General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
PHOTOGRAPHIC CHARACTERIZATION OF SPARK-IGNITION ENGINE FUEL INJECTORS

by Peggy L. Evanich

Lewis Research Center
Cleveland, Ohio 44135

February 1978
Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air.
PHOTOGRAPIHC CHARACTERIZATION OF SPARK-IGNITION
ENGINE FUEL INJECTORS

by Peggy L. Evanich

Lewis Research Center

SUMMARY

Fuel injector atomization characteristics are being studied in relation to emission and fuel consumption data for several general aviation spark-ignition engines. A qualitative evaluation was made of manifold port fuel injectors suitable for use in these types of engines.

Several injectors were tested by spraying fuel into quiescent air at flows specified for particular engines as defined by the Environmental Protection Agency (EPA) five-mode aircraft operating cycle. Other injectors were tested at constant fuel pressure, as specified by the manufacturers. Comparisons of water and fuel sprays showed that the two fluids do not result in similar atomization characteristics.

Mechanically and electronically operated pintle injectors exhibited the best overall atomization characteristics. Plain-orifice injectors currently in use on the Avco-Lycoming IO-320 engine and the Teledyne-Continental TSIO-360-C engine imparted no atomization to the fuel under the conditions tested. Two types of experimental injectors, a modified pintle injector equipped with multihole plates and a modified plain-orifice nozzle with a multihole plug, were also tested, but no improvements in atomization were evident.

INTRODUCTION

NASA is involved in a research and technology program related to general aviation engines. The overall objective of the program is to establish and demonstrate the technology which will safely reduce general aviation piston engine exhaust emissions and fuel consumption. One area of technology that is being pursued to accomplish these goals is improved manifold port fuel injection.

The degree of fuel atomization influences the degree of homogeneity of the fuel/air mixture which directly influences the combustion process. A lean-limit extension and reduced exhaust emissions may be possible with improved
homogeneity of the charge, but neither has been fully substantiated (refs. 1
to 4). Any program that endeavors to improve emissions and performance of
an engine via fuel injection would be greatly aided by studies of fuel atomiza-
tion in that engine, a part of which is to characterize the fuel spray.

A qualitative evaluation of spark-ignition engine manifold port fuel injectors
suitable for general aviation engines has been performed using photographic
data. The relative degrees of atomization, cone angle, and overall spray ap-
pearance were compared for the various injectors for fuel flow requirements
defined by the EPA five-mode aircraft operating cycle. Current aircraft fuel
injectors, commercially-available automotive fuel injectors, and several ex-
perimental injectors with multihole configurations were evaluated.

APPARATUS AND PROCEDURE

Test Facility

A schematic of the fuel injector spray rig is shown in figure 1. A high
pressure air supply was used to pressurize the test fluid which was then fil-
tered. The fluid was metered and routed to the injector. Maximum flow rate
was 24 pounds per hour. For the constant pressure injectors, pressures varied
30 to 90 psig. One injector that is used on turbocharged aircraft engines was
equipped with an air shroud connected to the turbocharger compressor discharge.
The high pressure air supply was also used to supply this air at 0 to 11.5 psig.
An electronic power supply was used to operate the electronic injectors with
12 volts.

The spray photographs were taken using a reflected light method. A 4 by
5 inch Graphic camera with a Polaroid adapter, a 127-millimeter lens, and
Type 55 or 52 Polaroid film was used. Illumination was provided by an Edgerton
microflash unit which was synchronized with the camera shutter. Camera shut-
ter speed was 1/200 second; the strobe duration was 0.1 microsecond. The
spray chamber consisted of a rectangular box, 6 by 6 by 8 inches, with plastic
windows for strobe illumination and camera access. The injectors were fixed
at the top surface of the chamber, spraying vertically downward into ambient
air.

Aviation fuel, 100/130 octane, was used in all tests; a few tests were re-
peated using water for comparison purposes only. The physical properties of
both fluids are given in table 1.
Test Procedure

Each injector was positioned separately in the test rig. Fluid in the accumulator was pressurized using the air supply and regulated to the correct level for constant pressure nozzles, or the flow rate was adjusted for the variable flow injectors. For shrouded injectors, the shroud air pressure was adjusted, then the fuel flow rate was set. When the fuel spray became fully developed, the photograph was taken.

