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SUMMARY

Tdentification of ideal conditions for balancing and evaluations of non-ideal
conditions are treated in this report. Work was performed in the areas of
balancing a shaft with flexural asymmetry, balancing a shaft with resonant
supports for the displacement sensors, and establishing guidelines and cri-

teria for location of balance planes and sensors.

A three—-mass test rotor with a flattened shaft was designed to evaluate the
feasibility and problems of balancing a rotor with flexural asymmetry. Two
problems encountered with the test shaft were: a gravity excited critical spee
occurring at half the first bending critical speed; and an unnegotiable
instability encountered above the lower of two bending critical speeds. These
were overcome by increasing bearing damping and redistributing rotor mass in
the first case and by redesigning the shaft to reduce asymmetry in the second

case.

Flexible probe holders were designed. These were attachsd to the bearing
housings and tuned so that, in the region of the first bending critical speed
of the shaft, a probe support resonance occurred. Balancing, based directly
on signals from the resonant probes, was successfully performed for this non-
ideal condition. Various trial weight locations and tracking filter bandwidths
were used during the final balancing experiments, and successful balancing was

accomplished in all cases.

An analysis was developed and used to quantify the effectiveness of a partic-
ular balance plane configuration in terms of a penalty function. This penalty
function is based on the amount of weight to be added or removed to correct

for a unit unbalance distribution for each mode of vibration considerzd. Also,
a function, which can be used to measure the sensitivity of a particular
arrangement of displacement sensors, is suggested. These functions provide
guidance to the designer who is faced with the problem of selecting locations
for planes and sensors for multiplane balancing. The use of these functions

to measure the quality of plane and probe locations is described and related

to the overall process of designing for multiplane balancing.



INTRODUCTION

Flexible rotor balancing by the multiplane-multispeed method is now proven
technology. Following the analytical formalization of the method, exacting and
successful laboratory tests of the method have been performed (1,2,3), and a
number of successful solutions to difficult machinery vibrations problems have
been achieved by field application of the method (13,14). Furthermore, a
number of engineering studies have shown, analytically, the potential value of
the method for routine balancing in a wide range of high-speed machinery appli-

cations.

The desirability of using "optimum" or 'near optimum' locations for balance
planes and sensors has been shown by these demonstrations and studies. ﬁowever,
in most machines, constraints exist which inhibit the use of the optimum loca-
tions, and a means to evaluate "mon-ideal' locations is clearly necessary. At
the same time, other 'mon-ideal" aspects of 'real" balancing requirements must

be recognized.

This report addresses both the identification of ideal conditions for balancing

and the evaluation of non-ideal conditions. Work in three areas is presented:

® Balancing of a shaft with flexural asymmetry.

e Balancing a shaft under non-ideal conditions which included resonant
probe holders, extremes in bandwidth filters, and a reduced number

of trial weight placements for determining influence coefficients.

® Guidelines and criteria for location of balance planes and sensors.

To evaluate the feasibility and problems of balancing a rotor with flexural asym-
metry, a rotor with a flattened shaft was designed to exhibit approximately 20
percent difference between the two bending critical speeds associated with the
stiff and soft axes. Two problems were encountered with the shaft: first, a
gravity excited natural frequency occurred at half the first bending critical
speed and was made negotiable by increasing damping at the bearings and redis-
tributing the rotor mass; and second, an unnegotiable instability was encountered
when running at speeds above the lower of the two bending critical speeds. Re-

design of the shaft to reduce the asymmetry eliminated the instability, and



successful balancing was then readily achieved. 1In support of the redesign, a
general-purpose stability analysis for asymmetric rotors was developed and

applied.

To evaluate the significance of static structure resonances on the case mounted
probes, flexible probe holders were designed and tuned so that, in the region of
the first shaft bending critical speed, a probe support resonance occurred,
excited by the motion transmitted to the bearing pedestals. Balancing based
directly on signals from the resonant probes was successful and uninhibited by
this non-ideal condition. In parallel with this investigation, sensitivity of
balancing effectiveness to tracking filter bandwidth and the availability of
data from either one or two trial weight placements in each balancing plane was

investigated.

To provide criteria for establishing ideal balance plane locations and for eval-
uating non-ideal locations, a formal analysis, based on damped modes of the rotor,
was performed. This resulted in a penalty function which represented the amount
of weight to be added or removed to correct a '"unit' modal balance. This

analysis was performed by Dr. J. W. Lund, Consultant to MTI.

The optimum plane location minimizes this function. The increase of this func-
tion above the minimum measures the 'mon-idealness™ of the different plane

configurations.

The main body of the report addresses the design and the experimental balancing
of the rotor with flexural asymmetry. It further presents guidelines and cri-
teria for selection of balance plane and probe locations, and demonstrates the
evaluation and application of the criteria. The formal analyses for optimum
balance plane locations and for stability of an asymmetric rotor are presented
in two appendices to this report. A third appendix documents the balancing

system used for the experimental studies.



DESIGN OF A SHAFT WITH FLEXURAL ASYMMETRY

Test Apparatus and Tnstrumentation

The basic mechanical apparatus and instrumentation system used for the recent
balancing tests had previously been used for an extensive evaluation of
flexible rotor balancing by the influence coefficient method (References 1,

2, and 3). The test machine shown in Figure 1 consisted of a three-mass, axis-
symmetric rotor [1]* (described in detail in the following section), two
tilting-pad journal bearings with supports [2], a double-acting, externally
pressurized air thrust bearing [3], and a variable speed motor [4], with a
spline coupling [5]. The mechanical components included two instrumentation
brackets [6] mounted on a base plate [7] which, in turn, were attached to a

ground-isolated structural steel base.

The journal bearings [8] were equipped with noncontacting seal rings on both
sides for operation in the flooded condition. The lubricating fluid for the
journal bearings was Dow Corning 200 with viscosities ranging from 0.65 cS to
65 ¢S as selected for different tests. Bearing fluid temperature rise in the
bearings was monitored and generally kept below 6 C by circulation through

water—-cooled heat exchangers.

Instrumentation of the rotor system consisted of five pairs of noncontacting
displacement sensors arranged in the vertical and horizontal planes along the
length of the rotor [9-13]. The displacement sensors were of the capacitance
type with a linear range of 0.25 mm. An optical proximity sensor was used for
phase angle measurements between a fixed angular location on the rotor (refer-
ence mark) and the maximum dynamic displacement as it occurred at each of the
measurement stations. All displacement sensor signals were displayed on
oscilloscopes for monitoring of system performance, but only a selected number
of signals were used for balancing. Those signals that were used for balancing
were passed through a tracking filter and subsequently fed into a phase meter

for phase angle measurement against the reference signal originating

*Numbers in brackets designate details in Figure 1.

4
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from the optical proximity sensor. The sequential switching of the displacement
signals through filter, phase meter, and readout instrumentation was accomplished
automatically by the MII CommandTM Multiplane-Multispeed Balancing System, oper-
ated with an integral minicomputer. Calculation of balancing correction weights
for selected sensors and speeds is fully automatic and operator-independent.

™
(A detailed description of the MTI Command System is given in Appendix C.)

Design of Asymmetric Shaft

The three-mass test rotor shown in Figure 1 was 104.4 cm long and had a nominal
bearing diameter of 63.5 mm. The center span between bearings was 60.4 cm.

The center mass, 152.4 mm in diameter and 14.4 cm long, was integral with the
shaft (see Figure 2a). Two end masses were overhung from the journal bearings
(Figure 2b). End masses of 8.6, 4.94,and 1.13 kg were available for changes in
rotor configuration as required during tests. Adjacent to the center mass,
flat surfaces 12.7 cm long were machined on opposite sides of the rotor.
Originally the flat sections had a diameter of 6.51 cm and were 4.48 cm across

the flats.

In the course of the test program, the shaft diameter at the flat sections was

progressively reduced, first to 5.72 cm and later to 4.80 cm.

The following table lists the combination of major diameters at the flat

sections of the shaft and rotor end masses which were used for test purposes.
Equivalent moments of inertia about the minimum and maximum stiffness axes of
the flat sections of the rotor have been computed and used in the calculation

of rotor-bearing system critical speeds.

A detailed design analysis was performed on the first combination listed in

Table 1.




Fig. 2a  Test Rotor with Integral Center Mass

Fig. 2b Three-Mass Test Rotor with Detachable End Masses
(8.6 kg each) and Flat Sections (12.7 cm long)
Adjacent to Both Sides of the Center Mass

Fig. 2 Test Rotors



Table 1

TEST COMBINATIONS OF MAJOR SHAFT DIAMETER AND END MASSES

Major Diameter End Masses
(cm) (kg)

6.51 Both 8.6

6.51 Both 4.94

One 4.94

6.51 One 1.13

One 4.94

2.72 One 1.13

One 4.94

4.80 One 1.13

Figure 3 shows the expected trends for undamped third critical speeds calculated
for the rotor-bearing system at a representative, but constant, bearing stiff-
ness of 2.4 x 107 N/m for various ratios of the dimension across the flats (F)
to the original rotor diameter (D). It should be noted that the third critical

speed mentioned here is actually the first at which significant bending occurs

‘and, therefore, the first at which flexural asymmetry effects can be expected

to influence rotor dynamic behavior. The selected design point indicates a
difference of approximately 2,000 rpm between the critical (bending) speeds
that the rotor will exhibit about the major and minor stiffness axes. The
difference in lateral natural frequencies of 15 to 20 percent was expected to

result in pronounced and distinctively separate rotor-bearing resonances.

Figures 4 and 5 present critical speed maps for the modified rotor about its
maximum and minimum stiffness axes, respectively. Since rotor weight is
affected insignificantly through the material removal at the flat sections,
the rotor bearing stiffness curves and the first and second (rigid body)

critical speeds remain nearly unchanged.

The bearing stiffness curve for a preload factor of m = 0.3 is applicable to
the test setup. The effect of increased bearing stiffness, as it might be
obtained through preload increase to m = 0.5, has been included in the investiga-

tion as a limiting case.



CALCULATED UNDAMPED
THIRD CRITICAL SPEED (RPM)

12,000 -

ABOUT AXIS A-A

11,000

10000} —-

9000
AXIS B-B T~
b
8000 B DESIGN POINT _
¢r

095 090 085 080 075 070 065 060
F/D

Fig. 3 Calculated Undamped Third Critical Speeds For
The Modified Test Rotor With Flat Sections



100,000 T I l

80,000 A-BEARING RADIAL STIFFNESS
(HORIZONTAL AND VERTICAL DIRECTIONS)

B- FIRST CRITICAL SPEED

ROTOR SPEED RPM

C—SECOND CRITICAL SPEED
40,000/~ D—THIRD CRITICAL SPEED .
20,000 - -
/AT>//
D < o
AV Q: —
' \‘/ QL////T
10,000 = —
8000 — | s
= !
> R
A A
4000 { \ l\_)
/ B
\ 8
2000 S
1000 |
2 4 8 \x107 2 4 8 1x10°
INDIVIDUAL BEARING RADIAL STIFFNESS,N/m
[ ! { | I | 1
Ix104 2 4 1 x 105 2 4

INDIVIDUAL BEARING RADIAL STIFFNESS,LB/IN

rig. 4 Critical Speed Map For Flexible-Rotor .Test Rig (Rotor With
Flat Sections, Critical Speeds Associated With The Rotor
Inertia Axis AA), *m is the preload ratio (1 - assembled
clearance/machined clearance)

10



!
100,000

ROTOR SPEED RPM

20,000

10,000
8000

4000

2000

1000

T

{ i

A-BEARING RADIAL STIFFNESS

(HORIZONTAL AND VERTICAL DIRECTIONS)
B—-FIRST CRITICAL SPEED
C—SECOND CRITICAL SPEED
| D-THIRD CRITICAL SPEED

t

5

<

>
«"Ofb ,%

WA

<§
/L

=

/

=
B

//KB

\

N

B

NERD
B

S

2 4

8 1x107

2 4

INDIVIDUAL BEARING RADIAL STIFFNESS,N/m

81108

1x104 2

Fig. 5

4

1x10% 2
INDIVIDUAL BEARING RADIAL STIFFNESS, LB/IN

Critical Speed Map For Flexible-Rotor Test Rig (Rotor With
Flat Sections, Critical Speeds Associated With The Rotor

4

Inertia Axis BB) *m is the preload ratio (l- assembled clearance/
machined clearance)

11




Figures 6 through 8 show the undamped rotor mode shapes at the [irst three
critical speeds calculated with a bearing preload factor m = 0.3. The rotor
mode shapes calculated about the major and minor inertia axes of the flat rotor
are very similar at all three critical speeds. A slightly increased amount of
bearing damping may, however, be expected at the critical speeds for the soft
rotor axis from the small shift in nodal points at the third critical speed.
Calculations of the damped rotor amplitudes at the third critical speed (Fig-
ure 9), occurring at 8434 rpm about the rotor inertia axis BB and at 10,763 rpm
for axis AA,indicate lower amplitudes for the resonance occurring at the lower
rotor speed. The amplitude ratio for the criticals about the two mutually
perpendicular axes does not appear excessively distorted (considering the
frequency difference between the two), indicating a moderate and thus acceptable

effect of bearing damping at the lower third critical speed.

