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RF RADIATION FROM LIGHTNING

ABSTRACT

Radiation from lightning in the RF band from 3-300 MHz has been moni-

tored at the Kennedy Space Center (Florida) during the Thunderstorm Research

International Project. Radiation in this frequency range is of interest as a

potential vehicle for monitoring severe storms and for studying the lightning

itself. Simultaneous measurements have been made of RF radiation and fast

and slow field changes. Continuous analogue recordings with a system having

300 kHz of bandwidth have been made together with digital records of selected

events (principally return strokes) at greater temporal resolution. The data

reveal patterns in the RF radiation for the entire flash which are characteristic

of flash t ype and independent of the frequency of observation. Individual events

within the flash also have characteristic RF patterns: Strong radiation occurs

during the first return strokes, but delayed about 20 psec with respect to

the beginning of the return stroke; whereas, RF radiation from subsequent

return strokes tends to be associated with cloud processes preceding the flash

with comparatively little radiation occurring during the return stroke itself.
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PREFACE

Lightning is one of the foremost of weather related hazards: it is respon-

sible for the death of as many people in a typical year as all tornadoes combined,

it is a major cause of forest fires, and lightning continually disrupts communi-

cations and power distribution systems (White quid Baas, 1975). Lightning has

also been a subject of relatively long standing concern to NASA, both as a sub-

ject of scientific interest relevant to understanding the environment and because

of the hazard lightning presents directly to NASA operations.

For example, Lightning hazards are a concern to NASA both during and in

preparation for launches. Lightning strikes to launch facilities are not uncom-

mon and even the launch vehicles themselves have been struck. A nearly disas-

trous example occurred on November 14, 1969, when the manned Apollo 12 was

struck by lightning shortly after lift-off. Lightning strikes to launch facilities

have resulted in damage during other Apollo and Skylab missions (Apollo 15;

Skylab 2, 3 and 4). A testimonial to the extent of this problem is the research

the Kennedy Space Center has supported to develop guidelines for electrical

safety during launch, includiuti progrmns in atmospheric electricity to study

triggered lightning, to measure parameters of return strokes, and to monitor

charge distribution in clouds. The Kennedy Space Center also encouraged the

Thunderstorm Research Project to locate at KSC.

Lightning is also a problem of concern to the NASA communications network

Lightning is a source of broadband radiation :it RF frexluencies and therefor
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represents a source of interference in data links. Nearby lightning strikes can

also induce error and damage producing transients in cables and instrumenta-

tion. The tracking station at Rosman, N. C, has had an unusually severe prob-

lem with lightning strikes.

Lightning is also a problem of concern in aircraft. Physical damage is ob-

viously of concern, and commercial aircraft have in fact been downed by light-

ning (e.g. in 1963 near Elkton, Md.); However, a contemporary problem of

increasing importance are transients induced by lightning inside the airplane.

Low power digital electronics, increasingly used for guidance and control, are

susceptible to transients induced by lightning strikes (e.g. Naneviez, Bly and

Adamo, 1977).

In addition to these several areas of specific concern to NASA operations,

lightning is of concern to NASA because of the hazard it presents to human life

and environment. For example, in the united States alone, lightning kills

between 100 and 200 people each year, as many as tornadoes; is a major cause

of forest fires, especially in the remote northwest; and continually disrupts

communications and power distribution networks. For example, during a sum-

mer period in 1968 when statistics were kept, lightning was responsible for a

disruption in power or telephone service on the average of every other day

(White and Haas, 1975).

Considering the long history of scientific interest in lightning, surprisingly

little is known about the physical processes of the flash or its connection to con-

ventional (non-electrical) meteorology. The parameters of the current pulse as

vi
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it propagates up the lightning channel, and even the charging mechanic,-t respon-

sible for lightning are important unresolved questions. Lightning parameters

correlate with meteorology of the storm but in ways only partially understood and

incompletely studied (Brook and hitigawa, 1960). The unusual lightning associ-

ated with winter thunderstorms in Japan (Pierce, 1976; Takeuti et al. , 1973) and

the "superbolts" observed from satellite ('Itirman, 1977) are interesting exam-

ples. Unusual lightning is also frequently reported in storms that produce

tornadoes (Le Vine, 1976), which has led to several proposals for using the RF

radiation from lightning to help monitor tornadoes. (No physical basis for such

reports has yet been established; however, because of the incomplete under-

standing of lightning processes, neither can it positively be established that

such claims are unfounded.) Conceivably, when the physics of lightning and its

role in weather phenomena are better understood lightning can be controlled

(Anon, 1973) and even used to advrintage to monitor severe thunderstorms.

