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'AIRFOIL PROFILE IN A NON-UNIFORM FLOW
 

Jan Polasek*
 

/5 33 * 

We will discuss a method for calculating the flow 
around a profile
 

in a, nonhomogeneous flow field. This method is based on the idea that
 

the profile is replaced by a continuous distribution of vortices and
 

sources along the profile skeleton.. The method is suitable for solving
 

the direct and the indirect problem of profile theory.
 

The results given can be applied for calculating the air foil in an
 

homogeneous and a non-homogeneous flow field, or for calculating
 

straight and radial turbine blades, and guide blades, etc. For prac­

tical applications, the results are:given in the form of formhlas,
 

suitable for numerical calculations. Examples are also given.
 

SYMBOLS:
 

o profile skeleton chord-

Y8 profile skeleton ordinate 

t distribution of profile thickness (measured from skeleton)
 

Ymt ordinate of profile central line
 

t symmetric thickness distribution (measured from the cen­
tral line)
 

xp, yp coordinates of points on the profile
 

R1 curvature radius of leading edge
 

R2 curvature radius of trailing edge
 

trigonometric auxiliary variable (identical with the
 

*CSc, Government Research Institute for Heat Technology, Prague, Czech­

oslovakia. 

** Numbers in margin indicate pagination in original foreign text. 
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polar angle in the complex auxiliary plane ,)
 

U, v velocity components 

WK contour velocity 

U0 basic velocity 

F total circulation over profile /618 

y circulation distribution 

q source distribution 

An, Cn coefficients in the expansion of profile thickness 

B coefficient in the expansion of skeleton direction factor
n
 

Bn coefficient of the expansion of the directional factor of
central line
 

gn coefficient in the expansion of circulation distribution
 

qn coefficient in the expansion of source distribution
 

coefficients in the expansion of components of primary
 
velocity
 

COMPLEX PLANE Z
 

The same notation is used in the physical plane, but the quantities
 

are considered dimensionless. The lengths are referred to one-half of
 

the chord length (c/2) and the velocities are referred to the basic
 

velocity (U ).
 

i'v complex velocity in plane z
 

u , v velocity components induced by vortices
 

Uq, vq velocity components induced by sources
 

UK, vK components of contour velocity
 

COMPLEX PLANE Z:
 

X, Y rectangular coordinates Z = X + iY
 

XV, YV coordinates of points on the profile
 

ff complex velocity
 

U, V components of primary velocity in plane Z
 

UY, VY velocity components induced by vertices
 

Uq, Vq velocity components induced by sources
 

UK' VK components of contour velocity
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COMPLEX PLANE 1: 

p, Polar coordinates ffihi-2Y-
E distance of point from unit circle&(s = p- 1) 

complex velocity in plane 

vp, v0 radial and azimuthal velocity components 

INTRODUCTION
 

The idea of Birnbaum of using atcontinuous vortex difst;bution to
 

replace the flow around a thin profile has been found to be-very,-fruit­

ful. The original paper of Birnbaum [1] was followed by similar1 c­

[tudies [2-61, and several applications were considered: From the flow
 

around a thin profile in a homogeneous flow to the flow around a pro­
file in a nonhomogeneous or non-steady flow field. Then this was ap­

plied to the solution of guide blades, and blade cascades. Another ad­

vance was the consideration of the'blade thickness, which can be
 

,achieved by a suitable distribution of sources on the profile skeleton.
 

In the calculation of the flow around profiles with a moderate cur­

vature, a further simplification is introduced by decomposing the vor­

tices and sources along the profile.chord, instead of along its skele­

:ton. The calculations become cleared with these simplificaton, and
 

they can be performed'without great mathematicalInowledge. The so-called
 

'first-order theory gives very good results for the ratio between the
 

shape of an infinite thin profile and the circulation distribution. How­

ever, the calculation of the contour velocity and the influence of the
 

fihite thickness, especially near the leading edge-, lead, to certain
 

difficulties and inaccuracies. Various authors have tried to eliminate
 

or reduce this by introducing various correction factors. Deeper mathe­

matical investigations have shown that in the derivation of the rela­

tionships between the shape of an-infinite thin profile and the circu­

lation distribution in a homogeneous flow field, only the "third order"
 

terms were ignored, because the "s6cond order" terms drop out automati­

cally (as can be seen by comparison with the results of paper [6], for
 

the case of a moderately curved prdfile in a homogeneous flow field).
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In other cases, especially when calculating the velocity distribution
 

along the blade contour and the influence of finite profile thickness,
I
 
the ignored "'second order" terms become noticeable and have a substan­

tial influence, especially near the leading edge.
 

For these reasons, in this paper we developed a complete "second
 

order" theory for the flow around a profile which has moderate cur­

vature and is not too thick, in a nonhomogeneous flow field.. The
 

paper is given in two parts: in the first part, we derive-the theory
 

and in the second part we give the theoretical results in terms of
 

formulas for numerical calculations. These formulas are then used for
 

the practical solution of several selected probiems. First, we will
 

calculate the flow around a symmetric and curved profile in a homo­

geneous flow field, and then we wiall consider the flow around the same
 

profile in a grid arrangement.
 

ORIGINAL PAGE IS
 
OF POOR QUALITZI
 

.FIRST PART
 

THEORETICAL ANALYSIS
 

2. Infinitesimally-thin profile in a non-homgeneous flow field
 

The profile under consideration is placed in the complex plane z
 

x + iy in such a way that one chord lies along the x-axis, and the ori­

gin of the coordinate system is at the center. The lengths are con­

sidered dimensionless and are referred to one-half of the chbrdlength
 

(c/2).
 

The profile equation is:
 

F _ (2.1) 

where
 

V---iQ'i =v (2.2) 

Instead of the variable x, we will introdnce the trigonometric auxi­

liary variable z with the equation
 

4I
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0= -os& j g .n (2.3) 

For the calculations, it seems appropriate to express the differen­

tial quotient of the function y (X) in the form of a trigonometric
 

series:
 

dy, ,E B. cosn (2.4) 

-1 ,y x 

Figure 1 . . .
 

The profile shape is then given by the expression
 

y18 4%-{Bo -co ) + 

2 (2.5) 

The coefficients Bn must satisfy the following condition because of
 

equation (2.2):
 

BO (2.6) 
UP -11ni 

Also the components of the velocity of the primary inhomogeneous flow
 

field at the profile location, as well as the circulation density (re­

ferred to the length unit of the chord), are expressed as a continuous
 

distribution of vortex threads on the profile using trigonometric series:
 

. . .. .. ..... ...cos..Jt(2. 7 ) 
n-0 

V ,Co s)0 

h-=0 
(2.8)
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y g+Y-sl'1 	 (2.9) 

The velocities and circulation density are considered dimension- /621
 

less, and are referred to a suitable basic velocity U0 . The coeffi­

cients in the expansions (2.4), (2.7), (2.8), and (2.9) are assumed to
 
be small of first order, in the sense that the quantities pn% Vn3 gn
 

and Bn are of first order compared with 1. For large n, they go'to
 

zero like the terms of a geometric series with a quotient smaller than
 

1. The theory is developed as a second order theory 	in such a way that
 

everywhere the productslof two first-order variables are considered as
 
second-order variables, and the products of three first-order variables
 

are ignored.
 

In practice, it is sufficient to approximate the trigonometric expan­

sions (2.4), (2.7), and (2.8) using trigonometric polynomials having a
 

relatively low order.
 

z-x- , XpiY, 	 Z 
2''_4
 

- 1 0 X 

Figure 2
 

In addition, we will introduce the complex plane Z = X + iY and the 

complex function: 

z Z+ if(Z) 	 (2.10) 

It maps the plane Z onto the plane z in such a way that the distance 

-1 < X < 1 along the real axis of plane Z is mapped onto a curve YB in 

the plane z. In the plane, Z, we introduce for the variable X in the 
interval -1 < X < 1, Y = 0 a trigonometric auxiliary variable z as 

The circulation density on the profile is "The1Te t d o t	 quan­

tities y and dys/dx are subjected to the restriction that the differ­
ence between ys and y is small to third order, and therefore, we can
 
set ys = y for our theory.
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follows:
 

(2.11)
 

The function f(Z), for example, can be written in the form
 

(2.12)
 
f*, . ..
 

