)

-3 = u = C,sint + CZ cos ¢ {101)

where Cl and (_",2 are constants of integration. By translation of the time

to t = 0 at the junction point, we see that the singular controls starting at
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a, and u, are respectively

u = - cos t
u = cos t . (102)

We easily verify the condition of continuity and the jump in the second

derivative as predicted by the theory.

V.2. Smooth Junction With q Even.

The following example of smooth junction with g even was given
by Maurer [ 17] for a special case of the boundary conditions. In light
of the new information supplied by our theorems the present treatment of
the problem is general in the sense that we can predict the location of the

junction points for continuous control and also the boundary manifolds that

can lead to such junction.

The dynamical system is governed by

ie_-i = X0 i=1,...,9; qeven; g>2

atl =

. 1 2 2

= 30 R0 (103)

with the linear contrel u subject to the constraint

1< ow o< 1. (104)
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It is assumed that the vectorx = (x } belongs to a certain

3 s ey

1 Fg+1

initial manifold Gi at the initial time ti and a certain final manifold G

i

at the final time tf while

(t) = minimum . (105)

k) = 0, £

Xq+2 Xq+2

The treatment s identical to the case of q odd. The difference here is
that for g even, the conditions stated in Theorems 1 and 3 of Section IT
are also sufficient for a continuous junction for the control. As before,

the switching function is

= F - * = 2 . 106
@ = H H Posn (106)

The g th derivative of this function is found to be

p.% = (%!

1

- q
2(<, - p)) = D," @ (107)

¢

with (--l)q-1 = -1 since q is even. Taking the derivative of this equation

q more times and noticing that we now have i)l =x,, we have

D g+l

1 &

n

2(x-x;) = D

D g+l

e = 2(x,-x) = D

2g-1 _
Dl & = 2 {Xq-l - Xq+l

2q 2q
= ~1
Dl o3 Z(Xq + 1) , DZ D Z{Xq } (108)

Hence, g even is the order of the singular arc, Also,

& = -4 (109)



so that for q even, the strengthened GLC condition (-l)q A< 0i1is
satisfied, not only at the junction point but also everywhere along the

singular arc. For the singular control, we have the relation

The continuocus juanction can only be made at B. = 0 or B, = 0. Hence

at the point of continuous junction

It

1]
|
—

x -1, junction withu

g 1

n
=

x 1 , junction withu

. 5 (111)

Since q is even, by Theorem }, r is odd and therefore, at the continuous

junction with u

1
2g+l

D, = EEg

Dlzq“Lz@ - -2< 0. (112)

To satisfy the theorerm, for the first non-vanishing derivative, r is odd. .
Therefore Xq+l # 0 andr =1 . The control at the junction point is
continuous but its derivative is discontinuous. We have the same conclusion
for the case of junction with u, = 1 at Xq = 1.

Along the singular arc, since all the derivatives of ® up to 2g-1

vanish identically, we have
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X, = X, = ... = x . (11 3)

The projections of the singular arc, in the plane of both odd, or both even
ordered coordinates are firat bisectors of the axes,

On the other hand, for a pair of coordinates of different orders

i i+l

TS I TV (112)
Therefore
Xi xi = xi-i-l Xi+1 P 115

Upon integrating

2 2 2
XK, = X = + Ri . (116)

The projections of the singular arc into these planes are equilateral
hyperbolas, or in the degenerate case, Ri = 0, are bisectors in the
} planes, For compatibility with Eq. (113), the Ri2 are the same

(=0 %500

and we have the equations of the singular arc

x = X, =T ... = x . (117

Maurer considered the case RZ = 0, but in general, the condition imposed
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iz only that the junction point must be at

X2=X4=.. =Xq=il
Xl = :x3 = L,.. = Xq-i—l: k (118)

where k is an arbitrary constant. From these points we can construct the
optimal trajectory with continuous junction by integrating backward and
forward, Again we see that boundary conditions are very special and
continuous junction is indeed rare. Before evaluating the singular control,
we would like to show that, for this case of g even, we also have sufficient
condition.

