General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Stratospheric Sounding by Infrared Heterodyne Spectroscopy

Mian M. Abbas, Virgil G. Kunde,
Michael J. Mumma, Theodor Kostiuk,
David Buhl and Margaret A. Frerking

JANUARY 1978

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
STRATOSPHERIC SOUNING BY INFRARED HETERODYNE SPECTROSCOPY

Mian M. Abbas*
Department of Physics and Astronomy
University of Maryland, College Park, MD 20742

Virgil G. Kunde, Michael J. Mumma,
Theodor Kostiuk and David Buhl
NASA/Goddard Space Flight Center
Infrared and Radio Astronomy Branch, Code 693
Greenbelt, MD 20771

and

Margaret A. Frerking**
Department of Physics and Research
Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

*Mail Address: Infrared and Radio Astronomy Br., Code 693
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

**Present Address: Bell Telephone Laboratories
Crawford Corner Road
Holmdel, N.J. 07733
ABSTRACT

Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution (≈ 5 MHz or 0.000167 cm\(^{-1}\)). The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles.

Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of \(O_3\), \(CO_2\), \(CH_4\) and \(N_2O\) are given. Some recent heterodyne measurements of \(CO_2\) and \(O_3\) absorption lines are analytically inverted and the vertical distributions of the two gases are determined.
1. Introduction

Stratospheric trace constituents may be detected through measurements of their infrared vibrational-rotational lines, and absolute column abundances can be determined from the measured line equivalent widths. If the individual line shapes are also measured, an inverse solution of the radiative transfer equation may be found which yields the density-altitude profile (for transient species) or the temperature-altitude profile (for a uniformly mixed gas). Measurements of individual line intensity profiles are very difficult by conventional spectroscopic methods, particularly when the gas is distributed throughout atmospheric regions having widely different total pressures. The line profiles will then consist of pressure broadened wings and doppler cores, imposing severe restrictions on the spectral resolution needed to fully resolve the line. Infrared heterodyne spectroscopy (IRHS) is well suited to atmospheric studies because of its high specific detection sensitivity and its ultrahigh spectral resolution (~ 5 MHz = .00017 cm\(^{-1}\)). At this resolution, individual line shapes can be measured without significant instrumental distortion and the analysis may be carried out in a straightforward manner.

Application of heterodyne spectroscopy to stratospheric studies is still in its developing stages, and only preliminary attempts at measurements and some feasibility studies have been made (Seals and Peyton, 1975; Seals, 1974; Peyton et al. 1977; Menzies and Seals, 1977). The purpose of this paper is to present additional calculations on the
feasibility of IRHS stratospheric composition measurements, and to report preliminary measurements and analyses of CO₂ and O₃ absorption lines measured with ground-based IRHS systems.

Stratospheric measurements may be carried out either in absorption (observing the sun or the moon), or in self-emission (observing atmospheric emission lines directly). Absorption measurements are intrinsically absolute and the precision is limited by the signal-to-noise ratio (SNR) achieved. For solar measurements, the SNR may be as high as ~100,000, depending upon the volume mixing ratio of the gas, the strength of the line, the integration time, and the spectral bandwidth chosen. Lines with optical depths as small as 10⁻⁵ can be measured in this mode. The expected SNR's for self-emission are much lower, thus species investigated in this mode are limited to those having nearly optically thick infrared lines.

This paper is limited in scope to ground-based solar-absorption measurements. The basic theory employed in making the radiative transfer calculations is discussed in section 2. Section 3 deals with the feasibility and application of an IRHS for stratospheric measurements, treating the detection sensitivity, minimum detectable volume mixing ratios of stratospheric constituents, and line shapes of infrared absorption lines in the stratosphere. The method of infrared spectral line inversion is briefly discussed in Section 4. Results of solar-absorption measurements and analyses of CO₂ and O₃ lines made with CO₂ - laser and tunable-diode-laser heterodyne spectrometers are given in Section 5.
2. Theoretical Considerations

The downward spectral intensity, corresponding to a ground-based observation of the sun, may be written as

\[I_v = B_v(T_\odot) \tau_v^S + \int_{\tau_v}^1 B_v(T) \, d\tau_v(P,T), \]

where \(B_v \) is the Planck function at temperature \(T \), \(T_\odot \) is the solar brightness temperature (K), \(P \) is atmospheric pressure (atm), \(\tau_v \) is the transmittance at frequency \(\nu \) from the atmospheric layer to the observer, and \(\tau_v^S \) is the transmittance from the top of the atmosphere to the ground. The atmospheric transmittance \(\tau_v \) is

\[\tau_v = \exp[- \sum_{\nu_1} k_{\nu_1} \, d\nu_1], \]

where \(k_{\nu_1} \) is the specific absorption coefficient (cm\(^{-1}\)-atm\(^{-1}\)) at frequency \(\nu \) for the \(i \)th species, and the summation extends over all absorbing species.