Injectors Tested

Five different types of injectors were tested: plain-orifice; mechanical pintle; electronic pintle; a modified plain-orifice, and a modified electronic pintle, both using showerhead configurations. The particular injectors tested were:

1. Simmonds 571341 Injector, mechanical outward opening pintle, 70 psi opening pressure, used for ordnance and aircraft engines
2. Bosch 043-750-200-4 Injector, mechanical outward opening pintle, 45 psi opening pressure, used in Bosch K-Jetronic fuel injection systems
4. Lucas 073143 Injector, electronic solenoid actuated inward opening pintle injector, used in Lucas electronic fuel injection systems
5. General Motors 1607247 electronic solenoid actuated inward opening pintle injector, used in General Motors automotive engines
6. General Motors 1606771 electronic solenoid actuated inward opening pintle injector, used in General Motors automotive engines
7. Teledyne-Continental Motors 633608-13E, plain-orifice, low pressure injector, used on Teledyne-Continental Motors TSIO-360-C engine
8. Bendix L74151, plain-orifice, low pressure injector, used on Avco-Lycoming IO-320 engine
9. Teledyne-Continental Motors 627335, modified plain-orifice, low pressure injector, three injectors total
10. Modified Bosch L-Jetronic electronic solenoid actuated inward opening pintle injector, four configurations

The modified Bosch L-Jetronic injector, shown in figure 2, was fabricated by drilling out part of the pintle on the injector. Small circular plates with
various diameter laser-drilled holes were then fastened to the nozzle opening. Holes were drilled to diameters of 0.002, 0.004, 0.010, and 0.040 inch.

The Teledyne-Continental Motors 627335 injectors, that were modified with collimated hole structure (CHS) elements, were fabricated by the Technetics Division of Brunswick Corporation. The standard injector is shown in figure 3. The CHS, invented by the Brunswick Corporation, consists of a cylindrical stainless steel plug fabricated with 200 circular holes of 0.002 inch in diameter. One plug was inserted into each injector (fig. 4), each plug a different length; 0.1026, 0.1536, and 0.2033 inch. Each injector was tested at its maximum flow rate, 18.2, 12.3, and 9.3 pounds per hour, respectively. The maximum flow rate of each modified injector varied with the different size plugs since at constant pressure the flow rate through a modified injector dropped as compared to the standard injector.

Most injector flow rate and/or shroud air pressures were established according to the fuel flow requirements of the Teledyne-Continental Motors TSIO-360-C engine which is being used for pollution and fuel consumption programs at NASA Lewis Research Center. The Bendix L 74151 Injector flow rates were based upon data from a carburetted Avco-Lycoming O-320-D1AD engine, which can be retrofitted with a fuel injection system. The complete test matrix for all injectors is tabulated in table II.

RESULTS AND DISCUSSION

The Simmonds 571341 injector was pressurized with aviation fuel at 70, 80, and 90 psig with no apparent difference in atomization characteristics (figs. 5 to 7). The injector yielded a soft, 65° conical spray. The fuel appears to be finely atomized and well-distributed. Each photograph also indicates a slight pulsation of the spray caused by the oscillation of the injector spring under pressure which activates the mechanical pintle.

This injector was also pressurized with 90 psig water (fig. 8) and resulted in a conical spray similar to the fuel spray. The major difference was the quality of atomization. Whereas the fuel spray exhibited a fine mist, the water was ejected in irregularly-shaped masses of fluid and large discernible droplets of water.

The Bosch K-Jetronic injector at 48 psig fuel pressure performed similarly to the Simmonds injector, except the spray cone angle was 30° (fig. 9). A water spray at 48 psig formed more masses of water than distinct droplets (fig. 10).
Based upon these fuel-water comparisons, it was decided not to use water for further testing. Although water is completely safe to use for test purposes, it was not at all similar to fuel in its atomization characteristics for the same injector.

The Lucas, Bosch, and General Motors electronic injectors, basically of the same design, differ mainly in their respective fuel flow rates. Thus, the spray characteristics were quite similar. Each produced a soft, even spray, but had different spray cone angles. The Lucas injector (fig. 1) resulted in a 25° cone angle. Figure 12 shows the Bosch L-Jetronic injector spray 18° cone angle. The General Motors 1607247 injector, used on Cadillac Seville engines, also showed an 18° cone angle (fig. 13). Used on larger Cadillac engines, the General Motors 1606771 injector in figure 14 shows a 12° spray cone angle. The electronic injectors were pressurized with fuel at 40 psig, except the General Motors 160771 which was pressurized at 36 psig.

Figures 15 to 22 show the atomization characteristics of the Teledyne-Continental Motors 633608-13E injector which is in use on their current production model TSIO-360-C engine. This injector is equipped with an air shroud that is connected to the turbocharger compressor discharge outlet. Eight fuel flow rates and compressor discharge pressures corrected for ambient conditions, were chosen to simulate the idle, taxi, takeoff, climb, approach, cruise economy, cruise performance, and recommended cruise operating modes for the TSIO-360-C engine as tabulated in table II.

