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ABSTRACT

The present paper argues for using the information theory approach

of Jaynes ( 1957) as an inference technique in solid earth geophysics.

A spherically symmetric density distribution is derived as an exam-

ple of the method. A simple model of the earth plus knowledge of

its mass and moment of inertia leads to a density distribution which

is surprisingly close to the optimum distribution of Bullen ( 1975).

Future directions for the information theory approach in solid

earth geophysics as well as its strengths and weaknesses are discussed.
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INFORNIAI'ION 1111:012Y ANU'1'llf VARI'll'S
11FNSI IN IMS1RIBl TION

I,o INvi?..N) icrIl1N

We wish h: introduce to solid earth geoph si0s a method of semitifie inference %%-Inch

has had great success in statistical meehunies (see, c,g., Jay nes (1 057, 1 OWL rdbus l I Oh 11.

Kat/ ( I00); and Bakrkin it 07111  and in spectral analysis (e.g. Burg (1' 1 7:); Smylic ct

:l. (1 r173); and Cmber (IMA It is the information theory approach of Jaynes 119571,

bused upon Shanu,m's (1 0481 information meastre. We will illustrate the approach by

inferring a density listribution for the earth based tilt knowledge of its mass and moment

of inertia. The earth is assumed to he spherical and the density disc ibution spherically

symmetric.

The nature of the inference problem is the WHowin}. We desire to knort •.hat the

density distribution p(r) is as a function of radial distance r front the center of the earth..

Suppose the only information we hate is Its mass Nl l1 and nlonlent ul iaerti1 C l:, both of

which depend upon p(r). l'Icatiy we du not have enough information to say, what the

density distribution p(r) aetually is. Any' proposed distribution which satisfies (110 mass

and nxmlent of inertia is nonuniyue; there ;u'0 infinitely many other distributions which

also satisfy the given data.

I'll ere are several methods for dealing with this problem. (For if discussion See

Buller l 1075, pp, ol)•b4).) 'rhe approach of Backus and Gilbert (1 00, 1 0(18) is to study all

solutions consistent with the given data; this is called the geophysical inverse problem. The

Backus-Cilbert approach has been used extensively. See, for example, Gilbert et a, t! 0731;

Parker ( IQ 77:1,  1 v77b); Jordan and FrankHn (1 0711: and references cited by Parker (1077x,

t —Wj



107711), Richards (1 0 751, Anderson 0 075), and 1(ngdahl el ;it. l 1 0 751. Press ( I 0e8a, 10n8b)

adopted a Nlontc (',11-10 technique of testing a wide range of models against the data and

retaining only those which agreed with it. I lowever, the commonest method by I:u is model-

ing: by introducing other assumptions, the answer becomes unique. The assumption of the

Adams-Williamson equal ion, for instance, plus the knot,en mass, moment Lit' inerlia, seismic

velocities, and surface density determine a unique density distribution (Alterman et al. 1050,

I'll. 80481). Of course a difficulty with this approach is that the assumed coetdilions nary,

nut hold.

Suppose we look ;1 the problem I'rom the following viewpoint. 11' we had to pick one

answer (in our case, density distribution) from all the possible answers which fit the Bala,

which would we pick as the most likely'.' 1'o pal it b1un11y, what is our "best guess' ? It is

of exlremte interest Thal the informal ion theory approach of Jaynes (1057) provides an

answer to this question. (Imicricin ( 107 1 ) has all cxerllent general discussion of' ti le infor-

mation theory approach,)

2.0 INNORNIA I'ION AlFASURP

Al the heart of the approach is Shannon's (1 048) information measure

t-1

I lere Pi is file probability that the ith of N possible answers is true and R is a positive con-

stant. This function was originally termed tite entropy function (Tribus and Niel rvine, 1071,

p. 180), title to its similarity to thermodynamic entropy. For this reason the information

theory approach is often call,d the maximum entropy method, or NIENI for short. The rela-

tionship between 1 he information measure and thermodynamic entropy is deep, but the

,.
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qais MOM ImIlzral uni(s). We will suppress the units in 1110 following decrlupulent, but

it should be tenu• nillowd that 1I1 Is not a dlliletlsltg lless quantity.

