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THE EXECUTION OF SYSTEMATIC MEASUREMENTS.
ON PLANE CASCADES*

Norbert Scholz

ABSTRACT
	

/313** 1

The present state of development of the experimental technique

regarding the flow through cascades and several points to be specially

observed in the design of cascade wind tunnels are discussed. The cas-

cade wind tunnel developed by the author and used at the Institute for

Fluid Mechanics at the Technical University of Braunschweig, is described.

The equations required for the evaluation of the momentum measure-

ments in two-dimensional flow through cascades are develo ped. Applying

a correction of general applicability, it is possible to convert the

computation of the .wake flour in a very simple manner. Regarding the

effect of the jet contraction dine to the boundary layer along the side

walls a simple method for correction is also given in order to obtain

two-dimensional flow characteristics. Also given are the equations for

the evaluation of the pressure distribution measurements. Another con-

tribution is made regarding the presentation of 'the test results in

form of non-dimensional quantities.

Finally some of the results of systematic measurements of cas-

cades with symmetrical aerofoil sections NACA 0010 are reported, and

the above suggested method is applied for the evaluation of the measure-,

ments .

I. INTRODUCTION^4. The development of fluid flow machines has progressed over the

last ten years, primarily using empirical methods. It was primarily

*From the Institute for Fluid Mechanics of the Braunschweig institute
of Technology (director H. Schlichting), Professor dissertation ap-
proved by the mechanical engineering department. (Prof. Dr..H. Schlic
Ling and Prof. H. Blank, Prof H.-Petermann).

'	 Numbers in margin . indicate pagination in foreign text.
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due to the appearance of the gas turbine that it became clear that fur-

ther increases in efficiencies of fluid flow ri-tachines depends very

greatly on an in-depth knowledge of the flow-physical processes within

the cascade, the basic element of fluid flow machines. Cascades in

axial flow can be analyzed by rolling off a coaxial cylinder segment

onto a plane, which reduces the problem to a two-dimensional problem,

the problem of a plane cascade flow. T.ais is why research on plane

blade flow has become one of the most important foundations for the

development of fluid flow machines. Many papers have treated the prob- /31.4

lem theoretically and experimentally. However, there has been no sys-

tematic investigation of the influence of individual geometric para-

meters of a blade configuration, either from the theoretical or the

experimental point of view.

From the theoretical side, one can use boundary layer theory and

simple methods for calculating potential flows through cascades, which

leads to a systematic and rational analysis of the problem (see [16]).

An experimental treatment of the problem has probably not been done be-

cause of the large number of parameters and the experimental difficul-

ties. Often the results are only partially recorded, or not at all

(see 1171). It seems that a large-scale experimental effort will not

be possible because of . the substantial effort involved. We believe

that these problems can only be solved with a reasonable amount of ef-

fort, by using rational theoretical calculation methods to conduct sys-

tematic research on plane blade flow. In order to verify the theore-

tical calculations, enough experimental results must be used.

The lnstitiute. for Fluid.Mechanics of the Braunschweig Institute.

of Technology, under the direction of Prof. H. Schlichting, for several

years has attempted to contribute to a solution of the problem of blade

cascade flow (see [19], [20j).

The present paper gives a summary on the problems of experimen-

tation, and their solution. We also give a few results of systematic

blade cascade measurements.

2. EXPERIMENTAL TECHNIQUE

2.1 General Design. Characteristics of Cascade:Test'Stands

Even though the development of test stands for investigating

cascade flows is over two decades old, it has not reached the state of

2



investigations of single wings. The reason for this is not.only the
`

	

	 importance of wings in aviation. The difficulties in the experimental
technique and the required effort are considerably greater fora cascade
than for a single profile. It is well-known that to achieve plane flow
over a single profile, considerable effort is required, which involves

careful sucking-away of the boundary layers which form at the end

discs of the wing. In the case of a blade cascade, there should be

flow deflec*•ion, and therefore a pressure jump in the cascade. It can`

only be maintained by separating the incoming and outgoing flow sides

of a blade cascade, using fixed walls. This means that the blade cas-

cade must be placed between two side wa:l:ls, which impair the achievement

of plane flow.

The following table gives a summary of several cascade test
stands for incompressible flow. We also show. the cascade test stand_

of the Braunschweig Institute of Technology. For small Dlach numbers,
the incompressibility of the flowing medium can be assumed, but this
is not true in practice in general. Nevertheless, investigations in
the incompressible range.give a great deal of information about the
flow behavior of the compressible flow, as long as the local overve-
locities on the profile.are less than the speed of sound, and therefore
no compression shocks occur.

Except for special test facilities, : and because of . the strong
changes in direction of the jets impinging on the cascade, in cascade
test stands it is usually not possible to recover part of the flow
energy by using a closed circuit, for the air. This is..Aone.in.normal
wind tunnels today. Because of this, and because of the relatively
high flow losses produced by the blade cascade itsel:f,. the power re-
quirements for cascade wind tunnels is in general greater.than for
normal wind tunnels with the same velocity. According to the way in
which the. air is . directed., we can distinguish between pressure oper-
ation and suction operation in.cascade test stands (Figure -1). In
the case of pressure operation; the.air is. pressed into a closed in-
c ident :channel by a :blower, which supplies air to the blade cascade
from a certain incident flow direction.. In'the case of suction oper-
ation, the air is sucked , in from the outside. :It passes through the
blade cascade and is then directed to a.blower. I  the first cases,
free expulsion of the air is possible behind the blade cascade, which

PAGEORIGINS P
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Figured: Designs of wind tunnels for cascade investigations.

a) pressure operation	 b) suction operation

means that the outgoing flow direction, not known to begin with, cannot

be disturbed by limiting walls having the wrong inclination. On the

other hand, during suction operation, the sucked-in air is supplied to i
the blower behind the cascade in a closed channel, which means that the

outflowing flow direction can be falsified. The sucked--in air

can be allowed to flow into an underpressure'chamber from which the air

isagain sucked away. The advantage of suction operation is the small

wall boundary layer at the blade cascade inlet, if the suction cone is

very short. Also, the drive power is ' reduced because of the reduced

expulsion loss. Basically, pressurized operation with free outflow be-

hind the cascade should be the most favorable configuration, and the

present collection of references demonstrates this. However, for Jn-- /315

termittent channels, in which operation occurs by letting ai.y flow i ntr1

a vacuum chamber, only suction operation is possible.

The Reynolds numbers used are in the range between 2 x.10 5 to

6 x.10 5 . An increase in the Reynolds number up to 10 6 seems desirable,

because most flow machines operate.at these values, and even higher.

This requires relatively large blade chords,.which also increases the

measurement accuracy. A blade chord of 200 mm should be a useful

value.

Strictly speaking, a blade cascade is a row of infinitely many

.....blade profiles arranged along a straight line, which can be approximated	 j

in experiments'by a small number of blades. If the upper and lower 	 a

limits (base walls) of the blade cascade are designed so that these

walls are streamlines of the ;_nfinxtely-long cascade, and if we avoid	 a

As



Table 1: Design Characteristic of Several Plane Cascade Test Stands
for Incompressible Flow

CH 0 o
0.,^
^ Typ e

Q Research H
Type of H• ] m Boundary of

Author Facility w Tunnel T$ d ca P Layer Measure-

^ •^ o m H Removal. meat
Cd

H

1. K. Christiani AVA 1928 Pressurej4x105 5 3. none force,
Goettingen Operation momentum.,

free pressure
outflow distribution

.2 C. Keller E.T.H. 193+ Pressure 4xlO 5
5 2 .31 none force,

Zurich. Operation, momentum,
free pressure

outflow distribution

- 3 H. Hausenblas BW 1951 Suction 2x1.05 6. 5 none momentum,
Berlin Operation pressure

closed. distribution
outflow

- 4 W. -T. .Sawyer- E.T.H. 1949 Pressure 2xI05. , 8 3. slit force,
Zurich Operation, suction momentum,

closed at. all pressure
outflow walls distribution

5 F. G. Blight Aeronautic 1949 Pressure 2xlO 12 6. slit momentum:,
W. Howard. Research operation, suction pressure
H. McCallum. Lab free at all distribution

k; Melbourne . outflow .. side..
4s -walls

K 6 A.D.S.. . Carte r Nat. Gas. 19;0 Pressure 3x105 . 12 4 slit momentum,
S.
H.

T	 Andrew's
Shaw

Tu:rb. Es-
tablishm.

operation,
free

uetion
at floor.

pressure
distribution

Farnborough outflow walls

7 C. Mortaring Po1iteehnikum 1951. pressure 4xlO S 6 3.5 none momentum,
Turn operations pressure

free distribution
outflow



9	 Author	 Research	 a-, '^ Type of ro	 o	 r'd	 Boundary

$4	 o	 m
o	 9	 0 . 	o

P,	 a	 21 o

,r4

Facility	 ° F `Tunnel	 o	 w	 Layer	 Pleasure-
91 	 Pd PdRemoval..	 meat

Type

8	 J. R. Ervin	 N.A.S.A.	 195	 Pressure	 slit suc-	 moment-
U. C. Emery	 Langley Field	 Operation,	 5	 tion at	 pressu

free 4x1.0	 6	 4	 side walls, distribu
outflow	 and wall.

suction
within cas-

cade

-	 N. Scholz	 1?. R.	 Pressure	 6	 3	 slit	 momentiu
Braunschweig	 1953 operation	 suction	 pressure

free	 6x105	 at all	 distribu

outflow	

I	
walls

lm
^e

;ion

o.,

;ion

Table 1: (continued)
r

thick boundary layers at the base walls, then the flow can be considered

to be a segment out of an infinite row of blades in a flow. The better

we can match the boundary conditions, the smaller is the required num-

ber of blades; in order to obtain the flow of an infinte blade roa r in

the central part of the blade cascade. Figure 2 shows several ways of

designing the limiting walls for the blade cascade. Even though the

streamlines deviate from parallel flow by about one blade chord in front

of the cascade inlet, only a plane base wall can be used in practice.