The element of column density (cm-atm) is

\[d\nu_1(P) = q_{\nu_1}^V(P) \left[\frac{P}{T_{\text{NTP}}} \right] \frac{T_{\text{NTP}}}{T} \, ds = q_{\nu_1}^V(P) \left[\frac{P}{T_{\text{NTP}}} \right] \frac{T_{\text{NTP}}}{T} \, \sec \theta_z \, dz, \]

where \(q_{\nu_1}^V(P) \) is the volume mixing ratio for the \(i \)th species, and \(\theta_z \) is the zenith angle at level \(z \). NTP denotes normal temperature and pressure.

\(\theta_z \) is related to the starting parameters at height \(H \) by

\[\sec \theta_z = \frac{n_z(R_0 + z)}{\left[n_z^2(R_0 + z)^2 - (R_0 + H)^2 \sin^2 \theta_H \right]^{1/2}}, \]

where the refractive indices \(n_{\text{H}} \) and \(n_z \) refer to the values at the levels \(H \) and \(z \). The geometry of the ray path for solar observations is shown in Fig. 1. The ray tracing technique used is similar to that
described by Selby and McClatchey (1972), Snider (1975) and Goldman and Snider (1975).

The element of column density (du) may also be written in terms of the mass mixing ratio

\[\text{du} = \frac{1}{g} q_1(P) \sec \theta \, dP, \tag{5} \]

where \(q_1(P) = q_1'(P) \frac{m_i}{m_T} \) with the masses referring to the species (i) and to the average molecular mass of the gas. The absorption coefficient at frequency \(\nu \) for species \(i \) is obtained by summing the contributions from all lines

\[k = \sum_{\nu} k_{\nu} (P,T), \tag{6} \]

where the absorption coefficient for an individual line may be written

\[k_{\nu} (P,T) = b \int k_{\nu} \, d\nu = S_{\nu} (T) b(P,T), \tag{7} \]

where \(S_{\nu} \) is the integrated line intensity in \(\text{cm}^{-1} \) (cm atm)\(^{-1} \) and \(b \) is the line shape function.

A convenient technique for calculating the absorption coefficients for an individual line is based on separating the contribution from each line into a wing contribution and a direct contribution near the line center (\(\nu = \nu_0 + \delta \)), where \(\delta \) is model dependent and in the present case is chosen to be 3.5 cm\(^{-1} \) (Kunde and Maguire, 1974). The wing contribution is calculated by assuming a Lorentzian line shape, and the direct contribution by using the mixed Doppler-Lorentz line shape (Voigt line shape) formula for which the function \(b \) is

\[b(P,T) = \frac{1}{\alpha D} \left(\frac{4n^2}{\pi} \right)^{1/2} \frac{e^{-t^2}}{\pi} \int_{-\infty}^{\infty} \frac{e^{-t^2}}{y^2 + (x-t)^2} \, dt, \tag{8} \]
with
\[y = \frac{\alpha_L}{\alpha_D} (\mu \omega)^{1/2}, \quad (9) \]
and
\[x = \frac{(v - v_0)}{\alpha_D} (\mu \omega)^{1/2}, \quad (10) \]
where \(\alpha_L \) and \(\alpha_D \) are the half-width at half-maximum of Lorentz and Doppler broadened lines and
\[\alpha_D = 3.58 \times 10^{-7} v \left(\frac{T}{M} \right)^{1/2} \text{ cm}^{-1}. \quad (11) \]

The line centers, line strengths, and half-widths employed in this paper for \(O_3 \), \(N_2O \) and \(H_2O \) are taken from the AFRL molecular line parameter atlas (McClatchey et al., 1973), while the \(CO_2 \) and \(CH_4 \) line parameters have been generated with a quantum mechanical model (Maguire, 1977). The dependence of line strength on temperature \(T \) is given by
\[s(T) = \frac{S_0(T_0) Q_v(T_0) Q_p(T_0)}{Q_v(T) Q_p(T)} \exp \left[1.439 E'' \frac{(T - T_0)}{T T_0} \right], \quad (12) \]
where \(S_0 \) is the line strength at the reference temperature \(T_0 = 296 \text{ K} \), \(E'' \) is the lower state energy (cm\(^{-1}\)) of the transition, and \(Q_v \) and \(Q_p \) are the vibrational and rotational partition functions. The basic equations and the methods outlined here are employed in calculating spectra of atmospheric gases as discussed in the following sections.

3. Feasibility of IRIS Stratospheric Measurements

A plot of representative constituent mixing ratio profiles is shown in Fig. 2, and a list of some selected molecules having transitions in the 10\(\mu \)m terrestrial window is given in Table I. An overview of
the observed atmospheric spectrum (0.25 cm\(^{-1}\) resolution) is given in Fig. 3 (Kunde et al. 1977).

