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INFORMATION THEORY AND THE EARTH’S
DENSITY DISTRIBUTION

David Parry Rubincam
NAS-NRC Resident Research Associate

ABSTRACT

The present paper argues for using the information theory approach
of Jaynes (1957) as an inference technique in solid earth geophysics,
A spherically symmetric density distribution is derived as an exam-
ple of the method. A simple model of the earth plus knowledge of
its mass and moment of inertia leads to a density distribution which
is surprisingly close to the optimum distribution of Bullen (19735).
Future directions for the information theory approach in solid

earth geophysics as well as its strengths and weaknesses are discussed.
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INFORMA TTON THEORY AND THE VAR TS
DENSITY DISTRIBUTEON

1,0 INTRODUCTION

We wish te introduee to solid carth geophysics a methad of seientific interence which
has had great success in statistical mechanics (see, o4, Tasnes (1987, 1963); Tribus(1 901k
Katz (1967 and Baierlein (39700 and in spectral analysis (ege Burg (1972) Smylie et
al, (1973 amd Craber (19700, It is the information theory approach of Jaynes (19571,
based upon Shannon's (PM8) information measure, We will illustrate the approach by
inferring it density distribution tor the earth based on knowledge of its miass amd moment
of inertia, The carth is assumed to be spherical and the density distribution spherically
symmetric,

The nature of the inference problem is the tollowing, We desire to know «hat the
density distribution p(r) is as a function of radial distance r {rom the center ot the eartl,
Suppose the only information we fuve is us nass My and moment ol inertit Cyz, both of
which depend upon p(r), Clearly we do ot have enongh information to say what the
density distribution p(n) actuatly is, Any proposed distribution which satisfies the mass
and moment of inertia is nonunique; there are infinitely many other distributions which
also satisty the given data,

Thete are several methods for dealing with this problem, (Fora general discussion see
Butlen (1975, pp. 00-6:0.) The approach of Backus and Gilbert (1967, 19068) is to study all
solutions vonsistent with the given data; this is called the geophysical inverse problem, The
Backus-Gilbert approach has been used extensively, Sce, for example, Gilbert et al, (1973);

Parker €1977a, 19770 Jordan and Franklin (1971); and references cited by Parker (19774,
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1977h), Richands (1975), Anderson (1978), and Engdahl et al, (1978), Press (1908a, 1968
adopted o Monte Carlo technigque of testing a wide range of models against the data and
retaining only those which agreed with it. However, the commonest method by far is model-
ing: by introducing other assumptions, the answer becomes unigue,  Fhe assumplion of the
Adams-Williamson equation, lor instance, plus the known mass, moment of intertia, seismic
velovitivs, and surface density determine a unique density distribiition (Alterman ot al, 1959,
pp. 80-81). OF course a difficulty with this approach is that the assumed conditions may

not hold,

Suppose we look it the problem trom the following viewpoint, I we had to pick one
answer (in our case, deasity distribution) from all the possible answers which fit the data,
which would we pick as the most likely? To put it bluntly, what is our “*best guess™? It is
of extreme interest that the information theory approach of Jaynes (1957) provides an
answer to this question, (Baierlein (1971 has an exeellent general diseussion of the infor-

mation theory approach,)

2.0 INFORMATION MEASURFE

At the heart of the approach is Shannon's (1948) information measure
MUP . Py PN = —I\'§] PyIndy ANY
l;:

Here Py is the probability that the ith of N possible answers is true and K is a positive con-
stant, This function was originally termed the entropy function (Tribus and Mclrvine, 1971,
b 180}, due to its simitarity to thermodynamic entropy, For this reason the information
theary appraach is often calld the maximum eatropy method, or MEM for short, The rela-

tionship between the information measure and thermodynamic entropy s deep, but the
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two ate not wdentwal cRaclom, 1950 ppo 470050 To nvond vontuston we will Tollow
Baetdem ¢ 1971, poodbamd call Shannon™ntermatien measare MYy P, Py,
whete ME stands tor Moy Tntoreation™ o the amonen of mtonmaton needsd G de
ternune wineh answer i cotiedd

