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Abstract

This taper deals with the problem of classifying a pattern based on

multiple observations made in a time-varying environment. The identity of

the pattern may itself change. A Bayesian solution is derived, after which

the conditions of the physical situation are invoked to produce a "Cascade"

classifier model. Experimental results based on remote sensing data demon-

strate the effectiveness of the classifier.
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BAYESIAN CLASSIFICATION IN A

TIME-VARYING ENVIRONMENT

Philip H. Swain 

Introduction

We pose the following pattern classification problem:

A series of observations is made on a pattern in a time-

varying environment. The identity of the pattern itself may

change. It is desired to classify the pattern after the current

observation is made, drawing on information derived from ear-

lier observations plus knowledge about the statistical behavior

of the environment.

An example of such a situation arises in remote sensing ap-

plications in which the sensor system: can make multiple passes

over the same grcund area [l]. The identity of the ground covr-r

may change between passes. In general it is desired to dotermino

the current identity of the qround cover, but pest observations

can be helpful in accomplishing the identification.

Approach

The classification strategy we shall develop is a Bayes

optimal (minimum risk) strategy [7]. In the ordinary single

1 Philip 1I. Swain is with the School of Electrical Engineering and

the Laboratory for Applications of Remote Sensing, Purdue Univer-

sity, West Lafayette, IN 47907.
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observation case, the approach is to select a decision rule so as

to minimize the conditional average loss

m
LX ((Lj i ) = I	 A i j p(w j X)

j=1

where

X is an n-variate observation (feature) vector

{w j , j=1, 2,..., m} is the set of m classes

a ij is the cost resulting from classifying into

class i a pattern actually from class j

p(w i J X) is the conditional probability that, given

observation X, its class is wj

That is, LX Oki i ) is the expected loss incurred if an observation X

is classified as w i . Commonly (21 a ij is taken to be the 110-1

loss function," i.e.,

a ij = 0, i = j	 (no cost for correct classifi-
cation)

1, i # j	 (unit cost for an error)

Then Eq. (1) becomes

LX ( w i ) = 1 - p((,I i IX)
	

(2)

and an appropriate decision rule which will minimize L X ((,) i ) is:

Decide X e w  if and only if

p(X w i ) p(t,^ i ) - max p(XIw j )p(w j )	 (3)

1

where p(XIIA i ) is the probability density function for the obser-

4	 !^

(1)



vat ions associated with class (, ► i and p((, ► i ) is the a priori proba-

bility of class w i .	 Thus the set of products (F)(XI(iji)p (III i),

i=l, 1,..., m) is a set of discriminant functions for the class-

ification problem.

We now generalize this Bayes optimal approach to the case of

a series of observations. It will be convenient to assume t^:at ob-

s ,z^rvations are made at two times. Generdiization to a larger number

of observation times is straightforward.

Let X 	 X(t ► ) and X 2 = X(t 2 ) be n-variate random vectors,

the pattern observations at times t and t., respectively.

Let fv i = v i (t ► )l i=1,2,..., m ► } be the set of possible

classes at time t ► , and let { w i	 (A)(t2)1 i=1,2,..., m I be the

set of possible classes at time t2.

We define a compound condi`.ional average loss

m
2

LX X ( w i ) = S

► 2	 j=1

A ij p(r, ► j IX ► , X 2 ) (4)

where A.- is the cost resulting from classifying into class i, at

time t 2 , a pattern actually from class j. 	 In this case ,.)((,)1X , X )

is the a posteriori probability that, given the observations X1

at time t  and X 2 at time t 2 , the class of the pattern at time

t	 is w . .
2

once again assuming a "0-1 loss function," Eq. (4) becomes

f	 ^^	 LX ► X2(wi) = 1 - p([, ► i X ► , X`)

i

l'

I	
'

(5)
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which is minimized if we choose w  to maximize the a posteriori

probability p(w i lX 1 , X 2 ). Thus an appropriate set of discriminant

functions for a Bayes optimal classification strategy is the set

of a posteriori probabilities; i.e.

Sp(wi!X 
^	 z	 2
, X ),	 i = 1,2,..., m r
l` 

As usual, however, we wish to derive a set of equivalent dis-

criminant functions expressed in terms of class-conditional den-

sity functions and a priori probabilities as in Eq. (3). This

may be accomplished proceed ing as follows. Fi rst we writ:

1P(w,Xi,X2)

p (W X 1 , X2)	
p(X,, X2

For fixed X 1 and X 2 , the denominator in Eq. (6) is constant.

Let c = 1/p(X 1 , X 2 ) and write Eq. (6) as

p(61IX^,X^)	 = cp	 X I , X 2 )

	

C 	 p(XI, X 2 , v,w)
V

	

C	 F F^(X, , X; I v,(,,)p0),w)
v

	

= c	 p(X, , X z Iv, ILJ)1)(wlv)p(v)	 (7)
v

The summation is over the classes which can occur at time t i . The

factor. p(X i , X z lv,(,j) is a joint class-conditional density; p(wly)

may be interpreted as a transition probability (the probability

4

r.