On and /622
The following relationships can hold between the coefficients 


the coefficients Bn in the expansion of the directional factor (2.4),
 

which are linear relationships
 

(- I - 3Jj, + 035:. (.3
(2.13)
 

..........................
 

Since we will perform our analysis in the image plane Z, it is ne­

cessary to map the velocity of the primary flow field from the plane
 

z onto plane Z. For the mapping of the primaryvelocity, we have
 

dZ
 

We have-the following relationship for the derivative of the mapping 

function along -1 < X < 1, Y = 0: 

.. ,+ i.if (2.15)
TdZ dZ dx
 

so that the expressions for the components of mapping of the primary 

velocity* along the interval -1 IX < 1 along the real axis of the plane 

Z are given by the following: 

(2.16)
 

4/
 

*The mapping (2.10) maps the flow field in the plane z again onto any
 

flow field in plane Z - which is a mapping of the flow field from plane
 
z. Expressed more simply, this mapping flow field is simply called a
 
flow field in the plane z.
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After substituting from (2.4), (2.7), and (2.8), we find:
 

1-~+ t ?hoi,'1 lid -I- , " . + -- . " I - , ' k 

S.. (2.17)
 

/623
 

The complex velocity in the plane z, which is induced at the profile
 

(2.5) by the distribnted vortices (2.9), is.given by:
 

. . -,L. t (2 .1 8 )' 

With the mapping (2.12), the velocity (2.18) is transformed to
 

"rU,= i -i" y.±ivXy -+ (2.19) 
-L 27j - -7+&Zr)I2n?.IX X6g + i 

Along the segment -1 < X < 1 of the X axis, we have:
 

- - ;, = . ._ _ ... . (2.20 ) 

The expression (2.20) is transformed into 

u! - ' y (-M ),4c2 . d, . 
y.j---;,dy --_.( 2 .2 1 ) 

IJP F tim'V-+ 

and the integrand is expanded according to powers of
 

4, I -loVA ". g ,4 .'-

If we restrict ourselves to second-order terms in this expression,
 

then we can write
 

1% - jv=L + i i -:t--. 1 1 .I 

or, after substituting the variable V,. according to (2.11), we have:
 

8 



LUi1 IuS{ B"n --4(A+ if Cos 7V 

-1-s	~ Co ux­

-V ,ogc - - )jJos 	 (2.22) 

'2, ±z [Cos ()I -1 xtCos (IV+ i)l -/J d(3+'oP +'.g, 

The incomplete integrals on the right side of (2.22) are to be con­

sidered in terms of the Cauchy principal value. For example, they were
 

calculated in [61, Appendices I and IV. Therefore, we will only give /624
 

the final result:
 

(go cot g,sin I+i(o - bsIt-P u cogI + ) +i nS)~
Yl-i a) 

* [ B gF- - fAg4 + -) 2)4+ ± 4 -;) + (2.23 

±+ 1B4 go +Bgo +.­

±tos. 401)- +o Bo(t +0 g2) 	 (2.23) 

+cs2>{t+u 4o-BH ) ± +Bog0 +_j1+ 

+cosaex2.B4 (-go ±- - ± B~go +0B-. 4S..+By
 

The + sign applies for the top side of the interval -1 < X < 1, and
 

the - sign for the lower side of this interval. In order not to have
 

to write both signs for the velocity, we will consider the angle 0 in
 

the interval [-w, r 1. The positive value of angle 0 will refer to the
 
top side, and the negative value will refer to the lower side of the
 

interval (Figure 3).
 

z%=b Z-XPJ' z•~~ f'f] 00 

IgORGINA 
PAGB IsI ~ Op POO QJAuITy 

Figure 3 
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Since the segment -1 < X < 1 lies along the stream line, then the
 

Y-th velocity component must be 0 there, and therefore
 

T-+ V-=O, (2.24)
 

If we substitute expressions (2.17) and (2.23) for V and V in equa­

tion (2.24), and if we compare coefficients for equal multiples of the
 

cosine of the angle t, then we find a system of equations which gives /625
 

the relationship between the profile shape and the circulation distri­

bution:
 

go ~-B.Av-v 10 - S Bk 

B v+ (2.25)
 
+2 S- . 13-k-S([LB,k+fLA.kjPk)iYjDfl n=1,2ji.0..
 

It should be realized that system (2.25) also results from system
 

(2.11) in paper [6], if we set w = 0 there.
 

The contour velocity on the profile in the z-plane is obtained from
 

the X-th velocity component along the real axis in the plane Z, when
 

this velocity component is divided by the modulus of the mapping func­

tion:
 
'U.4 'U (2.26) 

[I + (dy,/d,)211'(
 

If we substitute expressions (2.4), (2.17), and (2.13) in equation
 

(2.26), and if we restrict ourselves only to second-order terms, we
 

find:
 

+ + I, cOo n',+ I[Y4Cotg + ga iI++ 

v,.k.+
+1 vo .BO+-T .j~ B,_,_ + (kB,._ .1dk- coB91 
- no -FSj±j~~~vE,& + - -Y BA B. _i-0 -kn-Y, .okBk)csn 

Iz-0 +(k"k-0 (2.27) 

+~ (g~1B+ -I"1+- B'o+ g) (o+ g 

++4 go +B5 go + + 

3 (± 5 (continued) 
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(continued from previous page)
 

+ 2 g + B50g ... ]cos + 
)+ + (2.27)
 

+o + ) + 6 B-., -.. + co25..q. 3 B5 go 

It should be realized that the expression (2.24) also follows from
 

expression (4.5) in [6], if we set w = 0.
 

3. Velocity Field of Sources Distributed on the Skeleton
 

The finite profile thickness is considered by decomposing the vor­

tices and the sources on the profile skeleton. The density of the con­

tinuous distribution of these sources is considered in the form of
 

trigonometric series, just like a circulation distribution:
 

q =[1 + (dy/dX)2]' q 2(ocotg- + 
+. (3.1) 

+-40otg 4 +-k q Sin M ), 0 M7: 

Thefirt trm2qocotg II
 
The first term 2 considers the rounding of the leading edge
 

and the second term 2 tg -)-0,jthe rounding of the trailing edge. We have
 
2
 

qo= 0 for the profile with a sharp trailing edge. The total yield of
 

all of the sources distributed on the skeleton is given by
 

q,d ='d X=27C 0 ++ ±±0+ (3.2) 

t.x+4' Z-X+ Y 

I A -- -- OIGIAL PA'G IS 

Figure 4
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Since the profile is closed, the total yield of the sources must be
 

zero, which results in a condition which the first three coefficients
 

in expansion (3.1) must satisfy:
 

,J + ?,+-7S+a1, = 0. +(3.3) 
A 
 2
 

The complex velocity induced by the vortices on the skeleton is,
 

found from the velocity induced by the vortices, and this is done by /627
 

replacing the coefficients gn by the coefficients 2n. The entire ex­

pression is multiplied by the factor -i, (calculation of the term with
 

.Ag-_6, which does not exist in a circulation distribution, is similar
2. 
to the calculation of the term with botg- - ). After mapping into the 

Z plane, the velocity on the segment Li < X < 1, Y = 0 is given by the 

expression:
 

VO- iT 2Zq0 4- S qgJ6 1 8 ~i;0 g( 0 ov- i}A 

+ q0 -(- ,
o-1 

i+ Bi. + 4 .)( o +4 B+o + 

+ B2+ + F o +%B + + q2 ) 