For junction point with u, = -l,x =-1,x = k., Then at the

q q+l
junction point, froms Eqs. (109} and (112) with Dl‘?‘q@ =0

2
atl 5 2k p. %9 5

D =
1 ! 2

= -4 (119)

Then the switching is either the type (I1,112) or (I3,I12) depending on
whether the value k selected is k> 0 or k< 0. As seen in Table 3, the

only switching is between nonsingular arc, with u,, and singular arc, The

1

condition is sufficient, and also the direction of switching is determined.

We have . -1 fork>0andu —-u, for k<O,

1 s s 1
Similarly, for junction point with u, =1, xq =1, xq+1 =k, we
have
2q+1
D, e - 2%, Dlzq@ = 4 . (120)
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Then the switching is either the type (I4, II1) or (I4,II3), depending on
whether the value of k selected is k> 0, or k< 0. As seen in Table 3,

the only switching is between nonsingular arc, with u,, and singular arc.

2,

The direction of switching is given by Theorem 2. We have v -, if

k>0 and w, > u if k < 0. The construction of the optimal trajectory
by integrating forward and backward must be based on this theorem,
Finally, from Theorem 3, we have the jump in the discontinuous

derivative of the control

: . 2k

u, - u, = (-2) Yoy = k
1
at the junction with u = -1, and
. . 2k
'U.S - 112 = (Z) '(—4—) = k
2
at the junction with u, = 1.

We can easily verify all the results by obtaining the equation for

the singular control from

Xq = Xq—i»l s xq+l = u, u=s Xq . (121)
Hence
U = u (122)
and the solution is
t -t
a = Cle + CZ e . (123)
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For junction with w the control is

a = LIEZ“_I). et (k;l) et (124)

by taking t = 0 at the time of switching.

For junction with u,, the control 1s

2’

1 i _
=-§-—+21—i’-et+ Ll-éf‘let . (125)

The derivative of the singular control has the jump as predicted. 'The
example given by Maurer [ 17] is the case of junction with u, and k=1,
and also for special case of the initial and final manifold Gi and Gf.
As a concluding rerark, it is interesting to notice the following.

Assume that we are on a2 singular arc with say, Xq increasing. We also

recall that

e
It
[y
W
fin]
o+
Rt

i
n
e
H
]
=

(126)

Suppose that we plan to leave the singular arc at a point -1 < Xq <1
to enter a nonsingular arc leading to the final manifold. Then Bl >0,

IE’:2 < 0 and the switching is ot the type (I14,IL[2). As seen in Table 2, the

junction is nonanalytic, and Maurer's conjecture that entering the non-

so that

2
singular arc by chattering is correct. When Xq = 1, DZ 8= 0 .

junction is made with u, = 1. If the singular arc is not left at this point,
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2 2
then for Xq > 1 both D1 % ang DZ T3 are positive and we do not have
the conditions for a singular arc since they must be of different signs.

Therefore, the singular arc terminates atx = 1.

V. 3. Example of Quasi-Singular Control.

The present study is not merely an academic exercise to display a
certain peculiarity in optimal control theory, It has been motivated by
an urgent need of mathematical tool in solving a number of engineering
problems of interest. We shall give two examples in flight mechanics,
namely the problems of finding the maximum range in thrusting flight and
in coasting flight of an aerospace vehicle. The flight is to take place in
the dense layer of the atmosphere. Hence a model of non-rotating Earth
with constant gravitational acceleration is adequate.

For flight in a vertical plane, the equations of motion are

—2%(“ = -V cos v
%%— = V sin vy
m%—; = T cos o - % pSCDV2 - mg sin vy
mvg-g— = T sina +% pSCLVZ-mg cos vy
& . . S (127)

Standard notation has been used. In particular, e is the angle of attack,
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measured from the thrust line, and ¢ is the specific fuel consumption,
assumed constant, The drag polar is assumed parabolic and is of the

form

C. = C + KC (128)

where CD and K are constant, For most vehicles, parabolic drag polar
o

is a good approximation in the range of angle of attack of interest. The
controls are the angle of attack o , or equivalently the lift coefficient

C and the thrust magnitude T, subject to the constraint

L k)

0 =T = T . (129)
max

In the first problem, we shall consider the problem of maximizing the
range in the case of constant altitude, thrusting flight., Hence the flight
path angle v = 0 , and we have the equations, with the assumption of

small angle of attack, Tcos e = T, T sina = Tea

dXx _
dt - v
dv 1
m g = T - 5pSCyV
dm c
—, - - = . 30
at s T (130)

