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SECTION I

INTRODUCTION AND SUMMARY

The work described in this report represents a continuation of the effort
initiated under NASA contract NAS 1-13680, Study of Synthesis Techniques
for Insensitive Aircraft Control Systems. The by-products of that contract
were two new advanced theoretical concepts for insensitive controller design
that had been developed by contract consultants Professor William A,
Porter of the University of Michigan and Professor David L., Kleinman of
the University of Connecticut, The concept developed by Professor Porter
has been designated the Finite Dimensional Inverse method whereas that
developed by Professor Kleinfnan has been termed the Maximum Difficulty
concept. At the conclusion of the initial effort, neither of the concepts had
been developed to a point where the resultant insensitive controller designs
could be evaluated on a realistic flight control example., The objective of
this contract effort, NAS 1-14476, Insensitive Control Technology Devel-
opment, was to extend the theoretical base of the two concepts to workable
insensitive controller synthesis techniques and to evaluate the resultant
insensitive controller designs on a realistic flight control example, As in
the first study, the C-5A longitudinal dynamics model was used as the test.

bed for evaluation,

The results of the study of the two concepts are summarized below




FINITE DIMENSIONAL INVERSE CONCEPT

The present formulation of this concept is much more suited to trajectory-
type sensitivity problems than to stationary flight control problems. The
controller designed for thé C-5A example using this concept involves time-
varying gains, The controller's performance for this example fulfilled the
theoretical predictions, but the present formulation of the concept limited
the reduction in sensitivity to certain selected outputs, For the C-5A
example design, the control surface displacements were suitable as
selected outputs., Unfortunately, reductions in sensitivity of these outputs
did not yield reductions in sensitivity of other important responses, such

as bending and torsion moments,

Despite these deficiencies with respect to the C-5A example, the concept
exhibits- certain promising aspects such as on-line parameter identification
and sensitivity reduction of minimum phase input-output systems, The
study also indicates that although the computational requirements are

severe, they are not beyond current capabiiities.
MAXIMUM DIFFICULTY CONCEPT

The objective of the Maximum Difficulty concept was extended to exploration
of a technique devised by Professor Kleinman which utilizes the Informa-
tion Matrix element of parameter identification theory. In its complete
form, this concept requires insensitive controller design for a flight
condition with minimal controllability index and, at the same time, desen-
sitizing system responses to variations in uncertain parameters, The

latter function, involving the Information Matrix approach, received a




majority of the attention in the contract and will be the main subject of

the Maximum Difficulty concept discussion,

In addition to the development of the Information Matrix concept, Professor
Kleinman participated heavily in the actual design and preliminary evalu-
ations. Formal evaluation of the concept was performed on the 15-state
Case 4R residualized C~-5A model using the criteria defined in the initial
phase, The evaluation revealed that the insensitive controller designed
with the Information Matrix approach performed as well as the top-ranked

controllers of the previous study.




SECTION II

SYMBOLS

UPPER CASE

D, D(«)
F(a)
Gla), G

H(w)

N(a, b)

N(t)

Bending moment

Control input coefficient matrix in response equation
Plant coefficient matrix

Control input coefficient matrix

Coefficient matrix of state vector in output or response
equation

Identity matrix

Performance index

Gain matrix

Nominal gain matrix

A Riccati matrix

Finite dimensional inverse of To’ Information Matrix

Stability derivative (pitching moment due to vertical
velocity)

Normal distribution (a = mean, b = standard deviation)

Inverse of K(t)

Weighting matrix



X(t)

Weighting matrix

Sensitivity index

Torsion moment

Input-;)utput transformation

Nominal plant input-output transformation
Weighting matrix

Coefficient matrix in the differential equation
representation of M

LOWER CASE

p(t)

Q|

q(t)

Basis vectors

State vector for M

Dynamic pressure
Alternate state vector for M
Control input vector

Input to M

~ Output vector

State vector
Input vectors to the nominal plant giving outputs g.l

Output of M



GREEK SYMBOLS

Upper Case

AL)

m(t)

Lower Case

8T
sa

Scaling matrix in the differential equation representation
of M

Symmetric matrix function of the gi(t)

Vector of parameters

Scalar design parameter in insensitive compensator
implementations

Scaling factors

Perturbation transformation
Aileron displacement

Inboard elevator displacement
Damping ratio

Scalar white noise input

Outputs corresponding to specific inputs and plant
variations

Noise/signal ratio
Standard deviation

Frequency



SECTION III

FINITE DIMENSIONAL INVERSE COMPENSATOR

One of the major objectives. of this study was the development and quantita-
tive evaluation of the finite dimensional inverse technique for compensation
for parameter uncertainty. The finite dimensional inverse concept,
conceived in the previous insensitive controller study, is based on the concept
of the a priori construction of a set of inverse functions which are derived
from a finite number of input-output pair relationships. The input-output
pairs are specified by type of input, selected output, and a combination of
uncertainties that represent variations in plant behavior from a nominal or

no-uncertainty condition,

In operation, the measured outputs of the plant are used to determine the
degree of mapping of plant outputs on the prestored outputs at off-normal
conditions, The degree of mapping then dictates the formation of the
feedback signals using the inverse functions that are used to compensate for
the plant operating at off-nominal conditions. In essence, the inverse
functions represent the change in control which is necessary to negate the

effect of parameter uncertainties.

In investigating the finite dimensional inverse concept, the specific goal of
this part of the study was to implement the concept for a simple
illustrative example and for the C-5A example1 and to examine its

performance and limitations via simulation,




The illustrative example is a first order system with two parameters,

This example served two purposes, First, it provided a simple problem
for purposes of debugging software and examining numerical aspects of
implementation, Second, it permitted extensive analysis of the effects

of nonlinearity with respect to the plant parameters; variation in the design
parameter which governs the attainable degree of insensitivity; and sensor

noise,

The C-~5A example provided a more realistic test for the concept. Addi-
tional effects which could be examined with this example were those asso-
ciated with authentic disturbances, unmodeled dynamics, authentic types

of parameter uncertainty, and the choice of outputs of interest,

Two forms of the compensator were examined. One included a simulation
of the nominal as a model; the other excluded this model, In general,

the performance of the compensators was consistent with theoretical pre-

dictions: both configurations yielded reductions in sensitivity, The second
configuration exhibited a tendency toward an initial high gain instability for
a constant sensitivity gain. This could be alleviated with a time-varying
sensitivity gain, The coneept as implemented is based on the assumption
that the system outputs are linearly dependent on the parameter variations,
The effect of actual nonlinear dependence was found to be significant in the
sense that the reduction in sensitivity for large parameter variations
differed significantly from the linear theoretical predictions. But the

sensitivity was reduced even for large parameter variations.



In the C-5A example it was found that the compensator provides reduced
sensitivity in terms of the outputs of the system, but not in terms of the
system states or other system responses of interest. To be of real bene-
fit for such an example, this deficiency would need to be remedied, It
was also found that the compensators did provide reduced sensitivity to

gust disturbances and were not seriously affected by unmodeled dynamics.

Details of the mathematical formulation and the experimental results are

described below,
MATHEMATICAL FORMULATION

Consider a linear system represented by an input-output transformation
T(a) with o denoting an r-dimensional vector of parameters, The system

may be represented in state variable form as
T(¢): % = Fla)x+Gla)u, x(0) = 0 (1)
w = H(e)x

where T(«) maps the input u into the output w, Let us assume without

loss of generality that the nominal value of the parameter vector is zero
and let To denote the nominal system., We assume that the dependence of
T(o¢) on « is sufficiently smooth so that linearization about zero is an
adequate model, If {el, €gsees er} is a ‘basis for Rr, then the lineariza-~

tion of §T(u) becomes

a3

§ T(u) =
i

n ™

a; § - (2)
1




10

8T = T(a) -~ T (3)
« = 151 o e (4)
gl = [T (el) —TO]u: o= 1, 2,...,1‘ (5)

We note that g generally depends on u.

For the moment, suppose that u is known a priori so that the g, may be

computed. Let

X = Linear Span {gl, €9s...,8,} = Range §T(u) (8)

For simplicity of discussion, we will assume a single input u, The exten-
sion to more than one input is straightforward. Assuming that X is con-

tained in the range of To’ there exist functions {yl, NOYRRE ,yr} such that
gE. = T y., i =1,2,...,r (7)
We call a map M a finite-dimensional inverse of To if M is linear, bounded,
and satisfies
Mg, = y.,i=1,...,r (8)
Assuming the set of functions {g.l(t)} are linearly independent on every
finite interval [0, T], the map M may be realized in the following state

variable or differential equation form, 2,3 Let M map v into z, Then M

is given by




z(t) = y(t) A(t) K(t) p(t) (9)

p(t) = - L X(t) p(t) + A(t) g(t) v(t), p(0) =0 (10)
where

y(t) = row (yl(t), yz(t), ...,yr(t)) (11)

g(t) = col (gl(t), gz(t), cees gr(t)) (12)
) et 2 -1

Mt) = diag (\;), Ay = [J‘O g (s)ds] 2 (13)
) 2 t 2

X(t) = dlag(xii), X, ® gi(t)lj‘o gi(s)ds (14)

and K(t) is a symmetric r x r matrix. The matrix K(t) is the inverse of a

symmetric matrix N(t) and satisfies the Riccati differential equation.
R(t) = L{X(t) K(t) +K(t) X(£)} - K(£) MEK(t) (15)

where the elements of the matrices N(t) and T(t) are defined as

ot t 2 t 2
N (0 = j‘og.l(t)-gj(t)/\[j‘ogi(s)ds o5 (s)ds (16)

t 2 . .t .2
M0 = g0 gm/[ ] es)ds [F istas (17)

The vector p(t) may be computed in the following manner as an alternative
to Equation (10). Let us define the vector q(t) as the solution of the follow-

ing differential equation:
q(t) = gt)-v(t), q(0) = 0 (18)

Then p(t) is given by the equation

p(t) = aA(t)g (t) T (19)

11




since

ACE) q(t) + ACE) &(t)

0

d
I [A(t)a(t)]

-EX(t) [A(B)a(t)] + A(t) g(t)v(t) (20)

The numerical solution for p(t) via Equations (18) and (19) was found to be
much better behaved than the solution for p(t) via Equation (10) for t near

zZero,

The finite dimensional inverse may be used as a compensator to reduce
sensitivity. It may also be used in a parameter identifier mode, Two com-
pensator configurations are shown schematically in Figures 1 and 2, The

on-line identifier configuration is shown schematically in Figure 3,

Notation in these figures will be used in the remaining discussion. In

particular, we note that
w is the output of the uncompensated system
W is the output of the nominal system
w is the output of the compensated system with model
W is the output of the compensated system without the model

Similar notation is used for the state vectors of these systems. For example,

x is the state vector of the uncompensated system,

12




T(a)

Figure 1, Compensated System with Model

|

u 1+8 —l T(0)

148

Figure 2, Compensated System without Model

13




Figure 3, On-Line Identifier

The map M for the compensated systems was computed according to the
equations given above with the {gi} precomputed, The only difference in
M between Figures 1 and 2 is in the inputs and outputs., In Figure 1, the
input v is taken to be w - w_ and the output is called %. In Figure 2 the
input to M is W and the output is called z. The map M for the on-line
identifier was computed in a similar manner, except that y(t) is called 7y,
the r x r identity matrix., The {gi} were replaced by {éi} computed on line

from the equations

éi = [D-Z]u, i=1,2,...,r (21)
a.,

1 a=0

The output, z, is called a.

14




The sensitivity to variations in « of the system shown in Figure 1 may be

represented by the index:

lim -1
S_(8) = [ >0 (T _(a® - T,) (T(a) - T )Y (22)

where Tm(o:, B) is the closed-loop map from u to w. Fora single-input/
single-output system, this index is the limit as ||«|| tends to zero of the
ratio of the error between the compensated system and the nominal system
outputs to the error between the uncompensated system and the nominal

system outputs, i.e.,

S (p) = lim o (23)
i lef-0 w-w

In the general case of an arbitrary M,
T (2,8 = (I+5 T(«)M) ' T(a) (I+ pMT) (24)

and it follows that

_ -1
S_(8) = || (I+pT M) (25)
Thus, with M = TO' , we would have
S (p=@+pt (26)
m

The M that was constructed above is an approximation to To—l and in fact
is equal to To_1 on a finite dimensional subspace. Thus, we can expect

that the compensator will exhibit reduced sensitivity.

15
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For the system of Figure 2, defining a similar sensitivity index,

S(p = lim [(T(e,p) - T)(T(a) - T )| (27)
[l |0

where T(«, B) is the closed-loop map from u to w. This leads to the same
result as obtained for Sm( B), i.e.,

S(g) = [[(1+p T M)

Our major interest was to assess the utility of this concept to reduce

sensitivity.