3•0 JAYNI : 8' PRIN('ll'I 1' o1' MINIMUM 1'RFJUhI(T

fhe Csselice of IIle III lot mat it'll theol). apptoach is tills, Choose the plobablhties p 1 , ,

... 11  tit lllt' possible ol"Conles to make 11i as lalgt• is possille, sublt• el tit the cods'Glints OI

the known Bala. Phis is Ja)nrs' ptinciple of miniunun prejudice lI'Iil+usand Rossi, lo-?).

IlencO the Inb'nn:lfion 111e0t 1i approach is a Gnional method lot assigning plobabilities.

I et its illusilate the lechnique with mi evimph• . Suppose that we tit' not know the

mass of the e,uth esacth, but (due to e\pelimental odor, sa)t it mull be ellosen ilonl

the \;dues 11 1 . M:, .. , 1t N . \side i'lonl YI' i 	I, this is all we know. We must tiuti 1'l,

the ptobabilily that 11 1 is the wore' mass• b y nlawm: iag 111. I'his is done Ilk Liking

the partial deri all ,ie of

-i ! t 1'11111'1 	 1 t\0 II 1 i

with respect to each P i ,1114 ste tting it equal to :00. I'11c a il Is a 1 agWllge nttlltipliel w11iell

I	 insures that all at the prohabilities add tip to 1. Partying out the plocess yields

1

-1111'1 - I I tt tl	 0

or

Pi	 OL,0 - I	 constant

1'110 unknown op 111.1 .\ be found 'turn the ConsRaint

N

i

giving
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t

lit = I N

All of the probabilities are cQual, NNc ! now nothing about the various Al t to Iallor tine

particular value over another,

Now suppose we obtain turthal lilt ormation: we learn t hat live expectation value

of the mass is

N
:.' I'i Ali	 Ali:
is

We reassign prohaldities in accordance %i, lilt JaN nes' principle:

i( 'Pi lnpi d o(In'i + EllM i Nli)	 U	 i' 1,2....N
11'i

giving

l'	 ytt" I ealMi

i

where og and a l are lagr.mge muhWhers to be G,und from the eonstraiilts

:
1
1' 1 	1, L'1'i 11 i - x1 j: ,

Note that tine method is e0nipletel\ analogolis to that oC tit, eatiouied ensemble in s!a

tistical mechanics. Indeed, the niathenlatics are identical, The only difference is in tic

philosophical basis, which wdic;tes that the method has broad applicahiliq and is not

confined only to statistieai 11 — Ow [lies.

Olwiousty assigning probabilities is ralher case. But clearly the probabilities do not

represent tirquencim their %.lives ehange the moment we aetluire new informatioli, What

is the point in ntaximiring 411 ., Why not do something else"

1'he users of .iaynes * principle leave it powertivl ,,rgument in its Cavor. I'tie probabil-

ivies are indeed not mere fretInencies, they say. ,t, probability represents Orr "degree of

S
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raliomal belief" (Ilmerleiu, 1 0 71. p. 1.+i t!:at	 particular answer is correct, a more pueral

notion th:ut a (requcney . (S.e CO*. I, l o.ln, l oon for the quantitative basis for this view

of probabilit! ,) And since Nil measures the :u count of information needed to determine

the correct answer, any melhod for assigning probabilities which does not nursinrite Ml

under known eous l iAnts (knowledge) tacitly assumes information it hasn't got! In other

words, if someone assigns probabilities not in accordance with Jaynes' principle, that

Ivrson is preiudiring the probabilities without foundation in the knoml data. Tlmts the

name, "principle of minimum pniudice.'•

Phis point is particularly cicar in the example where we knew one of the hl i was

the correct ammer, but 11.0 no other information (other than :.' pi	11, hl this ease

Jaynes' principle assigns equal probabilities to all outcomes. We lie completely ignorant

as to winch answer is cornet. It someone uses some other principle, and assigns (say) it

larger probability to Nil than to the other bli, we can s:n', " l'ou f.oared Ail as being

the most likely mass over all of the others. What basis (i.e. tilt ormaliom) do you have to

do than"" While the argument is powerful, the information theory approach is not with-

out its problems. We will discus, colas of these later,

4.0 INIY)i(!11A110N 1116010' DFNSIl'T DISI'lUBIL I 'ION

We arc almost in a position to find the information theory density distribution in-

side the earth, using knowledge of the esvcctatiom values of the mass and moment of

inertia. 'i'he only tiring left to do is set up the problem. We will make heavy use of the

methods of statistical uechanics; particularly, the grand canonical ensemble.