Figures 10 through 12 present calculated undamped rotor mode shapes at the
first three critical speeds with a bearing preload factor m = 0.5. At the
higher bearing stiffnesses which result from the increased bearing preload,
the addition of flat sections on the rotor has a much stronger effect upon the
difference in mode shapes. For the lower of the third critical speeds, con-
siderable amplitudes now exist at the bearings, which might give rise to
considerable bearing damping. Since it always has been our goal to create
least favorable conditions for the balancing experiments, bearing setup

clearances commensurate with a preload factor of m = 0.3 were selected.

Initial Test Results

The test results reported in this section refer to the test rotor with the
initial major diameter of 6.51 cm and various end masses., A total
of three rotor combinations were tested with the major diameter unchanged.

These combinations are listed as the first three cases in Table 1.

The first rotordynamic phenomenon encountered at the initjal test phase was
caused by gravitational excitation and occurred when the rotor speed was one-
half of the first bending critical speed calculated for the low stiffness axis

of the rotor. The observed vibrations had a frequency of twice the rotor

12
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running speed. Typical observed rotor orbits are shown in Figure 13a for Lhree
measurement stations on the rotor. The orbits shown in Figure 13a were obtained
at a rotor speed very close to half the first bending critical speed with the
inner loop in each orbit picture nearly fully developed. When later it had
become possible to negotiate the maximum amplitude peak caused by gravitational

- excitation, phase shifts of about 180 degrees on orbit displays were observed

for all rotor stations. Considering the vibrational frequency of twice the shaft
rotational frequency, the observed phase shifts occurred during a 90 degree

interval of shaft rotation.

Rotor amplitudes caused by gravitational excitation were found to be quite inde-
pendént of rotor unbalance, since an addition of significant amounts of unbalance

did not. increase noticeably the observed amplitudes.

For the original rotor configuration (Case 1 in Table 1), even significant in-
creases in bearing fluid viscosity (from 0.65 ¢S to about 65 c¢S) did not produce
enough bearing damping to reduce significantly the rotor amplitudes caused by

gravitational excitation.

Reduction of rotor amplitudes caused by gravitational excitation to a level at
which their peaks could safely be negotiated without endangerment of bearings
and displacement sensors was achieved through a change in rotor configuration.
When the rotor end masses (weighing 8.6 kg each) were replaced by lighter end
masses of 4.94 kg each, the rotor could be operated through the speed range of
the gravitation excitation to within 10 percent of the first bending critical
speed. The rotor mass redistribution increased amplitudes at the bearings
sufficiently to produce just enough damping to permit negotiation of the gravi-
tational excitation region. The selected bearing fluid viscosity was 5 cS
because increased bearing friction torque at 65 c¢8 caused an undue load on the

drive motor at speeds above 5000 rpm.

The second rotordynamic phenomenon associated with the flat shaft configuration
was a violent, unstable vibration at the first bending critical speed. It made
its first appearance, however, masked by amplitude growth due to unbalance exci-

tation at the approach to the first bending critical speed (see Fig. 14, Curve A).
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Once-per-Revolution Reference Signal (above)

Fig. 13 Gravitational Excitation of Rotor with 6.50 cm
Diameter at Flat Section
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Approaching the first critical speed, the amplitude contribution from unbalance
could be drastically reduced through multiplane balancing, so that the rotor would
operate with only a minimal amplitude increase right up to a speed which appeared
to be the first bending critical speed. At that point, however, the asymmetric
rotor exhibited a step jump in amplitudes to what was.considered a dangerous

level. An amplitude plot of this occurrence is shown in Figure 14, Curve B.

There was no indication during any of these and the following tests that the
rotor could be accelerated through this region of high amplitudes, despite

some inadvertent forays into rather excessive rotor amplitudes. Consequently,
it was deduced that the observed sudden amplitude increases wetre indeed the
onset of instabilities predicted to occur between the two bending critical
speeds associated with the different stiffnesses of a rotor with flat sections.
The following effort was, therefore, directed, first, at further attempts to
increase rotor-bearing system damping through rotor mass redistribution; and,
failing that, an analytical and experimental investigation of the limits of
rotor instability onset as a function of dissimilarity between rotor sections

in the two mutually perpendicular axes.

Redesign of Test Rotor

The redesign of the test rotor for increased stability at and above the first
bending critical speed proceeded in two phases. 1In the first phase, rotor

mass distribution was further changed through substitution of one very light
(1.13 kg) aluminum end mass for one of the steel end masses, and bearing fluid
viscosity was again increased about tenfold. WNeither action had the desired
results of reducing the instability amplitude to a negotiable level. Conse-
quently, rotor stabilization was now attempted through a reduction in the

ratio of stiffnesses in the two rotor axes (fluid viscosity for all following
tests was 5 ¢S). For machining simplicity, the major diameter was progressively

reduced while the dimension across the flat sections remained unchanged. The
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reductions in shaft diameter also produced an increased flexibility of the rotor
and a slight drop in the first bending critical speed with each reduction in

shaft diameter.

To obtain guidance in finding what reduction in the major diameter, from 6.51 cm,
would be necessary to stabilize the rotor, and what the influence of the inter-
mediate values of diameter would be upon the state of stability of the rotor, an
analysis was carried out. The analysis, entitled '"Stability of a Shaft With
Flexural Asymmetry" is given in Appendix B. The results of the analysis show
that, when running speed was set close to or between the two first flexural
critical speeds associated with the two principal axes, a pair of roots would

be obtained from the equations of motion for free vibration of the rotor, both
of which would be synchronous. For one root the real part would be negative,

and for the other the real part would be positive. The latter is an unstable

root since it will grow rather than decay with time.

The nature of the results is illustrated graphically in Figure 15, where the
positive real part referred to above is plotted against rotor speed for different
values of major diameters (with constant distance maintained across the flats).
For values of major diameter between 5 and 6.35 cm, an unstable speed range is
indicated where the width of the speed range and the peak value of the real

part of the root (S) increase with increasing major diameter. The indication

is that a sufficient decrease in major diameter would shrink the height and

width of the unstable speed range to zero. Interestingly, this dimensional
change also shifts the unstable speed range to lower speed values since the

overall flexibility of the shaft is increased.

In Figure 16, the relationship between the maximum value of the real part of S
and major diameter D is shown for two different mass distributions. 1In one case
(the "original" rotor which could operate above the region of gravitational
excitation), the masses at either end are 4.94 kg. In the second case, one of
the masses has been reduced to 1.13 kg — a change which changes the mode shape
of the flexural critical speed slightly, increasing amplitude at the bearings
and increasing the potential for damping. Clearly, the lighter end mass allows

a stable rotor to be achieved with a larger major diameter, 4.80 cm as opposed
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to 4.62 cm. However, even 4.80 cm represents only a seven percent difference
between major diameter and the distance across the flats; surprisingly, such an

apparently small asymmetry can destabilize the rotor.

Table 2 presents a summary of cases examined for stability of rotor operation
above the first bending critical speed. Only those rotor configurations, which
could be safely operated through the gravity-excited critical speed, were con-

sidered.

Verification of the stability analysis was obtained concurrently with balancing
experiments, when each of the rotor configurations was balanced so that low
rotor amplitudes were obtained either right up to the stability limit, or for
operation through the first bending critical speed. Balancing results are

described in the next section.
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ROTOR CONFIGURATIONS AND CONDITIONS

Table 2

Rotor Diameter Major Condition
Configuration Across Diameter (Predicted and Threshold of Stability
Number Flats (cm) (cm) End Masses (kg) Observed) Predicted Observed
1 4.48 6.50 Both 4.94 Unstable 9200 9000
2 4.48 6.50 One 4.94 Unstable 9500 9300
One 1.13
3 4.48 5.72 One 4.9%4 Unstable 8800 8750
One 1.13
4 4.48 4,80 One 4.94 Stable . .
One 1.13 (lightly damped)




BALANCING RESULTS

Balancing With Flexural Asymmetry

Without in-place, multiplane balancing it might not be possible to detect the
onset of rotor instability when approaching the first bending critical speed.
This is demonstrated in Figure 17 for the rotor with major diameter of 5.72 cm
and unequal end masses where the well-balanced rotor (balanced in two planes on
a commercial balancing machine) was run up close to its first bending critical
speed (Curve A). When most of the remaining rotor unbalance had been removed by
in-place balancing, utilizing the Multiplane-Multispeed Balancing Method, with
data taken at approximately 8600 rpm, the rotor system critical speed could be
approached much more closely with very low rotor amplitudes (Figure 17, Curve B).
However, at 8750 rpm there was a pronounced and sudden jump in amplitude, with a
slope discontinuity not characteristic of resonant response. Further attempts
to reduce amplitudes by balancing were unsuccessful even though the frequency of
vibration was synchronous with rotor speed. Similar characteristics were ob-

served for all of the unstable configurations presented in Table 2.

Successful balancing of rotors with flat sections was found to be dependent
upon trial weight placement in the '"soft" axis of the .rotor. This conclusion
was obtained from experimental tests where a rotor with significantly different
stiffnesses in the two axes was balanced for the first critical speed, which is
associated with the '"soft' rotor axis. Where trial weights would have to be
placed in such rotors for balancing through both critical speeds (associated
with the soft and stiff rotor axes) remains, at this time, academic, due to

the encountered instability. When the rotor was made stable through reduction
in the stiffness difference between the two axes, separate peaks were no longer

observable, and the trial weight location became unimportant.

Unbalance was added in a 'corkscrew" arrangement, with the first weight placed
at the zero degree location at the back of the disk opposite the rotor

drive end and the successive weights placed in the following disk at 90 degree
intervals opposite to the direction of rotation of the rotor. For one of the
unstable rotor configurations (rotor with 6.51 c¢m major diameter of the flat

section), a rather severe case was designed to test the Multiplane-Multispeed
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Balancing Method. The initial response and balancing results are partially
documented in Figure 18. Shown are rotor amplitudes at the shaft midpoint sec-
tion of the intentionally unbalanced test rotor. Even with a relatively large
amount of unbalarice added to the rotor, the first balancing run was still very
effective (Curve B). This was surprising because, for at least one rotor plane,
the '"corkscrew" unbalance distribution placed significant unbalances in the
stiff axis of the rotor; whereas influence coefficients were determined only
for trial weights placed in the soft rotor axis; resultant corrections were
expected to be insufficient. (The increased stiffness of the rotor in the
"stiff'" direction tends, of course, to reduce the rotor deflection effect due

to unbalance located there, thus effectively compensating for the rotor stiffness

variation for angular locations between the soft and stiff axes.)

