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ABSTRACT
Oki

This paper considers two methods of processing signals from a multi-look

unfocussed synthetic-aperture radar. A saving in the processor complexity is

achieved in comparison to a fully rocussed SAR system at the expense of slightly

greater clutter levels and poorer along-track resolution. In addition, lower power

consumption enables the unfocussed processor to increase the number of looks to

compensate in part for the reduced resolution.

An example of a processor for 150 m resolution at 435 km height with 138 km

swath (70 to 220) uses only 33 watts for 4 looks (most of the power is used by 4 A/D

converters) .
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USE OF A MULTI-LOOK UNFOCUSSED SAR
PROCESSOR ON SPACECRAFT

Richard K. T. Fong

1.0 INTRODUCTION

A synthetic aperture radar (SAR)crray is achieved by suitably processing radar
echoes from a single mobile antenna moved along thel line of a hypethetical"lineer
array, resulting in beam sharpening and consequent fine resolution along a line
parallel to the array.

Focussing requires that the effective phase length between each of the
array elements and the target is the same. The total received signal from such a
target is the result of phase-coherent summing of the received signals from all
elements of the array. For a fully-focussed SAR, linear along-track resolution is:

Drx - 7 ,

independent of frequency and range [I], where D is the physical length of the
antenna.

Now consider the comparable case for the unfocussed SAR. Each element
1	 of the synthetic array illuminates and receives a return signal from a target independent

of every other array element. Here linear along-track resolution is (for minimum

processing):	 r
rx	 17 (XR)]1/ 2

et slant range R and wavelength a [21.
For the unfocussed SAR, resolution in the along-track direction is dependent on

range and frequency. In this case, the coherent echoes are summed without compen-
sation for the phase shifts. This simplifies the processor but limits the maximum admis-
sable length of the synthesized antenna. This arises from the fact that the phase
difference of the received signals in the center and on the edges of the synthesized
aperture must not exceed 90 degrees [31, i.e.

L < (aR ) 1/2

Unfocussed signal processing provides along-track resolution which is consider-
ably poorer than fully-focussed signal processing. Nevertheless for requirements in

Ssea-ice, soil-moisture, and snow imaging it may be adequate. One method of
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improving the image quality is to provide for multi-looks. That is, multiple

independent coherent looks are made of each cell, and these coherent looks are

non-coherently combined to provide a batter quality image.

As the real antenna is progressively moved along i-he line of c hypothetical

linear array, there is a certain amount of overlapping of beam coverage. This over-

lapping permits multi-looks at a specified picture or target cell area, enabling

averaging to be done to give a better image and reduce speckle (Figure 1).

--- L —y

Figure I. System for two looks on a pixel.

When processing synthetic-aperture radar data, all or part of the Doppler band-

width may be processed for resolution, if the total bandwidth is used for resolution,

the resultant processed signal contains all the information about the target which can

be obtained (assuming the system is linear). Therefore, a multi-look system can never

gather more information about any target than a one-look system having the same

bandwidth (when the system is linear).

If the bandwidth is divided into sections, several signals may be derived from

the total bandwidth, each of which when processed yields proportionately less resolu-

tion. Combining the multiple looks will result in a better-looking image than any

look itself because the speckled appearance of the picture will be improved.

The independent looks can also be obtained by processing different look angles

or different polarizations. The effect on the processor is to increase its complexity

by the number of looks. Thus, for four looks, the memory and arithmetic rate each

increase by a factor of four. If one Doppler filter is required for one look as in the

unfocussed processor, then four filters are required for four looks.

Two methods for the production of multiple looks, illustrated in Figure 2, are:

2
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I . Filtering to form multiple bandwidth sections, with each section

processed coherently and the results detected and summed.

2. Processing for ultimate resolution and low-pass filtering detected out-

puts to the desired resolution.

Both methods give virtually identical results in terms of the quality of the

resulting image. However, preference is for method 1 which requires the least

amount of storage [41.
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METHOD 1: PARALLEL PROOVCTIONOF MULTIPLE LOOKS
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Figure 2. Two methods used for producing multi-looks.

The basic elements of a spaceborne SAR system are shown in Figure 3. Since

the unfocussed SAR processor is relatively simple, it is possible to use it as the on-

board system.