Imagine a three-ditnention:rl ('artesian coordinate system with its origin at the center

of the earth. The grid system will divide up the earth into many cubes of identical



C dlltllle V. ltlst as ottlinar\ graph impel tit\ tile% ill+.1 pl.ule IIIW	 tN equal area. WC

can appromill.ttr the y+l.t• rical wtl ,atr of tilt* e.11111 a, close\ .0 \ce like by making till

enbe, as small as \\e like. I vI it lie the wdot until tilt* collm kit file varth to the ilh

ctlhe and set I ri' I	 i t . I t• t tilt' mass tit the eal t11 he the win of file ml.usas of a I.11go

nuntl+et tit indistinguishable 11.11ticles. eadl \%lilt Mass Ill. I et there he it, partiae, ill tilt'

lilt cube. 1'110 mass 111 1. and momle11t of inertia C l : of the earth .lie then

11 1 :	 :.' tit m
t	 (4.1)

C l :	 31,1111u1j=
I

\\here the slit+script i lulls oler all the cubes conllilmlig the earth. 1'110 1.1clor (2 3) in

the second et;uation nlak0, use of the `a:( that the density distribution is spherically synl

Illellie, aild (Fikt', c.il't• t'1 1't 11e11w the dislallce ho ll the center ill tilt' earth 14 .I 011 10 .Ind

IIUI 1110 k I is 1 .11 IV 0 Qt ski 111e .1 V, of rO tat toil.

I et us Iermlik here that \ce haw chosen rubes of 0tludl coluille so Is to treat all

regions of the earth identically, and indisUugui,h.IMr particles bec.nls0 tic interchanging

tit' p.uticics Ieaws the density distribution unalTected. W0 make uo commitment as to the

\.due, of ml .Ind V. As \et' shall sot*, tilt •\ drop out of the I'itlal t'tlu.ltiott for 1110 density

distribution.

11'0 .Ire reath to begilt, our intormatit'll \rill be that the earth tna\ be made up of

amy 11111111101 0l particles, but that t110 es,pectatit'll \,title of the mass Y'P 1 11 1 arld nlontent

of inertia :.'P it's are knows to lie Nl1: and or, resp0etict*h. In practicer, Nil:.uld t'p will

be the es,perimentalh' determined \clues• What e'0 "ill do is find ti t , ( 11e c\peclation

wit re 1,)r the number of particles in the lilt rube. Hie probabilities are computed accord-

ing to .Lq lies' principle t'1' minimum preiudice:



J(-:'1'lln{'i I a01'1', + .\l2'I',^1, + o\.:'P,l',^	 0
5('l

gn ;ng
eal 111, + a; t\1

I

N% liel0

i

Front .tit. t1.1) we ula) with`

M i	 L'ni

ta.?)
7+4
	 -	 IitvI

.m	 l

N 11ett' the subserlli t 1 Oil the Ili 11.15 Not supplessed. I ' lle problem tit)\\ bI As cit.letl\ like

that of the gl.uld c.ulollwal ensemble, \\Itll  n l pLt\ulg the role of 00011 1atnw 11 , 110S O1%, ti=

ti lt, tole of : netp le\\ls, and e.l, ta..) t11e gulml p.tttitum fuu.• fiou. 1'110 tte.ltnlent of

this plobletll mm be found In .ill\ standard nl.lhstleal nu • e11a111es test. \\e c11oti+se to I'ol

lo\\ Morse 0 0 t,Q , 1'I`. :?; ;•t')•

Usutg eq. t•{, it Ill eol. ta,: ), we Ila\e

t

\\Ilete wd llaw tedelmetl til Ili as al mid . m, 111 as Q ,• Note (hat

.
MIA/ e`ll "till M d: t1,lt

Yt -' ni)
JA l	 4 1	

1-

.	 iii s.1 1.... 
I	 ^ t	 _ y, itl

.1 IV%Illt that \\e will IIIAe use of stlottb.