The problem of studying lightning is compounded by its transient and remote

nature (e.g. return strokes, the source of most physical damage, last only a few

hundred microseconds, and most lightning occurs within the cloud hidden from

1

view). However, lightning radiates strongly over a wide range of frequencies

from a few hundred hertz to several Gliz (Horner, 1964; Kimpara, 1965; Oh,

1969) and modern day electronics are capable of recording this radiation on the

time scale of the individual events of which a typical flash is comprised. Prog-

ress has been ►nade vita wideband, relatively low frequency devices and it is

vii



reasonable to assume that applying modern RF technology, perhaps even space

application of the technology, may further improve our understanding of the

physical processes of lightning.

Partly in recognition of this potential, a program of research has been in-

stituted at the Goddard Space Flight Center to determine if RF techniques can be

brought to bear profitably on the problems of lightning. Specifically, a program

has been developed to: 1) assess the potential of RF techniques for monitoring

lightning parameters, possibly from space; 2) develop the potential of RF tech-

niques for remotely sensing electrical processes in the cloud, ultimately, by

coupling with radar monitoring of the cloud, to investigate the relationship of

electrical processes and cloud meteorology; and 3) determine the potential of

RF techniques for impacting lightning hazards, for example by identifying

potential forest fire hazards in remote areas of the northwest.

The program is relatively small and young with present emphasis focused

on item (1) in the preceding list of objectives. The first major ground-based

experiment took place during the summer of 1976 at KSC as part of the Thunder-

storm Research (International) Project: TRIP-76. A similar experiment was

performed during July, 1977, and a small effort is planned in conjunction with

TRIP-78. This report is a summary of results from the TRIP-76 experiment,

and together with NASA-TM-X-953-77-154 (Le Vine and Meneghini, 1977) also

is the text of a paper given at the National Radio Science Meeting (USNC/URSI)

at the University of Colorado at Boulder in January, 1978.
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RF RADIATION FROM LIGHTNING

INTRODUCTION

Traditionally lightning flashes are divided into two major categories: Cloud-

to-cloud (or intra-cloud) flashes which discharge between charge centers located

^	 within the thundercloud, and cloud-to-ground flashes which make electrical con-

tact with the groun•J. Estimates are that two out of three flashes are of cloud-

to-cloud type (Brook and Kitngawn, 1960). On the other hand, cloud-to-ground

flashes are the moFt readily observed since a significant portion of the flash isi
junobscured by the cloud and as a result are best understood. Photographici

f observation of the below cloud portion of the flash reveal that rather than a

single event a cloud-to-ground flash is actually a sequence of many events.

These are illustrated in Figure 1.

+	 Typically, a cloud -to-ground flash begins with a channel forming stage

called the stepped leader. The stepped leader establishes an ionized path to

j ground in a series of discrete steps which advance the channel 50 meters or so,

followed by a pause of about 50-100 microseconds before advancing again. The

channel advances in an irregular path frequently with hr:mehes (false starts

•	 which don't reach the ground). When the last slop makes contact with the ground

a large current pulse, with peak currents on the order of 20kA, propagates up

the channel. This event is called a "return stroke." Ilcating and ionization

during the return stroke produces the thunder and ],right flash associated with

lightning. Typically there are seve.• al return strokes in a single li ghtning flash

1	 ORIGINAL PAGE
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tc ground. Subsequent return strokes are also preceded by a leader stage,

although it is generally not stepped (i.e. a dart leader). other, less well under-

stood, electrical processes continue in the cloud after the last return stroke is

completed. In fact the return stroke phase of the cloud-to-ground flash is often

less than half of the total duration. Intra-cloud processes also occur between

return strokes.