Varying degrees of atomization occur at idle, taxi, approach, cruise economy, cruise performance, and recommended cruise (figs. 15 to 20). The amount of atomization appears to be a strong function of the compressor discharge pressure. At idle, where this pressure is highest relative to manifold pressure, the atomized fuel forms a fine mist. As this differential pressure is decreased, the atomization continues to degrade until at the takeoff and climb conditions, where the compressor discharge pressure is zero relative to manifold pressure, no atomization exists. The fuel is injected as a stream of fluid for these two modes (figs. 21 and 22).

The Bendix L74151 injector is used on the Avco-Lycoming naturally-aspirated IO-320-D1AD engine. No fuel atomization occurred at any of the five operating modes tested for this engine: idle, taxi, takeoff, climb, and approach. Fuel dribbled from the injector at idle and taxi (figs. 23 and 24), and discharged as a stream at the other three conditions (figs. 25 to 27).

The modified TCM injector resulted in steady streams of fuel, apparently unaffected by the CHS plug. The injectors were further modified by removing the nozzle assembly at section A-A (fig. 4). This was done so that any atomization that might occur would not be negated by forcing the liquid into a stream
within the nozzle. As shown in figures 28 to 30, atomization did not occur with any of these modified injectors.

The four (4) experimental injector plates had numbers of various sized holes drilled using a laser. Two single-hole 0.010- and 0.040-inch plates were tested at fuel pressures of 40 and 30 psig, respectively. The 0.010-inch hole plate gave a dense cone shaped spray (fig. 31) near the orifice with a cone angle of approximately 180°. The fluid appears to atomize more fully as the distance from the orifice increases. The 0.040-inch hole plate did not atomize the fuel except for a few negligible isolated droplets (fig. 32).

Two plates were drilled with a grid of holes: thirty-three 0.002-inch holes, and twenty-one 0.004-inch holes. Neither grid (figs. 33 and 34) produced any atomization of the fluid.

SUMMARY OF RESULTS

Qualitative comparisons of manifold-port fuel injectors were conducted using photographic data of fully developed fuel sprays into quiescent air in order to screen injectors for further investigation. The Simmonds mechanical pintle injector and the Bosch K-Jetronic injector show good atomization characteristics. The four electronic pintle injectors that were similar in design and performance did not exhibit the fineness of atomization that the mechanically-operated injectors did. The experimental, modified L-Jetronic injectors offered no improvement, and often showed a degradation of the fuel spray characteristics.

Under the test conditions (injection into quiescent air), the Bendix plain-orifice injector did not atomize the fuel, and the Teledyne-Continental Motors shrouded injector fully atomized the fuel only under the conditions for idle and taxi. The Teledyne-Continental injectors fitted with the CHS plugs show no improvement over the plain-orifice injectors.

A subsequent effort to quantify these parameters would form a logical extension of these test results. It would then be desirable to correlate such atomization characteristics with performance and emissions data from an actual engine equipped with fully quantified manifold port fuel injectors.
REFERENCES

TABLE I. - TEST FLUID PROPERTIES AT 20°C

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Specific gravity</th>
<th>Surface tension, dynes/cm</th>
<th>Viscosity, cS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/130 Aviation fuel</td>
<td>0.7382</td>
<td>23.6</td>
<td>0.607</td>
</tr>
<tr>
<td>Water</td>
<td>1.0028</td>
<td>71.3</td>
<td>0.993</td>
</tr>
</tbody>
</table>

*Properties determined at NASA Lewis Research Center, December 1977.

TABLE II. - TEST MATRIX

<table>
<thead>
<tr>
<th>Injector</th>
<th>Fuel flow or pressure</th>
<th>Shroud air pressure (psig)</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teledyne-Continental</td>
<td>1.3 lb/hr</td>
<td>8.6 psig</td>
<td>Idle</td>
</tr>
<tr>
<td>TSIO-360-C</td>
<td>2.6</td>
<td>11.5</td>
<td>Taxi</td>
</tr>
<tr>
<td>633609-13E</td>
<td>23.8</td>
<td>5.76</td>
<td>Takeoff</td>
</tr>
<tr>
<td></td>
<td>18.2</td>
<td>5.2</td>
<td>Climb</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>.43</td>
<td>Approach</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>.5s</td>
<td>Cruise economy</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td></td>
<td>Cruise performance</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td></td>
<td>Cruise recommended</td>
</tr>
<tr>
<td>Simmonds 571341</td>
<td>70 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch K-Jetronic 0437-502-004</td>
<td>45 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch L-Jetronic 0280-150-151</td>
<td>40 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas Electronic 073143</td>
<td>40 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bendix 160- '71</td>
<td>40 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bendix 1607247</td>
<td>40 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bendix L74151 IO-320</td>
<td>1.2</td>
<td></td>
<td>Idle</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td></td>
<td>Taxi</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td></td>
<td>Takeoff</td>
</tr>
<tr>
<td></td>
<td>15.2</td>
<td></td>
<td>Climb</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td></td>
<td>Approach</td>
</tr>
<tr>
<td>Collimated holes</td>
<td>0.2033 × 0.059 in.</td>
<td>9.3 lb/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1535 × 0.059 in.</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1026 × 0.059 in.</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>Experimental nozzle</td>
<td>0.002 (33 total grid)</td>
<td>30 psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.004 (21 total grid)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.010 (hole)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.04 (hole)</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

*Shroud air pressure = Turbocharger compressor discharge pressure × atmospheric pressure. Engine manifold pressure
Figure 1. - Fuel injector spray rig.