TRANS:.IITTER	 ONBOARD

+	 d L O PROCESSOR

FIRSTFIRST
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Figure 3. Basic radar block diagram. 	
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2.0 SAR SIGNAL PROCESSING

SAR systems employ signal processing to convert stored radar signals into fine-

resolution images. Signal processing in radar systems is analogous to modulation theory

in communication systems. Both fields continuously emphasize communicating a

maximum of information in a specified bandwidth and minimizing the effect of inter-

ference.

The fundamental aperture synthesis process is carried out by storing and sum-

ming reflected radar signals observed at the sequence of positions,

( x I , x2-, 	 ......... xn )

Since the unfocussed SAR processing does not introduce a phose-shiFt factor,

it merely sums the signals over the length of the synthetic aperture. Summation of

the signals is limited to the first Fresnel zone if severe sidelobe degradation is to

be avoided.

All SAR systems provide the some target histories for processing (filtering).

Each method of processing offers a trade in the suitability of its final image to

satisfy user requirements against the engineering and economic requirement of a

SAR system.

Unfocussed SAR systems (i.e., those which do not require range-dependent

quadratic phase corrections) can be implemented using recirculating delay lines,

Doppler filters and other analogous networks.

Unfocussed SAR processing can also be described as "Zone Plate" processing

employing matched-filtering or reference functions which include only the first

Fresnel zone [5]. The use of modified reference functions gives rise to slightly

greater clutter levels and poorer along-track resolution but this is the trade-off

leading to the design of simpler processors.

3.0 RECIRCULATING DELAY LINES

In this method, the various range elements are processed sequentially as a

signal circulates around a delay line and is added to the incoming signal.

This recirculation is continued until the signals in N cycles of the input

have been added together. Only signals having the proper period add up each

4
13
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Figure 4. Active comb filter.

time, while signals with different periods drift in and out of phcse in the addition
process.

Consider a train of N pulses (see Figure 5) for which the first train pulse is
denoted by f

p	 P
(t) and its Fourier transform by F (w). Then the Fourier transform

F(w)of the pulse train through the comb filter in Figure 4 is given by:

F(w) = F fp (t) + K f  (t-Tp) + K2 f  (t-2Tp) +

.^	
.. KN-1 P (t-(N-1)Tp)

F p (w) ( 1 + Ke jwTp + K2e-2jwTp + ......)

= Fp(w)
1 - K N e -jwNTp

1 - Ke 1w1 p

= F(w) 1 " e jwNTp _ (KN _ 1)r e-jwNTP

P(W) 1 _ e-jw7p _ (K-1) a-jwTp

e-jwNTp/2 e jwNTp/2 _ e-jwNTp/2 e-jwNTp/2_ KN_1 e-jwNTp
= F p(w) e_jw p e jw p, _ e-jw p <_ jw p ^ (K'1) a-jwTp

= F..(w) 2 je jwNTp/2 sin ( WNTP - Q, N -1) e-jwNTp

r 	_	 -
2je jwTp/2 sin O - (K " 1 ) 

a -jwTp	
-	 -	 - -

'wNT	 'wNT
F(w) = F (w) [2j sin (--NT -) - (KN - 1) e	 ] e

P

[2j sin (^) - (K - 1) e ^] e
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Nth pulse

'+	 (N-1) T 
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Figure 5. Train of N rf pulses.
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T	 N	 v^^J	 ''w N-1 T	 I .
F(w) = Fp	

w

	

(w) (2j sin (	 -^) - (K	 - 1) cos (	 ^') - j sin (	 )	 ] e

	

[2j sin(	 )-(K-1)	 cos(	 )-j sin (^)^ ]

For K = 1, the expression reduces to

F w) = F (^,^ sin wNT /2 e -!w N-1 T
(	 p ) sin w p 2	 (1)

a typical plot of which is shoNn in Figure 6 where

	

__ AtT	 sin w — wo 6T/2	 sin w + wo ^; 2Fp(w) -^	 w-wo A	 + - w + wo	 ]	 (2)

The filtering of a train of pulses is therefore called a comb-filter because
of the shape of the frequency spectrum of the signal.

