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THE EXECUTION OF SYSTEMATIC MEASUREMENTS
ON PLANE CASCADESH

Norbert Scholz

ABSTRACT | /313%%

The present state of development of the experlmental technigue
regardlng the flow through cascades and several points to be spe01ally
cbzerved in the design of cascade wind tunnels are discussed. The cas~
cade wind tunnel developed by the author and used at the Institute for
Fiuld Mechanics at the Technical University of Braunschweig, is desecribed.

The equations required for the evaluation of the momentum measure-
ments in two-dimensional Flow through cascades are develcped. 'Applying
a correction of'general applicability, it is possible to convert the
computation of the wake rlow in a very simple manner. Regarding the
effect of the jet contraction dve to the boundary layer along-the side
walls a simple method for correction is also given in order to obtain
two-dimensional flow characteristics. Alsoe given are the equations for
the evaluation of the pressure distribution measurements. Another con-—
tribution is nade regardlng the presentation of the test results in
form of non-dimensional quantities.

Finally some of the results of systematic measurements of cas-
cades with symmetrical aerofoil sections NACA 0010 are reported, and
the above suggested method is applied for the evaluation of the measureé-
ments.

I. TINTRODUCTION

The development of fluid. flow machlnes ‘has progressed ever the |

last ten.years, primarily u51ng empirlcal methods, It was: prlmarlly

¥From the Institute for Fluid Mechanics of the Braunschweig Institute
of Technology (direetor H. Schiichting), Professor dissertation ap-
proved by the mechanical engineering department (Prof. Dr. H. Schlie-
ting and Prof. H. Blank, Prof. H. Petermann). '

- % Numbers in margin indlcate paginatien in foreign text.




due to the appearance of the gas turbine that it became clear that fur-
ther increases in efficiencles of fluid flow machines depends very
greatly on an inedepth knowledge of the flow-physical processes within
the cascade, the basic element of fluid flow machines. Cascades in
axial flow can be analyzed by rolling off a coaxial ecylinder segment
onto a plane, which reduces the‘problem to a two-dimensional problem,
the problem of a plane cascade flow. Thalis 1s why research on plane
-blade flow has become one of the most important foundations for the ;
development of fluid flow machines. Many papers have treated the prob- /314 i
lem theoretically and experimentally. However, there has been no sys- ;
tematic invéstigation of the influence of individual geometric para~
meters of a blade configuration, either from the theoretical or the
experimental point of view.

From the theoretical side, one can use boundary layer theory and
simple methods for calculating potential {lows through cascades, Which
leads to a systematlc and rational analysis of the problem (see [161).
An experimental treatment of the problem has probably not been done be--
cause of the large number of parameters and the experimental difficul-
ties. Offen the results are only partlally recorded, or not at all '
(see [171). It seems that a large-scale experimental effort will not
‘be possible because of the substantial effort involved. We believe
that these problems can only be solved with a reasonable amount of ef-
fort, by using rational theoretical calculation methods to conduct sys-
tematic'fESeafdh.on plane blade flow. In .erder to verify the theore-
tical calculétiohs, enough experimental results must berused.

: .The_Institute for Fluld Mechanics of the Braunschwelg Institute
of Technology, under the difection of Prof. H. Schlichting, for several
_years has attempted to contrlbute to a colutlon of the problem of blade
“cascade flow (see [19], [201]). '

The present paper glves a summary on the problems of experimen-
%ation, and their solution.  We also give a few results of systematic
blade cascade measurements. o . o

‘2. EXPERIMENTAL TECHNIQUE =

2.1 General Design. Characterlstlcs of Cascade Test Stands

Even though the develonment of test stands for 1nvest1gat1ng
cascade flows i1s over two decades old, it has not reached the state of




investligations of single wings. The reason for this is not.only the
importance of wings in aviatlion. The difficulties in the experimental

technique and the required effort are considerably greater for ‘a cascade

than for a single profile. It i1s well-known that to achieve plane flow
over a sirigle profile, considerable effort 1ls required, which involves
careful sucking-away of the boundary layers“which form at the end
discs of the wing. In the case of a blade‘cascade, there should be
flow deflec.ion, and therefore a pressure jump in the cascade. It can’
‘only'be'maintained by separafing the'incoming and outgoing flow sides
of a blade cascade, using fixed walls. This means that the'blade-cas4

- cade must be placed between two<side'walls;ﬁWhich~impair‘the achieVement

of plane flow. _ _

The following table gives a summary of several cascade test -
“ stands for 1ncompres51ble flow. We also show the eascade test stand
of the Braunschweig Institute of Technology. For small Mach numbers, .
the incompressibility of the flowing medium can be assumed, but this
.is not true in practlce 1n general. Nevertheless, lnvestlgatlons in-.
nthe 1ncompre551ble range glve a great deal of 1nformation about the
flow behavior of the compressible flow, as long as the’ local OVerve— _

‘locities on the profile are less than the speed of sound and therefore l
- no compression shocks oceur. -

Except for speclal test facllltles and because of the stfong:f'
lchanges in dirvection of the Jets impﬂnglng on ‘the cascade in cascade -
_test stands 1t is usually not possible to recover part of the'flow
energy by using a closed c1rcu1u, “for the alr. This is done in.normal -
:wind tunnels today. Because of this, and because of the relatlvely
'hlgh flow losses produced by the blade cascade itself, the power re-

