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ATRFOIL PROFILE IN A NON-UNIFORM FLOW

Jan Polések*
We will discuss a method feor calculating the flow around a profile /533%%
in a' nonhomogeneous flew field. This method is based on the idea that
the profile is replaced by a continuoius distribution of vortices and
sources alcng the profile skeleton; * The method 1s suitable for solving
the direct and the indirect problem:bf profile theory.

The results given can be applied for calculating the air foll in an
homogeneous and a non-homogeneous f{low field, or for calculating
'straight and radial turbine blades, and guide blades, etc. For prac-
tical applications, the results are:given in the form of formulas,

suitable for numerical calculations. Examples are also given.

SYMBOLS :

c profile skeleton chofd~

Jg profile skeleton ordinate

t distribution of profile thickness (measured from skeleton)

Yt ordinate of profile central line f

t symmetric thickness distribution (measured from the cen-
tral line) .

xp, yp coordinates of points on the profile

R curvature radius of leading edge

R2 curvature radius of trailing edge

) trigonometric auxiliary variable (identical with the

¥CSc, Government Research Institute for Heat Technelogy, Prague, Czech-
oslovakia. .

! .
#% Numbers in margin indicate pagination in original foreign text.



W

polar angle in the complex auxiliary plane &)

u, v veloclity components

WK contour velocity

UO basic velocity

T total circulation over profile /618

Y circulation distribution

d source distribution

An’ Cn coefficients in the expansion of profile thickness

Bn coefficient in the expansion of skeleton direction factor

Bn coefficiegt of the expansion of the directional factor of
central line ;

8, ' coefficient I1n the expansion of circulation distribution

qQy coefficient in the expansion of source distribution

"n® vn coefficients in the expansion of components of primary

velocity

COMPLEX PLANE Z

The same notation is used in the physical plane, but the quantities
are considered dimensionless. The lengths are referred to one-half of
the chord length (c¢/2) and the velocities are referred to the basic
velocity (U ).

complex velocity in plane =

¥ VY velocity components induced by vortices
uq, vq velocity components induced by sources
Ugs Vg components of contour velocity

COMPLEX PLANE Z:

X Y rectangular coordinates Z2 = X + i¥Y

Xy, Yy ) coordinates of points on the profile

bit3 complex velocity

U, v components of primary veleclty 1in plane Z
UY’ Vy velocity components induced by vortices
Uq, Vq velocity components indueed by sources
UK’ VK components of contour velocity
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COMPLEX PLANE z:

p, ¥ Polar coordinates %}gl;333§1
distance of point frpm unit cirecle (e =p- 1)

., complex velocity in ¢ plane
.vp, Vy radial and azimuthal wveloecity components
INTRODUCTION

The idea of Blrnbaum of using a contlnuous vortexjdlstrubutlon to
replace the flow around a thin proflle ‘has been found to be wvery:frult-
ful. The orlglnal paper of Birnbaum [1] was followed by 51m11ar1 e,
[studies) [2-6], and several applications were considered: From the flow
"around a thin profile in a homogeneous flow to the flew around a pro-
file in a nonhomogeneous or non-steady flow field. Then this was ap—‘
plied to the solution of guide blades, "and blade cascades. Another ad-
'vance was the considerstion of the'blade thickness, which can be
.achieved by a suitable dlStPlbuthD of sources on the profile skeleton.

- /619
' In the calculation of the flow around profiles with a moderate cur-
vature, a further simplificatien ié introduced by decomposing the vor-
tices and sources along the profile.chord, instead of along its skele-
‘ton. The calculations become cleared with these simplifications, and
they can be performed without great mathematical mowledge. The so-called
*first-order theory gives'very good résults for the ratie between tﬁe
shape of an infinite thin profile qnd the circulation distribution. How-
lever, the calculation of the contour velcclty and the influence of the .
finite thlckness, especlally near the leading edge, lead. to certain
difficulties and inaccuracies. Vaqlous authors have tried to eliminate
or reduce this by introducing varieus correctien factors. Deeper mathe-
matical investigations have shown that in the derivation of the rela-
'tionships between the shape of an‘infinite thin profile and the circu-
lation distribution in a homogeneous flow field, only the "third order"
terms were ignored, because the "second order" terms drop out gutomati-
cally (as can be seen by comparlson with the results of paper [6]1, for
the case of a moderately curved prgflle in a homogeneous flow field).

i



In Other cases, especially when calculating the velocity distribution
along the blade contour and the i%fluence of finite profile thickness,
the ignored "second order" terms become noticeable and have a substan-
tial influence, especially near tﬁe leading edge.

For these reasens, in this papér we developed a complete "second
order" theory for- the flow around ‘a profile which has moderate cur-
vature and is not too thick. Iin é nonhomogeneous Tlow fleld.. The
paper is given in two parts: in tﬂe first part, we derive the theory
and in the second part we give the theoretical results in terms of
formulas for numerical calculations. These f@rmulés are then used for
the practical solution of several selected probiems, First, we wiil
calculate The flow areund a symmetric and curved profile in a homé—
geneous flow field, and then we will consider the flow around the same
profile in a grid arrangement.

ORIGINAL PAGE IS

OF POOR ALITY;
- FIRST PART QU |

THEORETICAL ANALYSIS

2. Infinitesimally-thin profile in a non-homegenecus flow field

i
The profile under consideratien is placed in the complex plane z =

x + iy in such a way that one chord lies aleng the x-axis, and the ori-
gin of the coordinate system is atithe center. The lengths are con-
sidered dimensionleéss and are referred to one-half of the chord length
(c/2).

The profile equation is: .

[ = Uil = <o i) ' (2.1)
Fah nraadrn b Tt a2
i /620
where ! '
(2 P —— = . |
e l—1) =y, (1) =i (2.2)
- o~ ,‘LAAT E Y T T s

Instead of the varlable x, we will} introduce the trigonometric auxi-
liary variable ¢ with the equation [ <)



= —vosd ; 0w (2.3)

For the calculations, it seems appropriate to express the differen-

tial quotient of the function ys(x) in the form of a trigonometric
series:

dy ®
—rt B N
0a ’2% o CO8 ni (2.4)

an

ZeXxily

sl 7 e

-7 - X

Figure 1

The profile shape is then given by tThe expression

Y, = %{Botl — co89) +
e EB—-——--—““_‘_B’“"(i——cos n)
! sied » ’ 1

(2.5)

The coefficlents Bn must satisfy the following condition because of
equation (2.2):
T
.B = 1 2m , .
! EléwW—fl. (2.6)

LS |

Also the components of the velocity of the primary inhemogeneous flow
field at the profile location, as well as the circulation density (re-
ferred to the length unit of the chord), are expressed as a continucus
distribution of vortex threads on the profile using trigonometric series:

= 2.
=11 Y p,cosni (2.1
=20
oy = i v, COS nY,
=0
" (2.8)
L)



Y (‘ o i 1
REF (yut‘o‘ig".?ﬁLEansiﬁﬂ%)- ! (2.9)
-0 ' & = !

/621

less, and are referred to a sultable basic velocity UO. The coeffi-

cients in the expansions (2.4%), (2.7), (2.8), and (2.9) are assumed %o
be small of first order, in the sense that the quantities Bpo vn, 22
and Bn are of first order compared with 1. For large n, they go“to

n

zero like the terms of a geometric series with a quotient smaller than
1. The theory 1s developed as a second order theory in such a way that
everywhere the productsof two first-order variables are considered as
second-order variables, and the products of three first-order variables
are ignored.

In practice, it is sufficient to approximate the trigonometric expan-
sions (2.4), (2.7), and (2.8) using trigonometric polynomials having a
relatively low order.

y L
FeX-1Y, s Z =X+i¥V
et —
-7 I T x -7 g f x
Figure 2

In addition, we will introduce the complex plane 7 = X + 1Y and the
complex funection:

¢ =%+ if () (2.10)

It maps the plane Z onto the plane z in such a way that the distance
-1 < X < 1 along the real axis of plane Z is mapped onto a curve Vg in
the plane z. In the plane, Z, we introduce for the variable X in the
interval -1 < X < 1, Y = 0 a trigonometric auxiliary variable ¢ as

lThe circulation density on the profile is'f“”ﬁjjﬁ%&@?ﬁ*. The quan-
tities v and dyg/dx are subjected to the restriction that the differ-
ence between yvg and vy 1s small te third order, and therefore, we can
set yg = v for our theory.

¢ ORIGINAL PAGE IS
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follows:

= —tor $ , 0= xm (2.11)
The function F(Z), for example, can be written in the form
f(V)-(l—é"iEP &l (2.12)
n=0

T Wl

The following relationships can hold between the coefficients g, and /622
the coefficients B in the expansion of the directional factor (2.4)
which are linear relatlonshlps

CBi= By~ By B —

RS |
'2(3:0“‘(32;—31—33:;‘!“5}35 N
= BB~ Bof = 4B, — 16T s

I R A T I R Ve e

(2.13)

Since we will perf@rm our_é£a1y51s in the Eﬁﬁéé plane Z, it is ne-
cessary to map the veloclty of the primary flew field from the plane
z onto plane Z.

For the mapping of the primary velocity, we have

W U——zV——(d—-w)

@5‘*

(2.14)

We have.the following relatienship for the derivative of the mapping
function along -1 < X < 1, ¥ = 0:

ﬁz a d..t-l ‘rf'a—‘“ V.I d?f
._.j_ Ca fet2 2.1
/ +'& =1 7 g ( 5)

so that the expressions for the components of mapping of the primary

velocity#® along the interval -1 < X < 1 along the real axis of the plane
Z are given by the following:

Um@+v;glr%-f
, de (2.16)
F’mv——-?i—(-iegl—s— i -
dua

flow field in plane Z - which is a mapping of the flow field from plane
% . i

#The mapping (2.10) maps the flow field in the plane z again onto any
Expressed more simply, this mapping flow field is simply called a
flow field in the plane =z.



