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FOREWORD 

This document, LR 28283, is the final technical report of the Lockheed
 

California Company's analytical study of the further assessment of the fuel
 

conservation merits of an advanced propfan powered transport aircraft. The
 

study, reported herein, is a supplement to the previous analytical study
 

entitled "Study of Cost/Benefit Tradeoffs for Reducing the Energy Consumption
 

of the Commercial Air Transportation System" (Report Number 137926) performed
 

under Contract NAS2-8612 for the National Aeronautics and Space Administration,
 

Ames Research Center, Moffett Field, California. This report presents the
 

results of work performed under Modification Number 4 to Contract NAS2-8612.
 

Mr. Louis J. Williams of the V/STOL Systems Office at the NASA Ames 

Research Center was the technical monitor and advisor for this study. 

The study was performed within the Commercial Advanced Design Division 

of the Lockheed-California Company, Burbank, California. 

iii
 



TABLE OF CONTENTS
 

Section 
 Page
 

FOREWORD iii
 

viiLIST OF FIGURES 


LIST OF TABLES 
 xi 

SUMMARY xiii 

INTRODUCTION 
 xix 

ABBREVIATIONS/SYMBOLS/CONVERSIONS xxv 

1 AIRCRAFT DESIGN EVALUATION 
 1-1
 

1.1 TURBOFAN AIRCRAFT 1-1
 

1.1.1 Baseline 
 1-1
 

1.1.2 
 1985 Technology Assessment 1-5
 

1.1.2.1 Design Range Increase 1-8
 

1.1.2.2 Cruise Speed Reduction 1-12
 

1.1.3 1990 Technology Assessment 
 1.14
 

1.1.3.1 Advanced Technology Turbofan Engine 1-14
 

1.1.3.2 Aircraft Optimization 1-14
 

1.2 TURBOPROP AIRCRAFT 
 1-16
 

1.2.1 RECAT Baseline 
 1-22
 

1.2.1.1 Revised Baseline 1-26
 

1.2.2 1985 Technology Assessment 
 1-28
 

1.2.2.1 Design Range Increase 1-40
 

1.2.2.2 Cruise Speed Reduction 1-42
 

1.2.2.3 Alternate Turboshaft Engine 1-42
 

1.2.2.4 Off Design Cruise Speed Effects 1-45
 

1.2.3 1990 Technology Assessment 1-45
 

1.2.3.1 Advanced Technology Turboshaft Engine 1-46
 

1.2.3.2 Aircraft Optimization 1-46
 

2 PROPFAN TECHNOLOGY BASE 2-1
 

v
 

-.PRECEDNG PAGE- BLANK NOT FILMS­



TABLE OF CONTENTS (Continued) 

Section 	 Page
 

3 ACOUSTIC TREATMENT METHOD 	 3-1
 

3.1 TYPICAL TURBOFAN CABIN NOISE ENVIRONMENT 	 3-1
 

.3.2 PROPFAN PASSENGER COMFORT CRITERION 	 3-2
 

3.3 PROCEDURE FOR DEFINING ACOUSTIC TREATMENT WEIGHT 	 3-4
 
3.4 CABIN WALL TRANSMISSION LOSS PREDICTION 	 3-4
 

3.4.1 Transmission Loss Assumptions 	 3-4
 

j.4.2 Structural Design Constraints 	 3-7
 

3.5 EXTERIOR NOISE DATA ' 	 3-14
 

3.5.1 Previous and Current Prediction Results 	 3-14
 

3.5.2 	 Exterior Near Field Noise Prediction 3-18
 

3.6 	 ACOUSTIC TREATMENT WEIGHT PENALTY DATA 3-19
 

3.6.1 	 Presentation of Acoustic Treatment Weight Penalty
 
Data 3-19
 

3.6.2 	 Disk Loading Effects on Acoustic Treatment 3-19
 

3.7 	 POSSIBILITIES FOR FUTURE TREATMENT WEIGHT REDUCTIONS 3-39
 

3.8 	 CONCLUDING REMARKS CONCERNING ACOUSTIC TREATMENT
 
WEIGHT PENALTIES 3-41
 

42 	 COST/BENEFIT COMPARISONS 4-1
 

4.1 	 PERFORMANCE COMPARISON 4-4
 

4.2 	 ECONOMIC COMPARISON 4-7
 
4.3 MISSION FUEL COMPARISON 4-7
 

5 CONCLUSIONS AND RECOMMENDATIONS 5-i
 

5.1 	 PROPFAN DESIGN 5-1
 

5.2 	 AIRCRAFT ACOUSTIC TREATMENT 5-2
 

5.3 	 AIRCRAFT CONFIGURATIONS 5-3
 

5.4 	 ADVANCED TECHNOLOGY ENGINES 5-3
 

REFERENCES R-1
 

vi
 



LIST OF FIGURES
 

Figure 	 Page 

1 	 Domestic Mission Flight Profile xxii 

2 	 General Arrangement - Turbofan Aircraft 1-3
 

3 Selection of Baseline Turbofan Airplane Design 1-6
 

4 Turbofan DOC Versus t/c - 2000 nm Range 1-10
 

5 ASSET Crossplot - Turbofan DOC (2000 nm Range) 1-11
 

6 ASSET Crossplot - Turbofan DOC (0.75 Mach) 1-13
 

7 ASSET Crossplot - Turbofan DOC (STF 477 Engine) 1-17
 

8 	 Propfan Efficiency and Propulsion System Weight Trends
 
with Disk Loading 1-20
 

9 	 TOGW, DOC, and Block Fuel Versus Propeller
 
Disk Loading 1-21
 

10 General Arrangement - Baseline RECAT Propfan Aircraft, 1-23
 

11 Effect of Disk Loading on Propfan Efficiency 1-27
 

12 DOC Sensitivity to Propfan Efficiency 1-30
 

13 Block Fuel Sensitivity to Propfan Efficiency 1-31
 

14 Effect of Acoustic Weight on DOC Savings 1-32
 

15 Effect of Acoustic Weight on Block Fuel Savings 1-33­

16 Propfan DOC Versus t/c - 2000 nm Range 1-34
 

17 ASSET Crossplot - Propfan DOC (2000 nm Range) 1-35
 

18 Effect of Mach Number on Engine SFC 1-36
 

19 ASSET Crossplot - Propfan DOC (0.75 Mach) 1-37
 

20 ASSET Crossplot - Propfan DOC (PD370-22 Engine) 1-38
 

21 ASSET Crossplot - Propfan DOC (STS 487 Engine) 1-39
 

22 Double "Limp Wall" Concept for Acoustic Treatment
 
of Cabin Walls 3-3
 

23 Required Treatment Length with Relative Tip Clearance 3-9
 

24 Required Treatment Length with Relative Tip Clearance 3-10
 

vii ORIGINAL PAGE IS 
OF POOR QUALITY 



LIST OF FIGURES (Continued)
 

Figure Page
 

25 Example of 5 Step Acoustic Treatment for a Relative
 
Tip Clearance of Ay/D = 0.8 3-11
 

26 Acoustic Treatment Weight, 8 Blades, 800 fps, 3860 lb
 
Thrust 3-20
 

27 Acoustic Treatment Weight, 8 Blades, 800 fps, 3000,lb
 
Thrust 3-21
 

28 Acoustic Treatment Weight, 8 Blades, 700 fps, 3860 lb
 
Thrust 3-22
 

29 Acoustic Treatment Weight, 8 Blades, 700 fps, 3000 lb
 
Thrust 3-23
 

30 Acoustic Treatment Weight Required Versus Tip Speed 3-24
 

31 Propfan Efficiency Versus Tip Speed 3-24
 

32 Acoustic Treatment Weight, 10 Blades, 800 fps, 3860 lb 3-26
 
Thrust
 

33 Acoustic Treatment Weight, 10 Blades, 800 fps, 3000 lb 3-27
 
Thrust
 

34 External SPL Correction Versus Relative Tip Clearance 3-28
 

35 Blade Passage Frequency Versus Disk Power Loading 33-29
 

36 Propeller Diameter Versus Disk Power Loading 3-29
 
.37 External SPL at Blade Passage Frequency Versus Disk 3-30
 

Power Loading
 

38 Total Acoustic Treatment Area Required Versus Disk 3-31
 
Loading
 

39 Total Acoustic Treatment Length Versus Disk Loading 3-34
 

4o Segment Length/Diameter Versus Disk Loading 3-35
 

41 Segment Total Wall Weight Versus Disk Loading 3-36
 

42 Segment Area Versus Disk Loading 3-36
 

43 Acoustic Treatment Weight Increment Versus Blade 3-38
 
Passage Frequency
 

44 Modal Density for Acoustically Fast Modes 3-4o
 

45 Fuel and Cost Comparison for Baseline Aircraft of
 
Previous RECAT Study 4-2
 

vii.
 



LIST OF FIGURES (Continued) 

Figure Page 

46 Fuel and Cost Comparison for Revised Baseline 

Propfan Aircraft 4-3 

47 Effect of Design/Mission Characteristics on Aircraft 

Cruise SFC 4-5 

48 Effect of Design/Mission Characteristics on Aircraft 
Empty Weight 4-6 

49 Effect of Design/Mission Characteristics on Aircraft 
DOC (1500 nm) 4-8 

50 Effect of Design/Mission Characteristics on Aircraft 
DOC (475 nm) 4-9 

51 Effect of Design/Mission Characteristics on Block 
Fuel (1500 nm) 4-10 

52 Effect of Design/Mission Characteristics on Block 
Fuel (475 am) 4-1 

53 Fuel Savings of Propfan Versus 1985 IOC Turbofan 
Aircraft 4-13 

54 DOC Savings of Propfan Versus 1985 IOC Turbofan 
Aircraft 4-14 

ix
 



LIST OF TABLES
 

Table Page
 

1 Propfan Savings for Study Conditions xiv
 

2 Fuel Efficiency for Study Conditions xv
 

3 Effect or Study Conditions on Aircraft Performance xvi
 

4 Cost Factors xviii
 

5 Study Ground Rules xxvi
 

6 Study Matrix for Aircraft Configurations 1-1
 

7 Turbofan Baseline Aircraft Characteristics 1-4
 

8 Design and Performance Characteristics of
 
Turbofan Aircraft 1-7
 

9 Engine Features for JT1OD-2 Turbofan 1-8
 

10 Parametric Study Matrix - Turbofan (2000 rm Range) 1-9
 

11 STF 477 Engine Parameters 1-15
 

12 Engine Installation Losses 1-18
 

13 Baseline RECAT Propfan Aircraft Characteristics 1-24
 

14 Baseline RECAT Engine Characteristics 1-25
 

15 Design and Performance Characteristics - Propfan
 
1-29
Aircraft 


16 Parametric Study Matrix 1-41
 

17 Engine Data Comparison 1-44
 

18 Double Wall Mass Law - "Limp Wall" Theory 3-6
 

19 Wall Weight Constraints for 5 Step Double Wall
 
Treatment 3-13
 

20 Comparison of Previous RECAT Versus Current
 
Cabin Noise Treatment Methodology and Data 3-15
 

21 External SPL Results 3-16
 

22 Comparison of Harmonic Levels of External SPL Data 3-17
 

PREQIG PAGE BLANK NOT FILN 

xi
 



SUMMARY
 

This study is an extension of the previous RECAT propfan studies, 

documented by NASA Report CR 137926, which show savings in fuel and operating 

costs for a 1985 IOC propfan aircraft, at a 1500 nautical mile, Mach 0.8 

design mission and 600/gallon fuel cost, of 17.8 and 8.2 percent respectively 

when compared to an equal technology turbofan aircraft. The objective of 

this study was the examination of further potential savings in fuel and 

operating costs for the propfan aircraft by incorporating: 

* 	 New propfan data 

" Revised design mission profiles
 

" Additional engine performance characteristics
 

The results of this study are summarized in Tables 1, 2, and 3, and
 

show that:
 

o 	New propfan data does not alter the previous RECAT findings - impact 
of higher exterior noise levels is offset by measured directivity 
characteristics and higher propulsive efficiency. Fuel and DOC 
savings of the revised baseline propfan over the baseline turbofan 
is 17.6 and 7.8 percent respectively. 

" 	Reduced cruise speed decreases acoustic treatment requirements and
 
increases fuel efficiency of the propfan aircraft. Fuel and DOC 
savings of the propfan over the turbofan (both at Mach 0.75 cruise), 
is 	21.0 and 10.0 percent respectively.
 

" 	Incorporation of the Allison PD 370-22 turboshaft engine confirms the
 
previous RECAT results. Fuel and DOC savings of the propfan over the
 
baseline turbofan is 17.8 and 10.1 percent respectively.
 

* 	Incorporation of 1990 technology engines offer fuel and DOC savings 

of 11 and 7.5 percent respectively over the 1985 technology engines. 
Fuel and DOC savings of the 1990 propfan over the 1990 turbofan is 

17.1 and 7.8 percent respectively.
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TABLE 1. PROPFAN SAVINGS FOR STUDY CONDITIONS
 

SAVINGS OF PROPFAN OVER TURBOFAN--PERCENT
 

DESIGN MISSION (100% L.F.) 475 N.M. (58% L.P.)
 

BLOCK
STUDY CONDITION BLOCK FUEL DOG (6o FUEL DOC (600)
 

Previous RECAT Baseline 17.8 8.2 20.4 8.2
 
(1500 N.M., Mach o.8)
 

Revised Baseline - New Propfan Data 17.6 7.8 19.6 8.1
 
(1500 N.M., Mach 0.8)
 

Design.Range Increased 16.5 8.0 18.5 8.3
 
(2000 N.M., Mach 0.8)
 

Cruise Speed Reduced 21.0 10.0 22.9 10.2

(1500 N.M., Mach 0.75)
 

Higher Press. Ratio Engine - PD 370-22 17.8 10.1 19.8 10.3
 
(1500 N.M., Mach 0.80)
 

1990 Engine Technology 17.1 7.8 19.1 8.1
 
(1500 N.M., Mach 0.80) ­



00 

TABLE 2, 


STUDY CONDITION 


'PreviousRECAT Baseline 


Revised Baseline 


Design Range Increased 


Cruise Speed Reduced 


PD 370-22 


1990 Engine Technology 


FUEL EFFICIENCY FOR STUDY CONDITIONS
 

DESIGN RANGE - 100% L.F. 475 NM, -

TURBOFAN PROPFAN TURBOFAN 
(LB/ASM) (LB/ASM) (LB/ASM) 

.0956 (.0786 .1808 

.0956 .0788 .1808 

.0957 .0799 .2414 

.0932 .0736 .1764 

.0956 .0785 .1808 

.0847 .0702 .1603 

58% L.F.
 

PROPPAN
 
(LB/ASM
 

.1439
 

.1454
 

.1967
 

.1359
 

.1449
 

.1296
 



TABLE" 3, EFFECT OF STUDY CONDITIONS ON AIRCRAFT PERFORMANCE FOR DESIGN MISSION
 
(100% L.F.) AND 60/GALLON FUEL
 

PROPFAN SAVINGS - % TURBOFAN SAVINGS -

STUDY CONDITION - FUEL DOC FUEL DOC 

Mission Effects 

Increased Design Range N/A 1.1 N/A 0.9 

Decreased Cruise Speed 6.5 2.3 2.5 0 

Technology Effects
 

High Press. Ratio Engine 0.3 3.3 N/A N/A
 

1990 Technology Engines 10.8 7.4 11.4 7.5
 

Savings Are Relative to Baseline Design Airplanes as Follows:
 

1. Propfan - 1500 NM., 0.8 Mach, STS 476, Revised Propfan Data
 
2. Turbofan - 1500 NM., 0.8 Mach, JT1OD
 



The propfan and turbofan aircraft previously studied were restrained to
 

a 1985 I0C with a design range of 1500 nautical miles, Mach 0.8 cruise speed,
 

and a payload of 200 passengers. The engines employed were a rematched ver­

sion of the Pratt and Whitney STS 476 turboshaft using a Hamilton Standard
 

eight bladed propfan operating at 800 feet per second rotational tip speed
 

and a scaled version of the Pratt and Whitney JT10D turbofan. Advanced
 

technology incorporated into the airframe design included:
 

o 	Supercritical wing
 

* 	Active controls
 

* 	Advanced composite materials for cost effective secondary structure
 

Incorporation of the above resulted in a 4.5 percent reduction in aircraft
 

empty weight. Direct operating costs were calculated using 1973 dollars and
 

the cost factors shown in Table 4.
 

Maintenance factors, identical to those utilized for the previous RECAT
 

study, were as follows:
 

" 	Airframe Maintenance - Maintenance cost per cycle was reduced by
 
25 percent for the propfan due to decreased maintenance requirements
 
for wheels, brakes, and landing gear.
 

" 	Engine Maintenance - Propfan engine maintenance was adjusted using
 
factors previously provided by Pratt and Whitney for the turboshaft 
engine and by Hamilton Standard for the gearbox and propeller
 
(Reference NASA CR 137926, Appendix A and B).
 

Maintenance labor cost per flight hour was reduced by 0.017 man-hours
 

per engine flight hour from the baseline turbofan engine and then gearbox and
 

propeller maintenance was added. No change was made for engine labor cost
 

per cycle.
 

Turboshaft maintenance material cost per flight hour was adjusted using
 

thrust relationships with gearbox and propeller cost added. Turboshaft main­

tenance labor cost per cycle was adjusted using thrust relationships but with
 

no addition for gearbox and propeller.
 