The carrier frequency wo = 2--Tpm
	 where 'm' is an integer. The width of

the ove-riding envelope is 2,n and is related to the spectrum of a single pulse,

i.e., sin (w - wo) DT/2 = 0 or (w - wo) _ 2^- ,̂ T when w is the value at the first

null of the single-pulse spectrum. The centers of the teeth of a comb are spaced
I 	

Tp and have a width of 41r times the reciprocal of the total pulse-train length.

f 

1_1	 Width of spike = 2^r/&ro

"^,,/ (be t ween peak and first zero)

\

	

1	 \
0	 Wo

_ 2„	 \

Figure 6. Fourier transform of pulse train.
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Expanding F(w) further we obtain	
_•H,(N -1—r

F(w) = Fp (w) [(KN -1) cos ("—) - j(K N+I) sin (w )] e

[(K-1) cos (^) - j(K+l) sin (wy) ]
	

(3)

A switch or inhibit gate as shown in Figure 4, limits the pulse train to N
pulses. The gates are usually used to clear the delay line after (N-1) recirculations
of the first pulse. By employing a feedback loop around the delay line with loop
gain K less than unity, we can do without the input or output gates. In fact, some
unfocussed SAR systems use this method and omit the switch, with the effective N
determined by the decay associated with the repeated passage of the signals through

	
®.

the gain K.
Another effect of the feedback loop is to reduce the sidelobes. The teeth

of the comb filter have a si n x shape if all pulses summed are weighted the same.

8
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By adjusting the amplifier gain K in the feedback loop for less than unity, this

shape can be changed to achieve any of the standard weighting functions and

resulting possband shapes. Hence to optimize integrator performance, the value

of K, loop gain must be optimized. 161

L	 k

14	
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-Sip - M rr -3rr fir 	 -,r	 G	
f

Figure 7. Weighting function for feedback loop

gain K.

To demonstrate the effect on a SAR system, equations (1) and (3) were

plotted using SAR specificat ; nns and illustrated on Figure 8. The computer print-

out results are in Appendix A.

Advantages in recirculating delay line processors include the need for no

physical range gating since target range is determined by the time of appearance

of echo pulses at Doppler outputs. The comb filter has a set of possbands spaced

by the some spacing as the Fourier components of the received pulse. This permits

narrow-band Dop p ler filtering while retaining the wide-band characteristics of th-

pulse train neces:c,y to retain range resolution.

Disadv: nta-	 clude the necessity for stringent requirements on loop Gain,

bandw:dt i i, delay lime, on ,4 spurious responses.

If the delay line is implemented by a sampled-data system using eithe ► an

analog or a digital shift register, the delay is established by the clock driving the

register, which can be made very accurate. The use of a digital system also

eliminates the loop-gain stability problem.

4.0 DOPPLER FILT ERS AND RANGE GATES

The infusion of digital echniques into radar processing in recent years is

9
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r ..y7 well known. In replacing conventional analog circuits with small and reliable

digital storage devices, significant improvements such as size, weight, power and

reliability have been made possible.

The alternative method to recirculating systems is the use of sampling systems

at a clock frequency, fr . The sampling rate must be high enough to avoid alicsing

and is usually at the pulse repetition frequency (PRF) of the radar. This method also

depends on range gates, with a sample per range gate. Figure 9 illustrates a schematic

of a simple unfocussed processor.

SitL..+ ^ « 	'	 5.,,^a,.VG	 ^litcT..
I lrv O 	'	 ^ G '

11".^p I	 C,..+°.	
l I^ '

^tLrr tTt^	 IFL^T:aj

—ti
Ir	 1•
L,

IN 141	 t..: n^^y.^..l^

Figure 9. Unfocussed sampling processor.

The IF echo signal is distributed to the several range gates where it is sampled

at least once per pulse width and converted to a digital word. N samples correspond-

ing to the coherent integration time or desired array length are summed together in a

register which is controlled by the master clock. The register, therefore, only stores

the sampled signal and adds a new sample for each pulse signal per range gate.

Figure 10 illustrates the processor using I and Q channels for a zero-IF

configuration. The advantage of this unfocussed prccessor is that it requires no

multiplications at all for the single channel range gate and only output multiplica-

tions for I and Q channels. This is possible because of the recent advances in

A/D conversion rates and the rapid decrease in the cost of digital storage.

To make a map, multiple range cells are required. When multiple range

gates are processed similarly, an azimuth line is formed, The mcp is formed with

successive azimuth lines laid side by side. Each azimuth line is like a sample of

the synthetic array pattern. For multiple looks, replications of the system according

to the number of looks will be needed with different local oscillator frequencies to

ORIGINAL PAGE IS
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Figure 10. Digital I and Q SAR processor multiple

range gate, single filter.

point the beam. [7]
In the above system, since each range gate does its own A/D conversion, the

conversion can be carried out at a slow rate although a fast sample-and-hold unit

is still required. If we use a single fast A/D unit before distribution, its output

must go into a fast buffer for each range gate as shown in Figure 11. However, this

buffer store could use fewer bits than the main register, and summing could be done

still slower. The buffer memory that operates on a First-in, First-out mode is the

most cost-effective way to interface two systems with different data rates.