'”“qulrements for cascade w1nd tunnels is in general greater than for

‘normal W1nd,tunnels with the same veloclty. According to the way in

- which, the alr is dlrected we can dlstlngulsh between pressure oper—-

'clatlon and suctlon operatlon 1n nascade test stands (Figure A)ye In- oo

'lthe case of pressure operatlon, the alr 1s pressed 1nto a closed in-cp
:cldent channel by a’ blower Whlch supplﬂes air to the blade cascade"

from a certaln.lncident flow direction.  In ‘the case of suctlon oper~'vl;

ation, the alr i1s sucked in from the outside. It,passes throngh the

1;fblade cascade. and is then dlrecued to a. blower.,kln"the first case;
- free’ expulsion of the alr is poss1b1e behind the blade cascade, whlch ,f
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Figure 1: Desighs of wind tunnels for cascade investligations.
a) pressure operation b) suction operation

means that the outgoing_flow direction, not known to bégin with, cannot
be disturbed by limiting walls having the wrong inclination. On the
~other hand, durihg-suction operation, the sucked-in air is supplied to
the blower behind the cascade in a closed channel, which means that the
outflowing flow direction can be falsified. The sucked-in air

. can be‘alloWed.to flow into an underpressure chamber from which the air
is again sucked away. The advantage of suction operation is the small
wall bourdary layer at the blade cascade inlet, if the suction cone is
very short. Also, the drive power is ‘reduced because of the reduced
expulsion loss. Basically, pressurized operation with free outilow be-
‘hind the caseade should be the most favorable configuration, and the

present collection of ;eferences_démonstrates this. However, for in- /315

termittent channels, in which operation occurs by letting air flow intn
a vacuum chamber, only suction operation is possible.

The Beynolds numbers used ave in the range between 2 X lO5 to
6 x.105. An increase in the Reynolds number up to 106 seems desirable,
‘because most flow machines operate at these values, and even higher.
This réQuires relatively large blade chbrds,.which also increases the

measurement accuracy. A blade chord of 200 mm should be a useful

Strictly speaking, a blade cascade is a row of infinitely many
blade profiles arranged along a straight line, which_can_be_approximated
in expefimehts'by a small numbef'df biades; TP the upper and lower
limits (base walls) of the blade cascade are designed so that these-

- walls are streamlines of the infinitely-long cascade, and if we avoid
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* Table 1: Design Characteristic of Several Plane Cascade Test Stands
for Incompressible Flow ' '
£ L]
£ 8
'\- oo _ . © &) Type
§ 2 Research |° .3 | Type ofj o ‘J'w| Boundazy| of
8 Author Facility L Tunnel < g d g 9 Layer |Measure-
5 e Q a ~ | Removal ment
pr 2 B lowal a2l
& & & 52| 8%
-1 4§K. Christiani AVA , _1928 Pressura hxlos .5 3 none ¥ force,
. R Goettingen |- Operation B © | momentum,
= free pressure
' outflow distribution
2 | e, Keller B.ILH, 1934 | Pressure [bx10°| 5 2.3 nome | - force,
: Znrich Operation, ‘ ' momentun,
' - free | pressire
outflow distribution
3 | H. Hansenblas - BMW 1951\ Suction 2_x10_5 6 | 5 | mnone momentum,
N I = | - Berlin ' Operationy - ' R ' pressure
: ' ' elosed distribubion
outflow
g L {9. T, sawyer | E..H. . [1949| Pressure ex10°| 8 | 3 | siit force,
. Zurich .| Operation, suction| momentum,
R - closed at all | pressure
B outflow walls |distribution
5w, ‘G Blight Aeronautic {1949 | Pressure E’:x:].().5 12 6. | slit mo‘men‘:tuﬁr,
W. Howard ~ Reseaxch - operation, suetion pressure
| H. MeCallum - ‘Lab free at all | distribution
‘ Melbourne . outflow |- - side.
S Lo walls
6 [A.D.5. Carter| Nat. Gas. |1950| Pressure Sﬂos - slit | momentum,
S. J. Andrews| Turb., Es- | operation, = | |~ puction | pressure
H, Shaw _tablishm. - free nt floor|distribution
: Farnborough oubflow walls
7 [ c. Mortavine |Polibechnikum]1951| pressure [4x10°) 6 | 3.5 | none | momentum,
R Turin - operationy | pressure
. free | |distribution
outflow| - ' o
e T - S R : R




Table 1: (continued)

g
g o [|w@
@ = H °g o o Type
< - -+ [} . -rg ) Y
o Anthor Besc_aa?ch oy Type of < e g Boundary of
H Facility e Tunnel Q | o .3 Tayer Measure-
o gagl - B gn K& = Removal mentd
55 sl [ ) n o
8 d. R. Exwin N.A.S.A. 1951} Pressure slit suc~ momentum,
d. C. Emery Langley Field Operation, 5 tion at pressure
free bx107 6 b side walls,|distribution
outflow and wall
suction
within cas-
cade
- | ¥. Scholz T.H. Pressure 6 3 s1it momentum,
Braunschweig| 1953 Operation suction pressure
free [6x105 at all distribution
outflow walls