Immediately after this, we can have a flexible sheath at a distance of

one-half a blade division from the last blade, which has approximately

the shape of an average streamline. However, this requires a new shape

for the sheath, for each cascade position. If the pressure differences

in the cascade are not too large, it may be advantageous to use a free

jet boundary along the final streamline. Another relatively simple
y'

solution consists of using a normal blade as the end wall, and the base

-.;

	

	 wall is placed right up to the blade nose, approximately at the stag-

nation point of the blade in free flow. However, then the boundary /316

layer of the base wall impinges on the end blade, and this leads to a

premature separation, so that it is advantageous to remove the boundary	 I

layer ahead of the cascade. One good solution to the problem may be

to allow the base walk, to terminate somewhat above the last normal blade,

ORIGINAL PAGE6	
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base wall	 flexible wall

s ccaLUCS-.

base wall.•':
f suc_6xon

than-nel

Figure 2: Designs of the end boundaries for measurements with plane
cascades.

a) . flexible end boundaries fbr. one--half . blade division
b) blade profile as end 'boundaries over an entire blade

division
c) blade profile as'an end boundary with suction.

and the intermediate air current is removed in a suction line. By

regulating the amount sucked off, it is possible to displace the stag-

nation.point at. the final blade in such . a way that the boundary con-

ditions for the flow are ,satisfied. In order to regulate:t .he suction

amount, it is advantageous to install a static pressure tap at.the base

wall at, some distance ahead of the grid-cascade inlet. It must have

,s	 the same static pressure as -in the center of the channel.- Even if there
rs

is a very large inclination of,. the cascade .front, . one can bring about
a sufficient)	 p	 g,'constant,static.. pressure variation "aloe the cascade	 E

F , inlet, which otherwise leads to. difficulties in many cases Usually,

it is not advantageous to e xpand the final walk. behind the cascade be-
yond. the cascade width, :because the ,outflow direction . is unknown. This
would mean that the fixed walls would.pro.duce a change in.the.outflow

direction. Because of the . free -T et bou^3dary,. the edge streamline isLi

given a constant pressure.:In , 'general, the trailing edge pressure of

-	 7



a cascade profile deviates only slightly from the pressure behind a

cascade, so that a constant pressure along the boundary streamline

satisfies the required boundary conditions with sufficient accuracy.

However, in many cases, especially for highly--loaded turbine cascades,

the pressure along the streamline which goes from the blade trailing

edge changes so much that it is advantageous to dispense with the free

jet boundary, and to use a plane fixed wall. Its inclination is best

determined from the condition of constant static pressure along a plane

parallel to the cascade

One additional important problem are the measures for bringing

about a plane flow in the central cross-section of the blades. Because

of the boundary layers which are produced along the side walls, the

flow is accelerated in the central part of the channel, so that down-

stream the flow increases in the central part of the channel cross-

section. This ,jet contraction increases, the greater the boundary layer

thickness is compared with the channel width and therefore with the

blade height. There will be an especially great increase in the boun-

dary layer growth at the side walls, within the-blade cascade, because

due to the interference between the blade boundary layer and the wall

boundary layer and because of the pressure increase which especially

occurs in the case of pumping cascades, the conditions which are pro-

duced along the blade contour are so unfavorable that dead water re-

gions are produced in many cases there. This is true, even though there

is healthy flow in the central part of the blade. The constriction of

the cross-section at the cascade outlet determines the contraction of

the flow in the central cross-section. This can have an effect upstream

a large distance ahead of the blade cascade. Therefore, in many cases

it is not sufficient to remove the boundary layer at the side walls

around the cascade inlet alone, especially-if a new wall boundary layer

is produced inside the cascade with a substantial thickness. We can

distinguish two types of boundary layer suction, and there can be inter

mediate kinds as well (Figure 3). One type, called "slit suction" is

characterized by the fact that suction is done in the direction of the

incoming flow. In the case of wall suction, the suction is perpendicular

to the wall and therefore perj.endicular to the main flaw direction. In

the case of the slit suction, a region corresponding to the boundary

layer thickness of the flow is cut off, and is separated from the main

8



wall tap for determining the correct
amount -of sucked-off air

Figure 3: Designs of Boundary Layer Suction.

a) slit suction b) wall suction

flow which results.in a reduction in the free channel cross--section.
The wall suction method does not change the free cross-section but only
so much air may be removed as corresponds to the displacement thickness
of the boundary layer. In this case, the undisturbed out flow will '; /317
have again the original flow cross-section available, and any previous

boundary layer disturbance will be restr;:cted to the wall area if the

channel width is large enough. The advantage of wall suction is the
small amount which has to be sucked away ., and the fact that the channel.
cross-section remains the same. However, the boundary layer removal

is not as good as for. slit suction. In addition, slit suction allows
a much simpler adjustment of the suction amount. It can be adjused

so that the static pressure measured in a wall tap compared with the
end of the slot becomes equal to the undisturbed static pressure in the
center of the channel. This adjustment has been found to be very sen-

sitive. The design of the.slit suction device is much more difficult

and was therefore only used to remove the boundary layer ahead of a

break cascade. For the first time, J. R. Erwin and J. C. Emery E81

removed the boundary layer within the cascade using a wall suction
method, and they were quite successful. The required suction power
levels are quite substantial in every case, because there are substan
tial losses in the suction lines We should also mention that when
there is a pressure drop in the cascade, there 'is a possibility that
the boundary. layer can. b e removed. without. suction blowers using an over-

pressure which prevails ahead of the cascade.

9
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2.2 Measurement Technique and Measurement Instruments

For the force measurement and the momentum measurement used for

cascade measurements, the latter is simpler and more reliable, so that

it is used almost exclusively in more recent investigations. The only

advantage of a force measurement is that it is possible to determine

the blade force of a blade, or of a blade segment, by weighing. Also,

the measurement process is much shorter and can be more rapidly evalu-

ated. In the momentum method, the flow is measured along one blade di-

vision behind the cascade at a series of points (wake measurement).

This is a substantially more accurate method, and one can measure the

local distribution of momentum along; the blade height. In the force

measurement technique, there is a substantial difficulty associated

with the suspension of the measurement blade, which does not exist in

the momentum measurement method. It is advantageous to perform pres-

sure distribution measurements along-the blade contour, to get a bet-

ter insight into the flow processes within the blade cascade. The

techniques used for this are the same as in any other pressure distri-

bution measurements.

In the momentum measurement method, which is based on the momen-

tum theorem between two planes parallel to the cascade ahead of and be-

hind the blade cascade, it is necessary to measure the following three

quantities in the incompressible case:

- 1) static pressure

2) velocity magnitude

-- 3) velocity direction

at least along the blade division, ahead of and behind the cascade.

Ahead of the cascade, at least in the region around the center of the

channel, the three flow parameters are sufficiently constant. There-

fore it is sufficient to measure these quantities at a suitable point

ahead of the blade cascade, at a distance of about one blade chord.

.:n general, it is not necessary to measure the flow direction ahead of

the cascade, because this 1,s the direction of the axis of the incident

flow channel, which is approprLfGely regulated to be horizontal. Be-

hind the cascade, the measurements are performed at several points

within sufficiently small intervals along the blade central cross sec-

tion in a plane parallel to the cascade. A probe holder which can be

displaced parallel to the cascade is required for this. The distance

ORIGINAL PAGE IS
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between the downstream measurement plane from the trailing edge plane

of the blade cascade should be selected so that the static pressure

along one blade division is approximately constant The loss flow in-

terval between the blades should have a region withno losses. In
general, this is satisfied by distances between 10 and 50% of the blade

chord behind the cascade, depending on the outflow angle.

There are three measurement variables, one for the front measure-

ment plane 1 1 11 and two for the rear measurement plane* "2y" . One of
these, the static pressure, does not require an absolute measurement,
but instead.it is sufficient to know . the pressure difference between

two .planes.- This means that a total of five quantities must. be measured.
If we only consider differential pressures between the points within the

flow as measurement variables, then we.find that the following variables.
are suitable:

1. Stagnation pressure of incident flow, ql

2. Static pressure difference, p 2 (y) - pl

3. Total pressure loss,. .91 - 92(y)
4. Incident flow angle 0l

5. Outflow angle, S2(y)

If we restrict the measurement to one blade division which is

usually sufficient in most cases, then the measurement range of the

plane 11 2y" parallel to the grid is adjusted so that the loss valley
of the central blade will lie In the center of the measurement range.
The measurement points inside the loss valley are located much more

closely inside the loss valley.because of the strong dependence of

the measurement variables on y, than in the remaining region on both

sides of the valley. One can have a. very convenient method of cal-
culating the required average measured 'values along one division, by

using an even number of equidistant intervals between the.ndivi

dual measurement points, inside and outside the wake. valley. The

integration of the measurement variables is done by using the Simpson.

rule, and this is applied to each partial region rising the .equidistant

.*The index y states . .that this is a plane, in whin the measurement
quantities still depend on the y coordinate (Figure.7)

ll



inter,,;-als*.
In order to measure the static pressure, total pressure, and out-

flow angle in the UTake at each point, it is appropriate to use combined

measurement probes, which will simultaneously measure these three quan-

tities at the same position. Figure 4 gives two de-..Igns of such probes.