The equation for v becomes a constraining relation

2
Teo + %pSCLV = mg . {131)

Because of this relation, the angle of attack can be expressed in terms of
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T, and the thrust is the unique control of the problem,

To simplify the problem, several authors [ 28,29] have ignored
the small term T ¢ in Eq. (131). Then the equations (130) are linear
in T, and the variable thrust arc is a singular arc, As has been said in
the introductory section, that the physical equations are nonlinear in T.
So 1t is more rational to use the exact equations and find the suboptimal
solution rather than using the approximate equations to obtain optimal
solution. It should be emphasized that neglecting the term T «, or even
using the approximation T cos ¢ # T, can introduce serious errors in
the analysis of such vehicles as the delta wing type flying at high angle
of attack in the low speed regime.

To compare the two approaches, we first solve the linear problem
by neglecting T ¢ in Eq. {(131). Then

Zmg

(132)
2
pSV

Using in Eq. (128} for CD and then in Eq. {130) for the equation in V we

have the state equations

dX
dt - v
2 2
av 1 1 2 2Km' g
e = — [ T- =pSC V& - 2]
dt m 2 DO 6 SVZ
dm c
—_ Tt . 33
Er = T {133)

-60-



The Hamiltonian of the system is

P 2 2
1 Z
I—I=PV-—1[—psc V+£_If:_n&.__g_]
x ™ 2 D 2
o pSYv
T < 34
We shall take
HpF = g,
H¥ = (Hp_ . . (135)
max

Hence, the switching function is

mpm) . (136)

c
- - > A ® =
Py . m P 0, we use HZ , T Tmax
Py - -;-mpm < 0, weuseHl* , T =0
Py - -2- mp = 0 for a fimite time interval, we use

T = wvariable,

To obtain the direction of switching, we evaluate the derivative D

1@.

Noticing that in general
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x —
dt - 0
dir. = P+ _P_Y.. [pSC v é_I_{__nlz_gi]
dt e m D0 pSV3
9P Ei[ Lose 2 2 Km’ g’ | PVT
at = L zPPbp - 2 T3
m o pSV m

(137)

we have the derivative Dl( ) or DZ( ) by simply using T =0, or T = Tmax

in the state equations (133} and adjoint equations (137).

We first notice that
P = C (138)

where C 1 is a constant of integration. Furthermore, we have the

Hamiltonian integral
H = 0 . (139)

The derivative Dl@ is easily found with the help of Eq. (139). Also we

notice here the usefulness of the relation D& = Dl &, Eq. (16), givenin

Section II because the Dl’ derivative 1s simvler due to the fact that T = 0

in all the equations. We have

p,.. T .
1
D]_@ = VZ max [EP SCD VZ (2 + 'Sy—-)
m V o - 8
2 2
2
p SV g
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Since we maximize the range, C, > 0, it is seen from the Hamiltonian

1

integral that Py > 0., Then, when a coasting arc, T = 0, is joined with a

maximum thrust arc, T = Tmax , according to our theory developed in
Section II, the direction of switching is from T =0t0 T = Tm if

a&X

D. & > {, that is if

1
(c v
mg < Lo SV : T Ee (141
1, .o |__8c
2 7S e ¥
g /e

If the inequality reverses, the switching is from T = Tmax to T = 0.

Defining the dimensionless quantities

A\ 2mc K
T T g T Tgps <, (142)
o
we can plot the curve
_ 2 l1+u
wos o u 3+ u (143)

in the mass-velocity space (w, v} (Fig. 13). Below this curve, the
switching is fromn T=01to T = Tmax’ while above the curve, the switching
is from T = Tmax to T = 0. On the curve, we are entering or leaving

a singular arc. Hence, Eq. {(141) with equality sign is the equation for
the singular arc. By taking the derivative of this equation we have a
relation for evaluating the singular thrust control, This singular curve

has been found by Hibbs [ 28] for the case of constant C and K and by

D
o
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Miele [ 29] in a generalized version, when these characteristics depend
on the Mach number. The novelty here is our rigorous treatment of the
direction of the switching. Furthermore, we now consider the case
where the control is quasi-linear, that is. we shall retain the term Teo
in the constraining relation (131).