8
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Let its now rewrite eq, (4.4) as a sununation over the possible values ul' n j instead tit'

over i. Par distinguishably particles it is (Morse, I 1)tt9, p„ 414)

7 :)	
N!	 eatini+a2r:nlrl2

+ nf,n2,..	 n i ! 02!,,.	 1	 1

with N = n 1 + n1 +

The tiling to do now is make 7. mathematically tractable, We do this in the follow-

ing manner, Assume the cubes are so small that the Chances of two particles sharing the
3

same cube are negligible. This is equivalent to assuming the particles follow Maxwell-
4

Boltzmann statistics. To take Care of the indistinguishability of the particles we can then

divide the above equation by N! and obtain

7 =	 t	 Ca 1::ni+a,tniri2

	

nt,n2.., niTn2	 1	 1

as the . h ,', , mate value for the grand partition fu,:..ion. Further, since

I	 a	
1111! 112!

we caul separate Z into factors for each cube:

Z _ ^; V(a l +a2rt 2 )11 1 , ^, e(a l +air 2)02..

il l 	 112

=Zi-Z,,•.,.

where

Zi = exp(eal +121i2)

i
by virtue of

ao

Cx = y, x°fin!
n=0

From eq. (4.5), and above we have

81nZ 
= 'eal ca2ri2 =	 nttia t	 J	 J )

9
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i

where evidently

nj 
=catca2rJz

The density distribution is obviously

In
V cat ca2rJ2

By the assumption of spherical symmetry for the density distribution we can drop the

subscript and write

P(r) = P(0)e° 20	(4.6)

which we will take as the desired information theory density distribution. The two constants

p(0) _ M e`rt and a2 may be found from our knowledge o1' the expectation value for the

mass and moment of inertia:

MB = 4foat` p(r)r2 dr = 5.976 x 1027 gin	 (4.7)

Sn33
uua

t _

C g = 3 0 P(J')r4 dr = 8.068 x 1044 gm C,112	 (4.8)

where ar is the radius of the earth and our numerical values have come from Stacey

(1969, p, 279). in eq.s (4.7) and (4.8) we have assumed that the cubes are so small that

we may switch from summations to integrals without serious error. By numerical inte-

gration of eq.. (4.7) and (4.8), we find that

NO = 12.30e"1.46r2/a i, gm/cm3	(4.9)

is our "best guess" for the density distribution based oil 	 given data.

A plot of eq. (4.9) appears in Fig. 1, along with the "optimun," density distribution

given by Builen (1975, p. 361), which presumably gives the most plausible distribution on

the basin of all the known data, The two curves agree remarkably well, in view of the

fact that t1u. information theory density distribution makes use of only two basic pieces
r

10
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of data: 11ta.m and moment of mcma. No scisnut, Bala of eyualions of state have been

included in our 111101111,111011.

5.0 11111 I RF INR1I'1'IONS FOR I'IIP 111Ft)RY

1'he lesull obtained allow may be casdy generalised 10 Include any known volume

wtoglals of the dr`IlNlty' clistrd,utiou, Slgg10sing that Ihcre arc 1 Nuch integrals having tilt,

form

plrlflU^ldv = ha	li	 I,...11

ndunu`
or earth

the resulLlng average densit y distribution is

nli'1	 cunsl	 c\plotlt(r) t ct,I (') I ... +ci t' l l , lr ))

File 1 agrange malitiplicts nl arc found from the known values F t . Now that tilt, above

Icsult is not lesftrc(ecl It, the spherically syt11nu`h'ic rase, Besides' the nla.cs and moment

of inertia, the Nphelical harmonic coethe tints ( 1111 and Sa m of the earth's gramafional

potenlial intl11cdatel y Conn` to mind as iuicytlals having this forma. We imlcud to publish

the lesultmg f ill') based or, the gravity lmld roclfi6vtits in the neat "otillo.