The design difficulty here is to measure the static pressure directly,

without a calibration factor. We can accept the fact that the static

rotation axis

P

P
I	 P

rotation
axis

[4UII;1-
P	 f. P,9

F
Pi	 I 

Pr --` —
P

Pr	 d

F,

D	 5	 10	 15 ZO mm
1	 I	 I	 1	 I

Figure 4i Designs of measurement probes for wake measurements behind
plane cascades.

g = total pressure p = static pressure p r - p 1 = flow angle.

pressure tap will usually be located at some distance downstream from /318

the total pressure tap, because the static pressure gradient is very

small in the flow direction. The circular cylinder holders on the side

are used to correct the static pressure of the left probe. Depending

on the diameter, this results in a stagnation at the static pressure

*If M is the average value of a measurement variable f, then it is gi-
ven by a sum formula »	 r,^„	 Then the wakes g will take on the
following values, if h is the measurement point inter:Tai outside of the
wake valley and i is the (smaller) measurement point interval inside
the wake valley. For measurement points outside of the valley:

For measurement points outside of the valley, g  = h, 4h 5 2h, ..., 4h

For measurement points at the edge of the valley, g  = h + i

For measurement points inside the valley, g  = 4i, 2i, 41, ... 41.

ORIGINAL PAGE IS
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taps located in front of this point. This equalizes the overvelocity

by the displacement of the probe head. In the right probe, the static

pressure can be corrected by removing the conical, or cylindrical, part

of the probe head. The symmetrically arranged taps used for angle

measurement, can lead to erroneous measurements if the flow is highly

inhomogeneous, if the taps are too far apart. However; usually the

errors are within the measurement accuracy. Directional sensitivity

of the probes is only required perpendicular to the main flow plane,

because the probe is adjusted parallel to the flow using the zero

method, then measurements are performed.

2.3 The Cascade Test Stand of the Braunschweig Institute. -of Technology,
Fluid Mechanics Department.

in the design of the cascade test stand to be described below,

we were concerned with the points discussed above as well as the pos-

sibility of carrying out systematic cascade measurements for all cas-

cade configurations which occur} in practice.* We are especially con-

cerned with reducing the conversion time between measurements for twc

cascade configurations. The three Trost . "important parameters of plane
cascade configurations

-- 1) Division ratio t/1

- 2) Blade angle, 0.

- 3) Incident angle, 0l

should be continuously measureable over ranges which occur in practice,

and with a small amount of effort. By achieving a perfect flow at the

terminal members of the cascade, we wanted to keep the blade number as

small as possible, in order to reduce the production effort for each

special blade: shape as much as possible.. Finally, we wish to.brng

about a.plane flow in the center of the channel cross-section, in order

to have perfect comparisons with theoretical calculations of plane

blade cascades.

Figure 5 gives a schematic representation of the test-atand.

The Urind tunnel of the Fluid Mechanics Institute of the Braunschweig

Institute of Technology was available for operating the test stand,
with a free jet nozzle having a diameter of 1 .3 m. Following this.,

Engineer H. Goldimann contributed substantially to the design.

r
13
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6	 7 1 0	 9	 ?	 10	 3	 11

Figure 5: Sketch of a plane cascade test stand at the Institute for
Fluid Mechanics of the Braunschweig Institute of Technology.

1- tension roller
2- sides of the incident flow channel
3- suction slit
4- end blade
5- measurement blade with pressure caps
6- wind tunnel nozzle
7- reduction nozzle
8- inlet nozzle
9- side wall

10- rotating disc
11- wall suction

(The height h of the incident flow angle can be adjusted
between 300 and 800 mm).

there is a reduction nozzle, which reduces the flow cross-section to a

1 x 0.6 m rectangle. After this, the test stand proper follows, with

parallel side walls and floors which can be varied in height by spin-

dles. Together, they make up the flow channel. Because of the change-

able height of the incident flow channel, an inlet nozzle to the inci-

dent flow channel is made up of two flexible sheets which come after

the base sheets and which are stretched tc the required length by means

of stretching rollers. The side walls are continued by two semicircle

discs, which can be rotated around a horizontal axis at the height of

the center of the channel (change in S 1 ) and which are rigidly connec-

ted. The blades of the cascade, which are normally 200 mm deep and

600 mm wido, are placed between these walls. They are attached so that

they can be rotated around the center of the profile nose radius (change

inS S ) and they can also be displaced parallel along the cascade frontS
'	 (changeability of t/1). The end surfaces of the cascade are made as

j normal blade profiles, and the bases of the incident flow channels can
I	 ^'

also be rotated around the center of the profile radius. The bases

consist of two sheets which can slide inside one another, so that their

length can be changed depending on cascade position.
_

t^	 14
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The boundary layer removal is done using a slit suction device /319

and occurs 200 mm ahead of the terminal blades along the base walls,

and the slit suction is 30 mm high. The wall suction is located along

the side walls, along a 100-mm wide strip within the blade cascade

width. For velocities up to 50 m/s inside the rectangle cross-section,

it is possible to remove up to 10% of the amount flowing through by

suction. The suction power is 2 m 3/s with a pressure of 500 mm water

column. Figure F shows the test stand.

-441

F !	 ti

171

Figure 6: View of a Plane Cascade Test Stand at the Institute for Fluid
Mechanics of the Braunschweig Institute of Technology.

3. EVALUATION OF CASCADE EXPERIMENTS

3.1 Determination of the Outflow and the Blade Forces from Wake Measure-
ments*.

The use of the momentum method for determining the flow resis-

tance of a single airfoils and blade cascades has been found to be very

reliable for a long time. In addition, when this method is used for

blade cascades, and by also measuring the flow angle, one also obtains

the lift of the blade. This means that it is the method suited for

investigating the blade cascade flows. It is remarkable that no theo-

retical foundations for the use of the momentum method have been formu--

lated for blade cascade flows. However, the corresponding evaluation

formulas have been used and developed, that is, the Betz or the Jones

formulas. In very many wake measurements of blade cascades, one only

*The author [22] already reported on this.
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forms the average value of the measured values over one blade division.

However, these average values depend on the distance between the mea-

surement plane and the blade cascade, and compared with the homogeneous

translation flow, which would occur at a large distance behind the blade

cascade, there can be errors on the order of up to 20%, which not only

occur in the fljw loss value, but also in the static pr:-ssure and the

outflow angle. It is not important whether a second blade cascade is

to be arranged at a small distance behind the blade cascade, because

the homogeneous incident flow for the second cascade can only be a homo-

geneous transla'L:ion flow, and it must be equivalent to the inhomogenous

flow in the measurement plane in terns of momentum and energy.

In order to determine the flow variables of the homogeneous flow,

we will formulate the momentum theorem on a control surface, K 1 (Figure

7), which is located between two streamlines at a distance of one blade

	

L1 we	
^Af4

I	 ^j xt

Aa	

pplane 2

w
r	 ,s1 	Kt

 t	 ^
plane

u	 -R	 2y
A.

plane 1

Figure 7: Evaluation of weight measurements on plane cascades.

division from the measurement plane "2y" from the plane "2" as far

back behind the cascade where the homogeneous flow condition is satis-

fied. Then the continuity equation gives
! i

	

I_sin	 (	 )/i..	 L' r	 w.(J')siu/;e.^l'),f,',	 l

and the momentum theorem perpendicular to the cascade front gives

I	 r_•	 Q W2 -' Sill 11 P.. -

	

r+r	 7+r	 (2)

= t `P (.r)d,	 `-u _`(, ) sin'/i_., (l) rf v,

y	 .L

and the momentum. theorem parallel to the cascade front gives

( rr sin /L cos fi._ w.-' -	
(3)

1
r I „,= (,r) sin _., ( , t) cos/t; . l r ) rf_r•	 ORIGINAL PAGE IS

OF POOR QUALITY
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In the last equation, one should also, strictly speaking, con-

sider the shear stresses in the plane 11 2y", but they are negligible

in practice, which has been discussed by W. Traupel [9]. Using equa-

tions (1) - (3), wo can determine the velocity w 2 , the static pres-

sure p 2 , and the outflow angle S2 of the homogeneous flow from the

measured quantities from the plane 11 2y". However, we ;Till introduce

the simplification here that with substantially facilitate the eval-

uation. It is natural to substitute a constant value for the angle

distribution in the plane "2y", because in momentum measurements of

single air foils, the local flow angles is not considered, which does

not lead to any substantial errors. With this simplification, we ob- /320

tain the following values for the homogeneous flow behind the cascade

from the three equations given above, if S ty is the constant average

of the outflow angle in the plane "2y"*.

	

r	 r

	

r	 `i 1
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f	 .^
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Y	
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I
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r
v

K If we consider the variability of S ty with y, then we obtain formulas
given in the appendix.

17

mom" vwqxj^=

1



In order to obt i n formulas for the practical evaluation, we

will introduce the following dimensionless variables:

The nondimensional total average pressure loss

r .	 !i!

The nondimensional average pressure difference

r+!
P= i (* p., (_r) -1'! (I

t .	 r,

The correction term

	

v+!	 Y+f

(9)

Since the linear average is always greater than the average squared

of a square root, K is a correction term which is always greater than

0 and is also small compared with the integral values of the right

side of equation ( 9). If we substitute this quantity in (4), (5), and

(6), then after a calculation (see Appendix B) we obtain the following

formulas for converting average values of inhomogeneous flow to an

equivalent homogeneous flow:

(10)

	

qi	 qi

07	 !/ 1

=
4	

1 — P — G 1 !i (rc^s" ^',. —sin /^_ , 7,	 (12)
i

The angle S ty is a suitable average value of the flow angle in

the plane 11 2y". Since the angle differences are altirays small, the

r:iethod of averaging is not important. One suitable averaging method

consists of averaging using the cotangent of the angle, because essen-

tially this is an averaging ov,r the velocity components parallel to

the grid front. The formulas given above show that in a blade cascade

flow not only the total pressure loss, but also the static pressure and

(7)

(8)
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the outflow direction differs from the equivalent homogeneous flow,

compared with the average value of the inhomogeneous flow*.