Assessment of fuel savings and operating cost advantages was accomplished
 

during this study at the following conditions:
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TABLE 4. COST FACTORS
 

1973 DOLLARS 


Cost Breakdown
 

Flyaway Cost (Millions $) 

Airframe 

Propulsion 

Avionics 


D.O.C. Factors
 

* 	Flight Crew Cost ($/Hr.) 

* 	Maintenance Factors 

- Labor Rates ($/Hr.) 
- Maintenance Factors 

Airframe Labor/Cycle 

and/Hour 


Airframe Material/Cycle 
Airframe Material/Hour 


Engine Labor/Cycle 

Engine Labor/Hour 

Engine Material/Cycle 


and/Hour 

Burden (Factor) 


* 	Fuel ($/Lb.) 

* 	Oil ($/Lb.) 

* 	Insurance (%) 

* 	Depreciation
 

00 	 Years 

Spares (W)

Salvage (%) 

* Utilization (Hr./Yr.) 


PROPFAN 


14.15 

10.34 

3,31 

0.50 


223 


6.10 


0.57 

0.57 

0.47
0.75 


0.60 

0.78 

0.49 

0.65 

1.8 

0.088 

1.0 

1.0 


16 

15 

10 


2900 


TURBOFAN 


13.39 

10.09 

2.80 

0.50 


223 


6.10
 

0.60
 
0.60 

0.600.75
 

0.60
 
0.75 

0.Eo 
-0.75 

1.8
 
0.088 

1.0
 
1.0
 

16
 
15
 
10
 

2900
 

COMMENTS
 

Avg. unit cost based on
 
350 units
 

Dev. cost amortized over
 
250 units-15% profit
 

) 
1973 rates
 

To 	adjust ATA formulas
 

Propfan brakes and wheels
 

Includes engine, 	gearbox
 
and propeller for
 
propfan/turboprop
 

600/Gallon
 



* Resize the 1985 I0C propfan airplane for the new propfan data
 

" Resize the 1985 IOC propfan airplane for a 2000 nautical mile design 
range to allow wider usage of the airplane 

" Resize the 1985 IOC propfan airplane for a cruise speed of Mach 0.75 
to take advantage of additional fuel savings and potential reduced 
acoustic treatment requirements. 

* 	Incorporation of an alternate turboshaft engine (PD 370-22) with
 
component technology and overall pressure ratio comparable to the
 
JT10D-2 turbofan. 

" 	Incorporation of the Pratt and Whitney STS 487 turboshaft engine, 
representative of 1990 IOC technology and comparison with an
 
equivalent 1990 IOC technology turbofan - STF 477. 

The fuel conservation merits and the advantages in direct operating cost
 

of the propfan powered aircraft was evaluated by utilizing an equal tech­

nology turbofan powered aircraft and comparing the two at identical design
 

and mission conditions.
 

The new propfan data supplied by Hamilton Standard reflects the results
 

of their wind tunnel tests of an 8 bladed propfan model and includes their
 

predictions for a 10 bladed propfan. The effect on the new data was a slight
 

increase in propulsive efficiency accompanied by a slight increase in gener­

ated sound pressure level for the 8 bladed propfan at 800 fps tip speed.
 

Directivity of the generated noise was re-defined, allowing more efficient
 

utilization of the acoustic treatment material in the aircraft fuselage.
 

The near field noise generated by the propfan necessitates acoustic
 

treatment of the fuselage to maintain the cabin interior noise at a level con­

sistent with current wide body turbofan aircraft. For this study, the
 

Hamilton Standard supplied acoustic characteristics for the propfan (Appendix
 

A) 	 were utilized in conjunction with a "Double Limp Wall" concept to establish 

the transmission loss through the fuselage wall and the required mass treat­

ment needed to attain acceptable interior noise levels. A discussion of the 

acoustic analysis method utilized and the results obtained is included as
 

Section 3. The acoustic treatment concept utilized for this study is the
 

addition of "limp" (non structural) mass, such as lead vinyl, to the fuselage
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to obtain the required transmission loss. This concept results'in
 

approximately 5000 pounds of additional fuselage weight for the baseline
 

propfan airplane (additional weight over that required for the baseline­

turbofan airplane). Since experimental verification of this acoustic analy­

sis concept (double limp wall) has not been accomplished, uncertainties exist
 

concerning the magnitude of fuselage treatment required. To compensate for
 

this uncertainty, Lockheed has included the conservatism of assuming that
 

treatment of the entire fuselage diameter and cabin length will be required.
 

As subsequently discussed, additional acoustic assessment (both analytical
 

and experimental) is required.
 

This study shows that an advanced propfan powered aircraft, utilizing
 

the Hamilton Standard 8 bladed propfan, is a viable alternate to the turbofan
 

powered aircraft and offers significant savings in fuel and operating costs
 

without compromising passenger comfort. Additionally, the reduction in
 

cruise speed to 0.75 Mach, consistent with current operation of short and
 

medium range transports, offers further significant savings in fuel and
 

operating costs.
 

Assessment of the Hamilton Standard data for a 10 bladed propfan
 

indicates a further potential advantage in fuel and DOC savings since the
 

projected sound pressure levels are reduced. This reduction in SPL along
 

with an increase in blade passage frequency results in a significent
 

reduction in acoustic treatment weight.
 

To realize the potential fuel and operating cost savings available with
 

the advanced propfan powered aircraft, and to further enhance its viability,
 

the following actions must be implemented:
 

* 	 Further investigation of ten and twelve bladed propfans to assess 
their characteristics (performance, acoustics, mechanical design, 
and economics) and the impact on aircraft performance 

* 	 Investigate propfan aircraft acoustic treatment concepts and 
configurations to further assess noise transmission mechanism in
 
conjunction with aircraft fuselage wall structure/requirements
 

* 	 Investigate further advances in turboshaft engine technology for 
additional improvements in fuel consumption and engine economic 
characteristics 
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* 	Investigate alternate engine/aircraft installation configuration to
 
minimize the effect of propfan exterior noise transmission to the
 
fuselage interior
 

* 	 Investigate the maintenance characteristics and costs of thrust 
reverser mechanism and aircraft tires/brakes for the turbofan and
 
propfan aircraft to enhance the maintenance cost data, used for 
operating cost comparisons.
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INTRODUCTION
 

The energy restrictions imposed in late 1973 by the oil embargo and the
 

compelling need for energy conservation in all sectors of our national trans­

portation system led to a concerted effort by the air transportation industry
 

to conserve fuel. Resolvement of the oil embargo, though alleviating the
 

energy crisis of 1973, did not negate the need for fuel conservation. The
 

escalation in fuel prices which have resulted combined with those prices
 

projected for the future indicate a severe economic impact which must be off­

set by advancements in aircraft technology and operating procedures. Fore­

casts of the demand for air transportation shows a doubling or tripling by
 

the year 1990 in all our major metropolitan areas. These projections along
 

with the economic impact of estimated fuel prices for 1990 dictate a con­

certed effort to provide aircraft which are significantly more fuel efficient.
 

The previous RECAT study, part of the Aircraft Energy Efficient (ACEE)
 

program, investigated practical means of achieving reduced fuel consumption in
 

commercial air transportation in the following areas:
 

* Current aircraft types
 

* Revised operational procedures
 

" Modifications to current aircraft
 

" Derivatives of current aircraft
 

* New near-term fuel conservative aircraft.
 

Results of the previous RECAT study showed that significant potential savings
 

in fuel and operating costs are available by utilizing the propfan propulsion
 

system. The Hamilton Standard propfan is a multibladed, highly loaded,
 

variable pitch propeller utilized in conjunction with an advanced turboshaft
 

engine. Advanced aerodynamic characteristics of the propfan, which include
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thin blades with swept tips and advanced airfoils, produce a significantly
 

higher propulsive efficiency, than that attained with a standard propeller de­

sign, and operation at Mach numbers competitive with turbofan powered aircraft.
 

In the previous study, a turbofan and a propfan airplane were designed
 

and optimized for minimum fuel and operating cost for a 1500 nautical mile
 

range, Mach 0.80 cruise speed design mission. Comparisons of fuel usage
 

and operating costs for the design mission showed that the propfai aircraft
 

results in a savings in fuel and operating costs (at 60W/gal. fuel cost) of
 

17.8, percent and 8.2 percent respectively. The turbofan aircraft employed
 

a scaled version of the Pratt and Whitney JT10D turbofan engine. A Pratt
 

and Whitney STS 476 turboshaft engine with the Hamilton Standard 8 bladed
 

propfan, 800 feet per second tip speed, was utilized for the propfan
 

aircraft.
 

The study reported by this document examined the further potential for
 

fuel and operating cost savings of the advanced propfan aircraft for the
 

following conditions:
 

a New propfan data 

* Revised design mission profiles 

" Additional engine performance characteristics.
 

Propfan performance and acoustic characteristics, resulting from wind 

tunnel testing by Hamilton Standard of their propfan model, were supplied 

for assessment of the impact on aircraft performance. The new propfan data 

results in a slight increase in propulsive efficiency and in generated sound 

pressure level at the design point of 30,000 feet, Mach 0.8 with the 8 bladed, 

800 fps propfan. Also included was a redefinition of acoustic directivity. 

The previously used design range of 1500 nautical miles limited accep­

tance of the aircraft in airline fleet studies. A design range of 2000 nauti­

cal miles, equivalent to the B727-200, could provide a much wider potential ­

use of the propfan aircraft. Also, preliminary analysis indicates additional 

fuel savings may be available with the propfan propulsion by reducing the' 

cruise speed to a value consistent with current operating experience for short 

to medium range transports. Mach 0.75 was selected as the reduced cruise speed.
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The turbofan and turboshaft engines used equal component technology but
 

the loss of fan supercharging in the STS 476 turboshaft engine resulted in a
 

lower overall pressure ratio than the JT10D-2 turbofan. An alternate turbo­

shaft engine, Allison PD 370-22, with both component technology and overall
 

pressure ratio comparable to the JT10D-2, was incorporated. Studies of
 

unconventional engine cycles conducted under NASA-Lewis Research Center con­

tract have identified two comparable advanced technology engines which could
 

be available for a 1990 IOC. These engines, identified as the Pratt and
 

Whitney STF 477 turbofan and STS 487 turboshaft, were incorporated.
 

The mission profile used for all performance calculations is included
 

as Figure 1 and the study ground rules are presented in Table 5.
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HOLD SHUTDOWN 
9 MINUTES 3 MINUTES * 
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Figure 1. Domestic Mission Flight Profile
 



TABLE 5. STUDY GROUND RULES
 

Economic Parameters
 

* 1973 Dollars 

* 60/Gallon Fuel
 

* Depreciation Period = 16 Years With 10% Residual
 

* Spares = 15% of Flyaway Cost
 

* Insurance Rate = 1%
 

* Production Quantity = 250 Aircraft 

* Inflation = 5% 

* Discount Rate = 8% 

Configuration
 

* 200 Passengers
 

* Wide Body Fuselage
 

* Four Engines
 

Mission
 

* M 0.80 and M 0.75 Cruise
 

* 1500 n.mi. and 2000 n.mi. range
 

* Initial Cruise Altitude 30,000 feet
 

* Field Length 7000 feet
 

" Approach Speed 135 knots
 

Advanced Technologies
 

* Supercritical wing
 

" Active controls
 

* Advanced composites
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ABBREVIATIONS/SYNBOLS/CONVERSIONS 

Abbreviations 

ASM 	 Airplane Seat Nautical Mile
 

ASSET 	 Advanced System Synthesis and Evaluation Technique
 
(Lockheed Computer Program)
 

blk-hr 	 Block-hour
 

BPF 	 Blade passage frequency
 

DOC 	 Direct operating cost
 

EPNdB 	 Equivalent perceived noise level, decibels
 

EPR 	 Engine overall pressure ratio
 

FAR 	 Federal Air Regulation
 

ft 	 Feet
 

gal 	 Gallon
 

in. 	 Inch
 

kt 	 Knot
 

lb 	 Pound
 

LF Load factor
 

LFL Landing field length, ft.
 

MAC Mean Aerodynamic Chord
 

MEW Manufacturer's empty weight, lb.
 

min Minutes
 

n.mi. Nautical mile
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OEW Operating empty weight, lb 

Pax Passenger 

SFC Specific fuel consumption, lb fuel/hr/lb thrusl 

shp Shaft horsepower 

SL. Sea Level 

SLS Sea level static 

TOFL Takeoff field length, ft 

TOGW Takeoff gross weight, lb 

Symbols 

AR Aspect ratio, b2/S 

b Wing span, ft 

c Wing Chord, ft 

cb Propeller blade chord, ft 

CD Drag coefficient 

CL Lift coefficient 

d Distance between inner and outer fuselage walls 

D Drag force, lb 

D_ 
p Propeller diameter, ft 

dB Decibel 

FN Net thrust force, lb 

f frequency, Hz 

fnn natural frequency, Hz 

frRing frequency, Hz 

M Mach number 

MCR Cruise Mach Number 

MH Helical tip Mach number 
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Wing area, ft
2
 

S 


t/c Thickness ratio
 

T/W Thrust to weight ratio
 

W/S Wing loading, lb/ft
2
 

1Propeller efficiency
 

x Wing sweep angle, degrees
 

Conversions
 

To Convert From 


Fahrenheit 


foot 


2
foot


3
foot


foot/second 


gallon 


horsepower (550 ft-lb/sec) 


inch 


knot 


nautical mile 


pound (force) 


pound (mass) 


To 


Celsius 


meter 


2
meter


3
meter


meter/second 


meter 3 


watt 


meter 


meter/second 


meter 


Newton 


kilogram 


Multiply By
 

T (5/9)(T -32)
 
c F
 

0.3048
 

0.09290304
 

0.028316846592
 

0.3048
 

0.003785411784
 

745.69987
 

0.0254
 

0.5144444444
 

1852 ­

4.4482216152605
 

0.45359237
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SECTION 1
 

AIRCRAFT DESIGN EVALUATION
 

Table 6 provides a matrix of the design and mission characteristics
 

utilized to evaluate the aircraft investigated during this study. Evaluation
 

of the aircraft was accomplished for both a 1985 and 1990 IOC and included
 

the following:
 

o New Propfan data
 

" Revised mission profiles
 

* Additional engine performance characteristics
 

The propfan and turbofan aircraft designed during Task 7 of the previous
 

RECAT study were utilized as the baseline configurations for this study.
 

Each of the study conditions depicted in Table 6 resulted in re-sizing of
 

the baselines to obtain the optimum point design characteristics. The
 

criterion utilized to select optimum point design characteristics was mini­

mum direct operating cost, at 60/gallon fuel cost. This criterion is
 

identical to that utilized for the previous RECAT study.
 

1.1 TURBOFAN AIRCRAFT
 

1.1.1 Baseline
 

The baseline turbofan powered aircraft, CL1320-11 is shown in the general
 

arrangement drawing, Figure 2, and the general characteristics are shown in
 

Table 7.- As previously documented in NASA Report CR 137926, the airframe
 

technology levels include a supercritical wing, active controls, and advanced
 

composite secondary structure.
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Range nm) 


Cruise Speed (m) 


Pax 


Fuel Cost (0/gal) 


Cruise Alt (ft) 


Field Length (ft) 


App. Speed (kts) 


Powerplant 


TABLE 6. 


BASELINE 


P/F T/F 


1500 1500 


0.8 o.8 


200 200 


30/60 30/60 


30K 30K 


7K 7K 


135 135 


STS 476 JT1OD-2 


STUDY MATRIX FOR AIRCRAFT CONFIGURATIONS 

1985 IOC 

DECREASED ALTERNATE 
INCREASED RANGE CRUISE SPEED ENGINE 

P/F T/F P/F T/F P/F T/F 

2000 2000 1500 1500 1500 N/A 

0.8 0.8 0.75 0.75 0.8 


200 200 200 200 200 


30/60 30/60 30/60 30/60 30/60 


30K 30K 30K 30K 30K 


7K 7K 7K 7K 7K 


135 135 135 135 135 


STS 476 J.1OD-2 STS 476 JT1OD-2 Po370-22 


OFF DESIGN 

CRUISE SPEED 


P/F T/F 

1500 N/A 

0.75 

200 

30/60 

30K 

7K 

135 

STS 476 

1990 1OC 

1990 TECH 
ENGINE 

P/F T/F 

1500 1500 

0.8 0.8
 

200 200
 

30/60 30/60
 

30K 30K
 

7K 7K
 

135 135
 

STS 487 STF 477
 



CHARACTERISTICS WING 
BASIC TOTAL HORIZ VERT 

o . AREA (ft 2) 1955 2209 275 253 
ASPECT RATIO 10 - 5 1.6 

t SPAN (1t) 139.8 37 20.1 
ROOT CHORD (in.) 258 303/1 137 232 
TIP CHORD (in.) 77 41 70 
TAPER RATIO 0.3 - 0.3 0.3 
MAC (in., 184 97.5 165.6 
SWEEP (DEG) 25 25 30 
TIC ROOT (%) 14A 10 10 
TIC TIP m) i 

A ATBI. 117.5 

POWER PLANT: PRATT & WHITNEY JT1O0D-2 
SCALEDSLS THRUST 14 672 Ibea 

140 ft- 2 in. 

H 

LA-­

ln fn, nn , 

* FOUR TURBOFANS* 2DOPAX 
E~00of 

000000 a 0 0 oo000 
45 INT
4I 

* MACH 0.8 
* 1500 n~mi. 

n no 120 
155 ft -10 in. 