(6)

t
J

that the class is w at time t 2 given the class was v at time td;

and p(v) is an a priori probability.

j'-
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Thus, the multiobservational decision rule analogous to Eq.

(3) is.

Decide X 2 c (I) i if and only if

M

p(X 1 1 X 2 1v k , mi)p(wi1vk)p(vk)
k=1

M
i

= max	 P(X1, X 2 J\' k ,m j )P(m j lv k )p(v k )	 (8)
k=1

j

and the set of discriminant functions is the set of sums of

products:

M
1

p(X 1 , X 2 lv k
,w i )p(w i ^v k )p(vk ),	 i=1,2,..., m	 .

k=1
(9)

A "Cascade" Implementation

In practice, the terms in the discriminant functions must

be estimated from "training samples." The most formidable job is

estimating the m,. m 2 joint class-conditional densities

p(X 1 , X 2 Iv k ,a) i ), each of which is of dimension 2n. 2	Clearly a

large number of training samples will be required. When certain

approximations can be justified, the situation is eased consider-

ably. We shall now show that these approximations lead to a rather

attractive model for a multitemporal classifier.

2 The observation vectors need not be of the same dimensionality.

If X 1	has	 n components and X 2	has n 7 components,	 the p(X 1 , X21v,(,))

is N-variate, where N = n l +	 n2•
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We are accustomed to assuming class-conditional independence

in the spatial domain; i.e., given the class at a particular point,

the random variable which is the measurement vector at that point

is independent of the class or measurement vector at any other

point. Applying this same idea to multitemporal measurements at

a given point, we say that given the classes v  at t 1 and w i at

t ? , the random variables X 1 anO X  are independent. Then we can

write

p(X1, Xjv k ,al i ) = p(X 1 1v k
,(j

i ) P(X ? 1v k ,w i )	 (10)

and furthermore

p(X 1 jv k ,1I, i ) w' P(X 1 IVk

ti	
(11)

p (X	 v k ,w i ) = p (X, I'°i )

Imposing these conditions, it follows that

P(X 1 , X,Ivk,(,)i) = p(XlIvk)1) (X,Iwi).

The discriminant functions, Eq. (9), then become

M

1.	 p ( X
1 lvk)p(X2 Iwi)E->((ili1vk)p(""k),

k=1
(12)

i=1,2,..., m ; J

From Fq. (12) we can model the discriminant function calculations

as indicated  i n 1•' i (lure 1 , from which we derive the term "cascade

r 1,i--,si f ivi" to doscriht , this; imiI It 1 ;tit(IL, classifier.

Si[11111,11 it ' ll	 .111(1	 I:xl)( . 1 1111 ' 'nt.11	 Results

1'h( cascade cl.u;., ;i fiet m(alcl w.ts progr,immod and app] jed to

th- , analysis of a svt of l,dncisat imiltispectral data. 	 Tht , data,

i

'j
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collected by the satellite on two successive passes, eighteen days

apart, over Fayette County, Illinois (see Table 1), were qeo-

metrically registered at Purdue University's Laboratory for Ap-

plications of Remote Sensing. The objective of the analysis was

to discriminate among the ground cover classes "corn", "soybeans",

woods", and "other", where the last category was simply a catch-

all consisting of water, pasture, fallow and other relatively

minor ground covers. Each class was actually decomposed in the

analysiF process into a union of subclasses, each having a data

distribution describable as approximately multivariate normal.'

To provide a baseline for com-Darison, the data from each of

the passes was first analyzed separately. The a priori proba-

bilities of the classes were approximated as being equal, and 557

test samples, independent of the training samples, were used to

evaluate the results. As shown in Table 1(a) and (b), tho per-

formance of this conventional maximum Likelihood classifier was

68€ correct for the June 29, 1973 data, and 722 correct for the

July 17, 1973 data.

To impleme t the cascade analysis, it was assumed unlikely

that the ground cover would change identity over so short a time

span. Accordingly, the transition probabilities were estimated

as follows:
ORIGINAL PAGE IS
OF POOR QUALITY

p(w i 1v k ) = 0.8	 for ^^ i = v k ,	 (13a)

and all other transition probabilities were set equal and such that

All t)robability densities were assumed to be multivariate normal

(Gaussian), characterized by mean vector and covariance matrix.

i
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i 
p ( w i l v k ) - 0.2.	 (1 3b)

wi#vk

Again the arp iori probabilities were assumed equal and the same

test samples were used to evaluate the results.

The results of this multitemporal classification, Table 1(c),

were substantially better than either of the unitemporal analyses.