In order to use the formulas (10) - (13), we require the average

values of the total pressure, static pressure, and outflow angle in the

measurement plane 11 2y", as well as the correction quantity K given by

equation (9). It is rather difficult to calculate. However, since it

is a correction quantity, it is natural to calculate it once and for

all for approximating the weight valley using an analytical function,

as was already done by C. Keller [21 for the special case s2 = 900

using a cosine function. For momentum measurements on a single profile,

this was done by A.D. Young [101, and he obtained exceptional agreement

with the results of a normal evaluation. One condition for calculating

a universal correction quantity for cascade weight measurements is that

the individual wake values will not empty into one another, and chat

also the static pressure along a blade division is sufficiently con-

stant, so that between the weight values there will be a region with

contant velocity. In practical cases, these conditions are always met

with sufficient accuracy.

We will use the Gauss air-distribution function for approxiating

the velocity valley in the wake, which follows from the theoretical

analysis of the distribution of a plane turbulent wake some distance

behind the body (see for examj.l_e, H. Schlichting: Boundary Layer

Theory, G. Braun, Karlsruhe, 1.951, p. 447) . We will set (see Figure

8)

nk:s s — Ti'. 4 X 11	 \ f4 S ni. % — IV., i111 O f e-0111%
	

(14)

Here, 
w2max 

is the velocity outside of the velocity valley and /321

w2m-in is the smallest velocity inside the valley, and n is the dimen-

sionless coordinate y/t. 	 The Zero of the y-axis is selected so that

w2(q) = w2min for q = 0. Therefore, the value is symmetric with respect

to the origin. If the static pressure is constant inside the valley, then

*W. T. Sawyer [41, derived a formula for the pressure p2, by assuming
the same outflow angles in the planes "2y" and 11 2" and the momentum
theorem is formulated in outflow directions. In our notation, he
obtains (p 2 - p l )/q l = P + 2K. However, this result is not compatible
with the momentum theorem perpendicular to the outflow direction. The
results are only identical in the special case S2 = 90°, which was
treated by C. Keller [2].
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Figure 8: Turbulent wake profile according to Equation (14).

the loss valley of the total pressure

stagnation pressure valley q
2
 (y). We

mum total pressure loss gl - g2min to
w2min We will introduce the follo

g2 (y) is identical with the

therefore can relate the maxi-

the velocity difference w2max

wing dimensionless parameters:

	

^111i 11	 - !	 !	 91 -+ It 1111

	

y lila.	 1 - N	 r1

F is the average of the static pressure, according to (8). The free

parameter c of equation (14) can be related to the total content of

the vel_oci;y valley, and therefore the content of the total pressure

loss valley, which is given by the average of the total pressure loss

G in equation (7). The integration of the wake valley over q, which,

strictly speaking, runs over 1 blade division from	 -1/2 to n =

+112, can be extended to infinity without any problem, because the

error distribution function (14) decays very rapidly towards the out-

side. Therefore, after a few calculations we obtain the following

for the parameter c (see appendix C):

i

(16)

Now the correction term K of equation (9) can be universally calculated

by introducing the trial solution equation (14) for the velocity dis-

tribution, and this can be related to the average total pressure loss

G. One then obtains (see Appendix C):

	

(1 —1"(4) -	
I	 G

K	 2 1 ;	 ( ! - I'ri) . 1, - P

G, 	 21 2.._ (I _. j,'(4)
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Figure 9: Universal calculated correction member according to
Equation (17).

I{7	 C,d	 (0
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Figure 10: Comparison of universally calculated correction terms for
the special case of a single profile.

This function is shoum in Figure 9 and Table 2 as a function of the

parameter a and G/(1 - P). In addition, to the quantities G and P

required for the evaluation, we must determine the value of a according

to equation (15) from the wake measurement, in order to determine the
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Table 2: Universal Correction Terms K/G according to equation (17).

0	 71,02	 0,04	 (,06	 0,0^	 0,10	 71,12	 0,24	 0,2K

0,2 11,2431 0,21ii 0,227e 0,2199 11,2122 0, 21 044 0, 19(,7 O,1Al2 ("Itilti 0,15113 0,1349
0,3 i), 1902 t 1 ,Iti32 0,1761 0,1690 O,1f119 0,1545	 . 11477 11,1>ii 0,12W 0,10 1 7 0,0914

0,4 11,1491 1+,1125 0,1379 0,1293 0,1227 0,1161 11,1095 t 1,t 1 `h,3 t+,0S29 0,0(399

0,5 0,1156 0,1093 0,1031 0,0969 ! 0,09(17 0,0845 0,078' oXV6M 11,11511 0,0410 0,0284

0,6 0,0:x0 0,0809 0,0751 0,0691 0,0632 0,0573 110514
0,03%, 0,027 1 0,0157 0,0034

0,7 0,0616 0,0559 0,0iO3 0,0447 0,039.+ 0,0334 0,0277
O,UIw 0,0049	 + - -

0,5 t1,11389 0,0335 0,0251 11,0227 0,111; 0,0119 S1 tA16i
-

correction K. The fact that equation (1) can also give values of

K < 0 is due to the fact that in these cases, we have wake values

which already transfer into one another and for these, the present

theory is no loner valid.

Comparison of the correction term recalculated and the theory

of C. Keller [2] and P:. D. Young [10], which is only possible for the

case G/(1 - P) = 0(t/l - ► -) is shown in Figure 10. We only find sub-

stantial differences for very small a (very steep valley profile), 	 /322

and the cosine form of the valley by the other authors is too full

compared with the error distribution function. Comparison calcula-

tions with wake measurements of the author on plane blade cascades

show very good agreement between the universally-calculated correction

term of (17) and the numerically-calculated correction term using

equation (9). Also, we cannot find any deviation compared with eva-

luation results which were performed using a distribution of the out-

flow angle in the wake which varies with y, within the calculation

accuracy (see Table 3).

It is possible to determine the blade forces in the simple way

from the homogeneous translation flow calculated for the plane "2".

For this purpose, we will consider a control surface K 2 (Figure 7),

which extends from the plane "1" ahead of the cascade to the plane

"2" behind the cascade between two congruent streamlines at a dis-

tance of one blade division. For this surface, the momentum theorem

in the x and y direction and the plane continuity equation, are given

by:

!.1 .:. Vii! (zv_'Sin 11., u ►5 11. -	 1  sin Cl t ^us/f1},	 (18)

.I
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r
S	 f)t (zr7:= sin' ff. — q0,2 sin'!It) {- t (P — PI),	 (19)

(20)

From this, we find the following values for the dimension l ess coeffi-

cients of the circumferential force U parallel to the cascade front

and the shear force S perpendicular to the cascade front

U	 t (21)
^'tJ =2	 lrtg/1._ —ctgf^t) sin'A-9

CS	
S	 t P•s 1,, sin 2f ,

where the reference velocity w „ , which makes the angle S co with the

cascade front, is the vector average of vr l and w2 . The angle a c. is

found from

itg/;	 - I  (':t;;f1 ' ctgf/s)•	 (23)

A recalculation to dimensionless '.oefficients for lift A perpendicular

to w. and drag W parallel to w,, ga:Tes:

ct.- stn	 r.s Cos /i,

s it, = l+, Cos fl, ,AI:

Sin P”	 q1

tit	 sill/;	 cus	
! sin'°/f 	 I
l sin' /1, q,	 (25)

It is remarkable that the formula for lift contains the friction loss

in the second term. As shown in [16], this quantity is an additional

list which is produced by the pressure loss in the cascade, and has

*Here and in the following we will use the following sign conventions,
for angles and forces: the zero-direction for is the cascade front
in the section side - pressure side direction of a blade, a positive
rotation direction is clockwise. Then we have U > 0 for the forces,

^1 > a2-1 S > 0, p i
 < p 2 , A > 0, ^ 1 > a 2 , W > 0 in the direction of w...
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the magnitude A,. W<< i;,

3.2 Correction of the Influence of the Jet Contraction

f Ir_ spite of various measures for removing the side wall boundary

layers, it is not always possible to completely avoid a contraction

of the flow in the central cross-secttnn of the channel. As long as

this jet contraction is small and which results in an acceleration of

j

	

	 the basic flow in the central cross-section, it is possible to ignore

its influence on the boundary layer formulation at the co n tour of

f the blade profile. It then becomes possible to carry out a correc-

tion of the measurement results with respect to the ,jet contraction

which occurs. The various contributions on this problem (see [7, 8,

12, 14]) only specify corrections without any reasons.

Because of the displacement effect of the side wall boundary
3 layers, the incident flow tail is closed, the amount of flow through

one blade division referred to the width 1I"

Y Ft

Q W _ TV (_C: -Y) sill /; (x:y) fr v	 (26)
i

increases in the central section of the channel from the value Q  in

the measurement plane 11 1 11 , to the value Q2 in the measurement plane

"2" (Figure 11). In order to simply calculate these relationships,

we will assume that inside the cascade the flux has the magnitude Q 

and this occurs in the plane "G 11 , whose position is determined by the

lift center of gravity of the cascade profiles. This means that we

have "concentrated" the blade cascade in the plane "G".

In order to satisfy the plane continuity equation between the

measurement planes "1 11 and "2 11 , it is necessary to increase the inlet

velocity to the value

Q(;
knr = f1 Su l = r7 t ^u1
	( 27)

and reduce the outlet velocity to the value

(^_	 1r 1
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1
We will define 

uE	 Q G/Q 1 
> 1, which is the inlet contracts-on coeffi-

cient, and ''A = Q2/QG is the outlet contraction coefficient*. Since

the total pressure of the flow remains unchanged because of the jet

contraction, accordingly, the pressures p l and p 2 must be corrected

according to the velocity changes:

pik,,,	 l,t - (PI:--I)qi,	 (29)

We now must investigate the influence of the jet contraction on

the outflow angle**. For this, we will apply the momentum theorem to

the spatial control surface in the central cross-section of the flow

(see Figures lla and b).	 The upper and lower limiting surfaces of

the control surfaces are two streamlines separated at a distance of /3^3

one blade divisl.on. The side limiting surfaces are parallel planes,

perpendicular to the cascade front plane with a very small distance

Az (Figure llb). Upstream, the control surface is limited by the plane

"G", where the blade cascade is considered to be concentrated as a

series of vortices. Downstream, it is limited by the plane 11 2". In

order to apply the momentum theorem, it is not necessary to know the

flow distribution in the plane "G". It is sufficient to know the mo-

mentum which flows into the plane "G". But in the plane "G", the flow

is given a momentum in the y-direction, such that the homogeneous flow

behind the cascade is giver the outflow angle 
S2kor 

if there is no

contraction between the planes "G" and "2", that is;

I ,.	 - f )Q,,	 Vii.,	 L%s,;_I_
	 (31)

The Momentum which occurs in the plane "2" with homogeneous flow is

given by:

*One correction to the results of momentum measurements behind blade
cascades regarding tLe jet contraction was also carried out by C.
Mortarino [7]. The influence of the jet contraction on the outflow
angle was not considered. If we do not assume any outlet contraction,
(P A = 1), then the correction given by Mortarino is identical with
our correction formula.