Only when the diameters at the flat sections were further reduced to 4.80 cm,
which is the largest predicted diameter at which the rotor would remain stable
at the first critical speed with flat sections of 4.48 cm, could the rotor

readily be balanced to operate at and above the first critical speed (Figure 19).

Curve A of Figure 19 is for the rotor in its initial state of unbalance, and
Curves B and C show the results of successive balancing operations. Nowhere on
the curves is there the pronounced and sudden increase in amplitudes of Figure

16, Curve B.

The rapid, but finite, amplitude buildup at the critical speed indicates a very
lightly damped system, thus confirming the prediction from the stability analysis
presented in Table 2. As a measure of the system damping, the log decrement can

be determined, approximately, from the shape of the response curve as follows:

(1)

+ -
where £ , f are the frequencies of the points at which the amplitude equals

1//2 times the peak amplitude and fn is the resonant frequency (Hz).

The real part of the computed system eigenvalue (\) can be calculated as (-fn)

times the log decrement.
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From Figure 19, Curve C, these calculations yield a log decrement of 0.013
(equivalent to a damping ratio of 0.002) and the real part of the complex eigen-
value, A = -1.62. When this value for A is compared to the predicted worst
value of +130 on Figure 16, a quantitative indication of the marginal nature of
the stability of this configuration is obtained. The fact that the Multiplane
Balancing Method can balance such a lightly damped rotor is confirmation of the

effectiveness of the method under non-ideal conditiomns.

Balancing With Resonant Probe Holders

Part of the balancing experiments included the use of flexibly mounted probe
holders as shown in Figure 20. The cantilevered construction, with the probe
holders hard mounted to the bearing housings, was sensitive to changes in probe
mass which allowed for adjustments in probe holder resonant frequency. The
bearing housing vibration was used as the input excitation for the flexible
probe holder. Masses were clamped to the cantilever probe supports until their
individual resonant frequencies were close to the critical speed of the rotor.
This condition was created to approximate the effects of structural resonances

on the capability of the balancing system.

Three displacement sensors were mounted to the flexible probe holders. These
three probes were directed at rotor surfaces on each of the three rotor disks.
An accelerometer was placed as close to the displacement sensor as possible so
that the vibration of the holder could be isolated from that of the shaft. Fig-
ure 21 shows the typical resonance characteristic of the probe holders during

the initial test runs with an unbalanced rotor.

A large distributed unbalance in the rotor was selected to create high vibration
which would excite the flexible probe holders. When the rotor was initially
accelerated to 6000 rpm, the excursions of the displacement sensor, relative to
the rotor center disk,exceeded the linear range of the instrumentation above
5800 rpm. The response of the rotor at three sensor locations relative to the
flexibly mounted displacement probes is shown on Curve A of Figures 22 through
24, Since all three of these sensors were individually mounted, the reso-
nances ol the flexible probe holders are reflected in the amplitude curve. The

resonance frequencies of the cantilevered probe holders are clearly observed
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during the initial acceleration and can still be identified from all succes-

sive amplitude curves obtained after balancing.

To stay within the linear range of the displacement instrumentation, a balancing
speed of 5150 rpm, which is less than 70 percent of the rotor critical speed,

was selected. It was anticipated that the rotor might be too far removed from
its natural frequency to obtain meaningful influence coefficients for the first
mode shape. A combination of data from the three flexibly mounted probes and

one hard mounted probe were used for this experiment. These probes were all
vertical. As a reference, vibration data was also taken on a second set of four
probes which were hard mounted displacement sensors in the horizontal plane.

Each set of probe data was used independently to provide an analytical comparison

of hard mounted versus flexibly mounted probes.

With application of the first set of correction weights to the rotor, bearing
housing vibrations were reduced, thereby reducing the excursion of the flexible
probe holders. Curves B of Figures 22 through 24 show the relative rotor

response through the flexible probe holder natural frequencies up to the first
rotor critical speed. Curve B still represents composite values of flexure
vibrations and rotor amplitudes, but it appears that Curve B predominantly

reflects rotor vibrations except for the narrow speed regimes around the individual
probe holder resonances. Since amplitudes above 7400 rpm were judged too large for
either safe rotor operation or linear instrumentation range, the balancing process
was repeated. The second set of correction weights, based on the 7400 rpm balauc-
ing speed, was installed, and the rotor was able to accelerate through the critical

speed as shown in the response Curves C of Figures 22 through 24.

A visual comparison of the responses from flexibly mounted probes and hard
mounted probes in the same plane showed that probe holder vibration contributes
significantly to the observed overall vibration signal. As measured by accel-
erometers mounted next to the probe, the vibration signal was not limited to
just the integral rotor frequency, but contained higher order frequencies as
well. Figure 25 shows a comparison of the hard mounted horizontal probe and
the resonant probe for the midplane disk. Note that the frequency content
varies with speed. At 7150 rpm, (Figure 25a), the nonsynchronous components

caused by the resonant probe holder were a major contributor to the overall
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signal; whereas, the speed trace at 7400 rpm shows very little participation of
higher frequencies. In Figure 26, several successive orbits were superimposed
to show the effect of this high frequency response on the vibration as measured
from the free end disk's vertical resonant probe and hard mounted horizontal

probe.

The instrumentation used for balancing successfully separates the nonsynchro-
nous vibration from the synchronous vibration component which is needed for the
balancing process. This had been well known in the past. The new and signifi-
cant finding from these experiments is the ability of the multiplane-multispeed
balancing method to reduce unbalance in the rotor even when large, extraneously

generated, synchronous vibrations have been added to the signals used for balancing.

However, it must be remembered that these extraneous signals, which originate
from the probe holders, are caused by unbalance-induced shaft vibration and,

thus, are a direct function of it.

Trial Weight Placement

After the resonant probe tests had been completed, the rigid vertical probes were
reinstalled and all the unbalance and correction weights were removed from the
rotor in preparation for the trial weight placement tests. The "as is" rotor
was then accelerated to a maximum speed of 7500 rpm before exceeding the vibra-
tion limits and, therefore, was not able to traverse the critical speed.
Influence coefficient data was taken at 7400 rpm using trial weights placed at

0O and 180 degree locations on the three balancing planes: the free end, center
plane, and motor end disks. The calculated correction weights were applied to
the rotor which then successfully passed through the critical spéed. All
weights were removed to return to the '"as is'" condition again. The identical
trial weights were now placed at the zero degree location only and influence
coefficient data was again taken at 7400 rpm. When the calculated correction
weights from this set of influence coefficients were positioned on the balancing
planes, the rotor was again able to go through the critical speed; however, this
time, the vibration levels were somewhat higher. Figure 27 shows the typical
vertical response of the rotor for the "as is'" condition (Curve A); the 0 and
180 degree trial weight placements (Curve B); and the zero degree only trial

weights (Curve C).
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One Major Division Equals
Approximately 0.025 mm

Fig. 26 Vibration Orbit Signal as Recorded From
a Resonant Vertical Probe and Hard
Mounted Horizontal Probe on the Free
End Disk at 7130 RPM
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Since the influence coefficients from the zero degree trial weight placements
seemed to be less accurate in balancing the rotor, the question arises as to
whether they could be used for a trim balancing operation. Vibration data was
recorded at 7400 rpm and new additional correction trim weights were determined
based on the previously determined single trial weight placement influence coef-
ficients. The typical results from this test are shown in Figure 28. The
resultant trim balanced vibration amplitude was extremely low, showing the capa-
bility for trim balancing even if the first balance attempt.was not as accurate

as could be obtained with O and 180 degree trial weight placements.

The rotor unbalance distribution was changed slightly and the test was repeated
to verify the initial findings. For both the single and dual trial weight place-
ment balancing attempts, the rotor was able to traverse the critical speed, but,
again, results from the single trial weight placement showed higher wvibration.
The rotor-bearing system is probably nonlinear because of the effects of journal
bearing damping as a function of rotor vibration displacement. This nonlinear
effect is handled better by two trial weight placements, since the influence
coefficients from both increases and decreases in vibration (normal result from

0 and 180 degree trial weights) are averaged for use in determining correction

weights.

This means that, in general, averaged influence coefficients will yield more
consistently accurate correction weights because they average any potential
error created by nonlinear effects. However, this does not mean that the single
trial weight placement is not satisfactory or even that, at times, it will not
give a better result. TIf the single trial weight placement happens to be 180
degrees opposite the unbalance producing the vibration level, then these influ-
ence coefficients will, in fact, probably be more accurate than for the two trial
weight method. 1In the final tests, the rotor response characteristics were
modified again and results with the single trial weight placement were actually
better than with the two weights. Figure 29 shows the typical rotor response

for this test.

Filter Bandwidth Variations

The final balancing experiments were conducted with various tracking filter

bandwidths. 1In separate tests, 10 Hz, 25 Hz,and 50 Hz bandwidth filters were
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used to eliminate vibration data whose frequency was somewhat different than
the discrete rotational speed. When the bandwidth becomes large, more non-
synchronous vibration remains within the filtered signal and the total signal
amplitude increases. Two trial weight placements at 0 and 180 degree on each
of the three balancing planes were used for each filter width. The resultant
correction weights were applied to the rotor, and the typical response (center
disk) is shown for each filter width in Figure 30. The raw data would indicate
that the 50 Hz filter, which allows the most amount of nomsynchronous vibra-
tion to be used as data, gave the best results. It should be mnoted though that,
since the rotor is highly undamped, small changes in acceleration rate could
have produced these variations in.amplitude. The important fact is that we

could successfully traverse the critical speed for all three bandwidth filters.
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GUIDELINES AND CRITERIA FOR LOCATION OF PLANES AND SENSORS

Engineering for the use of multiplane balancing requires that locations be
selected for balance planes and sensors (probes). Arbitrary selection of bal-
ancing plane or probe locations cannot be expected to yield optimum balancing
efficiency. As a formalized aid in selecting optimum balancing planes and
sensitive probe locations, an analysis has been developed and is shown in
Appendix A, In this analysis, the effectiveness of a particular balance plane
configuration is quantified iﬁ terms of a penalty which may be calculated from
a particular rotor as a function of the plane locations. In addition, a func-
tion which can be used to measure the sensitivity of a particular arrangement

of displacement sensors is suggested in Appendix A.

The penalty function (which should be minimized) is based on the amount of weight
which would have to be added or removed to balance out a unit unbalance distribu-
tion for each mode of vibration which is of concern. Two examples of the use of

this penalty function for a uniform rotor are provided in a later section of

this report.

The derivation of the probe location sensitivity function is more intuitive than
the function developed for balance plane locations; but, recognizing this short-

coming, it can be effectively applied.

Both functions provide guidance to the designer who is faced with the problem of
selecting locations for planes and sensors for multiplane balancing. They form-
alize a process which must otherwise be based on intuition. In this section of
the report, the use of these functions to measure the 'quality" of plane and
probe locations is described and related to the overall process of designing

for multiplane balancing.