Ca NV.

c ^	 ^

Cy,a,1^y^

1.

i

f^
f

01 Ijc - 
1AL PAGE I^

OF pWR flLpI,ITY
Figure 11 . Fast A/D convertor before range gating

of processor.
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The range gate distributor can be designed according to the schematic in
Figure 12. Here the sampled signal is clocked serially to the left. When the return
from a zero range target is in the leftmost storage location, the sampling clock is
stopped, and the contents of the distributor are transferred in parallel to the output
fast buffer stores, thereby sorting the radar return into range bins.

.., a Clm. Any.	 T.^L .t L.^^ ^.+1•

a

Z	 '

i	 A+r • try-^"""^^ •	 •	 •	 •

•	 tl	 t^	 t^	 t•	 IS	 t`	 It	 t,	 I'	
t10	 tlw

• t	 ^^	 ^	
.`	 Ij	 ^^	 ^	 ^	 7	 X10

Figure 12. Schematic of the Operation of a RGF. The video
return is sampled as shown, and the samples are clocked into
the RGF. The man at close range resul l-s in a large signal at
V2 and the tank at longer range results in a large signal at V7.

A common criterion for optimization is to find a weighting function which
will provide a minimum main-lobe widening for a specified side-lobe level. Proper
amplitude weighting of the received pulse train can improve the signal-to-clutter
ratio in many situations. Some examples of weighting are the Taylor, Cosine,
Hamming functions.

In summary, sampled-data systems depend on range gating first whereas the
comb-filter techniques do the inverse and Doppler filter on the complete signal
and then separate the range cells.

To illustrate the advantage of the unfocussed multi-look SAR processor from
a hardware aspect, let us consider the following example which compares it with a
focussed system using a fast Fourier transform (FFT) processor.

The SAR system has the following parameters:
Altitude of spacecraft	 435 km
Ground velocity	 7.2 km/sec

ORIGNAL pArF IS
OF PWR QUALITI.
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Wavelength	 0.063 meters

Swath	 138 km

Bandwidth	 4.8 kHz

Aperture length	 3 meters

Look angle	 70

Number of looks	 4

Let us assume a cross-track resolution of 150 meters. Then for a swath of

138 km, we obtain the required number of range bins - 920.

Assume that a word of information can be represented by 5 bits, then the

distributor shift register must be able to handle 5 x 920 = 6400 bits.

For an unfocussed multi -look system, hardware and power consumption is

listed as follows:

Quantity	 Item	 Power

1	 A/D Convertor 8.33 watts

2	 Digital shift register, 6 MHz, 2 x 123 uw =

AM 2F 25 246 uw

920	 Buffer memories CMOS MC14014 920 x 63 nw

57.96 u w

1840	 Summing Registers (I and Q) 1840 x 1 uw =

CMOS MC14008AL 1840 uw

Sub - total 8.332 watts

for 4 looks - total 33.328 watts

For FFT focussed processor hardware and power consumption is listed as follows:
BT -	 1.268 x 4.8 x 10	 = 6090

G = number of sub-apertures, D/2 per pixel = 1150 = 100

Number of pulses per sub-aperture = 	 G = 60.9

For FFT, no. of pulses must be on integer of 2

Nearest multiple of 2 m is for m = 6 where N = 2 6 = 64.

Memory size, including corner turning is = 4 x 64 x 920 x 5 = 368 k bits.

3
0	 16



Quanti	 Item Power

1	 A/D Convertor 8.33 watts

100 ns, Datel ADC-UH63

2	 Digital Shift Register 2 x 123 pw =

6 MHz, AM 2825 246 ,Iw

368	 RAM Intersil CMOS IM6508A-1 368 x 103 x 9.8 x 10-6

(plus corner-turning memory)
= 3.6 watts

920 x 4	 Adder /Sub tractor register 3680 x 1 uw

CMOS MC14008AL 3.68 mw

920 x 4	 Multiplier 3680 x 100 nw =

CMOS MC14554AL 0.360 mw

Total 12.0 watts

It is interesting to note that the application of a CCD transversal filter for an

image processor [8] could provide a power consumption of a similar order of magnitude:

(7 watts for 10 km swath width with 50 m resolution from an altitude of 800 km) as

•	 the unfocussed processor.