(a) Sensitivity of a Heterodyne Spectrometer

In a heterodyne receiver, the infrared signal from the source is mixed with coherent radiation from a local oscillator (such as a CO\(_2\) laser or a tunable diode laser) and the difference frequency signal is detected by radio frequency techniques. The basic theory and sensitivity considerations of heterodyne spectroscopy have been given in the literature. (e.g., Teich, 1971; Abbas, et al. 1976).

Here, we consider its sensitivity for detection of stratospheric molecules.

The SNR of a heterodyne receiver is

\[
\frac{S}{N} = \frac{P_s}{\Delta B \nu} \left(\frac{\tau}{B} \right)^{1/2},
\]

where \(\Delta\) is the total system degradation from the ideal quantum detection limit, \(\tau\) is the integration time, \(B\) is the bandwidth of a single resolving element of the system, and \(P_s\) is the source power contained in the bandwidth and the etendue \((A \Omega \sim \lambda^2\) of a heterodyne receiver. Equation (13) yields an expression for the noise-equivalent radiance of a heterodyne receiver as:

\[
(NER)_{\text{Het}} = \frac{\Delta h c}{\lambda^3 (B \tau)^{1/2}} \left(W \ cm^{-2} \ Sr^{-1} \ Hz^{-1} \right).
\]

Equation (14) indicates that the sensitivity of a heterodyne receiver
improves rapidly with longer wavelength, varying as λ^{-3}. In principle, the spectral bandwidth (B) may be decreased arbitrarily for increasingly higher resolution, but only at the expense of a corresponding decrease in sensitivity.

We now estimate the minimum detectable column density and volume mixing ratio. We assume a homogeneous isothermal atmosphere at temperature T with uniform volume mixing ratio q_v^v and source surface temperature T_s. Equations (1) and (2) then give an expression for the minimum detectable vertical column density for the solar absorption mode

$$u_{\text{min}} = \frac{(\text{NER})_{\text{Het}}}{k_j(T,P) B_j(T_s) \sec \theta}.$$ \hspace{1cm} (15)

The minimum detectable volume mixing ratio then becomes

$$q_{v_{\text{min}}} = \frac{(\text{NER})_{\text{Het}}}{k_j(T,P) B_j(T_s) u_T \sec \theta}.$$ \hspace{1cm} (16)

where u_T is the total vertical column density and T_s is the solar brightness temperature.

For a moderately strong atmospheric line ($S \sim 1 \text{ cm}^{-1} \text{ (cm-atm)}^{-1}$), $k \sim 50 \text{ (cm-atm)}^{-1}$ and for instrumental parameters of $B = 5 \text{ MHz}$, $\tau = 1000 \text{ sec}$, $A = 30$, sec $\theta = 1$, the noise equivalent radiance and minimum detectable volume mixing ratio are

$$(\text{NER})_{\text{Het}} \sim 8 \times 10^{-18} \text{ (W cm}^{-2} \text{ Sr}^{-1} \text{ Hz}^{-1})$$ \hspace{1cm} (17)

and

$$q_{v_{\text{min}}} \sim 2 \times 10^{-12} \text{ or } 2 \text{ pptv}$$ \hspace{1cm} (18)

This detection limit has been derived only for obtaining an order of magnitude estimate of the sensitivity of an IRHS.
Fig. 2 indicates that at this sensitivity almost all of the important stratospheric constituents may be detected with a heterodyne spectrometer. Note that while Eq. (18) is based on a path length of one air-mass, slant paths at balloon altitudes can increase this to ~20 air-masses with a concomitant increase in sensitivity.

(b) Measurements of Stratospheric Absorption Lines

The calculated transmittances for the mid-latitude summer model atmosphere of Selby and McClatchey (1972) and the volume mixing ratios of Fig. 2 are given in Figs. 3-6. The computed spectra exhibit absorption lines of CO₂, O₃, CH₄, and N₂O. The water vapor concentration of the model atmosphere was modified to yield a total vertical column density of 6.82 cm-atm, corresponding to field conditions during the observations discussed in section 5.

An important consideration in the measurement of line profiles and in the subsequent retrieval of information is the type of lineshape involved. The widths are on the order of 1 GHz with narrow cores. The widths of moderately strong lines of primarily stratospheric molecules (e.g. O₃, CO₂) are on the order of a few hundred MHz. Representative lineshapes have been computed for stratospheric (z = 45 km) and tropospheric (z = 12 km and z = 0 km) levels for the 940.55 cm⁻¹ (P24) line of the 961 cm⁻¹ CO₂ band and are shown in Fig. 7. At 45 km the doppler half-width is ~8 x 10⁻⁴ cm⁻¹ (24 MHz) and the core of the line is essentially shaped by doppler broadening. For Δν greater than ~1.6 x 10⁻³ cm⁻¹ (50 MHz) the lineshape is dominated by pressure
broadening. At the $z = 12$ and 0 km levels the entire line is shaped
by pressure broadening effects. Measurements of doppler cores (formed
in the stratosphere) thus require high spectral resolution (~ 5 MHz) whereas
lower resolution (~ 50 MHz) will be sufficient in the wings (formed in the
troposphere).