thieck boundary layers at the base walls, then the flow can be considered
to be a segment out of an infinite row of blades in a flow. The better
we can match the boundary conditions, the smaller is the required num-
ber of blades. in order to cobtain the flow of an infinte blade row in
the central part of the blade cascade. Figure 2 shows several ways of
designing the limiting walls for the blade cascade. Even though the
streamlines deviate from parallel flow by about one blade chord in {ront
of the cascade inlet, only a plane base wall can be used in practice.
Immediately after this, we can have a flexible sheath at a distance of
one-half a blade division from the last blade, which has approximately
the shape of an average streamline., However, this requires a new shape
for the sheath, for each cascade position. 1If the pressure differences
in the cascade are not too large, it may be advantageous to use a free
jet boundary along the final streamline. Another relatively simple
solution consists of using a normal blade as the end wall, and the base
wall is placed right up to the blade nose, approximately at the stag-
nation point of the blade in free flow. However, then the boundary /316
layer of the base wall impinges on the end blade, and this leads to a
premature separation, so that it is advanitapgeous to remove the boundary
layer ahead of the cascade. One good solution to the problem may be

to allow the base wall to terminate somewhat above the last normal blade,
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a) flexible end boundarles for. one~half blade division
b) blade profile as end boundaries over an entire blade
' division

c) blade proflle as ‘an end boundary with suction.

and the 1ntermed1ate air current is removed in a suction llne By

regulating the amount sucked off, it is possible to displace the stag-

;E_' - nabilon point at the final blade in such 2 way that the boundary con-

’ - ditions for the flow are satisfied. In order to regulate the suctlcn
_amount 1t is advantageous to 1nstall a static pressure tap at the base
wall at some dlstance ahead of the grld cascade inlet. Tt mist have
the same static pressure as in the center of the channel. Even if there

- is a very large inclination of the cascade front, one can bring about
‘a suff101ently constant static pressure varlatlon along the cascade i»
inlet whlch otherw1se leads to dlffwcultles in many cases. Usually,
it 1s not advantageous to expand the flnal wall behlnd the cascade be~

'v:yond the cascade width, because the outflOW'dlrectlon 1s ‘unknown. Thﬁs

L would mean that the fixed Walls would produce a change. ln the . outflow
.u-;dlrection. Because of the free,jet bouﬂaary, the edge streamline is

given a constant pressure In general the +ra111ng edge pressure of

bRt | DA R e R R : T
. ; 5 LS
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a cascade profile deviates only slightly from the pressure behind a
cascade, so that a constant pressure along the boundary streamline
satisfies the required boundary conditions with sufficient accuracy.
However, in many cases, especilally for highly-loaded turbine cascades,
the pressure along the streamline which goes from the blade trailing
edge changes so much that it is advantageous to dispense with the free
jet boundary, and to use a plane fixed wall. Its inclination is best
determined from the condition bf constant static pressure along a plane
parallel to_the cascade.

One additional important problem are the measures for bringing
about a plane flow in the central cross-section of the blades. Because
of the boundary layers which are produced along the side walls, the
flow is accelerated in the central part of the channel, so that down-
stream the flow increases in the central part of the channel cross-
section. This jet contraction increases, the greater the boundary layer
thickness is compared with the channel width and therefore with the
blade height. There will be an especially great inerease in the boun-
dary layer growth at the side walls, within the. blade caécade, because
due to the interference hetween the blade boundary layer and the wall
boundary layer and because of the pressure increase which especially
occurs in the case of pumping cascades, the conditions whieh are pro-
duced along the blade contour are so unfavorable that dead water re-
gions are produced in many cases there. This is true, even though there
is healthy flow in the central part of the blade. The constriection of
the cross-section at the cascdde outlet determines the contraction of
the flow in the central cross-section. This can have an effeet upstream
a large distance ahead of the blade cascade. Therefore;in many cases
it is not sufficient to remove the boundary layer at the side walls
around the cascade inlet alone, especially.if a new wall boundary layer
is produced inside the cascade with a substantial thickness. We can
distinguish two types of boundary layer suction, and there can be inter-
mediate kinds as well (Figure 3). One type, called "slit suction" is
characterized by the fact that suction is done in the direction of the
incoming Flow. In the case of wall suction, the suction is perpendicular
to the wall and therefore perLendicuiar to the main flow direction. In

© {he case of the slit suction, a region corresponding to the boundary

layer thickness of the flow is cut off, and is separated from the main
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Figure 3: Designs of Boundary Layer Suction.

a) slit suetion b)) wall suction

flow which results in a reduetion in the free channel cross-section.

The wall suctlon method does not'éhange the free cross-section but only

go much air may be removed as corresponds to the displacemenﬁ=thickness

of the boundary layer. In this case, the undisturbed out flow will -, /317

- have apain the oripginal flow cross-section. avallable, and any previous
boundary layer disturbance will be restriéted to the wall area if the
channel width is large enough. The advantage of wall suction is the
small amount which has to be sucked away; and the fact that the channel
crossw—section remains the same. However, the boundary layer removal
is not as good as for slit suction. In addition, slit suction allows

& much simpler adjustment of the suction amount. 'It can‘bé'adjustd
50 tThat the static pressure measured in a wall tap compared with the

- end of the slot becomes equal to the undisturbed static pressure in the
center of the channel. This adjustment has béen found to be very sen-
sitive. The design of the slit suction device is much more difficult

~and was therefore dnly used to remove the boundary layer ahead of a
break cascade. For the 'first time, J. R. Erwin and J. C. Emery [8]

- removed the boundary layer within the cascade using a wall suction
method, and they were Quite succeséful | The regulred suétion deer
levels are quite substantial in every case, because there are substan-

tial losSes in the suction .lines. “We should also mention that when -
there 1s a pressure drop in the cascade, there iz a possibility that