We well uot prove that M s g measine oF msamg s, procks e pven n
Shaonon ¢PHSY and Raefewr (8271 Rather, we swall nevely odicate s plapgsiality with
A enample, But st we note that MU > O, the amount of imfotaiaton needed o single
aut the votrevt ans et s never aevatnge. s s certamby an mtaiimeh desiable Mroperty,
Now et us suppose that alb of the mrobabdines aee gl T us case ML aiLims s mas-
ttm value, Flus aeconds wath mitmfon we are simely i sbate oF i (PRI
e teed the mosthanformaton of we can Lo oo anwen above aootlien 1 ferms of
probabilitn, Suppose tons we hane discoverad St ale b possbiditn s the cottect dism el
Yhen B Dand By 0 for 1 2 0 How s mtormates s mssmge now™ Tothis case
Paaly el 0oand Blaly, 0 for sy dn vitue of i\m}u\lu vVl Thas ML 0 ne
Intermaion s mssimg, we nive the anwet, Fhis alse deconds with mtmtben, Nonally
aul proranee ey betwecn these e enfrenes, and M akes on values aveotditighy be-
Geaenats manamun and O Henee ML s a plansable measine oF s imtotnad ion.,

We stould pomt oat bete that M s not dimensiontoss (F dmund son, PGS comnu
Aration, 1950y, g faet that does nofappear 1o Bbe eaphcithe noted m Tobus L10y, Kats
L0 o Rietlem (82 100 1t carnes anits of wfonmation, Fot example, i we g
the Base of the loganthm w & (0D om @ o Y wineh chatpes Koa new constunt K,
and set K° 1, then M1 Ao P and M s meased s, 1o the following develop-

ment we wilretaiy the patueal topanthm base and set k- 1,so that M1 s maeasuied i

‘e



nats (rom stural units), We will suppress the units in the followimg development, but

it should be remembered that ME 15 not a dietsiontess quantity,

The essence of the informution theory approach s thiss choose the probabdities Py, l‘_,.
v Py o the possible outeomes to ke MEas Lge as possible, subiect to the constraints of
the known dati. Vhis is Javoes' prinviple of minimum prejudice (Foibus and Rossg, 12730,
Henee the imnformation theory approach is a tational method for assining probabilities,

et us illustiate the technuque with an example, Suppose that we do not know the
mass of the carth exiaethv, but Glue to experimental estor, sav1 it must be chosen trom
the vadues My My, oo My, Aside Trom By 1 this s all we hoow, We must Tind By,
the probabality that My is the cotrect mass, by masimueing ML This is done by Liking

the partis] derivative of
! I\
S Pinbk ooy X B
Tt ul P!

with respect to cach Py and setting it equad (o setor The oy s a Lagange multipliet which
insures that all of {he probabilitios awdd up o 1, Canrving out the process vields

S [ VR AT 0
at

[} o=l sonstant

Ihe uuknown ag nay be Toumd from the constaaint

giving
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Py = I'N
Al of the probabilities are equal, We S now nothing about the variots Mg fo Liver one
particolar vatue over another,
Now suppose we abGiin tarther mtormation:  we feann that the expectation value

of the mass s

N
PN My
i1

We reassign probabilities in accordance with Jayvaes” principle:

AL-SRIP + agXP + o IPMG) -0 i= L LN
v,

giving

poo -1 ) M,
i

where g amd o are Lagvange multipliers to be toad fromy the constraints

:'.:l’l [. }-‘;":Mi = 'ﬂ*:
Nuote that oy methad s completely anbogous to that of the canonical cnsemble in sta-
tistical mechanivs, Tndeed, the mathematios are identical,  The oaly ditference is in the
philosophical basis, wlich iendicates that the method has broad applicabitity and is not
contined only to statistical neechanies,

Obviously assigning probabilities is rather easy, But clearly the probabilities do vt
represent frequencies: their values change the moment we acquine new informatio, What
is the point in maximizing MI7 Why pot do something else?

The users of dayvies’ prineiple lave a pawerlul wrgumentt in its Gvor, The probabil-

ities are indeed not mere {requenvies, they say, A probability represents the “depree of

e ki et bbbl



mtiomal beliel” (Baterlein, 1971, p, L3 that & pasticular answer is carrect, a more peneral
notion than a frequeney, (8.2 Con (19040, 1961 Tor the quantitative basis for this view
of probability,) And since ML measures the arsonnt of information needed fo determine
the correct answer, any method tor assigning probabilities which does not maximize Ml
under known cons/s sints (knowledge) tacitly assumes information it hasn’t got! In other
words, it someone assigns probabilities not i accordance with Jaynes® prineiple, that
person s prejudicing the probabilities without foundation in the known data, Thus the
name, Cprinciple of minimum prejudice,”