The lift coefficient CL , as function of the angle of attack o is

given by

C. = C, + C @ (144)

where CL and CL are two characteristic constant coefficients., Upon
o o4

substituting into Eq. (13l) and solving for CL , we have

CL
o
mg+ C T
Lo:
CL = . {145)
1 A
1.
[#3
The equations of motion now become
ax 2
i - Vv CLOT
1+
2 2 mgC,
av 1 p 2Km g o
—_— = = T - 3pSC_ V -
t m 2 D0 sv 2
P 2T
14 >
pSCL A"
o
dm _ c
e = - z T . (146)
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As compared to the Egqs. (133), the thrust control is nonlinear, but

since as has been assumed that the perturbing quantity Ta is small as
compared to the weight mg, the thrust is characterized as quasi-linear.

It is possible to linearize the thrust T in Eq. (146), but then we shall

deal with approximate equations of motion, a situation we sought to avoid.
We seek to obtain approximate optimal variable thrust control to Eq. (146)

by constructing the approximate Hamiltonian as given by Eq. (72)

- P 1 2 2Kmg”
x = pV - L [xpsc. v + 2822 | 57
X m 2 D 2
fo! pov
(147)
with the switching function being
2
CLo max
1+
. . 2Kmg p,, e CLQ
T pSV max
max 1+ —
pSCL v
o
The objective here 1s to show the correction to the singular curve (143),
so that to simplify the calculation, we linearize the square bracket in
£q.(148) to obtain
1 ( Zemg . K C
s = — |{1+ ) p, - =P (149)
2
m [ o SV CDO v.og 'm
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where

e = 2 ‘me. | ¢ > 0 (150)

2
L pSV ¢]

€ is a small quantity and we shall take it as constant being equal to its
average value.

The problem is solved with the approximate Harmaltonian H* s
with @ as given by Eq. (149)., The state and adjoint equations in this
variational problem are generated by the approximate Hamiltonian H *.

In particular for the derivative Dl (), we have

2 2
1 11 2 2
v =—“;;1|:EPSCDV . 2EmE )
1 o} poSvV
"1
4Py Py 4Rmig”
T, T TPt o |pSCp V- T
1 o pSV -
P Py Lo 2 ZKmZgZ:I
dat. T T~z |z°P -T2 151
dtq o b, pSV (15D
The Hamiltonian integral exists, and along the singular arc we have
P 1 2 2Km“g”
bV = — | cpsc vo 4+ L2EE (152)
x m 2 D 2
o} pSV

which shows that Py > 0 since P > 0. TUsing the Egs. ( 151) and (152}
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to evaluate Dl @, with @ given by Eq. (149), we have

P
1 2
D& = ZV [E'pSCD v (1+ <V 6€ng CK )
m V o g p SV Do
Zszgz cV 2¢e mg K
- s 3t Y = V(153
poSv pS vV CD

At a junction point between a coasting are, T = 0, and a2 maximum thrust

arc, T = Tmax , if D1 & > 0, the direction of switching is from T = 0

toT=T . IfD.®<0, the optimal switching is from T = T to
max 1 max

T=0., If D, ® =0, the junction is with a singular arc. By taking the

1

derivative of the equation D.® = 0, we have the eguation for evaluating the

1

approximate optirnal variable thrust control. Setting Dl & = 0, and using

the dumsnsionless variables (142), we have the equation for the singular

arc
W WZ W
(l+ut3e =) = —5 (Brute =) . ( 154)
1 u u

From Eq. (151}, we notice that we can write

1 2 1m
e = 2 gz - ¢ (155)
i CL pSV o)
o \
and E* = 1/ 2 f KC D is the maximum lift-to-drag ratio. It is seen
o
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that neglecting the component T o, that is to take ¢ = 0, is a good
approximation when the vehicle has high maximum lift-to-drag ratioc.