After substitubing from‘(2.4), (2.7), and (2.8), we find:

s _— ‘ﬂg‘ :'].oaAn e
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(2.17)
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m[ pete
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: /623
The complex velocity in the plane z, which is induced at the profile

(2.5) by the distributed wvortices (2.9), is .given by:

Ll St A SR e

b £,y () dwg, - -

|ty iy = ng TlxﬂiéJL.i (2.18)
H T ...| ,c‘—.—zo s
4

4§ *

With the mapping (2.12), the velocity'(2.18) is transformed to

—— - R ]

U—&V—Fﬁwhiig A X S
©odzf2 :A—— Xy + i [y 4 7By ~fZA"u)}

SR (ORI

(2.19)

'Aiopg-the segment -1 < X < 1 of the X axis, we have:

. ' ﬁw :rc_]_?f—-lm—z(r;‘—r{do);

———— ——— e e -

The expression (2.20) is transformed into

s s et e ot mamemes T Te e e e e v g

KRR N ¥ 1Xq) X, ,
U'm ir, R ST
‘ L ok ﬂ¢1dn§¢, 5'; dyh R ) edﬂ (2.21)
r CK 1 {1_pz _i }
T R s el e e e, ,4, e - : ﬁw -X"""’Ao e 41’3

and the integrand is expanded according to powers of

S TE—
{(1:! ‘ d.z,] (:X Xoeoos dzﬁ”;

pﬁﬂ.it

If we restrict ourselves to second-erder terms in this expression,

then we can write |
)

T AL — o Ak
T: _ ?’[7 — _’{_R i 1(% W U‘J fhos 0 __{_)
' 27":.-4[ + ‘__il."b' X — X ) U — Af ;

o S P U P PRUURPRE .

{
1
or, after substituting the variable ¢, according to (2.11), we have:
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{1 -+ z[? B, cos ni— -—(Ln A

- f:;§n+i.?9§3ﬁi“‘°05”““Jl ]
o N cos 3 — Cos § (2.22)

T ... . . : dy -
24y (1eos 1) + Y5 ¢, [cos (. — 1) = z.cos (n - l)x}} — kL
n=1. roRY — cos‘}

The incomplete integrals on the right side of (2.22) are to be con-
sidered in terms of the Cauchy principal value. For example, they were
calculated in [6], Appendices T and IV. Therefore, we will only give /624
the final result:

U, — iV, =4 (go cotg > + Z g, sinnd.,

fie=]

S LI

¢ ( Z J,,COH'Ih}) +

thea]
1

Sl i 1 1
+|'E;‘B:1(gu -+ 39’1) F?Bﬂ(.lu -+ ““ga) ‘]"? (gb + “”91) +.
7 .
+E-B4go+“%“—85!lo“fj _]‘I"
+c°'t-"9 [ (1 o, 'g‘gl) + -Ba.(gb + “];'92) “+ ' (2.23)

+B(lbgo 1{;9’1)4‘354’04— }+

6 T
_{_005(21‘).[3‘,( _1(,—;—1 )—i— B4yo-}—~¢,Bﬁgo+;..]—|-
4—00333—-}3 2 -,Lt'i' + B. ¢ T 5 5,
1 by 5_!;'0 "g’ 5J0+.;..+008€L&.—3—B5g0—[—, .

The + sign applies for the top side of the interval -1 < X < 1, and
the - sign for the lower side of this interval. In order not to have
to write both signs for the velocity, we will censider the angle ¢ in
the interval [-w, w ]. The positive value of angle ¢ will refer to the
top side, and the negative value will refer to the lower side of the
interval (Figure 3).

..}’ 1 -
Bed Z=X#V s
L0 : ¥ ORIGIN
— AL p
- P<p 0 i or AGE |
\X ﬂ-jz‘ " P QU IT}?

Pigure 3



Since the segment -1 < X < 1 lies along the stream line, then the
Y-th wvelocity component must be 0 there, and therefore

V4 Vy=0 | (2.24)

If we substitute expressions (2.17) and (2.23) for V and V in equa-
tion (2.24), and if we compare coefficients for equal multiples of the
cosine of the angle 4 then we find a system of equations which gives /625
the relationship between the profile shape and the circulation distri-

bution:
1 1=
go = — By - "o""i’-nBo—"é-Z i Brs

kel

gn = Bﬂ — Yy —i_*— E MJL n—k + E (P'an-i-kH}-['Ln'iLBk)) ﬂ'_l 2

2 /2o

It should be realized that system (2.25) also results from system
(2.11) in paper [6], if we set w = 0 there.

The contour velocity on the profile in the z-plane is obtained from
the X-th veloecity compoenent along the rezl axis in the plane 7, when
this velocity component is divided by the modulus of the mapping func-
tion:

- O 4Ty 2.26
TR g Jaoyr (2.26)

If we substitute expressioens (2.4), (2.17), and (2.13) in eguation
(2.26), and if we restrict ourselves only to second-order terms, we

find:

w, =i—I—Ep.,,GOS n&-}-[gﬂcotgl $ 4 Egn smm}]-f-

= Aen]

- 3
+ —5(‘% By + 2 ) [2 Vi By 2 (i By H‘i"‘*‘u ;N ]cos N
Feu 3 -4‘ =l

L]

r(m+ 51 555 ]
. By B,_; - B, B, |cosnd
4( LS Y 2,23«: hnk FE ko N (2.27)
1 1 1 ’
+[EB(9 4‘39’1)+-5-Bz(yo 59’2)4“2“ 3(90‘[";91)';"
+“‘%Briﬂu+}“35.‘lo+---]+

+[B(3J0+—'J1)+ 1 +-;—J2)+B(1—E’Ju+
( o . (econtinued)
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(continued from previous page)

+12—5§1)+ Bs gy -+ ---]0038 +
6 : (2.27)

(8 3 [ 7 \
'I'[Bs(““!]o -F—-—gl)+~—13490 A= Bggy - .. [ 00829 -
9 4 5 8

+[B4(‘§—du -+ %79'1) -l-%l?ﬁ g5t -+ .]eos 3% -+

-}—[%Bsyu—l—.:.]‘(wﬂé&*{—..; . . o
et e — e U UUEEL R R U T /626

It should be realized that the expression (2.24) also follows from
expression (4.5) in [6], if we set w = 0.

3. Velocity PField of Sources Distributed en the Skeleton

The finite profile thickness is considered by decomposing the vor-
tices and the sources on the profile skeleton. The density of the con-
tinuous distribution of these sources is considered in the form of
trigonometric series, just like a circulatien distribution:

g =[1+4 (dg,/de)2]" ¢, = 2 (g, cotg%%‘ +

. (3.1)
i o . -
"l"qﬂtgg*}-f“ Y, Gasinad), 0=

e ]

—— e . = - -

1
The first term :m°mmng8' considers the rounding of the leading edge

and the second temnz%tg-%ﬂythe rounding of the trailing edge. We have

Eb = 0 for the profile with a sharp trailing edge. The total yield of

all of the sources distributed on the skeleton is given by

5 i o _ i oy .
Sdg,ds=s_iqdm=.lw(qo+q?+.§-g1), (3.2)
SRR VAR S -
1, | zexery
"g%’{iiiﬁiﬁssssh . (T
g Vi fox S~ —y IJPAGEIS
, o T ! ORIGINA TY
| OF POOR QUA™
Figure 4

11



Since the profile is closed, the total yield of the sources must be
zero, which results in a condition which the first three coefficients
in expansion (3.1) must satisfy:

f[o“{‘&u“i‘é‘fh=0-. (3.3)
The complex velocity induced by the vortices on the skeleton is

found from the velocity induced by the vortices, and this is done by /627
replacing the coefficients g by the coefficients_ a, The entire ex-
pre351on is multiplied by the factor -1i, (calculatlon of the term with

tg- , Which does not exist in a 01rculat10n distribution, is similar
to the calculation of the term with GMQ}Z?} ). After mapping into the
Z plane, the velocity on the segment -1 < X < 1, Y = 0 is given by the

eXpress ion:

;Uq - ?ﬁro =y — Gy —~ ¥ 4, "395 ny — i (Q’u {‘OUQ%— v+

=]

+ 4 f,fg n}).-‘i} + Y, 9 simr%}) —

el

L, - ~ ' L)
——'I{]-—;{Bi-}-ﬂb'{-Bs'Jr‘-“-)(qu“l'(J.'n'i"T(li)"f"

i T 'y 1 1 4
+E’:'(.Ig2+'é“'B4+o.\)(qﬂ“"?h‘.{’?qﬂ)_y—g—Baql‘I’-.LJ+
(g, +1n G+ L) +(B + 2
‘{‘I‘g 2.‘?‘";"‘ 4'1‘&--)(9’0‘!‘9’9‘1‘3‘%)4‘( 3 a}(ﬁ"u_ (3.4)

3

! R ‘ 13
+—— )—-:-B‘iql—i—....]co.-s«‘) —i-[(-—- By +
2 kil RACAR
7. - ool
+EB5 + ---)(!lﬂ"}'%""' —9“(11,)'{‘
6 . - "8 i 1 7
+'5—]34 (do ""[[o) - -f»](‘Uﬁ 29'}'[‘_" Ba‘({u i 'i“‘;“h) -+

“{*%‘Bs(‘q“ = o) - - JQU*‘ 39 |- I"*RE (go -+ qu} + - -*J"(’S 49 4 ... }' 1

We would like to add that on the top side .of the interval, we have

# > 0, and on the bottom side we have # < 0. The skeleton of the pro-
file with a finite thickness becomes the carrier of the singularities

(sources and sinks). As a further analysis shows, this is not a pure

geometric characteristic of the profile (in contrast to an infinitesi-
mally thin profile, where the skeleten and the profile coilnecide), but

12



dinstead it depends on the primary?flow field. Instead of equation (2.214)
for a profile with a finite thickﬁess,'we will consider the expression

v+ Vwitm’:'-{ imoi (3.5)

4

S g

where Vq+'and Vq_ are the wvalues &f the velodity Vq on the upper and /628
lower side of the segment -1 < X < 1 of the real axis. Just like equa-
tion (2.24), the equation (3.5) 1s a requirement that the skeleton lies
along the stream line. This requ%rement is enily correct for first-order
terms. In the case.of the second-order terms, deviations have the ef-
fect that (3.5) must be replaced by the form -(4.25) which is correct
for second-order terms. This will be discussed in the follewing chap-
ter. If we substitute the expansions (3.17); (3.23), and (3.4) in
equation (3.5), and if we compare coefflclents for the same cosine terms
of the angle ¢, we obtain a system of equatiens just like in (2.25).