6- 1 (

4b ,+,,,4V'+ 
+ 5 g +k q,­

134 (go -gJ-) +A 1Q08 2$(+ qo I- /o + q1) +±-+ 

: , -I q,3) j ++ }+[ B5 (ga -- q) . .]IB +3 &(q, o..,s ± 

We would like to add that on the top side .of the interval, we have
 

i%> 0, and on the bottom side we have 0 < 0. The skeleton of the pro­

file with a finite thickness becomes the carrier of the singularities
 

(sources and sinks). As a further analysis shows, this is not a pure
 

geometric characteristic of the profile (in contrast to an infinitesi­

mally thin profile, where the skeleton and the profile coifncide), but
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in8tead it depends on the primary !flow field. Instead of equation (2.24)
 

for a profile with a finite thickness, we will consider the expression
 

(3-5
 

where Vq+and V are the values df the velo6ity Vq on the upper and /628
 

lower side of the segment -1 < X < I of the real axis. Just like equa­

tion (2.24), the equation (3.5)is a requirement that the skeleton lies 

along the stream line. This requirement is only correct for first-order 

terms. In the caselof the second-orderterms, deviations have the ef­

fect that (.3.5) must be replaced by the form -(4.25) which is correct
 

for second-order terms. This will be discussed in the following chap­

ter. If we substitute the expansions (3.17); (3.23), and (3.4) in
 

equation (3.5), and if we compare coefficients for the same cosine terms
 

of the angle 0, we obtain a system of equations just like in (2.25).
 

This system will be discussed in detail in sections 4 and 7, equations
 

(4.25) and (7.18). The corrections to the second-order terms are also
 

considered there.
 

4. 	Basic Relationships for Calculatig the Flow around Profiles with
 
A Finite Thickness.
 

Let us consider the profile with a finite thickness. First, we will
 

investigate a profile shape in the image plane Z. Only later on will
 

we transfer to plane z, using equation (2.12). i
 

From expressions (2.23) and (3.4), we can see that the velocities 

induced by the vortices and the sources are composed of first and second 

order terms. The first order terms can be looked upon as velocities 

which are induced in the plane Z by vortices and sources. They are 

distributed along the real axis along the segment'-l < X-< 1, with 

the following densities ­

~(Ocbtg p~ilg + 	 (4.1) 

ORIGINAL PAGE IS 
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....
... ........ 
...- tg2 - -]-q sin (4.2)
2 2 

In the following, the second-order terms are added to the primary
 

velocity field (2.17) in order to simplify the notation. We there­
fore have the task of estbalishing the relationships between the pro­
file shape and the circulation and 'source distribution along the pro­
file skeleton. 
The profile skeleton in the plane Z is identical with
 
the segment -1 < X < 1, Y 
= 0. The velocity of the inhomogeneous flow
 
field into which the profile is placed is given by the expression
 

U ~i + - ( -VJcoC i (4.3) 

41629
 

where B +, .1 Bj+ 

+ + 
4- o - 1 o ± .- ,1) 

:+ 
 +. . 

1 1 " ' 4+ (4.4) 

IL +o -- t-4 + B + 4 
14 goYIo a, g.

454
 

T), 24+ V#k+2 V-b2 BA-) 

1(~ 

I-k-0 k,-0- +, i 

( B + -±*) , (4 

143 
go v 2 -B2­ , + 

-­, , ' 

, B-- t ~P1-+xk4I( 

.,k] ,k•O" 
-­i3+-2R ) ,1-

I 2 ,:. + 
-

-. 

+ / 



In the following, it is advantageous to introduce the complex plane
 

and the complex function 

z t ], (4.6) 

/630 

into the interval
This function maps the unit circle, in the plane 


-1 < X < 1, Y = 0 in the plane Z, lwhich is passed through twice.
 

In the plane C , we will introduce polar coordinates p and 0 (Fig­

ure 5):
 

zAJpe 

Figure 5
 

ORIGINL pAGB ( 

if we also set -FOO -T Q 

.-'. . .... (4.8)
 

C from the unit circleI.jThen from

where e is the distance of the point 


equation (4.6) we.obtain
 

- ~ rtm~'(4.9) 

.,: ['-.. -,. . ' ],.I
 

or 
 ,
 
COS,
•X =-,1 +-- ----- 'o -!
 

(4.10)
,*2 i - ., 


Y =zji-- -- 1 i. ,
 

(4.11)
 

The velocity field in the plane Z, which is composed of the inhomo­

geneous primary field (4.3) and the velocity field of the vortices
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and sources, can be written in a relatively simple form, if we map into
 

the complex plane r using the function (4.6):
 

'2 > ' [(4.12) 

The velocity ibL, is decomposed into a radial part and an azimuth /631
 

component:P
 

(4.13)
 
2/
(~~i- + ~, (to+_.- cq~ # 

On the unit circle (that is, for p ='I), the velocity components
 

are given by the following relationships:
 

vSii t-" 1W _,A ... (4.14)
 

-, = ,. . : , (4.15 ) 
equations4- j91U1 ± 

Using this notation, equation (t3.5)is equivalent to the system of 

equations 

V4oO,6i2;. . 1 (4.16) 

so that the radial velocity component on the unit circle is equal to
 

the expression
 

. W (4.17) 

which corresponds to sources in the C plane, which are distributed
 

along the unit circle with the density
 

*=~--,s~ll1 j(4.18)
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The profile in the plane ; is given by the closed stream line /632
 

AB4NA (Figure 6). Its shape is derived from the condition that the
 

total flow passing through the unit iircularj arc A1BI and the amount of
 

incoming flow through the section A1 A flows through the section BB1 ,
 

because the arc AB lies along the stream line and the normal velocity
 

component is 0 on it. Therefore, we have:
 

K, d .\% i dp=,' i (4.19)%h)/jt . 

Figure 6
 

The value of the first integral according to (4.17) is given by:
 

P. q|o C0 '-0-9,' + 1 si, 41 i-+- q, sin,) . -tg -- . "" " - (4.20) 

+- . 40 , 

Because of condition (3.3), the term drops out. 

L .the calculation of the other integrals, in equation (4.19), 

we will use the expression (4.13). Accordingly, the values of these /633 

integrals are given by the imaginary part of the following expression: 

7(e_9; , ._ , , 2 ('4.21) 

(continued)
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(continued from previous page)
 

+ w+i(:he--' - +1'" -*) 4(14­

- I - . 

t (4.21) 

- *, • -'3 ' 

'.iC,-. , 7 +, 
' 

I- - . .. 

1 

II .­

,246j tll(( 1 ± 

1- w vd2 svhi - ,,O ., 

. .u--* *" A.,- s - . 
dS e04 0 + 

- -- )j+2& ooii-i"14(1 2)22 

j -q+2Y -q 'cs +t ( .2 

-s( .20) S.)- e concernedv ea-cdg iC 1 + t45 ( .2v)-) 

inceo is arsmale: quniyoffrto6li e goehihrta
 

+bhtFor70 0, we have:left sif> -e nsiner M$i.1iequano .1)refidl 2go4 assecond-orderters 

cn than
smllqunt tye ofergs order, inrehge
incesid is aeo to°
 

- r i - (4.23) 
seoor er trstn consideri.Teeoe equations (4.16)we vefind:w 


and forl = 7r we have: /634
 

-'vi- io o- ufi (4.24) 

Fbi' 7r, the left side of equation (4.19) is equal to 2gos0 as far 

as (4.20) and (4.13) are concerned; because according to (4.24) the 

right side is zero. Since the term 2g e is of second order, in our 

theory we must consider it. Therefore, the equations (4.16) have beenf 

given corrections of the following type:
 

iSORIGINAL PAGt' IS 
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7W I + ?o,so , ( . (4.25) 

, , 71¢ + h 2 , 3-,, 

To the integral (4.20), we will add the correction­

(4.26) 

so that on the left side of equation (4.19) we obtain the following
 

expression for the total current through the arc AIB and through the
 

section AAl:
 

] . - '2 2) , S . (4.27)
-sill + ZO -- - l)--- o 

By comparing (4.22) and (4.27), we obtain a relationship from which
 

we can determine the profile shape; that is, s as a function of the
 

angle 0. Since we are interested in theprofile shape in the Z plane,
 

this relationship is converted from the plane ? to the plane Z using
 

equations (4.10) and (4.11). Let us call the coordipnaWsjof the points
 

on the profile (Xp, Yp). Then according to (4.10) and (4.11), we have:
 

p(4.28) 

After substituting in (4.22) and (4.27), and if we ignore higher /635
 

order terms above second order, we find
 

'YgAon siu+- -'-i-§-±i,'-(d_ sin, + 14 
4..qgfi 2$-± j 

1 ( - o(4.29) 

.01
[jysna4)2? (4.30) 
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In order to solve equation (4.29), we will write the function YP in
 

the form of a trigonometric series:
 

A, i h-n o 

(4-.31) 

- cos (9.'m ± i)4]} . . 