In this report examples of the electromagnetic fields radiated from lightning

will b- presented on two time scales. First data will be presented so that pat-

ter. , .- , associated with the entire flash can be perceived, but by necessity reveal-

ing » detail of the structure of individual events. These data reveal a distinct

(tenil loral) pattern in the RF radiation which is essentially independent of fre-

quency, but does depend on the tjj)e of lightning flash: Cloud-to-ground flashes

are characterized by an abrupt beginning attributable to the stepped leader,

whereas cloud-to-cloud flashes begin with a much slower train of noise pulses

which is more typical of the end of both types of flash. Secondly, examples will

be presented of the radiat. n associated with individual events, principally

return strokes. The data indicate strong RI' radiation of characteristic pattern

associated with return strokes. In the case of first return strokes, the RF

radiation is observed to occur with a delay of about 20 Nsec with respect to the

beginning of the return stroke, independent of frequency in the range of the

measurements. in contrast, RF radiation (luring subse( i ucnt return strokes

starts an average of about 250 Nsec before onset of the return stroke and appears

i
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to be associated with cloud processes immediately preceding (and sometimes

following) the return stroke, with relatively little radiation occurring during the

return stroke itself.

The data were obtained during experiments at the Kennedy Space Center
S

during the Thunderstorm Research Project (Pierce, 1976) during the summer,
a

1976. Figure 2 is a schematic of the experiment which was performed. Radia-

tion at several RF frequencies between :3 and :300 b111z was received and recorded

analogue on magnetic tape. In total, six different receivers were employed

consisting of HF receivers at :3 and 30MIU, which were designed by the Georgia

Institute of "Technology (Le Vine, et al., 1976), and VHF receivers at 1:39 and

295 MHz which were manufactured by Watkins-Johnson Inc. (Model WJ-997 at

1:39 MHz and Model WJ-8730 at 295 MHz.). Vertical quarter-wave monopole

antennas received vertically polarized signals at each frequency except :3Mliz,

where a haseloaded monopole was used because of the long wavelength. Hori-

zontally polarized signals were detected using resonant (half-wave) dipoles at
	

^ I

139 and 295 Mliz. Each RF channel had a video bandwidth of 300 kHz, although

3 MHz bandwidth could he obtained in the VHF ch:uinels by disconnecting filters. 	 I

(No significant differences were observed in the temporal structure of the signals	 L

betweer the 300 kliz and :3 Mllz h :mdwidths. )

The six RF outputs were recorded in parallel together with the output from

a calibrated electric-field measuring system which consisted of "fast" and "slow" 	 1

field change detectors. The fast field change system monitored the electric field

^1j'i 	 II
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changes in the band from a few hundred Hz to a few MHz (i. e. it was a wide band

amplifier from about :300I1z to about 2 MHz; Krider, 1977; Krider, et al., 1977).

Since this region includes most of the energy in a typical return stroke, the

waveforms out of such a system have the dominant shape of the radiated fields.

The slow field change system monitors the quasi-static electric fields at the

surface and consequently is an indicator of changes in charge distribution within

the cloud. In addition to the continuous recordings made on tape, selected events

were recorded at larger bandwidth by means of digital sample and hold devices.

Two such devices were operated in parallel, simultaneously recording the signal

from the fast field change system and one of the RF channels (Le Vine and Krider,

1977; Krider et al. , 1977). The stored waveforms were then displayed on an

oscilloscope and photographed. The time resolution of this system was deter-

mined by the sampling rate (typically .5 N s per sampled of the waveform re-

corder and the time base used on the oscilloscope.

With minor modifications, this system existed during the summers of 1976

and 1977. Additional parallel sample and hold devices were added for the 1977

experiments together wi th a provision for continuous photographing of records.

These additions permitted a complete history of return strokes during a single

flash to be recorded.

All experiments were performed at the Kennedy Space Center from Universal

Camera Site #12 which is located on a slight mound near the beach southeast of

liwich pad 39 and east of the VA13 (Figure :3). The experiment as it existed in

it
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1176 is shown in Figure -1 and as it %%-as • u• ranged in .July, 1977 in Figure 5.