Figure 31 is a flow chart illustrating an ideal sequence to follow in the selec-

tion of locations for balance planes and probes.
The starting point for this sequence is the set of drawings of the rotor, its

bearings, and the bearing support structure. Based on these drawings, several

actions are taken: a dynamic model of the rotor is prepared which can be
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analyzed by available tools for critical speed, damped natural frequency, and
unbalance response prediction; the bearings and their support structure are
analyzed to determine the stiffness and damping associated with the rotor sus-
pension and the variation of stiffness and damping with speed; the manufacturing
and assembly tolerances are anglyzed to determine the amount by which the rotor
center of gravity may be offset from the center of rotation at various points
along the rotor; the associated unbalance magnitude is calculated; and the con-
straints which may impose themselves upon selection of balance plane and probe

locations are identified.

Once a good theoretical model of the rotor is established, it is first used to
make undamped critical speed predictions. Critical speeds should be calculated
over a wide range of bearing stiffnesses, including the likely range of stiff-
ness values. As a minimum, the speed range investigated for critical speeds
should go beyond the likely operating speed ranges. The critical speed infor-
mation is conveniently presented as a map on which variation of critical speed
with stiffness is plotted. The variation of bearing stiffnesses with speed is
superimposed on this map and the points of intersection of bearing stiffness
lines with critical speed lines indicate the likely resonant speeds. One com-
plication is that, with unequal stiffnesses in the vertical and horizontal
directions, there are two distinct intersections between the bearing stiffness
lines and each critical speed line. 1In this way, two first critical speeds,
two second critical speeds, etc., can be identified.

The mode shapes of the rotor for the support stiffness values at the likely
resonant speeds should then be plotted. These mode shapes provide the most
important single piece of information in guiding the selection of balancing
planes and probes. If one balancing plane is provided for each mode that the
rotor must pass through, and if the plane associated with each mode is located
at, or very close to, the point of maximum amplitude for the mode, then a
reasonable set of plane locations is assured. For rotor bearing systems with
unequal bearing support stiffnesses, it may be worthwhile at this stage in the
design to use the mode shape corresponding to the average stiffness; this shape

is unlikely to differ appreciably from the shape at either precise stiffness

value.
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In this way, tentative or preliminary locations for balance planes can be
selected and the preliminary probe location should correspond closely to the
selected plane locations. These selections are termed preliminary or tentative,
since they must now be adjusted to account for practical consideration of such
factors as where probes can be mounted; where there is an uninterrupted probe
target of sufficient width; where trial weights can be attached; and where metal
can be removed or added to implement the required balancing corrections. It is
likely that these constraints will cause some adjustment in the selected loca-

tions; the designers should be interested in the influence of these adjustments

on the effectiveness of the balancing process.

Evaluation of Plane-Probe Locations Using Modal Analysis

The first evaluation employs modal analysis methods to determine a penalty func-
tion (which should be minimized) to be associated with the set of balance planes;
Appendix A describes the analysis. In summary, for each major mode of concern

a normalized sum of the weights, Sn’ to correct a unit modal unbalance is

calculated:
%
£ () W
W T = LT @)
N n
n P
max
£x (Z )
where is the maximum normalized amplitude at any plane location
/' N of the nth mode's forward whirl vector.
" | max
W
—P0 j5 the contribution in the pth balance plane to the
Un correction weight distribution required to balance out

a unit modal component of unbalance for the nth mode.
Since, to achieve the same state of balance, a poor selection of balance planes

will require more weight to be added than a good selection, the objective is to

minimize Sn for each mode of concern.
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The analysis of Appendix A requires that the number of planes, m, be equal to

the number of modes, n. Usually it is convenient to meet this constraint. The
conditions under which it may be possible to balance effectively without meeting
this constraint and the way the analyses can be used in this case will shortly
be discussed. First, however, it is worth discussing the additional steps neces-

sary to implement this analysis.

Essential to the analysis is the determination of the damped modes of vibration
of the rotor-bearing system. The required inputs to the calculation are the
dynamic rotor model and the stiffness and damping characteristics of the bear-
ings and bearing supports. Given these inputs, the complex eigenvalues of the
system are determined, up to and beyond frequencies in the range of interest.

A method of determining complex eigenvalues is described in (4]. The complex
eigenvalue consists of two quantities, Xn and W (its real and imaginary parts).
W is the damped natural frequency, and Xn is the growth exponent, from which

the log decrement 6n (= =217 Xn/wn) can be calculated. 6n measures the effective
system damping for the nth mode and, with én of order 1.5 or above, a negligible

contribution to the response is to be expected from that mode.

Associated with each complex eigenvalue is an eigenvector which defines the
mode of vibration in terms of four quantities at each station of the rotor.
These quantities are the horizontal and vertical in-phase components of dis-
placement and the horizontal and vertical out-of-phase components of displace-
ment. For the present analysis, each eigenvector is broken into a forward
circular whirl vector and a backward circular whirl vector, such that the
elliptical orbit at any station is the sum of the forward and backward
circular whirl components. In addition, the adjoint vector (En) to the
forward whirl vector (En) is determined. Given these quantities, the calcula-

tion of Sn can proceed, with the following qualifications.

If the bearings are not isotropic, there will be two damped natural frequencies
associated with each basic vibration mode of the rotor (slight differences will
exist between this pair of modes, but the two should not be regarded as
distinct modes for balancing purposes — the distribution of planes which is
good for one mode of the pair will be good for the other). A choice must be

made to select only one of each pair and the best choice is the mode with the
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smaller log decrement, since this is likely to contribute more strongly to the

rotor response.

Desirably, there should be a balance plane for each distinct mode through and
up to which the rotor is required to run smoothly. This situation will norm-
ally be the result of the tentative plane selections already made on the basis

of the undamped mode slopes. Some possible exceptions are considered as follows:

(a) Number of planes less than the order of the highest mode to be balanced
through.

In general, a rotor can be balanced through the highest order critical speed
with fewer planes than the highest order only if some of the intermediate
modes are well-damped and, thereby, show acceptable resonant amplitudes with-
out balancing. The degree of damping of each mode can be judged from its log
decrement, Gn, and, as a rule of thumb, the plane associated with a partic-

ular mode may be dropped only if the log decrement for that mode exceeds 1.5.

To implement the analysis in this case the heavily damped modes whose influ-
ence is being neglected must be dropped entirely from the analysis so that

the number of modes actually considered still matches the number of planes.

(b) Number of planes greater than the order of the highest mode whose
influence is to be balanced.

In this case, there are planes which are redundant. However, the mechanics
of the analysis can be implemented, provided that the number and order of
modes considered in the analysis are increased to match the number of planes.
In this case, the penalty functions associated with the higher modes, which
are introduced to make the analysis work, need not influence the plane

selection.

(¢) Number of planes equals the number of modes whose influence is to be
balanced out but some of the modes are much less important (heavily
damped) than others.

If this situation exists, the penalty functions associated with the

well-damped modes should be given reduced weighting in selection of
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the plane locations. As shown in the Appendix, a magnification factor

can be identified as a function of the log decrement.

—11+iz (3)
Qn_d 2T

This factor may be conveniently used as the weighting factor. One

way of using this function is to generate an average weighted sum, s,
of the normalized correction weights for a plane configuration:
L Q S
3 = I%T%%.Jl (&)
n n

The quantity, S, represents a single theoretical measure of the balance
plane location quality. 'S has a minimum possible value of 1 although, for
a particular probe and number of modes of concern, the minimum value may
be greater than 1. The combination of balance plane locations which mini-
mizes S may- be considered as the optimum. The use of 'S offers convenience
as a single measure of plane location quality but must be used with great
care and never without considering the individual functions Sn for each

individual mode of importance.

Experience must be established before firm rules for acceptable values of
Sn and S are established. In Reference 3, extensive demonstrations of
successful balancing of a flexible rotor through four critical speeds were
presented. Application of these balance plane location criteria for this
rotor showed that Sl’ SZ’ S3, and S4 were 17, 11, 2,and 26 percent higher
than the minimum, respectively. The success of this configuration suggests

that such deviations are acceptable.

An evaluation of the probe locations is possible in terms of Pn (a quantity

to be maximized) where:
£_(2)
v " n

P = 2
n m

)
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n is the mode number, and
5, @) th
is the normalized amplitude, at the m" probe, of the forward
Nn

circular whirl modal vector for the nth mode. In words, Pn measures
the average sensitivity of the measurement system to amplitudes of the
nth mode. Note that its use does not impose a requirement that the

number of probes match the number of modes considered.

Evaluation of Plane-Probe Locations Using Balancing Simulation

A complementary evaluation of the complete plane-probe combination can be
performed by means of a simulated balancing sequence. As a starting point,
one or more unbalance distributions should be selected on the basis of the
likely unbalance magnitudes previously determined from manufacturing and
assembly tolerances. Using values of bearing stiffness and damping which
vary appropriately with speed, the response of the rotor-bearing system to the
selected unbalance at a range of speeds of interest is calculated using a
flexible rotor unbalance response analysis. Unless a very low level of un-
balance has been selected, the rotor will be unable to pass through the first
significant critical speed without exceeding limits imposed by one or more of
bearings, seals, dampers, wheel tip clearances, probe clearances. and, at high

order critical speeds, shaft stresses.

At a speed where the first criterion starts to approach its limit (say within
25 percent), the influence on amplitude and phase angle, at each probe, of a
unit unbalance at each balance plane, should be calculated (using the rotor
unbalance response analysis). This set of calculations provides influence
coefficients for that speed. Using the least squares balancing method, the
required correction weights in the balance planes to minimize amplitudes at the
probes are calculated. These correction weights are applied and the response
to the resultant unbalance distribution as a function of speed is recalculated.
The rotor is now likely to traverse the first critical speed without exceeding
any of the limits. If not, the procedure must be repeated at a speed closer

to the first critical speed while still satisfying these limits. When the
rotor can traverse the first critical speed, the procedure is again repeated

at the next critical speed of significance. In this way, if an adequate array
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-of balance planes has been provided, the rotor can be balanced through all

critical speeds in the operating range.

This analytical sequence provides a check on the selection of balance planes.
However, without modification,it does not truly provide a check on the selec-
tion of probe locations. The influence coefficients and response amplitudes

can be calculated to high accuracy whereas the required measurements are
limited, in practice, by the probe sensitivity. For a given electronic probe
resolution, effective probe sensitivity can be influenced by probe location
relative to the node and antinode locations on the rotor. Near antinodes, where
amplitude changes are larger, better probe sensitivity can be obtained. To
provide a check on probe locations, it would be necessary to simulate a given
probe sensitivity by limiting the precision within which the response amplitudes
are calculated so that errors in the influence coefficients and level of unbal-
ance response amplitude are induced. If the calculation precision is made to
correspond to the probe resolution, the error will be consistent in magnitude

with the errors introduced in taking actual measurements in a balancing sequence.
Since this balancing simulation procedure is more unwieldy than the optimization
using the criteria Sn’ E; and Pn’ it should be used as a check rather than as
part of the optimization loop.

Table 3 summarizes the information provided by the evaluations described above.

Table 3

SUMMARY OF INFORMATION OBTAINED DURING SELECTION OF
BALANCE PLANES AND PROBES

Analysis Used ) . ___ Information Provided

Undamped Critical Speeds ® Reasonable Selection of Planes
and Probes based on Mode Shapes

Damped Natural Frequencies e Identification of Unimportant Modes
® Quantified Optimization Criteria

for Probe and Plane Selection

Unbalance Response and Least ® Checks on Plane Selection
Squares Balancing
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As shown, the undamped critical mode shapes and the practical constrainls im-

posed by the rotor configuration can be used to make a reasonable selection ol
balance plane and probe locations, if it is ensured that the maximum amplitude for
each mode is closely covered by a probe; that a distinct balance plane exists

for each mode; and that the location of the plane associated with each mode is

near the location of maximum amplitude for that mode. The criteria based on damped
modes provide two valuable extensions to the undamped analysis: first, the unimpor-
tant modes are identified by the existence of a large log decrement (above 1.5);

and second, these numerical criteria allow a value to be placed on any set of

probe or plane locations and show the change in this value with varying locations.