5.0 CONCLUSION

Unfocussed signal processing produces images with considerably poorer along-

track resolution than fully or partially focussed systems. However, the unfocussed

signal processor is very much simplified enabling a reduction in hardware for the system

so that it can be placed onboard the aircraft or spacecraft.

This advantage also enables the reduction of the required telemetry channel

capacity and the ground-based processing facilities significantly.

It is necessary that multi-looks be applied to unfocussed signal processing to

provide an image which can be useable. This is at the expense of additional

hardware, however.

Since the azimuthal resolution r  for a fully focussed system is related to the

total Doppler bandwidth, it is possible to provide more coverage per orbit by

employing unfocussed systems at the sacrifice of azimuthal resolution. This in

addition to multi-looks may provide the necessary parameters for a mission which

does not require high resolution.

17
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APPENDIX A

SAR SPECIFICATIONS: PRF = 7.2 kHz. ; Qf d = 26 Hz.

	

Therefore: N, number of pulses = PRF	 = 277

^fd
Tp= 1 = 140 .secs.

PRF

A t= Tp = 0.14 psecs.

1000

wo 2Tm = 1.7951957 NlHz for m=40
P

A = 105

k = 0.995	 and = 0.99

Width of comb: 27 = 162 Hz.
NT

P

Spacing between combs: 2T	 = 44880 11zm
1 _
Y

Width of envelope: 2-1,	 = 4, 488, 000 11z.
Lt

Program for K =1.

k.:

I

1.,

10 rATA PI/1.7951957/
20 'JPITFC E.-05(7,);S50	 FO °i V.r	 C2^.'Ct4FGA', C'.','F?J' )
30 LO	 100	 I=44600j250G(3:j;
40 TFI .1P	 1 =^ • 7 - GE C Ii' C 1 o^gr^x'7) /^I!iC7E1*r1)
50 IF('T.FC•C)•C)	 TFM?	 1=E•7E-2*	 1.0

70 3-C2	 =	 C'1+PI)f0.07 i
36 30 7FMP 2 =	 SI?:(Y1)/"1	 +
85 IFC;:1•F^•C.0)	 TEI:P	 ?	 =I.E+SIi:C^'2)/:;2
90 F• J	 = T Fl . iP 1 * 7  : ?

1
D^

10F 'J?'ITE	 9CC)L'..',F'J
110 9P)0	 FO v!AT	 (1X.t5•E.2112 .3)
120 1r0	 CO':TI!J 	 5TC?; F?: i

aoR ^`Uov
YOF
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Print-out for K= 1

"	 O.M G4^ EFF OL-IE;GA FW OMEGA FW
1.792,-r,? ^.l?`c ^f 1.7 ."E(.;..

C.F34F-; 1 1.79;, ^•5037 -r1 1.795E£0' ^.14E)	 I
!•'=	 .`^ -C.4f7F-2-1 I.793^12^ -0. 621F-01 1.7957247 -C.2cFr n2-

^.327:-:.9 1.7939<() -7,.14SE 2-3 1.79F760 -C.352F CCl
I•	 7'	 1(2 H ';	 I 1.79L,.^^. -01.ISEF 32- 1.71`	 "^. -O.2,L: cr	C0
i•' y ::;. ; :.6==F-"1 1.794'4? -C.7C3F-21 1.7?F313 -r.233F-CI
1•' y 27.;! C.1;69T-CI 1.7947SO C. 021?--^1 1.79t3in C.I°7:	 C,0
I •'9_2^': -C. 7 EEF-C3 I .79412'? C. 1 68 11 E0 1 -795920 0.074r 00