The school bus belongs to the University of Arizona (E. 1 1 . Krider) and housed

the sample and hold devices and photographic otluipment during the 1977 exper-

iments. The electric field systems were built by the University of Arizona. The

truck housed the RF electronics and a parallel electric field system (flat plate

antennas on top of the truck). The truck belongs to the Georgia Institute of Tech-

nology which provided engineering and field support during the experiments

(C. S. Wilson and B. J. Wilson of the Engineering Eaheriment Station). The

large object toward the rinl,t in Figure 5 ho ised a camera and telescope for

photographing lawiches. A view of the electronics and tape recorder from inside

the truck is shown in Fi ►,rurc 6 as it existed during Jule, 1977. An essentially

ilar, but less compact arrangement was used during Jule, 1976.

I
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DATA: ENTIRE FLASH

When one views the 111' data for an entire flash, for example by displaying

the signa.s recorded with the tape recorder on a strip chart, the flash appears

as a sequence of impulses each of which correspond to radiation from individual

events within the flash. In this format, cloud-to-ground and cloud-to-cloud

flashes have characteristic and distinct patterns which appear independent of

frequency in the range of measurements made here. Such a dichotomy was re-

ported at lower frequencies as early as 1960 by Kitigawa and Brook (Kitigawa

and Brook, 1960) and has been suggested as the basis for a possible technique

for distinguishing flash type (Kitigawa and Brook, 1960; Krielshiemer and Lodge-

Osborn, 1972). A schematic of typical patterns is shown in Figi-re 7.

Typically, a cloud-to-ground flash begins with a sudden crashing of closely

spaced pulses which on close examination have characteristics of the stepped

leader. This sudden beginning is followed by several large pulses which are

generally, but not always, associated with return strokes. Smaller pulses fill

the gaps between the large pulses making an early active phase of high pulse

density. It is not uncommon in the data to see leader like pulses preceding some

of the later large pulses. This may correspond to multiple channel flashes, a

hypothesis which the 1977 experiment was designed to test. The flash ends in a

stage of gradual decrease both in pulse amplitude and density.

In contrast, a cloud-to-cloud flash begins slowly, builds to an intense stage

of closely spaced pulses, but generally not as intense as in the early stages of

6
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the cloud-to-ground flash, and then decays much as it began in a stage of grad-

ually decreasing pulse amplitude and density. The decaying stage of cloud-to-

cloud and cloud-to-ground flashes are quite similar.

Typical examples of data are shown in Figures 8 - 10. These examples

were obtained by displaying the vertically polarized channels of RF data from

the tape recorder on a strip chart. The effective bandwidth of the chart recorder

is a few kilohertz, and since the pulses recorded on tape are typically signifi-

cantly faster (300 kHz bandwidth), each pulse represea l the impulse response

of the chart recorder at the particular speed employed. Sample data are shown

at 3, 30, 139 and 295 MHz together with the slow electric field changes. The

amplitude of Pach trace has been adjusted arbitrarily to make the display clear.

Consequ pn tly, only relative amplitude information along each trace is correctly

displaye, and amplitude comparisons between traces can not be made. (For

example the Signal level at 3 11111 is roughly two orders of magnitude larger than

at 2951111.) The vertical scale on all traces is linear.

The electric field change in Figure 8 is typical of a distant cloud-to-ground

flash with 3 return strokes. The major steps on the slow "slow E" trace indicate

return strokes. Notice the characteristic sudden beginning of this flash, the

following period of intense activity and then the decay. Notice, also, the fre-

quency inder^_-ndeuce of this pattern: most events appear at all frequencies. Of

course, quantitative statements re ,rardino frequency dependence are complicated

by relative sensitivity and bandwidth. (I'or example, if the gain of one channel

1	 '^	 !	

IJ

i



yI	 1	 1	 1	 • i
1

l	 tl

were increased significantly relative to that of others, events would appear at

1

this frequency which did not appear at the others. Similarly, a channel with

'	 large baMdWidth compared to that of the others can distinguish several events
r

where the other channels could only resolve the sum). However, if one assumes

a cause :uld effect between events in the flash and radiation, then given equiva-

lent bandwidth and sensitivity as in the oxamples presented here, one would

expect frequency independence for a relatively broadband process.