Using series expansion we obtain the approximate solution for the

equation (154),

2 14+u € (4 +u) 2
w = u Fo——— o} = 4+ O(e ) . (156)
3+u (3+u)2

W é 2:.-.[5

= .0

=.05

= 0
AD

(W ,U;)
A0 F
T variable
05
} i i N § | -
0 A .2 .3 .4 .5 U

Fig. 13. The Singular Arc in the (w, u) Space,
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This curve, for different values of ¢ is plotted in Fig. 13. A typical
trajectory 1s also plotted. The initial point (Wi’ ui) is above the singular
curve so that the trajectory starts with a maximum thrust are. When the
mass w and speed u satisfy relation (156), the trajectory enters a singular
arc until the final mass w,.. The trajectory terminates with a coasting

f

arc, T =0, until the speed reaches the final value U It is seen that,

by retaining the component T @ of the thrust, singular arc begins and ends
with a speed slower than the corresponding one for the case where that
component is neglected. Also, it should be noted that slingular arc is
obtained by approximation. In practice, the control is nonsingular so that
both the angle of attack and the thrust vary continuously. In the (w, u) plane,
the exact optimal trajectory, not only is continuous but alsc has continuous
derivative. This information is useful for a numerical calculation of

the true optimal trajectory based on the approximate solution obtained by

using quasi-singular control.

V. 4. Example of Linearized Singular Control.

In this last example, we shall consider the glide of an aerospace

vehicle. With T = 0, the equations of motion (127) become
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a5 = V cos vy
dZ .
“'&'— = V sin %
2
av = —-——-————-—-PSCDV sin
it 2m - Esmy
dvy _ pSCLV
= = ~m—— - T oS Y . (157)

It is proposed to find the angle of attack modulation, or equvalently the
variation of the lift coefficient, to rnaximize the range for a given altitude

drop from Zi to Z The glide of a shuttle vehicle is an illustrative example.

£

We shall use an exponential atmosphere of the form
p = p_ e (158)

where § is the inverse of the scale height, assumed constant, and p o
is the density of the atmosphere at sea level. We shall use a normalized
1ift coefficient defined as

C

K
T = C {159)
CL«- L C-D
o
where C_ * = ‘/ Ch /K  is the lift coefficient corresponding to the
o
maximum lift-to-drag ratio., If CD* = 2 CD is the drag coefficient for
. o
maximum lift-to-drag ratio, we have the normalized drag coefficient
C 2
E‘Q* - 1 ;7‘ . (160)
) D .
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The use of the normalized lift coefficient is suggested by the fact that
when A =1, the flight is at maximum lift-to-drag ratio.

It is convenient for the analysis to use the following dimensionless

variables
2
ZBm _ v _
W= “B—é—c';—;’* s u-g/fi , x=p X . (16 1)

The dimensionless kinetic energy u is used to replace the speed while

the apparent wing loading w is used to replace the altitude. When p varies
w varies in the same direction as the altitude, Of course =x is the
dimensionless longitudinal distance. With these dimensionless variables

and using x as the independent variable, we have the dimensionless equations

of motion

9-?— = w tan
dx - ¥
2
du - u(i4+4n ") -
ax E¥wcosy a Y
dy Ao _ L
dx - wcos y 1
dx _
= - 1 (162)

where E* is the maximum lift-to-drag ratio. In this formulation, the
only characteristic that enters the equations is the maximum lift-to-drag

ratio E¥* and the results obtained are valid for any vehicle, whether it is
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a sail plane with high E#*, a fighter aivcraft with moderate E%*, or a
shuttle vehicle with low maximum lift-to-drag ratio. The only restriction,
besides the flat Earth model, and exponential atmosphere, is that the
speed range is such that the aerodynamic characteristic coefficients are
independent of the Mach number.

It is assumed that the lift coefficient is bounded by

N . < X < A . (16 3)
mMin — — max

The Hamiltonian of the system is

Z
_ w1+ 1
H = prtany—pu I:E*WCOS'Y +2tany—l
A 1
—_— . = . 164
+ Py [wcosy u:l + Py ( )
H is maximized for A =X . , or A = ® , or a variable N obtained
min max

from the equation 8H/ 8\ = 0. This gives the optimum relation for lift
modulation

Exp
A = E__L ] (165)
'U.pu

Although we have the case of coasting flight, T = 0, this problem is more
difficult to solve than the previous one because the present control \ is

not linear or quasi-linear but parabolic. It is expressed in terms of p
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and P, by Eq. (165) but in general the equations for pY and P, cannot be
integrated in closed form. Hence, the exact solution for M is not known.