f.,	 Ch -C..;>3:-C l I •794160 0. 131 F OE 1 .79596E 0.202£	 Cu
!•^9'=300 -?.7^EF-C1 1.79^cCC O.SrF£-r I 1.79Erar.. E•233F-Col
1•'924;0 -:.516F-('1 1.79424-0 -0.643E-'01 1.79631'G -0.1459 6v
1•-92 L 4C -3.2".3F-^2 1.79fi2SC -C.193F 2-2 1.79E,OGI -0.223E 2-r
!.^9c: 0.501r-121 1.794320 -0.217£ CC' 1 •79612, -r . 173_ CC
1. 7 9'7 `22- ^•747F-^"1 1.791:360 -C.1 14F CE 1 •796160 -0.316£-E1
I..,4;	 Gr 0	 E67F-^1 1.794400 C. 635=-CI I.796210 C`..115F	 ^0y	
1 .^926ro 0.519E-2-2 1 -794440 0.229E CC 1.796240 0.IS8F	 C.
1 . 7 9264: -0-55 09E-011 1 .794430 0.269 F C,^ I .7962°0 0 • 1 `1 E	 GCS
1 -792631 -0.792F-G 1 1 •79452'3 0. 15 1  F OE 1 •796320 0.34eF-01
I •792727 -0. 623E-C I 1 •794560 -0. 739:-E 1 1.796360 -0.941 F-C' I
1 • 7 9.^_760 -O.S72F-C2 1-794600 -0.2.84E E0 1 -7964^0 -0 - I 62 00
i- 7923;^ G.51SF-01 1.7914640 -0.3SOF 0 1.796440, -0.1351	 C, r.
I.792340 0.642E-01 1.794660 -0.210E CC I.7964S0 - 0.357E-51
I.792 U`3E 0. 637E-01 1.794720 0.826E-E1 1.796520.1 0.773F-CI
1 •792923 C- 1271_-C1 1 •794760 C.376F 0,0 1 -796560 0. 14 IF 00
I.792960 -G- 526E-01 1 .79 4300 0.495F CO 1 •796600 0. 123F CO7'0322.3. -c.R97 F-01 1 .794640 E.323F CO 1 •796040; 0.372.-01
1.79;040 -0.759£-EI 1.794853 -0.I',OF U  i-7 6,00". - 2:6/!0r - C1
1 .793:730 -0-173F-01 1 •79492 3 -0. ESEF 20 1 •7967 20 -0. 125£ 30
1.793121 C• 536F-C 1 I .791;960 -0.635F 0C 1 07967 60 -0. 113L	 CC
1.793160 0.9600-01 1.7950100 -0.619F 00 1.796800 -E•3SC£-Cl
1.7932-010 0.641 E-01 1-795C40 0. 154£ 00 1 .796340 0.544E-01
1 -79322LC 0. 227 F-0I 1 .795330 0. 134 9 01 1 .7.96°3G C - I 12F CC
1.793230 -C•546F-01 1.795120 0.261E O1 1.79692lJ 0-I,4F 00
1.793320 -C. 103F CO 1 •795160 0.355F 01 1 •796960 0.356E-01
1-795360 -C-936F-GI 1 •795200 0.365E P, 1 1 •797000, -0.45 7 E-C 1
I•793400 -0.259F-G1 1.79<<40 0.34: F 01 1.797940 -C. ICI c CC
;.793440 0.557E-21 1 •795280 e-236F C1 1 .797030 -0.973£-01
I.7934SC F,.112F V0 1.79`320 0.107F 01 1 .797120 -C.393F-0:1
1 •793F20 0. 135F CJ 1 •795360 -0.51CF-31 I •79716'. 0.333:-21
I •793F63 0.363E-C..1 1 .795430 -r,. 71 1 F 0C 1 -797'3' G 0.9114E-2-1
I -793600 -0. 51 69F-Cl 1 .795447 -0.615F 0'2- 1 -7 i7 21'0 0.911 F_'11
1.793640 -0.1C2F 00 1.795450 -0.489= @0 1.797232 C.396F-01
a-793(80 -I!.IISEE 	CO, 1.795500 0.18(F_02 1.79720,; -C.34r,F-CI
,•793720 -0.453F-GI 1.795560 ri•3S1:F C^. I.7973GG -O.C3:I-GI
1.7937(;0 C-5S4.F-011 1.795600 0.492E 0P. 1.7971.1,,, -C.6,F3F_01
1.1931)00 O. 134E	 °,(31 1 •797440, -0.401 F 

^ PAVE 1^i
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Program for equation (3)

K = 0.990

i ro 	 DF-ITH PI 1 .795 1 95,7.'

29	 LIP' I Tc 6 ^2'5 "1', 	0 FORMAT	 '62',: 	 OMEGA	 5-IX F `•.W)
%	 -:, r	 .I c- c l .-, "

3	 110 1 C,	 ll: -. j • _I ^ ^ ;W.,--4

4Q	 X I "- ''I)l FI + C, '07"
5 9	 X'"z- 41 P 1	 0 71

6:1	 I F I* X I G T	 C, 0 1	 G- 0 T 0 C Cl
2 -1	 - ► e7 IWX D )- , X'2 )	 GO 

TO 
90TEMP 1 0 ." E -L:	 1

I N X 1	 1 N X" .'XS C, TEMr	 C
9 C 	 61', F 2' 19 9 0 + W
1 09	 F ? -- C, .9":. :2 - 05 +CO^ . ! F2)
110	 F 4-- 1	 1	 +'3 1 N / F 2