Balancing simulation using unbalance response predictions and a least squares
balancing procedure is a valuable check which adds credibility to the selection

of balance plane and probe locations.

In the following report section, numerical examples are presented of the evalua-
tion procedures which use damped modes. Examples of the balancing simulation
procedure are not presented, but a full demonstration of the procedure may be

found in Reference 12,
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EVALUATION OF CRITERIA FOR BALANCE PLANE AND SENSOR LOCATIONS

In this section, use of the criteria developed in Appendix A and discussed in
the previous section is demonstrated. In the first example, the criteria are
used to predict optimum balance plane and probe locations for a uniform flexible
shaft on rigid supports; and in the second, a uniform flexible shaft on flexible

damped bearings is considered.

Uniform Shaft on Rigid Supports

When the rotor system is free of damping and gyroscopic moments can be ignored,
the analysis of Appendix A can be simplified considerably. The eigenvalues be-
come purely imaginary (pure frequencies) an& the mode shapes become planar

(real). Also, the adjoint functions are identical to the modal functions, and

Equation (A~47) reduces to:

2

Q 3
LU (6)

£ = I 55— —
R R
n n

Furthermore, when the supports are isotropic, the whirl orbits are circular

such that £ becomes real.
To illustrate, a uniform shaft, supported in rigid bearings at the ends, is

considered. This is equivalent to the classical simply supported beam for

which the resonant frequencies and mode shapes are given by (Reference 1).

w o= n o = 7)

and,

sin (nw%) (8)

Z |ww
3
It
P

where M = p? is the total mass of the shaft, and 2 is the length.
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Balance Plane Location - Three Mode Balancing

If the rotor is to be balanced for three critical speeds. it will be assumed
that one correction plane, Plane No. 2, is in the middle (Eg = %); while the
other two planes, Plane Nos. 1 and 3, are symmetrically located around the

middle:

Z Z
3 _ -1
2 1-3 9
Zy
Setting &g, = 1o Equation (A-54) yields:
W w W, )
((sin (m cl) 1 sin (w cl) A 11 ul2 u13
Y1 2 3
w w w
2 , 21 Y22 Va3
" 4 sin (2w Cl) 0 -sin (27 cl) ? § u o " > =
2 3
w w w
\sin (37 cl) -1 sin (3w Cl)J u31 32 u33
e I 3/

1 0 0
-( 0 1 0 (10)
0 0 1

which is readily solved to give:

(" w w wo o )
11 12 13
] ) k!
1
< Y21 Y22 Y23 > ) Vit
uy U, ug 2 sin (2w cl) [sin (= cl) + sin (37 Cl)]
Y31 Y32 Y33
\ s ] ) Us J
4 sin(27w ¢.) (sin(m z.) + sin(37m z.)) sin(27 .) h
1 1 1 1
J 2 sin(2w cl) sin (37w cl) 0 -2 sin(27 Cl) sin(3m Cl)?
(11)
L sin(2n Cl) —(sin(n cl) + sin{(37 cl)) sin (2w Cl) y
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As Cl is less than %,

becomes (Equation A-55):

the normalized sum, Sn, of the modal correction weights

1+ |sin(3w z;l)l

51 T sin(r cl) + sin(3w cl) (12)
1
Sy = sin(2m cl) (13)

1+ sin(nm ;1)

SB T sin(m cl) + sin(37 Cl) (14)

The results are plotted in Figure 32 where the abcissa is Cl and the ordinate

1° 52 and 83. The optimum plane location is seen to be: El = 0.25

while the acceptable range is approximately between 0.1 and 0.3.

gives S

The slope discontinuity in the curve for mode 1 arises because of the require-
ment, in the analysis of Appendix A, that any combination of weights to balance
out modal unbalance for the first mode makes no contribution to the second or

third modal unbalances.

Reference to the mode shapes for the first three modes (Figure 33) shows, first,
that weights added to change the unbalance of mode 1 will be most effective if,
for all planes, they are all at the same angular location. Thus, if weights
added in planes 1 and 3 were 180° opposed to the weight to be added in plane 2,
the required magnitude of the plane 2 weight would be much higher than if all

three were at the same angular location.

The second mode shape shows that, whenever the weights in planes 1 and 3 are
equal, at the same angular location and equidistant from the shaft center, they

will be self-cancelling for mode 2 whatever and wherever the plane 2 weight is.

For the third mode this is not the case; weights at the same angular location

in planes 1 and 3 are additive and, if planes 1 and 3 are close to the middle,
it is clear that the only way to avoid changing the excitation of the third mode
when balancing the first mode is to put the plane 2 weight 180° removed from

the 1-3 weight - the situation which was previously identified as calling for
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a large weight in plane 2. 1If, alternatively, planes 1 and 3 are close to the
ends, the plane 2 correction can be at the same angular location and not excite
the third: at the location of planes 1 and 3, one-third of the shaft length from
either end (see arrows for mode 3, Figure 33) is the point where mode 3 changes
sign and, therefore, where this situation reverses. This change of sign is
reflected by the slope discontinuity in the mode 1 plot of Figure 32. This plot

says, clearly, that planes 1 and 3 should not be too close to the center of the

shaft.

Selection of Probe Locations — Three Mode Balancing

The criterion for evaluating the sensitivity of a particular probe configuration

is:

s | e,(2)
P = m |— (15)
n /N
n
In applying this to balancing of the first three modes of the uniform shaft in
rigid supports, it is assumed that one probe is located at the center of the
shaft (%—= 0.5) and that the number of probes equals the number of modes. The
two off-center probes are located symmetrically. Thus, Pn is evaluated as a

function of the distance of probes 1 and 3 from the ends of the shaft.

Based on equation 15, the following expressions may be written:

wZ
M _ A . 1
P / > = lsin 2| + 2 |sin —Qfﬂ (16)
2nZ
M . . 1
P, V/F;_ = |sin7]| + 2 |sin z l (17)
3nz
M . 3m . 1
P3\/z = lsin 5[+ 2 |sin - (18)
These values for the probe quality functions have been plotted in Figure 34 as a
z
function of 7%—. It may be seen that, to maintain good sensitivity for all

three modes, it is necessary to keep probes 1 and 3 in the region of 0.25 times
the shaft length from each end. If it were not possible to place these probes
exactly at the 0.25 location, it would be preferable to shift them towards the
ends of the shaft than towards the center, since the mode 3 sensitivity function

falls off sharply as the 1-3 probe location moves further from the end.
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An interesting result may be inferred from Figure 34 in that a single probe at
the center of the shaft gives maximum sensitivity for both modes 1 and 3. Ap-
parently, all three modes could be accurately sensed by a pair of probes, one
at the center and one at .25 times the length from one end. As noted previous-
ly, it is not a requirement of the probe optimization procedure that the num-
ber of probes match the number of modes to be balanced and, in this case, the
third probe could be regarded as redundant; its use simply ensures that the

balancing procedure has more broadly based information to operate on.

Balance Plane Location - Four Mode Balancing

If the rotor is to be balanced through four critical speeds, it will be assumed

that the correction planes are located symmetrically around the middle:

Z z

3 _ _ 2 :
7 1-7 (19)
z z
4 _ 1
T = -3 (20)
%1 %2
Setting Cl = z—-and CZ = the resulting modal correction weights can be

determined from Equation (A-54) as:

A v, i A V1 1. 1+ 2 -« cos(27 cz) o1
M uy M uy 4 sin(w Cl) [cos(2T cl) - cos(2m cz)]

2 T w/@f_ 1.1 L T2 eoslrt) (22)
M uy M uy 4 sin(m 92) [cos(2m cl) - cos(2m cz)]

T M /1 Va1 cooZn ty) | 23
M u, M u, 2 sin(2n gl) [cos(2m Cl) - cos(2m 52)]

A Vo _ N Wi, 1 cos(2m Cl) o5
M u, M u, 2 sin(2w Qz) [cos(2m Cl) - cos(2w cz)]
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(25)

/2 ig=/z’i_z= 1 1

M ug M u, 4 sin(w cl) [cos(2T cl) - cos(2m cz)]

2 Y2_3=\/Z’W_§= _1 1

Mo ou, Mo u, 4 sin(w §2) fcos(2n ;l) - cos(2xn cz)]
/R Uy AR 1

M U, M u, 4 sin(2w cl) [cos(2T cl) - cos(2m gz)]
\/ZW%:_\/Z‘ Y3a 1 1 (28)

M u, M u, 4 sin(2w ;2) [cos (2T cl) - cos(2mw Cz)]

The normalized sums of the modal correction weights are computed from Equation
(A-55), and the results are shown in Figures 35 through 39. Each graph applies
to a fixed position of planes 1 and 4 (cl = -%l = 0.05, 0.125, 0.167, 0.25,
and 0.333), while the position of plane 2 (and, hence, of plane 3) varies as
given by the abscissa. Each graph contains four curves, giving the normalized

sums of the modal correction weights.

It is found that the optimum locations of planes 1 and 2 are 0.167 and 0.375,

respectively, but considerable deviations are acceptable.

As with the three mode balancing results, there are slope discontinuities in
Figure 35 through 39 — this time for the first two modes. Similar arguments to
those developed for the three mode case can be used to explain these discon-

tinuities.

Uniform Shaft in Flexible, Damped Bearings

As a second example, consider a uniform shaft with overhung ends, supported in

two identical bearings. The bearing coefficients are:
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They are assumed to be independent of speed.

The shaft is 2.16 meters long with a uniform diameter of .09 meters and a weight

of 155 kilograms. Young's modulus is 207 x 10° N/mz. The bearing span is 1.44

meters and the system is symmetric around the center.

Ignoring gyroscopic moments, the eigenvalues become independent of speed.

They are computed to be:

"Critical Speed" No. Frequency, Hz An, sec—1 w s rad/sec Log.62ecrement
1 22.72 -43.20 142.74 1.901
1 34.07 ~104.39 214.07 3.064
2 25.87 -59.65 162.53 2.306
2 36.71 ~-148.77 230.64 4.053
3 77.50 -32.42 486.95 0.418
3 78.28 -11.71 491.84 0.150
4 213.46 -23.71 1341.20 0.111
4 213.68 -9.36 1342.59 0.0438

The four modes selected for computing the modal correction weights are the
first modes for the first and second critical speeds, and the second modes for
the third and fourth critical speeds. In each case these are the modes with the

lowest log decrements.

Because the bearings do not have cross-coupling coefficients, the adjoint

functions are the same as the modal functions. They are plotted in normalized
form (Cn//ﬁg) in Figure 40. Actually, the functions are not planar (they are
complex); but, for visualization purposes, they are shown by their magnitude with

the sign indicating in or out of phase.
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In computing the modal correction weights from Equation (A-54), the shaft is
provided with four balancing planes, symmetrically arranged around the middle

of the rotor such that:

4 1
r =1 -3 @0
V4 z
3 2
7 = 1 = — (19)

Plane No. 1 (and, hence, plane No. 4) is outboard of the bearing while plane No. 2
(and, hence, plane No. 3) is between the bearing and the rotor center. Thus,

the range of plane locations is:

0 <21 -0.167
D

0.167 < ?2 < 0.5
£

The results are shown in Figures 41 through 44 for four fixed values of plane

z

No. 1: -El = 0, 0.0417, 0.0833,and 0.125. Each graph has four curves, giving

the normalized sums of the modal correction weights, Equation (A-55) as functions
z

of the location of plane No. 2, (Eg).