.the boundary layer can he removed w;thout suctlon blowers u31ng an over-

_ pressure which prevails ahead of the cascade.
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2.2 Measurenment Technigue and Measurement Instruments

For the force measurement and the momentum measurement used for
cascade measurements, the latter is simpler and more reliable, so that
it is used almost exclusively in more recent investigations. The only
advantage of a force measurement is that it is possible to determine
the blade force of a blade, or of a blade segment, by welghing. Also,
the measurement process is much shorter and can be more rapidly evalu-
ated. In the momentum method, the flow is measured along one blade di-
vision behind the cascade at a series of points (wake measurement).
This is a substantially more accurate method, and one can measure the
local distribubtion of momentum alon)y the blade height. In the force
measurement technigue, there 1s a substantial difficulty associated
with the suspension of the measurement blade, which does not exist in
the momentum measurement method, It is advantageous tc perform pres—
sure distribution measurements along the blade contour, to get a bet-
ter insight into the flow processes within the blade cascade. The
techniques used for this are the same as in any other pressure distri-
bution measurements.

In the momentum measurement method, which is based on the momen-
tum theorem between two planes parallel to the cascade ahead of and be-
hind the blade cascade, it is necessary to measure the following three
guantities in the incompressible case:

- 1) statiec pressure

- 2) veloecity magnitude

- 3) velocity direction

at least along the blade division, ahead of and behind the cascade.
Ahead of the cascade, at least in the region around the center of the
channel, the three flow parameters are sufficlently constant. There-
fdre it is sufficient to measure these quantities at a suitable point
ahead of the blade cascade, at a distance of about one blade chord.

In general, it is not necessary to measure the flow direction ahead of
the cascade, because this Is the direction of the axis of the incident
flow channel, which is appropristely regulated to be horizontal. Be-
hind the cascade, the measurements are performed at several points

within sufficiently small intervals along the blade central cross sec-

tion in a plane parallel to the caScade. A probe holder which can be
displaced parallel to the cascade is reqguired for this. The distance

ORIGINAL PAGE IS
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between the downstream measurement plane from the trailing edge plane
of the blade cascade should be selected so that the static pressure
along one blade division is approximately constant. The loss flow in-
terval between the blades shculd have a region with no losses. In
general, this is saﬁlsfled by.distances between 10 and 50% of the blade
chord behind the cascade, dependlng on the outflow angle. _

There are three measurement variables, one for the front measure-
-ment'plane‘“l"‘andrtwoffor,the rear measurement plane¥® "2y". .One of
these, the static pressure, does not require an absolute measurement,
but instead it is sufflclent to know the pressure dlfference between
ﬁM3plﬂﬁS This means that. a total of five quantities must be measuved.
If we only consider differential pfessures between the points within the

flow as measurement variables, then we find that the following variables
are sultable:

Staghation pressure of incident-flow,=qi

-

Static pressure difference, py(y) - pq

- Total pressure loss, g - gg(y)
Tncident flow angle Bl

. Qutflow angle, Bz(y)

T~ w o

If we restriet the mpasurement to one blade diﬁision which is
usuvally sufficient in most cases, then the measurement range of the

plane "2y" parallel to the grid is- adaustmd so that the loss Vallbj ii

of the central blade will lie in the center of the measurement range.
The measurement points inside the loss valley are’ located much more

i
| i
closely inside the loss valley. because of the strong dependence of o ]%

the measurement varlables on’ y, than in the remalnlng region on both
sides of the valley. One can have a" very convenient method of cal--
‘culating the required average measured values along one division, by

S = o7 T S L 2 - s - R 4 FLR iy P
[ : . P ' ! ) - AL .
s PR T I UL T I Ly e e B ST LIV

— Bx AT . Vg %
w7y Ty v - - LT :

using an even number of: equidistant intervals between the indivi-
dual measurement p01nts, inside and outs side the Wake valley The
integration of the measarement variables is done by using the Slmpson
'rule, and this is applled.to each partial region using the.equldlstant

*¥The 1ndex y states that thls is a plane, in whicn the measurement
quantltles SEi1Ll depend on the y coordlnate (Flgure 7) Coe




intervals¥,

In order to measure the static pressure, total pressure, and out-
flow angle in the wake at each point, it ic appropriate to use combined
measurement probes, which will simultaneously measure these three quan-
tities at the same position. Figure 4 gives two decligns of such probes.
The design difficulty here is to measure the static pressure directly,
without'a calibration facter. We can accept the fact that the static

'ﬁ " rotation axis
iy "

Ror 2 o m e - PP een SIS

3 F‘.:‘_—iu_::~<“
| g

|
I
|
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[

rotation [ |
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Figure 4: Designs of measurement probes for wake measurements behind
plane cascades.

g = total pressure p = static pressure R P, = flow angle.

pressure tap will usually be located at some distance downstream from /318
the total pressure tap, because the static pressure gradient is very

small in the flow direction. The circular cylinder holders on the side

are used to correct the static pressure of the left probe. Depending

on the diameter, this results in a 3tagnation at the static pressure

¥If M is the average value of a measurement variable £, .then it is gi-
ven by a sum formula ~m - i 4/s . Then the wakes will take on the

" hn

following values, if h is the measurement point interval outslide of the
wake valley and i 1s the (smaller) measurement point interval inside
the wake valley. For measurement points outside of the valley:

For measurement points outside of the valley, g, 6 = h, B -o8: ... Uh
For measurement points at the edge of the valley, 2. o e Es
For measurement points inside the valley, g = e s B S T T
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'taps 1oca£éa in front of'this-poiﬁt. This eqﬁalizes the overveloceltby
by the displacement of the probe head, In the right probe, the static
pressure can be corrected by removing the conical, or eylindrical, part
of the probe head. The symmetrically arrangéd taps used for angle
measurement, can lead to erroneous measurements if the flow is highly
inhomogeneous; if the taps are too far apart. However, usually the
errors are within.the measurement accuracy. Directional sensitivity

of the probes is only requlred perpendicular to the main flow plane,
because the probe is adjusted parallel to the flow using the zero
’method, then measurements are performed.

'2 3 The Cascade Test Stand of the Braunschwelg Institute of Technology,
' Fluid Mechanics Department.

In the design of the cascade test stand to be described below,

- we were concerned with the points discussed above as well as the pos-—

__sibility of carrying out systematic cascade measurements for all cas-

cade configurations which oceur in practice.¥® We are especlally con-
cerned with reducing the conversion time between measurements for twe

 cascade configurations. The three most . important pafametefé of plane'

caécade configurations: | '

-~ 1) Division ratio t/1
- 2) Blade angle, Bg
~ 3) Incident angle, By

should be continuously measureable over ranges which occur in practice,
and with a small amount of erfort. ' By ach1ev1ng a perfect flow al the
terminal members of ﬁhe cascade' we wanted to keep the blade number as
small as possible, in order to,reduce the production effort for each
_sPecial blade shape as much -as possible. Finally, we wish to bring
'about a. plane flow in the center of the channel cross~section, in order
to have perfect - comparlsons w1th theoretlcal calculatlons of plane

' ﬂi_blade cascades .-

. : Flgure 5 glves a schematic representatlon,of the test stand.
. The wutltunnel of the Fluld Mechanics Instltute of the Braunschwe1g

. Institute of Technology was available for operatlng the test stand,

. with a free get nozzle hav1ng a dlameter of l 3 m. Follow1ng thls,

lfl*Englneer H. Goldmanﬁ contrlbuted substantlally to the design.
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Figure 5: Sketch of a plane cascade test stand at the Institute for
Fluid Mechanics of the Braunschweig Institute of Technology.

1- tension roller

2- sides of the incident flow channel
3- suction slit

4~ end blade

5- measurement blade with pressure caps
6- wind tunnel nozzle

7= reduction nozzle

8- inlet nozzle

9- side wall
10- rotating disc
11- wall suction

(The height h of the incident flow angle can be adjusted
between 300 and 800 mm).

there is a reduction nozzle, which reduces the flow cross-section to a
1 x 0.6 m rectangle. After this, the test stand proper follows, with
parallel side walls and floors which can be varied in height by spin-
dles. Together, they make up the flow channel. Because of the change-
able height of the incident flow channel, an inlet nczzle to the inci-
dent flow channel is made up of two flexible sheets which come after
the base sheets and which are stretched tc the required length by means
of stretching rollers. The side walls are continued by two semicircle
discs, which can be rotated around a horizontal axis at the height of
the center of the channel (change in Bl) and which are rigidly connec-
ted. The blades of the cascade, which are normally 200 mm deep and

600 mm wide, are placed between these walls. They are attached so that
they can be rotated around the center of the profile nose radius (change
in Bs) and they can also be displaced parallel along the cascade front
(changeability of t/1). The end surfaces of the cascade are made as
normal blade profiles, and the bases of the incident flow channels can
also be rotated around the center of the profile radius. The bases
consist of two sheets which can slide inside one another, so that their

length can be changed depending on cascade position.
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The boundary layer removal is done using a slit suction device /319
and occurs 200 mm ahead of the terminal blades along the base walls,
and the slit suction is 30 mm high. The wall suction is located along
the side walls, along a 100-mm wide strip within the blade cascade
width. For velocities up to 50 m/s inside the rectangle cross-section,
it is possible to remove up to 10% of the amount flowing through by
suction. The suction power is 2 m3/s with a pressure of 500 mm water
column. Figure 6 shows the test stand.
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Figure 6: View of a Plane Cascade Test Stand at the Institute for Fluid
Mechanics of the Braunschweig Institute of Technology.

3. EVALUATION OF CASCADE EXPERIMENTS

3.1 Determination of the Outflow and the Blade Forces from Wake Measure-
ments¥,

The use of the momentum method for determining the flow resis-
tance of a single airfoils and blade cascades has been found to be very
reliable for a long time. In addition, when this method is used for
blade cascades, and by also measuring the flow angle, one also obtains
the 1ift of the blade. This means that it is the method sulted for
investigating the blade cascade flows. It is remarkable that no theo-
retical foundations for the use of the momentum method have been formu-
lated for blade cascade flows. However, the corresponding evaluation
formulas have been used and developed, that is, the Betz or the Jones
formulas. In very many wake measurements of blade cascades, one only

*¥The author [22] already reported on this.
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forms the average value of the measured values over one blade division.
However, these average values depend on the distance between the mea-
surement plane and the blade cascade, and compared with the homogeneous
translation flow, which would occur at a large distance behind the blade
cascade, there can be errors on the order of up to 20%, which not only
occur in the flow loss value, but also in the static przssure and the
outflow angle. It is not important whether a second blade cascade is
to be arranged at a small distance behind the blade cascade, because
the homogeneous incident flow for the second cascade can only be a homo-
geneous translation flow, and it must be equivalent to the inhomogenous
flow in the measurement plane in terms of momentum and energy.