Vile ne\l obvious ek,lcnsiou of the lheor y is to axNUnu` the earth is an elastic both

I	 so as to include the elastic palanu`IrrN tall) ;and \(r') iu addition to the dolISM dishlbu

1	 lion par) a, unknown yua11tilics to esh mate. I'his will allow seismic travel times, flee

ONr11Iei11Uii pt,t'IUdN, ;Ind holy Ilde obsel \':IlIO115 to llNlhl, all \\t \1'hlt'11 drlh`11t lIpU11 p(d),
i

\(It) and	 Glaber i I Q 1 7 1 has mate a start in this tll'ertl\ , 11 using torsional vibrational

modes of the earth, but much moll, needs to be done. Inclusion el chemical composition

alld r`tlllatiolls of stale are Other possible directions for tilt` theoty.

Vile goal here is to pal into file plo r,lem all of the physics and data that wt,` know

ant nl.willitc` the remaining missing information. It' we conic to .1 point where the physics



and data determine a unique answer, there is 110 n0ed for information theory or airy other

inference technique. There is no remaining uncertainty; we have the answer. Since this

happy state of affairs is unlikely to occur soon, geophysics has a real nerd for sound

methods of inference,

n.0 DISCUSSION

We will discuss here some problems and questions about the information theory up-

proach. The two main problems which face it have been discussed extensively in the

literature and only bear indirectly kill the geophysical problem at hand. Hence we will

merely point them out and then move on to questions more relevant to geophysics.

The first problem is that the information theory approach alyx ars unable to deal will! cer-

tain kinds ofinformation. For 0V11111110, SUpposeWetlipac0in100liures arid itc0mcsupheads

75 times. Clearly we have information on whether the next flip will be a heads or a tails. But

how do we maximize eq. (:.1) using this data? Information theory s00ms to be silent oil

question, This coin flip problem is discussed by Rowliuson (1 0 70) :end references he cites.

The Second question is what to do about continuous probability distributions. It has

vexed even the most ardent proponents of the information theory approach,

Shannon (1048, p, b28) proposed as the appropriate generalization for the continuous

1
ruse in one dinre g rsion the function

t
m

MI = —I: f p(x)Inp(x)dx

Where 11(x) is the probability distribution end x is ;I 	 parameter. One difficulty

is immediately apparent. It !akes the logaritlun of a dimensioned quantity: pt x) Iran

dimensions or inverse length it' x is a length, say. The biggest stumbling block, however,

to the Ilse of the above equation is ill 	 prior probabilities. To illustrate, suppose

12
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{

x represents the speed of a particle and is known to lie between values x l and x,. We

have no further inl'or matiom, if we apply Jaynes' principle we find p(x) = constant for

x l G x G x ,,, and zero outside the interval. But it' we had taken the kinetic energy of the

particle (which depends oil 	 as the continuous parameter and t'ound the probability

distribution as it 	 of kinetic energy, we would have again found it to be constant

over the interval. The two are inconsistent: it constant distribution for speed implies a

	

(
i	

nonconstant distribution for energy and vice versa. Thus the problem, Jaynes (1963,

1 968) and Hobson and Cheng (1973) argue that the above equation must be modified,
f

while Tribus and Rossi (1973) turd Bat Iy (1974) feel that it is the correct equation and

(flat till` inconsistency is a pseudoproblem, Rowlinson (1970) also discusses this matter.

Getting hack to the density distribution derived here, it 	 arises: why assume

that the cubes are 
sparsely occupied, thus giving Maxwell-Boltznutill statistics? This

would seem all right for a dilute system, but in the case of the earth it would appear more

reasonable not to limit the number of particles !it 	 cube.