4. Inversion of Infrared Spectral Lines

Atmospheric parameters may be extracted by analysis of individual
spectral lines measured at sufficiently high spectral resolution through
an inverse solution of the radiative transfer equation (1). The
inversion of an appropriately chosen line can provide constituent
concentration profiles in both the stratosphere and the troposphere.

Atmospheric self-emission in Eqn. (1) usually may be ignored
for solar observations, and the observed intensity can be written
as

$$I_{v}^{\text{ob}} = B_{v}(T_{\text{c}}) T_{v}^{\text{ob}}.$$ (19)

The observed transmittance (T_{v}^{ob}) then is:

$$T_{v}^{\text{ob}} = I_{v}^{\text{ob}} / B_{v}(T_{\text{c}}).$$ (20)

Combining Eqs. (2) and (5), the atmospheric transmittance may be
written in the form

$$\ln T_{v}^{\text{a}} = \frac{1}{F} \sum_{i} k_{v_{i}} (T_{i}, P) \sigma_{i}(P) \, dP.$$ (21)

Equation (21) suggests that the mixing ratios of the absorbing gas
may be iteratively evaluated, with k_{v} used as a weighting function.
The iterative scheme used here is similar to that described in the
literature (Seals, 1974; Smith, 1970; Menzies and Chahine, 1974).
The plots of weighting functions (normalized absorption coefficients) for some absorption lines of O$_3$, CH$_4$ and N$_2$O are shown in Figs. (8)-(10). The weighting functions for O$_3$ in the 9.4 μm band reach peaks up to heights of \sim 30-35 km for ground-based observations. The weighting functions reach peaks up to 25 km for CH$_4$ and N$_2$O absorption lines in the 1230 cm$^{-1}$ to 1250 cm$^{-1}$ range. The altitudes which may be probed by this method are determined by the shapes and the levels at which the weighting functions (k_v) reach their peaks. At altitudes where pressure broadening is dominant, the Voigt profile reduces to a Lorentzian and

$$k_v(P) = \frac{1}{\pi} \frac{B(T) \alpha(P,T)}{(v-v_0)^2 + \alpha^2(P,T)}.$$ \hspace{1cm} (22)

Setting the derivative of $k_v(P)$ with respect to $\alpha(P,T)$ equal to zero and solving for $\alpha(P)$, indicates that for transitions with small values of lower state energy E'' (so that the dependence of line strength on T may be ignored), $k_v(P)$ is maximum at levels where $\alpha(P,T) \sim (v-v_0)$. At altitudes where doppler broadening is predominant (≥ 35 km), k_v increases monotonically and thus cannot be used as a weighting function.

The inversion technique discussed here is thus useful only for altitudes at which the lines are pressure broadened. A different mode of observation and inversion technique has to be employed for probing higher regions.

Inversion of a specific line is carried out in the following way. The atmosphere is divided into N layers (35 in the present work).

The vertical temperature profile $T(z)$ is assumed or evaluated by analyzing the absorption line of a well mixed gas such as CO$_2$ ($T(z)$ need not be known as accurately for solar absorption measurements as
for the self-emission mode). An initial guess for the mixing ratio profile \(q_1^{j,m} \) is made (\(j \) denotes the level and \(m \) the iteration). The absorption coefficients and transmittances \(\kappa_{\nu_k}^{j,m} \) and \(\tau_{\nu_k}^m \) for an appropriately chosen set of frequencies \(\nu_k \) are calculated monochromatically by summing the contributions of individual molecular absorption lines as discussed in section 2. An improved mixing ratio profile \(q_1^{j,m+1} \) is then estimated at the levels corresponding to the peaks of the weighting functions from

\[
q_1^{j,m+1} = q_1^{j,m} \left(\ln \frac{\tau^\text{ob}_{\nu}}{\ln \tau^m_{\nu}}\right)
\]

(23)

The complete profile is interpolated from the corrected values and the iterative process is continued until the calculated \(\tau^m_{\nu} \) converge to the observed values of \(\tau^\text{ob}_{\nu} \) over the entire set of chosen frequencies in a least squares sense. The process is stopped when the RMS residual is of the same order as the noise level of the measurements.

The weighting functions are chosen such that a sufficient number of levels are included for interpolation of the gas mixing ratio profile. The vertical resolution of the retrieved profile is then dependent on the shapes of the weighting functions, which are determined by the line strength and the lower state energy of the transition. If the weighting functions are sharply peaked, the inversion procedure converges in 15-20 iterations.