In order to determine the flow variables of the homogeneous flow,
we will formulate the momentum theorem on a control surface, K1 (Figure
7), which is located between two streamlines at a distance of one blade

s,

plane 1 (
Figure 7: Evaluation of weight méasurements on plane cascades.

division from the measurement plane "2y" from the plane "2" as far
back behind the cascade where the homogeneous flow condition is satis-
fied. Then the continuity equation gives

L 4

Oawgsinfl, =0 :‘W:Uhmﬁw(ﬂdm (1)
and the momentum theorem perpendi&ular to the cascade front gives
Ps t Owy sin® fly =
L8 vt
i g i (2)
s .[P:(.)')fl)' o : J wy” () sin® flay (1) dy,
fo 4 v

and the momentum theorem parallel to the cascade front gives

osin fly cos il w.” =

Yyl ( 3)
w0 b fa () sin us)costler () ORIGINAL PAGE IS
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B In the last equation, one should also, strictly speaking, con-
iin sider the shear stresses in the plane "2y", but they are negligible

J in practice, which has been discussed by W. Traupel [9]. Using equa-
tions (1) - (3), we can determine the velocity Ws, the static pres-
sure p,, and the outflow angle 82 of the homogeneous flow from the
measured quantities from the plane "2y". However, we will introduce
the simplification here that with substantially facilitate the eval-
uation. It is natural to substitute a constant value for the angle
distribution in the plane "2y", because in momentum measurements of
single air folils, the local flow angles is not considered, which does
not lead to any substantial errors. With this simplification, we ob- /320
tain the following values for the homogeneous flow behind the cascade
from the three equations given above, if BQy is the constant average
of the outflow angle in the plane "2y"#¥,

yHt

Wy" = Wi, + wiy =it flu) ( : ‘ w. () ‘1.1':): | (4)
: ‘ wys (9)dy 4

o u\:./:‘:” ‘:OI
Lk :
\ we () dy
—, 2 —

It

o :l[ﬂ:(ﬂ'-r

¥

(5)

yit

¥t 3
i osin® ﬂ_.,l : ‘ w.” () dy ~(1 ‘-z:'._- (n rl_)-’ ’ i

.
¥

4

Jkt

: ‘ w, (1) d y

cg flu = C‘f—"/'.'.') g

(} [ o) L

v

¥If we consider the variability of g with y, then we obtain formulas

given in the appendix. 2y
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In order to obté*n formulas for the practical evaluation, we
will introduce the followlng dimensionless varilables:

. The nondimensional total average pressure loss

R
i el paCa
G= 81 .’».(,)) Jy, (7)
L “qy ke

¥

The nondimensional average pressure difference

.V"(‘l
pe L[ n (8)
b T

The correction term

y+1 ¥4

K= : v" r]-.'ll(l.)') dy -~ (: ‘ I ,]-."l(')') ; {_1');._ =

Since the linear average is always greater than the average squared

of a square root, K is a correction term which is always greater than
0 and is also small compared with the integral values of the right
side of equation (9). If we substitute this quantity in (4), (5), and
(6), then after a calculation (see Appendix B) we obtain the following
formulas for converting average values of inhomogeneous flow to an
equivalent homogeneous flow:

A =ikl iy ERy)
i qi ;

! , —

’ =[’. Pi = ll\'sin:ﬁgw. (11)

T Uil ‘

Z; =1L~ G+ K(cos® flay - sin*fls,), (12)

i K
cfem (i, K ) etgh. (13)

The angle 82y is a sultable average value of the flow angle in
the plane "2y". Since the angle differences are always small, the
rnethod of averaging is not important. One suitable averaging method
consists of averaging using the cotangent of the angle, because essen-
tially this is an averaging ov.r the velocity components parallel to
the grid front. The formulas glven above show that in a blade cascade
flow not only the total pressure loss, but also the static pressure and

Gids




the outflow direction differs from the equivalent homogeneous flow,
compared with the average value of the inhomogeneous flow¥,

In order to use the formulas (10) - (13), we require the average
values of the total pressure, static pressure, and outflow angle in the
measurement plane "2y", as well as the correction quantity K given by
equation (9). It is rather difficult to calculate. However, since it
is a correction quantity, it is natural to calculate it once and for
all for approximating the weight valley using an analytical function,
as was already done by C. Keller [2] for the special case By = 90°
using a cosine function. For momentum measurements on a single profile,
this was done by A.D. Young [10], and he obtained exceptional agreement
with the results of a normal evaluation. One condition for calculating
a universal correction guantity for cascade weight measurements is that
the individual wake values will not empty into one another, and chat
also the static pressure along a blade division is sufficiently con-
stant, so that between the weight values there will be a region with
contant velocity. In practical cases, these conditions are always met
with sufficient accuracy.