Figure 2. General Arrangement-Turbofan Baseline Aircraft 



TABLE 7. TURBOFAN BASELINE AIRCRAFT CHARACTERISTICS (CL 1320-11)
 

WEIGHTS 

Max. Takeoff Gross Wt (ib) 

Max. Landing Gross Wt (lb) 

Operational Empty Wt (ib) 

Max. Fuel Capacity (ib) 

217015 

205000 

138402 

50000 

POWER PLANTS 

Number and Type 

Bypass Ratio 

SLS Thrust/Engine (lb) 

1-JTlOD-2 (S

5.4 

14672 

caled) 

BODY 

Length (ft) 

Max. Diameter (in) 

Accommodations 

155.8 

235 -

200 (10/90) 8 Abreast 

WING AND EMPENNAGE 

WING HORIZONTAL TAIL VERTICAL TAIL 

Area (sq. ft) 

Aspect Ratio 

Span (ft) 

Sweep (deg) 

Mac (in) 

1955 

10 

139.8 

25 

184 

275 

5 

37 

25 

97.5 

253 

i.6 

20.1 

30 

165.6 



The selected design was a 4 engine, wide body aircraft with a design range
 

of 1500 nautical miles, 0.8 Mach cruise speed, and 200 passengers. Additional
 

mission constraints were an initial cruise altitude of at least 30,000 feet,
 

takeoff field length of 7000 feet maximum, and a maxiuum approach speed of
 

135 knots. The results of the parametric study used to size the baseline
 

turbofan aircraft are shown in Figure 3. Sizing of the aircraft for minimum
 

DOC, at 600/gallon fuel, resulted in a wing AR of 10 and a t/c of 12%.
 

Design and performance characteristics of the baseline turbofan air­

craft are included in Table 8.
 

The supercritical wing has an aspect ratio of 10 and a sweep (.25C)
 

of 25 degrees. Active controls, allowing smaller, lighter airframes,
 

are incorporated into the airframe design for the turbofan aircraft. A 3
 

percent reduction in wing weight is obtained by employing active ailerons to
 

provide maneuver and gust load alleviation. Relaxation of static stability
 

margins through use of an active horizontal tail results in a reduction in tail
 

size and a corresponding 30 percent reduction in.tail weight. The net
 

reduction in empty weight, due to incorporation of active controls, is 1.2
 

percent. Secondary structure employing advanced composite materials in­

cludes the fixed wing leading edge, fuel tank baffles, floor supports,
 

interior doors, and-dividers. The reduction in empty weight, attributed to
 

composite structure, is 3.3 percent. Incorporation of advance composites
 

and active controls results in a total empty weight reduction of 4.5
 

percent.
 

Included in the baseline configuration is the JT10D turbofan engine,
 

scaled to the aircraft performance and mission requirements. The features
 

of the engine, designated JT10D-2, are included in Table 9.
 

1.1.2 1985 Technology Assessment
 

The 1985 technology assessment of the turbofan powered aircraft consisted
 

of re-sizing the baseline configuration to assess the impact on mission fuel
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2.0 

®/N110 
100 

1.9 130 
0.40 

DOC* 
d/ASM 

1.8 / 

~MINDOC 

0.25 T/W = 0.28( f 0.25W/S = ill 

1.7 0 APPROACH SPEED = 135 KTS 
30 000 ft CRUISE ALTITUDE 

* 60d/gal fuel cost 

Figure 3. Selection of Baseline Turobfan Airplane Design 
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TABLE 8. DESIGN AND PERFORMANCE CHARACTERISTICS OF TURBOFAN AIRCRAFT
 

Engine Identification 


Cruise Speed 


Design Range (nrm) 


No. Passengers 


W/S (ib/ft2) 


T/W 

AR 

t/c (%) 

TOGW (ib) 


OEW (lb) 


Thrust/Engine (SLSIb) 


Wing Area (ft2 ) 


Wing Span (ft) 


DOC @30/gal 

1500 nm (CIASM) 

DOC @300/ga-
475 nm (C/ASM) 

Doc @604/gal 
1500 m C¢ASM) 

DOC @6 0/gal
475 nm CASM)
 

Block Fuel - 1500 am (Cb) 


Block Fuel - 475 m (ib) 


Fuel Efficiency (Ib/ASM) 


Cruise SFC (lb/hr/lb) 


Initial Cruise Alt. (ft) 


TOFL (ft) 


LFL (ft) 


Approach Speed (Kt) 


Propulsion Weight (ib) 


BASELINE CONFIG 

J1OD-2 

0.8M 

1500 


200 


ill 


0.28 


10 


12 


217015 


138402 


15191 


1955 


139.8 


1.381 


1.737 


1.809 


2.236 


28673 


9965 


0.0956 


o.656 
37000 


5577 


6154 


135 


13436 


1985 IOC 


INCREASED RANGE 


JTIOD-2 


0.8M 


2000 


200 


115 


0.28 


10 


12 


230386 


141697 


16127' 


2003 


ihi.5 


1.364 


1.715 


1.793 


2.216 


38276 


13303 


0.0957 


o.656 
37000 


5787 


6138 


135 


14379 


1991 IOC
 

REDUCED CRUISE 1990 ENGINE
 

JTIOD-2 STF 477
 

0.75M 0.8M
 

1500 2000
 

200 200
 

112 109.8
 

0.24 0.26
 

10 10
 

12 12
 

212365 206212
 

134648 132298
 

12582 13249
 

1896 1878
 

137.7 137.0
 

1.381 1.294
 

1.737 1.627
 

1.810 1.674
 

2.236 2.069
 

27962 25418
 

9717 8832
 

0.0932 0.0847
 

o.641 0.588 

31000 32000
 

6845 5930
 

6174 6123
 

135 135
 

11217 10015
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TABLE 9. ENGINE FEATURES FOR JT1OD-2 (SCALED) TURBOFAN
 

_e 	 Description 


" 	Scaling Factor 


• 	Installed Thrust (SLS - lb) 

* 	Overall Press. Ratio 

(30,000 ft, 0.8 mach)
 

* 	Max. Turbine Inlet 

Temp. (OF)
 

* 	Engine Length (in) 


" 	Engine Diameter (in) 

Engine Maintenance
 
Cost ($/Flt hr) 


-TwinSpool - Design fan press. ratio
 
of 	1.69- bypass press. ratio of 5.4.
 
Single stage fan, 12 stage compressor,
 
2 stage HP turbine, 4 stage LP
 
turbine
 

0.618
 

14672
 

28:1
 

2400
 

97.8
 

52.6
 

122.6 I
 

requirements and direct operating cost of changes in design range (2000 naut­

ical miles in lieu of 1500 nautical miles) and cruise speed (0.75 Mach in
 
fieu of 0.80). Re-sizing criteria for each turbofan design was again minimum
 

DOC at 600/gallon fuel cost.
 

An increase in the design range provides a potential wider usage of the
 

aircraft in current fleet operations equivalent to the B727-200 design range.
 

Likewise, the original cruise speed of Mach 0.80 may have unduly compromised
 

the propfan aircraft and preliminary analysis indicates that additional
 

fuel savings are available with a reduced cruise speed of Mach 0.75.
 

1.1.2.1 	Design Range Increase
 

Increasing the design range to 2000 nautical miles necessitated a re­

sizing of the aircraft utilizing the same type of parametric analysis conducted
 

-for the previous baseline design. For this parametric analysis, wing AR,
 

t/ci W/S and T/W were varied as shown in Table 10. A total of 144 designs were
 

accomplished using the ASSET, parametric analysis program. Plots of DOC
 

versus t/c for each A were drawn so that optimum values for minimum DOC could
 

be selected. Figure 4, depicting DOC at 600/gallon versus t/c for the range of
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TABLE 10. PARAMETRIC STUDY MATRIX TURBOFAN - JTIOD-2
 
0.8 MACH, 200 PAX/2000 NM
 

AR '/c W/S. T/W 

8 9 100 110 120 130 0.24 0.26 0.28 0.30 

8 12 100 110 120 130 0.26 0.28 0.30 0.32
 

8 14 100 110 120 130 0.27 0.29 0.31 0.33
 

10 9 100 100 120 130 0.22 0.26 0.30 0.34
 

10 12 100 110 120 130 0.24 0.28 0.32 0.36
 

10 14 100 110 120 130 0.24 0.28 0.32 0.36
 

12 9 100 110 120 130 0.22 0.26 0.30 0.34
 

12 12 100 110 120 130 0.24 0.28 0.32 0.36
 

12 14 100 110 120 130 0.24 0.28 0.32 0.36
 

-AR's 
 considered, shows the basis for selection. The selected values for AR and
 

t/c of 10 and 11.5% (rounded to 12) are consistent with the results of wing
 

optimization studies previously accomplished for the RECAT study for
 
600/gallon fuel cost. ASSET carpet plots are utilized to select W/S and
 

T/W values for minimum DOC and the mission constraints (i.e., field length,
 

approach speed, cruise altitude, etc.). Figure 5 is the ASSET carpet plot
 

for minimum DOC (600/gallon) for the turbofan aircraft at the 2000 nautical
 

mile design mission, and depicts the selection of the point design para­

meters. Point design parameters selected were AR = 10,: t/c = 12%,
 

W/S = 115, and T/W = 0.28. Design and performance characteristics of the
 

turbofan aircraft sized for the 0.8 Mach, 2000 nautical mile design mission
 

are shown in Table 8.
 

The effect of re-sizing the baseline turbofan aircraft for the 2000
 

nautical mile, Mach 0.8 mission is an increase in block fuel of approximately
 

26 percent which is consistent with the 25 percent increase in range and the
 

1-9 PAGE IS 
1-9 o ULr 



1.88 	 - DOC VERSUS THICKNESS-RATIO
 

FOR AR 8, 10, & 12
 

1.87 

1.86 

1.85 ­

1.84 ­

91.83 4 

_jt8 AR 
n ~ 8 

C1.81 

81.80 

1.79 

1.77 
TURBOFAN -JT100-2 
2000 NM. RANGE 

PAX1.76 -200 
0.8 MACH 

101 

1.7511 
9 10 11 12 13 14 

THICKNESS RATIO (tlcV-% 
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1.96 -

RECAT TURBOFAN - JT1OD-2 
MACH 0.80,200 PAXI2000 NM. ARlO, t/c 12 

100
0.24 

1.92 - 036 

W/S 

. 1.88 

7A 

0.32 

110 

APPROACHSPEED, 135 KNOTS 

o 1.84 

0.28 

1.80 . 

W/S = 115 
T/W = 0.28 

. 130 

1.76 L 

Figure 5. Asset Crossplot - Turbofan DOC (2000 NvM. Range) 
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small increases in fuel required for take-off and climb due to the increased
 

aircraft weight. Increasing the design range to 2000 nautical miles does
 

effect a small savings in DOC at 60¢/gallon fuel cost.
 

1.1.2.2 Cruise Speed Reduction
 

A cruise speed of Mac 0.75 was selected as being consistent with current
 

operator practice for short to medium range transports. Re-sizing of the
 

turbofan aircraft for this mission was accomplished to provide a basis for
 

comparison of the fuel savings available'with the propfan aircraft at Mach 0.75'
 

cruise speed.
 

The baseline turbofan was resized using the ASSET parametric analysis.
 

Wing AR and t/c were held constant at 10 and 12 respectively and W/S and T/W
 

were varied as follows:
 

W/S T/W
 

100 .22
 
110 .24
 
120 .26
 

130 .28
 

Figure 6, the ASSET carpet plot of minimum DOC at 600/gallon fuel cost for
 

the Mach 0.75, 200 PAX/1500 n.mi. turbofan aircraft,-depicts the selection of
 

optimum values for W/S and T/W utilized as the point design parameters.
 

Point design parameters selected were:
 

AR = 10 

tic = 12% 

WIs = 112
 

T/W = .24
 

Design and performance characteristics of the turbofan powered aircraft, sized
 

for Mach 0.75 cruise and 1500 nautical mile range, are included in Table 8.
 

The effect of re-sizing the turbofan aircraft for the 1500 nautical mile,
 

Mach 0.75 mission is a savings in block fuel of 2.5 percent with no measurable
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change in DOC at 600/gallon fuel cost. The small decrease in block fuel at
 

the 1500 nautical mile design range is attributed to an approximate 2 percent
 

improvement in average cruise SFC.
 

1.1.3 1990 Technology Assessment
 

Previous studies'accomplished under contract to NASA-Lewis Research
 

Center of unconventional engine cycles have identified two comparable
 

advanced technology engines for the turbofan and turboprop powered aircraft.
 

These engines, the Pratt and Whitney STF 477 turbofan and STS 487 turboshaft,
 

are representative of those which could be available for a 1990 IOC aircraft.
 

The 1990 technology assessment of the turbofan powered aircraft consisted
 

of re-sizing the baseline turbofan for incorporation of the STF 477 engine
 

at the 1500 nautical mile, Mach 0.8 mission and ascertaining the fuel savings
 

and operating cost advantages. Baseline airframe technology levels remained
 

unchanged. The re-sizing criteria was minimum DOC at 600/gallon fuel cost.
 

1.1.3.1 Advanced Technology Turbofan Engine
 

The Pratt and Whitney STF 477 turbofan engine was selected as representa­

tive of the best configuration for conserving fuel while presenting a practical
 

configuration, attractive economic factors, and reasonable availability (1990
 

IOC) for advanced/technology transport aircraft. The STF 477 engine is a
 

two spool design with an overall pressure ratio of 45:1 and maximum turbine
 

inlet temperature of 2600°F as compared to 28:1 and 24000 F for the JT1OD-2
 

-turbofan engine. A description of the engine parameters is shown in Table 11.
 

Performance data for the STF 477 engine, along with engine and nacelle
 

dimensions, engine weight, and appropriate scaling factor was provided by
 

Pratt and Whitney for adaptation to the RECAT turbofan aircraft design mission
 

requirements.
 

1.1.3.2 Aircraft Optimization
 

Optimization of the 1990 turbofan aircraf', was accomplished by re-sizing
 

the baseline to incorporate the STF 477 turbofan engine in lieu of the JT10D-2.
 

Utilization of the STF 477 engine necessitated alterations of the ASSET sub­

routines for configuration, weight, drag, and engine performance consistent
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TABLE 11. STF 477 ENGINE PARAMETERS
 

PARAMETRIC DESCRIPTION
 

Base Size, Thrust, N(lbf)* 

Scaling Range, Thrust, N(lbf)* 

Nominal Cruise Design Cycle at Mn 0.83 and 10,058m(33,000 ft)
 

Fan Pressure Ratio 

Bypass Ratio 

Overall Pressure Ratio 

Maximum Combustor Exit Temperature, OC(%F) 

Inlet Flow (Corrected), kg/sec(lbm/sec) 


Acoustics (Engine Plus Nacelle) 


PERFORMANCE (Representative Conditions)
 

Condition Altitude Mach No. 
km (ft) 

Take-off* 0 0 0.147 
Max. Climb** 9.14 (30000) 0.8 
Max. Cruise** 9.14 (30000) 0.8 

WEIGHTS AND DIMENSIONS
 

Base Engine Weight, kg (lbm)

Dimensions
 

Maximum Diameter, m(in.) 

Overall Length, m(in.) 


Nozzle Throat Areas
 
2
Duct, m (in.2 )


2
Primary, m (in,2 ) 

Engine Maintenance Cost ($/Flt-Hr) 


Net Thrust 


118100(26550)
 
71200-178000(16000-40000)
 

1.70:1
 
8.0 a1
 
45:1
 
1427 (2600)
 
472(1040)
 
FAR 36 minus 10 EPNdB
 

TSFC
 
N 

93635 
32912 
29910 

(lbf) 

(21050) 
(7399) 
(6724) 

kg/hr/N 

0.0358 
0.0588 
0.0586 

(lbm/hr/lbf) 

(0.351) 
(0.577) 
(0.575) 

1787(3940) 

1.92(75.6) 
2.88(113.2) 

1.150(1783) 
0,303(470) 

118.28 
*Sea level static take-off, 28.9%C (840F) ambient temperature; U.S. Standard Atmosphere, 1962;
 

100% ram recovery; no customer bleed or power extraction; representative nozzle thrust
 
coefficient.
 

**Estimated performance calculated on basis of: U.S. Standard Atmosphere, 1962; 100 percent ram
 

recovery; 1.04 kg/sec (2.3 lbm/sec) mid-compressor bleed; 1.01 kg/sec(2.4 ibm/sec) duct bleed;
 
112 kw (150 hp) extraction; standard day; representative nozzle thrust coefficients.
 



with the performance and dimensional data supplied for the engine. For the
 

parametric analysis, Wing AR and t/c were maintained at 10 and 12 % respectively
 

and values of W/S and T/W were varied as follows:
 

W/S = 100, 110, 120, and 130
 

T/W = .24, .26, .28, and .30
 

Figure 7, the ASSET carpet plot, depicts the selection of W/S and T/W values
 

to be utilized for the turbofan aircraft point design. Point design parameters
 

selected are AR = 10, t/c = 12, W/S = 109.8, and T/W = .26. The performance
 

and design characteristics of the turbofan aircraft with the STF 477 engine at
 

1500 nautical mile, Mach 0.8 mission, are shown in Table 8.
 