This system will be discussed in detal; in sections 4 and 7, equations
(4.25) and (7.18). The corrections to the second-order terms are also
considered there. ’

1]
4, Basic Relationships fer Calculatlnw the Flow around Profiles with

A Finite Thickness.

Let us c¢onsider the profile with a finite thickness. First, we will
investigate a profile shape in the image plane Z. Only idlater on will
we transfer to plane z, using equation (2.12). 1

From expressions (2.23) and (3.1), we can see that the velocities
induced by the vortices and the sources are compesed of first and second
order terms. The first order terms can be looked upon as velocities
which are induced in the plane Z by vortices and seurces. They are
distributed along the real axis albng the segment -1 < X < 1, with

the following densities :

e

E? N . 1 1—-—'
oy ='2‘(g0'(,;b“ﬁg21‘}—]— iglg,,:suum) (4.1)
. | . 1t 1\ |

[ T — = [P I SR

f
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.

!1"'2(.% cohg*%—% qotg—t} }-Eqﬂs,mw,&) (4.2)

hwl

In the following, the second-order terms are added to the primary
velocity field (2.17) in order to simplify the notation. We there-
fore have the task of estbalishing the relationships between the pro-—
file shape and the circulation and source distributioen along the pro-
file skeleton. The profile skeleton in the plane Z is identical with

the segment -1 < X <1, ¥ = 0, The velecity of the inhomogeneous flow

field into which the profile is bplaced is given by the expression

U<%Ve=1 i (T, — 59,y cos o1 _ (4.3)
S L = T b

T OO |

[ — - - e

P I 1 T .
where * o P‘sz’“_i—'z—(in ,°+ 2 Vi Bk)"*'? Bi'-%-,Br?‘-i-' .

LnU

+'Bk"*i" )(% ‘|'-“‘3"1) -‘..‘ , o
*i*itﬁfhjr?l;—% )(J —I-; )—_—BJ+...-
3( H -;)r 4 o ﬁgz g adi 5 | -
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In the following, it is advant@geous to introduce tThe complex plane
¢ and the complex functlon |

Zegletg)i | (4.6)
L /630

This function maps the unit circle.in the plane ¢ into the interval

-1 < X<1, ¥ =0 in the plane Z,:which is passed through twice.

In the plane [, we will introduce pelar ceoordinates p and ¢ (Fig-
ure 5):

TR T TS

R R
- .t i B 13
Aot 3 o 1.5 !
P A N L. .
: Y. <o
.

1
. «

]

Il
b |
+

Show 44

5= <

Figure 5
A.GE It
e JGINAL P 4
if we also set ‘:1*',€.r" B
ce=lte

(4.8)

where ¢ is the distance of the point ¢ from the unit circls. Then from
equation (4.6) we. obtain

- R N ‘;! ‘{ (4'9)
RN Eatat-1 [(1 FRPIP -———’:‘5""6]:’ "%
4 - € x
or F R y
I =2 ‘ !
: X=_(1+r_:ﬁw)‘cus~5}; )
r o2 1hef ni (4.10)
' - 3(1_1:; £ . \sin 9.
: . P14 oe L .
s s e (4.11)

The velocity field in the plane Z, whieh is composed of the inhomo-
geneous p:imary field (4.3) and the velecity field of the vortices
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and sources, can be written in a felatively simple form, if we map into
the complex plane 7 using the function (4.6):

"s{‘iiz;'%};l-f(é?@){lgrg(— *‘mi—-(a )p!

i
P “"l‘ . . & ) ﬁ !.‘ P 1'2‘, .w N ‘ ra 1 (I.l,]_Q)

The velocity iy is decomposed inte a radial part and an azimuth /631
componenty :

T T S A I TR
R e VI L T u ! s 8N W AT e 3L gt md
P 7 RPN I S STl PRTTa § + 3 (i — €9,) L[ b e 3
v, .. !‘ K T 2 A B i ' o) 5 T
e t! ’ { s
dad ) 2 S
e v s . ] l €
-+*"¥—mm+mw q: (g0 + i} 1
T et i~ S+ il

a Is
On the unit circle (that is, for p ='1), the velccity components

are glven by the following relationships:

amr v — = - — - [ — - - e :

i

2 . [ e ) ‘ U’ '-‘ "
Uy == siii%)[E ,,si sn{} —-«-’y(} + sar‘) -l—qor'btg——ﬁ A~

———

p_

|
i
. ' """g “ .,‘;' '— . e ” . -t % (Ll'.l]'})
A . +go,tg $} o+ Zq,, smfh{}) ;
. .". . e . U, !" "‘u,‘.“: "J,‘W l“l:l . , ‘ '4
o g = Bﬂh‘}( 5_‘, o" n‘} »}- j‘,t-ofg 1}+ Eqﬂ sxri i +‘}
i Heal
|
S T A VN R (4.15)

2 : .
i V-”W+%*%—E@%m%wﬂﬂq
' : . ' =1 ‘ .

L

[T UL TL I R UUTPU U U PR ISR b sl b s

Using this notation, equation (3.5) "is equivalerit to the system of
equations ‘

- e - —

ﬁgll -y = G: " s i.a: i
L - . W= dydyi. i 4.16
‘Vu. + gn = ‘?9 - . | ( )

e e e s mmrn e % . s aan s manma nes T |

so that the radial velocity component on the unit cirecle is equal to
the expression ‘

= sm St (9.'0 cotg — % + o fg % 4 L Jﬂsm 11«))

. m-!
V

!
e

F

(4.17)

_-_AMJ

which corresponds to sources in the ¢ plane, which are distributed
along the unit circle with the deﬁsity

OV
‘g---—é-gfsma} (4.18)

O
|._ ...L.M-l '1L at u"‘*&m!
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The profile in the plane ¢ is g;ven by the closed stream line /632
ABMNA (Figure 6). Its shape 1s de%ived from the condition that the
‘total flow passing through the unit jeircular: arc A;B, and the amount of
incoming flow through the sectioen ﬁlA flows tThrough the section BBl’
because the arc AB lies along the stream line and the normal velocity
component is 0 on it. Therefore, we have:

- T 14;;’ TR :,

[Qv,ds-i- q;.}dp-§ ofi

.%o

‘2.'3 ml

(4.19)

Figure 6

The value of the first integral according to (4.17) is given by:

e v A v e ey s i =

lﬂ == [ga cotg 1—9 T Lg—— b+ E (... 80 n»ﬁ\] g 4] rl,)

A

e
. (k.20)
(gu + 4o {‘ - Q’l)& "f"(% — ity + “;‘)"%)Sm 9 “"“‘E fomr ! d,’ Hsm i) ]

A- Rl .
At

~ u_.._._J.L_ AT R PR UGSy PRI I RNy S e

Because of cendition (3.3), the term K%s+gﬁ4- “QJQ drops out.

[\ Py

!

Tn| the calculation of the other integrals, in equation (4.19),
we will use the expression (4.13). Accordingly, the values of these /633
integrals are given by the 1mag1nary part of the follow1ng expression:

1he ° * K g (e 119 i
R (’f)p-l—%‘vs p== ?Rf {(1 +- F"o_""’o)tbﬂ&"‘"?—g ¢ H‘ E (p‘"_" (4 )
_“ J LN B : . 21
o —"’""s [Pn é, un b 9 —int2) e””' H)i}__ Plﬂ - e-‘-ilﬂ-ﬂﬂ + P—ﬂ é'(“‘“””]—- 3
Fo s, .

(contlnued)
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(continued from previous page) E

K \' ié _[_ ?JO "J + ES"‘" 8“}) E { ‘F;_miew:)‘“ ﬁii_cq" Li_ é\gir;')‘q ’\i *f‘
Lo ' . ‘(Jp_,f Bm;,..n,g___' v‘—-(rH2] ei(ﬂ-i iﬂ)j }dp.:;..—- "t ‘ 3 ) i
' : s X © g
= — %{(1 -{- t-ld 4 z.w){ae‘m -i-(li-i—s) 4 l) em] + = (!-’*1 - “’1) (s ""’
; . ” N 2 . .i ‘Q} '=,
RN | i -2 ___ “ 2 1 )
_}_ E, -2) o L 9+ P ((1 + 5; 1 9' Bj + tEEz(y‘r! 'n)[ +l(( T.i- 3 l
r ' < (4.21)
+E):J4 1___1) é-.bﬁ-i)(i i,.__E__._(il -I-—s)"""j _,i) et(n-id)l} — ((1 - €) jii—1 |
i s - £ . -
;“1%wwm"j'ﬂi+ﬂﬁ“~ﬂwwml~ﬂ%4ﬂ%ﬁmi-Fﬂ—g
. —1 T
=l ot —1) 69 -9g fn{i + <) -+ R

~—(rz1+zgl)[1n1+ej+~((1+ ot~ 1fb '*’]_ z(q,.+ u,.)

it-—-... Lo 2y
a3, ;

n-}-l _._.|

L R
=.\? b ; RS i - s ¢ . *1 )
E[ A “i_% ym¢1 1)embnb%--"*( q—@"w@_J)r”“ﬂﬂ} IL
! n -~ .

Since £ 1is a small quéntity of firssg order, if we ignore higher than

second-order terms, and if we con81der equatlons (H 16)% we find:

AT « z
! g K v de = s(i N ]qm}l -+ & sl 3{ Y ““{‘OSN& + |
] R S w .