12CI 	 T E M P 2 c, r-' T F'-3 -s + L2 + F 4 + 2
130 F-5= 9 0 1 +CO':- 'F I

I N " F I

1	 TEr1F'-17-- '7- 0rT ' F6++'2'+F5++2)

1 (-;	 FI,I=TEMF I +TEMPL'!-' .,TEMP4
1 -7(1	 4IRITE''G-?00) IAI.F41
130	 :'1 r 1 0 FOFMPT : I X ^ F-8 . G 93E 12  .3. 
190	 100 C.ONTINLlE;'1S TDP;C- N:)

F = n.qq5

I►ATS P 1 1 . 795 1 q57 . -'
Ij I P I TE E. 85 C, " ;	 10 FOPMAT 2:-- ` OMEGA' 5X 'F! 61) ')
7`10 100 Ir--44":*'7--"). .45 q Ci ro ;61=4 CIE-5+I

'J7

1	 10 07
IF! l, I GT . .90ril	 GO TO 30
TEMP I = C, .7E-2+<. I ',) +:-,; I N «X2) 	 GO TO 9 0
89 T E M P 1 = 9 . 7 E + I N I -'XI	 I N Y	 X2

9C,
F	 c5 r, 15 	 0 L"" F 2
F - I I	 rt ? 5 ,0 'S I N F 2

TEMF*L2' 	C-r-,' T l F'-7'++2+F4++2
F5--0.9 05 +r O c F I

TEMP4 -'S' 0RT -'Fo-c.**2+F
F I - I =TEMP I +TEP'Fr-_' .,TEMp4
WF' I TL `6.•,-4 "1 "1 ") 61• F 61

FU , M F4 T I F E:	 E I
i CI	 A

-' I- Ul I I 11L t s T OP PtNIl	
ISop,IGINAL PAU

L,

OF Pwit QUXIAW
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Print-out for K= 0.99

l.i'?^c_:1
r• .^

0.«I?C-^11
1	 ' 0.3` 0 	 00

-1	 ??:'?h^ _ ^,0,^'^C-01 1	 ?'?5120 O.1 02-E	 ^:
1.?'?^'s;^^ 0•^,,,^2•_E-01 1.'1-451 G0 0.12	 E	 01

1.??5200 0.11E	 01
0,;;	 1 49 0.12aE	 01

1.	 ?_;^^^1 0.61'?E-01 E 00
0.31E-01

1 .??:x,;0:1 0,,;C15E-01 1.	 ?`x:60- 0-e52.1C 00 - ^
1.??	 ►;	 Is: ^1,^_,'SE-01

1	 '?5.}01 ^l,46 5 E	 00
1.?9`ss0 0.11?E	 00
1. 7 '?5-350 0.341E 0^

..1 '?'?60 0 .^^: SIC-:1 1 1 • 7?5520 0.`03E 00
1 • ?:̂ ^^00 9.759E- 0 1

0.2 711 E	 00
1 .???^^s0 0,? .'?	 -01

t

1 .^`^`^,,^!^ -1,` c?E	 0!1
1 .??25:;0 0.'2 ,E-01 1 .'?15G 10 :^.223E	 00

0,750E -01
1 ,?c+`r,`^rl rl.l?2E	 00

• 1 ,??	 ^ h^ 1.795720 0,1:3:=E	 00
1.''?5000 ^1	 r^.^^	 3E-01 1 ?a5'^0 0.13'E	 !101.?'?5:;0!1 0.IGE•E	 00
1 .794 Of: 0.':5'sC-01 1 •??^° j^`^ 0.145E	 00
1 .794120 0,966; E-01 1 • ^?^f'-' 0 1.14.1E	 00
1 •	 •lt' 0 0.1010	 00

1. 95920 0.14ESE	 00
,^ i .??.^`^10 0.9F,r;E-01 1 .;'?5660 0. l 3cE	 00

1.?9S	 _I 10 0.1IGE	 00
1 .?? 3240 0.112E	 00
1.??4=:20 0.1200	 00

1 ,^ar,Or:0 0	 ^^.1	 .E	 00
. 1 .??.^`'r'.0 !1. 115 0	 00 1 •??^ 12:1 :' . 1 1 CI E	 00