The mixing ratio profiles retrieved by inverting synthetic \((\text{O}_3, \text{CH}_4, \text{N}_2\text{O})\) and measured \((\text{CO}_2)\) absorption lines (Figs. 4-6,14) are shown in Figs. 11 and 12. The initial guess profiles and the model profiles
are also shown. These results demonstrate the internal consistency of the method, and indicate that inversion of infrared absorption lines measured with sufficiently high spectral resolution can lead to vertical concentration profiles of stratospheric constituents to heights ~ 30 km with vertical resolution ~ 4 km.

5. Atmospheric Absorption Measurements

The atmospheric absorption measurements reported here are based on solar observations of absorption lines of CO$_2$ and O$_3$ in the 10μm band. The measurements were made with a CO$_2$-laser heterodyne spectrometer at Goddard Space Flight Center, and a tunable diode-laser heterodyne spectrometer at MIT.

A schematic of the Goddard CO$_2$-laser spectrometer is shown in Fig. 13. This system (Mumma, et al. 1977), presently interfaced with a 48" telescope at the optical test site in Greenbelt, MD., employs a CO$_2$ laser as local oscillator, a HgCdTe photodiode as a mixer, and two sets of IF filter banks. The high resolution filter bank consists of 40 sequential filters of 5 MHz resolution covering a total of 200 MHz bandwidth. The low resolution filter bank has 23 filters of 50 MHz resolution with a total bandwidth of 1 GHz and one filter of 1 GHz bandwidth. The CO$_2$ laser is grating tunable from line to line, so that the detection of atmospheric lines is limited to those which lie within ± 1.5 GHz of a CO$_2$ laser line. This restriction requires knowledge of the line center frequencies of the transitions to be observed.
Fig. 14 shows the observed profile of an atmospheric CO$_2$ line \(\nu_0 = 967.7072 \text{ cm}^{-1} \) measured on Feb. 10, 1977 with the low resolution filter bank. The Doppler broadened core, formed at high altitudes, can be identified. This line was inverted and the retrieved mixing ratio profile for CO$_2$ is shown in Fig. 12. The computed absorption line based on the retrieved mixing ratio profile is shown by the solid curve in Fig. 14. The retrieved profile shows that CO$_2$ is well mixed to at least 50 km, in agreement with independent results. (e.g. Reiter et al., 1975).

Fig. 15 shows an O$_3$ absorption line \(\nu_0 = 1044.9737 \text{ cm}^{-1} \) near the CO$_2$ - P(22) line in the 19.4\(\mu \text{m} \) band measured on April 8, 1977 at various values of air-mass (sec \(\theta \)). The high and low resolution spectra are shown on the left and right hand sides respectively. With increasing air-mass, decreasing intensities and increasing line saturation are evident in both spectra. These measurements are of a preliminary nature. This line, with lower state energy of 707.21 \text{ cm}^{-1} \) and line strength \(S = 0.011 \text{ cm}^{-1} \text{(cm-atm)}^{-1} \) is not well suited for inversion. However, a measurement of this absorption line profile as a function of air-mass, indicates the capability of IIRS for investigating the daytime variation of O$_3$ concentration in the stratosphere. The nighttime variations may be measured by making similar observations of the moon.

Atmospheric solar absorption measurements were made with a tunable diode-laser spectrometer in Cambridge, MA., on Jan 2, 1977 around noon with the solar zenith angle between 67$^\circ$ to 64$^\circ$. The air temperature was ~ 272 $^\circ$K with relative humidity $\sim 50\%$.
A detailed description of the tunable diode laser spectrometer and preliminary results have been given elsewhere (Pfrerking and Muehlner, 1977). The spectrometer employed a liquid nitrogen cooled PbSnSe diode laser as a local oscillator and a HgCdTe photodiode as a mixer. The diode laser was continuously tunable over the spectral range of 1010.9 to 1011.8 cm$^{-1}$. The total bandwidth (2B) of the IF filters used in these measurements could be chosen as 200 MHz or 70 MHz, providing spectral resolutions of 0.0067 cm$^{-1}$ or 0.0023 cm$^{-1}$ respectively.

The atmospheric spectrum taken with a spectral resolution of 0.0023 cm$^{-1}$ on Jan. 2, 1977, shows absorption lines of O$_3$ in the spectral range of 1010.9 to 1011.8 cm$^{-1}$ (Fig. 16). The spectral data on the eight O$_3$ lines identified in Fig. 16b are given in Table II. Since the atmospheric transmittance was not directly calibrated, an absolute transmittance scale was established by normalizing to the value at 1011.2 cm$^{-1}$ calculated from a mid-latitude model atmosphere with a total water vapor content of 625 cm-atm (precipitable water = 0.50 cm). This water content corresponds to local conditions at the time of observations (Radiosonde data, National Weather Service).