We can use linearized theory to obtain a befter solution for )\ if
some good approximate solution ?\O is known. This can be done in the
case of steady state glide which occurs for large altitude drop.

The optimal control depends on the boundary condition. In general,
for large altitude drop, after some initial maneuver the trajectory stabilizes
along a variable A\, of the Euler-Lagrange type solution, where the variations
in the speed and the flight path angle are both small, To find the solution
for steady state glide, we use the assumption du/dx = 0, dy/dx = 0 in

£q. (162) to have

2
w(l+h )
ZE* w cos vy

— tan vy =

\ - wEeesy (166)

u

Hence,

A
{(1+X )
2% N

- ten vy, (167)

where tan Y; has a nearly constant value, On the other hand, from the

first two equations of system (157), we have

o
>

|

= cotg v, oo (168)

a1
N

-

Hence, to maximize the range Xf for a given altitude drop, Zl - Zf , We
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must use the smallest value of - Y; that is, from Eq. (167), we must

select
A, E 1 . (169)
The value Y is given by
tan v = — 170)
SRRy T OEx (

We obtain the classical solution which states that for glide with maximum
range we must use the flattest glide with maximum lift-to-drag ratio. We
call this solution the zeroth order solution because it is definitely not the
optimal solution. It is expected that the optimal solution, when the tra-
jectory has stabilized in the variable A arc, is near this zeroth order
solution. Linearized theory based on this solution, as developed in Section
IV, can be applied in this case.

Using Eq. (74), we can construct the linearized Hamiltonian using

the reference solution )\O = 1.

— Py 1 Zupu
= pX+pwwtany-2putany—-—E—-{-m(py- —Ex TN .

(171)

The state and adjoint equations, generated from this Hamiltonian

are
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a—; = w tan vy
du _ Zul
dx -7 E* w cos y - ¢tany
d by 1
;il B W coSs I (172}
2% u
and
dp ) - 1 2.u.pu .
— = - p_tany + P~~~
W €08 Yy
dpu _ fl . 2p M
dx - 2 Exw cos vy
u
de - Po ™V + ZPu sin vy ( ZuPu T
ax " 2 z 2 Py~ TE=x
cos vy cos vy W cos vy (173)

The control is variable, so that in the transformed problem, it is singular.
The switching function is constantly zero and we have

2up
2. (174)

ac

This equation is seen to be derived from the optimal relation (165) when

the approximation A =1 is used. By taking the derivative of Eq. (174),
using the Egs. (172) and (173), we have

2 cosz
2p I:l+-—-——-z——}-’—(1+E* ’cany)] = WP . (175)
u w
E%
Again, by taking the derivative of this equation, we have the relation for

the lift control
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2 2
4(1+E* ) cos vy N 1
3 W CcOS R = 0. (176)
E* ¥ “
Therefore, we have the first-order solution
N = ®cosy
1" u . (177)

Referring to the exact equations (162) this relation shows that to
maximize the range we must keep constant flight path angle, a result in
agreement with standard flight technique. The difference with the maximum
lift-to-drag ratio glide is that if we use A\ = 1, and integrate the equations
of motion, the resulting flight path angle 1s not constant, as has been
assumed in the steady state solution, but presents an oscillatory behavior
with relatively large amplitude. On the other hand, the exact numerical
solution obtained also displays an oscillation in the flight path angle near
a certain reference value, but with smaller amplitude (Fig. 14). This
reference value is the one that must be used for the first-order solution
(177). In practice, the initial flight path angle Yo speed u. and apparent
wing loading w, are prescribed, If the average glide angle Y, can be
evaluated from the exact numerical solution, one can use a constant

value © i to be selected such that the integration leads to

dvy }\'i _1__ - 0
dx ~ wcosy u

when y = Y, After that the flight path angle is kept at this constant
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value by using the first.order sclution (177). The convergence of the
solution by repeated application of the linearized theory requires further
study, Nevertheless, for the problem of maximum range zs considered
here, it appears that both the zeroth order solution (169) and firsi-order
solution (177) provide good results as compared to the exact numerical
solution, with the first-order solution giving a significant improvement
over the zeroth order solution.