Utilization of the STF 477 turbofan engine results in a 1990 IOC turbofan
 

aircraft at the 1500 nautical mile design mission with a block fuel savings
 

of 11.4 percent and a DOC savings .of 7.5 percent, at 60C/gallon fuel cost,
 

when compared to the 1985 I0C baseline turbofan aircraft. These savings are
 

the result of an improvement in engine SFC characteristics, at cruise, of
 

approximately 10 percent and a reduction in propulsion system installed
 

weight of approximately 25 percent.
 

1.2 PROPFAN AIRCRAFT
 

The propfan powered aircraft designed during Task 7 of the previous RECAT
 

study was utilized as the baseline configuration for this study. Re-sizing of the
 

the baseline configuration was accomplished for each of the study conditions
 

to obtain the best point design consistent with minimum DOC at the 600/gallon
 

fuel cost.
 

Installed propfan engine performance is based on engine manufacturers
 

uninstalled engine data corrected for 100 hp per engine power extraction,
 

100 percent engine air inlet total pressure recovery, zero bleed flow rate,
 

and 99 percent gearbox efficiency as noted in Table 12. The 200 percent
 

recovery is based on the assumption that inlet duct losses are equal and
 

opposite to the pressure rise across the propfan. Cabin pressurization and
 

environmental control are provided by an engine driven compressor to avoid
 

the potentially large losses associated with bleeding the turboshaft engines.
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TABLE 12. ENGINE INSTALLATION LOSSES
 

Cruise M = 0.80 

Propfan Turbofan
 

Inlet recovery, PT /P0 1.00 0.998
 

IP compressor bleed, % 0 2.0
 

Horespower extraction 100 50
 

Fan Duct loss % APT/PT 0 


Gear Efficiency 0.99 -


Core cowl drag %AnFN/FN - 1.6
 

Notes (1) 	Exhaust nozzle thrust and airflow coefficients included
 
in uninstalled engine performance
 

(2) Nacelle drag included in aircraft drag
 



All propfan engine performance is based on Hamilton Standard projected
 

levels of efficiency for a propfan design having eight blades, each with
 

0.12 integrated lift coefficient and 200 activity factor, and operating at
 

800 fps tip speed. Initial point designs for the prcpfan aircraft were
 

computed using the propfan performance and acoustic characteristics and
 

installation considerations incorporated in the previous RECAT. Subsequent
 

data, supplied by Hamilton Standard as a result of their continuing propfan
 

testing, indicates an increase in the propfan induced external sound pressure
 

levels as well as a slight improvement in performance. This data necessitated
 

a re-sizing of the propfan aircraft and generation of new point designs con­

sistent with new performance values and the increase in required acoustic
 

treatment.
 

Unlike the turbofan engine, the output of the turboshaft engine is shaft
 

power which is transmitted through a gearbox and converted to useful thrust
 

by the propfan. As discussed in Report No. CR137926 for the previous RECAT
 

study, selection of the propfan disk loading (diameter), geometry ('blade type
 

and number), and tip speed is dependent on a tradeoff between net efficiency
 

(fuel consumption) and installation weight (including acoustic treatment
 

weight) and their impact on aircraft performance (DOC). For example, Figure 8
 

shows that decreased cruise point design disk loading (increased prop-diameter)
 

results in improved propfan efficiency. While this results in lower pro­

pulsion system specific fuel consumption, the increased installation weight
 

associated with the larger propfan diameter and increased near field sound
 

pressure levels may potentially counteract the benefits of higher fuel
 

efficiency. The increased wight results in a heavier aircraft, larger pro­

pulsion system, and higher fuel flow rates. Figure 8 indicates that while
 

peak efficiency for the baseline STS h76 powered aircraft is achieved at a
 
disk loading of 25 Shp/D2 , the optimum value for minimization of DOC and
 

TOGW is 37.1 Shp/D2 , as shown in Figure 9.
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Similar propfan sizing studies for the other aircraft resulted in the
 

following design disk loading and propfan diameter:
 

Design Design Prop
 
Mach No. Range Engine Disk Loading Diameter
 

0.8 1500 STS476 37.1 12.6
 
0.75 1500 STS476 35.9 11.4
 

0.8 2000 STS476 37.1 12.6
 
0.8 1500 PD370-22 42 11.5
 
0.8 1500 STS487 46 11.0
 

Assessment of the fuel conservation and operating cost advantages of
 

the propfan aircraft was accomplished for both a 1985 and 1990 IOC configura­

tion. The 1985 propfan baseline was resized to -reflect updated propfan and
 

acoustic characteristics. Subsequent assessment of the propfan consisted of
 

re-sizing to 1) increase the design range to 2000 nautical miles to provide
 

potential as a replacement for the B727-200 aircraft; 2) decrease the cruise
 

speed to Mach 0.75 to obtain added fuel savings for the turboshaft engine
 

at slower speed; and 3) incorporate an alternate turboshaft engine which has
 

an overall pressure ratio and component technology comparable to the JT10D-2
 

turbofan. Assessment of a 1990 propfan configuration consisted of re-sizing
 

the 1985 baseline to incorporate an advanced turboshaft engine, representative
 

of the engine technology expected to be available for a 1990 IOC. All final
 

aircraft point designs generated during this study incorporate the Hamilton
 

Standard updated propfan data, presented in Appendix A.
 

1.2.1 RECAT Baseline
 

The baseline propfan aircraft of the previous RECAT study, is shown in
 

the general arrangement drawing, Figure 10, and the general characteristics
 

are shown in Table 13. The airframe technology levels are identical to those
 

utilized for the turbofan baseline. The propulsion system is a rematched
 

version of the Pratt and Whitney STS 476 turboshaft engine using the Hamilton
 

Standard 8 bladed propfan operating at a tip speed of 800 feet per second.
 

Features of the rematched STS 476 turboshaft engine are shown in Table 14.
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CHARACTERISTICS WING 
BASIC ITOTAL HORIZ VERT 

AREA (fm2 )  1995 2250 284 261 

ASPECT RATIO 10 - 5 1.6 
SPAN (ft) 141.26 37.7 20.4 
ROOT CHORD (in.) 261 306/& 139 236 
TIP CHORD (i 78 42 71 
TAPER RATIO 0.3' 0.3 0.3 
MAC fin.) 186 99.2 168 
SWEEP (deg) 25 - 25 32 

TIC ROOT (%) 14& 10 10 
TIC TIP M) 11 8 8 

A AT BL 117.5 

POWER PLANT: PRATT & WHITNEY STS 476 
REMATCH TURBOSHAFT ENGINE 
SLS THRUST 15135 Ib(8863 SHP) EACH 

C 
12.6 ft HAMILTON 
STANDARD PROPELLER 

I 
<! 

0I 

141 ft 7 in. 

* 4PROPFANS, 
* 200 PAX 

01600 n.ni. 
MAC 

flocoMoro 

00.801 

0nnm's-.fooof 

C) r) 120 

46 ft 
.4 in. 

155 ft- 10 in. 

L3J 
 Figure 10. General Arrangement-Baseline RECAT Propfan Aircraft­



TABLE 13. BASELINE RECAT PROPFAN 

Weights 

Maximum takeoff gross weight (ib) 
Maximum landing gross weight (lb) 
Operational empty weight (lb) 
Maximum fuel capacity (lb) 

217 466 
205 000 
-146 417 
50 000 

Powerplants 

Number & Type 
Propeller 
SLS thrust/engine (lb) 

4 STS 476 rematch 
12.6 ft/8 bladed 
14135 (8863 shp) 

Body 

H 
ro 

Length (ft) 
Maximum diameter (in.) 

Accommodations (No. Pax) 

155.8 
235 

200 (10/90%) 
8 abreast 

Wing and Empenage 

Wing Horizontal Tail Vertical Tail 

Area (sq ft) 
Aspect ratio 
Span (ft) 
Sweep (deg) 
MAC (in.) 

1995 
10 
141.3 
25 

186 

284 
5 

37.7 
25 
97.5 

261 
1.6 

20.4 
32 

165.6 



TABLE 14. BASELINE BECAT ENGINE CHARACTERISTICS
 

P&W STS 476 Rematch
 
(Scaled)
 

* 	Description Turboshaft Engine of
 
Comparable Technology
 
to JTlOD-2. New
 
Compressor and LP
 
Turbine. Engine
 
Rescheduled to Meet
 
LCC Requirements
 

* 	Scaling Factor 0.964
 

* 	Installed Rating
 
Thrust (SLS, STD.) - lb 14 135
 
shp (SLS, STD.) - hp 8 863
 

\.n Max shp (250 KEAS, SL, + 	180F) - hp l0 488 

* 	Overall Pressure Ratio 20:1
 
36 000 ft M = 0.80 Cruise
 

* 	Max Combustor Exit Temp 'F 2400
 

* 	Engine Length - in. 84.3
 

* 	Engine Diameter - in. 21.8
 



The baseline RECAT propfan airplane was optimized for minimum direct
 

operating cost, at 600/gallon fuel cost, for a design range of 1500 nautical
 

miles, 0.8 Mach cruise speed, and 200 passengers. Additional constraints
 

imposed were an initial cruise altitude of 30,000 feet minimum, takeoff field
 

length of 7,000 feet maximum, and a maximum approach speed of 135 knots.
 

The propfan aircraft, developed for the previous RECAT study, utilized
 

performance, weight, and acoustic data for the 8 bladed propfan at 800 fps.
 

tip speed as supplied by Hamilton Standard, per Report SP 02A76 and SP 05A76.
 

Propeller disk loading and diameter, along with the magnitude of acoustic
 

treatment in the aircraft fuselage, was determined using this data as described
 

in Section 7.2 of Report No. CR 137926. A propeller disk loading of 37.1
 

Shp/D2 was selected by considering the tradeoffs between propeller efficiency
 

and installation weights and the impact on aircraft performance. At the
 

selected'disk loading for the turboprop baseline, 3089 lbs. of acoustic treat­

ment in the aircraft fuselage is required to attain interior (cabin) noise
 

levels of 90 dB or less.
 

1.2.1.1 -Revised Baseline
 

As part of this study effort, the propfan performance and acoustic
 

characteristics were updated by Hamilton Standard, as shown in Appendix A, to
 

incorporate their latest wind tunnel test results. Data supplied includes
 

both an 8 bladed and 10 bladed propfan, each operating at tip speeds of 600,
 

700, and 800 fps, at Mach numbers of 0.7, 0.75, and 0.8. Figure 11 shows
 

a comparison of revised to original efficiencies at 0.8 Mach number. A
 

detailed discussion of the propfan acoustic characteristics and the effect
 

on fuselage treatment methods and results is included in Section 3 of this
 

report.
 
2
Propeller disk loading was maintained at 37.1 Shp/D for the revised
 

baseline propfan aircraft. Because of the increased propfan SPL (Section 3),
 

the weight of acoustic treatment for the revised baseline increases by
 

approximately 2130 lbs from 3089 (previous RECAT) to 5220 lbs. The acoustic
 

treatment weight of 5220 lbs. is obtained by interpolating between the values
 

(at 37.1 Shp/D 2 ) depicted in Figures 25 and 26, Section 3, for the point
 

design cruise thrust of approximately 3200 lbs required for the revised base­

line propfan airplane.
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The design and performance characteristics for the revised propfan
 

baseline are shown in Table 15. The effect of the revised propfan data on
 

the baseline configuration is an increase in block fuel -of269 lbs and an
 

increase in DOC at 60C/gallon fuel of 0.01¢/ASM for the Mach 0.8, 1500
 

nautical mile design Mission.
 

The sensitivities of changes in propfan efficiency and acoustic material
 

weight on the baseline aircraft fuel and DOC savings are shown in Figures 12
 

through 15. These data indicate that a 1 percent decrease in propfan effi­

ciency affects DOC (0.5%) the same as a 1000 lb. increase in acoustic treat­

ment material. At the baseline disk loading of 37.1 Shp/D 2 , net efficiency
 

increases by approximately 1.7 percent while installed weight increases by
 

approximately 2130 lbs due to the increased acoustic treatment required.
 

1.2.2 1985 Technology Assessment
 

For the propfan powered aircraft, the 1985 technology assessment con­

sisted of re-sizing the baseline configuration, based on minimum direct
 

operating cost,''at 600/gallon fuel cost, for a design range of 2000 nautical
 

miles in lieu of the 1500 nautical mile range; a cruise speed of 0.75 Mach
 
in lieu of 0.80;'and incorporation of an alternate turboshaft engine with an
 

overall pressure ratio comparable to the JTl0D-2 turbofan. In addition to
 

re-sizing the baseline configuration, as stated above, an assessment of the
 

performance impact was made when the cruise speed of the baseline configuration
 

was reduced to Mach 0.75 with no re-sizing.
 

As previously discussed in Section 1.2 of this report, the change in
 

design range was accomplished to provide a potentially wider use of the prop­

fan airplane in current fleet operations and the change in cruise speed was
 

accomplished to obtain the potential additional fuel savings available with
 

the turboshaft engine.
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TABLE 15. DESIGN AND PERFORMANCE CHARACTERISTICS OF PBOPFAN AIRCRAFT
 

Engine Identification 

Cruise Speed 

Design Range (NM.) 

No. Passengers 

W/S (Cb/ft2 ) 

T/W 

AR 

E/C (%) 

TOWG (lb) 

OEW (lb) 

Thrust/Ang (SLS, ib) 

Wing Area (ft2 ) 

Wing Span (ft) 

DOC @300/Ga1-l500NM.(0/ASM) 

DOC @300/Gal-h75NM.(0/ASM) 

DOC @60¢/Ga1-1500NM.(¢/ASM) 

DOC @60€/Gal-475NM.(/ASM) 

Block Fuel - 150ONM. (lb) 

Block Fuel - 475NM. (ib) 

Fuel Efficiency (Ib/ASM) 

Cruise SFC (lb/br/lb) 

Initial Cruise Alt (ft) 

TOFL (ft) 

LFL (ft) 

Approach Speed (Kt) 


Q Propulsion Weight (lb) 


Revised Baseline 


STS 476 

0.8M 

1500 

200 

109 


0.26 

10 

12 


220572 

i49124 

13785 

2042 


142.9 

1.314 

1.641 

1.667 

2.055 

23625 

8012 


0.0788 

0.528 

31000 

4650 

6056 

135 


16471 


1985 IOC 


Design Range Cruise Opt. 


STS 476 STS 476 

0.8M 0.75M 

2000 1500 

200 200 

112 108 


0.25 0.22 

10 10 

12 12 


231282 211264 

151223 142711 

14455 11613 

2068 1992 


144.5 141.2 

1.294 1.283 

1.584 1.603 

1.649 1.629 

2.033 2.008 

31970 22086 

10840 7487 


0.0799 0.0736 

0.531 0.504 

30000 30000 

5009 5415 

6018 6033 

135 135 


16652 13332 


Alter. Engine 


PD 370-22 

0.8M 

1500 

200 

108 


0.22 

10 

12 


211034 

14!o8a 

11607 

1959 


14o.4 

1.282 

1.602 

1.627 

2.006 

23559 

7987 


0.0785 

0.536 

30000 

4555 

5994 

135 


11675 


1990 IOC
 

1990 Engine
 

STS 487
 
0.8M
 
1500
 
200
 

107.5
 
0.18
 
10
 
12
 

205749
 
138513
 

9257
 
1932
 

139.0
 
1.228
 
1.503
 
1.543
 
1.901
 
21072
 
7143
 

0.0702
 
0.489
 
30000
 
4645
 
6024
 
135
 

10882
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1.2.2.1 Design Range Increase
 

Assessment of the propfan aircraft at an increased design range of
 

2000 nautical miles resulted in a resizing of the aircraft using the ASSET
 

parametric analysis. For this parametric analysis, wing AR, t/c, W/S, and
 

T/W were varied as shown in Table 16. From these design combinations optimum
 

values of AR and t/c for minimum DOC were selected. Figure 16, depicting DOC
 

(60/gal.) versus t/c for the range of AR's considered, shows the basis for
 

selection of an AR of 10 and t/c of 12%. ASSET carpet plots were then uti­

lized to select the optimum values of W/S and T/W for minimum DOC consistent
 

with the mission constraints (field length, approach speed, and cruise
 

altitude). Figure 17, is the ASSET carpet plot for minimum DOC (
600/gal.)
 

for the propfan aircraft at the 2000 nautical mile mission, and depicts
 

selection of the point design parameters. Point design parameters selected
 

were AR = 10, t/c = 12%, W/S = 112, and T/W = .25. Design and performance
 

characteristics for the Mach 0.8, 2000 nautical mile mission are shown in
 

Table 15.
 

The effect of resizing the propfan aircraft for a 2000 nautical mile,
 

Mach 0.8 mission is an increase in block fuel of approximately 26 percent.
 

