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ABSTRACT

Assuming time stationarity of the one particle distribution function f

on the scale of the bounce motion of particles in a magnetic field B, we

expand the Vlasov Equation through O(e) in the adiabatic parameter e,

which is the ratio of particle gyroradius to sole length of the magnetic

field. Since f is directly proportional to particle flux dl^/dWffi differential

in kinetic energy W and solid an gle St, f is in principle measurable in space

experiments, and our analysis is tailored to be explicitly applicable to

space problems. To 0(f), f is gyrotropic.; its first velocity moment is (if

non-vanishing) parallel to B. and hence macroscopic parallel flow is

included in this term. The 0(e) contribution is non-gyrotropic and

macroscopic flow 1 to B plus additional par tel flow results from these

terms. The degree of non-gyrotropy and hence the amount of cross-field

macroscopic flow depend on the perpendicular component of the electric

field E, on curvature and shear in the magnetic field, and on the spatial

gradient fo , pitch angle derivative afa /a6 and speed derivative afQ /av of

the lowest order distribution function to . We also show that the usual

expression for the electric field F which produces Plasma co-rotation in an

axisymmetrc system such as a dipole also holds for any non-a x isym metric

but rigidly rotating magnetic field pattern, provided the observed magnetic

field is used in place of the dipole field.
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TREORY- OF FLUX ANISOTROPIES IN A GUIDING CENTER PLASMA

I INTRODUCTION

We often consider charged pasticles interacting with the electric and magnetic fields

E and B in a maetospheric environment as behaving adiabatically: time variations are

sufficiently slow and spatial variations sufficiently long that individual particles undergo

nearly 'periodic motions. Under adiabatic conditions the Vlasov Equation

of	 -	 q	 v X B	 of
^+v 0Vf+—	

'c	 . a.=0,	
{1}

which governs the distribution function f(r, v, t) of such particles, can be expanded

asymptotically in the adiabatic parameter.

In this paper (Section II) we carry out a formal adiabatic expansion of the Vlasov

Equation in a manner paralleling that of Hastie et al. 119671, but we tailor it to be more

explicitly applicable to space problems, such as the one in the following paper. We do so

assuming that f is stationary on the bounce time scale of particles moving in B. We find

that f is constrained in form: the dependence of f on a, the gyrophase angle of v with

respect to B, is related to the spatial gradient Vfo of the lowest order f, to the deriva-

tives 8f0 /3v and afo /ab with respect to speed and pitch angle respectively, and to the

magnitude, curvature, and shear of B as well as the magnitude and direction of E. This

X-dependence of f is called gyro-anisotropy and leads, for example, to a net particle flow

perpendicular to B.

Given values of E and B and of the derivatives of fo, our result can be used to cal-

culate f and its velocity space moments for comparison with charged particle measure-

ments. Measurement of the flux of particles d(b/dWdS2 differential in energy and solid

angle is equivalent to measuring f because of the well known relationship

dO	 2fW

dWd12	 m2	 (2)

}



Conversely we may deduce the values of one or more of the sources of gyro-anisotropy,

i.e., of the W-dependence, by examining the phase space variation of measured fluxes, in

a subsequent paper, to which this paper is a formal theoretical prelude, we apply this latter

approach to Pioneer measurements of energetic protons in 7upiter's mapetosphere.

The electric field b -v-hich enforce plasma "corotation" is the most generally

upon h to which magnetospheric particles are subjected. In Section 11.1 we derive for use

in our f equation the functional dependence on r and t of the corotational b for the

ease of a magnetic rotor whose magnetic field has no symmetry axis. We require that the

magnetic field pattern, whatever it might be, rotate rigidly, so that the field at any time

looks like that at an earlier time, but rotated. Our work here is an extension of previous

theoretical work of Mestel 11961,  196$ ] .