**The information was already published in [18].
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Figure 11: Calculation of an outflow angle correction due to jet con-
traction.

I	 Q Q, , ':u, ;l...
	 (32)

Because of the contraction of the flow from the plane "G", towards the

plane " 2 11 , there is an additional momentum which enters from the side

limiting surfaces of the control surface. The amount flowing in is:

AQ = QA - QE' and the y-component of the velocity with which this amount

flows into the control surface ii not directly known. However, it must

lie between the y-component in the plane "G" and the y-component in the

plane 11 2", and therefore it is natural to use the arithmetic mean of

these two components as the approximate value. This means that the

additional incomin; momentum is given by:

i r	 „(q_ - Q•:) ' + . _ ., cns ^i: tip,,. -1- , _ cuff ri_).
	 (33)
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Since there are no external forces which are applied to the control

surface in the y-direction, the incoming and outgoing momenta must be

equal: I  + I = I A . This gives the following equation for the correc-

ted outflow angle (see Appendix B):

l IL; I/_fur =- ~ CI;:' ^ :	 11 .l llti li.
	

(34)

This result states that the tangential components of the flow are not

changed due to the contraction, but only the normal components are

changed according to the increased amount of flow.

In order to apply the correction formulas derived above, we require

the flows in planes 11 1", "G", and "2 11 . In the plane "1", the flux is

known from a measurement. Also the flux in the plane 11 2" is known

'

	

	 because the homogeneous flow in the plane "2" was determined from the

measurer::ent results in the "measurement plane 2y". On the other hand,

the flux in the plane "G" is not directly known, and is difficult to

measure. If we relate the increase in the fluxes from the "1" down-

stream, that is, the q uantity Q(x) - Q,, to the total increase
1

in the flux between the planes "1" and "2", that is, Q 2 - Q l , then

we can expect that this function will be universal for a fixed position

of the planes "1" and "2", independent of the total contraction. We

will call this quantity

Q(10-Q'
	 (35)Q_, - Q,

the contraction function.	 Let us assume it has been determined once

and for all for a certain test stand, for example, by measuring the

velocity along the channel center between planes 11 1" and 11 2y" with-

,'' out the installed blade cascade. 	 We will achieve an arbitrary jet

contraction by slightly reducing the outlet cross-section of the flow

channel.	 Figure 12 shows this contraction function for the cascade

test stand of the Fluid Mechanics Institute at the Braunschweig In-

stitute of Technology, which was described above. 	 Since we only have

small values of the total contraction, 	 it is not necessary to know	 X32

l
k(x) with any great accuracy, so that we can consider that the selec-

tion of the plane "G" in which the blade cascade is considered to be

concentrated 's not very important.	 The estimation of the center of

lift of the blades is therefore sufficient for selecting a value of

^,
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Figure 12: Universal contraction function for plane cascade test stand
of the Braunschweig Institute of Technology, Fluid Dynamics
Institute.

K for a special cascade measurement.	 From the measurement., we obtain

the total contraction coefficient U geS fr.)rr,

Q	 Sin,,_	 (36)

After selecting a value for- the contraction function K(x), according to

the position of the lift center of gravity, we then find the inlet con-

traction coefficient

and therefore the outlet contraction coefficient

Q, 	 Pr..	 (38)

In this connection, we have to consider another phenomena in the flow

through a blade cascade with side wall boundary layers. Inside the

curve blade channel, the particles with flow in the side wall boundary

layers are subjected to a pressure gradient in the blade channel which

is nurma.i to the blade. Because of their reduced velocity, they cannot

establish a dynamic equilibrium, which prevails outside of the boundary

layer. Therefore, the migrating particles are pushed away in the

28
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direction of the pressure gradient. A secondary flow results, as shown

in Figure 13, for a plane parallel to the cascade behind the blade cas-

cade. Discontinuity surfaces start at the blade trailing edges, just

like a single air foil in a three-dimensional flow*, and inside the

blade channels, secondary vortices are formed. Various authors [11,

121 believe that, due to the departing secondary ;cortices, that there

is an induced downwind in the central cross-section of the flow chan-

nel, which charges the outflow direction of the plane blade cascade.

However, it can easily be seen that the total circulation inside the

dashed curves K must be 0. W. Traupel [13] gave an extensive explana-
tion for this. It must be deduced that in the central section of the

flow cross--section, the induction effect of this vertex system is can-

celled, at least on an average, so that there is no influence on the

outflow direction in the central cross--section. Of course, we assume

that there is a sufficiently wide piece of undisturbed flow in the

central part of the blade.

3.3 Evaluation of the Pressure Distribution Measurements

Tahen measuring the pressure distribution along the blade contour,

it is appropriate to select the quantities in the measurement plane

"l", as reference variables. We must consider that because of the

inlet contraction, they must be corrected according to equations [27)

and (29). The dimensionless pressure distribution coefficient is then

given by

P^ P1 kor	 P--pt	 I
CP	

k„	 Sri 	 f14	 (39)

This corre.:tion can only be performed if the ,jet contraction is known

from a wake measurement.

If v..e ignore the usually--small friction forces along the blade

contour, then by integration of the pressure distribution along the

blade contour, we can approximately determine the resulting blade

force. Using a coordinate system normal (n) and tangential (t) to the

blade chord, the dimensionless normal force is given by

*The physical reasons for these discontinuity surfaces are different,
however; see [13).
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i

!	 ,1i^	 --	 (40)

and the dimensionless tangential  force is given by

h'

Figure 13: Influence of the vortex system for plane blade cascades on
the outflow direction in the central section of the blades.

*We will give these coefficients the subscript 1, because in contrast
to c U , c S , c A , cW they are referred to 

w00 

and not w 1 . For convenient

numerical integration it is appropriate to replace the integrals by
SUMS. The integration weights 	 are determined from the distances

from the individual measurement points parallel and perpendicular to
the chord direction. These distances are not equidistant. If we
assume a parabolic interpolation between three points each, accor-
ding to the Simpson rule, for equidistant intervals, thF.n we find
according to E. Eltermann (ZAMM 33 (1953), p. 254), the following
weights:

are even:	 u,.

are odd: 

are the numbers of the measurement points on the profile contour
which are numbered sequentially around the closed contour. 	 is

= the distance between the measurement points 	 and	 is

the distance between the measurement points	 and	 .71	 etc.	 Using
the positive t and n directions (+t from the leading edge to the
trailing edge, +n from the pressure side to the suction side of the
blade profile), one must consider the sign of	 We do not have to
consider the position of the measurement point on the suction side4
and the pressure side.	 The beginning of the measurement point num-
bering has no influence	 (practically) on the sum results if there are
sufficient measurement points, but an even number of measurement
points is appropriate.

30
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We can immediately recalculate these force components as circumferen-

tial forces and shear force or lift force and drag force. On the other

han(. we can determine the flow variables of the departing flow from
;a

these force components, by using the momentum theorem in the x and y

directions. We again obtain equations (18) and (19), but now the forces

U and S are known, and the equations are to be solved for the flow va- /32

riables. After a calculation, we obtain (see appendix E):

! p
T r^ — P1	 I 

(C VO CosA - cry sin /^,),	 (42) ,11	 _.	 `

= ^	 It , l tinll^, - Cf' ^COShs)Ci^^/ l hj'(43)P, 	 sin fl, -- rr, cos fa)`
I .	 4 sin2fl,

l ,\' I Sin 	 /- I Cos fi-

r	 2sin' lit

^S is the angle between the blade chord (t-direction) and the cascade

front (see Figure 7). The calculation of the pressure loss A  from the

pressure distribution can only make sense if we have a highly separated

flow with an overbearing pressure resistance. It is then calculated

from Ag/q l = 1 - Ap/q l - q2/ql.

3.4 presentation of Measurement Results Using Dimensionless Coeffi-
cients.

There are many ways of representing the experimental results of

systematic cascade investigations because of the large number of para-

meters. A unified and clear form is especially desirable. We can for-
,.M
	 mulate two requirements, that is,:

I. The representation should have a universal character, and

should consider the deeper physical relationships.

2. The representation should allow one to derive the parameters

required for the design of a blade cascade without complicated recal-

cula.;ions. It also should be possible to find the optimum cascade con-

figuration for a certain task in a simple manner.

(44)
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We should stress here that research in this area is not yet suffi-

cient to uniquely select parameters which will characterize the cascade.

In this sense, the following discussion is an attempt to clarify this

problem using numerous contributions taken from the literature (see [2],

C4], C91, C15]).