1 .??4400 0.119E	 00 1 •?'?hl'-'Q .I.:^?-1E-01
i1 .?.^^ 1 0.1^^6E	 00

1 .?? r . ` "1 0 9 ,'^ ?F,E-01
1 . ? ?•4},j^1 0.143?C	 00

1 .'?r•c sC^ 0. 1 CIIE	 00
1.?'? 45`	 0 0.145'?E	 00

1	 ? fit`;?0
^I•",3='E_O1

i •7`945 r 0 0.1's_'E	 00
1.7, 3 0 0	 E-01

1 .:'9 4 	 e,) 0. 1:'lE	 0 0 1	 ??a^:are !1. _^^': E-01
1., 9r.45^1'^ ^t	 ,^,

•i	 79 4 720 0.1 ?^.E	 0^
1.??r..;:_:1 0., _;^. E-111

31^ 1̀ E	 00 1	 ?aF. ^r 0 rl

.. ,2-	 , E	09
1 . ' !̂ •3 '? ^,	 L'7-"-4 

1 E 1	 45 Cl 0 , F.SEE - ;11
1 , ? a,; : ` r1 r1• -.c_,C	 0. 1 . - ^^ r ^. ^I ^I , r. E	 X11
1 .'o.;'a'.;1 E	 :I;^ 1 •-?` , ^0 rI.6.91C-III
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Print-out for K= 0.995

G. rl A
	

F<2>
	 OME§A
	

F§G>
	

G

!.792309
1.292240
!.292359
!.292529
!.29.269
1.292409
!.792440
1.79580
1,793530
1.792^6g
1,79260§
!.792649
!.79@689
1.795220
!,792269
!.790@09
!.792849
1.792889
1.792920
1.79?960
!.794999
!,794049
!.794§@0
l.2941^g
1.794!60
!,794209
!,794240
1.294289
!,794729
!.794260
!.794409
!.294449
!.7944@9
!.794529
1.794560
!.294609
l,2ca4C.4g
1.7946@§
!.794720
!.794269
!.794800
!.794840
!.794889
1.794920
!.294969

0.56`E-51
Ci E-91
9.4 Q2E-O!
9,E`4E-0!
9.622E-01
9.442E-9!
9.510E-g!
0,209E-0!
0,699E-0!
0.49?E-0!
9.550E-g!
0.326E-0!
0,721E-01
0.556E-g!
9.595E-0!
0."57E-0!
0.571E-191
0.625E-D!
0,660E-0!
0.950E-g!
9.99 2E-01
9,72 2E-01
0,240E-0!
9.109E O9
9.116E OO
9,G77E-0!
O.S42E-g!
0.126E 019
0.125E 019
0.106E 019
0.1 109E 99
0.151E DO
0.179E 09
9.181E 09
0,122E Og
O,!@9E 09
0.z2 g E 919
0.179E 199
9,163E 190
9.25sE 919
0,310E 00
9.264E 0
0,241E 919
9.294E O9
0.519E 00

!,29`909
!,29`94@

!.295!30
l.29^160
1,29`209
1.29`240
!.79`280
!,79`220
!.79`769
1.2§§409
77795440
1.795420
|,795520
1.795`60
!,795600
!.79`640
l.79fE@9
!.29§220
!.79`269
1.795809
!,795840
!.79`889
1.79`920
1.7959Gg
!,7960@0
!.796949
!.796980
!.796!20
!.796!60
!.796200
!.796249
!.796220
l.796Scg
!.796260
!.796400
!.796440
!.796480
I.,96S^0
!,796`69
1.296609
!.296640
1.796680
1.796720
!.79626§
!.296800

9.424E 99
g .4 74 E 99
0.891E eg
9.142E of
9.19 . E 9!
9.2 09E 01
O.lm 2E g!

12<E 91
9,726E D9
0.446E O9
9.sO3E 9g
9.50`E S9
0.35 QE D9
0,229[ 0g
9,220E 0 C
0,302E 019
9,2`4E 90
9.154E 90
0,191E 09
O.JZOE 09
0.12`E O9
0.117E 00
0.144E Gg
0.121E 90
0.141E 0 
9.941E-9!
0.114E Og
0,145E 09
9,118E 190
0.793E-9!
9.942E-0!
9.1ICE 99
0.193E 09
O.6CGE-g!
9.792E-0!
9.102E 0^
0,992E-0!
0 E.I OE- 01
9.602E-0!
0.896E-01
9.814E-0!
0.551E-01
9.600E-g!
9.292E- 0!
0.241E-91
0.`05E-0!

x
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