11. EXPANSION OF VLASOV EQUATION

Let us defuse a triad of lolly orthogonal unit vectors e i (r , t), 62(r, t), and 83 (r, t)

with St - BI I BI and e$ and 63 oriented arbitrarily (in this paper) in the plane transverse

to B. Because we usually measure particle fluxes as functions of the energy and of the

direction of the velocity vector, it is convenient to introduce the particle pitch angle
•

S cos-1 v
	 S^	

(3)M
and its gyrophase angle

v e3

A = tari 1

	

v 
e2
	

(4)

and to write the Vlasov Equation using v, S, and A as variables.

af(v, S,A, r, t)	 1	 8f

St i	
+ v • Vf - 

v sin S v • (Ve
i ) ' v M

cos A	 cifq	 of	 sin S of

+ v sin S v ' IM3 ) v - tan A (Ve2 ) _v ] 
dA 

+ 
m 

E^ ( cos S iv
	 v db

of	 cos b cos A 8f - sin A of 1
+ E2 sin S cos A	 +	

18v	 v	 aS	 v sin S 8A

(sin	
Sf	 cos S sin A of	 cosX Sf \	 g1B1 df

+ E3 	 S sin  --- +	 +	 1 -	 -- = 0	 (5)
dv	 v	 8b	 v sin S aA	 me 3A

In Equation (5), E l , E2 , and E3 are the components of E in the directions of our unit

vectors. Note that the spatial gradient V f in (5) is at constant (v, S, A, t) and differs from

that at constant v because the reference directions (e l , b2 , and 601 with respect to which

S and A are defined, change with r. However, f, even though expressed as a function of

v, S, A, and r from here on, is still the density in r, v space.

E"-



In the adiabatic expression we write

f	 fo+ft +...

where successive terms become smaller by the ratio

fn*t — 
0(€) = 0 

eG

fL

of the particle gyroradius ru = v/(q 1 B I/mc) = v/w to the characteristic sole length L of

the magnetic field. Note that a depends on particle energy as VA . In Jupiter's dayside

ma to-»here between 20 and 40 Jovian radii from the planet a is typically — .01 for a

I MeV proton. There are magnetospheric regions, however, where B is very weak as in

the Earth's tail near the neutral sheet or L is very small as in the current sheet region in

Jupiter's dawn meridian (Smith et al. 119761, Goertz et al. (19761) and adiabatic theory

is invalid for a 1 MeV proton.

We make the small electric field assumption that E = 0(c) for both the parallel F,

and perpendicular components E2 and EY The smallness of E t is necessary in order that

particles Flo not freely accelerate along B, thereby destroying any semblance of periodicity

and adiabaticity. Whether E 2 and E3 are small of O(e) depends on the ratio of the elec-

tric field drift speed cEj /B to the particle speed v. In the following paper we take F 1 to

be the electric field which produces corotation and find that this ratio is about 10' 3 p for a

I McV proton, where p is the distance from Jupiter's spin axis in Jovian radii. Since p

<50. cEL /Bv does not exceed .05. and hence it is indeed permissible to choose E of (J(€)

for the purposes of the following paper.

The relative asymptotic sizes of terms in (5) can now be estimated. A handy device

here is to regard the cimfficient m/q as carrying an intrinsic weight of e. All terms in (5)

are at largest of 0(1) except the first and last, and to lowest (1 /e) order

afe	afe

at	
7X 	 0 .	(6)
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Equation  (6) expiesses the result that any gyrophase dependence of fo gyrates about B

at the syro-frequency w. We demand stationarity on the Mime ale so that

KOM - l), KOM a 0, and fj = fo(v, d r, t).

We now demand farther that 3fl3t = t(e), i .e., that f be stationary on the time scale

. of the bounce motion. With this restriction there can be no particle bunches moving

alb B. 7he 0(l) contribution to (S) thus becomes

aft 	l 	 df^

	

v Vf – vsinS ( v `Vd t ^	
_S

q	 3f0	 sin 8 dfc
+ — 6cos S —
m	 t (	 av	 v M_.