' . 1Tms }
*m =k 300 ) 080 = B 070 (4.22)
‘ ' ) ‘ l]l |
L + c et
171‘29,%111 m}* B P S S
R TS T A SR
For ¢= 0, we have:
I He. 4 "
igR .wdp “%%a] ‘ (5.23)
J;._A; ]_, _; -....A_ v !‘LA._'.. _‘_.y .’.‘éj
and for #= 7 we have: !
! lil:.. l\f —-__’Mz
ER' "ol = F(h.2h)
¥ .

For #= w, the left side of equation (4.19) is equal to 2g.g, as far
as (4.20) and (4.13) are conceerned, because according to (4.24) the
right side is zero. Since the term 2goeo ls of seccnd order, in our

i

/634

theory we must consider it. Therefore, the equations (4.16) have been

glven corrections of the followingftype:
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SRy 95;;%;71—?67" I
% o ; R . ., b

N V£"{"91+Jos50 :—I'G o BRI (4,25)
ot }-s gj;’—:;\ Flhe s by

.\.ag;-‘{-_;}2 o=l s == 258, L
.k P . - P

To the 1ntegral (4.20), we w111 add the correctlon

(L.26)

Igﬁ ED (1 — COs 29‘)

so that on the left side of equation (4.19) we obtain the following
expression for the fotal current through the arc AlBl and through the

section AAl

; 1) (1()‘ [" l“o‘ici b _ i: 7 " \‘ F -i ) ’-_‘"m N 1 N 11 \- |

e - tjup = (lo % + ,_92 sin & + "7‘(‘10 "h-qq"[* ;’dfl)sm‘;gg""’
’ i . g : , L e TS (k.2
Y E fridign " + o 2o (1 +cos $) -—-~—an°;, (1 €08, 2)

nul
n

By comparing (4.22) and (4.27), we obtain a relationship from which
we can determine the profile shape; that is, € as a function of the
angle #. Since we are interested in the profile shape in the Z plane,
this relationship is converted from The plane ¢ tb the plane Z using
eguations (4.10) and (4.11). Let us call the coordimates| of the points
on the profile (X R Y ). Then according to (4.10) and (4.11), we have:

e - e

X_(i et ok, il i_.l_d_ﬂ*) 4%, 4,28
4' PR 4~a}co ”_ “b ;.. 2 1-%.3‘#€'”i ( )

A i e T e ame Pup. - F R T Ty PR SU S

et et e e < e ]

After substituting in (4.22) and (4.27), and if we ignoere higher /635

order terms above second order, we find

{i -+ E i cos 0d + g, “Q’o+2(qo -T—Qd) GOE% _ Eqncosn&—}- i

"fel Y]
" 1

: 14«mm9 = i f
|+ Yo T + 35 111%9} ( — T+ _‘Qz) Smﬁ‘ + = (f_lo + g 4—
i' , I:}i.- : i i Ir,r
+",;"Qa) gin Zﬂﬂ—;— Eq" 1 g' 33 L ih D - qnsd(1+c,03{})- -
! oo S K o)
! 2 . -
e Y m%h%a—mwm% . C (4.29)
2 . % « L
z;;=—wp.+¢%ﬁryMnaVJmms._ v (4.30)
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In order to solve equation (4.29), we will write the function Yp in
the form of a trigonometric series:

j’f’ E 4, sm«n% + E {6'2,,, (1 = cos 2msj + (}'2,“;1 [cos«‘i —
= , , (4.31)
) '’ — cos (.‘a"nm —l—l)*{}]_}‘- . _", ) .o ‘
o - B )
From this equation, we obtain ¢ according to (4.11):
o j. y 81 o § (4.32)
1 — =% 1=tm =2 =¥V ud, |
o ( 91+ so] o0 §ind ,zﬁ “ :
and therefore, : i
| i
PRI R :
| R Fal i (4.33)

After substituting expressiens (4.31) and (4.33) in (4.29), and
after comparison of coefficients of the same sine and cosine terms of
the angle #, we obtalin two systems of equations:

ARV UTYTTLOF .
"‘40“‘%‘]“]2;‘12“*’1 “} Al(go““(lo“f I‘u“‘l‘”‘d %Ngi +
1B o - - ‘

AL PAGE Lo,
%I;}GISO QUALlTY H R 4o —-A (22) +3Qn + _ﬁl + s ~ A P-s) + S /636

. . T J"-’w K]
LA

PR IOLIT P S

.&_:.._l..

- - S- ata .)A‘m_-: - )

x — e ————— —__.....-.-..-..—...._7__._

+ ._.2_. E irt(""‘ﬂﬁ -1 4+ B b Gpad l"‘ii-'l-i} +gu|:2: i GQJJI”I" E dm+ !-1]

n=ll =1

*-1—91’ Z 02,,, 4~ (a] —"—f}g[z sz+1+0’l“‘*—£2 jn ( %_i(j;iij;r

ma-l. el 2 LB
. f

o _ i C ~;
: .—2-% +—520+“£Q‘5"“A2"IE A.(2qul+2go+m+gd-u)+
1.\, k i
+ Aol Bt 0 — 3 T )+—5- g(zqo+2ao+u1+js~nu5)‘-+~ (4.34)

1«’:'.,;«.@ o *,l
" g % A _Q;:::z;_-i;.u,;-:zn.—i- Utz — B .
. - g T '
) O+2 3 ,a]-ug Elozna—ré(glws)g e +

N N fit e ’ =T )
P, ' i ' . : i
o . " _ E (jn+2 - QH ‘2) On ’ o ‘;- ' . “ .. !

. X fpemd

4 ~ y o a .
““(Q’z“?{i}*:An - ‘-':"*Li(_,'h + 5’4 Ty — P“d)’ "i_“l: SR

‘ui

l N A ‘»4\ 1 .
P R R S + Fam usH 4, ( .qa+_=qo + uo*ug) (continued)
. . v : R K P
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(£.35)
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It is often advantageous to replace the first equations in the sys-
tem (L4.34) by the following equations:

-2q'==§‘w~ft,.{i+3qu+'qn S gt z;p.,‘} L ' (4.36)
. A=} et L.
o= 3, (=17 m,.{ gy~ 30~ % (~1)"g, i(.—n"a‘“:}ﬂ (4.37)

ramm R i vl e b s ket aa e aim e e o

These equations are obtained by multiplying each equation of the
system (4.34) with its own order number. Then all equations are added/638
once with the same sign and the second time they are added with the
alternating symbol. ’

The first two equations of system (4.35) are linear combinations of
remainder eguations and therefore will not be considered in the fol-
lowing. It also follows from (4.35) that the coefficients Cn are sccond-
order, so that in systems (4.34) and (4.35), all terms in which coef-
ficients Crl are multiplied by any first-order term can be considered
of third order, and can be disregarded. This means that the Cn terms
drop out of the system (4.34), and the system (4.35) has a purely dia-
gonal character.

5. Profile Shape. in fhe Vicinity of the Leading Edge and Trailing
Edge

As already mentioned in the previous chapter, the Y coordinates of
the profile are given by_the following expression:

1'1);"‘: i A Slllﬂﬂ + Z GEni [i _— (,-082 )J]'S’] +
: S mm] !

; (5.1)
"

me'l

+20m“m%9—mm@m+39L —nEb==

According to (4.10), we have the following for the X-coordinates
of the profile

45 :

(L L H

[1+-ﬁ¥/mnﬂﬁ]mm& (5.2)

or after substituting equatien (5.1) and ignoring terms higher than
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second order: i

&, = —edw{umiﬁm 4= A3 4 AlAs—I—AI\A + 211 A} +..,+
) +2{A1A2-}-A Ay -:-Mqu }t-cmi +[A2+2A3+2A Aq-; 14 A +
I 2 FF T S ]msvs}-r.,m ;1 Ay dy 4 ]0083«‘}—{—[11“ F*‘AQAJ + (5.3)
.. .._l',',_i e e re

e

THDAT A sy 4 } Lo ,

From expressions (5.1) and (5.2), we then obtain some important in-
formation regarding the profile shape in the vicinity of the leading
edge and the trailing edge. ' ‘

For the leading_edge that is, for ¢ = 0, we obtain:

F iy ;aw,_k[l ( ,M”'i (5.4)
;;q' OIS +2 n):‘.}ii,x]' i
e. BT S L B .
or according to (I. 36) /639
VIR RITHNT. (5.5)
_..L.’___...L....._. e —

Without any difficulty, we also obfain the following:

dy,
=} oo, .6
LA, ".'“jc - (5.6)

S

‘and the curvature radius of the leading edge

e e et e, e A

e T
I = i‘f—-b g (5.7)
‘1 -] . .
B 1) T B
Expression (5.7) can be written in the following way:
T mia 2T
"3%.“_1?}‘2(.1'4-3%4—% Zln'l")__',l’-ﬁ)l (5.8)
." -II_‘ ~“,_ =)
Finally, we can prove that for
X = -1, we. have 5?1_;£4g0 i:ﬁk-; (5.9)

From equations (5.5), (5.7), and (5.9), we find that the profile
shape can be approx1mated by a parabola ir the v101n1ty of the leading
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edge: ) 1

- ey m e wes

P

.—_-v-:i-_-'Qq“_, X -{—1-5-‘?-%) M 5;12%(01 —l-‘_’+' R)dm% (5.10)

k

e -

Similar conditions also hold for the rounded-off trailing edge, that

is, for #= w, where 6 # 0:

el o (RN
o p=.1+7{g( 1)1%:1]%; (5.11)
g AT =
or, according to (4.37),
T = 0; X;==a4-ﬁﬁu3 7 (5.12)
Also, we have L e em s e -
d]‘ . ki
L == I
ux, s (5.13)
The radius of curvature of the traiiing edge is:
. i . .- 1ﬂ,,." ey _.%
: th (— 1)"911,4 A
e, Ry s 2zt = — —"‘-{Qn' . 1 (5.14)
. o -Fﬂ. e lwwﬁn - .‘;
Or k ‘:‘:\ ' ) ' b E‘ ‘:‘ " ‘ el . u}i
' H st ¢ I
L 7 e ?-> 1 -——3 - “*‘1 jo ) "'.1 " )
.- %o " I I gd ﬁfcfl ::E-;..(~ ) ik aJU("_. E j! (5.15)
[ T A O P 19 S RO um_u-..n_,x......_,.m'.a..wm ‘-L_J
Also we have:
sXMJ.Y—iLTWim,j (5.16)

so that the profile shape in the vicinity of the trailing edge is ap-
proximated by a parabola:

e e ——

- N ; y . ".1 ]
: izzoizu%mmf B8 4 & — .A,n“-.}! (5.17)