As a by-product of our computational analysis, we also examined the utility
of the concept for on-line parameter identification for the simple illustrative
example, The configuration is shown in Figure 3. In this case, M is a

finite dimensional inverse to the map T(u) from o to (T(w) - TO) usw-w o,
THE ILLUSTRATIVE EXAMPLE

Several experiments were performed with the following scalar system

assuming two uncertain parameters:

I

T(ozl, o) x(t) = ~(1 +ozl) x (t) + (1 +ay) ult), x(0) =0

2
w(t) = x(t)

where the nominal values of o 1 and ag

the performance of the two compensators (with and without an explicit model),

are zero. In addition to examining

the performance of an on-line identifier was analyzed,



The partial inverse for the compensators was constructed assuming for
simplicity that the input u was a unit step, As such, the response of the
nominal system denoted by X (t) and the input-output pairs, [yi(t), gi(t)],

corresponding to perturbations in o, are:

1
xo(t) = 1 - et (28)
y (B = -(1 ~e™h (29)
g () = te b1 - e7h) (30)
yolt) = 1 (31)
gy () = 1-e" (32)
The pairs [yi(t), gi(t)] were computed from the equations
€ T "Ey " X% gl(O) =0 (33)
gz =-g, t Uay, E,(0) =0 (34)
yi = .g’i—gi’ i=132 (35)

with @) Toag T U=l Equations (33) and (34) which define gy and g, are
the variational equations associated with the parameters @, and oy Egua-
tions (35) which define Y4 and yq are the nominal input-output relations,

The on-line identifier was constructed by choosing the output to be

~ | Estimate of ¢
« - [Estimate of a;] (38)

17



In this case the input-output pairs [§r.l, gi] are given by

y, = [1 0], §,=[0 1] (37)

=

~g, gy &y = %, U, g (0) =0 (38)

with g being computed on line for arbitrary inputs u(t).

Experiments were conducted to examine the effects on the compensator

performance of
] Magnitude and direction of the parameter vector «,
o Magnitude of the design parameter 8, and

° Sensor noise,

Transient responses for a five-second interval were computed for various
combinations of ¢ and g with and without sensor noise. Noise-to-signal
ratios less than or equal to one caused no significant changes in performance,
Quantitative results for the variations in ¢ and B with no sensor noise are

summarized below.

A typical response plot of the output w(t) is shown in Figure 4 for a step

input,

The responses of the compensated systems are closer to the nominal

response than is the uncompensated response, The effect of the parameter
8 is also evident in Figure 4, The larger g yields less deviation from the
nominal, The error ratios corresponding to the responses of Figure 4 are

shown in Figure 5, Both these figures display a significant initial transient

18



1.0
NOMINAL
0.8 |- COMPENSATED WITH MODEL (8 = 1-0)\\\‘
0.6
l._.
e )
o
2 N
3
L \
COMPENSATED WITH
MODEL (8 = 0.5)
0.2
UNCOMPENSATED
0 I l 1 j
0 1.0 2.0 3.0 4.0 5.0

TIME (SECONDS)

Figure 4, Responses to Unit Step (al =0, @y = -0.5)

61



1.0
COMPENSATED WITH MODEL (8 = 0.5)
COMPENSATED WITHOUT MODEL (g = 0.5)
/
0.8 y — e
~\A OMPENSATED WITHOUT MODEL (g = 1.0)
__—~COMPENSATED WITH MODEL (8 = 1.0)
v 0.6 H
S
= ERROR RATIOS:
o COMPENSATED WITHOUT MODEL * = %o
oz
5 0.4} X=X
COMPENSATED WITH MODEL * = %o
X - X,
0.2
| { | 1 |
1 2 3 4 5
TIME (SECONDS)
Figure 5. Error Ratios for Step Responses (al = 0, ay = -0.5)

20



for the compensator without the model, This transient is caused by the
initial high gain on the system output. In the compensator with the model,
this high gain is multiplied by the error rather than the output, and the
initial transient -is greatly subdued, A time-varying 8 cquld be introduced

to alleviate the initial transient of the compensator without the model.

The theoretically predicted values for the error ratio is (B + 1)-1 which
gives 1/2 for g = 1 and 2/3 for g = 1/2, These values are somewhat less
than the steady state values shown in Figure 5. The parameters for this
figure are o, = 0 and @y = -1/2, The error ratios for a case with oo, = 0

1 1

and o, = -1/10 are shown in Figure 6 for B = 1, In this case of smaller

2
paramcier magnitudes, the steady state ratios very closely approximate
the theoretically predicted value of 1/2, The direction of the vector

(a az) also influences the degree of compensation, The error ratios

aftler five seconds for 12 different values of(al, az) and three values of g
are given in Table 1, The data generally confirm the theory for small
values of ay and @, and the predicted trend in g, The major deviation
occurs when the parameters are equal and are of the same sign, In this
case the steady state values of the outputs for the compensated and uncom-
pensated systems are equal, Thus, the denominator of the error ratio is
approaching zero, and the fact that the ratios have the magnitudes shown

is an indication that the compensators behave well even in this case,

The on-line identifier was also evaluated by computing five-second transient
responses. Responses to a unit step input with zero initial condition for
several values of (cyl, °’2) are shown in Figure 7. Four general charac-

teristics are evident in this figure. First, if o, is zero, the estimate

1
of g is exact to within the computer word-length accuracy. Second, for

21



ERROR RATIO

3.0

2.0

1.0

0.5

ERROR RATIOS:

COMPENSATED WITHOUT MODEL X - X

X - Xo
COMPENSATED WITH MODEL X - XJ

X-XO

COMPENSATOR WITHOUT MODEL

COMPENSATOR WITH MODEL

|

| i 1 i

1 2 3 4

TIME (SECONDS)

Figure 6. Error Ratios for Step Responses (oz1 =0.0, o, = -0. 1)

with B = 1 and Sensor Noise



TABLE 1. ERROR RATIOS FOR VARIOUS VALUES OF @, O, B

€2

B =0.5 8 = .75 | 8=1.0
Theoretical ‘ Theoretical | Theoretical
Ratio .67 Ratio .57 ‘ Ratio .50

£-X X -X | x-x - x-x  x-x  X-x
0 0 | 0 g o o | 0
al q2 X —XO X -XO X —Xo | X -Xo X -XO . X -Xo
0.1 0 0.685 | 0.686 0.592 | 0.606 | 0.521 | 0.559
0 0.1 0,645 0,642 0.547 | 0.528 | 0,474 . 0.428

’ (
0.1 0.1 0.738 0.630 0.606 -0,0784 | 0.485 | -1,153

| :

-0.1 0.1 0.624 | 0.622 0.524 | 0,515 | 0,452 0.430
0.5 0 0.742 | 0.742 0.658 | 0.661 0.591 0.599
0 0.5 0.571 0.568 0.468 - 0,459 i 0.396 0.376
0.4 0.4 1,024 0.885 0.827 0.267 0,624 -0.593
-0.4 0.4 0.485 0.484 0.384 0.380 0.316 0.308
1.0 0 0.792 0.792 0.718 0.719 0.656 0. 661
0 1.0 0.498 0.495 0.396 0.386 0.327 0.309
0.7 0.7 1.292 1.075 0.997 0.248 0.687 | -0.852
-0.7 0.7 0.342 0.340 0.251 0.249 0.198 0.193
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Figure 7, On-Line Identifier Responses to

Step Input, u =1



nonzero «., the estimate of g, is more accurate than the estimate of o
2

1’ 1

Third, for nonzero ¢,, the accuracy of the estimate is greatest in the

initial phase of the r9}3ponse. Fourth, accuracy is better for small mag-
nitudes than for large magnitudes of a12 + ‘Yg when @y is nonzero,

The first characteristic is a consequence of the fact that the system output
is linear in o, for zero initial conditions, This fact also contributes to the
estimates of @, being more accurate than the estimates of . The third
characteristic is a consequence of the fact that as the system approaches

steady state, the estimate is given by

A 2 A A A
g €189 o g, (x-x )
a A .2 S8 A
5% & | o gy (x-x_) |
which gives the linear relation
(o - al)SS = (x-x ) o (40)

For this example, the only correct estimate satisfying Equation (40) occurs
when @y = 0 and @y is arbitrary. The fourth characteristic is a manifesta-

tion of the nonlinearity with respect to o, of the system output.

1

Responses of the on-line identifier to a sinusoidal input are shown in

Figure 8, The same general characteristics as for the step input occur,.

Additional responses were computed for other values of (011, az) and for
cases with '"'sensor noise' added in the simulation. The noise caused no

serious degradation in performance,
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In summary, the compensator and the on-line identifier fulfilled the theoret-

ical expectations,
THE C-5A EXAMPLE

- A seventh order model of. the C-5A was used as the design model. This
model was generated from the 79th order model described in Reference 1

as Case 1, The unsteady aerodynamics were truncated as in Reference 1

to arrive at a 42nd order model called Case 2, Then a 13th order model
called Case 5 was computed by the process of residualization, This model
retained only one flexure mode, The seventh order gust model was then
approximated by a first order gust model yielding the seventh order reduced
model called Case 5R'. The data for this model are given in the Appendix A,

The parameter variations considered were the same as those in Reference 1,

In Reference 1, a 15th order model called Case 4R which retained two
flexure modes was used as a design model. Comparison of the open-loop
performance of Case 4R, Case 5R, and Case 5R' models is given in Table 2,

The results indicate a high degree of consistency.

A nominal controller for Case 5R' was computed using quadratic optional
theory with the same response vector and weights as used in the nominal
controller design for Case 4R. The response vector and quadratic weights
are given in Table 3, The closed-loop performance for the nominal param-
eter setting for Case 4R and Case 5R' is shown in Table 4, Again, there is

a high degree of consistency.
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TABLE 2,

OPEN-LOOP PERFORMANCE COMPARISON

Case 4R Case 5R Case 5 R!
6 6 6
Maneuver load 0.0427 x 10 0.0427 x 10 0.0427x 10
bending (N-m)
: 6 .6 6 -
Gust load bending 0. 12 x 10 0, 12 x 10 a. 12x 10
(N-m)
. 5 5 5
Gust load torsion 0.179x 10 0.179x 10 0.174x 10
(N-m)
Short period frequency 1.62 1.55 1.55
(rad/sec)
~ Short period damping 0.56 0.57 0.57
(sec_l)




TABLE 3.

RESPONSE VECTOR AND QUADRATIC WEIGHTS

Response Vector Physical Quantity Weight
o . : . -10
r3 B1 = bending moment at wing root 1x 10

1
ry T1 = forsion moment at wing root 1x 10-9
2
. . -13
ry -Bl = rate of change of bending 5.5x 10
3 moment at wing root
: . -11
ry T1 = rate of change of torsion 1x 10
4 moment at wing root
ry 8, = aileron displacement 0.32 x 108
5
ry 8 = inboard elevator displacement 0
6 i
r 8 = function of aileron displace- 1x 106
d a .
7 m ment and aileron command
r 8 = inboard elevator rate 1x 10%
d e.
8 i
5
r.. r = control follower response 2x 10
. d9 CF

29




o¢

TABLE 4, CLOSED-LOOP PERFORMANCE COMPARISON

Criterion Case 4R Case 5R!
Maneuver load control < -30% -40% -41%
bending % change
Gust load--bending < -30% -35% -34%
alleviation
Percent change--torsion <+ 5% -31% -27%
Handling wsp(rad/sec) > 1.6 2,13 2,16
Qualities ¢(sec™ ) 0.7 -0.8 72 0,73
Stability Gain ga > 6db ® e
be 29db o
Phase sa > 450 ® ®

de




The equations used to implement the compensator for this example are
given below, In this case the input is two-dimensional and the inverse is
based on independent step inputs in each channel. The equations are given

for a general two-dimensional output,

The equations for the nominal states and outputs are

M
N

(F0 + G Ko) x, + G u, _ (41)

1 1

2
n

(H +D K )x. +D u, (42)
o o o i o i

where i = 1, 2 represents step inputs on the aileron and inboard elevators,

respectively, and the subscript o indicates nominal value,

The equations for the variations in states and outfputs are

x (i,3) (F_ +G K ) x(i,]) +(Fj -F ) x, (43)

g(L,3) = (H +DK)x(i,j)+(H -H)x +(D; - D) u (44)

where Fj’ Hj’ and Dj are computed from the general expressions for F,

H, and D in terms of UAps and MW with j = 1, 2,3 denoting the following

£ £

specific variations:
j=1:9,=1.0, y,=1.0, wa=0.8
j=2:971.0, o=0.75, My, = 1.0
j =8:q=1.25, .= 1.0, wa=1.o

The equations relating the variational outputs that are to be outputs of the

nominal system are
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X (1L,)) = (F_+GK )X (L)) +G (L) (45)
€ (i,j) = (H_ +DK ) x(i,3) (46)

where y(i,j) is the inverse input defined such that g(i,j) = g(i,j). An
This derivation will assume that

expression for y(i, j) will now be derived.
the number of outputs equals the number of controls.