Figure 9 is a typical example of a cloud-to-cloud flash. Notice the absence

of an intense beginning. Rather, the flash begins slowly and builds to a period

t	 of high pulse density with frequent large pulses, and then decays. The decaying

stage is similar to that of the cloud-to-ground flash in Figure 8, but the initial

stage is much different. Notice that the pattern is independent of frequency.

Notice, also, the distinctly different "slow E" waveform of the cloud-to-cloud

flash compared to that of the cloud-to-ground flash. The slow E waveform is

also typical of cloud-to-cloud flashes.

I

	

	

Figures 8 and 9 are typical of data observed in Florida; however, all data

do not fall into these two categories. An example of one such exception is shown

in Figure ill. The RF pattern in figure 10 from about . 4 seconds to the end of

the flash is that of a cloud-to-ground flash; however, the beginning at about . 1

seconds is much more like that of a cloud-to-cloud flash. It is unlikely that

such an example is the result of an overlap (i.e. simultaneously received signal

from a cloud-to-cloud and cloud-to-ground flash); The slow E waveform has a

i
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characteristic pattern which, rather than being the sum of these in Figures 8

and 9, begins \%ith a motion initially typically of a cloud flash generally followed

i'

	

	
by a distinct plateau region of little ch:ulge and then ending the rapid steps

typical of a cloud-tc-ground fl:lsh. (The slow E record in this example saturated

the system. The dashed portion of the curve represents a recreation based on

other examples and a few data points near the beginning of the first return

stroke. ) TVo additional emimples are shown in Figure i I in the case of initial

upward motion of the slow E trace. In these ex.iriples RIF radiation at only :30

and 1:39 11111z is shown to sate space, the radiation at the other frequencies

being substantially the same. The slow E pattern shown in Figures to and 11

is typical of the "bre:lkdo%vii" phase preceding those cloud-to-ground flashes

which occur from clouds having; a small positive charge at their base (Umnn,

1969; Clarence and Malan, 1957). The breakdown phase is assumed to be the

result of neutralization of this small positive charge prior to development of

the chmuiel to ground. The different initial direction (up or down) of the slo%k

field change (Figures 10 and 11) is Meat one ^ ould expect when comparing

observations of close and distant lightning (U111:111, 1969). EX.11llples of cloud-

to-ground flashes pre,:eded by a hreakdol\n please wer: not uncommon in the

data surveyed to date, although they were a smal percentage of total flashes.

11
In :my case, the occurrence of suCh patterns compl ic-Mes the choice of m Ago-

rithnl to distinguish between cloud - to -f;rounti and cloud-to-cloud I'lashes on the

basis of their RF signature.

9
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DATA: INDIVIDUAL EVENTS

In the preceding data the temporal pattern of events in the entire flash was

displayed, but no information on the nature of individual events was discernable

because events were represented by the impulse response of the system. Ex-

amples will now be given of the [IF signature and wideband waveforms (fast field

changes) of individual events within the flash. These data were obtained by means 	
!I

of the high time resolution circuit (the sample and hold devices and oscilloscope 	 d

display) shown in Figure 2.

Certain recognizable patterns occur in the waveforms observed on the fast

field change system (Krider, 1977; Krider and Radda, 1975; Tiller et al. , 1976;

Weidman and Krider, 1978). A schematic illustration of several of these pat-

terns is presented in Figure 12. Examples of a first and subsequent return

stroke and a cloud process are shown for moderately distwit (50km) lightning.

A first return stroke typically begins with a sudden rise followed by a ragged

irregular decay toward zero. Typically, the duration is on the order of 100 Ns

wid the radiation is predominantly of a single sign. A subsequent return stroke

also begins suddenly, but tends to be much smoother and somewhat shorter in

duration (Weidman and Krider, 1978). In contrast, a cloud process tends to be

bi-polar, irregular and shorter in duration than the return strokes. Typical

examples from data collected in Florida, are shown in Figure 13. Notice, in

particular, the leader like pulse preceding the first return stroke and the pre-

cursor roughly'00ps before the subsequent return stroke. The precursor

10
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(presumably a cloud process) before subsequent retuni strokes is characteristic

of the subsequent strokes observed at KSC .