This suggests that, again, we can use the first~order solution

(177) as a reference solution to linearize the Hamilionian., We have

- _ W COS Yy _ u
H - PX+PWWtanY+pu[ E*xu E*wcosy
P p Zp
=4 —_y . b
- Ztany] - +(WCOSY o ) - (178}

The state and adjoint equations generated from this Hamiltonian are

dw = w ta
dx N "y
du - Wwcosy u S 2tany - El:.
dx ®u E* wcos vy *
X 1
dy = e ( 179)
x W CoSs Y u

and
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¥Fig. 14. Variations of the Flight Path Angle and the Dimensionless

Dynamic Pressure for Glide with Maximum Range.
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H

P A

W N cos vy u v
dx Py tanynpul:E*u + . B :|+ 2

E*w cosvy W COS vy

dpu b WCOoS vy . 1 _ E‘L
e 2 2

ake
-~

dpy - PWW + p [wsin-y + usiny + 2 J
dx 2 u Fu . 2 2
cos vy *wcos vy cos vy
p. Asiny
- _ﬁ’—--2—- . ‘ (180)
W cOS vy

The control is variable, so that in the linearized problem, it is

singular. We constantly have the switching function vanishing, that is,

E—er = Zpuw cos y . (181)

This equation is seen to be derived from the optimal relation (165) when

W
the approximation A = oS Y is used. By taking the derivative of

Eq. {181), using the Egs. {179) and (180}, we have

2 2 4
E*wp = p |2E% — 2 cof Yoo 2w cos vy ) {1+2u)
W u Ex e uZ u
Z2 usiny
wcos ysiny + ——— . (182)

By taking the derivative of this equation we have the relation for the

1ift control
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WCosy P
Ay S @ 5 (183)
where
2 2 2
P = * u [ 6tan vy - 4u(1-tan2y) + Zuztanzy + (1+u) C]
* 2 2
-~ 2E u(3+u){2+C)wsiny+ 2C(2+C)w cos vy
2 2 2
Q = E* u [2{(l+u)tan y- 4u - C] - 2E* u(4+C)wsiny
2
+ 8w <:os2 v (184)
and
2
u
CcC =1-= — . (185)
W COoS vy

From the zeroth and first~order solution, Eqs. (169) and {177), it is
seen that C is a small quantity.

Equation (183) gives the second-order solution for the lift control.
As compared to the first-order solution, Eqg. (177), the ratio P/Q is the
correctional factor. The oscillation of this factor near the value 1
provides the small oscillation in the flight path angle.

When X = w cos y/u , the flight path angle passes through an
extremurn., Hence by writing P = Q, we have the equation of a surface

in the (vy,u,w) space
2 2 2 2
R = E* u [ 2(u +ut2ltan v+ (2+u)C] - 2E*q] 2(1+u)+{ut2)C]

w sin v+ Z(C2+2C-4) choszy = 0 . (186)
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It is convement to use a cylindrical coordinates system (u, y, w) to

represent the surface R = 0 (Fig. 15).

w &

— e o em e —— — e m am wm = —

Fig, 15. Trajectory in the Cylindrical Coordinates System.,

We notice that the equation for the flight path angle, using the

variable lift control {(183), can be written as

dy _ R
dx ~ uQ (187)

Along the variable lift arc of the trajectory, y remains small and changes

its direction of variation each time the trajectory intersects the surface
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R = 0. Hence the variable lift arc presents oscillation in y. The mter-

section of the surface R = 0 and the plane y = 0 is given by the equation

2
[+ (24w - 2] ¢° = [Ex"(24w) +4] C+8 = 0 (188)
where
2
C =1 -~ — . (189)
W

Since in general EX* > 1, Eq. (188) has positive roots if real roots exist.
Therefore, the trace of the surface R = 0 in the {u, w) plane is in the region

w > u. The condition for real roots is
4 2
gx®2em? - 24 B+ (240) +80 > O . (190)

Explicitly, we have the conditions

u< — - 2 , or u > - 2 . (191)

They are generally satisfied for moderate E¥* and positive u. It is expected
that the trajectory has a slow variation in vy, considering that this varation
is zero for the first-order solution. Therefore, the variable lift arc stays
close to the surface R = 0. Using the approximation E% tany = E¥ siny=
-1, cos y= 1 in Eq. (186) we have the following approximate equation for

the variable lift arc (or linearized singular arc) in the {u, w) plane
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[ 2(u2+u+2)+E* 2(2+u) C]

la
xS Y]