- . e et i, e . ke ..,..q-.,.-.-._-_..m.n‘ e 2 A Bl ua
L . .ll “ ) - Y . ;' . , . ’.y ) 'l'. \. .
o ZRXFEY g p 0 ol Tz
Zp Xﬁ?‘r_’fr; ST ?p"Xp% e S ;
’,/', UL : g__‘ "‘i
SN B ; rx SpEISTTTT T X
Figure 7 v Zg=Ky | ”%jf\”}f'tﬁﬂﬁﬂﬁu’ S i

24

/640



In the case of a sharp trailing edge, that is, for & = w and g, = 0,

o}
we have:
X, =1,7, =0. (5.18)
and _‘_1?». e
X, o (5.19)

Finally, we will make the ftransitioen from the image plane 7 to the
physical plane z (Flgure 7):
i L Iy e r" T‘h 1
zv_zsﬂép_ds“}”"lf(ﬁp) —f(Z3] . (5.20)

The square bracket is replaced by a Tayler series:

¥, : ' tal . d‘f s 1 dy
— = :Y buaendiie ol EPEMENE__ 100 A AR 43
a2l (X,,“-}: .%‘yﬂ_) d (AP) ' = az _*_ R ij” LA + (5.21)

and since Yp as well as dys/dx are small, of first order, we can re-
striect ourselves to the first term of expression (5.21). Eguation
(5.20) therefore has the form:

v ! - _sx-.,' : . d . .
By Wy A, — ) =0 h[l —I~z~fj]- (5.22)

In addition to (5.22), according to (2.12), we have:

EJ;M&{ (5.23)

= Y, [i + —1- (X, fain :si)ﬁ

Py . -l A

If we decompose (5.22) into a real and an imaginary part, we find:
n;rp'——m""_'"-—o_(.l.g!.ﬁ.%f:;” ?Iz.’__ys___..yb’ . (5.2).})

which means that the fthickness t in the plane z is plotted along the
normal to fthe skeleton, where

L=, [1 + (%,)*J (5.25)

Since the root value in equation (5.25) differs from 1 only by a
second-order quantity, we can write the feollowing for this theory

 ie=T, (5.26)

Pt
'

Therefore, it follows that for the profile shape in the vicinity of
the leading edge and the trailing edge is the same in the physical plane
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%z as in the image plane Z

6.

Velocity Distribution along the Profile Contour

When calculating the contour velocity, we will start with the velo-
city field in the plane ¢

this velocity field is given by (4.12):

1 1
Ty == —2—-(1 —5){1 + E

- ]-)" (u'u — 1 "’n) - (tﬂ +t )
W=
4o

. (6.1)
(.(lu -{— 190) (t,» ‘I‘ 1)_1'%‘2!?0 (t- - j)-l - E (gn ] “("ﬂ)('" C)nn}'

=1
Prom (6.1), it follows that the contour veleci

ty in ‘the plane Z 1is
given by the following if We=dlvgg§;thls expression by the derivative
of the mapping function (4.6)

(6.2)

and if we substitute the following for the variable g

7C=¥l4ki"F )h"m'
where ¢ is given by relatlonshlps (H 19)

‘ (6.3)
(u 28) and (4.29)

/642
Ue~iVx=1+ 3 @, uwni—[a by

HeQ

+ﬂ+ﬂ“W%4%+%)

) _
TF+eo®_1 »

. 1 (6.4)
1+ )vﬂ§4~1 E

- E (gn +%g") (1+ ) ” e,

If, in equation (6.4), we substitute v

accordlng to (4.25) and 4if
we ignore terms higher than second order, we find

S em e oo e e s
UK 7l

— Vg =14+ ¥, 5, {cos nd — fite sin #8) — i gy {1 — g} +
n=0

-+ 29, €y CO8 & —

t!lu + i go) 6.5)
(4 =}{eos 9 +igingj—1 (L+gmm9+znnm+4 (6.5
(1+sni+cm&y+iaf ﬂm}@(l*CWM-%_*E

) '(continued)
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{continued from.prev1ous page) \
i

T———— e

;+2(go+gu}(i-~ (cozﬁ—}-zsmi}) ﬁg,,(l——nsﬁ(eoan‘} {—zsmmf)-f—[ (6.5)

ol

1
. :lml - e

- T \- o K
i_” . i e & PP ,‘/
S —I— }_I" g, (dih 98- + Mis coE n%})u Peda o, 8

By decomposing this expression into a real and dmaginary part, we

obtain the two components of the contour veloc1ty

B

Uy = 1 4- }] Ik, o8, ?18‘—~

- n=0 ;‘j
\ 1 co «‘}—i ~ <
> (1 =€) cos : g (1 4~ )oos&-{-l oy
] (1+e)(1~eo=;s})+_f A -+ e) - cos{} e X :
! 25 M+ H.zfi: (6.6)
;_ ¥ H
P tgﬂ qf,)a—eicosa—zg,.il—ne)ct)s ,,_34
L535 T ﬂﬁl‘ n= L .
TR o L s mel g WA w;, A
R L 1 M ebs & s 5 IR T ) ‘:'h-‘ 7
E;’? W o 'p ::;‘ “5\; . ;' (P .;If‘ ‘2.);61" . " :,’; :'. ‘,.a'rf*, . T _‘, ,ff /643
P - "I' i — = . e b e e T T e —
( ‘ f-‘-'-!r}f- g? . \ e :
‘V::""‘gti i e -} g - ?m "D (
- (1 -}-sj(i Lom}) +—L el . 1 — COR B et )
[ U . :
ot N ‘ N .
v & ¥
g — — lqu+qu) sni«Hr Z g, stn 11 — (6.7)
i"'l'i{.-‘:'e’dsﬁ»{-;- & , R
. :")' (1+00§ 9) e ([-’-1'}‘ gu+bon sin §
Lo, "o E w{W, — gﬁ)f,m ng —;-_‘é _Eiwig,i cds nd.
R, = ST AT TR ov. O
The contour veloclty 1s Then
k)
W;l-—(?J +V~ eyt (6.8)

v

Beyond the surroundings of the 1ead1ng edge (and fer dq # 0 also
beyond the rounded-off trailing edge) the contour velocity differs only
slightly from 1. Therefore, - -in this region we can derive a simple
expansion for the contour veloeity. - From expressions (6.6) and (6.7),
we obtain the following by ignoring terms higher than second-order:

1 Lt

U,a-l-}: E}pﬁedﬁ,,m‘}-i—g[, g0+z(q(,+q05 cos&x— E q,, oo‘» nn} -}—,

w r =0 na—‘
« f . N ) ‘..
o . N ‘l fiod H ) 'q
L% . ,‘ ES i}
" G cbb — N g 810t ?31‘)\ 2l Rl z—
e £3 f,,%g" + | I —cos
. i . -[-—-—-—f—.%i———-——,—‘?(g(,—l gu)eog&-l— E Wi, cos ,,3
S I dres Wy

B (6.9)

; (continued)
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(continued from previous page)

: i , . |
T',;--—gu'cobg—a— E}—{-q,,tg%‘—{ — 2{dy + q,) sin & 4- (6.9)

—I_ Z gﬂ Hjn ik — yu Eu (i ‘]“ {13 }}) -}—

=2

-

- ~ ; Ho ot )
Y on g, — sin nf + —--F-— — g, cos i,
4“5[3$ “"n ) ’ 1 (ObJ ,;; o J (6.10)

In the following the letter ¢ is the angle between the tangent to
the profile (Figure 8) and the X-axis; and then we have

WI,:—UR cos rp+VK f,ihﬁcP 1 (6.11)

Here, tg ¢ is the directional factor of the profile tangent which

can be written as follows to the first approximation according to
(4.31) and (4.34): , ) o )
Y AR R ST P

tgo=-2 =V nd, cobg-—-8—i~— (—1)5id, tg—9 —

dX, in g2 . (6.12)

ml

H
— 3V, 2m dy, sin § — 2 ) [ Z (2m 4k 4-1) Agm.}-;‘ ,.1] siu %9,

dl 1 R
{ == P e ot 9 — - -
L4 @ == dx” q G g ‘+‘q0 g b 2 (QO 1 qo) gin & + (6.13)

- Z ¢, sin 09,

He i

U/(F Jﬁ),

Figure 8

7
Therefore, dz: can be considered as a first-order variable, and

the contour ve1061ty can then be written in the form

o dy,
AV, - u,i ’1 ~_(Mj)

After substitution and if we only consider second-order terms, we

e (6.14)
dXx,
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find:

}8

Wi 2o L4 )_, P COR 2D G- Go 4 2 {qu + Gy) COS ¥ - i‘ gocos nd |-

-+ y, ¢bl, ___,}) , sin nd e @o -t
o €008 +,§J' + e l 1 — cos -E)-Il-{-’cos{}
Fadv
2 (q., b o) €8 H - Z rng,, Cox N %}] ar, [go cotg --5} R (6.15)
o gieal [dz -5
+ ] dj"
aﬂtg b —2lgy + 10 i 4 5 g sin ng| - L )
wedo . 2 dAjj y
T TT T e ay, 0 ¢ T T

where the value of the derivative ax, is given by (6.12) or (6.13) /645
and € is given by:(according to 4.31):

€= i Agmii + 2 i [ % A n-!-!] cos 1 B, (6 -16)

mel I =

. ; B 1 - i . J
or g==(%-qU4-§-%4——;q;+---)+(%~rQn+";gs+

J’
. 2 ,
<= 5 - . 208 % — | @y — — ¢y - b —
- 12 s )L 8 ( A 15 g . )00521)

1, 1 Ty 1 :
.._I.E- ga-_i—‘;q5+.u)0083&~— (-':' qa*l“ a"_..) cosd & — )

4 3

(6.17)
r1 o
_k_(; qs-}«.‘.)cosﬁé}-l-u«

4y
For the derivative d}f and for & we will always have two expressions,
v

When solving the even problem, we will use expressions (6.12) and (6.16).
The contour velocity is then given by a linear expression in terms of
the coefficients.gn and > which is important for calculating the con-
tour velocity for different incident flow directions. When solving

the odd problem, we start with the selected circulation distribution
(coefficient gn) and source distribution (coefficient qn). This selec-
tion is speecified on the contour by requiring a suitable veloecity dis-
tribution. Therefore, there must be a way of evaluating this veloclty
distribution before carrying out the entire calculation. Relationship
(6.15) is used for this, in which we substitute expressions (6.13) and
(6.17) for dYu/pr and €.