The strong ozone lines with $S \sim 0.3$ (in cm-atm units) are saturated (Fig. 16b). The saturation is particularly strong because the air-mass during the measurements was ~ 2.3 (solar zenith angle 65°) even though the measurements were made around noon. The saturation results in a loss of spectral information from the upper stratosphere, since the weighting functions for frequencies near line center peak.
at heights ~ 25-35 km. A line of moderate intensity has to be used to
probe the upper stratosphere from the ground. In addition, transitions
with smaller values of LS energy are needed to reduce the temperature
dependence. A comparison of the numerical values of S and LS
energy listed in Table III, shows that lines 3, 4, and 8 are most
suitable for analysis. Lines 4 and 8 are saturated, but
line 3 with a lower value of S, may be used in conjunction with line
4 or 8 for analysis. The weaker lines such as 1 or 2, with larger LS
values, have weighting functions which do not have sharp peaks and
are thus not suitable for inversion.

Lines 3 and 8, with line centers at $v_0 = 1011.1039$ cm$^{-1}$ and
$v_0 = 1011.6636$ cm$^{-1}$ respectively, are shown at high resolution in
Fig. 17a,b. The retrieved mixing ratio profile of O_3 obtained
through an inversion of these two lines is shown in Fig. 18. Because
of saturation of the two lines and insufficient resolution near the
line center, the retrieved O_3 profile is accurate up to heights of
about 25-28 km only. A fixed value of $q_v = 2.9 \times 10^{-6}$ is assumed
at a height of 50 km and the complete vertical profile is then
interpolated. The retrieved profile corresponds to a total vertical
O_3 column density ~0.37 cm atm. This value compares with a column
density of 0.398 cm-atm of the mid-latitude model O_3 profile shown
in Fig. 18.

The computed transmittances for the two lines based on the
retrieved O_3 profile agree well with the observed values (Fig. 17).
1019.9-1011.8 cm\(^{-1}\) from the retrieved ozone profile (Fig. 16c).
The line parameters such as line centers, line strengths and lower state energies were taken from the AFCRL line parameter atlas (McClatchey et al., 1973). The half-width for ozone used was 0.07 cm\(^{-1}\) at NTP. No attempt has been made to correct the line centers in the synthetic spectrum to conform with the observed positions.

A comparison between the observed and synthetic spectra (Figs. 16b and 16c) shows that there are significant differences, indicated by missing or extra lines. No attempt has been made to achieve a closer match between the two plots, but the differences are very likely due to inaccuracies in line parameters used in generating the synthetic spectrum. Existing uncertainties in the line centers and intensities are evident when comparing \(v_3\) line parameters of Barbe et al. (1977), Menzies (1976), and the AFCRL atlas (McClatchey et al., 1973). Extra lines could also be due to other gases.

Conclusions:

The measurements and analyses presented in this paper indicate the usefulness of heterodyne measurements in the infrared for detection of a large number of stratospheric constituents. The vertical mixing ratio profiles and the total abundances of some constituents may be determined with high vertical resolution (\(\sim 4\) km) and the diurnal variation may be followed by tracking the sun or the moon. Interpretation of heterodyne measurements and the accuracy of analysis is limited by the availability of accurate line parameters. A parallel program
of accurate laboratory measurements of line parameters, is essential for identification and analysis of stratospheric constituents.

Precision line frequency measurements permit extraction of wind velocities in some cases. With the availability of tunable diode lasers covering the entire 10μm window, heterodyne measurements are expected to play a prominent role in stratospheric research.

Acknowledgement

We thank Gary Burgess for the extensive help in carrying out the numerical computations presented in this paper. The contributions of other members of the Infrared Heterodyne Group at Goddard Space Flight Center are gratefully acknowledged.
REFERENCES

Maguire, W. C., Private communication.

Teich, M. C., in Infrared Detectors: Semiconductors and Semimetals
List of Tables

Table I. Some selected gases with transitions in the intermediate infrared.

Table II. Spectral data for the ozone absorption lines in Fig. 16.
Table I. Some Selected Gases with Transitions In the Intermediate Infrared

<table>
<thead>
<tr>
<th>Gas</th>
<th>Accessible Spectral Region (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>1000-1100</td>
</tr>
<tr>
<td>NOₓ: N₂O</td>
<td>1190,1290</td>
</tr>
<tr>
<td>NO₂</td>
<td>1621</td>
</tr>
<tr>
<td>HNO₃</td>
<td>890</td>
</tr>
<tr>
<td>N₂O₅</td>
<td>1000</td>
</tr>
<tr>
<td>H₂O</td>
<td>900-1200</td>
</tr>
<tr>
<td>HO₂</td>
<td>1101,1390</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>880,1260,1380</td>
</tr>
<tr>
<td>Cl:</td>
<td></td>
</tr>
<tr>
<td>CCl₄</td>
<td>768,789</td>
</tr>
<tr>
<td>CFCl₃ (Freon 11)</td>
<td>847</td>
</tr>
<tr>
<td>CF₂Cl₂ (Freon 12)</td>
<td>920-930</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>732,1355</td>
</tr>
<tr>
<td>Cl₂O</td>
<td>850</td>
</tr>
<tr>
<td>ClONO₂</td>
<td>780,1490</td>
</tr>
<tr>
<td>Br:</td>
<td></td>
</tr>
<tr>
<td>CH₂Br</td>
<td>954,1443</td>
</tr>
<tr>
<td>BrO</td>
<td>853,1483</td>
</tr>
<tr>
<td>NH₃</td>
<td>930-970</td>
</tr>
<tr>
<td>CH₄</td>
<td>1306</td>
</tr>
<tr>
<td>CH₃F</td>
<td>1047</td>
</tr>
</tbody>
</table>