This increase in block fuel results from a 25 percent increase in range and a
 

slight decrease in fuel efficiency as follows:
 

Fuel efficiency @ 1500 NM. = 0.0788 lb/ASM
 

Fuel efficiency @ 2000 NM. = 0.0799 lb/ASM
 

Decrease in fuel efficiency for the 2000 NM. range is due to the increase in
 

thrust required for the heavier airplane and the requirement for 225 lbs. of
 

additional acoustic treatment weight for this higher cruise thrust. Additional
 

DOC savings of approximately 1 percent is realized as a result of the increased
 

range.
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TABLE 6. PARAMETRIC STUDY MATRIX 

PROPFAN - STS 476, 0.8 MACH, 2000 N.M. RANGE 

AR t/c W/S T/W 

8 9 100 110 120 130 .22 .26 .30 .34 

8 12 .2~4 .28 .32 .36 

8 14 .24 .28 .32 .36 

10 9 .24 .28 .32 .36 

10 12 .24 .28 .32 .36 

10 14 .24 .28 .32 .36 

12 9 .22 .26 .30 .34 

12 12 .24 .28 .32 .36 

12 14 100 10 120 130 .24 .28 .32 .36 

ORGINAL PAGE ISOF POOR QUX.j 
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1.2.2.2 Cruise Speed Reduction
 

As previously stated, reduction of the cruise speed for the propfan air­

craft has the potential of additional fuel savings due to the improvement in
 

the fuel consumption characteristics of the turboshaft engine at the reduced
 

thrust level. Figure 18 depicts the trend of fuel consumption versus Mach
 

number for the turboshaft engine. Mach 0.75 was selected as the reduced cruise
 
.speed since this value is consistent with current practice on short to medium
 

range transports. Reducing the cruise speed to Mach 0.75 effects additional
 

fuel savings (additional to engine fuel consumption characteristics) since the
 

propfan noise and the required thrust are both reduced which in turn allow a
 

reduction in acoustic treatment weight.
 

Resizing of the baseline propfan aircraft was completed with minimum
 

DOC at 600/gallon fuel cost as the criteria for optimization. Values of W/S
 

and T/W were varied as follows for the parametric analysis:
 

W/S = 100, 110, 120, and 130
 

T/W = .22, .24, .26, and .28
 

Figure 19 depicts the selection of optimum W/S and T/W values consistent with
 

minimum DOC at 60/gallon fuel cost for the turboprop point design at Mach
 

0.75 cruise. Design and performance characteristics of the propfan aircraft,
 

for the 1500 nautical mile, Mach 0.75 design mission, are shown in Table 15.
 

The effect of reducing the design cruise speed to Mach 0.75 is a savings
 

in block fuel and DOC, at 600/gallon fuel cost, of 21.1 percent and 10 percent,
 

respectively, when compared to the baseline (1500 nautical mile, Mach 0.8)
 

turbofan aircraft.
 

-1.2.2.3 Alternate Turboshaft Engine
 

Subsequent to the previous RECAT study, an alternate turboshaft engine,
 

Detroit Allison Diesel PD 370-22, was identified which offers an overall
 

pressure ratio and component technology comparable to the JT10D-2 turbofan.
 

Utilization of this engine in the propfan aircraft offers the potential of
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additional fuel savings. 
The PD 370-22 engine has an overall pressure ratio
 

of 25:1 and maximum turbine inlet temperature of 2500°F as compared to 28:1
 
and 2400°F for the JTlOD-2 turbofan. A description of the PD 370-22 engine
 

parameters is shown in Table 17.
 

Installed performance data, along with engine and nacelle dimensions,
 

engine weight, and appropriate scaling factor, was provided by Allison for
 

adaptation to the RECAT design mission. The Hamilton Standard 8 bladed prop
 

fan, operating at 800 fps tip speed, was utilized. Installation guidelines
 

previously supplied by Hamilton Standard were applied, where appropriate. A
 

propfan disk loading of 42 Shp/D 2 was selected from the propeller sizing study
 

which resulted in a requirement of 4720 lbs of acoustic treatment in the air­

craft fuselage.
 

The propfan baseline aircraft (revised) was resized to incorporate the
 

PD 370-22 turboshaft engine for a 1500 nautical mile, Mach 0.8 design mission.
 

Resizing of the aircraft was accomplished using the ASSET parametric analysis
 

with the following variations in W/S and T/W:
 

W/S T/W 

100 0.20
 
110 0.22
 
120 0.24
 
130 0.26
 

The ASSET carpet plot, shown as Figure 20, depicts the selection of values for
 

W/S and T/W, based on minimum DOC at 600/gal. fuel cost, for the point design.
 

Point design parameters selected were AR = 10, t/c = 12%, W/S = 108, and
 

T/W = 0.22. Design and performance characteristics of the aircraft are
 

included in Table 15.
 

The effect of incorporating the PD 370-22 engine for the 1500 nautical
 

mile, Mach 0.8 design mission is a savings in mission fuel of 1.1 percent
 

and a savings in DOC, at 60/gal. fuel cost, of 2.0 percent due to a decrease
 

in installed propulsion system weight relative to the revised STS 476 baseline.
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* CYCLE 


* MANUFACTURER 

* IOC (yr) 

* 	 RATING (SLS) 

THRUST (lb) 

HORSEPOWER (hp) 

* TIT (OF) 


* PRESSURE RATIO 


* BYPASS RATIO 


* WEIGHT (ib) A 
* UNINSTALLED PERFORMANCE 

M = 0.8 35000 FT NRP
 

THRUST (LB) 


SFC (LB/HR/LB) 


TABLE 17. ENGINE DATA COMPARISON 

JT10D-2 STF 477 STS 476 PD 370-22 STS 487, 

A 'A 
TURBOFAN TURBOFAN TURBOSHAFT TURBOSHAFT TURBOSHAFT 

P&W ,P&W P&W DDAD P&W 

1981/82 1990+ 1983 1985 1990+' 

24500 26550 NA NA NA 

NA NA 9294 12328 20624 

2470 2600 2400 2500 2800 

27.3 45 20 25 4o. 

5.6 8.0 NA NA NA 

48oo 3940 2180 1566 2134 

A 

5683 6530 3363 3832 548o 

0.638 0.542 .515 0.509 0.444 

NOTES: A Engines for initial RECAT study, NASA CR-137926
 

A Turboshaft engine weights for gas generator only (does not include gearbox or
 
prop weights)
 

A Performance calculation assumes the following:
 

'Turbofan: uninstalled with 18400 BTU/LB fuel heating value
 

Turboshaft: uninstalled with 82% propeller efficiency, 99% gearbox efficiency
 
and 18400 BTU/LB fuel heating value.
 



1.2.2.4 Off Design Cruise Speed Effects
 

Included as a part of this study, an assessment of the baseline propfan
 

aircraft design, flying at cruise speed of Mach 0.75, was accomplished. Re­

sizing for this mission condition was not accomplished so that the effect of
 

operation of the aircraft, sized for a specific design mission and operated at
 

an off-design condition (consistent with current operator experience) could
 

be assessed. The propfan aircraft baseline configuration, CL 1320-15, was
 

subjected to the same mission profile utilized throughout the study with the
 

cruise speed reduced from Mach 0.8 to Mach 0.75. Take-off gross weight of the
 

aircraft was maintained at 217,466 pounds (identical to the baseline) and the
 

effect of reduced cruise speed on aircraft performince and economics was
 

determined.
 

For the design mission range of 1500 nautical miles, flying the propfan
 

aircraft at a cruise speed of Mach 0.75 effects a savings in mission fuel of
 

approximately 2.4 percent and a savings in DOC, at 600/gal. fuel cost, of
 

approximately 1.1 percent relative to the same aircraft at Mach 0.8. For
 

the same mission fuel as the baseline aircraft, the design range can be
 

increased to approximately 1600 nautical miles (approximately 6.2 percent
 

increase).
 

1.2.3 1990 Technology Assessment
 

The 1990 technology assessment consisted of incorporating an advanced
 

technology turboshaft engine, Pratt and Whitney STS 487, representative of
 

that which could be available for a 1990 IOC aircraft. The airframe technology
 

levels (supercritical wing, advanced composites, and active controls) utilized
 

for the 1985 IOC aircraft were retained as was the 8 bladed, 800 fps tip speed
 

propfan.
 

Resizing of the propfan powered aircraft was accomplished during this
 

assessment for the 1500 nautical mile, Mach 0.8 design mission with the
 

STS 487 turboshaft engine. Resizing criteria was minimum DOC at 60/gal.
 

fuel cost.
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1.2.3.1 Advanced Technology Turboshaft Engine
 

The Pratt and Whitney STS 487 turboshaft engine resulted from a Pratt and 

Whitney -contract -with-NASA-Lew-is Research -Center to study unconventional engines 

designed for low energy consumption for medium and long range transport appli­

cation.' The STS 487 engine employs the same advanced technology features as
 

the STF 477 turbofan. A description of the engine design parameters is included
 

,in Table 17.
 

Performance data for the STS 487 engine, along with engine and nacelle
 

dimensions, engine weight, and appropriate scaling factor was provided by
 

Pratt and Whitney for adaptation to the RECAT design mission requirements.
 

l.2 .3.2 Aircraft Optimization
 

Optimization of the 1990 technology propfan aircraft was accomplished by
 

resizing the baseline configuration to incorporate the STS 487 turboshaft
 

engine and the 8 bladed, 800 fps tip speed propfan. Utilization of the
 

STS 487 engine necessitated alterations of the ASSET sub-routines for con­

figuration, weight, drag, and engine performance consistent with the perfor­

mance and dimensional data supplied by Pratt and Whitney for the engine and by
 

Hamilton Standard for the propfan. The propfan baseline configuration was
 

resized using the ASSET parametric analysis with minimum DOC at 60C/gal. fuel
 

cost as the optimization criteria. For the parametric analysis, wing AR and
 

t/c were maintained at 10 and 12% respectively with values of W/S and T/W
 

varied as follows:
 

W/S T/W 

100 0.18
 
110 0.20
 
120 0.22
 
130 0.24
 

Figure 21, the ASSET carpet plot, depicts the selection of W/S and T/W values
 

to be utilized for the aircraft point design.
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Point design parameters selected were AR = 10, t/C = 12%, W/S = 107.5, 

and T/W = 0.18. The performance and design characteristics of the aircraft 

with the STS 487 engine at the 1500 nautical mile, Mach 0.8 design mission 

are shown in Table 15.
 

Incorporation of the STS 487 turboshaft engine results in a 1990 I0C
 

aircraft at the 1500 nautical mile design mission with a block fuel savings of
 

10.8 percent and a DOC savings of 7.4 percent, at 600/gal. fuel cost, when
 

compared to the 1985 IOC baseline aircraft. These savings are the result of
 

an improvement in engine SFC at cruise, of approximately 7.6 percent and a
 

reduction in propulsion system installed weight of approximately 34 percent.
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SECTION 2
 

PROPFAN TECHNOLOGY BASE
 

Initial assessment of the fuel conservation potential of the turboprop
 

aircraft, Task 7 of the previous RECAT study (Report CR 137926), utilized
 

the 8 bladed propfan operating at a tip speed of 800 fps. Performance and
 

acoustic characteristics of the propfan were supplied by Hamilton Standard
 

per their reports SP02A76, dated 27 February 1976, and SPO9A76, dated
 

March l976.
 

Subsequent to the initiation of this study, updated performance and
 

acoustic characteristics, for the propfans were supplied by Hamilton Standard
 

as a result of their ongoing propfan wind tunnel tests. 
This data, supplied
 

on 13 June 1976, is included as Appendix A of this report. The effect of
 

the revised propfan data is a slight increase in efficiency accompanied by
 
a slight increase in induced SPL for the 8 bladed, 800 fps tip speed propfan.
 
Also included in the revised data package, is definition of the directivity
 

of propfan induced SPL (directivity of impingement on fuselage wall). Incor­

poration of the revised acoustic characteristics and directivity pattern re­
sulted in a revision to the acoustic treatment methodology utilized for the
 
aircraft fuselage wall. This revision in methodology and resultant acoustic
 

treatment weights is discussed in Section 3 of this report.
 

The propeller sizing study, for the various turboprop aircraft designs,
 
was reviewed with the foll6wing disk loadings and acoustic treatment weights
 

established:
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REVISED ACOUSTIC 0RIG. ACOUSTIC
 
CONFIGURATION DISK LOADING WEIGHT (lb) WEIGHT (lb)
 

STs 476, 1500 NMI, o.8M 37.1 SHP/D2 5220 3089
 

STS 476, 2000 NMI, 0.8M 37.1 SHP/D 2 5445 3089
 

STS 476, 1500 NMI, 0.75M 35.9 SHP/D 2 4405 
 1636
 

PD 370-22, 1500 NMI, 0.8M 42 SHP/D 2 4720 2634
 

STS 487, 1500 NMI, O.8M 46 SHP/D2 4390 2470
 

The above listed acoustic treatment weights (revised) and attendant
 

propeller efficiencies at the selected disk loadings were incorporated into
 

the turboprop aircraft designs. The net effect of this data on aircraft
 

performance is a slight increase in block fuel of approximately 0.1 percent
 

and an increase in DOC, at 60C/gal. fuel cost, of approximately 0.6 percent
 

for the 1500 nauti'cal mile, Mach 0.8 design mission.
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SECTION 3
 

ACOUSTIC TREATMENT METHOD 

3.1 TYPICAL TURBOFAN CABIN NOISE ENVIRONMENT 

For current widebody turbofan aircraft, the maximum interior noise level 

at high speed cruise conditions is dominated by turbulent boundary layer 

induced vibrations of the cabin wall. The cabin wall vibrations cause acous­

tic radiation to the interior in a manner similar to a loudspeaker. The 

transmitted boundary layer noise is broadband in its frequency content, excit­

ing many structural vibration modes, the listener perceives an innocuous 

"whooshing" sound. The peak boundary layer excitation frequency is of the 

order of Uo/6 where U is the free stream velocity and, 6 , is the boundary 

layer thickness. Since the boundary layer external pressure fluctuation 

spectrum varies slowly with frequency, near the peak frequency, the maximum 

interior sound-pressure will occur at frequencies near Uo/6, but within a 

frequency band where also a condition of coincidence exists (phase velocity 

equality) between the boundary layer turbulent pressure fluctuation pattern 

and the flexural waves in the fuselage.
 

The boundary layer thickness on a typical fuselage can be estimated at 

120 percent of the equivalent flat plate boundary layer thickness. The
 

20 percent factor allows for roughness and adverse pressure gradients. At 

Reynolds Numbers above 100 million (typical full scale flight) the boundary 

layer velocity profile varies approximately as the one seventh power of dis­

tance normal to the surface (Ref 1 p 536). In this case the boundary thick­

ness is 5.14 times skin friction coefficient, C., times L, the distance from 

the nose. At a Mach number of 0.85 and at 30,000 ft, the Reynolds Number is 

2.42 x 106 per foot. For a representative aft cabin point, L = 150 ft, 
6ReI = 364 x l0 , C F = 0.00180, the flat plate boundary layer thickness would 

be, 6 = 0.00924L. 
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Increasing this by 20 percent yield 6/, = 0.0109 at a point L = 150 from the
 

= 
nose, hence'6 1.66 ft. The external free stream velocity is 827 ft/sec, and
 

-the typical peak frequency for aft cabin noise (At L = 150 ft) would be 490 Hz.1
 

In the forward cabin the BL excitation frequency would be 3 times higher and
 

perhaps twice as high in the mid cabin. Typical measured maximum interior
 

noise levels at window seats for these turbofan aircraft range from 90 to 95 dB
 

for OASPL and the A weighted SPL's are from 80 to 85 dBA.
 

3.2 PROPFAN PASSENGER COMFORT CRITERION
 

For turboprops a preliminary interior noise comfort criterion has been
 

selected at 90 dB SPL for the transmitted blade passage frequency harmonic
 

tone. For a pure tone at a blade passage frequency of 160 Hz the 90 dB tone
 

SPL value would correspond to an "A weighted" SPL of 75 dBA (Ref. 2, p 16-13).
 

The second harmonic tone in this example is at 320 Hz and a 90 dB tone would 

correspond to a value of 83 dBA. In order that the sum of the first two har­

monics should not exceed 75 dBA, it would be necessary that each tone could
 

contribute only 72 dBA. This means that if the fundamental tone level was
 

allowed to be 87 dB then the second harmonic could be 79 dB.
 

The transmission loss concept utilized for this study is a heavily
 

damped, massive double wall construction separated by an airspace, as shown
 

in Figure 22. This concept produces 18 dB of added transmission loss for each
 

doubling of frequency above the "mass-air-mass frequency" (air space stiffness
 

resonance frequency of the double wall masses). The double "limp wall" mass
 

law theory has important consequences in that higher harmonics are rapidly
 

suppressed. The theory is discussed more fully in Section 3.4.1 below. Data
 

received from Hamilton Standard for the current 8-bladed propfan shows that
 

the external tone level'SPL values for the first four harmonics, relative to
 

the OASPL, are -1, -9, -15 and -20 dB, at a tip speed of 800 ft/sec. From
 

these data it is clear that one would expect the interior tone level SPL for
 

the second harmonic (2 times fBP) to be lower by 26 dB than the blade passage
 

frequency tone level.
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In conclusion, one can say that the blade passage frequency tone will
 

dominate the interior noise level. The selected design level 90 dB corre­

sponds to 75 dBA at 160 Hz and 83 dBA at 320 Hz which is the upper range of
 

blade passage frequencies for the lO-bladed propeller at 800 fps. These
 

values compare favorably with the 80 to 85 dBA range for current turbofans.
 
Therefore, the passenger comfort criterion selected may even be slightly con­

servative at the lower blade passage frequencies
 

3.3 PROCEDURE FOR DEFINING ACOUSTIC TREATMENT WEIGHT
 

The required procedure is as follows:
 

(1) Define the external sound pressure distribution on the cabin surface
 
in terms of circumferential variation, and axial distance from the
 
propeller disc plane.
 