As already mentioned, the expression (6.15) for calculating the con-

tour velocity cannot be used in the vicinity of the rounded-off trailing
edge. There, we must use formulas (6.6) and (6.8) for obtaining the
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contour velocity. Directly at the leading edge, that is, for ¢ = 0,
we have the following according to (6.6) and (6.7).

| b
Uy =1+ Y I wzqu(-— 1 eu) —m(lu '""-o]"“
f=nll €y

(6.18)
- Z QR 1 - ”"u)

‘|“1"“2ft])“_€(iz‘ﬂgh’° ‘4 (6.19)

. 2
LM -~
. Vrc = {fy (
. ! ’ f Yl

If in equatlons (6 18) and (6.19) we substitute according to (4.33) /646
we find

e 1 1 i1 e .
=Y ud,, T-_--;—'"""—-—-E- —:——)_’?I.Aﬁ . (6.20)
Himl =5 E 'N.n‘l" Tam i

and we have

T '2 N m~
Ts= = B 1 B B0+l — 5 0 — zm"[_*qw

E an” n=0 n=2 na—i
LI
3.0 & A\
. + -é- 5~ Z “Mlg,,i)l (6.21)
‘e 2
24 ' 3‘ ]
Ve=g (m ‘“‘““é‘ E

mi) EuA TCJL

P e A e amamn

- (6.22)

If in these expressions, we substitute for ZnAn according to equa-
tion (4.36), then we have the following:

Ue=~20 (5 ot > 46— § ) (6.23)
~ a2 '
e =21 430, 4% — S 0a, + 5 |20 5 ng, — 3
L_‘lx aqﬂk l] 0 o) Gn ,;go Hn “'qﬂ E Ngu - g.U '10' : (6.2”)

n=l

It should be realized that terms higher than second order were not
considered in expression (4.36) for InA , and that InA  itself is a
first-order quantity. The ignored higher-order terms have an effect
on the reciprocal 1/EnAn already for the first order terms, and there-
fore expressions (6.23) and (6.2%) are only correct up to first order
terms. In the case of a flow without circulation, both components are
small of second order in the case of smooth entry (go = 0). For a

non-smooth entry, UK is small of second order and VK is of order 1.
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In formula (6.12), which can be considered as a formula for the
contour velocity at the leading edge, it is often advantageous to
replace ZnAn by the radius of curvature of the leading edge, accor-
ding to (5.7):

Nl

=2 T § =

Wy =Ty =2, (£~ ——]i'%) ~ Ry Y ngy | (6.25)
In & similar manner, the following expression gives the velocity

along the rounded-off trailing edge (6.26).

1

}WV”%;M%MM~E”M Rﬂ%% ihﬁ; (6.26)
) . , img A i

SRR Y — e e m e e O S ORI

. < n s VALY
The X-component of the contour velocity on the rounded trailing edge

is small of an order higher than second order, and therefore can be
ignored within our theory. It should only be realized that formula
(6.26) has a theoretical meaning. This is because in a real flow there
is a boundary layer separation in the vicinity of the rounded trailing
edge.

The formula is derived .for the distribution of the contour veloclty
appliedin the image plane Z; therefore, we must derive the relationships
for transforming values from the plane Z to the plane z. For the velo-
¢ity in the z plane, we have

H W (6.27)
dz !

dz T -

where |37| 1s the abselufe magnitude of the derivative of the mapping

functions (2.10):

. ds

f
LdZ 1«5 i (6.28)

Z

On the abscissa -1 < X < 1, ¥ = 0, we have, according to equatiocn
(2.15);

i7" (6.29)

and since the profile thickness is small, the derivative 4f/dZ of the

gg ?&%LQPAGE I8
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mapping functlon can be expanded 1nto a. Taylor series on the profile:

¥ - &'ﬂ?’-“ - 'Y—;:,’.J (6.30)
d?/h/p dz +d-X(d_ \(-lv‘f"'b-p j"l e ]

If we only restrict ourselves to terms up to second order, then we

can omit the difference ¥ - X and all other terms not shown of higher

i
order. The derivative 1i£((%}can be written as: ,
. o \(da)y
A (ﬂ%) =4 (d‘ve).ﬂi = — Fap, Hnad (6.31)
dX @b \ge) dx . wer o SR

After replacement in eguations (6.28) and (6.30), we find:

% '*‘*f'[ + i )3.&3 vk m’ | ,§ .B,, g;;l "f"‘g k)% Ji‘,:ishli.ll k{F i (6.32)

For an accuracy up to second oerder, we therefore substitute the
following in equation (6.27):

TT o "T','" I T T T YA L "Wm”“"“”'}
AR __”1~_~}5‘ﬂ---(131+12— R B{—i— By Byt
. d_ i

; . d[l’ \ e s ey, ‘ . ot

J E.o.o v ' . . PR ,

i i i i . 1 g Ix ,"‘i
bl rl *Ba -]~. . ).(:Gﬂ & — .4 J‘f —I— B 32 + 5 lf B-; —f— J 08 21}‘.__

*

g m(ianﬂ3+% B, By 4“—13]1‘3”_ jﬁbs.ﬁfq‘}_;(:_:%, B+B,;4,L

-

1(6.33)

b .
PR UV N SRV P O S o N

s R Ly e
+ ;Bl B;;‘r—f.-,.;:) S’i '.(B{, By -i—;Blﬂ,; —]'~
. 1 ot - .

+ 351‘3 Byt . )eohﬁv‘-——(.&* B 24, By + ity -
5 T
QAIB + Ao B, -}-éﬂ By 4 .,A B, + )simﬁﬂ — {84, B . v

—f?AéB§4~A5£ﬁ4-= )mﬁ3ﬂ-(4ﬁdzg4-3A°Bg4-mA‘B 47
E . o +AB—M.ﬂmM+ o

[ e o e e e e e

1
S e

The contour velocity is then given by the product of expressions
(6.8) or (6.15) and (6.33).
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SECOND PART

FORMULAS FOR NUMERICAL CALCULATIONS. AND EXAMPLES

7. Formulas for Numerical Calculation

1

In the previous chapters, we used trigonometric expan51ons with an
infinite number of terms for the variables to include the general case.
In practice, it is sufficient to use relatively low-order “trigonometric
poilynomials.. In this section, we will .discuss formulas for practical
applications, in which the flrst few coefflclents of trlgonometrlc ex—
pansions are con31dered in the flrst order terms (usually, it is not
necessary to take more than six teyms). In the second-crder terms, we

will only consider those terms where the index sum is smallér or equal

to 4.

/649

Geometric Variables

- The coordinate system is locateé so that the skeleton chord lies in
the x-axis, and the origin of the coordinate system is located at the
chord center. The length of the sﬁeleton chord is called c®. Instead
of the variable x, we will introduce a trigonometric variable ¢ with
the following equation on the skel%ton’chord.

t
i
1

iw¥=-—-§tﬁsﬂ- b=d=<n (7.1)
3 . ! . 1

P U S S —aam e [P

The skeleton shape is given by the trigonometric expansion of its

‘derivative
fé{ . 1'\"‘ } ) M’HFE
iy X e s, ‘
oY Ebh%sﬂﬂ j (7.2)
. dz Hlal, e 3 i

1.
3

[P o

"¥In this chapter, intended for practical applications,‘all of the quan-

tities are dimensional. The skeléton chord length is the fundamental
length for length measurements, and the velocity U, is the fundamental
quantity for the velocities. In order to simplify the notation, we will
use the same notation for these dimensiened variables as in the complex
plane z. Since the theory is not required for performing numerical
calculations, there is no danger ¢f confusion.
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where

P o T T
Lo ;
By = 3, Tl
‘mel EL‘}??F'-"—L
L ___l_._.____‘

From this expansion, we find:

S TR (1.3)
Yo = — {B (1 —cbs ﬂ) + E By ’ (1 —-cos nd) }
o 4., aml - e, i
where E R R Lo :*.'19~:?l PR ,4
! " B -‘ oy : R ) - . - i v ‘ 1 i .,
e (“—fr]-—r:ri;-(',i)’,ﬁ”ﬁf‘: e i
: L : (7.4)

The thickness distribution is plotted along the skeleton normal, and
is given by the expan81on

PR N —— e —— e - -

e = .§~ { E A, bm nd - \“ [(,Dm (1 o Jm ﬁ) 4 P‘
”"'1 he 1

.. ~ i (7.5)
-I~ Ugmirfcos 3 — vos (Im -;— 1) 1'})]}, - 9= w

S T
L

The positive values are measured upwards and the negatlve ones are /650
measured downwards from. the skeleton. The base peint of the normal to
the skeleton has an x-coordinate given by the relationship

S T T (7.6)

) 'mﬂ,Tﬁf}Béiﬂi{_ ( ) T :
i! ﬁ;: - . 2‘-‘ ‘ B].Il‘ﬂ ’]'
1 ;.‘ t ] " ;’i

or [y ‘”q
o= = e ﬂ[ln E‘i +A,,+_A A‘—F—.MIA ey )
y ‘ +A2+2AA500521}]:,“. J
.. S L;:. e e = o PR bh et 2Dl el e e ;n.--u.-m-‘ (7.7)
:F --|
:
!l
§
i
E
Ll .