Line data known accurately for at least some lines.
<table>
<thead>
<tr>
<th>Line No.</th>
<th>v_0 cm$^{-1}$</th>
<th>S cm$^{-1}$ (cm atm)$^{-1}$</th>
<th>LS Lower State Energy cm$^{-1}$</th>
<th>Upper State (J'',K_a'',K_c'')</th>
<th>Lower State (J'',K_a'',K_c'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1011.0345</td>
<td>0.0769</td>
<td>649.20</td>
<td>24, 11, 14</td>
<td>25, 11, 15</td>
</tr>
<tr>
<td>2</td>
<td>1011.0625</td>
<td>0.0877</td>
<td>768.90</td>
<td>10, 2, 9</td>
<td>11, 2, 10</td>
</tr>
<tr>
<td>3</td>
<td>1011.1039</td>
<td>0.197</td>
<td>546.84</td>
<td>27, 8, 19</td>
<td>28, 8, 20</td>
</tr>
<tr>
<td>4</td>
<td>1011.2955</td>
<td>0.374</td>
<td>442.06</td>
<td>29, 4, 25</td>
<td>30, 4, 26</td>
</tr>
<tr>
<td>5</td>
<td>1011.3232</td>
<td>0.157</td>
<td>570.05</td>
<td>26, 9, 18</td>
<td>27, 9, 19</td>
</tr>
<tr>
<td>6</td>
<td>1011.3579</td>
<td>0.118</td>
<td>606.21</td>
<td>22, 14, 9</td>
<td>23, 14, 10</td>
</tr>
<tr>
<td>7</td>
<td>1011.4202</td>
<td>0.293</td>
<td>478.21</td>
<td>28, 6, 23</td>
<td>29, 6, 24</td>
</tr>
<tr>
<td>8</td>
<td>1011.6536</td>
<td>0.414</td>
<td>422.96</td>
<td>29, 3, 26</td>
<td>30, 3, 27</td>
</tr>
</tbody>
</table>

Table II. Spectral data for the ozone absorption lines in Fig. 16b
LIST OF FIGURES

Fig. 1. Geometry of ray path for solar observations.

Fig. 2. Nominal mixing ratio profiles of some stratospheric molecules.
 The heterodyne detection limit for ground-based solar observations
 is shown (sec θ = 1).

Fig. 3. Atmospheric spectrum at 0.25 cm⁻¹ resolution for 900 to
 1400 cm⁻¹ spectral range derived from observations of the
 Moon. Spectral lines in the absorption bands of CO₂, O₃, H₂O,
 N₂O, and CH₄ are identified. A synthetic spectrum based on a
 model atmosphere is also shown for comparison.

Fig. 4. Synthetic atmospheric absorption lines of ozone and CO₂.

Fig. 5. A synthetic atmospheric absorption line of CH₄.

Fig. 6. A synthetic atmospheric absorption line of N₂O.

Fig. 7. The lineshape kν/S is given as a function of Δν for the
 mixed, the Lorentz, and the Doppler lineshapes for
 stratospheric (z = 45 km) and tropospheric levels (z = 12 km
 and 0 km). The CO₂ line at 940.55 cm⁻¹ is represented with
 S = 4.73 x 10⁻⁷ cm⁻¹ (cm-atm)⁻¹. Pressure broadening dominates
 the line formation process everywhere except in the upper
 stratosphere, where Doppler broadening dominates in the
 line center region (Δν < 50 MHz).

Fig. 8. Weighting function for the ozone line of Fig. 4 with line center
 ν₀ = 1043.1775 cm⁻¹, for frequencies with Δν (cm⁻¹) given by:
 (1) 0.0013 (2) 0.00167 (3) 0.0020 (4) 0.00233 (5) 0.00266
Fig. 9. Weighting function for the CH$_4$ line of Fig. 5 with line center $v_0 = 1228.8800$ cm$^{-1}$, for frequencies with Δv (cm$^{-1}$) given by:

(1) 0.00500 (2) 0.00583 (3) 0.00750 (4) 0.00917 (5) 0.01000
(6) 0.01333 (7) 0.01833 (8) 0.02233 (9) 0.02667 (10) 0.03333.