Let us introduce

e (i,j) =x(i,j) - x (i,]) (47)
and

&(i,5) = £(,j) - €(,]) (48)
Then
8 (L)) =F x (i, +(F, -F ) x; - F_ x (,3) - Gy (1,3)
= FO e (i,j)+ (Fj -F ) x - G,y (L,3) (49)
where

= . N
Fo (Fo G1 KO)

Defining ﬁo = (Ho + DKO), Equation (48) may be written as
~ 1. . =— PR + _ + -
e (i,j) Ho e (i,j) (Hj I—Io) X, (Dj Do) u,
Assuming u, = 0 and differentiating Equation (50), we have

€(i,j) = H0 e (i,j) + (Hj - Ho) %

H [F e (L)) +(FJ. -F ) x -G y(i,i] +(Hj -H ) %,

32
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Now y(i,j) is to be such that €(i, j) is identically zero, which is equivalent

to 'é'(i,j) being zero since x(i,j), :E(i,j), x;, and u, are initially zero.

Thus, setting the left-hand side of Equation (51) to zero, we may solve for

y (i, j) obtaining
<. = -1 = = T - .
y(i,j) = [HoGlj {[HOFOe(l,J) + Ho(Fj —Fo)xi] + (Hj -Ho)xi}

Using this expression for y(i,j), Equation (49) may be rewritten as

o = A= =
&(1,1) = [1- G(E G HIIF e@j +(F, - F ) x]

—_ -1 .
- Gl(HOGl) (Hj - HO) X,

Now the dot products (for i,j = 1,2, 3) are defined as

-

i = g(1,1) - &1,7)

‘.’i+3,j+3 = g(2,1) © &2,j)

x./‘i’j+3 =w}j+3,i = g(1,1i) - &2,37)
éj =&(1,3) - Ymeasured

dj = 8(2,j) - Wmeasured

Then defining

pk = s k =1:25 :6
0 if vkk = 0
1,50 /[v.. if v.. # 0O
~ L, ] JJ] J
¥, = , j=1,2,3
J 0 if v.. = 0O
J]

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
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5 = =1,2,3 (61)
yJ+3 0 if v = Y
j+3,j+3
-1
K = N (62)
Nkk= 1, k=1,2,...,6 ' (63)
Nkzz sz/ ViV 4 7 k,g = 1,2,,..,6 (64)
the output of the compensator is
z = [¥:59--.5951KP (65)

ol

where y is yp and p = diag (.. Vi
In the first attempt to implement the compensator, the first two responses,
bending moment and torsion moment, were chosen as the outputs. Unfor-
tunately, the transfer matrix from the inputs to these outputs has a zero in
the right half-plane. This caused the coefficient matrix in Equation (53),
namely [I - Gl(ﬁoGl)_l ﬁojﬁo’ to have eigenvalues in the right half-plane
leading to divergent functions y(i,j). Rather than implement this compen-
sator with internal instability, it was decided to choose the aerodynamic
surface positions, 8a and se;, as the outputs, This choice eliminated

the internal instability.,
Evaluation
Experiments were conducted to examine the quantitative performance of

the compensator, The parameter variations considered were the three

major parameter variations of Reference 1, i.e., dynamic pressure, q;
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structural frequency, w; and the stability derivative, MW Dynamic
pressure variations cause changes in all the aerodynamic terms and, hence,
most of the elements of the coefficient matrices. Structural frequency
variations induce variations in a significant subset of coefficients m the
complete model, The variation in Mw permits examination of the effeét

of variation in a single coefficient, The physical motivation for treating
these variations is discussed in Reference 1, This example also has per-
mitted examination of the effect of authentic gust disturbances. A single

sample on a five-second interval was used to examine the gust effect.

To examine the effect of unmodeled dynamics, the compensator designed
for the 7th order model was used in conjunction with the 15th order

model, Experiments were also conducted to test the effect of the design
parameter, g, The model was incorporated in the compensator for all the
C-5A experiments, Another experiment conducted tested the effect of re-
cycling the time-varying gains of the compensator. These gains were

computed off line for a five-second interval,

In the recycle experiment, the gains for the first fourth of this interval were
used repeatedly in each succeeding fourth of the interval., This experiment
was motivated by two considerations, The first is that the example is
essentially stationary and that infinite data lengths are impractical, The
second is that the assumption of linearity of the outputs with respect to
parameter variations is less valid for longer time intervals than for short
ones, This phenomenon is shown in Figure 9, The two components of

g(2, 1), the output of the variational equation associated with MW for an

inboard elevator step input, are shown along with the actual increments
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[

in the outputs corresponding to 4 and 20 percent variations in MW for the
same step input., The nonlinear effect is clearly more pronounced in the
later part of the five-second interval., This phenomenon is common to all

the components of the g's.

To determine the effects of the design parameter, g, responses to gusts
and step inputs of 0,02 radian magnitude in u 1 and u, were computed, To
determine the effects of different parameter variations, such responses
were computed for independent variations of individual parameters and two
cases of variations in all three parameters, These latter two cases were

found to be "worst case" variations in Reference 1,

Figures 10 and 11 show the deviations from nominal of control surface
deflections in response 'to step inputs for g = 0, 0.5, 1.0, and 3,0 with the
model in the loop and a 20 percent variation in Mw‘ The reduction in
these deviations for increasing g is consistent with the theoretical pre-

diction.

The effect of recycling is shown with g = 1 in Figure 12 for the same param-

eter variation and a step in u The recycling induces a severe transient

following the start of each reclzycle. This is due in part to the fact that the

compensator output is zero for an initial interval, and in part to the effec-
tive high gain in the system following this zero output interval. Although

the recycling tended to deteriorate the sa response, it improved the se,

response,

Figures 13 and 14 show the effect of changing the input. The inputs for

these responses were chosen to be a positive step for 1 sec, followed by

37



38

(8 - sa)10°

- 4
(6ei - 6ei°)10

Figure

0,20 0,40 0, 60

00

=0.20
X+b03
==}
m
—
> >

40

[ | I TR ||

W OO

Do

ol.

.00 0.80 1.60 2.40

0, 20

5.0

5.60

-4.53 -1.10 -0.67 -p.23

4.87

0.00 0.80 1.60 2.40 3.20
TIME (SEC)

10, Response to u,

=0,02 fOI‘El-f=w




3,80

-
-
o
2
.
o~
wn
=
-
< b
>4
-3
phA
~
w
ol
m BETA = 0
A BETA = 0.5
;2 BETA = 1.0
BETA = 3.0
0. 00 0.80 T T1en | 2.u0 3.20 4. 0o .80 S. 60
TIME (SEC)
ol
[=]
=
m
=
t
=
o.
1
oy
o
pang @
o -
g o
o 1
L}
a
< “O
~ n
w
=)
]
)
[--]
o
1
o
o
D.00 0.80 1.60 2.0 3.20 4. 00 480 S. 60

TIME (SEC3

Figure 11, Response to u, = 0.02 for qf = ‘”f =1.,0, wa =0.8



40

-p.40  _ 0,20

5
0)'IO
-4.00

(Sa - ta

-1.60

-2.20

p?.BU

[s]1] 0.80 1.60 2.40 3.20 4y.00

0,40

-0,07

-0.53

yio?

io
~-1.00

(ae1 - de,

-1.47

-1.83

.40

|

0.00 0.80 1.60 2740 .00

3.20
TIME (SEC)

Figure 12, Response to u, = 0.02 for Ef =y

with recycle every 1,25 second

£

=1.0, M




0,38

-0.23 = 0,07

4
0)'IO
-0, 52

(Ea - 8a

-0.81

-1.11

- 3
(aei - Geio)lo
-0.97 -0.73 -0.50 -0.217 -p,03 0,20 @).40

.20

3.20 4.00 4.80 S.60
TIME (SEC3

Figure 12,

, 3.20 4.00 4.80 S.60
TIME (SEC]

Response to u, = 0.02 for 9 = wg = 1.0, wa =0.8

with recycle every 1,25 second (concluded)

41



42

5
0)'IO

(Sa - da

- 4
(cei - ceio)w

., B0

-0.,18 . 0,07 0,28 Q0,50

-p.37

-0.58

0.00 0.80 1.60 2.40

1,60

. 3,20 4. 00 4. B0 5. 60
TIME (SEC)

-0.53

.60

1,07

0,53

&-00

-1.07

.00 0.80 1.60 2.40 Y 00 4.80 S.60

3,20
TIME (SEC)
Figure 13, Response to uy Doublet for

q = w = 1.0, wa=0.8




4

(3a - ﬁao)'lO

(6e1. - 591’0“0

0,24

D.00 0.80 1.60 2.40 4.00 4.80

3.20
TIME [(SET)

.60

-0.20 0,00 0,20 0,40

~0.40

=0.60

.00 0.80 1.60 2.40 i.00 4.80

3.20
TIME (SEC)

Figure 14, Response to u, Doublet for

q=wp=1.0, My =0.8

.60

43



a negative step for 1 sec, and then zero for 3 sec. This type of input is

more realistic for an aircraft.

The gust response for this parameter variation is shown in Figures 15 and
16, The effect of B8 is shown in Figure 15, and the effect of recycling is
shown in Figure 16, In Figure 15, the nonlinear effect is evident with
better performance in the earlier portion of the interval than in the later
portion, In this case, recycling seems to improve performance generally

in spite of the induced transients.

Figures.17 and 18 display the effect of g for step inputs for the so-called

"worst" Case 1 condition. Again, the trend is consistent with the theory.

The steady state relative errors for the parameter variations considered
are summarized in Table 5 for step inputs, The trend is generally in
accordance with the theory. Exceptions do occur in cases where one of

the ratios is negative,

Table 6 presents the gust response statistics for the same parameter
variations. Here the mean and standard deviations are computed for the
time series of numerical integration on the five-second interval for a
single gust sample. Again, the results are generally in accord with the

theory.

The final experiment consisted of testing the effects of unmodeled dynamics,

Figures 19, 20, and 21 present comparisons of step responses for the
7th and 15th order systems with the three individual parameter variations,

Gust responses for these cases are shown in Figures 22, 23, and 24, The
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TABLE 5, STEADY STATE RELATIVE ERRORS

x(5) - x _(5) x(6) - x_(6)

Plant B Step Input __—X(5) ~< (5 x_——(G) X (8)
(o] t 0
F1 1 u1 =0,02 0.52 0.52
3 u, =0.02 0.27 0.26
1 u2 =0,02 0.52 0.52
3 u2 =0,02 0.27 0.26
F2 1 u1 =0,02 0.20 0.19
3 u1 =0,02 -0.99 0.30
1 u2 =0,02 0.48 0.50
3 u2 = 0,02 0.21 0.23
F3 1 u1 = 0,02 0.56 0.28
3 u1 = 0,02 0.56 -0.03
1 u2 = 0,02 0.49 0.65
3 u2 =0.02 0.25 0.34
WC1 1 u1 =0.02 0.27 0.22
3 u1 = 0,02 0.70 -0.01
1 u2 = 0,02 0.50 0.87
3 u2 = 0,02 0,24 -0.04
wC2 1 u1 = 0,02 -0,01 0.34
3 u1 =0,02 -0,01 0.34
1 u2 =0,02 0,57 0.78
3 u2 =0,02 0, 26 0.71
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TABLE 6. GUST RESPONSE STATISTICS
- 9. ~ O * x
Plant | B (x) Xg (x4) Xg Clxg | +]xg 11 \/(c}’;g + o‘x%>/2
F1 | 0 | 0.447-6 | 0.248-3 | -0.148-3 | 0.818-3 | 0.740-4 0.604-3
F1 | 0.5 | 0.146-4 | 0.249-3 | -0.426-4 | 0.739-3 | 0,286-4 0.551-3
F1 | 1 0.138-4 | 0.262-3 | -0.292-5 | 0.692-3 | 0,083-4 0.523-3
F1 | 2 0.100-4 | 0.290-3 | 0.186-4 | 0.614-3 | 0,143-4 0.480-3
F1 | 3 0.825-5 | 0.324-3 | 0.174-4 | 0,602-3 | 0,128-4 0.483-3
F2 | 0 |-0,245-4 | 0.394-3 | -0.895-4 | 0.923-3 | 0.570-4 0.710-3
F2 | 1 | -0.183-4 | 0.384-3 | 0.392-4 | 0.780-3 | 0,288-4 0.615-3
F2 | 3 | -0.206-4 | 0.432-3 | 0.376-4 | 0.672-3 | 0.291-4 0.565-3
F3 | 0 |-0.403-5 | 0.280-3 | -0.109-3 | 0.851-3 | 0,565-4 0.633-3
F3 | 1 0.825-5 | 0.298-3 | -0.139-5 | 0.740-3 | 0.482-5 | 0.564-3
F3 | 3 0.609-5 | 0.370-3 | 0.647-6 | 0.689-3 | 0.337-5 | 0.553-3
WC1| 0 | -0.212-4 | 0.463-3 | -0.144-3 | 0.106-2 | 0.826-4 ! 0.818-3
WCi| 1 | -0.171-4 | 0.470-3 | 0.119-6 | 0.914-3 | 0,086-4 | 0.727-3
?:
wWC2| 0 0.353-5 | 0.197-3 | -0.152-3 | 0.571-3 | 0.780-4 | 0.427-3
wea | 1 0.250-4 | 0,184-3 | -0,938-5 | 0,463-3 | 0.172-4 | 0.352-3
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unmodeled dynamics have very little effect, The greatest effect appears to

be the change in the gust sample caused by the added filtering,
CONCLUSIONS AND RECOMMENDATIONS

The performance of the compensator generally lives up to theoretical pre-
dictions, There are four major areas where the current formulation is
deficient for an aircraft flight control application such as the C-5A, They

are

1. Reduction of sensitivity of arbitrary responses of interest,
2, Application to a statiohary system,

3. Adequate treatment of nonlinear dependence on parameters,

and

4, Severity of computational requirements,

In the C-5A example, insensitivity of many responses and particularly
bending and torsion moments are desired. Increases in these responses
were caused by the compensator in most instances. Presumably, this
would have been avoided if they were used as the outputs., But in this
example, it would have required an internally unstable compensator. The

formulation should be modified to include insensitivity to such responses,
The recycling was an ad hoc attempt to modify the compensator to account

for stationarity. It was not completely satisfactory; alternative formula-

tions should be considered,
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The nonlinear dependence on parameters is significant for the C-5A example
and the theory should be modified to encompass this phenomena., In this
example, this effect and the stationarity effect were coupled by the choice

of inputs used, Other inputs or additional inputs could alleviate this coupling.