Figure 9
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The curvature radius of the leading edge is:

£y =‘--£'(§‘HJI"T- ‘ (7.8)

R, -———(E(—l)"m,,)nx | (7.9)

The distance between the profile nose from the end of the skeleton

onthe leading edge 1is

A= =R, (7.10)
and on the trailing edge,
1
) Az‘::“_)flfg' ' (7»11)

Aercodynamic Variables.
The components of the primary velocity field on the point where the

skeleton is located ameglven by the trlgonometrlc polynemials:

‘u = U, (.‘I + 2 o cosaw] v--JJ E v,, cos nﬁ ' (7.12)
: iLU i . )

L e - = - - L T

+

The circulation distribution and source distribution on the skeleton /651
is given by tThe following trlgonometrlc polynomlals

1

-y = .?}Uo (g" eotgi 4 -+ E i Slll'??'ﬂ‘) (7.13)
B . it
1 1 e
q=2U_o[Qu coﬁg;ﬂ+qnﬁg-ﬂ——2(qn—l-‘qe,)smﬂ-1-'
+ 112—1 G smnﬂ_l (7.14)

The relationship between the geometric variables and the aerodynamic
variables 18 given by a system of linear inhomogeneous equatiens be=
tween the coefficlients of the geometric variables An, Bn’ and Cn’ and
the coefficients of the aerodynamic variables 8> D> Hpo and Vo In
order to solve this, it is advantageous to decompose the gystem into

three groups of equations and to then solve one group after the other:
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http:sin(7.13

The First Group:

- - - B i wii = 4 e v o e -

. i 1- -
Qo“‘g,’o"j‘—gz= A“!‘A (90"’(lti+“‘“!12+l’-0 ‘5"-2}"“

" ' ' .,= . + A (2g,, —{-2(_10 Aty . :‘, B S 5
"7 ‘5 o R ) o X ) ’ Wt ‘_\:
o L 1, 1 Gy 4
F ot T h +“'qa~ﬁ -?~fij(2qo+-»qo+da+w iz.o:)ﬁ‘-,f
- ' ] +i N '
5 + A (g — g0+ (J'u) + rY Ay (2q, + 24, ‘{‘ Ki)y :

. i 1 R ‘l 4 . ; ( 7 - 15 )
e (e ) e Ay = A g — ) o Ly A (2g F
"w + 2?2"0 d i) b gy - ’?Zn + o)y

¥

—--—(as qs}--A—iA (qamu) '*:E'Ad(‘ls""ils)-{-

' N 1 . FL I, _ T " et % ' ‘:
ek ‘;';'_Aa‘ (2% t 245 -1 P-i’-"!" 4‘1".'15 (Qn~‘“" G + vols L

L j ’ - UM
:-,‘*"-- fma.\i‘— ?m,) o A,,; — SR

=

ii__.l_\::_‘-;g.. .- h: "‘ -_.m.z' /652
It is better to use the followmng equations, instead of the first of
the two equations given above:

. ..'....‘ ens e e s o e e e

2!10 E ”M’iu { + 8¢ + G —

}_:2q5+§osg,s} LT (1)

-

FTI .
Eﬁ_ 16, {1 - —S.q.r- ): (»—i)mf ,230(_“ a-}‘a (7.17)

e e e

The Second Group

e et + — N Y Uy -

b oalgy = — Bo e "n + o é}l ’”’fln - Borij"ﬁ - ":';'“ Bty % Ba ook ':'
L I s '
"3 2 [% ) +-§— 'gg) ¢35 bl + 2 + = B, (g SO ;
= B ~* "1 ~ g ,,;1 '”Ad "l; i30 ;-'it\'j‘ -ﬁi ((j*i)’"}" ‘é‘ P‘z] + "g" -;}’2 iil"' ,
. —’—B*‘(qo i) 4 é By (9 + T o
) T ? X ‘ . ! (7.18)

S 1 "
t '€fz=.Bz"'“V°+BﬁPJ2+ OBTF1+H3)+82P*0“‘—1§2 % = 9¢)y .-

5 2 .

: g3"_B _\)3';‘3“)‘3“'!‘55 1‘}.2'—'{——2—3!*1.1,1-}—_33‘10? (f-‘-' :‘;!"i

:4 r: " LN "A. ‘a

% E + B§ j. B i ,i - :. M
—_— V4 !).4 + o 1 EL;‘; "i“ 5‘ ]3) E}-2 \“{‘ — 3 Hi + B4 u'()’ .

1 -~ 2 .

S Br; — Vuy R = B. ;‘.
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The Third Group:
) M

_ 1 .
Oy == 4, 3 nd, +go(.e12-n > A]—lglm —~ dy)+

el wed,

1
'i'-“.—‘- .t'j‘
5 Gadi,

; N (7.19)
; .—gd(.gis—] Efl)uﬂzgllio"";ngin

¢

: r o
i Qil = gn -‘i — % !fz. - -2'- g3 A, Y I

All three groups have the largest terms in the main diagonal, and /653
therefore can be solved using a method of stepwise approximation very

.t‘i

easlly. 1In most cases, the first two approximations will be suffici-
ent.

THE EVEN PROBLEM (THE SECOND MATIN PROBLEM) OF PROFILE THEORY

When solving the even problem one determines the circulation dis-
tribution and source distribution (that -is, the coefficients 8y and qn)
for a profile immersed into a given primary field. From the calculated
circulation distributiocn, one determines the total circulation, the
1ift, and the velocity distribution along the profile contour.

Since the profile skeleton does net have a purely gecmetric profile
characteristic (it also depends on the primary field), one starts at
the profile center line when solving the even problem. This is because
most profiles are produced by drawing a suitable symmebtric profile along
a corresponding center line.

The beginning of The center line is at a distanceAl==%-ﬁLfrom the
leading edge (Figure 10), and its end in the trailing edge, or at a
distance A2==%-R2 for a rounded trailing edge. We will determine the

-~

coefficients ﬁh'for the trigonometric expansion of the slope cf the

middle line:

l
v di’lmt

A = ﬂg_‘,o %3,1 cOB fm‘} (7.20)
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Figure 10

Also, we determined the coefficlents An of the symmetric thickness

distribution:
L e M P : e .. 17 2f \e o .
== e A.n\ o hnd trmr e Y i 2 i
3 'hg ASILNS, @ 9'{1“_& 2.(asih:§}1)‘},ws'&’ . (7.21)

4

LI TN - P - - VU Pl UV P,

Considering that the nonsymmetric correction of the thickness dis- /654
tribution (the coefficients ¢, in (7.5). are of second order) we can
take the following curve when calculatlng the skeleton:

. e

s “"“/m!_‘_[d -cns"%)-i-Ga(cos«‘)——w\SB)—}f(’ (1-~—(0<; 49)‘]‘ i (7.22)

The coefflclent values Whlch are substituted in system (7 18) are

then _

i

B = - —20;,
| By =B, —416; + 25),
- By =B, '—-bGas . (7.23)
By =F, 80, ‘

' B,=B., n;4
where the coefficients Cn are given by expressions (7,19). By solving
(7.15) and (7.18), we obtain the values of the coefficients g and q,

The total circulation is:

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ

P A (f,l,+3.!,1j]l § (7.24)

The velocity distribution on the profile contour is given by the
following relationship in the region outside of the rounded trailing

edge (and also outside of this trailing edge, when the trailing edge

is rounded off):
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: - Bq)(,osfh}—i—(fi B, + 2.4, ) stnd - 2 Alb’ +

+ Ay By)sin 28 4 (34, By + 24, B, 4 A, By) s"m 39.

In the v:Lc:Lm.ty; of the rounded leading edge and the rounded trailing

™
edge 1[9‘1<~*:-6*<11}}““1 » where relationship (7.25) already has subs—

!

stantial dev1at10ns it is appropriate to calculate the contour velocity
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using the formula: - R U"- 7 P .
«w,} ‘"*?1’0_" '+ W j“~ a i

o SR : (7.30)
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Here, we have , /656
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The velocity along the leading edge is

e e I L Gm e oo — — -
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‘;‘ih_l ("’ J {(20)‘;,;‘?_\ ( a‘] .’EW}"% (7.33)
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THE ODD PROBLEM. (THE FIRST MAIN PROBLEM) OF PROFILE THEORY

The odd problem in the frue sense of the word is to find the profile
shape from a specified velocity di%tribution on the profile contour.
Here, we will not 'solve this problém in this generality. We will in-
troduce a modification so that the shape of the profile placed into

the inhomogeneous primary flew field i1s calculated fer a specified
skeleton chord, source distribution and vortex distribution on the
skeleton.

The expression. for the components of the primary veloclity at the

' o ORIGINAL pagp
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point of the sought-after profile ﬁs found by expanding the components

of the primary velocity in the vicinity of the skeleton cherd in Taylor

In this calculation, the Tirst- terms of this expansion are con-

/657

(7.3%)

(7.35)

i are determined from the

series.
sideréd only. Instead of (7.12), we will write
g - [ . -
ﬁ;—"ﬁ [i "I" E(Mn‘i""‘é’"ﬁ "/s) 005 '""9] 1l
AR EA 2 ooy nd ‘
' ? ° [n‘glﬂ(v 8?] ys) J g
il aL
The coefficient values #Mvm - and

component values of the prlmary veloc1ty and their derivatives at the

chord points.

The dash notation has been intreduced in order te distinguish these

coefficients uﬁ and vﬁ

from the coefficients Uy

n .
and vn

of the expansions

» of the primary velocity components, (7.21) calculated -directly on the

profile.