From a physical point of view, cascade flow must be considered as

a superposition of a purely circulatory flow with a vortex intensity P

which is arranged periodically along a straight line, and a translation

flow w,,.,. According to the Kutta-Joukowski theorem, a lift forces is

produced perpendicular to the translation flow. If we consider the vis-

cosity effect, there is also a drag force parallel to the translation

flow. The important independent variable required to specify the direc-

tion of wc, is the angle between the translation flow and tht^ blade

chord, anc? it will be called the angle of attack a., 	 ^.o - a  in con-

formance with the notation usually used for a single airfoil. We can

now represent the lift coefficient as a function of the angle of attack

A
=I (a...)^,,_ 1)W2-	 ( 5)112 

and the drag coefficient as a function of the lift coefficient

lrJ
 7	 = f (C:I)	

(4b)
l 1

to characterize the cascade flow. We find the well-known diagrams for

the lift increase and the profile polars. In the range of healthy flow,

the functional relationships of equations (45) can be represented by the

linear function

dr: i

r( rt

where the constant lift increase dc A/da. and thy: constant zero lift

direction a s appear. This representation allows one Mo make the tran-

sition to a single airfoil, so that we can make comparisons with flows

over single profiles. However, the relationship with the parameters

which are important for designing the cascade such as pressure gradient,

deflection and pressure loss, are relatively complicated. There is also

the disadvantage that the lift coefficient contains part of the drag,
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as can be seen from equations (24) and (25), so that sometimes rather

unclear relationships are derived.

If we consider the blade cascade more from the point of view of

technical ap p lications, then one characteristic feature of cascade flow

is the deflection of the incoming translational flow, and either a pres-

sure increase or a pressure drop result. The circumferential component

w ln is looked upon as an independent variable for specifying the incoming

flow, similar to the angle of attack ao.. First, we will use the deflec-

tion Awu 
w 
2 - wlu as the "useful component" to characterize the flow

state and later on, we will use the total pressure loss Ag = g l - g,, as

the "damaging component". We believe that the velocity normal to the

cascade front w  is especially well-suited when introducing dimension-

less variables, because it determines the throughput through the cascade.

Even if there are several cascades (stages), it remains almost constant.

The cascade properties are represented by the deflection coefficients

as a function: of the circumferential component of the incident flow

^c	 `	 I	 ct, 11
	

(4s)

I
and by the loss coefficient as a function of the cascade deflection,

The first relationship is analogous to the lift increase given by equa-

tion (45). The second relationship is called the cascade polar*, simi-

lar to the profile polar given by equation (46). This last represen-

tation is especially important as we will show. The coefficients defined

above have the advantage that they are in direct relationship with the

velocity triangle of the cascade and give the energy loss of the flow**.

*The term "polar" only applies in the transferred sense.

**Here, we should realize that it is advantageous to use the cotangent
of angles instead of the flow angles in degrees, when ap p lied to cas-
cades, because then these will always represent the circumferential
component of the flow for the throughput "1". However, clarity is
not lost if we become accustomed to this method of opera;ion.

(49)
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Instead of the deflection Aw n , we could also use the pressure difference

in the cascade Ap = p 2 - p l as the "useful component", but this quantity

has the disadvantage that it contains the pressure loss in the cascade. /32

In the range of healthy and non-separated flow, we can describe the rela-

tionship between the deflection coefficient and the incident flow direc-

tion according to equation (45) using the following equation for a

straight line:

A t:t,,t, i- !;.	
(50)

This relationship naturally follows from the basic equations of blade

cascade flow (see Appendix F). The constants A and B depend on the lift

increase and the zero-lift direction, similar to equation (47). Equation

(50) has a practi-al meaning if it is possible to find a relationship

betwEe nthe constants A and B, and geometric profile parameters which have

general validity, which seems to be a good possibility. At the present

time, it does not seem likely that it will be possible to find a similar

theoretical trial solution for the dependence of the loss coefficient on

the deflection, according to equation (49), because the flow losses de-

pend on the deflection in a very complicated way, because of the compli-

cated processes in the friction layer of the blade profile. The coeffi-

cients defined by equations (48) and (49) are related to the flow angles

by the relationship

ctq J1, — ctg p',	 ( 51)

and with the static pressure difference in the cascade by

P1 -PI
t l ii '.S.6

from the Euler turbine equation, we then find the lifting height of a

blade cascade which is rotating at a velocity u

One of the most important problems is the question of the optimum cas-

cade configuration. By this, we mean the cascade configuration (t/l

and Ss ) for a given profile shape which results in a specified velocity

(53)
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triangle with the lowest flow losses. For a specified velocity tr_`_angle,

we can select the various division ratios t/l, which corresponds to a

certain value of the blade angle S s to achieve the specified outflow

direction and a certain total pressure loss. If in a plane 6 3 and S1,

4	 we plot the optimum values of t/1 and ^ 	 corresponding to each pair of

values, then we obtain an optimum characteristic field for tiie corres-

ponding blade profile from which we can read off the optimum cascade

configuration (t/l and B s ) for a specified velocity triangle {s1 and d3).

In this field the lines with equal minimum loss coefficients 
CVa min can

be plotted, so that all variables required for designing the cascade are

contained in this characteristic field. Such a characteristic field,

therefore, summarizes all of the cascade measurements for a certain

blade profile and always contains the most favorable experimental point,--.

One then plots the deflection and the loss as a function of the incident

flow direction with fixed cascade geometry only to evaluate the blade

cascade for incident flow conditions which are different from the design

`	 point. Of course this characteristic field says nothing about whether
r

the profile shape used is the optimum one for the velocity triar-le. By

comparing the optimum characteristic fields of several profile shapes,

it is possible to immediately decide the question of the most favorable

t
profile shape, if one selects the profile shape for the specified velo-

city triangle for which the flow loss is the smallest.*

The representation of the cascade polar^
Va = f(d a ) given above is

especially well-suited to determine the optimum cascade configuration.

A fixed pair of values t/1 and ^s corresponds to a cascade polar. If,

for the same S s we plot all of the cascade polars with various t/1 above

one another (Figure 14), then if there is a small deflection the curves

with the largest division ratio will show the smallest loss. As the

deflection is increased, however, the flow separates a large division

ratio earlier than for a small division ratio, so that the curves with

small division ratio have smaller losses. The envelope with all polars

with various t/1 then results in the minimum loss which corresponds to

a single deflection and the tangential cascade polar gives the

*Just like the optimum cascade characteristic field problem for the
minimum losses (efficiencies discussed here), optimum characteristic
fields can also be designed for other minimum requirements, for exam-
ple the maximum overvelocity over the profile (cavitation, critical
Mach number or minimum shock sensitivity (steepness)).

iII
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Figure 14: Determination of optimum cascade configuration using cas-
cade polars.

corresponding optimum t/1 value. In this way, the optimum value pairs

t/1 and Ss are obtained for a 63 value. The a1 values corresponding

to d 3 are taken from a plot of d 3 versus ^l . In order to draw the en-

velope, it is useful to know its tangent at the origin; that is, at

t/1 =	 The following formula can oe given for this (see appendix G):

`	 1	 (54)

In order to determine it, one requires the optimum quality coefficient

of the single profile 
cA/eW)opt and the corresponding angle of attack

ao.. Using plots at various S s values, we can finally find sufficient

numbers of optimum values to obtain an optimum characteristic field*. /327

*Strictly speaking, in order to determine the optimum values, one
should use cascade Dolars for fixed ^1 and t/1 instead of for fixed

Rs and t/l. For specified ^s , two cascade configurations will not

have exactly the same velocity triangle for the same 6 3 , but the values

of S and 4 will be somewhat diffferent, because the incident flow
angl; depen3s on the division ratio. However, this has a very small
influence on the optimum value determination. On the other hand, the
suggestion method has the advantage of great simplicity, because the
cascade geometry will remain constant for any one cascade polar.
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4. SOME SYSTEMATIC MEASUREMENT RESULTS OF BLADE CASCADES WITH PROFILES
NACA 001	 .

Out of the numerous systematic tests of blade cascade measurements

which were performed at the Braunschweig; Institute of Technology at the

Fluid Mechanics Institute using the previously-described cascade test

stand (see also [21], [231, [241), we will, in the following, give a

small selection of measurement results in order to demonstrate the eval-

uation methods.

These are blade cascades which are built up from s ymmetric profiles

with the NACA system, having a loo relative thickness (profile NACA 0010)

The blade chord was 1 = 200 mm, and the exit velocity was about w 2 = 40

m/s, according to a Reynolds number of Re = 5 x 105.

In addition to the values of the division ratio t/l, the blade

angle ^ s and the incident flow angle a l given by the experiment confi-

guration, the measurement gives the average total pressure loss G ob-

tained from an averaging process, the average pressure difference in

the cascade P and the average departing flow angle a 2y . The numerical

values given in columns 4 to 6 were measured at relatively large dis-

tances of 100 mm at a s = 90 0 and 130 mm at ^ s = 45 0 behind the blade

cascade. Consequently, the wake valley is already relatively flat.

Nevertheless, we find considerable deviations in the homogeneous out-

let flow (columns 10 to 12) compared to the average values in the mea-

surement plane (column., 4 to 6), especially in the valleys of the total

pressure loss and in the static pressure difference. There are sub-

stantial deviations in the angles only for very small outlet flow angles.

The quantities in parentheses in columns 10-12 which were all obtained

from the complete evaluation formulas with variable 
S 
2 (see appendix A)

show almost complete agreement with the values of the approximate cal-

culation,	 The parameter a of the valley shape (column 7) can also	 /328

be directly found from measurement results. The two constants K and

K (columns 8 and 9) were taken from universal diagrams (figures 9 and

12). The contraction function K was selected as K = 0.9 in all examples,

which means that the lift center of gravity of a blade was about 1/3 of

the blade chord. In the contraction coefficients (columns 13 to 15),

we find that the total contraction ages 
is round directly from the re-

{	 *The complete results will be published in later papers because they
are very extensive.
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Table 3: Evaluation scheme for wake measurement on blade cascades
(numerical values for blade cascades with NACA 0010 profiles).
The equation numbers refer to the equations in the text. The
numbers in brackets in columns 10-12 are obtained from com-
plete evaluation formulas with the variables a2y.