The overall results were 84% correct. In addition, the performance

for each class wris better than the best attained for the class

in either of the unitemporal analyses. The unitemporal and

multitemporal results are comt-)ared in Figure 2.

The results can he sensitive, however, to the specification

of the transition probabilities and arp iori probabilities. This

is demonstrated in the following experiment.

Landsat data from two passes over Grant County, Kansas, were

analyzed in a manner similar to that used for the Fayette County

data. In this case, the two passes were separated by more than

two months and a different set of classes was involved ("'abl y 2) .

The transition probabilities were specified as in Eq. (13a) and

(13b); equal a priori probabilities were assumed.

As shown in Table 2 and Figure 3, in this case the overall per-

form. ice of the multitempor,tI cascade classifier was only marginally

better than the best unitemporal result. A closer look at the

class-by-class results is revealing. The largest detractors from

the mul.titemporal results were the classes "alfalfa" and "pasture."

In both of these cases, the unitemporal results for the second

pass were substantially lower than those obtained in the first

pass.	 (There are physical explanations for why this is reasonable,

but this is not clermane to our oxpinrition of classifier behavior.)



Let us examine the impact that the relatively arbitrary

assignment of transition probabilities has on the classification

results. In case the actual transition probabilities are not
	

r

known (which was true for the cited examples), the assignment

can be made anywhere between two extremes. On the one hanr;, it

could be assumed that

p(11) = m	 k = 1,2,..., mt
i

i.e., equiprobable transitions. Then the discriminant functions

have the form

m
t

j	 P(X t I v k )p(X ? 1w.) 	 p(vk)
k=1	 i

m

1	 t

m	 P( X „I^ , i )	 p( X:Ivk )p(vk)
t	 k=1

= m u(X^ I^^ i )p(X t ) .I
1

Sinc( rr and p(::,) will be common to each of the discriminant

functions, the decision will depend only on p(X,Iw i ) and will be

independent of the first-stage results.

On the other hand we could make p(w i lv i ) = 1 and p(: i 'v j ) = C,

j ¢ i. Then the discriminant functions become

1) ( X Ivi)p(X21 Ui) p(v i).

Thus, in a sense, the contributions from the two stages are weighted

equally.

ORIGINAL. PAGE IS
' l%' PWR QUALITY
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There is nn way to make the first_ sta ge input dominate the

second stage.

In view of these considerations, another classification of

the Grant County data was performed. In this case, the transition

probabilities n(w i Iv i ) were set equal to unity for the "alfalfa"

and "pasture" classes in order to give as much strength as pos-

sible to the first stare results. Table 3 a-id r ioure 3 sho p, the

outcome o" this classification. The confusin.a influence resulting

from the second stage data has been rc,ciuc(-(,.

It is interestinct to compare the results obtained using the

cascade classifier to results lroduced by a "conventional" maximum

likelihood classifier using all. of the multitecnhoral features si-

multaneously. To perform the latter classifications, e(jual. e rrieri

oi)abilities were assume . The results were:

Fayhtte County: 80.8 percent correct

.rant: County:	 64. 1 percent corrl!r.t

It is curious that neither of thhr;t- results is anv batter th."ln th--

cascade cl-assifier results achieved.	 it is lrossible that those

slightly poo rer r(-suits re prL-sent the price t)aid for 1;avinq to

estimate 9-dimen-;ic	 statistics as opposed to 4-dimensional

statistics in the face of limited training riata.

)Discussion anti Conclusions

The aoltroach we h.lve adotitecl for classi fyinq data ir, a non-

station.lry 4'I1:'lr(tnlnonI was 1+.l:i r ^l o n .1,+111 l r ',lt t 1 ,rl of cI ass- lCJ1

;t.lt l:;l 1 , 7.11	 1r'1'l::lU.	 I hi-oly	 111 .1	 :;t r.l lrlht turw.lttt	 111 Il+nr'1	 Ilr+wt Vt r,

W .	 ll'i ' • d 	 111	 ('11111111 11,11`: l tl	 t11 • 	1 . 1"((,thin ti) .ir)prOYimotk-	 it r	 rif tho

st lt_i .t ic.11	 111.1 ► 11 it ios	 pili!; r.tolt siinpl ifieA thr' intt-r-

+lopen 1 .t1 . 11c1 • 	 of t 111 • data invrtivl • I all , ! 1' • 11 r	 "o.irt-a(l' classl' l' r"

4r r 

^• Y
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model. Tn the time-varying environment, this model is seen to:

(1) Succes.fully incorporate the temporal information in

-he classification process, resulting in improved classification

accuracy;

(2) P,educe the dimensionality of the probability functions

used and thereby make less strinctent demands with respoct to the

size of the training set required;

(3) Facilitate distribution of the com putational load over

time.