Ifa cos S df
(E2 cos A + E3 sin A} sin S	 +

l	 S

which may be integrated to yield

	

V	 A	
l	 afa

ft = ft (v, S. A	 0. r } +	 d A v •Ufa – in (v • VC i )	 v

a

	

qat	 sin S ) -
1 (cos 8+ — JE

my 	 t	 U	 v 38

	

fO	 cos S afe
+ (F.. cos A' + E, sin A '̂  sin S —+

	

av	 v	 as

where v v 1 v. The integration in (8) can be carried out by noting

(7)

(g)

v	 e t cos S + sin S (e, cos A' +, sin A')

5



The mutt

Vf,	 (v.a.A`0, } +—
	 Ol ' Vfo) CIDsS

	

l	 3fe
} sin S & 102 VS I ) • S + (i ^

Si ' e

	

$E s 3fe 	 sin S 3fe
+ —^ ( cos S^fo

my 1	 8v	 v 86

i)fo+ ( 163 • Vfe ) sin 5 - -N- }S (Si • Ve y ^ e36 [COS

R2 • Ve I ) S + (i3 • VS I ) S,
+ sin S

4

+	 sinS ^
3f + Coss S 3'0

)1

	

Inv	 av	 v	 as

3fa
+ SMA 01 Vf^) sin S	

3S 
c s S (ei •psi

	

` E3fe 	 Cos S 3fo
+	 (sin S	 +

	Inv	 3v	 v 36

3f^
+ Cos A - 03 . Vfn ) sin S + 3S Co's S (^i • VI I } ^3

qEaf

	

(sin S 
i

- +
tosS3fn

- 3	 --1 
	m y	 3y	 y 3S

	

sni4A	 3f
+ -747-sin S - 0 ( (2 . V61 l	 ^ + 03 ' Vi i > '	 l

dS

	Cos 2A	 3fe
+ 4 in S 3^ l ( 1) • VII)	 + (^3 ' VI I ) '	 l (9)

6



Since X is an angle variable, f trust be periodic in it. fa, being independent of X, is

Orly so. Everything in Equation (9) for ft is periodic in X with the exception of the

linear temp. We enforce periodicity by constraining fe further so that the coefficient of

Xvanishes:

	

I	 afe

	

(it • Qfe )	 a -	 sin a	 [(62 • W • it + 0 • Vi t ) • ^3 l

qEt	 af$	 sin a afa

ITIV (
Cos S dv
	 v dE	

= Q	
(I )

Now note that

0=V • 13=Q • (e 1 B)' il•4B+((C-,—w)•e +(e -W) • e1 	 (11)

and thus

	1 	 ^I • V B 3fe	 `Iht	 HO	 sin S HO 1
(e t Vfn) cos 8 + sin d	

B+ my 
cos 5	

_ v as	I 	
0	 (1 ^)

Let us denote ^, • 4 by 313s. Equation (12), being linear in %. is satisfied by any

arbitrary function of the characteristic constants which label flow lines in the 3-dimensional

s, S. v space. These constants are obtained by so lving the ordinary differential equations

my	 eos	 I	 'tl`^ =t
	dv = ds g —	 - — j db	 (13)

qbt	sin	 16D as	 mti-.

From the first pair of them equations comes the parallel energy

K - m.
	

gbt ds	 (14)
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as one constant, and from the second pair we find (using 14) the magnetic monnent

V_ sin 2 8	
(15s)

to be a send. The constraint (10) therefor- dictates that on any given field line

% - fa(K, Id).	 cause M is double valued in 6, separate distributions may be specified

for particles moving parallel and antiparallcl to B (Hastie et al. 11%71). If the particles

are trapped in a mimetic mirror, the stationaritt of f requires that these two distributions

be the same. however, there am situations, such eas circulating particles in a toroidal de-

vice or particles precipitating at a steady rate- in a magnetosphere, where the symmetry

need not exist. In addition, the form of the dependence of fe on K and lit may differ on

different field lines, if we label a field line by the parameters o and 0 (Northrop 11 146 11,

Stern [ 19701) then fn = f,(K. M. ct, 0).