I 3 4 5 6 7 `t 9

specified from wake measurement universal

Eq ( 7 ) Eq (8) E2(15) Eq (17) Eq (35)

^)k X10' 0,01 i0 -0,0728 90,0' 0,627 0,0011 0,90
h 0,75 JO" 90, (1,0215 -0,0637 917,0" 0,(,01 0,0017 0,)0

c 0,50 90' 91r, 0,0397 -0,0784 90,0" 0,556 0,0034 ON

d 1'oo 45" 45" 0,0175 - 0,1312 43,0" 0,771 0,0007 0 ,90

c 0,75 45" 45" 0,0280 -0,1948 42,3" 0,759 0,0011 0,90

t 0,50 45" 4i" 0,0;07 -0,2214 -110' 0,718 0^121 0,9()

10 11 12 13 14 15 16 17 18

1 ^: 11)
1, ,; rl I!r N i

1t; I	 J'L<,,,.
J J':la"

!11 q I k.,r 'I 16, r

homogeneous flow contraction coefficients corrected homogeneous
outflow __-

Eq (l o) Eq	 11) Eq(13) Eq	 ; , , Eq	 ,;' Eq	 l35) Eq	 -, to(30 Eq	 (3.1)

a
0,10139

(0,013s)
6- 0,07116

(- (1.07('6)
k)()

(90,0') 10'') 1,0211 1,003

11
O,OI9S - O'(W3 90,0"

I,0?ll I,(1Iti 1,1010'
(O,J19M)^ (-- 0,01,0•!) (g op . )

0,11363 --17,11:16 917,0' 1,015 1,O16 1,O1 !
(0,0361) (- 0,0 ' 1 h) (91s,U")

^l 0,1 0 1t,fi
(0,0168)

-0,132i
(-0,13''-i)

•13,0'
(13'a') 1,019 1,017 1,01"

^. 0,:02(-,9 t1,1931% 12,3" 1,019 1,017 I,tsl}2
(0,0271) (	 t 0 , 1 940) ( 12,3.)

r 0,04MS - 0.2105 11,0" 1,041 1,101	 0 1,604
(00483) (-0,2195 (41,w)

op 	 i1 11,01 it 90,0'

0,0190 -1?0190 90,0'

0,031 - •0,0351 900'

17,111(, - 0,0`W2 42,9

0,0260 - 0,1449 •12,2"

0,01-16 - 0,125' 10,8"

sults of the homogeneous outlet flow. The inlet contraction 
1)E 

is de-

termined using the value a of the contraction function. The remaining

part of the jet contraction is the exit contraction u A *. In these

*If, due to jet contractions, there is a substantial change in the
outlet flow angle S 2 , then it may be necessary to calculate it with

the corrected outflow angle S2kor and then find an improved contrac-

tion coefficient 
ages 

in order to make the values of the corrected

homogeneous outlet flow compatible with the plane continuity equation.
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cases, we find jet contractions between 2 and 4%. However, it is easy

for higher jet contractions to occur, especially when there are pres-

sure increases. Accordingly, the corrections caused by jet contraction

are relatively small (columns 16 to 18), but they are not negligible.

As an example for the pressure distribution measurements, Figure 15

shows pressure distributions for the not-lined-up cascade with profiles

NACA 0010 with three division ratios. The plot shows the uncorrected

t l^;aa is, the directly-measured measurement points and the measurement

points which have been corrected using equation (39), as well as a

pressure distribution of the potential theory of H. Schlichting [21].

The corresponding contraction coefficients can be found in Table 3

(columns 1 to 3). The corrected values agree quite well with theory,

even though deviations are found for very small division ratios which

could partially be caused by friction.

The results of the wake measurement will be represented as pro-

file values (equation (45', and (46)), as well as cascade values [equa-

tion (48), (49)). Figure 16 shows the lift increase c  plotted against

a:	 ill=45	
I	

r/1 =0,75 ._	 _ to=;O

'QG--r	 r

1/1	 I' Q	 jell	 10	 x/I	 {0

Figure 15: Pressure distribution for NACA 0010 profiles in a cascade
not lined up with incident flow parallel t, the chord ( S S =

B ' = 90°).

• - uncorrected measurement
0 - corrected measurement.

a,,, which depends greatly on the division as well as whether the blades

are lined up. Figure 17 shows the corresponding plot of the cascade

values 6  as a function of ctg S,. The plot agrees very well with the
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form of equation (50).	 It is also remarkable that the inclination of

the li,'Ie (constant A)	 depends hardly at all on the division,	 and only

slightly on how much the blades are lined up. 	 The origin displacement

(constant B) depends on the zero-lift direction, and therefore also on

the division and how the blades are lined up.

The profile polars calculated from the wake measurements are given

in Figure 18.	 As the division is refined, the drag in general in-

creases because of the less favorable pressure distribution (higher

overvelocities) and the maximum lift decreases.	 The difference between

the pumping cascades and the turbine cascades is clearly seen for the

lined-up cascade by the assymetry with respect to o  = 0.	 On the tur-

bine side (c A > 0),	 substantially higher c 	 values are reached.	 Figure

I19 contains a. plot of the cascade polars , a (S a ) which is similar.	 The

characteristic feature of this plot waS already discusFed in the pre-

vious section (see Figure 14). 	 Inorder co determine the optimum cas-

e	 cade configuration, we use the envelopes of cascade polars for various

division ratios t/l.	 The tangents of the envelopes at the origin 	 (t/1 y'

can be calculated from equation (54), and in the previous example'.r
we will use an optimum quality coefficient of a. single profile of

r(C/c)opt = 60 at a. = 10 0 .	 These results and further results for
A

other blade angles S s allow one to design an optimum cascade charac-

teristic field using the optimum values obtained, and this is shown
a

in Figure 20 for blade cascades mEde up of NACA 0010 profiles. 	 The

1	 characteristic field contains i n a plane of deflection coefficient,

S a versus incident flow direction ctg S l , the lines of the optimum

values of the division ratio t/1 and of the blade angleS s .	 This means;

that for a specified velocity triangle, one can read off the most fa-

vorable cascade configuration.	 As to be expected, the characteristic

field shows that in the pumping cascade region, the optimum division

ratios are substantially lower than in the turbine cascade region. 	 The

corresponding loss coefficients are greater in the pumping cascade re-

gion.	 Of course, we can only use points of the characte:.tstic fields

for this comparison which are on the pump side or the turbine side,

and whose corresp nding velocity triangles are derived from each other

by reversing the flow direction (exchange of w l and w 2 ).	 For such

points, we have the relationship

. t-	 ti	 . .
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The corresponding points are therefore not symmetric with respect to

ctg ( 1 = 0, but are displaced toward the pump side, similar to the curve

S s = const.

5. OUTLOOK

For a very long time, the Euler stream thread theory was the only

method of analyzing the very complex blade cascade flows. in recent

times, several new directions of research have emerged, which can be

characterized as follows:

Scarting with the Euler stream thread theory, which describes the

limiting case of very thin and infinitely denrse blades with friction-

less flow, an attempt was m^.de to develop a reduced performance theory

which describes the deviations with respect to the blade-congruent flow

by means of universal and empirical relationships (A. Betz, Goettingen).

As a second method, the extensively-reoearched flow around a single

4
1,1 --r	 -	 - P- --

f/l=^15

t

I	 ff

ORIGII^AL UAL

OF	
.^R Q

Figure 15: c  as a function of a
.,
 for NACA 0010 profiles in a cascade

nct lined up (^s = 90 0 ) and lined up (^ s = 450).

profile was used as a point of departure, and an attempt was made to

approximate the deviations due to the cascade configuration of the

blades (A. Betz, Goettingen). Both methods depart relatively far 	 /330

from the point of departure, in the division ratio region of about
.S

41.
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6  as a function of ctg ^1 for blade cascades with NACA

0010 profiles, not lined up (Ss = 90 1 ) and lined up (S s =
45°).

--0,9	 —0,4	 0	 0,4	 00 C4

a

Figure 18: Profile polar-s for NACA 0010 profiles in a cascade, not
lined up (^ s = 90 1 ), and lined up (S S = 45°).

t/1 = 1 and therefore the un r;ertainties become quite substantial.

Because of the continuous .,evelopment of the aircraft gas turbines,

especially in England during the last war, blade cascade flows were

calculated extensively using empirical methods. An attempt was made

to d--velop generally valid empirical relationships for the design of

gas turbines (A. R. Howell, Farnborough). Because of the successes of

boundary layer methods in the layer of aircraft dynamics, recently an

attempt was made to give a boundary layer treatment of the plane blade
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Figure 19: Cascade polars for blade cascades with NACA 0010 profiles,
not lined up (^ s = 90 0 ) and lincu up 

(R s = 450).

cascade flow in its complete generality ((H. 5ehlichting, Braunschweig).

For the first time, it was possible to calculate theoretically a blade

cascade flow with friction, and good agreement with the experiment was

obtained.

This last method which is the topic of our investigation will sup-

port experimental research for the purpose of validating the reliability

of the theoretical results with respect to several important points of

the entire field. This will lead to a substantial reduction in the ex-

perimental effort. Measurement results are very important for compari-

sons between theory and experimenC. As the previous discussion shows,

achieving a sufficiently two-dimensional, flow, recalculating the mea-

surement results for a homogeneous flow, and the correction of the mea-

surement results with respect to the remaining ,jet contraction, are all-

important factors which have not been considered enough before.

All of the research discussed above is concerned with two-dimensional
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Figure 20: Optimum cascade characteristic field for blade cascades
with NACA 0010 profiles.

plane flow through an infinitely-long blade cascade. Certainly, this

flow is the foundation of any cascade flow, However, it has been re-

cognized that there are very different three-dimensional influences

which occur in a designed flow machine, and this can result in sub-

stantial differences with respect to the plane cascade flow. Never-

theless, the influences, must be considered as secondary phenomena in

the sense of analyzing the cascade flows, and they must be dealt with

separately. _ven though important contributions have been made to these

solutions in several special cases, a rational analysis of these prob-

lems remains to be done,

6. APPENDIX

A. Equations for the homogeneous flow behind a blade cascade

with consideration of the variability of ^2y.