The computational requirements associated with the implementation were
significant for the seventh order design model with the limited number of
inputs used in construction of the finite dimensional inverse. This was
not a major concern in performing an evaluation of the concept, but it would

be for an operational system,
Thus, although the concept lived up to expectations, further development

is required before the technique could lead to operational systems for an

application such as the C-5A,
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SECTION IV

INSENSITIVE CONTROL SYSTEM DESIGN VIA
AN INFORMATION MATRIX APPROACH

The technique described in this section was developed by contract consul-
tant Professor David L. Kleinman of the University of Connecticut, The
technique is based on the utilization of the Fisher Information Matrix*
which is a fundamental feature of maximum likelihood parameter identi-
fication, In identification applications, it is desirable to minimize in some
sense the inverse of the Information Matrix, or the dispersion matrix, in
order to enhance the identifiability of a set of system parameters, With
respect to sensitivity, given a set of responses, it was hypothesized that
minimizing the Information Matrix itself would reduce the identifiability

of system parameters and, consequently, the sensitivity of the system

response to variations in those system parameters,

The evaluation of control systems designed with the technique consisted of
a preliminary evaluation of the effect of adjusting design parameters on a
single system response of the C-5A test example and a full system

evaluation for the 15th order model as was done in Reference 1.
MATHEMATICAL FORMULATION
Consistent with the assumptions given in Reference 1, the system to be

controlled may be represented by a set of linear constant coefficient

differential equations,
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% = Fla)x+Gu + Gy | (66)

where

[ ¥

is an nX state vector
u is an nu control vector
7 is a scalar white noise with N(0, 1)

o is an np parameter vector

The n. system responses may be represented by

r = H(a)x + D(g)u (67)

In Equations (66) and (67), the matrices F, Gl’ G2’ H, D have the appro-
priate dimensions. As in Reference 1, only F, H, D are assumed to
depend on the parameters, . However, G1 and G2 can also depend upon

o, in general.
The parameter vector is assumed to be bounded:
a elay, 4]

Since the parameters are regarded as uncertainty factors (as opposed to
absolute deviations), the matrices ¥, H, and D about any operating point

a can be expressed as

P
Flae) = F +3(a, - 1)F, (68a)
= o i i
i=1
p
H(g) = Ho + 3 (ozi - 1)Hi (68b)
i=1
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p -
D) = D + 3 (o, - 1)D, (68c)
- o . i i
i=1
where Fo, HO, and Do are matrices at a nominal point, i.e., by definition
where o = 1, The matrices Fi’ etc,, are the gradient matrices evaluated

at the nominal point,

2 - 2 -
F; 2 WFa) [, _4° | _ =grad; (F) (69)
- lg=1
Hi = gra.di (H); Di = gradi (D)

For the system described by Equations (66) through (68), the problem is

to determine a feedback control law u = Kx such that the system is "insen-
sitive' to parameter variations and satisfies representative performance
criteria, For this application, latter criteria are expressed via the

minimization of a quadratic criterion

J, = B{z’Qz} (70)

where the weighting matrix has been selected to meet specifications at a

nominal design point. The minimization of J 1 yields a nominal feedback

control

u = Koi (71)

Of course, this set of gains Ko has been determined with the neglect of

explicit sensitivity criteria,
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Use of the Information Matrix

The Fisher Information Matrix for the parameter set ¢ and the responses

r(t) in Equation (87) is given (approximately)* by

T (0L / or
= = — 2
M = E {J‘O bg) S(?)E t} (72)
where T is the observation time or measurement interval, S is a weighting

matrix to be discussed later, and bﬁ/b_g is an n, xp sensitivity matrix

with elements
=y L%
ou o
ij J
Thus, the i-th column of the sensitivity matrix reflects the sensitivity of

r with respect to the i-th parameter,

The use of the information matrix for optimal input design to enhance the
identification of unknown parameters from the measurement set r (assuming

that an efficient, unbiased estimator of o exists) is well known.

This technology has served as the motivation behind the present work.

The major points relevant to the discussion are the following:

*The approximation used is to replace % by x, i.e., we omit the Kalman
filter innovations representation in the Maximum Likelihood formulation.
This greatly simplifies the problem while retaining the essential param-
eter sensitivities,
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The inverse of the information matrix, called the dispersion

matrix, gives a bound on the parameter error covariance

R a - -1 A .
Ef{(g -alag-a)1z2zM 12 (Cramer-Rao lower bound)4

Here, Q_ is the actual parameter vector and_&_ is the estimate,
The idea behind optimal input design is to find u to maximize
a metric on the information matrix (e.g., det (M), tr (M),
max A (M)) or equivalently to minimize a measure of the
dispersion matrix, The net effect will be that one can place
more confidence in the parameters estimated from the input-

output data,

Obviously, maximizing tr(M) would lead to increased
sensitivity of .E(t) with respect to the unknown parameters,
inasmuch as M is a function of the output response sensi-

tivities,

With respect to sensitivity, the problem is precisely the
opposite to optimal input design, i.,e,, to determine a control
input such that r(t) is least sensitive to parameter variations.
To solve this "inverse'' problem, we seek the "worst" input
from an identification viewpoint, i.e.,, one that makes the
parameter set as unidentifiable as possible, Therefore, it
is natural to seek to minimize a measure of the information

matrix,

Determining which measure to use poses a problem. In the

identification literature, it is reported that choosing optimal



inputs to minimize the trace of the dispersion matrix gives
the most accurate estimates of _g. Therefore, it is conjec-
tured that minimizing the trace, or weighted trace, of the
information matrix should be the '"best' criterion for choosing

a desensitive feedback control,

As the observation interval T -» « in Equation (72), the norm
of the information matrix approaches infinity. Thus, since
we are dealing with a steady-state optimization problem, it
is more appropriate to consider the information matrix per
unit time, or the average information matrix, M _. In the

steady state, we have approximately

Or\/ dr
Mm = Ef E S -sz 1 (73)

The weighting matrix, S, is the inverse of the measurement
noise covariance, Since the problem formulation does not
include measurement noise (note that it could), S will be inter-
preted in terms of a '"pseudo'' measurement noise injected

onto r(t), We select S to be diagonal with elements

2 -1 .
5 = ey ) i=1,...,n0 (74)

The scaling of the measurement noises with the associated
RMS response is a common practice, It is further motivated

"observation' noise in man-machine

by the form of a human's
studies. The noise-to-signal ratio p is an overall scale

factor; thus, its actual value is not of large concern, How-
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ever, a value p = 0,01 7 has been selected from previous
experience in man-machine systems to represent a nominal
noise level,* The variances Uzri are picked at the nominal
point KO and held constant at these values throughout the

analysis,

In any specific design it may or may not be necessary for all

1200 r, to be insensitive to parameter variations.
r

Thus, it is desirable to include within Mca only those responses

responses r

appropriate for desensitive design, The s, easily serve this

purpose through setting S; =0 for these responses, Thus,
-1 -
(po ) = for desensitive r,
1 1

o otherwise

The weighted trace of the (average) information matrix is

p
J2=tr[WM]=E T W.( > < >
o .=1 1
! (75)
n
p
= E by 2 w

where W is a diagonal p x p weighting matrix, W = diag (Wi)'

The weightings w, are selected to normalize the information

*The case where the p; are not all equal could be considered.
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matrix at the nominal condition, i,e., at o = 1, and to keep
the analysis in terms of relative sensitivity (with respect to

the nominal), Thus, it has been found convenient to select

min (Mo)_..

i ' ii
WSy T ('76)
(M) ..

«’ ii
where M: is the information matrix evaluated using the nominal

matrices Fo’ H D0 and the nominal feedback gains Ko' The

0’

additional scaling factors y; can be selected to reflect

1. The relative importance of &i to the design problem

as noted through experience or experimentation, or

2. The relative probability or frequency of occurrence

of variations in the parameter o -

In the present analysis we set

y; = 1 i=1,...,p

to indicate that all parameters are equally important and equally

likely to vary.

Thus, unlike some other methods of desensitive controller
design, the choice of weighting parameters S and W is fairly
straightforward, In the next section, J2 is appended to the

original performance cost functional J, given in Equation (70).
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Design Method

When the system parameters are subject to variation, a design method
based upon optimal control theory involves the following two steps, either

separately or in combination:

1. Selection of a design point, i.e,, a parameter set o . at
which the design is done, Note that 24 need not be the
nominal point éo'

2, Selection of a set of optimal gains K at the design point,

Constraints that are imposed by the physical system, such as limited
control effort, maximum allowable deviations, etc.,, are to be satisfied

in the selection process,

It would be desirable to achieve both objectives through solving one opti-
mization problem with a generalized quadratic cost functional, The cost
functional should reflect the dual goals of performance and desensitivity,

and so an intuitive choice is

J = 8dy T Bydy

By E{El Q r} + By tr [W Mm] (77)

This is a weighted combination of performance and sensitivity "costs,"

The selection of both @ ; and K could be accomplished by solving a mini-

~d
max problem, viz,

J* = min max J(g, K)
K o
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However, this represents a problem of immense difficulty. An alternate

approach has been suggested, based on the concept of "maximum difficulty":

1. Determine the design point o q °n the basis of a maximum

difficulty criterion, This criterion is dependent on open-loop

- system properties, and so 24 can be found independent of K,

2, Determine K by solving an ordinary minimization problem,

min J(g 4, K.

This two-step procedure is feasible from a computational viewpoint., The
first step is discussed in Appendix B. The second problem, finding K,
is the subject of this effort. But since 24 has not been selected, the

optimization with respect to K will consider ¢ ., as fixed, but arbitrary,

d
As a starting point we will pick PN nominal point, Thus, we seek
K* = arg min J{(g ,, K)
K =d

Another interpretation of the above cost functional is that Jl seeks a K to

minimize performance at the design point o The second term J2 seeks

d:

to enlarge the region about ¢ , in which the gains K remain useful, The

d
relative weightings 51 and By have 51 = 1 and By chosen so that (after
finding K*) the resulting J 1 does not exceed its minimum value by more
than a preselected factor 1 + ¢, where

Jl(ao’ K)

+ I
1 e T (o K (78)
1 "o o
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Thus, we trade off a fraction ¢ > o of performance cost for desensitivity.
Note that this trade-off need not necessarily be on J_; it could be on

ll
E {uiz }, E {ﬁiz 1, etc.

Consideration has been given to including a third term

Jg = E{{r -r )'P(r - r )]}

within the cost functional J, This would tend to minimize the deviations in
responses from the original design, Also, it would add terms of the form
(K - KO), thereby placing constraints on the control gains and indirectly on
the control effort. It is similar to the uncertainty weighting design of

Reference 1, but in a more meaningful closed-loop context, The equations
that result from appending 33J3 have been developed in detail, But since
they are more complex than those for J. and J, alone, they will not be

1 2
included in the following sections; in the following sections, we assume

By = O.

PROBLEM SOLUTION

In this subsection a closed-form expression is obtained for the gradient

matrix »J/pK that will be used in the subsequent numerical optimization.