+ 2[ 2(+u)+(ut2)C ] & + 2(c%42C-2) = 0

w (192)
where C is given by Eq. (189).
Using a parameter k defined as
i1
= = k (193)
we have a quadratic equation in u
2 2 2. 2 2 2 2
2k u +[Ex k (I-k )+ 2k + 2k(3-k )] u
2 3.2
£ 2(1-1) [ BEx“KO(L14K) - K4k 43k - 1] = 0 (194)

The two equations (193) and (194) can be considered as parametric
equations for u and w with parameter\k. The linearized singular curves
for different values of E* are plotted in Fig. 16. It is Iseen that for high
maximum lift-to-drag ratio the curves are close to the curve u = w.
Furthermore, by the definition (161) of w and u, we "see that the dimension-
less quantity 1 defined as

. el
pSCI;rV

u
= e = el l
M W Zmg (195)

is the dimensionless dynamic pressure which is a measure of the indicated
speed. Therefore if u # w , the indicated speed is nearly constant during
the glide.

To support the present linearized theory, exact numerical solution

has been generated for a vehicle with E* = 10, a typical value for a modern
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fighter aircraft. The initial conditions used are

1
= 0, = 0. = - = = .0,
w, 5, u, 5, v, = 0.1 (196)

while the final conditions on w and u are

= 0. = 0,213 .
W 0.215 U 0 (197)

The exact numerical solution is plotted in Fig. 16 as a dashed line. It is
seen that the trajectory nearly follows the singular curve as predicted by
the theory, In general, for a given v and w. the optimal trajectory,
for maximum range glide, guickly joins a path near the approximate
singular curve u # w and stays in its vicinity until near the end when again
it deviates to match the prescribed final conditions. For a large altitude
drop, the initial and final arcs are short and, during the main portion
of the glide, linearized singular control provides the analytical solution
to the maximum range glide problem,

The near constancy of the flight path angle v and the dimensionless
dynamic pressure m = u/w along the glide path for maximum range is

explicitly displayed in Fig. 14.
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Fig, 16. The Approximate Linearized Singular Arc in the

(u. w) Plane,.
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VIi. CONCLUSION

In this report, we have presented a comprehensive discussion of
the problem of singular control. Singular control enters an optimal
trajectory when the so-called switching function vanishes identically over
a finite time interval.

Using the concept of domain of maneuvrability, the problem of
optimal switching is analyzed. Criteria for the optimal direction of
switching are presented. The switching, or junction, between nonsingular
and singular subarcs is examined in detail. It is shown that, in general,
switching with singular arc is one of two categories: A regular type where
the contrel is discontinuous at the junction point, and a2 singular type where
not only that the control is discontinuous at the junction point, but is non-
analytic. In this type of junction, entering or leaving a singular arc is
effected by chattering control which requires a rapid switching of the

_control between its extreme limits.

Junction between nonsingular and singular subarcs in which the
control is continuous at the junction point is a rare phenomenon and usually
is effected at some specified points in the phase space. Hence, it requires
particular initial and final manifolds leading to and coming from these
points., Conditions for smooth junction are derived. The discussion of

singular arc and junction with singular arc is carried out with the
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mathematical rigor 1n optimal control theory. From the more practical
aspect for solving engineering problems, the concepts of quasi-linear
control and linearized control are introduced. They are designed for the
purpose of obtaining approximate solution for the difficult Euler-Lagrange
type of optimal control when either the dynamical system considered is
quasi-linear in the control, or in the case of strongly nonlinear control,
that 2 certain reference solution for the control, usually steady state case
control, is known as function of the state variables and the time.

Some illustrative examples are presented as applications of the
theorems formulated and of the concepts introduced.

A logical continuation of this work is the analysis of the error
committed when quasi-linear control or linearized control theory is
employed in solving nonlinear control problems. In this respect, =
rigorous proof that the approximate solution indeed tends to the optimal
solution is in order. Numerical applications of the linearized theory in

some engineering problems tend to support this conjecture.
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