Note further that the remaining a=irdepi-ndent terms in ( 10) can be lumped together

by red- efii ing the arbitrary function f i , Thus, through 0(t),

f = f, (K, M.	 + f i (v, S, r )

V

+	 - sin A [i	 V(n ) tin 6 -	 cos A(i	 t )as

s

111V	 av	 V	 as

af'a
+ cos X _(C ) • Vf,)sinb +	 co.45(i WWI • iA

q a	 10
	 C"M IS t1fo

min	 +
MV (	 O*v	 V

8



sin 6 HO

+ Cos Ve 	e	 (16)
—4 76	 1 -3 + te3 	 ^l

- 
A

- 4 	 Equation (16) is the princip-Ai result of this paper. Given f. + f, and the magnetic

and electric fields B and E. it a,lows one to calculate the non-g yrotropy (which contrib-

utes, for example, to the cross-field particle flow). The existence of 
f, 

means that the

9y rv-.-,oic part of f may have a small 0(c) component which depends in an arbitrary

------	
L	 on s, v. and 6 and still maintain afiat 0 + 0(c). If the time variation of f were

slimited yet further. restrictions on ft . similar to those imposed on fa here, would arise

(Hastic et at. (1 9671), It shoulti also he noted that because of the redefinition of ft

0) but is the X average of f.ft, + f, is no lonv!e,

-It is instructive to examine velocity space moments of (16) to sec the descendants of

each lerm. The density

n	

d3% -f	
d3v(ful + f, ) =j d -'vt'O + O(C)	 7)

not involve an y X-delvrident terms. 
because 

tllCV integrate to zerci. To th efie iliac r

sCopic flow velu-Wity

I

V)	 co, 5 (t + f,

n	 0

+ _L 
rj 

3 % v 2 sin 5	
—

Cos- X	 ( • • V1,
O

) sill 3
n U) te^	 I 

a fL)	 qF1	 (I  tj	 Cos, 5 3t,+	
Cos 6	 V^	

1 3 —	 is(Sill — + —	 )
_W	 111v	 3v	 v	 36 1

9
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6fo
+ 3 sink W (62 • Vfa ) sin 6 –	 cos 6 Rl V6 t ) • 12

q	 dfe	 cos 5 af4

+	 ( sill 6 L +	 —) 	
(18)

tnv	 6v	 v	 as

an the other hand, fo + ft contributes the parallel (to B) component and the cos X and

out X term in f are responsible for the perpendicular fluxes In the 6, and 63 directions

respectively. In order that a non-zero { v ) • et exist, (fo + ft ) for particles with pitch

angles (l 4 d G w/2 must be different from (f. + f l ) for particles with pitch angles

/2<6<x.

An experimental detector frequently samples only a portion of the 4x steradans

through which v may vary. For example, in the Pioneer experiment analyzed in the

following paper, the proton detector scans in 8 through tar radians in a plane to which

B is arbitrarily inclined. An experimental anisotropy is then obtained from the magnitude

and direction of the quantity

dv v	
^3A 

dO ft Y, 6(0). X(0)l v(8).
o	 0

The cos 2N and sin 2X terms in (16), which vanish upon integration over all angles of v,

contribute to this "reduced flow velocity" provided the pitch angle distribution of par-

titles is non-uniform so that HO W * 0.

The perpendicular flow terms in (18) can be cast into a more familiar ferns b y son.e

straightforward integrations, integrations by parts, anti vector manipulation. Details are

omitted because we are interested only in the fate of terms in (18).