An Expression for the Cost Functional

The cost functional J, Equation (77), can be rewritten to combine the two

terms J1 and J2. The result is
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. (79)
i=1 Xo; =1
where

OX
o.
1

g .
-1

(o4

is the closed-loop sensitivity vector at the point ¢ = 24

Tao .
-0
F=F+G,. K

Defining
1

as the actual closed-loop system matrix,

(80)
g; is seen to satisfy the
differential equation
21=Fgl+Fl}£; l=1,...,p (81)
where we recall that G1 and Gz are not functions of o
The weighting matrices in Equation (79) are
p
= +DK) ' + + ! +
QXX sl(H DK) " Q(H+DK) By iz=1(H_1+DiK) Si(Hi DiK) (82a)
Q = g,(H+DK) 'S, (H+DK) (82b)
oY 2 i
ii
- ’
QXci 52(H1+D1K) Si(H+DK) (82c)
where the matrices
A
S. =w, S i=1,
i i

(83)

The state vector, x, and sensitivity vectors g. can be combined into an
(np +1) - n_ augmented system, Defining
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ZA = [_}Es 9_1: gzaonoscp]'

as the augmented state, the resulting system equation is

where
f‘_ ~ — -
F 0— 0 G2
_ FlF _ 0
F, = F, 0 F : G =
A . 2 2A
Fn0.. .. 0O F 0
. P B L J

It is important to point out that this augmentation is done purely for
analytic simplicity. Fortunately, it will not be necessary to solve large

dimensional linear (or nonlinear) matrix equations in the ensuing opti-

mization process,

In terms of XA the cost functional J can be written as

J=E{x3QXxal (85)

where

74



o -
U Oy v U
Q}’{ Q 0 0

9 919
Q = | -

Qo0 Q

"% “p°p

-

Note that there are no cross-terms between o; and o-j.

Cc ¢ C . . .C h
XX Xo’l xo-2 xop
c’ C C . . .Cg.0
Xcl 0101 9199 1°p
C =
A Cc’ c’ C
c! : C
Xo g _C
p P p_]

as the covariance matrix of the augmented state,
Cp = COVIX,1= E{x,xu}

It is a full matrix with

= ’
Cax = Bl 27
Cxci - Elx 0'.1}
C = E{o‘.o'f}
cicrj =1=]

We define

(86)

(87a)

(87b)

(87¢c)
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Using the cyclic property of the trace in Equation (85) and substituting
Equation (86) yields

J = tr [QA'CA] (88)

From Equation (84) it is seen that CA satisfies the Lyapunov equation

- . ’
0—FACA+CAFA+G2AGZA (89)

or, equivalently,

_am  F,t ,  Fit
CA —‘roe A GZAGZAe A" dt (90)

Incorporating Equation (90) into Equation (88) and manipulating terms gives

— '
J =tr [Ly Gyp Gyt (91)
where
w F't F t
LA~IOe AQAe A" dt

satisfies the linear equation

F L+LF—+QA=O (92)

Equation (91) is better to use in the analysis than is Equation (88) since both
Q, and C, in Equation (88) depend on K, whereas only L A in Equation (91)
depends on K,

Equations (91) and (92) may be further simplified by investigating the special

block structure and form of LA:
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(L L .. . L 1
XX xcl Xoq xcp
L}; L 0 . 0
L= 1 %1%
A L' o L
Xog 0909
L}; 0 L
L 7% pp |

It is easy to show, by expanding Equation (92), that the cross-terms

L = 0. The equations for the nonzero components are
5i9;
—-—, ——
0=F L + L F+Q i=1,...,p (93a)
9% 9% 9%
——’ —
0=FL +L F+Q +FL i=1,...,p (93b)
Xo. Xs. Xo. 1 o‘io-l
—1 —_ p
0=FL +L F+Q + v (L F.+F!'L’) (93¢)
XX XX XX . Xo, 1 i "xo,
i=1 1 i
These equations are solved in the order given, We first solve for L , ¥
O'iO'l
then for Lxc-: and then for L. ., The matrix L is all that is
i XX XX
needed in evaluating J because of the sparse form of GZAGz’A' Thus, from
Equation (91),
*Note L =2 L so that only the equation for o, need be solved,
o:0 wJ 0.0 i
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J =tr [L__ G,Gg] (94)

The sequence of lower order matrix equations to compute the covariance

terms (62) and (63) is given by

0=FC +C F’'+G.G/ (95a)
XX XX 272

0 = FC +C_ F’'+C_F! i=1,...,p (95b)
Xo'i xoi XX 1

0 = FC +C F'+F.C +C!’ F/! (95¢)
cch GiGJ 1 Xg. XOi J

fori=1,...,p; j=1i,...,p

Thus, on the basis of Equations (93) and (94), only (p + 2) linear equations
of order n need be solved to obtain the value of J at a given K, Moreover,
all of these equations involve the same matrix F; the covariance equations
(95) all involve F’, It is shown below that a modified Bartels-Stewart
algori.thm5 can be used to reduce greatly the computational burden asso-

ciated with evaluating Equations (93) through (95),

The optimization problem is therefore to find the constant gain matrix Kx*

to minimize tr [LXX G2G2’] (at the nominal point o, = go), such that

d
b +
Jle, K<l +e)d(a , K)
Note that this approach constrains the control u(t) to be of the form
u(t) = K x (t)

There is no feedback of the sensitivity vectors 9_'1 as in the sensitivity

vector approach.
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Gradient Expressions

It is not possible to find a closed-form expression for the gains that mini-
mize J, except when By = 0. For this reason, the optimization will be
approached via some form of gradient algorithm, Closed-form expressions
for the gradient matrix 3J/pK will be of great advantage in this process,
since numerical evaluation of gradients would be extremely time-consuming.

The gradient V.J = pJ/pK is evaluated using a technique of Kleinman for

K
derivatives of trace functions.6 From (93c¢c), the first order variation in

L_ toa change K - K+ ¢K is (note that F is a function of K),

= T/ = ’ !
0 F aLxx + aLXXF + 8K Glex + LxxGlaK + bex

+

w Mo

(esLxcr Fi + Fi’ s’ ) (96a)

. Xg.
i=1 i Si

where

0=F'sL + 8L f+5K'G1'L +L G,sK + sQ
. X . 1 Xo

xo; *9j 9 *9 i
(96D)
+ Fi’ 8L
and,
0=F'sL + 8L F + 8K G/ L + L G sK+Q (96¢)
9% 935 9% %% %%
for i=1,..,.,p. The first order wvariations in the components of QA are
given by
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aQ = B,[8K'D’Q(H + DK) + (H + DK) ‘QD3sK]
XX 1
(97a)
p
! 4 '
| + Bzifl [8K Di Si(Hi + DiK) + (Hi + DiK) SiDiaK]
= 7 m
QQXO_i By [(E, + D.K) 'S DsK + 8K 'D/S(H + DK)] (97b)
8Q 5 = By HKID’Si(H + DK) + (H + DK) 'Si DgK ] (97¢)
c.O.
ii

The matrix F is the closed-loop system matrix which is required to be
stable for any choice of K, Equations (96a) through (96¢c) can therefore

be written as equivalent integral expressions,

il
sL =dr'°° eF Y[e}K’Gl’L + L G15K+5Q ]eFYdy
949 © '~ °i%  9i% 9i%
o F't , , Ft
sL. =["e [8K'G/L__ +L_ G 8K + 8Q +F/sL e dt
Xo'i YO 1 XOi X()'..l 1 Xo‘i 1 o'io-i

where a similar expression for 5LXX can be written directly from

Equation (96a),

Since 8J = tr [8L__G,GJ)], we substitute for sL__ its integral expression.
xx 2 2 XX

Substituting further the integral expressions for §L - and 6LX , using
0i%] Oj

the cyclic properties of the trace and Kleinman's lemma, one ob]’cains,

after tedious manipulation,

J = 2G/!

4
Vi /L.C., +2pD'QH +DKIC__

p
+2G/ ¢ [L_C!/ +L!' C _+L C ]
i=1 X% %o o; *o; 0j0; 9;%;
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p
7 7 7
+ 2 By i2=1 [Di Si(H + DK)CXci + D Si(Hi. + DiK)CXO'i

+D'’S.(H + DK)C + D/S.(H. + D.K)C__] (98)
1 (o} 11 1 1 XX

-0,
11

Equation (98) will serve as the basis of a gradient algorithm to minimize J,
The computational requirements to compute VKJ and J at a given K are

now the major issues,
COMPUTATIONAL ALGORITHMS

This section describes the numerical schemes for computing J, VKJ, and

Mw for a given feedback,

General Overview

In order to numerically evaluate the cost functional J we must solve (p + 2)
linear matrix equations (93a) through (93c). To evaluate the gradient VKI,

an additional (2p + 1) equations need be solved for Cxx’ Cx , and C -
c. 0.0,
as in Equations (95a) through (95¢c). Note that the cross- o

correlations C i #j are not needed to compute VKJ. Examination of
O'io‘j
these 3p + 3 equations reveals the following:

1. All equations involve F or F! Half of the linear equations

are adjoint to the other half. In particular, Equation (95)
is adjoint to Equation (93).
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2, A total of p +3 equations have symmetric solutions, whereas
the other 2p equations for Lxc and Cx have nonsymmetric

. o )

solutions, g '

A significant reduction in computation time can be brought about by several
modifications to the linear equation algorithm of Bartels and Stewart., This

algorithm is well suited to the efficient sequential solution of

A'X + XA = Ci (99)
with different right-hand sides Ci' The existing algorithms and available
programs are geared for symmetric Ci’ and hence, symmetric X, Bya

slight modification a skew-symmetric Ci can be handled as well, Thus,

the two major objectives for sensitivity design are

1. To solve Equation (99) when Ci (and therefore, X) is non-
symmetric, and still take advantage of the saving in computer

time and efficiency afforded by a symmetric problem, and

2, To solve the adjoint equation

AX + XA’ = Cj_ (100)

using a computer program written to solve Equation (99).

Modifications to the Bartels-Stewart Algorithm

The Bartels-Stewart algorithm for solving Equation (99) in the symmetric
(or skew-symmetric) case first reduces A to an upper Schur from via an

orthogonal transformation Q. The resulting matrix A is of the form
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A22 o . A2p
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is atmosta 2x 2, If

C12 . C1p

022 L L . Czp
C

pp

_

X12 le

X22 X2p
X

pp

-

then Equation (99) is equivalent to

Al

3"§+§K=Ei

(101)

Since the partitions of Ei and X are conformal with A, expanding Equation

(101) gives

X A =
kg a4

A Xy t

- k-1 ~ 41

C -3 X - X A (102)
kg i=1 J Jj4 i=1 ki ig

L=1,2,...,p; k=g,...,p
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These equations can be solved sequentially for X11’ X21,. X22’ cees Xpl’

.s ;{pp; we then fill in the upper part of X by symmetry

~

% =%
1k sz
or skew-symmetry
Lo - -~ '
sz X kg

as the case may be. The "mini-systems' of Equation (102) are solved via
a simple algebraic equation program, Thus, with X calculated, the

solution X to Equation (99) is

X =QXQ’

Once the real Schur form of A and Q have been calculated, they may be
saved and reused to solve the same equation (99) with different Ci' They
are also used in the iterative refinement of the computed solution. This

is the forte of the Bartels-Stewart algorithm,

Solution of the Nonsymmetric Case

(1)

Any general Ci can be written as a sum of a symmetric part Ci and a

(2)

skew symmetric part Ci where

(1) _ '
c;” = 3(c,+C)



(2) _ ’
Ci = (€ -C)

For a general matrix Ci’ the linear equation (99) can be solved by adding

the solutions of the two equations

ax® 4 xtt g = Y (103a)
A'X(z) + X(?‘) A = 0(22) (103Db)
Thus, X = X' + X%, where we note that X1 is symmetric and X'?, is

skew-symmetric,

Once an upper Schur form of A is available, say from a previous solution of
Equation (99), we can call the computer program twice and solve for a non-
symmetric solution, The time required to solve the linear equation (99)
once the matrices A and Q have been found is about 40 percent of that
required to solve the equation for the first time, Therefore, a nonsym-
metric solution is obtained in about 80 percent of the time needed to solve

the equation once,

Solution of the Adjoint Case

The adjoint equation (100) could be solved rapidly if somehow we could
- obtain A’ in upper Schur form from K Consider Equation (100) where
Q and the upper Schur form are given, Pre- and post-multiply this

equation by Q’ and Q, and note that QQ’ = I gives

QU AQQXYP+(QXQQRAQ=QC, Q
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or

AX+X A = ’é.1 (104)

where A’ is in lower Schur form. Now we need A’ in upper Schur form
to use a program written to solve Equation (99). The matrix A’ can be
transformed to upper Schur form by applying a symmetric, orthogonal

transformation T to Equation (104) where

1
L1 0 _
Pre- and post-multiplying Equation (104) by T gives
TAT(TXT) + (TXT)TA'T = TC,T
or

X +% X = TO.T (105)

where A1 is now in upper Schur form as required. A summary of the

steps needed to solve Equation (100) is as follows:

1., Transpose K

~

2, Obtain Kl =T K’T, so Zl is A’ with its rows and columns

written in reverse order.
3. Obtain T EiT.

4, Solve for }Nil using the same algorithm as for Equation (99).

5. Obtain X = T(Q }~§1Q’)T,
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A general-purpose computer program, AXPTA, has been written to solve
the linear matrix equation via the Bartels-Stewart approach, It has the
features to solve the symmetric, skew-symmetric, and adjoint cases

taking advantage of previously obtained A and Q.