As would be expected, the optimum arrangement is with plane No. 1 at the end

(;l-= O; and plane No. 2 almost half way between the bearing and the middle of the
rotor CEg = 0.3). Considering, however, that mode Nos. 1 and 2 are very well-
damped and hardly contribute to the unbalance response, the final selection of

the plane locations should be based on minimizing the correction weights for

the third and fourth modes.
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APPENDIX A

ANALYTICAL DEVELOPMENT OF CRITERIA FOR
BALANCE PLANE AND SENSOR LOCATION

by Dr. J. W. Lund

DEFINITION OF THE PROBLEM

The vibrations of an unbalanced rotor are recorded by measurements of amplitude
and phase angle at selected locations and speeds. With x representing the

synchronoug vibration, it may be expressed as:

x = |x] - cos (& + @ = |x| *cos ¢ cos Q- [x|] - sin @ - sin & (1)
where
le = Vibration amplitude
® = Phase angle
Q= Angular speed of rotation

Equation (1) can also be written as:

iQe )
X = Re (x +ix)e ") (2)
c s {
)
where
X = Ix] * cos @ X = |x| © sin @
C s

X = X + ix (3)
which, then, implies Equation (2) in the final evaluation.

The vibration can be considered as caused by discrete mass unbalances, Uk’ in
the rotor. With index j defining the location and speed at which the amplitude

is measured, x, is given by
]

ij U (4)

o
=]
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when H,, are the dynamic influence coefficients (they are complex). The

ik
equation may also be written in matrix form as:

X = é_[_] (5)

where XO and U are column vectors with elements (Xj)o and Uk’

respectively,

and A is a matrix with elements ij.

To balance the rotor, correction weights wp are inserted in a number of planes.

The resulting residual amplitudes become:

. = . +ZH. = H,U+ZH.W 6)
*3 =524 & e “p Z« jk 'k i 'p (

or, in matrix form:

X = X + H-W =
X X, H-W

>

. -‘[l +

Ifas

"W (1

where X and W are column vectors with elements xj and wp, respectively, and H

is the influence coefficient matrix with elements ij.

As shown in Reference 5, the correction weights are determined by a least

squares minimization of the residual amplitudes X:

W= -@ DR - - @ DE AU ®)

=T
Where H 1is the transposed, complex conjugate matrix of H.

From the equation, it is seen that the required balance correction weights

depend on three factors:

a the location of the balance correction planes (through H)
b the location of the measurement probes (through H and é)
¢ the mass unbalance distribution (through é).

Thus, to achieve an acceptable balance correction of a given rotor, consideration

must be given to the selection of the number and locations of the correction

85



planes and the measurement probes and, therefore, it becomes of interest to
investigate whether some form of a general selection prccedure can be es-

tablished. This is the purpose of the present analysis.

To be useful, such a procedure must be applicable at the design stage. Hence,
it must be independent of how the residual mass unbalance actualiy happens to
be distributed in the manufactured rotor. Secondly, the procedure should
allow for some freedom of choice among a suitable range of alternatives to
accommodate the practical restrictions imposed by the particular rotor design.
For these reasons and, also, because of the many parameters involved, a direct

optimization of Equation (8) does not appear suitable.

Instead, a generalized modal approach is employed where both the residual
unbalance and the rotor amplitudes are expressed in terms of their modal compo-
nents. By requiring each mode to be balance-corrected by itself without inter-
ferring with the correction of other modes, a unique set of correction weights
can be found, one set for each mode. The optimum arrangement of balancing
planes is, then, that combination which minimizes the total amount of correction

weights.

In principle, the outlined method employs the general techniques used in modal
balancing procedures (References 6 to 9). However, whereas conventional modal
balancing only applies to ideal rotors without damping in the bearings, the
present analysis considers the more common practical rotor-bearing system,
allowing for bearing damping and anisotropic stiffness properties. As such,
the analysis is not exact in terms of the classical modal representation but,
for the present purposes of investigating the location of balancing planes, it

should have adequate accuracy.
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ANALYSIS

Governing Equations

The lateral shaft amplitudes are x and y with corresponding angular deflections
of © and @, respectively. The bending moments and shear forces are Mx’ My’ Vx’ and
V_. With z being the coordinate along the shaft, the conventional beam deforma-

tion equations are:

% _ 1 ae _ L

D2 ET Mx z EI My )
o . o

Az o ° o o= (10)

where E is Young's modulus and I is the transverse cross sectional area moment

of inertia.

Per unit length the shaft has the mass p, the polar mass moment of inertia j ,
p
and the transverse mass moment of inertia jT. Hence, a force balance and a

moment balance for a differential element yield the following equations:

o | % r ax 3y
atz t3: t Z; 6(Z_zk) LKxx x + ny y+ By 3 T Bxy dt ]k = an
%y . Yy ax ay
+ + 5(z- [K + K +8 =248 = F 12
H at?  dZ Z (2 zk) yx * yy 7 yx 3t yy 3t y (12)
2 M
., 3“8 . 89 R S
Ir Btz +Q Jp at + Vx Az Fe (13)
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2cp 39 aM
i, — - Q2 j -=L = F
I7 2 ¢ Jp Jt + Vy dz ® : (14)
3t
where
Fx’ Fy = External forces per uﬁit length
FG’ F¢ = External moments per unit length

= Bearing stiffness coefficients

= . Bearing damping coefficients

Q = Angular speed of rotation
k = Bearing index
6(z—zk) = Unit delta function

For the purpose of computing unbalance vibrations, it proves convenient to

introduce the forward and backward precessional components:

Forward precessional component: g = % (x + iy)
(15)
o= = (0 + iv)
2
. 1 .
Backward precessional component: T = > (x - iy)
(L6)
B = %(e-i@)
and similarly for the bending moments and shear forces (i = Vv -1).
By these substitutions, Equations (9) to (l4) are transformed into:
¢ _ 1 of _ L
dz E1 M§ 3z  EI Mﬂ a7
-aj: é—n:
dz o dz B (18)

88



2 v -
38, _8 - +p 28 on 1 r4iFy=F_ (19
LTSt -5 [fgg 84 kgq 1 2 B0 nn §] - 3 s 7o, (9
2 AV - — ]
3’7 7 | . a5 2 L - - ¥
1 N 5+ s + 5(z-zk) LKﬂE £ + KTm N+ B.ng St T BTm St "2 (Fx-l Fy) lﬂ (20)
r S
2 aM
o do g€ 1 X
—_— Q _— - = — + = 21
e 02T M e Ve~ 3z =3 Fgt 1Ty Fo (1)
2 M
, o8B . 3B il 1 .
cp izl - —d = - = 22
Jop 2 + iQj Y: + Vn . 5 (Fq - & FW> FB (22)
where
= lﬂ K i (K K )|
Kgg = 7 K t yy ~ * ( Xy yx)J
K. = l[x SR, 44K+ K )]
£n 2 Lxx vy xy yx
(23)
Ko = 2K -k -1 x|
e 2 Lbxx yy xy = yx
. . 1
Kﬂﬂ 5 Kxx + Kyy + i (ny ny)J
and analogously for the four damping coefficients.
Modal Functions
In the absence of external forces (F§=Fn=FQ?FB=O), the solution to the homo-
geneous equations is of the form:
Snt Snt
7z = = Y
2 = g e T o= e (24)
and similarly for the other variables. gn and ﬂn are the modal functions for
mode number n, and s, is the eigenvalue:
s, = Xn +dw (25)

where W, is the frequency (radians/sec) and kn is the corresponding damping
-1

exponent (sec "). A numerical procedure for calculating the eigenvalues and

the modal functions for a general rotor-bearing system is given in References

5 and 6.
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Substitution of Equation (24) into Equations (19) to (22) gives the following

equations:

n

dv -
2 _ .
5 T u §n + —EEE-+ Z‘ 6(z-zk) [(Kgg + s ng) §n + (Kgﬂ + s Bgn) ﬂn ]k =0 (2

dvB ’
2 —
Sp M nn + dzn + Z_ 6(z-zk) [(Kﬂg t sy Bﬂg) gn + (Kﬂn tosy Bnﬂ) nn]k =0 @

dM
2 . . . En
- Q - =
(sn Jp - is, Jp) o + Vf_;n T 0 (2
dM
2, . A s T : :
(sn g + i s Q.Jp) Bn + VTln e 0 (2
From Equations (17) and (18):
i - Ly EEE = L (3
dz EI g7 dz EI Thn
dg dm
n no_
dz S dz Bn (3

I1f, in Equations (26) and (27), Kgn and Kng are interchanged and, also, Bgn and
Bng, the equations still possess the same eigenvalues but yield a new set of

* ¥
modal functions: En, Hn’ etc., which are called the adjcint functions. They

obey certain orthogonality conditions which can be derived as follows: multiply
% * 2 *
Equations (26), (27), (28),and (29) by E;, ﬂm, Q; and Bm, respectively, add the

equations and integrate over the rotor length £. The final expression becomes:

Ly, [ * * . * * ] oy * ﬁ* 1
SO % LL<§m gn + nm Hn) * g (Qﬁ o Bm Bn) TSt Jp (Qﬁ % T Fan Bn)J dz

Bee  Ben 5’§n
f % *1

+ Sn 1§m’ L1

i L
Bre Bm T
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2 dv dv dM dM
[ % n % Mn * ( En * [/ Tn }
= - < —&n - v -
SO °m  dz * Th dz + %n Vgn dz ) + Bm \"Tn dz > d

r % 3 ; Kg g gn gn-\i
- Z; lgm’ T%} < 32)
ang K

nn

k

By partial integration and making use of Equations (30) and (31), the integral

on the right-hand side of Equation (32) reduces to:

[ * * * * ]z=z £y * *
- gm Vgn + ﬂm Vﬂn - o Mgn - Bm Mﬂn o - So E1 (Mgm Mgn + MTm Mﬂn) dz (33)
As the ends of the rotor are free (M, =M, =1V =V, =0at z=0 and z = {),

En Tin En T

the square bracket is zero.

An analogous expression can be derived by letting Equations (26) to (31) apply
to the eigenvalues S and the adjoint modal functions. Multiplying by §n, ﬂn,
o and Bn, respectively, adding,and integrating over the rotor length yields
the same result as Equations (32) and (33) with s, replaced by s ¢ As the
right-hand side is independent of the eigenvalue, the two results can be sub-

tracted to give an orthogonality condition:
AL

\ ( [ % L3 . * £ oy * * ! d
JO \(Sn + Sm) H()';'m §n + nm nn) + Ip (Qﬁ @, + Bm Bn)]- t Jp (qn 4, - Bm Bn)J z
r
\ 0 #
\ T % 2! gn \ . - =
DACHUSEYO N (34)
\nn’; (2 s N a=m

where B is the matrix of bearing damping coefficients shown in Equation (32).
Nn is the modal norm which, according to the derivation of Equation (34) from

Equations (32) and (32), is evaluated as:
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s s n
m n
) % % "zj
* €m Tlm V'ﬂn + nn V'ﬂn_lOJ
(35)
_ [of dM_“+B My, o Ve, o 9y ]z
n ds n ds n ds T‘n ds 0
* % * %
under the assumption of free rotor ends (Mgn = Mﬂn = Vgn = Vﬂn = 0 at z = 0 and
z = 4.
Substitution of Equation (34) into Equation (32) yields an additiomal ortho-
gonality condition:
2 L dv dM
\ r'§¢__ ,L___ﬂ_ _§E>+B v ____T]E>
)O o n \ §n \ Tn dz
[ +* . % %* ] 1 g
u(E €, M, M) + g (e @ + B B dz
- [ % *° g \E
+ Z.Lgm ? nm
)
L % - .
{El— M. M.+ M. M. ) -ss lu(E E +T M)+ 3. (o @ +B*B):l}dz
50 I ( €m €n Tm T n°m M m °n m n Jp L9 %y m n

+Z\{§:, m}]ﬂ&[g , (2) n#m (369

L n:
where K is the matrix of bearing stiffness coefficients shown in Equation (32).