CEX B	 c	
t

{ v )c =	 +	 j	 X V(MB) -- Ma i X ( t t7 i l
q

(F)	 mo)	 (fit • Je t )

10



t	 ^

ITIC

+ n B e
t X (61 • Vet )d'v f0 v2 cosy $

9-

	

(ei • Ve,)	 (19)

Where M = — # I M = — e 1 (m/2) f 0V fev2 sine S is the mimetic moment per unit volume.

Indicated in parentheses under each term is its ancestry in (16 1 -)r (18). With a little

more manipulation we obtain

cEX B M c
(v)1_ 

_	
#-- el X VB

B	 n qB

(E)	 (Vf8)

me	 c
+ — (vr) el X (el • Ve l ) + -- (V X M),

q	 nq

(el • V$ 1 )	 (Vfa, el • Ve l )
(2U)

or

{v)1 = (v drift ) + c(VXM)1	
(21)

where (v,n) is the average drift velocity of guiding centers. As shown by Northrop

[ 19611, the right hand side of (2 1 ) also equals

C	 chX B	 me	 d(v)

	

e X(V•P)+ 
^	 ^

+ -	 e X
1	 dt	 }nqB 1	 B2	 qBz 

a result which also follows from the moment equation

d(v)	 V • P	 q	 1	 \
+ q (E +-, (v) X B 1,

dt f	 nm	 nm	 c

P being the pressure tensor.



Although it might have been tempting at first sight of (16) to make cuff-hand identi-

cations, such that V B drifts arise from terms containing pfe , and the curvature drifts

from those containing (6 • V e l ), this is only partially true in that parts of all these terms

also lead to the (V X M)^ term. Thus when looking at (16). it is difficult to think in

terms of guiding center motion.

12
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111. THE ELEC'T'RIC FIELD IN A RIGIDLY CORGTATING MAGNMSPHERE

As a preliminary to our using Equation (16) in following papers, we present here a

short derivation of the form which E must have in order that the magnetospheric plasma

eorotate. The source of B may be finite in size and arbitrary in shape. It is rotating

about a fixed axis which we take to define the z-axis of a cylindrical "laboratory"

system, so that S1 = 6z 51. By rigid corotation we mean that all physical quantities are

time invariant when seen by an observer moving with the velocity 11 X r. However, if

the magnetic field is not axisymmetric with respect to 11, a aB/dt will exist at every fixed

spatial point r in the laboratory coordinate system and have a value (Goldstein (19501,

Backus 119561, Birmingham and Northrop 119681)

3B
^l = 12 X B - (SI X r) • V B

aB
11 X B - 12 

o	
(23)

Maxwell's Curl Equation hence becomes

1	 dB

V X E_- (-n X B- St ao 1	 (24)

Further

u X B
E-- --

c	 (25)

where u is the flow velocity of the plasma, assumed to be ideall y conducting.

Next we postulate that

it = k(r)e,+ a (r) po	 ,

13



so that the plasma flow consists of a component of amplitude (pa), to be determined from

(24), in the "corotational" direction (^ may have a field-aligned component) plus the arbitrary

fiield-aligned portion k(r ).

Inserting (25) and (26) into (24) and performing the vector differentiations one

obtains the equation

d	 3 
(a B) — a2 X B — per B - Qa = Sl — — Sl X B.

(27)

Equation (27) is trivially satisfied by a = const. = fl. The "corotational" electric field E

thus is

E = —p^ ^ X B	 (28)
c

Note that since k (r) in (26) is still arbitrary it could be chosen to be

k=—p1l^'el

so that u is totally perpendicular to B. Our result (27) has the same form as Mestel's

119611 solution for the case of a rotating azimuthally symmetric magnetosphere whose

rotation and magnetic symmetry axes are parallel. The form of the expression for E

thus is unchanged by generalizing to this non-axisymmetric geometry. In applications

such as in the following paper to Jupiter's magnetosphere, the electric field has not been

measured and it is desirable to postulate one in order to reduce the number of unknowns.

Although (28) undoubtedly is not exact, it is a stage better than assuming the E which

one would have for a magnetic dipole field.

a

14
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