From this equation, we obtain s according to (4.11):
o
 

n(4.32)
 

2 i osin ,,j
 

and therefore,
 

.0 +. 
2 ,A-" (4.33) 

After substituting expressions (4.31) and (4.33) in (4.29), and
 

after comparison of coefficients of the same sine and cosine terms of
 

the angle 0, we obtain two systems of equations:
 

qj AK 2•6 i12 
" • ...
 

oRIGINAL P G8
 

2 X 

2>,,, ... .' .t.
 

16 + q+ - . - A ('q6, -", I 4

2 1 2 1 

. r+. +,, +t0 2 + Yi (4-34) 
01 +gs 0 

±jO- +V20±]-frq4 7 ", '41 ' 
~J 

-+d(q +C2-[ 
t n 'I 4. 34 
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(continued from previous page)
 

A4. 2o. + + q7 i40 '' 

+ ++gl - n+a) + go -1- 2. ',, 

-+ (g 1+4) 0 2mYA. -0- (g -g]gs) Cg ­

-~. ) 2-' 

-~9 .. .. (g- .. ---- Fs 'O... 

go 

' ~ "X-1 ' X_ =2 r" , ­

+ +o - SoNq' D(Vd.. + 24h . 1 0gi it A, 

(go+1IICdIjIL0.+1 1+ 
2 

+ (A 4 u.Mi + An+ Igli) go * -o 

tI ,(4.35)
-nI 


S- -z +4%) O -""~o '- .. m t . ).. , 

(q. On - + . , J,,= bill± 

+ (.Ig+2 ± Ah 2 ,jij go ~ n 
2 71 4- ' 

+ 4 b4+izJcJ ±,A-g-'o At . - A -- 4 i7"i')_,, 

12
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It is often advantageous to replace the first equations in the sys­

tem (4.34) by the following equations:
 

2yn ~A i+8q +4()' 	 (4.36)11,4 	 q,+± 3jT,~ 
*h-2 , 

20 1 I.-- O -340- g. +-	 (4.37) 

These equations are obtained by multiplying each equation of the
 

system (4.34) with its own order number. Then all equations are added/ 638
 

once with the same sign and the second time they are added with the
 

alternating symbol.
 

The 	first two equations of system (4.35) are linear combinations of
 

remainder equations and therefore will not be considered in the fol­

lowing. It also follows from (4.35) that the coefficients Cn are second­

order, so that in systems (4.34) and (4.35), all terms in which coef­
ficients C are multiplied by any first-order term can be considered
 

n
 
of third order, and can be disregarded. This means that the Cn terms
 
drop out of the system (4.34), and the system (4.35) has a purely dia­

gonal character.
 

5. 	Profile Shape in the Vicinity of the Leading Edge and Trailing
 
Edge
 

As already mentioned in the previous chapter, the Y coordinates of
 

the profile are given by the following expression:
 

3A, sinniO og~ I Cos2 l ±. 
~(5.1) 

± XV ,,+1 [cos4: -cos(2rn i.)AI], - " 

According to (4.10), we have the following for the X-coordinates
 

of the profile
 

[i'l.+ (Y/B ifl4i2J 'Cos4* 	 (5.2) 

or after substituting equation (5.1) and ignoring terms higher than
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second order:
 

, p"tjA--eO _A I+ 42A_+A 2 AA _ +2 2 . A -,.4, _.=~~~ 2 : . _ _As...+,i[A.2 +2~ ,t+,1,, A ,I ~ + 

2 2-,ia+..cos2,5+92[A,A.,+2-1'3 +-;.]'cos 34' + [A +- A2 Ai1 (5.3) 
3 
" 4A ... 


From expressions (5.-1) and (5.2), we then obtain some important in­

formation regarding the profile shape in the vicinity of the leading
 

edge and the trailing edge.
 

For the leading edge, that is, for V = 0, we obtain: 
-+-x , . , (v ,m l] (5.4)
 

or according to (436), 


4; =(o5,4--- -[1 +- 5) 

,Without any difficulty, we also obtain'the following:
 

- iob,l (5.6) 

and the curvature radius of the leading edge
 

*Is.4
 
4. (57)
 

Expression (5.7) can be written in the following way:
 

14= qj, + - - (5.8)+ 


Finally, we can prove that for
 

X -1, we.have Y=+,4 L Ri. (5-9)
 

From equations (5.5), (5.7), and (5.9), we find that the profile
 

shape can be approximated by a parabola in the vicinity of the leading
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edge:
 

tLRt (2,Si4 2+-R' (5.1) 

Similar conditions also hold for the rounded-off trailing edge, that 

is, for 0= 7T , where 0 $ 0: 

=;0~~~t±{ -r(5.11) 

or, according'to (4.37),
 

(5.12) 

Also, we have . 

div i(5.13)
 

The radius of curvature of the trailing edge is:
 

(- "-- ---- t ')- A , 

(5.14)
 

or, . -. 

'" . ,',: .1 ,,- . .. . : ., ',.,.v J~i(5-15) 

Also we have: /640
 

-±I=I, , (5.16) 

so that the profile shape in the vicinity of the trailing edge is ap­

proximated by a parabola:
 

Zp'X4... k ,.g . _..I . 

ry *X 

Figure 7 z" " Zjxj' " 
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In the case of a sharp trailing edge, that is, for = f and -qo = 0, 

we have: 

aria -1, ., : = Y= , (5.18) 

and 
d12 
dX( (5.19) 

Finally, we will make the transition from the image plane Z to the
 

physical plane z (Figure 7):
 

z- . , - Z, -F [f (Z,) -f (Z)]. (5.20) 

The square bracket is replaced by a Taylor series:
 

KtG4 ±iY17) -f(Xy') - j 
af

d .JW day, +(.17, dZ - dA-__ (5.21) 

and since Yp as well as dys/dx are small, of first order, we can re­

strict ourselves to the first term of expression (5.21). Equation
 

(5.20) therefore has the form:
 

' ,+ (?i - YO) = " ±' (5.22)i+-i 1 
In addition to (5.22), according to (2.12), we have: 

X- (Y[8_11. tog 6, (5.23) 

If we decompose (5.22) into a real and an imaginary part, we find:
 

.,; dw
 

which means that the thickness t in the. plane z is plotted along the
 

normal to the skeleton, where
 

t= Yi+ dhJ. (5.25) 

Since the root value in equation (5.25) differs from 1 only by a
 

second-order quantity, we can write the following for this theory
 

t 5 (5.26) 

Therefore, it follows that for the profile shape in the vicinity of
 

the leading edge and the trailing edge is the same in the physical plane
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z as in the image plane Z.
 