.(2) Define the required noise transmission loss-(NTL) between the
 
exterior SPL and the design goal interior SPL. The NTL is defined by:
 

STL=SPL E (X,e ) SPesign
 

= SPLE - 90 dB 

(3) Compute the total weight per unit area required (including practical
 
design constraints) to achieve the specified NTL. The acoustic penalty

is the increment above the reference turbofan weight per unit area.
 

(4) Integrate the excess acoustic treatment weight per unit area over
 
the cabin wall.
 

The next subsection on acoustics discusses the cabin wall transmission
 

loss aspects. The remaining acoustics subsections will (1) compare the cur­

rent external near field noise data with the predictions of the previous RECAT
 

Study (Ref. 4) and, (2) will show weight penalty results 6f the current study,
 
and their comparison with previous RECAT results.
 

3.4 CABIN WALL TRANSMISSION LOSS PREDICTION
 

3.4.1 Transmission Loss Assumptions
 

The noise transmission loss, NTL, for the cabin wall is predicted on the
 

basis of double "limp wall" mass law theory as described in pp 187-189 of
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Ref. 4 and in Table 126, p 223 of Ref. 4, which is reproduced herein as 

Table 18. This theory assumes that the structural response is dominated by 

the sum of a large number of vibration modes at non-resonant frequencies, 

rather than a few resonant modes. This theory is plausible if one assumes 

that part of the mass on each of the walls is a suitable viscoelastic damping 

material. The outer wall mass consists of the outer skin plus the rings and 

stringers. The ring and stringer masses are added to the skin at frequencies 

below the ring frequency (about 288 Hz for a 19.58 ft diameter aluminum fuse­

lage (Ref. 4, p 189)) because the flexural wave lengths are much longer than 

the structural bay lengths. 

The double "limp wall" theory is presented in approximate form by Cremar,
 

Heckl, and Ungar (Equation 79a, pg. 505 of Reference 3). Also shown in Refer­

ence 3 is an alternate expression for the double wall increment of noise trans­

mission loss (NTL) due to vibrations transmitted through the vibration isolators
 

(see Figure 22) which provide a possible "flanking path" to the interior. One
 

limitation of double wall theory is that the lower value of NTL should be
 

chosen (either that of the air path described in Table 18 or that through the
 

"flanking path" afforded by the trim panel vibration isolator):
 

18 lOgl0=2 2)ANTLisolator =00-

In this equation a trim panel bay of area S is attached to the outer wall 

via n vibration isolators, The Velocities, V1 and V2 , represent the vibration 

velocities of the outer and inner walls at the isolator attach points. 

kc = C/fe, represents the critical wave length, C is the speed of sound in the 

cabin air, and fc the critical frequency above which a vibrating skin panel 

achieves maximum acoustic radiation efficiency (Reference 3, pg. 482 and 492). 

For the case of air at 700F and aluminum 
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TABLE 18. DOUBLE WALL MASS LAW - "LIMP WALL" THEORY
 

Noise Transmission Loss (NTL) = 20 LOG 7' + 20 LOG - 1
 

F K Total Wall Double Wall 
a 
M12 Mass Law Increment 

n 2r 1 + M2 ) 

6 dB Per Octave 12 dB Per Octave 

When M1 = M2 	 Total Increase in NTL 

Per Octave is 18 dB. 

2 1
fn T d 



= hw 1.8 (-)w 
c C air
 

= hw (1.8) (16380) = 26.13 hw 
1128
 

where hw is the outer wall skin thickness.
 

For example, for 	hw = 0.060 inches, the critical frequency becomes
 

C . C
 
air
air _ 


26.13 hw
c
 

1128
 = 
7618 Hz
(26.13) (0.00567)
= 

and k = (26.13) (0.068) = 1.78 inches
 

For well designed vibration isolators (such as those depicted in Figure 22)
 

which could provide a velocity ratio V2/V1, of 1/10 or less, then the airpath
 

would be the critical path-and the mass law theory is valid. In general, the
 

trim panel can be considered as a mass mounted on soft springs, and if the
 

isolator spring is sufficiently softer than the air stiffness between the
 

double wall, then the airpath dominates the noise transmission, and the isolators
 

will not cause an undesired "short circuit" path for noise transmission.
 

The double wall mass law theory is convenient for preliminary design
 

purposes; however, it does not reflect the realities of cylindrical shell
 

dynamics. Some comparisons with Lockheed laboratory research tests on single
 

wall cylinders show that mass law theory is toe optimistic above about one-half
 

of the ring frequency, but is somewhat conservative at lower frequencies.
 

Also, test data show some sensitivity to incidence angle.
 

3.4.2 Structural 	Design Constraints
 

The double wall NTL equations (Table 18) are solved to find the total
 

wall weight per unit area required to achieve a specified NTL. This weight
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is, however, increased because of a number of constraints beyond those used
 

in the previous Study (Ref. 4). The treatment weight prediction modifications
 

for the current study are as follows:
 

(1) 	The treatment now covers the entire circumference 61.5 sq ft of
 
cabin length versus 16 sq. ft of side wall treatment per ft of cabin
 
length previously used.
 

(2) 	The design NTL is decreased stepwise by 10 dB with distance from
 
the propeller disk plane in 5 steps, according to new external SPL
 
directivity data. The required treatment segment lengths vary with
 
relative tip clearance according to Figures 23 and 24. An example
 
of the longitudinal distribution of treatment material is shown in
 
Figure 25 for a relative tip clearance Ay/D = .8.
 

Figure 22 shows plots of the required ratios of segment treatment
 
length to prop-fan diameter for each of five segments. In the first
 
segment the required noise transmission loss is based on the maximum
 
exterior SPL at blade passage frequency (see Section 3.3 item (2)).
 
Thus, for segment k = 1,
 

= NTL (1) SPLE - 9O dB = NTLmax 
max 

For segments k = 2 to 5 the required transmission loss is
 

NTL(k) = (SPLE - 90 dB) - (k-1) =10 d.B 
max 

We define the increment of required transmission loss for each
 
segment (k = 1 to 5) as follows
 

ANTL (k) = NTL(k) - NTLma 
max 

= (k-1) X 10 dB 

It is noted that the mathematical model of AL /D is quite conserva­
tive 	for segment k = 2 (see remarks under item (5)below, however).
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KEY NO BLADES SOURCE 
SYMBOL 

8 H.S. DATA 
------ 10 H.S. DATA 

MATH MODEL 

LENGTH OF 
1ST SEGMENT TREATMENT 
(k = 1) 

20 

Z Lt MODEL \1 : NTL = SPLEMAx -9 dB = NTLMA x 

D ANTL(1) = NTL - NTLMAX = 0 

1.0 NTL= REQUIRED TRANSMISSION LOSS 

0 
0.4 0.8 1.2 1.6 2.0 

2.0 _ _ _ _ 

A Lt 
2nd SEGMENT LENGTH
(k = 2) NTL = NTLMAX -10 dB 

D 

1.0NTL=-0dB 

0 
2.00.4 0.8 1.2 1.6 

PROPELLER TIP OF FUSELAGE CLEARANCE/PROPELLER DIAMETER (Ay/D) 

Figure 23, Required Treatment Length With Relative Tip Clearance
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SYMBOL NO BLADES 
8 

MATH 
MODEL 

3RD SEGMENT LENGTH1.0 
= 

.LA . . . (k3)NTL MAX - 20 dB 
t 

-~ I t(ANTL -20 do).A~h~~4D 
o . srrt .10 I 

0.4 0.8 1.2 1.6 2.0 

ALt 

D 

1.0 _ 

.O _ - ._ 
- 4TH SEGMENT LENGTH 

(k4) NTL = MAX -30 dB 
(ANTL=-30 dB) 

0 

0.4 0.8 1.2 1.6 2.0 

ALt 

D 

.o -
t _ 

- -TH SEGMENT LENGTH 
(k'5) NTL - MAX - 40 dB(ANTL=--40 dB) 

0 
0 0.4 0.8 1.2 1.6 2.0 

.PROPELLER TIP TO FUSELAGE CLEARANCE/PROPELLER DIAMETER ( y/D) 

Figure 24. Required Treatment Length With Relative Tip Clearance
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D+10 ANTL M Ii' 
dB
 

X/D, AXIAL DISTANCE (FWD OF DISC PLANE) AV/D 

0.47 - 1.23 k=1, ANTL=0 dB 
I I I t I I I 

2.0 1.0 -11 -2 -3 -4 

.. -10 L . 9. k- 2, ANTL =-10dB­

7-­

3k=3, ANTL =-2 dB 

0.3 0.3 
-30 - k4ANTL=-30OdB 

0.62 0DATA 
FROM 0.6 
HAM STD,­

-40 JUNE, 1977 qk=5,A TLLL-40 dB 

END OF -50END OF 
TREATMENT TRA TENTZ 

Figure 25. Example of 5 Step Acoustic Treatment for a 
Relative Tip Clearance of N-A /D = 0.8 
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,(3) 	 Minimum inner and outer wall weight structural design constraints are
 
imposed for each of the 5 treatment segments. These constraints are
 
summarized in Table 19. The most notable feature is the choice of
 
double the reference outer wall weight to 2.4 psf for the minimum
 
outer wall weight for the first two segments nearest the propeller
 
disk plane. At a relative tip clearance, A y/D, of 0.8 these two
 
segments cover Lt = 3.6D, where, D is the propeller diameter. For
 
the segments 3 and 4 the minimum weights are increased by 25 percent
 
(to 1.5 psf). Finally, segment 5 has a minimum increase of 10 per­
cent to the outer wall. The minimum weight increases are provided to
 
allow for viscoelastic damping material which will force the outer
 
wall to behave in accordance with the limp wall mass theory.
 

(4) Minimum inner wall trim panel weight constraints (see Table 19) are
 
set at 75 percent of the reference turbofan trim panel weight
 
(0.33 psf). In some cases because of the heavy minimum values of
 
outer wall weight (due to constraints stipulated above) the double
 
wall theory would require even less weight for the trim panel;
 
therefore, this constraint is considered as a structural constraint.
 

(5) 	The total treatment length now varies according to diameter and
 
propeller tip clearance as discussed above. In the previous study
 
(Ref. 4) the total cabin length was treated*(even though confined to
 
the side walls), because of uncertainty concerning the axial location
 
of the maximum external SPL signature. In the present study it was
 
decided to adopt the external SPL levels and directivity data of 
Appendix A (measured at M = 0.3), with the understanding that these 
data are subject to future revision when new external SPL is avail­
able at flight Mach numbers of 0.70 to 0.80. Lockheed believes the 
shockwave position uncertainty discussions of Ref. 4, pp 187-188, 
Figures 70 to 73 pp 207 and 208, and Table 125, p 222 are still
 
relevant to the external SPL environment at cruise Mach numbers of 
0.7 to 0.8. There it is noted that at the high flight Mach numbers, 
the shockwave pattern defining the external sound pressure would be
 
moved 	farther aft of the'disk plane than would be the case for the
 
test data at a tunnel flight Mach number of 0.3. It is possible
 
that 	the total signature length would not be greatly different, even
 
though the axial location of peak intensity might vary from the
 
pattern shown in Figure 25; The extra treatment length is an attempt
 
to provide a margin of safety due to the anticipated variability of
 
signature due to shockwave position change with flight Mach number,
 
as discussed in Ref. 4.
 

(6) 	The current study is restricted to an airspace depth of 4.8 inches,
 
as was used in the previous study. Increased airspace depth would
 
be beneficial and should be considered in future design studies.
 

(7) In this study acoustic treatment weight variation with propeller
 
diameter is considered during the selection of optimum propeller
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TABLE 19. WALL WEIGHT CONSTRAINTS FOB 5 STEP DOUBLE WALL TREATMNT
 

SEGMENT 
IaA (Lt\ 

DJK 
ANTL 
dB 

(W1 /A) 
PSF 

(W /A) 
AF 

1 0.2 1.1 0 2.4 0.25 

0.4 1.5 

o.8 

1.2 

1.6 

1.7 
2.1 
2.5 0 2.4 0.25 

2 0.2 

o.4 

0.8 
1.2 

1.50 

1.63 

1.90 
2.17 

-10 

-10 

2.4 

2.4 

0.25 

0.25 

3 0.2 

o.4 

o.8 
1.2 

o.4o 

o.47 

0.60 
0.73 

-20 

-20 

1.5 

1.5 

0.25 

0.25 

4 0.2 

o.4 

o.4o 

0.47 

-30 1.5 0.25 

o.8 
1.2 

o.6o 
0.73 -30 1.5 0.25 

5 0.2 

0.4 
0.8 
1.2 

0.40 

o.68 
1.24 
1.80 

-40 

-4o 

1.32 

1.5 

0.25 

0.25 
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diameter, blade count, tip speed, and cruise Mach number, for a
 
range of net thrust values appropriate to each point design aircraft
 
(payload, range and cruise speed combination).
 

(8) 	The propeller shaft axis is held at a fixed spanwise location as
 
propeller diameter is varied in this study. This maintains constancy
 
of nonacoustic weight of the wing and empennage structure even
 
though propeller tip to fuselage clearance now varies also as the
 
propeller diameter is changed. 

3.5 	 EXTERIOR NOISE DATA 

Appendix A contains the exterior noise data supplied by Hamilton Standard.
 

Appendix A shows OASPL data versus tip speed'at cruise Mach numbers of 0.7,
 

0.75 	and 0.8 for both eight and ten bladed propellers at 30,000 ft altitude,
 

at-various propeller efficiency values, for a relative tip clearance,Ay/D,
 

of 0.8. Appendix A also shows the estimated directivity data for the eight
 

and ten bladed propfan designs, taking into account the most recent test data.
 

Also shown are the increments in SPL levels (HL's) of the blade passage fre­

quency harmonics, relative to the OASPL. These are the data used in the
 

present study. The acoustic data of Appendix A differs somewhat from the
 

preliminary Lockheed predictions used in the previous study (Ref. 4,
 

pp 187-188). Table 20 provides a comparison of data used for the previous
 

study and this assessment.
 

3.5.1 Previous and Current Prediction Results
 

The first noticeable difference is the external SPL at blade passage fre­

quency. Lockheed estimated the values shown in Table 21, which is a reproduc­

tion of Table 125 p 222 of Ref. 4. It is noted in Table 21that Lockheed and
 

Hamilton Standard prediction methods were apparently in fairly close agreement
 

as to the blade passage frequency harmonic (n = 1) SPL value (124 dB vs 126 dB);
 

both of these values are much lower than the current prediction of 134.5 dB.
 

It is noted, however, that Hamilton Standard originally predicted (unpublished
 

data, Ref. 5) an OASPL of 136 dB with a -10 dB correction for each of the first 

10 harmonics. Furthermore, the altitude correction used in Ref. 5 and also, 

presumably, for the current data was only -4.3 dB re sea level. By contrast, 

the Lockheed original altitude was evaluated for 35,000 ft, and correction 

included in Table 20 was -12.5 dB, based on 20 Logl 0 (Pamb/PSL). This repre­

sents dynamic pressure scaling at constant helical tip Mach number. 
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TABLE 20. COMPARISON OF PBEVIOUS RECAT VS. CURRENT CABIN
 
NOISE TREATMENT METHODOLOGY AND DATA
 

CURRENT 

PREVIOUS HAM STD JUNE 1977 

External SPL Level 

SPL, @BPF (Mo = 0.8, VL = 800 124 dB (134.5 dB @ same 

D = 12.8,Ay/D = 0.8) conditions) 

Clearance, Ay/D 0.8 Varied in prop size trade 

Tip Speed Vt (ft/sec) 8oo 800, 700, 6c0 

Point Design Cruise Mach No, M 0.80 0.80, 0.75, 0.70 

SHP/D2ref (HP/ft
2 ) 37.1 Tradeoff variable 

Net Thrust (lb/engine) 3860 3860, 3000 

Diameter (ft) (@ 37.1 SHP/D2) 12.8 12.55/traded 

Prop Efficiency 0.82 0.83/traded 

Number of Blades 8 8, 10 

Treated Areas (sq. ft.) 1568 f (Ay/D,D) per Ham Std 
Data June, 1977 

Cabin Diameter (ft) 19.58 f (Ay/D,D) per Ham Std 
Data June, 1977 

Cabin Length (ft) 98 f CAy/D,D) per Ham Std 
Data June, 1977 

Total Cabin Surface 6028 f (Ay/D,D) per Ham Std 
Area (sq. ft) Data June, 1977 

% of Circumference Treated 26.0% 100% 

Constraints None New minimum wall weights 
Defined near prop plane 

Treatment Method Damped Damped Double Wall 
Double wall 

Altitude 30,000 ft 30,000 ft 

Blade Passae Freq (Hz) 159.2 163.2/traded 
@Ref SHP D 
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TABLE 21. EXTERNAL SPL RESULTS
 

M = 0.8 8 Blades, D = 12.6 ft V = 8oo ft/s
 

rLE/cb = 0.0015 Clearance: 0.8 Dp mH =l.06 

SPL
 

HARMONIC FREQUENCY LOCKHEED © HAM STD.© 

Blade Passage 156 Hz 124 dB 126 dB
 

Second Harmonic 313 Hz 121 dB 126 dB
 

Third Harmonic 470 Hz 116 dB 126 dB
 

Fourth Harmonic 626 Hz 104 dB 126 dB 

* Pulse time/blade passage period = 0.330 

* Cosinusoidal pulse -- ry_... 

( Note Lockheed calculations performed for 35,000 ft, including an altitude
 

correction of -12.5 dB. At 30,000 ft the correction is -10.5 dB.
 