Figure 2. - Modified Bosch L-jetronic injector.
Figure 3. - Standard TCM 627334 injector.

Figure 4. - Modified TCM 627335 injector.
FIGURE 5
SIMMONDS 571341 MECHANICAL INJECTOR FUEL SPRAY, 70 PSIG

FIGURE 6
SIMMONDS 571341 MECHANICAL INJECTOR FUEL SPRAY, 80 PSIG
FIGURE 7
SIMMONDS 571341 MECHANICAL INJECTOR FUEL SPRAY, 90 PSIG

FIGURE 8
SIMMONDS 571341, MECHANICAL INJECTOR WATER SPRAY, 90 PSIG
FIGURE 9
BOSCH K-JETRONIC INJECTOR FUEL SPRAY, 48 PSIG

FIGURE 10
BOSCH K-JETRONIC INJECTOR WATER SPRAY, 48 PSIG

ORIGINAL PAGE IS OF POOR QUALITY
FIGURE 11
LUCAS 073143 ELECTRONIC INJECTOR FUEL SPRAY

FIGURE 12
BOSCH 0-280-150-151 L-JETRONIC INJECTOR FUEL SPRAY
FIGURE 13
GENERAL MOTORS 1607247 ELECTRONIC INJECTOR FUEL SPRAY

FIGURE 14
GENERAL MOTORS 1606771 ELECTRONIC INJECTOR FUEL SPRAY
FIGURE 15
TCM 633608-13E INJECTOR FUEL SPRAY, IDLE MODE

FIGURE 16
TCM 633608-13E INJECTOR FUEL SPRAY, TAXI MODE
FIGURE 17
TCM 633608-13E INJECTOR FUEL SPRAY, APPROACH MODE

FIGURE 18
TCM 633608-13E INJECTOR FUEL SPRAY, CRUISE ECONOMY MODE

ORIGINAL PAGE IS OF POOR QUALITY
FIGURE 19
TCM 633608-13E INJECTOR FUEL SPRAY, CRUISE PERFORMANCE MODE

FIGURE 20
TCM 633608-13E INJECTOR FUEL SPRAY, CRUISE RECOMMENDED MODE
FIGURE 21
TCM 633608-13E INJECTOR FUEL SPRAY, TAKEOFF MODE

FIGURE 22
TCM 633608-13E INJECTOR FUEL SPRAY, CLIMB MODE

ORIGINAL PAGE IS OF POOR QUALITY
FIGURE 23
BENDIX L74151 INJECTOR FUEL SPRAY,
IDLE MODE

FIGURE 24
BENDIX L74151 INJECTOR FUEL SPRAY,
TAXI MODE
FIGURE 25
BENDIX L74151 INJECTOR FUEL SPRAY, TAKEOFF MODE

FIGURE 26
BENDIX L74151 INJECTOR FUEL SPRAY, CLimb MODE

ORIGINAL PAGE IS OF POOR QUALITY
FIGURE 27
BENDIX L74151 INJECTOR FUEL SPRAY, APPROACH MODE

FIGURE 28
TCM 627335 INJECTOR MODIFIED WITH .2033 IN. CHS PLUG, 9.3 LB/HR FUEL FLOW
FIGURE 29
TCM 627335 INJECTOR MODIFIED WITH .1536 IN. CHS PLUG, 12.3 LB/HR FUEL FLOW

FIGURE 30
TCM 627335 INJECTOR MODIFIED WITH .1026 IN. CHS PLUG, 18.2 LB/HR FUEL FLOW
FIGURE 31
MODIFIED BOSCH L-JETRONIC INJECTOR
FUEL SPRAY, 40 PSIG, .010 in. OPENING

FIGURE 32
MODIFIED BOSCH L-JETRONIC INJECTOR
FUEL SPRAY, 30 PSIG, .040 in. OPENING
FIGURE 33
MODIFIED BOSCH L-JETRONIC INJECTOR FUEL SPRAY, 30 PSIG, 33 HOLE GRID 0.002 IN.

FIGURE 34
MODIFIED BOSCH L-JETRONIC INJECTOR FUEL SPRAY, 30 PSIG, 21 HOLE GRID 0.004 IN.