6. Velocity Distribution along the Profile Contour
 

When calculating the contour velocity, we will start with the velo­

city field in the plane 1: this velocity field is given by (4.12):
 

=u - i, (-T I. - ± gfl- -"["+ 


(6.1)

212(q,+ ig0) ± 1)-' + ,2, ( - ig" -_ ,++IU,) --

From (6.1), it follows that the contour velocity in the plane Z is
 

given by the following if we divide this expression by the derivative
 

of the mapping function (4.6):
 

-y t (6.2) 

and if we substitute the following for the variable C: 

(= +(i-- (6.3)z)6,9 

where s is given by relationships (4.19), (4.28), and (4.29) /642
 

+. . - [. + sr ei"l, ± 
e'."0 + igo):+ (I+ 

22
W)- -'tqo (6.4) 

- I­(I + i0 ( )e+I
+ ­

- 5(+ + U+ )-"e'", 

If, in equation (6.4), we substitute vn according to (4.25) and if
 

we ignore terms higher than second order, we find:
 

Co 

Ur - = 1 + 5 (cosiai - sinta) - igo(i -sJ + 

+ igo SO cos &q- qo + igo) 

(I±os8+il "Y- (i±s) ( o-)i sh+4 (6.5)
(145 )(i+ &os-) + -(1 + ) ( + i1) + 

2- (continued) 
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(continued from previous page)
 

H-2 ( + ~ 1~('~+ i-3 - 46onl d'1-i(65 
-, A4 Y+j' (6 5 

'
 ,,1 - "'". . ' -_ C - V"., 

By decomposing this expression into a real and -imaginarypart, we
 

obtain the two components of the contour velocity:
 

I I,+ 008, 11 .. 

(--o3(1 - co i 4-- ( ) q + , 4,,... 2,.- (6.6) 

!- ­

'. " 2 . " ' ... "1/643,-' , 1... ,., 


+w 

17 -,$ ~l 8o -t + _;g:: ',, . 4)+, . V, :
'(i 4 .i I) e. +I +4 4-~ 
F.-:, ' -7 ' ,. .2;. 2. , 

. -2 4+ R +sill i - (6.7) 
-1 iil4 

'S -Cos 15) +: + i &+ 
- ."6(iS+--o ~!2&-

uo.0( =
 
d~- S t ,eS±~~~~~ ~~~~' ~ ill. 

Ti t0'14 

The contour velocity is then
 
--. 'V-'V *.
) :' (6.8) 

!i%-jr(q - -

Beyond the surroundings of the leading edge (and for qo $ 0 also
 

beyond the rounded-off trailing edge) the' contour velocity differs only
 

slightly from 1. Therefore,-in this region we can dnrive a simple
 

expansion for the contour velocity. - From expressions (6.6) and (6.7), 

we obtain the following by ignoring terms higher than second-order: 

' 4 - . - ,. - (6 .9 ) 

+ .' , 9. .4 fi-A 
Cb(j) cos+-j- I±'OEM' r 2 (- )cs fl-I--f,,Y 4 (continued) 
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(continued from previous page)
 

T'7r=q+eotg 4 i -g1 V--2(qo+ q) sin '- (6.9) 

± 5 q ~n i4), - fl, s0 (1 (-(i s D)) -P 
+ -I?) sgn -go- Cosn 
+.. _ vo. -i- 0 - U (6.10) 

In the following the letter y is the angle between the tangent to
 

the profile (Figure 8) and the X-axis; and then we have
 
,; : (6.11)


W t=k cos p + Wit . ( 

Here, tg p is the directional factor of the profile tangent which /644
 

can be written as follows to the first approximation according to
 

(4.31) and (4.34):
 

tg ' = - Y- A.otg1 
gq , Acog-2 2 (6.12) 

,- 2 , 2 inA,2 ,, sin~0 -2 r (2 m ±-r' 1-)A2 ,,4+.k2. sin /cD, 
sbi D - 74. 

q

-( ocotg 2+ 0 Igm-4 - 2 (qo + qo) sin 1Y (

2 (6.13) 

- ~ q, sin DO. 

Y 

Figure 8 

Therefore, can be considered as a first-order variable, and 
the contour velocity can then be written in the form 

lftiZ,/'- r 1 - d ,,(6.14) 
, [ 2 LdX 'J (Ix,. 

After substitution and if we only consider second-order terms, we
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find:
 
iV .- t --- ., co .q) ± 4)2-- qy(i I (q,, ) co - qgcos p I 

4, 2 

-2(q~~j-ijj (IsA a i (6.15)w3.r.a, og1-* 

f12 1 . Tx I
 
tg -2 1ii sIll
+ 4}+ r1yj An 

2~H dXj V 

where the value of the derivative dX, is- given by (6.12) or (6.13) /645
 

and s is given by: (according to 4.3i).l
 

£= AMm41+2SI£ .,cositL (6.16) 

5+ .. cs-ig~~q +
12 1 N21 

- t£- i s + ., ) oS - (-K qa-+,.) Cos 4 - (6.17 

For the derivative dx, and for s we will always have two expressions.
 
When solving the even problem, we will use expressions (6.12) and (6.16).
 

The contour velocity is then given by a linear expression in terms of
 

the coefficients gn and qn' which is important for calculating the con­

tour velocity for different incident flow directions. When solving
 

the odd problem, we start with the selected circulation distribution
 
)
(coefficient gn) and source distribution (coefficient qn . This selec­

tion is specified on the contour by requiring a suitable velocity dis­

tribution. Therefore, there must be a way of evaluating this velocity
 

distribution before carrying out the entire calculation. Relationship
 

(6.15) is used for this, in which we substitute expressions (6.13) and
 

(6.17) for dYV/dXp and'>.
 

As already mentioned, the expression (6.15) for calculating the con­

tour velocity cannot be used in the vicinity of the rounded-off trailing
 

edge. There, we must use formulas (6.6) and (6.8) for obtaining the
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.9 

contour velocity. Directly at the leading edge, that is, for 0 = 0,
 
we have the following according to (6.6) and (6.7).
 

- o 0 -2q 0)-Iq ri - 2 3 (6.18) 
o 

+3 fI -(t1 - t, igth( 

If in equations (6.18) and (6.19) we substitute according to (4.33) /646
 

we find
 

1= 1 .(6.20) 
.° i A,, 2 4 o,' 

and we have
 

2qCo 

+0 (6.21)2 W 5 
1­2 

9 ?iAo~ ~ kk-S~A4 ... - (6.22) 

If in these expressions, we substitute for EnA n according to equa­
tion (4.36), then we have the following:
 

U.= -2%d(ZfI4- Z- S ilk- (6.23) 
(2- 2 2 J 

v O H-39qo +~4o S ug,- aE-[,,, -2q Sj mt, 3 (6.24)8Qb. 

It should be realized that terms higher than second order were not
 

considered in expression (4.36) for nAn, and that EnAn itself is a
 
first-order quantity. The ignored higher-order terms have an effect
 

on the reciprocal 1/EnAn already for the first order terms, and there­

fore expressions (6.23) and (6.24) are only correct up to first order
 
terms. In the case of a flow without circulation, both components are
 

small of second order in the case of smooth entry (go = 0). For a
 
non-smooth entry, UK is small of second order and VK is of order 1.
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In formula (6.12), which can be considered as a formula for the
 

contour velocity at the leading edge, it is often advantageous to
 

replace EnAn by the radius of curvature of the leading edge, accor­

ding to (5.7):
 
I- =1 (6.25) 

c 'gI 

In a similar manner, the following expression gives the velocity 
along the rounded-off trailing edge (6.26). 

2 (6.26)~~igo -r 'd(1 _nA~--i~ 0 
,/6)7
 

The X-component of the contour velocity on the rounded trailing edge
 

is small of an order higher than second order, and therefore can be
 

ignored within our theory. It should only be realized that formula
 

(6.26) has a theoretical meaning. This is because in a real flow there
 

is a boundary layer separation in the vicinity of the rounded trailing
 

edge.
 