Computational Requirements for J, VKI , and Mw

As noted above, p + 3 symmetric and 2p nonsymmetric solutions are needed
in evaluating J and VKJ. Taking advantage of the algorithm modifications,
these symmetric equations can be solved in an "equivalent' computational
time of 1 +0,4(p +2) = 0.4p + 1.8 linear equations, The remaining 2p
equations with nonsymmetric right-hand sides can be solved in the equiv-
alent of 2p x 0.8 = 1,6p linear equations, The total computation time is
then ~ 2.0p + 1,8 linear equations. Thus, to obtain J and VKJ forp =3,
we need solve the equivalent of roughly eight linear equations. This is
comparable to the time required to solve one (nx-dimensional) Riccati
equation, Thus, the computations of J and its gradient (at each iteration)

are not excessive,

The unit time information matrix M is not required explicitly in the opti-
=]
mization algorithm, However, it is useful to monitor Mw and the disper-

sion matrix

D M (106)

as the algorithm proceeds through the iterations to see how the uncertainty
regions for @ increase, Certainly, one would wish to compare MQ or DM

at the optimal point K¥* with their initial values at KO. In addition, the
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(initial) diagonal elements of Mc,° are used in forming the weighting factors

Wi in Equation (52),

The p x p information matrix Mw is

or
= B ¢ — (107)
bal bozz bozl ba botp

The response sensitivities are

dT
— = (H, +D;K)x + (H+DK)g,

oa;

Substituting these into Equation (107) gives for the ij element of M_,

g.0.

(M )..=tr[(H + DK)’ S (H + DK) C +(H, + D.K)’S(H, + D.K)C
LY i% 1 L ] ] XX

+(H+ DK)’S (H. + b K)C +(H. + D.K)/S(H + DK)C’ 1]
] ] Xo 1 1 Xo

i J
Notice that C__, C and C will have already been evaluated while
XX %oy °i%
computing VkJ. ‘ Therefore, it is only necessary to determine Ccr for
i%j

i #j from the Equation (95c). Only the terms for j >i need be
computed because of symmetry, This requires solving an additional

plp - 1)/2 = 3 linear equations, all with the same system matrix F,

Iterative Algorithm for Finding Kx*

Returning to the optimization problem for K*, two gradient algorithms are
proposed in this section. The first algorithm was tried first, primarily

to check the validity of the overall approach to the sensitivity problem., The
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second method is based on the conjugate gradient algorithm of Fletcher-
Reeves, 7 As noted ‘earlier, the computer programs solve for K* at a
given design point oy assumed here fo be the same as Q.

Successive Substitutions Scheme

This is a simple iterative scheme that has no proven convergence prop-

erties, It is motivated by old algorithms for the optimal output feedback
problem, The idea is to find a set of gains K(I' + 1) that would result in

ka = 0, The choice is based on matrices computed at iteration g. The
algorithm is as follows:

(o)

1. Set g = o select an arbitrary initial (stabilizing) gain K" 77,

Usually K'©) = K . Set AR
A
2. Compute L, , L. , L__ and JK#)= s,
C.C. XOo. XX
11 1
3. Check stopping condition IJ(I’) - Ju' B 1)| < TOL

If satisfied, stop.

, C and the gradient VjJu).

X0o. .C.
1 Gl 1

4, Compute C_ , C
XX

(2

5. Compute the gain increment AK that would make

+
-VKJ('e’ 1 . 0 assuming all other matrices remained con-
stant, As seen from Equation (98) this is a near-impossible
task, Thus, the gains K in the summation term are set to

K(‘e‘); i.e., they are fixed, and we find



D I TP Gl 0 i
wh - 3 (0@ ) {vKr }Cxx

6. Select new gains K4 T 1 = g8 4 skt

(g +1)

where b =
initially, If the cost J does not decrease, a smaller

step is taken by reducing b,

7. Set g = g4+ 1 and return to Step 2.

The above algorithm is essentially a successive substitution scheme for
solving an equation of the form x = f(x), Such a scheme is convergent
only if the slope of f is < 1. Thus, the given algorithm is expected to
converge when the optimum gain K* is close to the initial gain K(o),
Unfortunately, the convergence rate of this method was found to be very
slow, with considerable oscillation in K when near the optimum. Con-

vergence, to less than 1 percent error, was usually attained in 10 to

18 iterations,

Conjugate Gradient Method

A conjugate gradient scheme was picked as an alternative to the above
method., The steps are as outlined:
1, Set g =o0 select initial gain K(O). Usually, we set
K(O) = Ko' Pick M = p as recycle index,.

2. Compute J(O).
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(2) (2).

Compute the gradient VJ at the current gain If J

is too small, then stop.

Compute the current descent direction

SO o)y e (e -1)

o) . .
where a = 0, and on subsequent iterations

Y 2Dy, (1D,

tr {f 3%
(2)

Normalize s so that " s

(2
| = 1.

Compute the current step size p? using a one-dimensional search

) ) (2)

b +bs

= arg min J [K(!’ ]
b

This is done via a quadratic interpolation scheme,

Compute new gains
g2 +1) _ 8 | as

and the cost J('e’ * 1),

Check convergence tests, If passed, then stop.

If <M set 4= 4+ 1. Otherwise, set K(O) = Ku"'l),

Go to Step 3.
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The convergence rate of the conjugate gradient method has proved
superior to the first noted algorithm,* Typically, three to eight iterations
have been needed for convergence, CPU time on 360/65 of about 6 to 7 min-
utes, The critical parameter for convergence is the initial guess for b in

the one-dimensional search (Step 6). The present ad hoc guess is

b = "Ef_'_z_)_" . Min Abs element in K( 2

(2)

Max Abs element in K

PRELIMINARY EVALUATIONS

The 15-state residualized model of the C-5A longitudinal dynamics as
described in Reference 1 was used for evaluation purposes., The response

vector used for the design of the nominal controller is ninth order and is

defined by
r = Bending moment at wing root
ry = Torsion moment at wing root
ry = Bending moment rate
r, = Torsion rate
re = Aileron displacement
re = Inboard elevator displacement

(2)

*A combination of the two algorithms to give pAK was tried, However,

it gave mixed results and so was not pursued,
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r7 = Modified aileron rate
r8 = Inboard eievator rate
ry = Control follower response

The weighting matrix Q used in the quadratic synthesis design is diagonal

with
Q={0.1E -9, 0,1E -9, 0,1E - 10, 0.32E +8, 0,0, 0,1E +'7,
0.1E +5, 0,.2E +86}

The parameter p vector a for the C-5A example is

(3 = (qf’ U)f: MW)

£
where
Ef = dynamic pressure uncertainty factor
we = structural frequency uncertainty factor
M,, = stability derivative uncertainty factor

f
The design process is conducted at the nominal condition, di = 1., The
gradient matrixes Fi’ Hi’ Di fori=1, 2, 3 were computed numerically,
They are assumed to be constant within the range of parameter variation

Cop,s agl

The sensitivity reduction problem formulated via the Information Matrix
approach leaves very few free parameters to be chosen, This is by design,
since we have elected to minimize the free parameters in order to mini-

mize the number of design iterations. As a result, one needs only select
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1., Which of the n_ responses are to be desensitized, i.e.,

which responses ri(t) have s, # 0, and

The value of B> giving a relative weighting to the sensitivity

cost versus the performance cost,

As a first step in evaluating the technique, the effect of varying B, on the
bending moment response, r,, was investigated, In other words,

Sl =1, 8,.=0,3j=2,9, W.l's were set to unity to reflect equal impor-
tance on all uncertain parameters, Note that the weighted trace of the

information matrix in this case is

(&

As a means of evaluating the effect of varying 52, a measure of local

IIM-U

sensitivity was defined as

~ %
e
s 1=
-
i E {r 1,0 }
— -
where the term r refers to the bending moment response at the nominal

1,0
condition. This is slightly in variance to the more classical definition of

sensitivity which is given by

Op 1 bE(rz)
o E{r’} %%
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where p is the correlation coefficient between r and oL at the nominal

o
point. Hence, the measure used is proportional to the more classical
definition.
1
Figure 25 presents a plot of Sa versus 8,. As can readily be seen, there
is a reduction in sensitivity, particularly with respect to structural fre-

quency uncertainties,

The effects of varying B, were also ascertained with respect to Jl, the
performance cost index, control activity measured in terms of aileron dis-
placement, and the identifiability of the uncertain parameters measured in
terms of standard deviations of the estimates, These results are plotted
in Figures 26, 27, and 28, respectively, As expected, the results are as

follows:

° Performance as measured by the cost index J1 increases
with Boe

(] Decreased sensitivity requires increased control activity.

e Uncertain parameters are harder to identify as By is

increased.
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Since the sensitivity measure employed is only valid over small variations,
a linearity test was also performed. The parameters ;:_yi were varied

independently from -0,2 to 0.2 in steps of 0,05, The normalized incre-

Ao, do Aa,
1 "1 ;/g
mental rms response and linear 'prediction" = o
o) : s
1,0 !
are listed in Table 7. The results are shown for parameters 1 and 3 only.

For'az, the analysis showed that the correlation between ry and °¥1 N
2

dr.\ 2
was very small, Thus, although E <O_D } is large, the effect of
o

variations in a, on the actual response is small, As seen in Table 7, the

changes are approximately linear.

TABLE 7. INCREMENTAL VERSUS LINEARIZED PARTIALS COMPARISON

P?i?ifffrf Perforjz;gii Change "Predicted" Change
ao; ) °r, bey;
I‘1, o bc'!i /Fl, o]
i=1 i=3 i=1 i=3
0.05 0.031 0.015 0.031 0.0142
0.10 0.061 0.031 0.059 0.028
0.15 0.090 0.049 0.086 0.042
0.20 0.1193 0.068 0.1111 0.056
-0.05 -0, 0327 -0,0137 -0.,0322 ~0.0144
~0.10 -0, 0679 -0.0262 -0.0654 -0.0291
-0.15 -0, 1055 -0, 038 ~0.1009 ~0. 044
~0. 20 -0, 1460 -0. 0483 -0.1357 -0.0591
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With the effects of varying By established, a refined design was under-

taken and evaluated, This is discussed in the following section,
C-5A CONTROLLER DESIGN EVALUATION

As discussed in the preceding section, the Information Matrix design
technique was formulated to limit the number of free parameters which
the control system designer must manipulate, As presented here, the
designer has freedom to vary the scalar term By which weights the sen-
sitivity reduction. The designer also may select which of the system
responses he wishes to desensitize by manipulation of the binary variable
S The effect of varying 52 on one system response was discussed in
the previous section, This section will discuss the effect of varying both
B, and S; with the purpose of obtaining an insensitive C-5A control

system,

Design Approach

In order to limit the freedom on selection of By, two additional constraints

were imposed:

1. The value of J1 of the insensitive controller must be less

than 1,2 times the J 1 of the nominal controller,
2, Aileron and elevator control activity for the insensitive
controller must be less than two times the controller activity

of the nominal,
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With these constraints imposed, computer runs were made to study the

effects of

1. Sensitivity weights on rates Bl’ ’i‘l to aid in desensitizing

the bending and torsion moment responses,

2. Weighting aileron control responses rg to keep control

effort from rising too rapidly,

3. Weighting the controller follower response ry as an attempt

to desensitize W C and

p, Sp’

4, Various choices of By-

A total of 15 different cases were studied, including the nominal., The

cases, described in Table 8, may be grouped into five categories:

1. Variations in By Case 2A, 2B, 2C; Case 3, 3A, 4; Case 7,8

2, Sensitivity weights on 1%1, le Case 7,8

3. Sensitivity weight on 6a: Case 2A-2F, 3, 3A, 4

4, Sensitivity weights on 8. Case 2A-2F, 6

F:

5. Variations in the (pseudo) noise/signal ratio ¢ on 8a to

study more closely effect of control: Case 2C-2F,
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TABLE 8, PARAMETER ESTIMATE STANDARD DEVIATIONS AND OTHER
Diagonal ! I Lower Bounds On Ratios of Any Any Any Signal/ ‘
elements Initial Final responses weights | weights | weight noise ]
of M, Wenghtsl eslimates estimates ., Volume of | Volume of with K* and K° |on r3 on on ratio on !
with on of S-Dof + of $-D of ' uncertainty | uncertainty Cost, J r. K+ K= |and ry control | control control, r
nominal | trace parameters parameters® ellipsoid at | ellipsoid at P 1 2 i.e., B | response| followed | (% pseudo

Run # By | gain K® | of Me i with K° . with K* LK% x 107 K*x 107 { Ratio) Ty K° ry K® land % i.e., rg | response noise)

) 1
1 NA | NA NA NA NA I NA NA 88.7 1.0 1.0 NA NA NA NA
(Nominal) ' {1.0)

116.2 | 0.40 | 0.0933 0.1146

2A 0.4 538.2 0.08 0,0431 0.0499 3.36 8.035 91.0 0.977 0.944 No Yes Yes 31.8
49.1 0.95 0.1436 0.1551 (1.026) (1.0}

T

120.8 0.42 | 0.0013 0.1269

2B 0.6 559.6 0.09 . 0.0423 0.0590 4,82 12,518 93.6 0,940 0.939 No Yes Yes 31.8
50.8 1.00 0.1409 0.1512 (1,055) (1.0)
120.8 0.42 i 0,093 0,1110

2C 0.5 559.6 0,09 : 0.0423 0.0473 4.82 6.770 93.6 0.952 | 0.924 | No Yes Yes 31.8°
50.8 1.00 0. 1409 0.1571 {1,055) (1.0)

I

78.0 0.64 0.1155 0,1229

2n 0.5 253.6 0.20 0.0634 0.0670 10.52 16.434 92.1 0.940 0.943 No Yes Yes 3.18
40.8 1,00 0,1432 0.1569 (1,038) (10.0)
87.0 0,558 0.1086 0.1177

2E 0.5 325,2 0,149 0.0557 0.0583 7.47 11.21 90.38 0.954 | 0.955 | No Yes Yes 10,6
48.6 1.0 0.1448 0.1548 {1.020) (3.0)
94.9 0.558 0.1036 0.1298

2F 0.5 381.8 0.149 0.0513 0.0630 5.179 15.937 91.72 0.947 | 0.949 | No Yes Yes 13.2
48.8 1.0 0.1443 0.1593 (1.034) (2.0}
104.9 0.40 0.0989 0.1372

3 0.6 4987.7 0.09 0.0449 0.0568 4.90 23.49 95.4 0.937 0.910 No Yes "No 31.8
41.2 0.95 0.1579 0.1968 (1.076) (1.0)
104.9 0.40 0.0989 0.1448

3A 0.7 497.7 0.09 0,0449 0.0688 4.90 38.90 94.47 0.9126| 0.9026| No s Yes No 31.8
41.2 0.95 0,1579 0.1995 (1.085) (1.0}
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TABLE 8.