Fig. 10. Weighting function for the N$_2$O line of Fig. 6 with line center $v_0 = 1252.5600$ cm$^{-1}$, for frequencies with Δv (cm$^{-1}$) given by:

(1) 0.00267 (2) 0.00333 (3) 0.0047 (4) 0.00500 (5) 0.00583
(6) 0.00833 (7) 0.01167 (8) 0.01333 (9) 0.01667 (10) 0.01833
(11) 0.02167 (12) 0.02667 (13) 0.03333.

Fig. 11. The retrieved volume mixing ratio profile of atmospheric ozone, based on an inversion of the synthetic line shown in Fig. 4. The initial guess and the nominal model profile are also shown.

Fig. 12. The retrieved volume mixing ratio profiles of atmospheric N$_2$O, CH$_4$ and CO$_2$ based on lines shown in Figs. 6, 5, 14. The initial guess and nominal model profiles are also shown. The retrieved CO$_2$ profile shown is obtained from an inversion of the measured atmospheric CO$_2$ absorption line of Fig. 14.

Fig. 13. A schematic of the infrared heterodyne spectrometer at Goddard Space Flight Center. The source signal is mixed
with radiation from a local oscillator at the HgCdTe photomixer. The 0-1.5 GHz intermediate frequency (IF) signal is then fed into the RF filter bank. The outputs of the 64 filters are separately multiplexed, integrated, and synchronously detected in the calculator. A magnetic tape unit, a graphics data terminal and a line printer, enable storage display and retrieval of the output.

Fig. 14 Atmospheric CO$_2$ R(8) absorption line measured at 50 MHz resolution.

Fig. 15 Atmospheric O$_3$ absorption lines observed in solar-absorption mode as a function of air mass.

Fig. 16 Atmospheric ozone absorption spectra taken with tunable diode-laser heterodyne spectrometer with a spectral resolution of 0.0023 cm$^{-1}$. (a) A single scan (b) An average of five scans (c) Synthetic spectrum based on the retrieved O$_3$ mixing ratio profile of Fig. 18.

Fig. 17a,b Smoothed high resolution plots of the two O$_3$ absorption lines (Fig. 16b). The synthetic lines based on the retrieved O$_3$ mixing ratio profile of Fig. 18 are shown with dashed lines.

Fig. 18 The retrieved volume mixing ratio profile of ozone obtained from inversion of the two observed lines in Fig. 17. The nominal model profile is shown with the dashed line.
WEIGHTING FUNCTIONS - OZONE LINE

\(\nu_0 = 1043.900 \text{ cm}^{-1} \)

WEIGHTING FUNCTION

HEIGHT (km)
The diagram illustrates the inversion of infrared spectral line profiles for CO₂, CH₄, and N₂O. The theoretical and retrieved profiles are plotted against height (in km) and volume mixing ratio. The x-axis represents height ranging from 10⁻⁶ to 10⁻¹, while the y-axis shows volume mixing ratio ranging from 10⁻⁸ to 10⁻³.
GSFC HETERODYNE SPECTROMETER

LOCAL OSCILLATOR
(GAS OR DIODE LASER)

PHOTO-MIXER
(HgCdTe)

IF (0-1.5 GHz)

FILTER BANK
RF FILTERS
40, 5 MHz each
23, 50 MHz each
1, 1000 MHz

MULTIPLEXER

BUFFER MEMORY
S, R STORED

CALCULATOR

TAPE

LINE PRINTER

CRT

COPIER

SOURCE

CLOCK

S
R

S-R
R

R

R
SOLAR ABSORPTION
CO₂ R(8) LINE
λ = 10.3337 μm

TRANSMITTANCE

HIGH-ALTITUDE CORE

CO₂ REST FREQ.

Δν - MHz
ATMOSPHERIC OZONE

ABSORPTION LINE

\[\nu_0 = 1044.9730 \text{ cm}^{-1} \]

AIR MASS \(= 1.26 \)

TRANSMITTED INTENSITY

IF FREQUENCY MHz
OZONE LINE #3

$\nu_0 = 1011.1000 \text{ cm}^{-1}$

TRANSMITTANCE

$\Delta\nu (10^{-3} \text{ cm}^{-1})$
OZONE LINE #8

$\nu_0 = 1011.6614 \text{ cm}^{-1}$

SYNTHETIC LINE

SMOOTHED OBSERVED LINE

TRANSMITTANCE

$\Delta \nu \left(10^{-3} \text{ cm}^{-1}\right)$
Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution (~5 MHz or 0.000167 cm⁻¹). The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles.

Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of CO₂, CH₄, and N₂O are given. Some recent heterodyne measurements of CO₂ and O₃ absorption lines are analytically inverted and the vertical distributions of the two gases are determined.