The formula is derived.for the distribution of the contour velocity
 

appliedin the image plane Z; therefore, we must derive the relationships
 

for transforming values from the plane Z to the plane z. For the velo­

city in the z plane, we have
 

19 
w I= (6.27)

!dZl 
dz
 

where is the absolute magnitude of the derivative of the mapping
 

functions (2.10):
 

dZ dZ (6.28)
 

On the abscissa -1 < X < 1, Y = 0, we have, according to equation 

(2.15); 

dZ dx (6.29)
 

and since the profile thickness is small, the derivative df/dZ of the 
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mapping function can be expanded into a.Taylo series on the profile:'
 

df " ,. : \ (6.30) 
dZx' dx dX d 

If we only restrict ourselves t'oterms up to second order, then we 
can omit the difference X - X and-all other terms not shown of higherP,-ii fdzg\-,1
 
order. The derivative A!-can be written as:
 

--- (d-" -- ­dX(d) - sin,#-I (6.31) 

After replacement in equations (6.28) and (6.30), we find:
 

.gin 71 'IP"' 6 A, + •PS ' &d.111 (6.32) 

For an accuracy up to second order, .we therefore substitute the /648
 
following in equation (6.27):
 

'-bt V. ,il4- J 4 ... COS+ - B' +'BO 

+ . 4, 

i~~ ~ 4-~~ ~ -11,'S+4; ,1 Vi Wl+~--.,). 

'+ A +', 1i8 4-j., j ulfC -)it N' -9 

. . + A-i 13 - t ) ii a + t,, 

The contour velocity Is then gigen by the product of expressions
 

(6.8) or (6.1"5)- and (6.33).
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-SECOND PART
 

FORMULAS FOR NUMERICAL CALCULATIONS. AND EXAMPLES
 

7. Formulas for Numerical Calculation
 

In the previous chapters, we used trigonometric expansions with an
 

infinite number of terms for the variables to include the general case.
 

In practice, it is sufficient to use relatively low-order trigonometric
 

polynomials.- In this section, we will.discuss formulas for practical
 

applications, in which the first few coefficients of trigonometric ex­

!pansions are considered in the first order terms (usually,, it is not
 

necessary to take more than six terms). In the second-order terms, we
 

will only consider those terms where the'index sum is smaller or equal
 

to 4.
 

Geometric Variables
 

The coordinate system is located so that the skeleton ch6rd lies in
 

the x-axis, and the origin of the coord-inate system is lobated at the
 

chord center. The length of the skeleton chord is called c*. Instead
 

of the variable x, we will introduce a trigonometric variable 0 with
 

the following equation on the skeleton chord.
 

_ (7.1) 

The skeleton shape is given by the trigonometric expansion of its
 

derivative
 

~ (7.2) 

'*In this chapter, intended for practical applications, all of the quan­
tities are dimensional. The skeleton chord length is the fundamental
 
length for length measurements, and the velocity Uo is the fundamental
 
quantity for the velocities. In order to simplify the notation, we will
 
use the same notation for these dimensioned variables as in the complex
 
plane z. Since the theory'is not required for performing numerical
 
calculations, there is no danger 6f confusion.
 

/649 
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where 

B hi ,> 

From this expansion, we find:
 

(7.3)
J,,U-)-_, bs ,1,,,,0.6811.,) 

where
 

I- --____ "-" '- (7.4) 

The thickness distribution is-plotted along the skeleton normal, and 

is given by the expansion:: 

't A,sili S t,,,4nO + C.-{ ?kQ + 
2~ 

,+,(cof - 0 6'Bos(in + 1)0)] 7C 

The positive values are measured .upwards and the negative ones are /650
 

measured downwards from-the skeleton. The base point of the normal to
 

the skeleton has an x-coordinate given by the relationship
 

*2-, ... .. ; , r;- 1 (-2 t V 2'- ,, ,.i (7.6) 

o r > .. .. ...... - . ./. 

-. ,, "2 ...
or '- r ~['
 
OdsI-"+ +15 .A "6 911 AI 222 

:22 . 2 ' A - * 2 AA+o sJ . . ..., .I§ , 

* 9--4(A22+2llAAhog2O1 

.... ... ... . .'_, . . __ : .. (7.
. .. ....LJ ... ... 7)
 

" ' , .. '*,I ". -' i 
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The curvature radius of the leading edge is:
 

1 a ~ 2. (7.8) 

The curvature radius of the trailing edge is:
 

= . (--)",,,)(7.9) 
2 

The distance between the profile nose from the end of the skeleton
 

onthe leading edge is
 

1 
a = -14. (7.10)1 2
 

and on the trailing edge,
 

A2 = I '2" (7.11)
 

Aerodynamic Variables.
 

The components of the primary velocity field on the point where the
 

skeleton is located re given by the trigonometric polynomials:
 

=U' + }V- -to ] vOhon (7.12)O 14,DoauO C 

The circulation distribution and source distribution on the skeleton /651
 

is given by the following trigonometric polynomials:
 

-y g;sin(7.13)
 

9 0 Ocotg 
q [ 2 

o+ fig 1 0 
2 

2(q j6,1 

+ q, sinO (7.14) 
2J 

The relationship between the geometric variables and the aerodynamic
 

variables is given by a system of linear inhomogeneous equations be
 

tween the coefficients of the geometric variables An, Bn, and Cn, and
 

the coefficients of the aerodynamic variables gn, qn' n', and vn. In
 

order to solve this, it is advantageous to decompose the system into
 

three groups of equations and to then solve one group after the other:
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The First Group:
 

,* == A +A 4q , R2 

+ qa -oqO + '40 2ff A, 24...V '2q
2 2 

,-(qo - jg,+ vO-+ Ah,(2qo + 1 + r4), 

S . _. i (7.15) 
--- (y2 -- qlj A 3 -, Ai (q2 - Lt) d- (A2 -F Al (2q4 -F 

+ 240 I- dy+ A3 (1 - D+ 4), 

-- a-qg) ('q AeyA,)(--k•A 3 LJ 

A,'(+ -F A",4qo,- 40, +Al0)y-'Ad2'-+2 +i},+ 

L . . . . . .. . . -a.... /652 
It is better to use the following equations, instead of the first of
 

the two equations given above:
 

A *~ 4 

4z~.+ +-1- E 41 -(7.16)
li-2 

K U-0 -+(7.17) 

The Second Group:
 

0='o . BO-+v + g" i . - B j ­o B.V2 

•~ *4 4.4 B440 . . 7.8 

94=B V~l+722+ -A3 -A+ t 

8j + A ..)I 91 + 

B,(-- v+,, . -I ? 7. 
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The Third Group:
 

go 97A + go A42 .)~ - g, (A1 - A )± 

2 
( 4 • ' 1 - (7.19) 

2 2 

All three groups have the largest terms in the main diagonal, and /653
 

therefore can be solved using a method of stepwise approximation very
 

easily. In most cases, the first two approximationswill be suffici­

ent. 

THE EVEN PROBLEM (THE SECOND MAIN PROBLEM)OF PROFILE THEORY
 

When solving the even problem one determines the circulation dis­
)
tribution and source distribution (that -is, the coefficients gn and qn


for a profile immersed into a given primary field. From the calculated
 

circulation distribution, one determines the total circulation, the
 

lift, and the velocity distribution along the profile contour.
 

Since the profile skeleton does not have a purely geometric profile
 

characteristic (it also depends on the primary field), one starts at
 

the profile center line when solving the even problem. This is because
 

most profiles are produced by drawing a suitable symmetric profile along
 

a corresponding center line.
 