Just as the fast electric field changes associated with these several events

are typical of the event, so too is the pattern of radiation at RF frequencies.

Figure 14 is an example of RF radiation associated with a sequence of cloud proc-

esses. The top trace represents the signal detected at 3Mllz (vertical polari-

zation) and the bottom trace is the fast field change associated with the event.

These data were recorded simultaneously using the sample and hold circuitry

described in Figure 2. The horizontal scale is 100 N s per major division and

the vertical scale is uncalibrated. (Calibration exists, but has not been included

here. ) The result is what one mi ght expect of a broadband process: For each

event on the lower trace, RF radiation at many frequencies appears on the upper

trace. This particular example is typical of the data. In general the cloud

events appear to be strong RF radiators.

The situation is more surprising in the case of first return strokes ( Figures

15 - 17). The top trace in Figure 15 represents IMF radiation at 1391111z (vertical

polarization) and the bottom trace the simultaneously recorded fast electric field

change. The horizontal scale is luu ps per major division. At first glance

the data is what one would expect: simultaneous events on both traces.

However, closer examination reveals that the RF radiation (top) doesn't reach

its nominal level until some short tinie after the well defined, abrupt begin-

P	 ning of the return stroke (bottom) has occurred. This is (suite clear in

11	 ^^
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Figure 16 which is the same data but now displayed with a horizontal (time) scale

of 20 µs per major division. Notice that the RF radiation is delayed some 20 ps

from the beginning of the event. A second example at 3 MHz is shown in Figure

17 (20 µs per major division). The delay appears to be independent of frequency

i and is quite characteristically 20 µs. A summary of observations is given in

Figure ltd which shows the magnitude of the delay (horizontal scale) plotted

i
against the relative number of times that particular delay was observed (vertical

4 scale). On the left the results are shown for each RF frequency and on the right

the composite of all observations is plotted. Notice that the delay is independent

of frequency and that the magnitude of the delay clusters about 20 µs.

Corroborating evidence for the delay exists. For example, Brook and

Kitagawa (1964) in measurements on Ughtning in New Mexico, reported delays

of 60 -100 µsec between RF radiation and return strokes, and 'Takagi (1969)

reported a bimodal delay with peaks at 10 and 50 µsec. This corroborating

evidence, plus careful temporal calibration of the system indicate that the delay

is a real physical phenomena. However, the manner in which it is related to

the physics of return strokes is as yet undetermined.

The pattern of RF radiation associatedwith subsequent strokes is also charac-

teristic, and much different than has just been described for fist return strokes.

Examples of RF radiation at frequencies of 3 and 139 MHz (vertically polarized)

and 295MHz (hurizontall 'N' polarized) from subsequent return strokes are shown

at the top in Figures 19 - 21, respectively. The time scale is 100 ps per major
r
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division. Notice that the significant source of RF radiation is not the return

stroke, but the precursor. This is to be compared with first return strokes

where the RF radiation was associated with the return stroke itself although not

coincident with the beginning of the return stroke. At 3 biliz (Figure 19) one sees

that both the cloud phase before and after the return stroke is a more significant

source of RF radiation U%an the return stroke itself. The patterns illustrated in

Figures 19 - 21 are typical of data measured during TRIP-76. The nature of the

precursor is not certain. An obvious first guess is that it corresponds to the

dart leader preceding the subsequent stroke; however, the precursor is closer

to the return stroke, by an order of magnitude, than is commonly assumed for

the dart leader (Figure 1; Uman, 1969).
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CONCLUSIONS

The patterns illustrated above are not selected examples, but are typical of

observations made during 1976. The patterns are regular and very distinct for

the several events monitored. Why the RF radiation, or for that matter the fast

field changes, should have the patterns shown is as yet .ui open issue, and the

subject of contemporary research. However, the very characteristic patterns

of the RF radiation offer the hope that once the mech^misms relating them to the

lightning flash are understood, the radiation patterns can be recognized and

used to monitor the responsible physical process of tha flash.
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