Each time a set of observations becomes available, dis-

criminant functions are calculated which can be used, if desirod,

to make a classification. however, the valuos of the discrim-

inant functions are also Fussed along and contribute to a new set

o` discriminant functions calculated when the next set of observations

is obtained. Although we have demonstrated the use of the cascade

model only for the case of two stages, extension to an arbitrary

number of stages presents no difficulty.

The p rospective user of this anproach should he aware that

a casual implementation of the likelihood comnuters may result

in computational difficulties of two sorts: loss of precision

and very large computation times as comnared with, ray, a con-

ventional jaussian maximum likelihood classifier. Roth of these

difficulties can be overcome or at least substantiall y reduced

by appropriate measures (scaling, ianoring zero terms, otc.)

in carrving out the likelihood computations.

ORIGINAL PAGE IS
OF POOR QUALITY
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Table 1. Test results for classification 	 13

of the Fayette County, Illinois, data.

(a) June 29, 1973 data

No.	 of Percent No.	 of Samples Classified into
Group Samples Correct CORN OTHERS SOYBEAN WOODS

CORN 186 65.1 121 36 24 5
OTHERS 100 40.0 33 40 22 5
SOYBEAN 227 82.4 10 30 187 0
wonDS 44 72.7 0 4 8 32

'DOTAL 557 164 110 241 42

OVERALL PERFORMANCE = 68.2 percent correct

(b) July 17, 1973

No.	 of Percent
G, roup Sa nip 1eS Correct

CORN 186 89.2
OTIIE'RS 100 45.0
SOYBEAN 227 73.6
WOODS 44 56.8

No. of Samples Classified Into
CORN OTHERS SOYBEAN WOODS

166 16 1 3
38 45 15 2
24 36 167 0
4 9 6 25

TOTAL	 557	 232	 106
	

18n	 30

OVERALL PERFORMANCE = 72.4 percent correct

(c) Multitemooral results (cascade classifier)

No.	 of Percent
Group Samples Correct

CORN 186 90.3
OTHERS 100 48.0
SOYBFAN 227 94.3
WOODS 44 84.1

No. of Samples Classified Into
CORN OTHER SOYBEA': WOODS

	

168	 11	 4	 3

	

29	 48	 20	 3

	

3	 10	 214	 0

	

0	 5	 2	 37

i

i i

TOTAL	 557	 200	 74

OVERALL PERFORMANCE = 83.8 percent correct

240	 43

op PaOFF
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Group

ALFALFA
CORN
FALLOW
PASTURE
WHEAT

No. of
Samples

58
42.8
526

1513
913

Percent	 No. of Samples Classified Into
Correct ALFAT^FA CORN FALLOW PASTURE WHEAT

84.5 49 0 0 0 9
57.0 0 244 183 1 0
54.4 0 196 286 36 8
52.6 127 148 220 796 227
82.5 97 17 0 49 767

14
Table 2. Test results for classification of the

Grant Courty, Kansas, data.

(a) May 9, L974

TOTAL	 3455	 273	 605	 689	 882	 1006

Overall Performance = 62.0 percent. correct

(b) July 20, 1974

No.	 of Percent No.	 of Samples Classified Into '!
Group Samples Correct ALFALFA CORN FALLOW	 PASTURE WHEAT

ALFALFA 58 5.2 3 3 0 10 42
CORN 428 53.0 15 227 105 15 66
FALLOW 526 62.9 0 113 331 5 77

PASTURE 1513 42.4 64 329 213 641 266
WHEAT 913 76.2 22 1.08 33 58 709

TOTAL	 3455	 104	 7R0	 682	 729	 1160

Overall Performance = 55.3 percent correct

(c) Multitemporal results (cascade classifier)

Group

ALFALFA

Co RN

FALLOW

PASTURE
WI I FAT

Tn TAT,

No.	 of Percent Nunibc: r of samples classified Tnto

Samples Correct ALFALFA CORN	 FALLOW PASTURE WHEAT.

5H 41.4 24 0 0 2 32

428 59.6 5 255 165 1 2

520 70.4 0 107 402 2 15

1513 40.3 101 205 224 701 281

930 HP. 3 77 19 0 ] 1 821

14'- 5 2n'7 586 791 7 1 1 ) 1152



Table 3. Cascade classifier results for adjusted

transition probabiI itiec (Grant County dat,-i) .

15

No.	 of Percent
Group Samples Correct

ALFALFA 58 94.8
CORN 428 70.3
FALLOW 526 68.1
PASTURE 1513 48.1
WHEAT 930 89.1

TOTAL 3455

Number of samples classified Into
ALFALFA CORN FALLOW PASTURE WHEAT

55 0 0 0 3
5 301 122 0 0
0 139 358 7 22

105 211 195 727 275
82 9 0 10 829

247 660 675 744 1120

Overall Performance. = 65.7 percent correct

^• v
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