This point is particulardy clear in the example where we hnew one of the M; was
the correet answer, but had no other information (other than XPp 1, 1y this case
Jaynes' principle assigns cqlml‘pmhabilmcs to all outeomes, We e completely ignorant
as to which answer is correet, 1t someone uses some other principle, and assigns (sayv) a
larger probability to My than to the other My, we can say, “You tivored My oas being
the most likely mass over all of the others, What basis (Le, information) do you have to
do that™ While the argument is powertul, the information theory approach is not with-

out its problems, We will discuss some of these later,

4,0 INFORMATION THEORY DENSITY DISTRIBUTION

We are almost in a position to find the information theory density distribution in-
side the carth, usng hnowledge of the expectation values of the mass amd moment of
inertia, The only thing keft to do is set up the problem. We will make heavy use ot the
methods of statistieal mechanies; particularly, the grand canonical ensemble,

Tmagite a three=dimentional Cartesian coordinate system with its otigin at the center

of the carth, The grid system will divide up the carth into many cubes of identical

O



volume ¥, iust as ondmary grniph pagpsen aivides ugva pliane into sguates of vqual e, We
wanapprovionite the sphencal surfieve of the varth as closely as we like by puhing the
cabes as small as we like, Lot l: be the vector from the venfer oF the varthy to the ith
vithe amd set | r;i Lo Lot the mass of the eatth be the sum of the masses of @ lage
number ol mdistinguishable particles, cach with nuss m, {ef there be nj particles an the
ith cube, The mass Mg and mement o inertia Cp ool the carth are then

My - Xoym

b 4.0
Cp oo A mmT
1

where the sabseript |orans over all the cabes comprising the carth, The fiactor (23 in
the second vauation muhes use of the St that the deasity distribation is splicrically sy -
metric, amd Gikes care of 1 beme the distanee rom the center ol the carth by aculse ang
net the distanee fo some anis of rotation,

et un remarh heie that we e chosen cubes of equal volume so as fo tivat all
regions of the varth wentically, amd indistinguishable particles because the interchanging
of particles leaves the density distubuition unattected, We mahe o commitment as to the
values of moand Vo As we shall see, they drop out of the Ginal equation for the density
distribution,

Weare reidy to begin, Our intformation will be that the carth may be made up of
any number of particles, but that the expectation value of the mass TPM; and moment
of inertia XPC) are known to be Mpand G, respectively, In practier, My and G will
be the experimentally determined values, What we will Jo s FVind ﬁj, the expectiation
value tor the number of particles in the ith cube,  Fhe probabilitios are comptited decord-

ing (o Jaynes’ prigeiple of minimom prejudice:

~f
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where the subsenipt 1 on the oy s been suppressed,  The problem now looks evacth like
that of the prand cavonical cusemble, wath o plaving the ke of occupahon wynbers, l|:
the tole of enetey Tevels, amd e L2 the gand parhtion tusction, The treatment of
thes prablem aay be foumd moany standand statistieal mechanics text, We choose (o tol

Tow Morse (1209, pp, 302-320),

Usig wq, GO v, CR2Y, we e

1
b LY *
/ yetiRn bariny o
1

whete we fuve tedetined apm as ap and 2 Sapmasap, Note that

\
Wy YR, R it
Loty Fragihh

‘_“n{ o }..‘nl\ k/“
l‘\\l ' § 5
Lt
wprn tapyeg”
MOF L T L T L Vi
"" ]"-" 7 =

Joresudt that we wall ke use ot shortly,
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Let us now rewrite v, (4.4 as a summation over the possible values of ny instead of
over i, For distinguishable particles it is (Morse, 1969, p, 324)

1 . 2
7=y —Ne o abngtapingg
DTN RR L T

with N=n +ny+ .., .

The thing to do now is make Z mathematically tractable, We do this in the Tollow-
ing manner, Assume the cubes are so small that the chances of two particles sharing the
same cube are negligible, This is equivalent to assuming the particles tollow Maxwell-

Boltzmann statistics, To take vare of the indistinguishability of the particles we can then

divide the above equation by N! and obtain

- 1 aprn; +asknr,?
Z= ¥ —— Y 1505 2=03y
nnz.., Diing! ! d

as the : peoeomate value for the grand partition fusodon, Further, sinee

—L
0! nyta,

we can separate 7 into factors for cach cube:

Z

"

}.:L'(“l +a3r|2)111 . ‘.c(al +ngr‘-2)n2
ny s

Zl '22‘ s
where

2
Zp = expre®1 T2

by virtue of

00
¥ =3 XMt
n=0

From eq. (4.5}, and above we have

E:)IanZ =y @ = o
1] ]
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where evidently

= o1 ary?

i

The density distribution is obviously

ﬁ(;j’) -_»13. ay 2l .