When s, is an eigenvalue and complex, the conjugate value s, is also an eigen-

value. Because the bearing coefficients: K £ etc., are complex (see

ge> B¢

Equation (23)), the corresponding modal functions and adjoint functions are

found from Equations (26) to (31) to become:
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m n m o n
% ok % % (37)
(gm)s =3 B T]n (nm)s =5 B §n
m °n m ‘

Unbalance Response

Returning to the original equations, Equations (17) to (22), they may be solved

by setting:

g = %,gn 4, : (38)
- dq
k_ _ Vg _n
ot %_Sn gn 4, = éugn dt (39)

and similarly for the remaining variables: T, o, B, M_, etc., and their

g!
time derivatives. This represents a series expansion of the amplitude into
its modal components where q, determines how much the particular mode

contributes to the overall response. 9, is known as the normal coordinate.

Equations (38) and (39) are substituted into Equations (19) to (22) which, then,
S X * *

are multiplied by §m, ﬂ;, am and B;, respectively. By adding, integrating over

the rotor length, and making use of the orthogonality conditions, Equations (34)

and (36), a first .order, ordinary differential equation is obtained:

. dq . . . . .
2s, N —a¢ - 25, Npgq, < SO (EmF§+ﬂmF.ﬂ+amFa+ B, Fg) dz (‘)

The mass unbalance in the rotor can be represented by the eccentricity of the
local rotor mass center from the axis of rotation. By fixing orthogonal axes
in the rotating shaft, the eccentricity is given the components ec and es

along these axes, and with y as the rotor mass per unit length, the unbalance

forces per unit length become:
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2 l .
= . ot - € il
F 02° 4 (EC cos {it g - sinm t)

F

y o u (e, - sin Qr + e+ cos Qt) (41)

Similarly, the local mass axis may form an angle with the axis.of rotation.
Referred to the rotating coordinate system, the angle has the components wc
and ws, respectively (for a continuous mass unbalance, wc = dec/dz and
ws = des/dz.) Hence, the unbalanced moments per unit length become;
Fg = @ (jp - i) (4 cos &k - §_ sin i)
P c s

F_
@

(42)

-2
9) (jT - jp) (¢c sin Ot + ¢g cos Qt)

Adopting the complex notation of Equations (1) to (3), the unbalance forces and

moments may also be expressed as:

_ 2 . _ 2
FX—Qp(ec+1eS)—Que
F = -1ifF
y X
Fg o= O (G- 30 (b +i4) = & (G- 3
0 T p c s It p
P, = - i Fg (43)
where :
€= € +1ic¢€
c s
= i 44
b= ow_ iy (44)

Substituting Equation (43) into the right-hand sides of Equations (19) to (22),

it is seen that:

F = Q €

£ [
Foo=® (4 -3

o T p

. = = 0 (45)
F'1 FB
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which simply states that the unbalance forces only do work on the forward

precessional motion.

Introducing Equation (45) into Equation (40), the normal coordinates can be
determined. Changing the index from m to n and adopting the same complex

notation for q, as already done for the unbalance forces, the solution becomes:

_ o? I AP N S 46
9 T 25 (i0-s) N S (b gn ¢+ (JT—Jp) % ) dz (46)
n n” "n %0

Finally, the resulting forward precessional response is found from Equation

(38) as:

Q2 £
25, (10 - 5 o (47)

n
i
TN
I
c

where:

k3 %
U (W g e+ (jT'jp) @ V) dz (48)

- L ¢

n [

N 0
n

Un is the modal unbalance component.

In the summation in Equation (47), the eigenvalues are considered as separate

roots. Thus, when s is a complex eigenvalue, the conjugate value §n is also an

eigenvalue, and its contribution must be added separately. Substituting Equa-

tion (37) into Equations (47) and (48), the contribution becomes:

o "2 U . O L u! (49)
29, U -8 ygomls -5 P GR-s) /R m
n n n n

95



N | & T L a%
u! = T BO (M oe-+ (JT-JP) B, V) dz (50)
n

Hence, Ué is only equal to ﬁn (the conjugate value of Un) when € and § are real

(planar unbalance distribution).

Modal Balancing Correction Weights

To balance the rotor, correction weights wp (with units of mass and length) are
inserted in a number of balancing planes. The resulting response is determined

from Equations (47) and (48) as:

A
< Q n 1 . %*
g€ = - [U +—— \ 6(z-z2 ) E w d%] (51)
" 2Sn (16 - Sn) n /Nn Jo P np

where 6(z—zp) is the unit delta function. Thus, the contribution from the n'th

mode can be eliminated by a set of correction weights, wp, chosen such that:

2
1 %
—_ _ d -
Un + - 30 65(z zp) §n wp z 0 (52)
or:

%*
~ & (z)
L.—IL_R— w = =U (53)
p YN P "

n

This corresponds to n equations with p unknowns and, therefore, there must be
at least as many balancing planes as the number of modes for which correction

is required.

Assuming that p equals n, Equation (53) may be solved directly to determine the
correction weights wp. In that case, an optimization of the locations, Zp’ of
the balancing planes could possibly be performed to find those coordinates for
which the total sum of the correction weights would be a minimum. The answer,
however, would depend on the assumed unbalance distribution (Un), and as this
must be considered unknown, an alternative approach is necessary.
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For this purpose, instead of one set of correction weights, each mode is
assigned its own set of correction weights: wpn’ and Equation (53) is written

in matrix form as:

- e 3 - ~ - .
| T (2 L € (=), Yin “1n i 1 —mee- 0
/ﬁz /Nl o 91 QD | E\\ El
t 1 } 1 ] 3 1 Loy 1
P ! -. ! oL <: N
! ! / . Y \\:' (54)
-k: >'<: 4 | 1 1 I: :
SCUNLACRE I SR 0 i
/N /N Yy v
n n J n s J

where the matrix on the right-hand side is the unit matrix.

In this formulation, any set of modal correction weights will only contribute

to the assigned mode. They are independent of how the rotor unbalance is dis-
tributed, but their value is directly proportional to the magnitude and phase

of the modal component, Un, of the unknown existing unbalance. Thus, an absolute
optimization, as discussed in connection with Equation (53), is not possible

and, instead, each mode is considered separately by computing the normalized

sum of the modal correction weights:

5 Sa 21 Yo (55)
n N %. Un
n max

The minimum value of Sn is equal to 1. Thereby, the effectiveness of any
correction plane combination can be tested directly, and that combination which

results in the lowest sum for all modes, is the optimum combination.

From Equation (47) it is seen that the modal amplitude contribution is propor-

tional to:

%]

/
\-xn + i(wn-ib)
2

o o Q
ZSn (i - Sn) 25 [ - O
n n

(56)

2
+ A7 ]
n
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Disregarding s in the denominator which does not change with speed, the phase

w - 0
angle equals tan-l <—E:I___>' Hence, the phase angle decreases with speed. It
n

is 90 degrees less than the value at zero speed when:

2 2
] <1n> ] MLe () 57)
0= ey 1 GE) 1 s e, 2 G <
where:
21T A
logarithmic decrement: én = -5 (58)
n
This speed should be considered the 'resonant speed', and upon substitution
into Equation (56), the magnification factor becomes:
- 2
LI 5.7
Q = 3 1+ () ] (59)

In practice, the magnification becomes insignificant when 6 exceeds 1.5 to 2,
and modes which are that well damped will make no significant contribution to
the response. Hence, in selecting the balance plane locations from optimizing
the sum of the modal correction weights, most importance should be assigned to

the least damped modes.

For a general rotor-bearing system, the supports are usually anisotropic such

that the horizontal stiffness, say, is smaller than the vertical stiffness. Thus,
there will be two modes per '"critical' speeds but the mode shapes will be quite
similar. For this reason, only one of the modes may be used when computing the
modal correction weights from Equation (54) to avoid redundancy and a numerically
ill-behaved matrix. Basically, the modal correction weights form vectors which
are orthogonal to the adjoint modal functions such that the latter functions in
themselves must be chosen to yield a vector space of the same dimension as the

number of planes.

For the same reason, all critical speeds must be represented, even though one

or two of them may be over-damped. Only after computing the modal correction
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weights may it be decided to assign less importance to certain well-damped

modes.

Locating Measurement Probes

The amplitude response is given by Equation (42) from which it is immediately
obvious that the maximum amplitudes at any "critical speed" occur where the
corresponding modal functions ('"mode shape') have their maxima. Thus, a dis-
placement sensor located at one of these maxima will be most sensitive to the
rotor's response to unbalance at this critical speed. As a means of
quantifying the "composite" sensitivity of a number of displacement sensors
located at a number of rotor locations, the following ''sensitivity function"
could be used.

P = % ___gn(zm)

n m Jﬁi:

where the summation is over all the probe locations Zm’ and such a function is
evaluated for each of the modes to be balanced. This function does not have a
rigorous basis, but offers a reasonable approach to expressing the likely

effectiveness of a particular selection of sensor locations.

Consideration of Anisotropic Supports

A general rotor-bearing system with anisotropic supports will have elliptical
unbalance response whirl orbits such that the amplitude in the x-direction will
differ from the y-amplitude. Thus, to make use of both measurements, they
should be combined into the forward precessional component, €, as given by
Equation (15). The procedure is as follows: assume that x and y are measured

as discussed in connection with Equations (1) to (3):

X : X+ ixs ~x_ * cos (Cx) - x_ - sin ) |x] « cos (k& + wx)

y =y, t iy, ~y, - cos () - yg * sin () |y| * cos (fx + u&) (60)

where:

x| = /xi + xs2 , the x-amplitude
ly! = /yz +y 2 , the y-amplitude (61)
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°, = t::ln.1 (;i) , the x-phase angle .

c

-1 s
¢& = tan (;rj , the y-phase angle (62)

c
x, = |x] * cos @, x, = |x] . sin @, (63)
Yo = ly| * cos @, Yo = ly| - sin ¢§ (v4)

From Equation (15):
§= L (x+iy) = L (x-y +ilxty)) = |E] - cos (% + ®,) (65)

2 2 c s s ‘¢ £

Hence, the amplitude, ||, and the phase angle, ®., of the forward precessional
>

component can be computed from:

- L Jix oy )2 2
Bl = 5 /Gy )"+ (xg *+y) (66)
-1 (xs+yc\
= tan \
¢§ \xc-ys) (67)

Instead of computing it, the forward precessional component may also be obtained
electronically by shifting the phase angle of the y-signal 90 degrees forward

(R-C-circuit), adding it to the x-signal and dividing by 2.

The advantage of using the forward precessional component is that it basically
represents a circular whirl orbit with the same whirl direction as the shaft
rotation. Thus, its amplitude is independent of the angular position of the

measurement probes.
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APPENDIX B
STABILITY OF A SHAFT WITH FLEXURAL ASYMMETRY

In this appendix the equations of motion for free vibration of a flexibly
supported rotor with flexural asymmetry are developed, and a method of
solution is described which yields the complex eigenvalues and hence the state
of stability of the rotor. The development is an extension of Lund's work (4)

for symmetrical rotors.