@ HS data includes an altitude correction of -4.3 dB at 30,000 ft altitude.
 



It is noted that altitude corrections used by Lockheed in Reference 4 and 

the current Hamilton Standard theory (Reference 6) both utilize a correction 

of 20 log1 0 (Pamb/PSL) which corresponds to the near-field noise of a single 

blade or fixed blade area at fixed values of rotational and forward Mach 

number, and at a fixed relative blade tip clearance distance. The original 

Hamilton Standard altitude correction of Reference 5 is exactly equal to 

10 log1 0 (PPSL). The method of Reference 5 is a preliminary design type
 

method. It would represent the variation with altitude of the noise of a
 

dipole acoustic source for a fixed value of prop-fan power loading (SHP/D
2
 

and for fixed values of tip speed, helical tip blade number, and relative 

blade tip to fuselage clearance. The "old" and "new" altitude corrections 

are essentially consistent because a factor of 10 log (Pamb/PSL) is absorbed
 

into the SHP/D2 factor of the "old" (Reference 5) method.
 

Notice in Table 22 that Lockheed's prediction of harmonic level variation
 

given in Ref. 4, Table 125, was more realistic than Hamilton Standard's origi­

nal prediction. A larger altitude correction may be more accurate, which
 

means the new acoustic data could be too pessimistic in this respect by 5 to
 

TABLE 22. 	 COMPARISON OF HARMONIC LEVELS OF EXTERNAL SPL 
DATA AT 800 FT/SEC TIP SPEED, MCR = 0.80 

Definition: HL(n) = SPL(n) MINUS OASPL, dB
 

PREVIOUS CURRENT DATA 
(REF. 4, TABLE 125) APPENDIX A 

SOURCE LOCKHEED HAM STANDARD HAM STANDARD 

n HL(n) HL(n) 	 HL(n) 
dB dB 	 db
 

1 	 -2.2 -10 -1 

2 	 -5.2 -10 -9 

3 -10.2 -10 -15
 

4 -22.2 -10 -20
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6 dB at 30,000 ft. On the other hand, the currently predicted data are based
 

on tests at a tunnel (flight) Mach number of 0.3; this provides the wrong
 

propeller advance angle, even if the resultant, supersonic helical tip-Mach
 

number is matched, and therefore the directivity may be questioned. The
 

Lockheed discussion of shockwave impingement in Ref. 4, pp 187-188, is con­

sidered still pertinent to this respect. It is possible that many of these
 

differences in exterior sound pressure estimates may produce cancelling errors
 

and lead to small differences in acoustic treatment weight penalties when all
 

corrections are taken together.
 

3.5.2 Exterior Near Field Noise Prediction
 

Note in Table 21, that Lockheed's analysis of external SPL contained a
 

number of blade shape oriented assumptions about what may be possible with
 

regard especially to achieving a small leading edge radius, and the effective­

ness of blade sweep in reducing the effective helical tip Mach number. These
 

variables all affect the estimates of shockwave detachment. These estimates
 

were made without benefit of detailed knowledge of the exact geometry of any
 

of the fan blades which were actually tested or contemplated as a basis for the
 

new data package contained in Appendix A. It is believed that the shockwave
 

analysis approach used by Lockheed in Ref. 4 could lead to better blade concepts
 

and deserves further development. There are other noise prediction methods
 

which are reviewed here briefly.
 

It is noted that Hanson (Ref. 6) has recently published a more elaborate
 

analytical scheme based on Ffowcs-Williams and Hawkings solution (Ref. 7)
 

of the acoustic analogy equations of fluid motion. Hanson's analysis is based
 

on linearized theory using fluid fixed coordinates, which cannot account for
 

the shockwave effects which are present in the near geometric field. Hanson
 

claims to have good agreement with Hubbard and Regier's static data (Ref. 8)
 

at tip Mach numbers up to 1.0, and for clearances of 4 and 8 inches on a 4 ft
 

diameter prop. Hanson also states that calculations of the first two harmonics
 

were in good agreement with P-51 Mustang test data at a helical tip Mach num­

ber, MH = 1.07, obtained in a dive (Ref. 9). Hanson shows agreement with
 

results by Farassat (Ref. 10) at a distance of 5 rotor diameters. His method
 

appears logical for far field prediction; however, it is suprising that it
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predicts the Hubbard-Regier data at small clearances. More test data is
 

needed for supersonic helical speeds at high subsonic forward Mach numbers
 

for various blade thickness distributions and for various leading edge
 

radius to chord ratios. Blade angle of attack or loading effects appear to
 

be secondary for the propfan designs proposed thus far, when operated near
 

peak efficiency
 

3.6 ACOUSTIC TREATMENT WEIGHT PENALTY DATA
 

Table 20 shows a summary of parameter and methodology differences
 

between weight penalties used for the previous and current RECAT studies.
 

The methodology differences have been discussed in the previous subsections.
 

What remains to be considered are parametric effects of propeller disc power
 

loading, cruise design Mach number, design cruise thrust level, propeller
 

tip speed, and blade count.
 

, it is
In evaluating the effect of propeller disk power loading, SHP/D
2
 

assumed that the propeller shaft centerline position remains constant. This
 

means that the relative blade tip clearance, Ay/D, changes with propeller
 

It turns out, however, that the relative clearance is still near
diameter. 


optimum value, except for very low disk'loadings (large propeller diameters).
 

Fore these cases, a lower weight could be achieved by optimizing the relative
 

tip clearance of the propeller.
 

3.6.1 Presentation of Acoustic Treatment Weight Penalty Data
 

Figures 26 and 27 show, for a tip speed of 800 ft/sec, the treatment
 

weight penalties versus SHP/D
2 for an 8-bladed propeller at 30,000 ft
 

altitude for propeller thrust levels of 3,860 lb and 3,000 lb respectively.
 

These thrust levels bracket the thrust required at various cruise Mach numbers.
 

Parametrically shown are curves for different point design cruise Mach
 

numbers of 0.7, 0.75 and 0.80. Figures 28 and 29 show the same data for a
 

These weight penalties are clearly much
propeller tip speed of 700 ft/sec. 


worse than for 800 ft/sec tip speed. Figures 30 and 31 display the effect
 

of propeller tip speed upon the required acoustic treatment weight and also
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prop-fan efficiency. The lower curve of Figure 30 shows the weight penalty
 
2
 

if the same power loading SPD/D = 37.1 HP/sq ft was maintained. It is
 

seen from Figure 31, however, that a significant loss of prop-fan efficiency
 

would occur at the low tip speeds, if the same power loading was maintained.
 

The upper curve of Figure 31 shows the improvement in prop-fan efficiencies
 

which could be achieved by reducing the power loading below 37.1 HP/sq ft;
 

however, Figure 30 shows that the acoustic treatment penalty must be
 

increased significantly to achieve these higher efficiency levels because
 

of the much larger propeller size and the corresponding lower blade passage
 

frequencies. It is clear from Figure 30 that the acoustic treatment penalties
 

required for operation at a tip speed of 600 ft/sec become prohibitive, if
 

a reasonable prop-fan efficiency is to be maintained. The absolute weight
 

penalties must be used with some caution at these low tip speeds, since
 

some other form of acoustic treatment may be more suitable. It is also
 

noted that power plant weight components other than the acoustic treatment
 

material requirements increase rapidly with prop fan diameter, and therefore,
 

would further penalize a design based upon 600 ft/sec tip speed.
 

Figures 32 and 33 show results for a 10-bladed propeller at 800 ft/sec
 

tip speed, at the same thrust levels and cruise Mach numbers. These
 

results show a clear advantage compared to the 8-bladed prop fan.
 

It is evident that high disk loadings, high tip speeds, and high blade
 

counts are desirable from the exclusive standpoint of minimum acoustic treat­

ment weight. In the current study, however, these data were used as inputs
 

to the aercacoustic versus propulsion trade off studies Lo optimize the
 

selection of propeller diameter. Interpolation of these data, for the
 

selected thrust levels, results in the acoustic treatment weights reported
 

in Section 2 of this report. The next section discusses the underlying
 

basis of the trends presented in these figures.
 

3.6.2 Disk Loading Effects on Acoustic Treatment
 

Figure 25 shows the effect of disk, loading for an 8-bladed profan at
 

800 ft/sec tip speed at 3860 lb thrust. Also shown is the original RECAT
 

data point at the design disk loading, SHP/D 2 = 37.1 HP/sq ft for 0.8 cruise
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Mach number. It is seen that for this study the acoustic treatment weight
 

penalty is now 6500 lb, representing a-3400 lb increase in the weight rela­

tive to the previous study. Note also that increasing thei disk loading to
 

about 50 HP/sq ft would reduce the weight penalty by about 1500 lb to
 

5100 lb. This empahsizes the need to consider the acoustic treatment
 

weight as a significant input in the selection of propeller size. Note that
 

the required weights are further reduced if the propellers are sized for
 

lower point design cruise Mach numbers of 0.75 or 0.70.
 

The external SPL data of Ref. 3 (Appendix A) show-no difference between 
M = 0.8 and M = 0.75, at equal values of relative blade tip clearance. 
er cr 

This is so, despite the reduction of helical tip Mach number by 0.08. The 

data in Figure 25 are affected by external SPL changes, since the relative
 

blade tip clearance fy/D varies with the propeller diameter because .the
 

propeller shaft center line is maintained at fyc = 16.4 ft. This assumption
 
L
 

maintains constancy of wing and empennage weight (which would change if -the
 

engines were moved spanwise to maintain a constant relative tip clearance).
 

In the present study the relative blade tip clearance, therefore, is varia­

ble with propeller diameter, according to the following equation.
 

-Ay/D (16.4 - 1/2) 

Figure 34 shows the effect of relative tip clearance on the external
 

SPL as determined from the data of Appendix A.
 

The-strongest variable affecting the acoustic treatment weight re­

quirement is the blade passage frequency, according to the double wall
 

transmission loss theory. As described earlier, the transmission loss
 

increases at 18 dB per octave increase of the blade passage frequency
 

(Ref. 4 pp 187-189, and Table 17). Figure 35 shows the variation of the
 

blade passage frequency with disk loading for the 800 ft/sec tip speed case.
 

Figure 36 shows the corresponding propeller diameter requirements which are
 

determined by the thrust and propeller efficiency data of Ref. 3, given in
 

Appendix A. The blade passage frequency is easily calculated, given the tip
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speed, blade count, and propeller diameter as
 

vt
BVt

BPF = lTD 

Figure 37 shows the variation of external SPL with disk loading for the
 

conditions of 8000 ft/sec tip speed, F = 3860 lb and M = 0.7, .75, and
n 	 cr
 

0.80. Apart from the effect of external SPL, the interior noise is governed
 

by the blade passage frequency and propeller diameter.
 

Figure 38 shows the variation of total acoustic treatment area according
 

to the 5 segment treatment scheme. This increases with propeller diameter
 

and clearance as shown in Figure 23 and Table 17. Figure 39 shows the
 

total treatment length versus SHP/D 2 for the same conditions (Vt = 800 ft/sec, 

M = 0.80, 30,000 ft, F = 3850 lb/engine). Figure 40 shows the lengths of cr n
 

the first two treatment segments, and Figure 41 shows the total wall weight
 

per unit area (including the reference turbofan value, 1.53 psf) versus
 

SHP/D 2 for each of the first two segments. Figure 42 shows the treatment area
 

for the various segments. It is noted that the total treatment areas, and
 

even the treatment areas for the first two segments are considerably larger
 

than the fixed value of 1568 sq ft, used for the previous RECAT study.
 

This is due to the decision in this study to treat the entire circumfer­

ence of the cabin wall (61.5 sq ft/ft), rather than 16 sq ft/ft of side wall
 

only. This represents the most important conservatism used in the present
 

study to offset the risk where many technological uncertainties exist. It
 

is anticipated that the treatment weight per unit area could be reduced
 

near the top and 	bottom of the fuselage, if reliable circumferential
 

distribution data were available for the external SPL.
 

The second most important conservatism in the present study is the
 

schedule of minimum wall weights per unit area shown in Table 19. This sets
 

minimum weight penalties above the reference weight (1.53 psf) of 1.12 for
 

treatment segments 1 and 2, 0.22 psf for treatment segments 3 and 4, and
 

0.04 psf for segment 5." For the disk loading of the previous study air­

plane (SHP/D2 = 37.1) a 12.8 ft diameter propeller would be required, and
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the relative tip clearance would be about 0.8D. In this case the first two 

segment lengths would be 3.6D = 46.08 ft, covering a treated area of 

2834.5 sq ft. Applying the minimum wall weight penalty per unit area
 

(1.12 psf) yields a penalty of 3174.6 lb, for segments 1 and 2. Segments 

3 and 4 cover 1.2D = 15.36 ft and 944.83 sq ft. Applying the mandatory 

0.22 psf unit area penalty yields a minimum weight increment of 207.9 lb.
 

The fifth segment length is 1.24D = 15.87 ft covering 976.32 sq ft, and
 

requiring a mandatory 0.04 psf unit area weight penalty adding 39.1 lb
 

additional weight. Altogether, the minimum total weight penalty would
 

be 3421.6 lb for the selected example 12.8 ft propeller diameter with a
 

relative tip clearance of 0.8. The minimum weight penalty for the outer
 

3 segments alone is 247 lb.
 

The minimum weight penalty procedure described above has a tendency to
 

diminish the weight reduction benefits of external SPL reductions and
 

higher blade passage frequencies. Without considering the minimum unit area
 

weight constraints, the weight penalties for the lowest cruise Mach numbers
 

and higher disk loadings could be further reduced compared to the data of
 

Figures 24 to 29. It is thus possible that the optimum propeller disk
 

loading could be even higher than would be selected on the basis of the
 

data of Figures 24 to 29. The constraint procedure does not affect the
 
2
 

acoustic treatment weight penalty data at low SHP/D . This is so, because
 

the minimum weight per unit area for each segment is well above the minimum
 

values given in Table 19.
 

In order to reduce'the weight penalty allowances imposed by the
 

requirement for minimum unit area weights for each segment, it is necessary
 

to experimentally verify the transmission loss predictions from double wall
 

theory. This would appear to be an urgent technology development goal, since
 

it would allow further advantage to be gained from increases in blade
 

passage frequency and/or reductions of external near field SPL. Figure h3
 

shows a correlation of acoustic treatment weight penalties plotted against
 

= 

blade passage frequency. This data shows that at M 0.75 and 0.80 where
 

cr
 
the external SPL data are the same, all of the data collapse nearly into a
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single curve when plotted against blade passage frequency, for both 8 and 10
 
]blades.
 

3.7 POSSIBILITIES FOR FUTURE TREATMENT WEIGHT REDUCTIONS
 

The trends of Figure 43 invite the development of propfans with more
 

blades, higher tip speeds, and higher diskloadings, in order to increase
 

blade passage frequency. The minimum constrained weight at M = 0.80 for
2 cr
 

10 blades at SHP/D2 = 50, is about 3650 lb which is within 700 lb for the
 

previous RECAT weight penalty, despite the higher exterior noise levels,
 

and more conservative design philosophy employed in the current study. It
 

is believed that the data of Figure 43 might be reducible by 40 percent
 

by eliminating some of the current conservatisms with respect to the large
 

amount of treated surface area and the mandatory minimum weight per unit
 

area stipulated in Table 17 for the various treatment segments. These
 

conservatisms have been injected in this study to offset uncertainties
 

concerning the exterior SPL distribution, and the validity of the simplified
 

double wall transmission loss theory.
 

With regards to the transmission loss theory, notice in Figure 43 that
 

the structural ring frequency is 288 Hz for a 19.58 ft diameter aluminum
 

fuselage. This value is higher by factors of 111 percent to 191 percent
 

of the typical range of-propfan blade passage frequencies .(150 to 260 Hz)
 

for 8 and 10 blades at 800 ft/sec. Figure 44 is'a reproduction of Figure 74
 

of Ref. 4. This shows the modal density parameter for single wall cylin­

drical shell vibration modes which are "acoustically fast" (efficient
 

noise radiators), as a function of the ratio of excitation frequency to
 

ring frequency. Lockheed is working on the development of data and a theory
 

for counterpart to this curve for the proposed double limp wall damped
 

treatment shown schematically in Figure 22. When such a curve is available,
 

it will be possible to correct for loss of transmission loss at frequencies
 

near the ring frequency according to
 

ANTL = A + B log1 0 (YMDP)
 

where A and B are empirical constants to be determined from transmission
 

loss tests on Lockheed's double wall concept, and, YMDP" is the modal
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density parameter for the particular double wall construction. It is a
 

goal of the double wall technology development to minimize the response
 

of 	these acoustically fast modes to the external excitation.
 

3.8 CONCLUDING REMARKS CONCERNING ACOUSTIC TREATMENT WEIGHT PENALTIES
 

* New exterior near field SPL and propeller performance data (Ref. 3) 
have been evaluated with respect to acoustic treatment weight
 
penalties. The new data are estimated to increase the weight
 
penalty by 3400 lb to 6500 lb, compared to the 3100 lb requirement
 
estimated for the original RECAT study (Ref. 4) at the same disk
 
loading SHP/D 2 = 37.1. For this disk loading a 12.8 ft diameter
 
propeller is required for a net thrust of 3860 lb, at a cruise
 
point design Mach number of 0.8 at 30,000 ft. Parametric
 
studies have been conducted of the effects, of disk loading,
 
upon acoustic treatment weight, cruise Mach number, blade count and
 
thrust level.
 