)

Using (7.3) and considering (7.2),

we then have:

(7.36)
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(7.37)
(continued)
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(continued from previous page) /658
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Expressions (7.36) and (7.37) are only used where the coefficients
B and v, appear in the first order terms. In the second order terms,
we only write

=, Y = Vi (7.38)

It should also be realized that the coefficlents Bn obtained by
solving system (7.18), must satisfy condition (7.2). Therefore, every-

where in system (7.18), we set:

» "‘\V“'"' 9"
B__,'[ﬂj By, (7.39)
. By = _
H e dm2 — 1 X

It follows from this that the coefficient %&, when selecting the
circulation distribution, is not arbitrary, but instead is a result
of solving system (7.18).

After this preparation, we can begin with a solution of systems
(7.15), (7.18), (7.19). From the caleculated coefficients A Bn’ and
Cn’ we will then find the skeleton form using equation (7.1) and
(7.3), and after this the thickness distribution from equations (7.5)
and (7.6). The total circulation and velocity distribution on the

profile contour are calculated from eqguations (7.24) - (7.30), similar
to the sclution of the even problem.

As already mentioned earlier, the velocity distribution on the pro-
file contour is decisive for solving fthe odd problem. Therefore, we

42



will at least give an approximate expression for the contour wvelocity,
corresponding to the selected vortex and source distribution, This is
obtained from the expressions given above, by only considering the
first-order terms. In a region outside the rounded trailing edges, /659
the contour wveloecity 1s

I v + ‘.!. v . : ..' ' . _ ﬂj i f 4
g = U314 Y, pnos n i+ go— go + 2{gp +Go) cO8 & — Y g, cos nhA-
N ’ . L (B 1 . .

A (7.40)
i 3 N - e
+ ¢ cot,g-é— 84 f{E—"'L if, 5in m)}j. . . ’ Ve

The leading edge velocity is 77

=0

We="r" (7.41)
The coefficlient 8, is given by

"’ . [,I:l g2ni+v‘; ; (7 }_!2)

| Vo e i ..._..._‘"l .
fo N P PR )

It is advantagecous tTo estimate .the velocity distribution on fthe
profile contour using the formulas (7.40) - (7.42)&;;£n every case,
before beginning the calculation, so as to exclude those circulation
and source distributions which lead to profiles which have unfavorable
aerodynamic characteristics. On the other hand, it is possible to use
formulas (7.480) - (7.42) for selecting the coefficients g, and q , at
least in the first approximation when calculating the profile from the

described veloclty distribution on its contour.

8. Examples

The usefulness of the theory discussed in this paper will now be
iliustrated with three practical examples.

8.1 Symmetric profile in a Homoegeneous Flow Pield

As a first example, we will consider the computation for a modified
NACA profile. The profile shape (Figure 11) is given by the coordinate
table (Table 1).
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1

Figure 11

b aas et e mde smn —— e

Table 1 {
i
X = nondimensional leading-edge -distance
Y = nondimensional profilelthickness
k]
PR - gy, be TR X iy
doareri ot . -
! t A " , oy
o 0 .. 0,260 4,040 _ 0,761 2401
v 6,007 0,854 * -0;399 4,078 o822 | . i39
» 0,080 1,671 0,414 - 4309 | - 0,884 4477
L. 0,067 2,492 ¢ 0,601 | . 4108 0,933 0,749
Pee o gbsz . || o088 .-| " 3883 | o9 . 0,438
R 5 8,630 0872 ] posd ~ 1,000° NI

t

Using harmonic analysis, we determine the coefficients A
ness dlstrlbutlon for this proflle (see equatlon 7. 21)

A = 0,0753 ; A’a = 0;0192 = — 01,0068
A,, = Goo0s} - dy'= 040008 X =—l — 00023
: ):ml = 0;0087; "z',( i)éam .._--00226
E" fiel h=1

Since we havé a symmetrlc ‘Profile,

equation (7.20) -are equal to O.

efficients Cn are:

The velocities are referred to the x component of the homogeneous
primary velocity field so that acc&rding to equation (7.12),

4y

|

'all of the coeff1c1ents B
According to equation (7.19),
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where a_ 1is the angle of attack.

We will now introduce the angleiof attack parameter K = tg a_ for the
rest of the calculation. All of the coefficients Wy and Vi, in the ex-
.pansions (7.12) are zero, with the exceptlon of V> for whlch we have:

These values are then substltuted in equations (7.15)-(7.18), and /661
‘after this they are solved for the'de81red vortex and source distri-
bution coefficients

|
_____ . A
o =1,008 B gi=—0, 040 X ; gy, = 0,047 K % b5 _boezlr/

tbors

;Qo—00544=,go — 0;0107} g, = 0;08dd5 ¢y =0
gy = —00083,%_000“1,gﬂ_-—ooom T N4
[

H

: |
According to (7.24), the total circulation is

!

B TR e T

TfeUs =3;371 K.

. A ek e ; _....._.\._‘.s__&l
The vedoclty distribution on the profile contour is obfained by sub-—
stitution in equatiens (7.25) - (7133), and is shown in Figure 12 for

the angles of attack o 0 and tw& degrees. The velocity distribution

{
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Pigure 12

_ o1
is referred to the total velecity %f the primary flow field W_ = Um(l—;k?)2
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8.2 Curved Profile in a Homogeneoﬁs Flow Field

As a second example, we will now consider a proflle with curvature
in a flow, which was produced by plottlng a symmetrlc profile mentloned
above on a circular arc profile center line. The central angle of the
arc shaped center line is w = 29°3é’.
i /662
Por circular arc center lines, %he coefficients in expansion (7.20)
are given by the follow1ng expressions

i 5 W 3 ) Y 10 v
B = gill — - — kind — — _].
te [ £ 2 S]Il° /

|
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i g 8 ,
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L._B—_-?_ﬂ__f;.g_‘ sk ~ J,f
In the example given, only two coefficients Bn are different from zero:
Bl = 0.2613 ! B3 = 0.00?2
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Figure 13

After this, the calculation is completely similar to the previous
example, and we will only give the .results here.
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The total circulatiog_}$ )
S A
o = 0;4690 + 3,371 K |
e - /6

and the velocity distribution on tpe profile contour is shown in Figure
13, for a_ = 0°26', which corresponds to an entry without shocks. We
also show it for o = - 1°34' and 2°26°'.

|

8.3 Curve Profile in Cascade Confighration
[

Finally, we will calculate the flow around a profile from a previous
example, with a cascade configuration (Figure 14). The division ratio

Figure 14

(s/c) and the separation angle (A) of this cascade are given by

s/c = 0.904 X = 34°30!

The flow around the profile in é cascade configuration 1s considered
as the flow around an isolated profile in a nonhomogeneous primary flow
field [7]. The inhomogeneity of t%e primary flow (induced velocities)
is caused by the other cascade profiles.

The x component ﬁﬁ;) of thé-%ra%élationuvelocity (wm) is selected
as the reference velocity. The franslation velocity is defined as the
vector average of the incident andsdeparting flow velocities (Wl, W2).
'The coefficients p and v in the expansions of equation (7.12) are
given by -the following expressions% (see [87):
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Figure 15
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.fheory in detaill, it can be used. | This circumstance is very impor- |

The calculation is completely gimilar after this. O0f the numerical
results, we will only give the departing flow angle 0y (Pigure 15)
and the velocity distribution on %he profile contour. The velocity
distribution is shown in Figure 16 for entry without shocks (al = 11°3
and also for o, = 9°33" and 13°33%. Figure 16 shows the velocity dis
tribution referred to the incident flow velocity.

CONCLUSION
This paper contains a theory off a mederately curved profile in a

nonhomogeneous flow.field.....The_theory-isibuilt..up-.as a "second order

and thickness distributions, as well as the coeffiecients in the expan;

sion of the skeleton shape, are considered 83 small Yof first order".

All third-order quantities are ignored in the relationships.

The main results of the paper are adapted to the requirements for
numerical calculations in the seventh chapter.’ Without knowing the

e

tant, because the derivation of the theory requires a knowledge of

caleulation, ali that 1s required is the knowledge of expansions of
trigonometric series (harmonic anallysis) and the solution of systems
of linear inhomogeneous equations.] This assumption can be assumed

to be satisfied for any technical employee. The systems of linear
equations have a very convenient form feor numerical calculation. The
largest quantities are always located aleng the main diagonal. This
means that we c¢an recommend a step-wise approximation method for the
solution, and in this case it also] leads to a rapid solution, even for
several unknowns.

In practice, we often encounter; this type of flow, and this theory
-was- formulated in general terms without direct adaptation te special_
cases. We can consider .the fcollowing appliecatiens: flow around aero-—
dynamie profiles in a homogeneous flow, flow around profiles near the
earth, flow around straight blade gascades, flow areund radial blade
cascades, flow around guide blades|, etc. In all these cases, we can

l

= et
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theory". The coefficients in the lexpansions for the circulation source

functions of a complex variable, and ¢onformal mapping. In a numerical

.
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transform this theory into calculation formulas which will consider the
specific properties of the individual applications. This results in a
further simplification of the calculations. Of the technical applica-
tions, the calculation of the flow around straight and radial blade
cascades is probably the most important. Consequently, the results of /666
this paper and theresults of papers [7] and [8] were formulabted into a
calculation procedure for calculating the flow around blade cascades

with small thicknesses and moderately curved blades. This has been done
for incompressible and compressible subsonic flow, as already discussed

in example (8.3).

The formulas for the numerical calculation discussed in chapter .7
can be performed with an.electric calculator or a slide rule. They
are very well suited for programming of automatic computer installations.
The time requirement for a complete caleulation of a profile or a blade
cascade is reduced to a minimum. In Chapter 8, we discussed exémples
which have already been caleculated on the ZUSE-23 computer.

The results can be generalized to prefiles with a high curvature,
but with a rather small thieckness, as has been shown in paper [6] for
the flow around a thin, highiy-curved profile in a nonhomogeneous flow
field. These generalizations were net included in this paper, because
moderately curved profiles are:wvery important in technical applications.
Alsc inclusion of this general case would have made this paper much more

cumbersome.
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