'	 It' ill 	 we allow tut unlimited number of particles to occupy each cube, then we

i
are dealing with Bose-Finstein statistics, Finding ilk in the usual statistical mechanical

tilshion (Morse, 190, p. 320 yields

1
il(Ij)= C a t +aIrl.,

1
- 	 - 1

using the mass and moment of inertia as the conctraitets so that

_ ^V
p(r) =

Cal +a,r 2 	1	 (6.11

i	 a
liere we have it 	 There are more unknowns titan constraints. If we knew how to

i

13
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choosev ,then we could fund o f ,old n, fret» the constraints of »lass and monunl of

inerli;a. Unfortunately, we hdtr no clear guidance in this matter.

['here is it way, however, to neatly sidestep the problem. We introduce a third piece

of information: we assume we know Mai:), the t due of the density at the car p i s sur-

face. Using this hokmation in cq. (u.11 yichts

(ente,r,-I	 _I)plul:)
/7(t-)

ec% ety ., r'_I

and we use our knowledge (it ml: anti t' to find the two multipliers I'akingp(a l:) as :.Rl

gnllemrt to agree with the sin-face density of rocks (Stacey. 1 0 ( 1 0 , p. I0•1), we find by

numerical inlegralion

r

This distribution is plotlr;t in 11g. 2, along with [[»lien's 110751 optimum distribution,
i

This Dose-1'ill ,Aelil distribution is almost indistinguishable boat the ^1axlvell•I)o1Vm;uul

1t

f

war'

distribution of Figure I and the distinction between using the two is academic in this

instance, at least.

So we could use hose-l'instein statistics in the information theory approach to the

earth's density distr ibution. While it is probably conceptually superior to Maxwell-1301ti-

tnan11 statistics, it is list) a little 111010 co»1111wated mlalhenlatically, as a colttparisom of

eq.s (o.I) and ((1._') shows. The ,faxwell-Roltnn,uul case it-, fulure investigations should

probably be investigated first, being simpler.

Another question arises about the information theory approach. Suppose we are

again discussing tiro example of the earths mass, where we have N masses to choose front

14
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t ^

and know that l''Pt hi t - Vi i:, 11w Information theory probability distribution is e%ptno- I i

o I si t 1 as timid rather. Yet the esperimenttl probability distrilwaGan is probably ,a Unisman

with the form arnst 	 !u=1 rather than the siart'le emponnntial distribution o'
,i

info" maion Ihcary• leth both Ai l: mid o being known. The same ma y be said for the tilt)-

1110111 of inertia. MINN do we handle this!

It is actually rather easy to obtain it Gaussian distribution from (lie information theorc

approach. Assutniu!t that we know

PttAt t -^1h 1 = _ +t^

we differentiate

--'Pyltlpi +alp ^'i'; -n t 'P;lint-Att:1=

wilt respect to each pt , giving

Ill	 c``11-I 0 `l l ant,-nt t' ^:

which is the desired Gaussi,ua• Presumabb fending nlr i l using ,a Gaussian is dif(calt, but the

question is probably moat, As long is ale deal shill a nano\% range of values of mass near

1i l ^, it avouid weal to matter littl e whether we use exponential or Nau+.sian distlibulions.

As we have seen. the information theory approach does have its problems: but the

strength of the approach arc man>. Its philosophical oasts i% satisfying: there is no umvar-

ranted weighting ol , possible answers, it is rational arki ob cetivc: everyone using 1110 approach

will oblm the sane answers, given the sane data, It gars the "best" answer on the basis

of very little data. Vie mathe naties of the theory is standard: that of statistical mechanics,

Observational errors have a natural place in the ;approach. It provides an allernative to ex-

tensile modeling, Finally, its generality gives it great power: it can be applied equally well

to the stalWhes of a gas or the interior of the earth. The information theory approach

should find broad use in solid earth geophysics,

is
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Figure 1. The information theory density distribution using Maxwell-Boltzmann statistics
(curve A) and the optinuun clensity distribution of Bullen 0 975) (Curve B) are shown as a

function of radial distance r,
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vigure 2. rite information theory density distribution using Ilose•Pinstem stalislics (eulve
A) and the optimum density distribution or llullcn (1075) (curer li) are shown as a lunelion

of radial distancc r.
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