* 	The parametric studies include a more conservative prediction method­
ology which is partly responsible for the higher weight penalties.
 
The more conservative approach has been employed to reduce the risk
 
associated with technology uncertainties. In this sense, the attain­
ment of the interior noise goals with the current weight estimates
 
in this study have a higher probability of achievement through
 
development than the estimates in the previous RECAT study.
 

* 	It appears, by increasing the blade passage frequency, that the 
weight penalties could still be reduced to about 3600 lb, even 
with the currently more conservative methodology. The range of 
weight penalties contained in these studies is apparently small 
enough to make turboprop aircraft remain attractive, based on the 
weight versus DOC sensitivity data of Ref. 4. 

* 	Achievement of certain goals of technology development, outlined
 
herein, could provide further weight penalty reductions, of the
 
order of 40 percent, through the elimination of conservatisms which
 
are imposed on this methodology in order to offset technological
 
uncertainty. In particular, it is believed that the total treat­
ment area assumptions used herein are definitely conservative, often
 
requiring three times the 1568 sq ft treated in the original RECAT.
 
A large part of the treatment area increase comes from the treatment
 
of the full cabin circumference in the current study.
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SECTION 4
 

COST/BENEFIT COMPARISONS
 

At the conclusion of the previous EECAT study both the turbofan and
 

propfan powered aircraft had been designed using 1985 levels of technology
 

and the same payload/range requirements and mission constraints. The base­

line aircraft established during the previous study were competitive in terms
 

of cruise speed, cruise altitude, block time, and passenger comfort. At the
 

design range of 1500 nautical miles for a Mach 0.80 mission, comparison of
 

the fuel and cost to operate these baseline aircraft showed an advantage of
 

the propfan over the turbofan of 17.8 percent less fuel and 8.2 percent DOC
 

savings at a 60/gal. fuel cost. Comparison of these baseline aircraft
 

at a range of 475 nautical miles with a 58 percent load factor (L.F.) shows
 

an advantage of the propfan over the turbofan of 20.4 percent less fuel and
 

8.5 percent savings for 60/gal. fuel. These comparisons are shown in
 

Figure 45.
 

For this study, the competitive baseline design concept was retained so
 

that direct comparison between the turbofan and propfan propulsion could
 

be determined. The original baseline propfan powered aircraft was revised
 

to reflect the latst propfan performance and acoustic data supplied by
 

Hamilton Standard as a result of their propfan wind tunnel test program. The 

effect of the new propfan data, and a revised Lockheed analysis, is added 

weight required in the fuselage to accommodate the increase in propfan 

acoustic noise level. The comparisons of the revised turboprop baseline with
 

the turbofan baseline are shown in Figure 46.
 

For each design/mission change investigated for the turboprop aircraft,
 

a similar change was incorporated into the turbofan aircraft with each design
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optimized for the desired design/mission characteristic. All subsequent
 

comparisons of the baseline aircraft are the origoinal 
turbofan baseline and
 

the revised turboprop baseline (incorporating revised propfan data).
 

4.1 PERFORMANCE COMPARISON
 

The major differences in fuel and operating costs between the turbofan
 

and turboprop aircraft in this study are caused by differences in engine
 

specific fuel consumption and aircraft weight. The most significant dif­

ference in performance is in the propulsion system and its fuel consumption
 

characteristics at the cruise condition for the 1500 nautical mile design
 
mission. Figure 47 indicates the improvement in average cruise SFC obtained
 

with the turboshaft engine for the design/mission conditions investigated.
 

The turboshaft propulsion offers a 19 percent decrease in average cruise fuel
 

consumption at the 1500 nautical mile, -Mach 0.8 design mission and addition­

ally offers another 3 percent decrease for the 1500 nautical mile, Mach 0.75
 

design mission.
 

As indicated in the previous study, the empty weight of the turboprop
 

exceeds that of the turbofan. Figure 48 depicts the differences in aircraft
 

empty weight between the turbofan and turboprop aircraft 1985 IOC and the
 

1990 IOC designs. The empty weight ofthe turboprop baseline design is approx­

imately 6.4 percent greater than the turbofanbaseline with the major dif­

ferences being in the wing and propulsion system weight and the amount of
 

acoustic treatment required. For the 1990 IOC aircraft, the turboprop empty
 
weight exceeds the turbofan empty weight by approximately 3.3 percent due to
 
decreases in the propulsion system weight (which is reflected in wing weight)
 

and the amount of acoustic treatment required due to the reduction in induced
 

sound level with the smaller diameter propfan. The largest single weight
 

increment between the turboprop and turbofan aircraft is the amount of acoust
 

treatment required to maintain the cabin interior SPL at 90 dB with the
 
propfan. The amount of acoustic treatment required for each of the turboprop
 

design/mission conditions is as follows:
 

Revised Baseline 2000 N.Mi. 0.75M PD 370-22 STS 4E7 

5220 5445 4405 4720 4390 
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4.2 ECONOMIC COMPARISON
 

For the economic comparison of the turbofan and turboprop aircraft, all
 

point designs were compared using the 1500 nautical mile design mission with a
 

100% L.F. as well as a "typical" mission of 475 nautical miles with a 58 per­

cent L.F. DOC values for 6Ot/gal. fuel cost were calculated for each mission.
 
Figures 49 and 50 present the results of the effects of design/mission charac­

teristics on turboprop DOC savings at the two sthge lengths for 60W/gal. fuel
 

cost. Comparison of the 1985 IOC revised baseline propfan and turbofan
 

aircraft indicates a 7.8 percent DOC advantage, at 60C/gal. fuel cost, for
 

the turboprop at the design mission of 1500 nautical miles and Mach 0.8. 
An
 

additional advantage in turboprop DOC of 2.2 percent is attained by reducing
 

the cruise speed to Mach 0.75, due to the greater advantage in fuel consump­

tion characteristics of the turboshaft engine at reduced speed.
 

For the 1990 IOC aircraft, the 1990 propfan design shows an advantage in
 

DOC, at 60W/gal. fuel cost, of 7.8 percent over the 1990 turbofan design at
 

the 1500 nautical mile, Mach 0.8 mission.
 

Incorporation of the alternate turboshaft engine, PD 370-22, results in
 

an 10.1 percent advantage in turboprop DOC, at 600/gal. fuel cost, over the
 

baseline turbofan at the 1500 nautical mile, Mach 0.8 mission. This addi­

tional decrease in DOC is due to a significant decrease in installed pro­

pulsion system weight for this engine (approximately 40 percent) and the
 

resultant effect on aircraft weight.
 

4.3 MISSION FUEL COMPARISON
 

Figures 51 and 52 present the results of the effects of design/mission
 

characteristics on mission fuel requirements, at both the design and "typical"
 

(475 N.Mi.) range, for the propfan and turbofan powered aircraft. The
 

advantage in mission'fuel of the baseline propfan over the baseline turbofan
 

is 17.6 percent. Comparison of the mission fuel requirements indicate that
 

the largest percentage of fuel saving (21 percent) is attained by reducing
 

the cruise speed of the turboprop to Mach 0.75. Incorporation of the 1990
 

engine technology in both the propfan and turbofan powered aircraft results
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in a 17.1 percent advantage in mission fuel for the turboprop since the
 

improvement in fuel consumption characteristics is similar for both the.turbo­

shaft and turbofan engines. This advantage in fuel savings is similar to
 

that shown for the baseline aircraft, however, the fuel savings available by
 

incorporating the 1990 technology engine into the 1985 IOC turboprop aircraft
 

is an additional 10.8 percent.
 

Incorporation of the alternate turboshaft engine, PD 370-22, into the
 

1985 IOC aircraft results in a additional small savings in mission fuel of
 

approximately 0.2 percent due to the decrease in installed propulsion system
 

weight.
 

Figure 53 depicts the potential fuel savings available for the turboprop
 

aircraft,-with the design/mission characteristics, investigated in this study,
 

oveir the baseline 1985 IOC turbofan aircraft. A potential of approximately
 

32 percent fuel savings and approximately 17 percent DOC savings, shown in
 

Figure 54, are available over the 1985 IOC turbofan aircraft by utilization
 

of a 1990 teclnology turboshaft engine with the 8 bladed propfan flying at a
 

cruise speed of Mach 0.75.
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SECTION 5
 

CONCLUSIONS AND RECOMMENDATIONS
 

The results obtained from this study show that the advanced propfan
 

Powered transport aircraft, with the 8 bladed propfan, is a viable alternative
 

to the turbofan powered aircraft and offers significant savings in fuel and
 

operating costs without compromising passenger comfort. The advantage in
 

fuel and operating costs of the propfan over the turbofan continues to be
 

significant for the 1990 IOC time frame. Additionally, further fuel and
 

operating cost advantages are shown for the propfan aircraft at the reduced
 

cruise speed consistent with current operator experience for the design
 

mission range.
 

Propfan data supplied by Hamilton Standard, as a result of their ongoing
 

propfan test program, shows that the performance goals are attainable. The
 

noise generated by the propfan continues to be somewhat of a problem in that
 

weight penalties required to damp the noise transmission into the aircraft
 

cabin detract somewhat from fuel and operating cost savings. Estimates of
 

the performance and acoustic characteristics of a 10 bladed propfan indicate
 

potential for reducing the weight penalty required for the propfan aircraft.
 

To realize the potential fuel and operating cost advantages with the
 

advanced turboprop aircraft, as identified during this study, the following
 

research and technology items should be accomplished.
 

5.1 PROPFAN DESIGN
 

Data from the 8 bladed Hamilton Standard propfan, as a result of wind
 

tunnel tests conducted on a 2 foot diameter model; indicate that propfan
 

efficiency goals can be attained or exceeded. Acoustic measurements taken
 

in other testing indicate that induced sound pressure levels are higher
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than estimated. Testing conducted at different tip speeds and Mach numbers
 

for the 8 bladed propfan and a projection of this data to a 10 bladed con­

figuration indicates a significant -potential reduction in acoustic noise,
 

while maintaining efficiency goals.
 

Further design studies are required to assess the performance, acoustics,
 

economics, and mechanical design characteristics of 10 bladed and 12 bladed
 

propfan configurations. These design studies should be supplemented with
 

component development and testing to provide a viable, demonstrated propfan
 

design for utilization in a 1990 IOC aircraft.
 

5.2 AIRCRAFT ACOUSTIC TREATMENT
 

For the advanced turboprop aircraft, one of the major design considera­

tions is the reduction of excessive noise transmitted to the cabin interior.
 

At the design goal of 80 percent fan efficiency and a cruise Mach number
 

of 0.80 at 30,000 feet, the tip noise generated by an 8 bladed fan with a
 

tip speed of 800 fps is approximately 138 dB at the fuselage wall. 

Maintaining the cabin interior noise levels at a maximum of 90 dB
 

requires a reduction in acoustic transmission of some 48 dB. Conventional
 

wing mounted engines (as utilized in this study) requires that the burden of
 

noise reduction be obtained by structural design of the cabin walls.
 

The mechanism of noise transmission through the cabin walls as well as skin
 

initiated in the fuselage by blade tip passage, is not well understood. The
 

design of an advanced turboprop aircraft with wing mounted propfans will
 

probably be paced by the noise transmission losses required through the fuse­

lage walls and the acceptable sound pressure level inside the cabin.
 

The approach taken during this study is one of damping the noise through
 

the cabin walls using limp wall mass treatment. Using a double wall con­

struction with the maximum possible air space alleviates the cabin noise
 

attenuation but results in increased fuselage diameter along with increased
 

aircraft weight. The best potential solution appears to be the use of
 

double wall construction providing as much structural damping in the affected
 

areas as possible.
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Design studies, in conjunction with development testing should be
 

conducted to provide the necessary information regarding the mechanism of
 

noise transmission and damping and structure excitation when utilizing the
 

propfan configuration. Also, further studies should be conducted, and
 

followed by development testing, to examine fuselage wall structural and
 

damping concepts, optimized for reduction in noise levels, weight, produci­

bility, maintainability, and economics.
 

5.3 	AIRCRAFT CONFIGURATIONS
 

Accomplishment of this study, and the previous RECAT study, utilized
 

a 4 engine (conventional wing mounted engines) turboprop aircraft. Locating
 

the propfans away from the cabin area would greatly reduce the amount of
 

noise transmitted to the cabin. To accomplishithis a configuration study,
 

including a 3 engine design, could be conducted to investigate alternate
 

engine/aircraft installation configurations. Another purpose of a 3 engine
 

configuration would be to enhance utilization of the propfan concept for a
 

complete range of aircraft sizes.
 

The study approach would be to evaluate a series of fin positions for
 

the third engine considering fan diameter, tip to fuselage clearance, weight
 

and balance effects, stability and control, potential acoustic fatigue and
 

noise transmitted to the cabin. These results could then be extended to
 

pylon or stabilizer positions and an evaluation could be made for a variety
 

of 2, 3, 4 wing and tail engined configurations.
 

5.4 	ADVANCED TECHNOLOGY ENGINES
 

Significant design and technology studies, along with component develop­

ment testing, are currently in process for advanced technology, energy
 

efficient turbofan engines. Similar studies and component tests should be
 

conducted for the turboshaft engine utilizing those technology areas, where
 

applicable, which are being developed for the turbofan. The test program
 

now in process on the propfan configuration should be supplemented with a
 

similar program to develop an advanced technology, energy efficient,
 

economically viable turboshaft engine.
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HAMILTON STANDARD
 

Windsor Locks, Connecticut 06096 	 Please address answer to 
Mail Stop No. 1A-3-1 

June 13, 1977 

Lockheed-California Company 
Lockheed Aircraft Corporation
 
2555 North Hollywood Way - Box 551
 
Burbank, California 91503
 

Attention: Kit Carson - Bldg. 63, Plant A-i, Dept. 75-21
 

Subject: Prop-Fans for RECAT II
 

Reference: HS/LCC technical discussions at LCC on 5-3-77
 

Dear Kit:
 

An aero/acoustic parametric study has been conducted as was agreed to in the
 
reference discussions. Curves presenting the results are enclosed. The
 
performance and noise data are updated by the latest test results and reflect
 
future Prop-Fan designs. The study covers 8 and lT-aTes, 600 to 800 feet per
 
second. tip speed, 0.7 to 0.8 Mach number, and a range of efficiency (SHP/D2).
 

The first three curves are the generalized efficiency maps for eight blades at
 
0.8, 0.75, and 0.7 Mn and 30,000 feet. The fourth thru sixth curves represent
 
Prop-Fans sized for 3860 pounds, Tnet + Tjet, for each 	Mn. These were generated
 
using the efficiency maps for each respective Mn. The seventh curve provides
 
the engine power information for each Mn. Curves eight thru thirteen provide
 
the same information for ten blades.
 

Curves fourteen and fifteen provide the parametric overall SPL which complement
 
curves one thru three and eight thru ten, respectively. Curve sixteen shows the
 
spectrum shapes at 600, 700, and 800 feet per second. Although labeled for 0.7
 
Mn, it should be considered representative for the entire Mn range under
 
consideration here. Curves seventeen and eighteen show the directivities with
 
varying tip clearance to the fuselage for 8 and 10 blades. Again these curves
 
can be used over the Mn range.
 

Both the performance and noise curves are generalized based on your need to
 
resize for a lower thrust at 0.75 and 0.7 Mn. Using the generalized curves,
 
LCC can accomplish the same results as shown on curves four thru seven and eleven
 
thru thirteen for any thrust level.
 

HS has selected an increased number of blades in addition to the 8 LCC requested
 
based on acoustic considerations. Increasing the number of blades while keeping
 
total solidity about the same will lower the overall SPL (hence, the level of
 
first blade passing frequency also reduces), will increase the frequency at which
 

Division of 

UNITED
 
TECHNOLOGIEST.
 
Telephone (203) 623-1621 - Telex 9-9288 TWX 710-420-0584 

0 



HAMILTON STANDARD 

Lockheed-California Company -2- June 13, 1977
 

the tones occur, and will improve efficiency slightly. It is estimated that
 
a 10 blade Prop-Fan will have a rotor weight which is 10% higher than the 8
 
blade weight provided by data package SPO5A76 dated 2-27-76. Acquisition and
 
maintenance costs for a 10 blade Prop-Fan will also increase slightly over the
 
8 bladed rotor. While not much change is expected in acquisition cost of the
 
baseline 8 blade Prop-Fan, the results of the recently completed NASA funded
 
maintenance study indicate that the maintenance cost information supplied for
 
RECAT I is conservative. Since LCC will use the enclosed data to optimize
 
the propulsion system, it would be best to estimate the costs (both acquisition
 
and maintenance) after the configuration matrix has been narrowed somewhat.
 
Please provide the.selected Prop-Fan diameter, horsepower, tip speed, and number
 
of blades when available for this task.
 

If any questions come up, please contact me.
 

Very truly yours,
 

HAMILTON STANDARD
 
Division of United Technologies Corp.
 

New Produ evelopment
 
BSG/csd
 
Enclosures
 

cc: Messrs. B. Miller (NASA-Lewis)
 
L. Williams (NASA-Ames)
 
J. Dupak (LCC)
 

bcc: Messrs. C. Rohrbach (2)
 
F. Metzger
 
W. Adamson
 
R. Levintan/R. Bussolari
 
R. Baum (Los Angeles)
 

File 2.3.3
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