If we consider the variability of the outflow angle ( 2y , with the

cascade parallel coordinate y, we find the following from equations

(1) to (3):
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B. Determination of the homogeneous outflow from the average values

of the inhomogeneous flow.

Equation (4) for the square of the velocity of the outflow velocity

w2 can be written as follows by using equation (9):
, r

,: ,	 t	 U'1-
Y

Yt,	
(B-1)

Cl1S-

!	 tdl

The second term can be simplified as follows, because K is small com-

pared with the integral in the denominator:

dr K) +
.f

t	 K'1	 (B— 2 )Y

	

Cos" ^:.• { I ^.
	

t v) d v + K).

If we consider the identity

(B-3)
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then from equation (B- 2) we obtain equation. (12) as follows by intro-

ducin- the integral values G and P using equations (7) and (8):

(B-4)
W1.	

^I i

Equation (5) for the static pressure p 2 can be transformed to the form

of equation (I1) which can easily be seen by introducing the quantity /331

K according to equation (9):

P--- P1	
l	 =' P 2 11 5111
	

(B-5)

The total pressure loss can be expressed using the identity similar to

equation (B-3):

	

X!i	 I's I	 r.	 (B- 6 )

and by equation (B-4) and ^3-5):

o	 /^	 7	 (B-7)

From this, we obtain the desired relationship, equation (10):

	

Ix - G - K.	 (B= 8)
?I

Equation (6) for the outflow angle 
2 

can be written as follows, using

equation (9):

	

t	 7V	
r

 (B-9)

i	 (y)
! ( w1 _ qty - K 
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Since the correction term K is small compared to the integral in the

	

p	 g
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h'	 1
c t g A. = ctg /^: Y I	 I __ - G. (B-10)

denominator, equation (B-9) can be further simplified as:

	

I	 ti
crg(i_,	 ^tg ji.^r	 I	 , f,

I

The integral in the denominator can be expressed by the integral value

G and P using equations (7) and (8), so that we obtain equation (13):

C. Universal Calculation of the Correction term K using correction

term using equation (9).

If we introduce the trial solution for the velocity value equation

(14) where 
w2max 

is dimensionless, then using equation (15),

( y) - 
I	 (1	 ^'^t) r (C-1)

the integration of equation (C-1) between -- and m gives

t, .(d	
I .t.

Since we have assumed that the wake valley has already practically de-

cayed to zero, in the range of one blade division (-1/2 < n <112), then

the value of the integral field remains unchanged, if we only integrate

over the range from -1/2 to 112. Correspondingly we obtain the fol-

lowing for the value of the velocity square (stagnation pressure valley):

I	 '1" TV.. " ilia,	 C	 ( C-3 )

v1	 I	 l l- ^^tt)^ f.
From equation (C-3), we can then determine the undetermined parameter

C by the area of the stagnation pressure valley. By using the identiy

(B-3),
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.-I,	 1 ma.

	

t I :	 ( C-4 )

- ) 
4, 	 '1,	 { I - x! ( 11)) - (P2 ()J) - P,}

	

^f ^ Illd[ .	 rI

I

From this, by introducing the integral values (7) and (8):

t ^„

•^
 ^c'_ (11) r!1 	 ^^	 (1—I'— C).	 ( C -5)

w'y ma[	 1	 q-. ma[
t '

Since the flow outside of the wake valley has no losses with q 2 (p) =

g2max, and also because 
g2max 

and therefore also the static pressure

P2 can be assumed to be constant over the division, we obtain:

	

^I I	 '! I

	 (C-6)

By introducing equation (C-5) and (C-6) for the right side of equation

(C-3), we then find equation (16) for the parameter c:

I^(77(r - ^lr) —^ 	 {t—^',t)-1 t ri . 	 ( C -7)

The correction term of equation (9) can be written as:

l .,	 +1z	
}}	 O74'-j 

(1r) [!!r—	 .1•'r(11) 
r j 11 l ' 	(C-8)

12	 --12

From this, we can first find the following by introducing equation

(C-2) and (C-3) for the integrals and equation (15) for the factor

in front of the bracket:

r. (t 1)( ;s ir I =)	
^0...Er1), t^	 ORIGINAL FAGE IS.

OF POUR QUALITY' (C-9)
i

If for the parameter c we will introduce the equation (C- 7), then after
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11	 ^ rt1

/^	 ,^.^	 ^^	 .art}	 1	 ! (C-10)

conversion we find the desired relationship (7):

D. Derivation of the formula for the outflow angle correction.

If in the equation for the incoming and outgoing momenta I  + I =

I A we substitute (31), (32), and (33), we obtain:

Cos (7.I,,,r

i ^r(Q

	

	 (1r;) ± ( T"^- knr COS ljs '...r +	 (D-1 )

+ ^+'S Cl1S_) — QQ_ 2f1, CUSliy Lnr

After conversion, we find
	

/332

	

Qr: (u', 1,. , Cos J ;2 Wr — W-- cos /j  -_	 (D-2)
= Q.-,(W. Cos f. -- £G!_ Lar COSA.).

Because of continuity,

QN -	 r 4J. kur SI r! !;_ I;ur.	 ( D — 3 )
Q. - t w., Sill ^j.

If we introduce Q 2 and Q C instead of the velocities wzkor 
and w 2 in

equation (D-2), then we find:

r C^u Ct91" L,r .^. O_ (2. Ctg11, I„ir -

This gives us the desired result:

Q1. 
Ctg
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/	 1 CX" sin fl, - r  , cos
clg& = Ctg h" -}

f	 ?sin- /1 , (E-4)

„-

E. Determination of the Homogeneous Outflow from the Pressure

Distribution at the Blade Contour.

From the forced composition, we first find the following relation-

ships from the coefficients c  and 
c  and c  and c  cn the other hand,

(l-I referred to w )

E-1

`	 (E-2)

Angles are given in Figure 4, and signs of the forces are given in foot-

;	 notes in the previous sections.

From the momentum theorem, in the circumferential direction (see

equation (21), we find the outlet flow angle

L'ig A^ = Cut fil  i 
I	 cry	

(E-3)

and after introducing equation (E-1) and the coefficients c 	 and eT

,referred to wl	 1	 1

so that we obtain an equation (44). From the momentum theorem in the

axial direction, we find the following for the pressure difference in

the cascade (see equation (22)):

E-5 )

After introducing equation. (E-2), equation (42) gives

IP 1 ... .-	 G	 cos !'	 t , sin/%.).	 (E-6 )

i	 According to the plane continuity equation, the stagnation pressure

ratio can be expressed by the angles:



,
Sin - fl,_

= sin _ ft (I	 rtg"
r^i	 tiin! f'e

(E-7)

If we substitute equation ( E-4) for ctg ^ 1 , then after Further simpli-

fication we obtain equation (43):

E	 `

	

= 1 ;	 (c.\ I .y in	 cTt cos /+,) ctg fit I

(CN I Si n	 Cos	
(E-8)

t-	 4 sits-

F. Derivation of a functional relationship between the deflection

coefficient d 3 and the incident flow angic- S1.

For a single profile, we find the relationship between the circu-

lation and the angle of attack from

	

V' '.	 1 sin (41, — (10)
	

(F-1)

(a0 = angle'of attack for zero lift). If we use the same relationship

for the blade profile in a cascade, and if we introduce the cascade

influence factor k = r G /r E , then the circulation of the cascade blade

is given by:

I ^!!	 k . -r w, I SI n (r[, --- 4141)
(F-2)

k .-► w- 1 sin (!7„ — inn),

where wc. now is the vector average of w 1 and w 2 . The angles ^ are not

measured with respect to blade chord in contraF', to the angles a, but

are measured with res p ect to the cascade front used as a reference di-

rection. Accordingly, R 0 is the incident flow angle of the cascade,

for which the lift is zero.

We have the following relationship for the circumferential compo-

nents of a cascade flow in front of and behind the cascade

(F-3)
t

ORIGINAL PAGE; I5
OF POOR QUALITY
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By substituting equation (F-2) and using wax = w^ sin B. , we find the

following if the entire equation is divided by wa:

! sill (/J',.—

t	 sin/II

For the angle S. , we have

ctgjI,	 !, (.r {;11 1 + t;tg/I.. )• 	 ( F-5 )

From equation (F-4) and by using the addition theorem and introducing

equation (F-5), we immediately find:

	

ctg	 ctg #1 I k T 
!

cos A, —
t

2 t

An additional conversion gives:

( ctg/"_	 ct €;^^ _ ^1

!I	 k a r tilts A,	 k 7 ^ Cos

.v I	 ct^li,	 1	 '

	

i	 k	 sill r;„	 i' k ff	 sin
I	 r	 2^

which is an equation of the form

	

>	 .1.ryt;, I R

with the constants

1

	

k.7	 Sill A,

	

-k	 sin

1

2 1

k >r ! cos A,

13=	 t

1 { k	
!

sillf'o

(F-6)

(F-7)

(F-8)

`	 ` `	 /333
These constants only depend on the zero-lift direction of the cascade

s	 ^a and the cascade influence factor k or the lift increase of the

blade profile in the cascade.

i
G. Derivation of the formula for the limiting value of 

da/Va 
for

t/1	 m (see [231).
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Using the expressions for c A obtained using equations (24) and ¢.

(25), we find:

1	 ,ti 1'a

For a single profile, (t/l	 ^), the optimum value of 
6a/'Va 

is obtained

when cWA A is the minimum. Also, for a single profile we have

(G-2)

so that the optimum value of 
6 a& 

Va at t/1	 results in the following

equation ( 54):

ut	 1)	 ( G-3)
. C 11	 UPI
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