Analysis

The rotor is described analytically as a series of stations, at which concen-
trated mass, and transverse and polar moments of inertia may be located. At
any station a bearing, represented by radial stiffness and damping coeffi-
cients, may also be located. The rotor stations are considered to be connected
by massless elastic beams (fields) capable of deformation in both bending and
shear. Each field can have principal section moduli which differ from each
other, with the stipulation that all fields have common principal axes

(€ and T), which form a rotating coordinate frame.
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In the development which follows, the transfer equations for a typical
station (transfer matrix) are written, first in fixed coordinates, then in
rotating coordinates. The field transfer equations are written directly in

rotating coordinates. A general expression for the motion of the rotor is

written in the form:

E_, = Re {E* eSt} B-1
where S = A+ iw andw = - 0 B-2

and a similar equation may be written for the T direction.

Here £,S are complex and all phase information is contained in £*, The

development is actually performed for the more general case of

£ = t* eSt B-3
So we can write
d  _
ik S B-4
2
4 . 52 B-5
dt

The equations are solved to yield those values of S at which the complex
system determinent is zero - the only conditions under which a free vibration
can take place. The rotor is stable if A, the real part of S, is negative, and

unstable if A is positive.
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Station Equations of Motion

Figure 45 illustrates the sign convention for shear force, bending moment, and

translational and angular displacements in the x-z plane.

angle from z to x.

the rotation angle from z to vy.

8 is the rotation

In the y-z plane, a similar diagram would show ¢ as being

If we consider that, in addition to inertia forces, any station may be acted

upon by bearing forces, the forces acting at station n are related by:

Xn

M
\ yn

Xn

yn

Xn

( Myn

tn

L Jtn

— QJ

d¢
pn dt

do

pn dt

L ¢n)

\

dx
dt

n )

n

.

where K, B are 4 x 4 isotropic bearing stiffness and damping matrices, with no

coupling between translational and angular degrees of freedom.

Figure 46 defines the coordinate directions (g, T, z) to be employed in a rotat-

ing frame, and their relation to the fixed (x, y, 2z) frame.

In addition the

relationships between angles (8, ¢) in the fixed fmme and (a, B) in the rotating

frame are illustrated.
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n : n+l

Fig. 45 Sign Convention for Radial Displacement, Angular
Displacement, Bending Moment, and Shear Force
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To translate from the (x, vy,

into the station equations:

z) system to the (£, n, z) system we must substitute

x = £ cos Qt — n sin Qt
y = EsinQt + n cos Qt
6 = acos Rt — R sin Qt B-7
¢ = a sin Qt + B cos §t
and the result is:
( e 3 3\
' ) ) d2gn ( 2 dnn )
-V -V M - — 20 =2
En En n dt2 Mn( @ gn 24 dt
. d2n 2QdE
—Vnn —vnn Mn dt2 Mﬁ( dt -9 nn)
D CE S R b+ ¢ ,
' dza dBn 2 dBn 2
M M J + 9 —_ ) — —
En En tn dt2 Jpn dt Jtn( “n 2% dt ) + 4 Jpnan
' dZBn dan 2 dan 2
M J - QJ — J -0 + 20 —)+
L nnJ Ly L tn dt2 pn dt | L tn( 8n 2 dt) & JpanJ
( h ( dE ) ( W
£ = £
n dt n
dn
- n n
n dt nn
+K 5+2< Bmg' 5
da B-8
o - o
n dt n
dBn
LBn dt Bn
J . L
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and Bxx’ Bxy are direct and cross-coupling translational damping coefficients,

)
xx?

B
Xy

XX
33

ny are the direct and cross-coupling angular damping coefficients in the

yearing.

*inally, substituting

t:
Y
v )
En
-V
nn

- 4
S = It
( ) 3
Mns gn
2
MnS nn

’

Jtl‘l

Jtn

.

XX

Xy

2 2
-Q an—ZQSSn)+Q Jpna

-

2
Mn(-Q En—ZQSnn)

2
Mn(ZQSEH—Q nn)

n

2 2
(-0 Bn+ZQSan)+Q Jpan
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Field Equations

The elastic beams between stations are considered to have principal axes

aligned with the £-n coordinates as shown in Figure 47.

Let (Ia)n be the second moment of area of the shaft between stations n and
nt+l, about an axis parallel to the g-axis.
moment of area about an axis parallel to the y-axis.

displacements, forces and moments at the ends of the shaft section between

stations n and n+l are:

1 ln
gn+l En 2nan (EI ) 2
"n
L
L
_ 1 n
"l - Mt Afa T (E1.) 2
£
n b
_ 1 '
‘1 - %p + (E IE) 2n Mgn
n
1 v
= 2
8n+l Bn (EI) nMnn
"n
\] A}
= +
ME,n+l Mgn j?'n VEn
M = M +2 V'
n,n+l nn n nn

(T),

B (LE In)n

2’I'l
+(-2

(aGA)n

) v

2n
1]
+
nn < 6
'3
+ -0y
VEn
2
+— V'
nn

108

B (LE IE)n i
(aGA)n nn
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The relationships between



Qt

Fig. 47 Alignment of Principal Axes with Rotating Coordinates
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Veont1 T Ven B-18

Vaontl = Vm B-19

Now, to implement the solution algorithm, a total of four calculations is
performed, for an assumed value of S. Each of 51, Nys Gy Bl is, in turn, set to

1 while the others are maintained as zero. In addition, at the left-hand end

(end 1) the free boundary conditions are imposed:

The result of this calculation for the rotor may be expressed in matrix terms:

(v ) )
MeN &y
M N
( ? - 14 ? B-21
] o
Vo 1
v;n By
. J .

where T is a square matrix, and N is the number of stations. To satisfy the
free boundary condition at the right-hand end (station N) requires that A, the
determinant of T be zero, and the values of S which satisfy this condition are

the complex eigenvalues from which the stability of the system can be determined.
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An iterative solution, based on the generalized Newton Raphson method, is used
to find these values of S. To implement this solution method, the determinant
Ap of the matrix zp is required, in which the elements of the pth column of T
have beenvreplaced by their derivatives with respect to S. These derivatives
are determined in a parallel operation to the determination of the element

values, The starting values for all derivatives are zero:

dey 4y g Ggy My A, AV v,

35 " as "3 " "3 “as " ds " g O B-22

The field transfer relationships for the derivatives are exactly the same as
the relationships for the corresponding values (since they do not contain S).

The station transfer relationships for the derivatives are different, however,

as follows:
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 qv! N (av, \ dg de dn
- to - _tn s?y —2 -0’ —2.-2sam -2 )
ds ds n ds n ds n  dS 1
!
! dav dn dn ds \
nn nn 2 n 2 n n |
- - —_ - —_ 4 —_—
as as SM g5 T 9M, Gt M 45
dam' dM é do do dg dp , iy
En En 2 n 2 n n n 2 n
—_ _ - —_——— - 2 ¢ —_—— IR —— 4 0
ds dSs s Jtrl ds & Jt ds S QJt'_ ds + SQIp ds Ipn ds
|
M’ dM dg dg da dg . it
nn nn 2 n 2 n n n 2 n
—_— - —_— —a - S — 4+ 0.
as ) L s/ Ui Tas T % en Tas T e Tas T o Tas Y Ton Tus
r 3 N
4 r
_&n £
ds n
dnn
as "
+ (K + SB + QB") > +B < >
- !
a
oan ”
ds n
dBn
L d ) L n y
r ) ( )
2SM_ B -20M n
n n n n
2SM 1 +20M B
n n n n
+ +
< P ) B-23
{
283 u_ o+ mpn R ~20 8 J
| ;
| |
283 B - I )
L tn ’n Jpn 0Ln ) \+2'Q Oln Jtl‘l J
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As shown by Reference [4], an iteration, which avoids convergence to roots

already found is given by

w1
1
w
i
>
o
~~
s
~~
m‘a
ZIES
A4
|
g
TR

(1/(s_— s, NI B-24
o J

j=1

where AO,SO are the current values of A and S in the iteration, J roots, Sj’
A . .
have already been found, and (%g is the derivative of A with respect to S

o
as determined by summing:

dA
ds

Ap B-25

s~
I~ &

Check of Analytical Method

The asymmetric rotor model of Bones and Hannam [10] was used to check the analy-
sis for a single mass supported on a massless, flexible shaft with external
damping applied to the central mass. As shown in Figure 48, an exact check of

the required damping value for the stability threshold was obtained.
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APPENDIX C

MTI COMMAND MULTIPLANE, MULTISPEED BALANCING SYSTEM

The MII multiplane, multispeed balancing system in its current form, as it was
used for the balancing experiments described in this report, is a further devel-
opment of the non-computerized data acquisition system previously described in
Refs. 2 & 3. 1In this system electronic analog signal processing equipment has
been combined with a self-contained data processing center to provide for auto-
matic data acquisition, signal conditioning, and correction weight calculations.
The role of the equipment operator during balancing operations has been reduced
to speed control of the rotor to be balanced and trial and correction weight
addition and removal as called for by the computer print—out. The minicom-
puter in the system can be programmed via punched paper tape, before each bal-
ancing operation, for the number of trial weight locations to be used on the
rotor to be balanced, the number of sensors to be used,and the balancing speed
at which balancing data is to be acquired. Once the number of balancing para-
meters has been decided upon and the balancing speed variation tolerances set
at which balancing data may be acquired, the computer will automatically request
the proper amount of data to satisfy the balancing requirements. The computer
automatically examines the data from multiple data readings for consistency and
rejects all data that is found to be outside acceptable distribution limits.
Data originating outside the pre-set rotor speed window is rejected. The com-
puter informs the machine operator of each successive step to be taken in

rotor speed control and provides the operator with a number of options in pro-
cedure; for example, he can choose to impose an additional trim balance correc-
tion weight set after completion of the regular balancing operation, and he can
control the extent of the printed record on the balancing operation for quality

control or other record keeping purposes.

The data acquisition subsystem has to accomplish the following functions typi-

cal of any advanced balancing machine:

1. Filtering of the electronic amplitude signals which are proportionate

to rotor unbalance.
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2. Measurement of the filtered amplitude signal.

3. Phase angle determination between each filtered amplitude signal used

for balancing and a fixed point on the rotor.

4. Automatic sequential switching among amplitude signals used for

balancing.

The requirements of an automatic system add two more functions to the acqui-

sition subsystem:

1. Controlling of the sequence and duration of measurement, and inter-
facing between analysis components and between the analog and digital

systems.

2. A/D conversion of the analog signal for computer processing.

The data processing subsystem has three components:

1. Central processor
Magnetic memory

3. Keyboard terminal

The selection of system components, which generally by themselves are the most
advanced systems of their kind, was based upon previous flexible rotor bal-
ancing experience. The capabilities incorporated into the system will gener-
ally meet the most advanced requirements in flexible rotor balancing. A

summary of system capabilities is given below:

e Input channels: 20 analog signals

e Input signal voltage: 1.0 MV to 10 VRMS
e 1Input signal frequency: 2 Hz to 2 kHz

e Balancing planes: 20 *

e Balancing speeds: 5 *

*The last two parameters can be expanded with additional computer memory, if

required.
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The multiplane, multispeed balancing system processes electronic vibration
signals in the specified voltage and frequency range, without regard to type
of source. Inductive, capacitive, or optical displacement sensors, velocity
sensors, accelerometers, strain gages, or other sensors providing signals pro-

portional to rotor synchronous lateral vibration may be used. Sensor leads

with BNC-type connections may be directly connected.

A photo of the complete MTI multiplane, multispeed balancing system is shown

in Figure 49.
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Fig. 49 MTI COMMAND™ Model 2005 Balancing System
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