We will use the Gauss air-distribution function for approxiating
the velocity valley in the wake, which follows from the theoretical
analysis of the distribution of a plane turbulent wake some distance
behind the body (see for exampgle, H. Schlichting: Boundary Layer

Theory, G. Braun, Karlsruhe, 1951, p. 447). We will set (see Figure
8)

Ty gaxy — U -_-{',) (:‘;'ﬂlll- AT W min) e—ct (124 )

Here, w is the velocity outside of the velocity valley and /321

2max

Womin is the smallest velocity inside the valley, and n is the dimen-

sionless coordinate y/t. The zero of the y-axis is selected so that

Won) = Worin
to the origin. If the static pressure is constant inside the valley, then

for n = 0. Therefore,the value is symmetric with respect

¥W. T. Sawyer [U4], derived a formula for the pressure pp, by assuming
the same outflow angles in the planes "2y" and "2" and the momentum
theorem is formulated in outflow directions. In our notation, he
obtains (p2 - p1)/q1 = P + 2K. However, this result is not compatible
with the momentum theorem perpendicular to the outflow direction. The
results are only identical in the special case B = 90°, which was
treated by C. Keller [2].
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Figure 8: Turbulent wake profile according to Equation (14).

the loss valley of the total pressure gz(y) is identical with the
stagnation pressure valley qg(y). We therefore can relate the maxi-

mum total pressure loss g, - to the veloclty difference L

&omin
= Worin® We will introduce the following dimensionless parameters:

-
r! - * :‘““ll I ] xi - IQ_.’Y‘;"

T‘."—_-"l‘l.l‘ 1 & 4y ( 15 )

P is the average of the static pressure, according to (8). The free
parameter ¢ of equation (14) can be related to the total content of
the velocity valley, and therefore the content of the total pressure
loss valley, which is given by the average of the total pressure loss
G in equation (7). The integration of the wake valley over n, which,
strictly speaking, runs over 1 Glade division from n = -1/2 ton =
+1/2, can be extended to infinity without any problem, because the
error distribution function (14) decays very rapidly towards the out-
side. Therefore, after a few calculations we obtain the following
for the parameter ¢ (see appendix C):

c= [2V7 (-} I:";'(l~l*u)‘-'l"(;"w (16)

Now the correction term K of equation (9) can be universally calculated
by introducing the trial solution equation (1Z) for the velocity dis-
tribution, and this can be related to the average total pressure loss
G. One then obtains (see Appendix C):

2= fkeabat. (17)
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Figure 9: Universal calculated correction member according to
Equation (17).
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Figure 10: Comparison of universally calculated correction terms for
the special case of a single profile.

This function is shown in Figure 9 and Table 2 as a function of the
parameter o and G/(1 - P). 1In addition, to the quantities G and P
required for the evaluation, we must determine the value of a according
to equation (15) from the wake measurement, in order to determine the
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Table 2: Universal Correction Terms K/G according to equation (17).

i
0 0,02 0,04 ; 0,06 0,08 010 0,12 0,1 g 20 0,214 0,28
|
|
'.

0.2 0,2431 10,2333 0,2276 02199  0,2122 0, 2044 0,197 OI5L2 0,lo s 01503 0,1349
0,3 01902 01832 01761 01690 01619 - 01548 | gpg77 0I5 Q1200 01057 | 00914
0,4 0,1491 01425 01359 | 01293 0,1227 Q1161 (1095 0963 00829 00699 | 0,0565
0,5 0,1156 ~ 0,1093 00,1051 0,0969 | 0,097 = 0,0845 0,0782 00658 00532 00410 00284

0,6 0,0869 00809 00751 0,0a91 0,063 00,0573 00514 0039 00273 | 00157  0,0038
0,7 00616 | 00559 00503 00447 . 0030 00334 | ;277 00165 0,0049 - -

25 227 TN e ouy ™ het T
08 00389 | 00335 © 00281 00227 00175 00119 0065

correction K. The fact that equation (1) can also give values of

K < 0 is due to the fact that in these cases, we have wake values

which already transfer into one another and for these, the present
theorv is no loneger valid.

Comparison of the correction term recalculated and the theory
of C. Keller [2] and i. D. Young [10], which is only possible for the
case G/(1 - P) = 0(t/1 » =) is shown in Figure 10. We only find sub-
stantial differences for very small o (very steep valley profile), /322
and the cosine form of the valley by the other authors is too full
compared with the error distribution function. Comparison calcula-
tions with waks measurements of the author on plane blade cascades
show very good agreement between the universally-calculated correction
term of (17) and the numerically-calculated correction term usineg
equation (9). Also, we cannot find any deviation compared with eva-
luation results which were performed using a distribution of the out-
flow angle in the wake which varies with y, within the calculation
accuracy (see Table 3).

It is possible to determine the blade forces in the simple way
from the homogeneous translation flow calculated for the plane "2".
For this purpose, we will consider a control surface K, (Figure 7),
which extends from the plane "1" ahead of the cascade to the plane

"2" behind the cascade between two congruent streamlines at a dis-
tance of one blade division. For this surface, the momentum theorem
in the x and y direction and the vlane continuity equation, are given
by:

U = ot (wy* sin fhy cos fly — wy sinfiy cos fhy),

(18)




S = ot (wy? sin’ fly — wy? sin? g ) 4 t(po=—p (19)
7 (P2 = py)s
wy sin by = wy sinfl,. * (20)

From this, we find the following values for the dimensionless coeffi-
clents of the circumferential force U parallel to the cascade front
and the shear force S perpendicular to the cascade front