By the assumption of spherical symmetry for the density distribution we can drop the
subseript and write

A(r) = p0ye2" (4.6)
which we will take as the desired information theory density distribution. The two constants
p(0) = -"'7’0“1 and a9 may be found from our knowledge of the expectation value for the

mass and moment of inertia:

My = 4% T 52 dr = 5.976 x 1027 gm 4.7
C. = 82f " 50ydar = 8.068 x 1044 2 4.8
E = 3/ p(rtdr = 8, X gmcm (4.8)

where ag is the radius of the earth and our numerical values have come from Stacey
(1969, p, 277, Ia eq.s (4.7) and (4.8) we have assumed that the cubes are so small that
we may switch from summations to integrals without serious ¢rror, By numerical inte-
gration of eq.< (4.7) and (4.8), we find that
ar) = 12.30¢"1 46c2 [af gm/cm3 , (4,9)

is our *‘best guess” for the density distribution based on the given data.

A plot of eq. (4.9) appears in Fig, 1, along with the “optimun” density distribution
given Ly Bullen (1975, p. 301), which presumably gives the most plausible distribution on
the basis of all the known data, The two curves agree remaskably well, in view of the

fact that the information theory density distribution makes use of only two basic pieces

10
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of data: s amd moment of wertia, Nooseismie data or equations of state have been

melnded snoour informa e,

S0 FUTURE DIRFCTIONS FOR THE THEFORY

The tesudl obtained above may be casily generilized to melinde any known volutie

wieprals ol e density disttibution, Supposing that theve are 1 such integrals having the

form
/ PO LY - E TR B

voline
of enrtly

the resubting averape density distribution is

n(l‘s\ Seanst e \‘\'pl\\‘ll(l}) t l\:i‘:ﬂ“\ b, t c\‘Lt'l_lf‘bn
The Tagrange multiplioss o ave found from the hnown values Fio Note that the above
tesult s ot estiicted to the sphierically sytimeteie case, Besides the mass and mement
of inertia, the sphetical harmonic coetlicients Flm ad §1m of the carth’s pravitational
potential mmediately come to mind as inteprals having this form, We miemd to publish
the resultag pu5) based on the gravity Deld coelticients in e near "uture,

Uhe nest alwious extension of the theory is o assume the eatth is ap elastic body
sooas to mehude e clastic patamclers fumY sind MY i addition to the density distribae
Gon pte' ) as unhnown quantities to estonate,  This will allow seismic travel times, fiee
oscillation periods, and body tide observations o used, all of which depend upon ay,
AT and pu’Y Graber (1977 has made a start in this divection using togsional vibrational
modes of the earth, dut nneell work necds te be done, Inclusion o cheinicat compasition
and equntions of stte are other possible directions tor the theoty,

Uhe poad hiere is to pud into the probleny atl of the physics sind data that we konow

and maximize the remaining missing idormation, 15 we come to a point where the physics

't
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and data determine a unique answer, theee is no need for information theory or any other
inference technique,  There is no remaining uncertainty; we have the answer, Since this
happy state ol affairs is unlikely to oceur soon, geophysics has a real need for souml

methods of inference,

6.0 DISCUSSION

We will discuss here some problems and questions about the information theory ap-
proach, The two main problems which face it have been discussed extensively in the
literature and only bear indirectly on the geophysical problem at hamd, Hence we will
amerely point them out and thenr move on to questions more relevant to geophysics,

The first problem is that the inforpation theory approach appears umable to deal with cer-
tain kinds of information, Forexample, suppose we tip a coin 100 times and it comes up heads
75 times, Clearly we have infernation on whether the next fip will be a heads or a tails, Buat
how do we maximize o, (200 using this data? Information theory seems to be silent on this
question, This coin Clip problem is discussed by Rowlinson (1970) and references he cites,

The second question is what to da about continuons probability distributions, It has
vexed even the most ardent proponents of the information theory approach,

Shantiost (1948, p, 628) propased as the approprigte peneratization for the continuous
case in one dimeasion the funetion

=
Ml = -K .:!; pOOIpEx kix
where p(x) is the probability distribution and x is a continuous parameter, One ditficulty
is immediately apparent, U takes the togarithm of a dimensioned quantity:  pix) has
dimensions of inverse length it x s a length, say, The biggest stumbling block, however,

to the use ol the above cquation is in assigning prior probabilities, To illusteate, suppose
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x represents the speed of a particle and is known to lie between values xp and x>, We
have no further information, I we apply Jaynes® principle we find p(x) = constant for
X| = X & x3 and zero outside the interval, But it we had taken the Kinetic energy of the
particle (which depends on x2) as the contintous parameter and found the probability
distribution as a function of kinetic energy, we would have again found it {0 be constant
over the interval, The two are inconsistent: a constant distribution for speed implies a
nonconstant distribsition ror energy and vice versa, Thus the problem, Jaynes (1963,
1968) and Hobson and Cheng (1973) argue that the above cquation must be modified,
while Tribus and Rossi (1973) and Batty (1974) feel that it is the correct equation and
that tne inconsistency is a pseudoproblem, Rowlinson (1970) also discusses this matter,