PARAMETER ESTIMATE STANDARD DEVIATIONS AND OTHER

PERTINENT INFORMATION FOR DIFFERENT GAINS (concluded)

T
Diagonal Lower Bounds On Ratios of Any Any Any Signal/
elements Initial Final responses weights| weights | weight noise
of Ma Weights | estimates estimates Volume of | Volume of with K= and K®lon r3 on on ratio on
with on of 5-1) of of S-D of uncertainty | uncertainty Cost. .| v, K= - K: (and ry |control | control control, rg
nominal | trace parameters | parameters | ellipsoid at | ellipsoid at oSt Jil 1 2 i.e,, By [ response| followed (% pseudo
Run # 8y gain K° | of M, with KO with K= KOox 107 K x107 {Ratio) Y K° ry KO land y i.e., ry | response noige)
104.1 0.40 0.0989 0.1296
4 0.4 497.7 0.08 0,0499 0, 0546 4.90 17.43 91.4 0.961 0,831 No Yes No 31.8
41,2 0.95 0.1597 0.1867 {1.03) (1.0)
59.8 0.68 0.1385 0.1452
5 0,2 169.3 0.20 0.0796 0,0921 15.03 50,78 90.1 0.931 0.967 No No No NA
40.3 0.80 0.1632 0.1780 (1.019)
67.1 0.68 0,1258 0,1277
6 0.2 290.6 0.20 0.0603 0.0824 13.14 25.54 40.0 0.960 0.958 No No Yes NA
41.5 0.80 0. 1555 0.1573 (1.018)
127.2 0.800 0.0942 0.1008
1 0.2 1432.8 0,043 0.0281 0.0331 0.689 1.259 91.2 0.920 0.955 Yes No No NA
101.6 0.700 0.0992 0.1065 (1.027)
127.2 0,800 0.0942 0.0978
8 0.1 1432.8 0.043 0.0281 0.0306 0.689 0.960 89.5 0.945 0.978 Yes No No NA
101.6 0. 700 0.0992 0.1036 (1.0009}
59.8 0.612 0,1385 0.1484
9 0.3 169.3 0,237 0.0796 0,0994 15.03 70.0 91 3 0.922 [ 0.941 | No No No NA
40,3 0.800 0.1632 0.1864 {1.028)




The performance of the resulting 14 controllers plus the nominal controller
are presented in Table 9, The 14 controllers were then compared to deter-
mine which one would be evaluated with the design criteria defined in

Reference 1, The Case 3A controller was chosen based on conditions that

1. All the design specs were satisfied plus the additional

imposed constraints on J, and control activity, and

1

2, The identifiability of the three uncertain parameters
(Q'f, W, MWf) was reduced the most, This was measured
by the volume of the uncertainty ellipse (which is approxi-
mately the determinant of the dispersion matrix) and the

standard deviations of the uncertain parameters,

The gains for Case 3A are given in Table 10, With respect to the other

variations that were investigated, it was found that

1. Weighting the control follower response offers no advantage.
This is to be expected since the control follower response
is only valid at the nominal condition. Its purpose is to
achieve a specific control configuration (i.e,, 5ec = 0.5q)
which at the nominal produces desirable short period

frequency and damping characteristics,

At other than the nominal condition, the control follower
response will not produce the described short period

frequency and damping characteristics.
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TABLE 9.

FEEDBACK CONTROLLER PERFORMANCE--CASE 4R

NOMINAL (g, = 1.0, o

£

= 1.0, My, =1.0)

Specification

Run Number

2 21 5 2 3A 4 5 [ 7
Description Criteria | (Nom) 2A B ¢ ! 2L F 8 8 o
RMS BI 0.721 .705 .677 | 0.687 | 0.678 | 0.688 | 0,683 .676 .658 .692 0.671 0.692 0.663 0.681 0.672
ul'.io Responses NA
* ’1'1 0.109 . 103 .103 0.100 0.103 0.104 0.104 . 0993 .099 .101 0.106 0.105 0.104 0.107 0.106
Handling W, >1.8 2.10 .20 .36 2,22 2.26 2.23 2.50 .27 .36 18 2,24 2.24 2.29 2.22 2,27
o sp
~ | Qualities rad/s
x
¢ 0.7-0.8 0.710 STt .174 0.682 0.728 0.726 0.831 .685 .724 .611 0.731 0.738 0.743 0.731 0.741
sp sec~1
Surface ) 0.0193 .0207 .0312{ 0.0277} 0.0289| 0.0213| 0,0249 .0258 .022 ,0176 [ 0.0275 | 0.0254 [ 0.0303 | 0.0273 | 0,0282
Activity a
(5] .
2 RMS a NA 0.113 . 100 . 148 0.130 0.162 0,117 0.129 .118 .101 .0895 | 0,162 | 0.158 [ 0.179 0.159 0.172
* (rad, rad/s)
L 0,150 167 .176 0.175 0.172 0.169 0.174 . 184 .19 L1738 0.169 0.164 | 0,172 0.163 0.169
A 0.371 . 384 .418 | 0,378 0.367 | 0.382 0.428 .409 .48 . 400 0.416 0.379 0,441 0.404 0.432
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TABLE 10,

GAIN MATRIX FOR RUN #3A

11

16

111

21

26

211

.5756 E-05
.0419E-04
.9334E-05
L9712E-04
.2514E-03

.2334E-03

12

17

112

22

27

212

.9 T4TE-06

.1381E-01

.5690E-06

.0306E-04

.4040E-03

. 1175E-05

13

18

113

23

28

213

. 2549E-05
.1257E-03
.9357TE-04
.8724E-04
.5226E-01

.4720E-04

14

19

114

24

29

214

2,0883E-05
2,5313E-05
1,3001E-04
2,6991E-04
6.7437E-06

8.4716E-04

15

110

115

25

210

215

-2,0162E~04
-2,4873E-04
~-4,5946E-07
4,7223E-04
6.7847TE-04

1.3936E-03




2, There is no significant change in system response as the

signal/noise ratio on 8, is varied,

3. The effect of including ]:%1 and T, in the sensitivity computa-

1

tions appears to have little effect on the resultant B1 and T 1

responses,

Design Evaluation

The Case 3A Information Matrix controller was evaluated on the 15-state
Case 4R residualized C-5A model at the six evaluation conditions, These

conditions, chosen in the Reference 1 study, are as follows:

1. Nominal condition: a=(1.0, 1.0, 1,0)
2. Worst Case 1: o =(1,25, 0.75, 0.8)
3. Worst Case 2: a =(0.5, 1,0, 1.2)

4, Independent Variation 1: &= (1.0, 1.0, 0.8)

5. Independent Variation 2: a=(1.0, 0,75, 1.0)

6. Independent Variation 3: a=(1.25, 1.0, 1.0)

The performance of the Information Matrix controller is tabulated in
Table 11 at the six evaluation conditions. Figures 29 through 33 graph-
ically portray the tabulated data for each of the design specifications versus

the performance of the nominal controller,

The three criteria defined in Reference 1 were used for evaluating the Infor-

mation Matrix controller, The criteria may be briefly described as follows:
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TABLE 11,

INFORMATION MATRIX CONTROLLER PERFORMANCE
EVALUATION MODEL--CASE 4R

Nom WC1 wc2 P1 P2 P3
q. =1.0 3. =1.25 | g, =0.5 | g, =1.0 | @ =1.0 | g. =1.25
Specification f f f f f f
Description Criteria u,)f 1 u)f =0.75 u)f =1.0 wf =1.0 mf =0.175 wf =1.0
M, =1.0 M =0.8 M, =1.2 M. =0.8 M 1.0 M, =1.0
f £ £ Wy f f
—
|
gfagﬁgggg Load B < -30% | -45.4% 32.1% -73.9% -45. 7% -45.3% -32,5%
Gust Load B < ~30% -40.6% -29.1% -63.3% -37.7% -40.1% -32,0%
Alleviation
% Change T <+ 5% -37.9% -20.7% -59,6% -32.9% -36.3% -29.8%
w >1.5 2.36 3,01 1,17 2.26 2.30 3,08 |
Handling SP rad/sec
Qualities c 0.7-0.8 0,72 0.86 0.677 0,755 0,768 0.728
Sp sec1
Stability
Margins
Gain: aileron > 6db @ ® @ @ ® ©
elevator 32db 18db * 32db 21db 27db
Phase: aileron > 45° © © @ © L] o
elevator 118° 118° 125° 115° 125° 120°
Surface sa 0.00022 0.00023 0.00024 0.00022 0.00022 0.00022
Activity
RMS sa 0.0010 0.0012 0.0011 0.0010 0,0011 0.0010
NA
(rad se 0.0019 0.0023 0.0018 0.0021 0.0020 0.0019
rad/sec)
se 0.0048 0.0061 0.0036 0.0048 0.0053 0.0053
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Figure 33, Case 4R Short Period Damping

Overall Relative Score--Coarse measure of the performance
of the nominal controller with respect to each specification,

Ideal Score - Score of Insensitive Controller

ORS = =
Ideal Score - Score of Nominal Controller

Normalized Performance/Range--The normalized performance
is the average of the performance of the nominal controller
divided by the average of the performance of the insensitive

controller for each design specification.

1
N f Py LC i=1, N

P =

" " 1 s P N = number of eval-
N i XN uation conditions



The normalized range is the range of the insensitive controller

divided by the range of the nominal controller

1\/I.AX1(P1C - MINi(P1 )

C
MAXi(PN) - MINi(PN)

|R]l = RSs i=1, N

(no. of criteria)

3. Normalized Specification Violation--Total spec violations for
each insensitive controller for all evaluation conditions nor-

malized by the maximum spec violation

=
. SV, i=1, N
Isv]l = RSS i SYy
| J=1, M
(no. of criteria) MAX Z SV{
U M = no. of insensi-

tive controllers

The criteria are described in more detail in Reference 1, As they have been
defined, the lower the numerical rating the better the performance of the

controller,

Figure 34 shows the performance of the Information Matrix controller as
measured by the overall relative score versus the eight controllers evaluated
in Reference 1. Figures 35 and 36 show similar comparisons for the Infor-
mation Matrix controller performance as measured by the Normalized Per-
formance/Range score and the Normalized Spec Violation score, respec-
tively. Table 12 presents a summary of the rankings of the Information

Matrix controller versus the eight controllers evaluated in Reference 1,
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Figure 34, Overall Relative Score Comparison
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115



116

CASE 4R (6 CONDITIONS)
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TABLE 12, RANKING OF INSENSITIVE CONTROLLERS INCLUDING
THE INFORMATION MATRIX APPROACH
Overall Overall
Relative Overall Specification _
Controller Scoring Performance/Range Violation Sum
Information
Matrix 3 1 1 S
Minimax 1 2 3 6
Uncertainty
Weighting 2 3 2 7
Adf‘htive 4 5 4 18
Noise
Multiplant 5 4 6 15
Mismatch
Estimation 6 9 5 20
Nominal 7 6 8 21
State-
Dependent 8 7 7 22
Noise
Sensitivity
Vector 9 8 9 26




Comparisons and Conclusions

Although the Information Matrix controller does result in improved perfor-
mance over the top-ranked minimax and uncertainty weighting of Reference 1,
it is premature to state that the Information Matrix technique is in some way
better than the others, The fact that the controller designed with the Infor-
mation Matrix technique did do well, though, indicates significant potential
for the approach, It is extremely difficult to extend a theoretical concept to
practical worthiness with one application, It is felt that further investigation
into increased values of By would have resulted in an even better perfor-
mance, It is also felt that a reformulation of the response vector to better
control short period frequency and damping would have improved perfor-
mance, (This actually refers to the evaluation of the insensitive controllers
in Reference 1,) Some definite advantages that can be stated at this time

include:

1. No a priori range of parameter variations is required since
the design is done at the nominal, One needs only the partial
derivatives of the system matrices at the design point,

2, The method treats nicely the response uncertainties,

3. Since the control is assumed to be in the form u = Kx, only
nX-dimenSional equations need be solved, No extra modeling

or filters are necessary,

4, It treats the actual closed-loop sensitivity, unlike the sensi-

tivity vector augmentation or uncertainty weighting methods,
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The technique can be extended easily to limited-state feedback

and possibly observer/Kalman filter cases,

With the modified Bartels-Stewart algorithm, only a modest
eight linear equations (equivalent) need be solved per iteration

to get the cost and gradient for p = 3.