The beginning of the center line is at a distanceA 1 -- i from the
 
2 

leading edge (Figure 10), and its end in the trailing edge, or at a 

distance A2 = B2 for a rounded trailing edge. We will determine the 

coefficients Bn for the trigonometric expansion of the slope of the 

middle line: 

!.dy,,, Co no, I, 
(7.20)
ffi_ -Sho 
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--------------------------

Figure 10
 

Also, we determined the coefficients An of the symmetric thickness
 

distribution:
 

* 	 ,. ' - /[1 lt4o I] , 
T ~iJWt~~ (OS08 (7.21) 

Considering that the nonsymmetric correction of the thickness dis- /654
 

tribution (the coefficients n in (7.5).are of second order) we can
n 

take the following curve when calculating the skeleton: 
SO =?/f_. -[2(1 -cos'2) + (cao - cox3M) +- 4(I- t- ,*j (7.22) 

The coefficient values which are substituted in system (7.18) are
 

then
 

B'= - 2C0, 

131 B= N _(7.23) 

B. A.-8,
 

where the coefficients Cn are given by expressions (7.19). By solving
 

(7.15) and (7.18), we obtain the values of the coefficients gn and qn"
 

The total circulation is:
 

60 o .toJ-& I 	 (7.24) 

The velocity distribution on the profile contour is given by the
 

following relationship in the region outside of the rounded trailing
 

edge (and also outside of this trailing edge, when the trailing edge
 

is rounded off):
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S-- +1A ,'0, o, a + q +'a) Liol- t 4" .,q 

t-p feot, + + t4} 2(q +HI)) N + ( 25l,,4& ttg oM --

+ ?,q,,,,osM+, i ,[go Ootg . )+1'+, _46 + q tg' 4 _2 (q,,viu (7.25) 
2 5 

+ S q,,Mb ,Y­

:- , . , 2 , ,"": . 
_,_.j. 

."1"i+ttN vdJv+ O 
 B+2 + +9 - - .3+ Jr + Bu ,j2t1 

-BI+BOo -Ji B +­+ . (7.26)
2 2 1 J b (2l
 

,l,=[L3+_v(,B3' + fviB 2+_ V2 B1+ V B: ,a
g3, 


2 2 
04 VU 4__ '1 3 _ 2 i , v Bj) 

A-Ji- A, + 2 (A,+-1214) , m6s S, j -N,-F 2?A cos 35m; (7.27)' 

4- R,+2,- 1 ±Y$ L2 t - 2 (2A,+ J iin 19-- 6 ,i 2- -1 

.. - .sin3$l1 . Z (7.28)
 

,--l--TB +.7-iJ +B22)- B,,.Bi+--ijB. dok;", - -B+ BiB,. 
'I 

0 

SB , ) 1 11 

(7.29) 

- --BiB ios 44 (Ai B ± AA2-1h) M -I(2AiB 2 +2 j" 

H- A4 B1 )sin 24- + (3-A, )30 + 2A.,B + A 3 BI-) sii 3.5. 

In the vicinity of the rounded leading edge and the rounded trailing
 
edge k6[l<_7;v-' <lJJZu , where relationship (7.25) already has subs­

stantial deviations., it ,is appropriate to -calculate the contour velocity
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-using the formula: 


Here, we have /656
 

r= tA. "+ 46) dogo)i- ogt 7" ---- 4,-- - iY +F k6-- -
-2i(_'l t - -- a 

4 
' l ""< 

(7.31)4 

2 .2 

4 * 

1--a 

ivzv 2 .,,.2 
I o $6 G2(i4- + ='-Sqb'_yt +o: (.2 
, 0- 4 s 4) ++f* , o + ­

+' , 0 1-- ,.,y(s .3], 

1•. s&± e • 

The Velocity along the leading edge is 

,' 2 j; " (7.33) 
:,,.-" , 1 W§"1 ,. .1 .tJ (732 .-

THE ODD PROBLEM.(THE FIRST MAIN PROBLEM) OF PROFILE THEORY
 

The odd problem in the true sense of the word is to find the profile
 

shape from a specified velocity distribution on the profile contour.
 

Here, we will not solve this problem in this generality. We-will in­

troduce a modification so that the shape of the profile placed into
 

the inhomogeneous primary flow field is calculated for a specified
 

skeleton chord, source distribution and vortex distribution on the
 

skeleton.
 

The expression, for the components of the primary velocity at the 
4o ORIGINAL PAGE IS 
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point of the sought-after profile iis found by expanding the components
 

of the primary velocity in the vicinity of the skeleton chord in Taylor
 

series. In this calculation, the !first-terms of this expansion are con­

sidered only. Instead of (7.12), we will write 


'b [, v( ,+ 0,1, ,,1(7.34)


vL +
 
. 5
, ,(
'=U. + V .L
O -y 7-.(35)
 

The coefficient vaTlues tLiV .and 7, are determined from the 
component values of the primary velocity and their derivatives at the 

chord points. 

The -dash notation has been introduced in order to distinguish these 

coefficients j' and v' from the coefficients Vn and v- of the expansions
n n
 

of the primary velocity components (7.21) calculated directly on the
 

profile. Using (7.3) and considering (7.2), we then have:
 

i6 v
8 Ov..\ , )" o • 

*;6 8yi 2 .- . " 6 &y t ,j, 5,4, d,' '1; 


k' 0 +e 

,(-A ay IT a# (7.36) 

12 Qy 16 aj 2 j 

+ a ' 

atl .O08 02
 
.ldall 21O j/ 16Uy 

. ,B, Bp2 -' ' 
208y. '32Oay' 0ay 

9t 6,, ­(1, ,L 

, :. I , ,, 1' ,:' 

.. . .....6- 1 i , . .i4 .. .(7 37).iI 4 ... .... . 
.~ttk~z.1(7.37) 

(continued')
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(continued from previous page) /658

1 0 C9V, e. a9 

V,= ,V. - (BI - B3) . 31,- -7 
o8v'. aay
 

12 Oy 16 
12  
 - - 7)37)
3 2 ( 8a '--1.68- -----= + 

s n
+pr e s i V, s2B 11 

=4 V4 a vef2 - ndB'3st e
 
24
 we y
write2 

20Oy -,,,2 ,
8 2T 0, T (6 

Expressions (7.36) and (7.37) are only used where the coefficients
 

pand v n appear in the first order terms. In the second order terms,
 

we only write
 

1.(7.38) v,,v,
jt~=~, 


It should also be realized that the coefficients B obtained by
n
 

solving system (7.18), must satisfy condition (7.2). Therefore, every­

where in system (7.18), we set:
 

41 (7-39) 

It follows from this that the coefficient 'g, when selecting the
 

circulation distribution, is not arbitrary, but instead is a result
 

of solving system (7.18).
 

After this preparation, we can begin with a solution of systems
 

(7.15), (7.18), (7.19). From the calculated coefficients An, Bn, and
 

Cn, we will then find the skeleton form using equation (7.1) and
 

(7.3), and after this the thickness distribution from equations (7.5)
 

and (7.6). The total circulation and velocity distribution on the
 

profile contour are calculated from equations (7.24) - (7.30), similar
 

to the solution of the even problem.
 

As already mentioned earlier, the velocity distribution on the pro­

file contour is decisive for solving the odd problem. Therefore, we
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will at least give an approximate expression for the contour velocity,
 

corresponding to the selected vortex and source distribution. This is
 

obtained from the expressions given above, by only considering the
 

first-order terms. In a region outside the rounded trailing edges, /659
 

the contour velocity is
 

w~ 10 ±-	 32qosst, 

, 	,,(1 'l , /- (7.40)
 

+ go cotg- 3t. , ' 

The leading edge velocity is
 

[o 
.oWjcz 	 (7.41) 

The coefficient g0 is given by
 

96 ++O%l 	 (7.42)£O6= O - K:- 1 

It is advantageous to estimate the velocity distribution on the
 

profile contour using the formulas (7.40)-- (7.42)i, in every case,
 

before beginning the calculation, so as to exclude those circulation
 

and source distributions which lead to profiles which have unfavorable
 

aerodynamic characteristics. On the other hand, it is possible to use
 

formulas (7.40) - (7.42) for selecting the coefficients gn and qn' at
 

least in the first approximation when calculating the profile from the
 

described velocity distribution on its contour.
 

8. Examples
 

The usefulness of the theory discussed in this paper will now be
 

illustrated with three practical examples.
 