Getting back to the density distribution derived here, a question arises:  why assume
that the cubes are sparsely occupied, thus giving Maxwell-Boltzmann statistics? This
would seem all right for a dilute system, but in the case of the carth it would appear more
reasonable not to limit the number of particles in cach cube,

It In fact we allow an unlimited number of particles fo oceupy cach cube, then we
are dealing with Bose-Xinstein staristics, Finding ﬁj in the uswal statistical mechanical

fashion (Morse, 196%, p, 326) vields
1

ﬁ'u') R
4 2
cﬂ|+ﬂ3r] -1

using the mass and moment of inertia as the constroints so that

m

ar) =—

3 (ol
ea|+azr -1

Here we have a problem, There are more unknowns than constraints, If we knew how to

13
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choose l\‘-:-. then we could find o and a from the constraints of mass and moment of
inertin, Unfortumately, we have o clear guiliance in this matter,

There is a way, lowever, to neatly sidestep the problem,. We introduce a third piece
of information: we assume we hnow giy: ), the vilue of the density at the carth's sus-

face. Using this infornation in eq. (0,1 yields

. -
U‘“l elt::l!- | )p(“l:}
’j(l) — - t - .- 2 B -
R TP L |

andd we use our knowledpe ot f\—ll; ad C to fid the two multipliers. Taking Alag:)as L84
ginfemd to agree with the sarface demsity of rocks (Stacey, 1964, p, T04), we Find by
numerical integrilion

i 5517 3
ALY - a2 S opmlenr (0.
Oubde RS+ 0,0007

This distribution is plotted in Fig, 2, along with Bullen'’s (1975) optimum distribution,
This Bose-Finstein distribution is almost indistinguishable [rom the Maswell-Boltzmann
distribution of Figure [ and the distinction between using the two is dcademic in this
instance, at least,

So we could use Bose-Finstein statistics in the information theory approach to the
carth's density distribution,  While it is probably conceptuatly superior to Maxwell-Boit /-
mann statistics, it is also a little more complicated mathematically, as a comparison of
e, (oL and (0,23 shows,  The Maxwell-Boltzmann case in future investigations shoulkd
probalidy be investigated Tiest, betng simpler,

Another question arises about the information theory approach,  Suppose we are

again discussing the example of the carth’s mass, where we have N masses to choose from

14



amt know that XM, - ?\_1"[.-. The iformation theory probability distribugon is expag- 1+
ap M, Yas found varier, Yet the experimental protability distriboon s probably a Ganssian
with the forn const = exp(+ Mi—i‘t',:}f ‘adY rathet than the simple exponential distribation of
infer mation theory, with both My and o being known, The same may be said for the mo-
ment of wertie, How do we handle this?

1is actually nither casy 1o abtaimn a Geussian disteibwition fram the information theory
approach,  Assutuing that we hrow

'-c\i: P!{ M‘ —ﬁl;)-’ = wgl
we ditferentiate

-0l + ap¥T -y TP - My

with respect to cach By, giving

pi ~ cn‘u-l “'t\tthii“ﬁ [-'):
witiely s The desieed Gaussdan, Prosumably Honding ﬁup using 4 Gausstan s Jitfeale, bhut the
question is prababhy moot, As long as we deal with o nareow tange of values of toass ieat
My, it woukd seem to matter tittle whether we use exponential or Gaussian distributivans,

A we have seen, the information theory approach does have its problems; buf the
strengtie of the appraach are many, s plulosophical fasis is satistving: there s no unwar-
ratted woiglding of possible answers, s ttttonal and objective: evervone using the appeoach
will obtain the some apswers, given the ome data, Hogives the “bhost™ answer on The buisig
of very Bittle data, The mathemativs of the theory is standand: that of statistical mechaivcs,
Observationad errors have a natural phice in the approach, 1t provides an alternative fo oy-
tensive modeling, Finally, its generality gives it great power: it can he applicd equathy well
o the statistios of a gas or the interjor of the carth, Phe information theory approach
shoubd Tind broad use in solid carth geaphysics,

15
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Figure 1, The information theory density distribution using Maxwell-Boltzmann statistics
(curve A) and the optimum density distribution of Bullen (1975) (curve B) are shown as 2

function of radial distance r,
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AY snd the optitnum density distribution of Bullen (1975 (enrve BY are shown as a function
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