The approach provides an intuitive feel and insight to the design
problem, It indicates clearly the improvement in system sen-
sitivity (in terms of the dispersion matrix) and the price paid
in terms of performance Jl' The key parameter By controls

the trade-off between sensitivity and performance,

The technique can be tuned to weight the relative importance

of different parameters,
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

The objective of this study, to develop useful synthesis techniques from the

two advanced theoretical concepts created in the previous study, has been

satisfied. This study has shown that

120

The insensitive controller synthesis technique based on the
Finite Dimensional Inverse (FDI) concept is impractical for
flight control system design in its current formulation, This
is due to the time-varying nature of the resultant controller,

which is more amenable to trajectory-type applications,

Despite severe computational requirements, FDI controller
synthesis and implementation are feasible, Experiments
with recycling stored data to alleviate storage requirements
produced apparently satisfactory results following some

initialization transients that could be reduced with filtering.

The FDI technique provides an on-line identification capability

that could be useful for many applications,

The Information Matrix (IM) synthesis technique is definitely
applicable to flight control problems because the resultant

insensitive controller has constant gains,

The IM controller performs as well as the top-ranked
uncertainty weighting and minimax controllers of the previous

study. As in the previous study, it will be necessary to



qualify the results of the evaluation, It should be emphasized
that good performance on one example with one set of criteria
does not imply universal goodness, The IM approach, how-
ever, with its design feature of weighting performance versus
sensitivity without specifying the range of uncertain param-
eters, together with the evaluation results indicate a worth-

while development,

Based on the results of this study, we recommend the following areas for

further research:

Formulation of the FDI approach to handle stationary

problems,

Development of FDI capability to handle nonminimum phase

systems.

This capability is needed, as demonstrated in the C-5A
example, when the design responses used result in unstable

compensation,

Further refinement of the IM methodology to quantify the

import of modulation of controller design parameters,
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APPENDIX A

THE SEVENTH-ORDER MODEL

The numerical data for the seventh-order model for six parameter values

is given, The usual state variable representation is used;

X = Fx+G1u+G2n
r = Hx + Du
with
xT = [w, a/0,, N, N, &2, se., w_]
3 2’ 1! 1’ ] i’ g
T _
u - [éac: aeiC]
rT = [B,, T ].3 ’i‘ sa, se., sa se
10 Tyo By Ty 02, 80y, 82, 8ep, Top]

The G1 and G2 matrices are the same for all parameter values, They are:

(— i — )

P!
[}
© o o © © o ©

© N 0O © © o O
9
1

O © O O © o ©

.861
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The last four rows of F and the last five rows of H and D are also indepen-

dent of the parameters, Thus, we may write F, H, and D as:

F H D

1 1 1
F = , H = , D =
F, H, D,
where
0 0 1 0 0 0 0
F, =| 0 0 0 0 -6 0 0
0 0 0 0 0 -7.5 0
Lo o o o0 o o0 -0.371
0 0 0 0 1 0 0 M
0 0 0 0 0 1 0
H, =| 0 0 0 0 -2 0 0 h9,2=-2.2748E-03
0 0 0 0 0 -7.5 0
L0 h9,2 0 0 0 0 0
0 0
D, =| 6 0
0 7.5
L_o 7.5_4

The matrices Fl’ Hl’ and D1 are shown below for the six parameter

values in Tables A1l through A6,

123



vecl

TABLE Al.

NOMINAL CONDITION MATRICES

F1

Row 1
-6.9991E-01
Row 2
-4,0476E-01
Row 3
-1,6852E+00

. 2724E+00

. 0959E+00

.8052E-02

-3,

-9,

566 7TE-02

.1639E-02

7983E-01

.6031E-01

. 8709E-01

.0030E+01

-2,

-3,

0358E+02

.2655E+02

0981E+03

L0256 E+02

.3074E+03

. 2357E+03

.6914E+00

.4898E+00

.8459E+01

H1
Row 1
-2.8733E+04
Row 2
-2.2396E+04
Row 3
-1.5764E+04
Row 4
5.4500E+03

,9687E+03
,4449E+03
.4T07TE+04

, 1842E+04

.3174E+04

.6286E+03

. 2510E+06

. 8879E+04

.2412E+086

.6938E+04

.3848E+05

.6787E+03

. 2515 E+07
.B6275E+06
.B627TE+0T

.3327E+07

.5344E+06
.4293E+06
.2064E+07

.6957TE+06

. 3905E+05

. 7210E+05

.4803E+05

.1959E+04

Dl

Row 1

0.

Row 2

0.

Row 3
-8.4864E+06
Row 4
~1.2719E+07

w

. 1845E+06

.4T720E+05
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TABLE A2,

WORST CASE 1 MATRICES

Fl

Row 1 :

-9.5644E-01 4,0757TE+00 -5,9648E-02 -1,0294E+00 -1,6296E+02 -2.6206E+4+02 -1,1848E+01
Row 2

-4,9662E-01 -1, 2354E+00 4,0758E-03 -5.9496E-01 -5,2179E+02 -2,5402E+03 -1,1194E+01
Row 3

-2,9321E+00 -2,1624E-01 -1,2407E+00 -2,394E+01 -2,9521E+03 1,2809E+03 -3,3386E+01
Hl

Row 1

-3.7187E+04 -3,1421E+03 1.5809E+04 1.4645E+06 3.9282E+07 1,5362E+06 -4,4309E+05
Row 2

-3.0729E+04 -5,0614E+03 -2.1960E+03 -~7.0371E+04 1.3523E+07 -4,0092E+06 -3.7416E+05
Row 3

-3.4336E+04 -2.6231E+04 1,4743E+06 -3,2140E+05 -2, 8624E+07 1.6160E+07 -3.6035E+05
Row 4

8.1625E+03 -4,3576E+04 -2,9472E+04 -7.6219E+03 1.5514E+07 4,4698E+06 1,0772E+05
Dl

Row 1

0. 0.

Row 2

0. 0,

Row 3

-1,0608E+07 3.9806E+06

Row 4

-1,5899E+07 3.0900E+05
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TABLE A5,

5 wnoMm

)

w PERTURBATION MATRICES
(w =0,

Fl

Row 1
-7.3843E-01
Row 2
-5,0739E-01
Row 3
-2,0814E+00

. 2666E+00
.0219E+00

.0020E-01

.2888E-02
.3385E-02

.8431E-01

.9762E-01

.6874E-01

.1095E+01

.6024E+02

,5964E+02

.6579E+03

.0636E+02

.1215E+03

. 1008E+03

. 1547E+00

.0558E+00

.3423E+01

Hl
Row 1
-2,9371E+04
Row 2
-2,3701E+04
Row 3
-1,9502E+04
Row 4
5,3642E+03

. 1935E+03

.8144E+03

.6019E+04

. 71868E+04

.2852E+04

.6975E+03

. 196 2E+06

.0736E+04

-6,

-2,

. 186 0E+06

1585E+04

3069E+05

.9T718E+03

-2

L1797TE+07

.9185E+06

.0137E+07

L2TI3E+0T

.0052E+06

.9214E+06

.0730E+07

.76 75E+06

.4887E+05
. 8838E+05
.9624E+05

. 056 8E+04

Dl

Row 1

0.

Row 2

0.

Row 3
-8.4864E+06
Row 4
-1,2719E+07

3

2

. 1845E+06

.4720E+05
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TABLE A6. q PERTURBATION MATRICES

(q = 1. 255NOM)

F1

Row 1 .

-8.8911E-01 4,0881E+00 -4,7302E-02 -8.6178E-01 -2,3841E+02 -2,5439E+02 -1,1035E+01
Row 2

-6,4055E-01 -1.3372E+00 3.2041E-02 -3.0658E-01 -6.3226E+02 -2,8037E+03 -1,1641E+01
Row 3 |
-2,2559E+00 -2,3891E-02 -1.1964E+00 -3,b2267E+01 -3,7075E+03 1,4896E+03 -2.4954E+01 }
Hl

Row 1

-3.6171E+04 -2,2256E+03 1.6183E+04 1.5200E+06 4, 0385E+07 3.7692E+06 -4,2780E+05
Row 2

-2.8484E+04 -4,4490E+03 -1.9753E+03 -9,3611E+04 1.1260E+07 -3,2345E+06 -3,4624E+05
Row 3

-2,6015E+04 -2,3634E+04 1.5296E+06 -4,4507TE+05 -3,9464E+07 1,9481E+07 -2,5615E+05
Row 4

8.3336E+03 -4.3517E+04 -5.7628E+04 -1.1698E+04 1.627TE+07 4. 4470E+06 1,0918E+05

D1

Row 1

0. 0.

Row 2

0. 0.

Row 3

-1.0608E+07 3.9806E+06

Row 4

-1.5899E+07 3.0900E+05




APPENDIX B

MAXIMUM DIFFICULTY METRIC

This appendix summarizes work performed (on the maximum difficﬁlty
metric) in determining the design point in parameter space at which control

is most difficult.

Recall that the basic idea was to find the point ¢ in parameter space to

maximize the difficulty metric

A ~ ) - A A
J=tr[H' (HW H’') 1H]= tr D (B-1)
o

The approach taken is to get an analytic expression for the gradient 3J/p«

that could be used as a basis for a numerical optimization scheme,

In Equation (B-1)

s AT

H = He (B-2a)
- - - 4

w=l e MBrTBe ™ (B-2b)

where T is an arbitrary parameter, Also, for notational convenience

Y
X = (HWH

The matrices A, H are subject to parameter uncertainty

P
A-A+3 ba A (B-3a)
=1 !
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(B-3b)

Consider now a first order pertubation in @ ~ oy + da; and the resulting
change in J:

J+e) = tr[(H+8H)' (X +§X} 1 (H+ s H]

expanding to first order, keeping terms of o($) only and using

X+t o xPoxex) X7F
we obtain
A ’ -—_1 -~ —_1 A ~ ' -—_1 —
8J =2 tr (H'X 8H) - tr (X "HH'X 8X) (B-4)
So we need only to get 8H and a}z in terms of 8a,.
First consider sH.
8H = (8H) eAT + H (éeAT)
- &a, Hi eAT - H [e(A + eaiAi)T -eAT]
Using a result from Bellman,
+ -
oA T by AT AT L N MT =1 4 AT g (B-5)
ivo i
AT AT
=e  +a e T(T) (B-5a)
Thus,
H _ a8 AT _ ~
22 - 8 g Lt rE(T (B-6)
bozi éozi
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where

o (T) = J.T -AT AT

e Ai e dt (B-17)

The process of computing 8X proceeds in a similar manner,

- 7
W+ W = L e (AT o At (A + sy Ag) %t

40

BRIB’e dt

It is necessary to work with }E, so with a change of variable, *

K+ 8K = (H+ oo, H) [ BT 02 A0 prolprelh #0284 oy

1
(H + de; Hi)

Expanding the integral term, using Equation (B-5), gives

>X _
_=H[J‘(;I‘GAO.BR1B,I"’(O')G do'+f‘

oo,

A - 7
T e*9 r(o)BR I Be ®dgH’

A ! al
+HWeA THi’+HieA W H

Substituting Equations (B-6) and (B-8) into Equation (B-4) gives

21 A A __1 dX
o - (HleH)—t(XlHH’Xl-——)
vy oy -~ - 0y

A —— 2 Al __ _
2tr (X H T +D D -p 2w (m-D HX 'H ATw)
— 1 o o 1 a - i

~ _ _ o - )
' = H PT eA(T t) BR 1B' eA (T t)d'cH’ H "'T ACTBR 1B’ AL dgH’
YO0
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where D- is the difficulty matrix and
o

- - A7
Wl(T)=’f'C')I‘eAtBRlB’r’(T-t)eAtdt
- - A7’ 7 _A?
=‘rTeAtBR1B'eAt[‘_['tTeA gAi’eAgdgjdt

Computational methods for evaluating Wl(T) have been considered, but

thus far nothing simple has come up. A straightforward numerical evaluation

J{a + éai) - J(q - éafi)

D, 26¢1r.1

may be easier,
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