8.1 	 Symmetric profile in a Homogeneous Flow Field
 

As a first example, we will consider the computation for a modified
 

NACA orofile. The profile shape (Figure 11) is given by the coordinate
 

table (Table 1).
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Figure 11
 

Table 1
 

X = nondimensional leadingtedge distance
 

Y = nondimensional profile Ithickness
 

it"-, /V i______Itibtty 

C00,260 4,040 0;76i 2'40i 
' 6,007 0,854-_ 9_ 4,276 0 82 ' 'r7 ,T?9 

0,00 .1,671 0,41 "4,309- - 0,884 - 1;177, 
0,067 2,422 o,I 4 0 0,93s3 ,14 
,'_7_ 

!6;117 
,082

6,40 
4,6Q88

'.6;62 
3,68
108,4~ 

U970 
:i'o6' 

b,43-8 
- ,: 

Using harmonic analysis,-we determine the coefficients An of the thick­

ness distribution for th rofile (see equation _J.21).
 

As = 6;0002 - A =O00,0,, ' ' = - 0002-, 

E-nAy = ;Oi8S4 y (-W) it;, - O;2 

Since we have a symetric profile, if the coefficients n (see 
equation (7.20)-are equal to 0. Accordingto equation (7.19), the co­

efficients Cn are:
 

n1
 
'6 bjilg - ThO4 Dv+ O;038, g3J1 ­

64 - - o;O6g60 91- 0C10 ,2- o,bs'02, 

The velocities are referred to the x component of the homogeneous
 

primary velocity field so that acc6rding to equation (7.12),
 

4i- . 0 .
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where a. is the angle of attack.
 

We will now introduce the angleiof attack parameter K = tg a. for the
 

rest of the calculation. All of the coefficients pn and vn in the ex­

pansions (7.12) are zero, with the'exception of v0 , for which we have':
 

These values are then substituted in equations (7.15)-(7.18), and /661
 
after this they are solved for theldesired vort:ex and source distri­

bution coefficients­

= ;O...... - -~fo = do4oio q.3
0 - d;oss 

-

= oi; - . " 
- 2I 

According to (7.24), the total circulation is
 

The ve-locity distribution on the profile contour is obtained by 'sub­

stitution in equations (7.25) - (7.133), and is shown in Figure 12 for 

the angles of attack a = 0 and twd degrees. The velocity distribution 

0 0.6r ­

1O" --- :-- Bottom side 

1 - ' ' 

0 o,_ 0,2 0,a3.',z 4,z 0,S 6,7 0;8 ,9 1 
Non-dimensional leading edge separation X 

Figure 12 -- ­

- U (1-1k 

I 

is referred to the total velocity f the primary flow field W 
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! 
8.2 Curved Profile in a Homogeneous Flow Field


I 
As a second example, we will now consider .aprofile with curvature
 

in a flow, which was produced by pltting a symmetric profile mentioned
 

above on a circular arc profile center line. The central angle of the,
 
'
 arc shaped center line is w = 29032 

/662 

For circular arc center lines, the coefficients in expansion (7.20) 

are given by the following expressions: 

8. 
Bin sii - + -m - ... : 

8, 2 12 , 2.1. " m ' / 

WBg B=l - 81P ' 
28
 

+ 

In the example given, only two coefficients Bn are different from zero:
 

B= 0.2613 I 3 =0.0022 

.- To D side' 
1-10,4' ,--- -, - -TBottom"- side

U) C" 

i t.2.3,j' 0 OJ 0?6 0,7* d48 0, L' 
' II Non-dimensional leading edge separation 

Figure 13 . 

After this, the calculation is completely similar to the previous
 

example, and we will only give the results here.
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The total circulation is
 

2 /6 
and the velocity distribution on the profile contour is shown in Figure 

13, for a = 0026!, which corresponds to an entry without shocks. We 

also show it for a - 1034? and 2°26'. 

8.3 Curve Profile in Cascade Configuration
 

Finally, we will calculate the flow around a profile from a previous
 

example, with a cascade configuration ,(Figure 14). The division ratio
 

Figure 14
 

(s/c) and the separation angle (X) of this cascade are given by
 

s/c = 0.904 X = 34030?
 

The flow around the profile in a cascade configuration is considered
 

as the flow around an isolated profile in a nonhomogeneous primary flow
 
I 

field [71. The inhomogeneity of the primary flow (induced velocities)
I
 
is caused by the other'cascade profiles.
 

The x component (U.) of the translation-telocity (W) is selected
 

as the reference velocity. The translation velocity is defined as the
 

vector average of the incident andideparting flow velocities (W1 , W2.
 

The coefficients pn and v0n in the expansions of equation (7.12) are
 

given b&-the following expressions: (see [8]):
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Figure 15 

~Figuri6 
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Th aluato s opltl 1/665 
after this. Of the numerical
The calculation is compely s 


results, we will only give the departing flow angle a2 (Figure 15)
 

and the velocity distribution on the profile contour. The velocity
 
distribution is shown in Figure 16 for entry without shocks (a1 = 11013?) 

and also for a, = 90331 and 13033 Figure 16 shows the velocity disL 

tribution referred to the incident flow velocity. 

CONCLUSION
 
This paper contains a theory oJ a moderately curved profile in a
 

nonhomogeneous flo.wzEied... he--heo-yy s b.-i--t-u-as a "second order 

theory". The coefficients in the expansions for the circulation source 

and thickness distributions, as well as the coefficients in the expan­

sion of the skeleton shape, are considered LT'small "of first order".j
 

All third-order quantities are ignored in the relationships.
 

The main results of the paper are adapted to the requirements for
 

numerical calculations in the seventh chapter.' Without knowing the
 

.theory in detail, it can be used. This circumstance is very impor­

tant, because the derivation of the theory requires a knowledge of
 

functions of a complex variable, ahd conformal mapping. In a numerical
 

calculation, all that is required is the knowledge of expansions of
 

trigonometric series (harmonic analysis) and the solution of systems
 

of linearinhomogeneous equations. This assumption can be assumed
 

to be satisfied for any technical employee. The systems of linear
 

equations have a very convenient form for numerical calculation. The
 

largest quantities are always located along the main diagonal. This
 

means that we can recommend a step-wise approximation method for the
 

solution, and in this case it also leads to a rapid solution, even for
 

several unknowns.
 

In practice, we often encounter this type of flow, and this theory
 
3 Lwasformulated in general terms wiIhout direct adaptation to speciali 5
 

4 cases. We can consider the followang applications: flow around aero­
3 dynamic profiles in a homogeneous 'low, flow around profiles near the 3 
2 earth, flow around straight blade cascades, flow around radial blade 2 

1 cascades, flow around guide blades, etc. In all these cases, we can I 
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transform this theory into calculation formulas which will consider the
 

specific properties of the individual applications. This results in a
 

further simplification of the calculations. Of the technical applica­

tions, the calculation of the flow around straight and radial blade
 

cascades is probably the most important. Consequently, the results of /666
 

this paper and theresults of papers [7] and [83 were formulated into a
 

calculation procedure for calculating the flow around blade cascades
 

with small thicknesses and moderately curved blades. This has been done
 

for incompressible and compressible subsonic flow, as already discussed
 

in example (8.3).
 

The formulas for the numerical calculation discussed in chapter .7
 

can be performed with anelectric calculator or a slide rule. They
 

are very well suited for programming of automatic computer installations.
 

The time requirement for a complete calculation of a profile or a blade
 

cascade is reduced to a minimum. In Chapter 8, we discussed examples
 

which have already been calculated on the ZUSE-23 computer.
 

The results can be generalized to profiles with a high curvature,
 

but with a rather small thickness, as has been shown in paper [6] for
 

the flow around a thin, highly-curved profile in a nonhomogeneous flow
 

field. These generalizations were not included in this paper, because
 

moderately curved profiles are:very important in technical applications.
 

Also inclusion of this general case would have made this paper much more
 

cumbersome.
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