U t el (21)
= 0wt 12 2 / (ctg flo = cg fiy) sin® fi..,
; Ay t pa-pyosin®fs
Ly = “ - <0 ’
owi L2 =l g et (22)

where the reference velocity w_, Which makes the angle B with the
cascade front, is the vector average of ¥y and Woe The angle B_ 1is
found from

|
cgfo=, (agfi tegfiy). (23)

A recalculation to dimensionless coefficients for 1ift A perpendicular
to w_ and drag W parallel to w, gives:

l 1= crsin /)'\ = 0f CO§ fla =

(24)

bt ) '
=2 ) sin fix (ctg o ctg fh,) |

; o s
1 st iy 4

| ! ,\il}:/)'\ cos fix ‘:\'

v =~ cysinfl (/ ¢ sin*fl., 1
SSNfI L S Cpeus 1, = W
/ sy ey (25)

It is remarkable that the formula for 1lift contains the friction loss
in the second term. As shown in [16], this quantity 1is an additional
l1ist which 1s produced by the pressure loss 1n the cascade, and has

¥Here and in the following we will use the following sign conventions,
for angles and forces: the zero-direction for /# is the cascade front
in the section side - pressure side direction of a blade, a positive
rotation direction is clockwise. Then we have U > 0 for the forces,
Bl > 62, S O Py < Py A > 0, 81 > 62, W > 0 in the direction of w_.




the magnitude Ay - Wagj,

3.2 Correction of the Influence of the Jet Contraction

In spite of various measures for removing the side wall boundary
layers, it is not always possible to completely avoid a contraction
of the flow in the central cross-section of the channel. As long as
this jet contraction is small and which results in an acceleration of
the basic flow in the central cross-section, it is possible to igrncre
its influence on the boundary layer formulation at the contour of
the blade profile. It then becomes possible to carry out a correc-
tion of the measurement results with respect to the jet contraction
which occurs. The various contributions on this problem (see [7, 8,
12, 147) only specify corrections without any reasons.

Because of the displacement effect of the side wall boundary
layers, the incident flow tall is closed, the amount of flow through
one blade division referred to the width "1"

Yokt

Q) = @ (x;3)sin fi (x13) dy (26)

increases in the central section of the channel from the value Q1 in
the measurement plane "1", to the valve Q2 in the measurement plane
"2" (Figure 11). In order to simply calculate these relationships,
we will assume that inside the cascade the flux has the magnitude QG
and this occurs in the plane "G", whose position is determined by the
1lift center of gravity of the cascade profiles. This means that we
have "concentrated" the blade cascade in the plane "G".

In order to satisfy the plane continuity equation between the
measurement planes "1" and "2", it is necessary to increase the inlet
velocity to the wvalue

()‘1 X a
g, U= HEw (27)

Wykor =

and reduce the outlet velocity to the value

: A ® e SR
Wakor = (‘): Wy = "y Wy (28)
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We will define Mg = QG/Ql > 1, which is the inlet contraction coeffi-
cient, and S Q2/QG is the outlet contraction coefficient¥*. Since
the total pressure of the flow remains unchanged because of the jet
contraction, accordingly, the pressures P4 and Do must be corrected
according to the velocity changes: 3

Pikor = 1y (,"‘;{ o ])l[|, - (29)

{ ) 0
Pakor=pa b1 = ,”?‘l) q2: (30) ;

We now must investigate the influence of the jet contraction on 1
the outflow angle*¥. For this, we will apply the momentum theorem to ;
the spatial control surface in the central cross-section of the flow
(see Figures 1lla and b). The upper and lower limiting surfaces of :
the control surfaces are two streamlines separated at a distance of /323 2
one blade division. The side limiting surfaces are parallel planes,
vperpendicular to the cascade front plane with a very small distance
Az (Figure 11b). Upstream, the control surface is limited by the plane :
"G", where the blade cascade is considered to be concentrated as a :
series of vortices. Downstream, it is limited by the plane "2", 1In
order to apply the momentum theorem, it is not necessary to know the
flow distribution in the plane "G". It is sufficient to know the mo-
mentum which flows into the plane "G". But in the plane "G", the flow
is given a momentum in the y-direction, such that the homogeneous flow
behind the cascade is given the outflow angle B2kor if there is no

contraction between the planes "G" and "2", that is;

o= c_l(\)t,i;‘_-o_. LUS,;_.L.,,. (31)

The momentum which occurs in the plane "2" with homogeneous flow is
given by: :

Dot Rl s LobEl o o gl Suaalt v SRl St it b 1l S e St - i ot g n il oo i

*¥One correction to th= results of momentum measurements behind blade
cascades regarding tLe jet contraction was also carried out by C.
Mortarino [7]. The influence of the jet contraction on the outflow 3
angle was not considered. If we do not assume any outlet contraction, ;
(uA = 1), then the correction given by Mortarino is identical with :
our correction formula.

O Py

¥*¥The Iinformation was already published 'in [18].
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Figure 11: Calculation of an outflow angle correction due to jet con-
traction.

1y - 0Quwycos iy (32)

Because of the contraction of the flow from the plane "G", towards the
plane "2", there is an additional momentum which enters from the side
limiting surfaces of the control surface. The amount flowing in is:

AQ = QA - QE, and the y-component of the velocity with which this amount
flows into the control surface is not directly known. However, it must
lie between the y-component in the plane "G" and the y-component in the
plane "2", and therefore it is natural to use the arithmetic mean of
these two components as the approximate value. This means that the
additional incoming momentum is given by:

1 = 0(Qa—Qu) & (wair €O8 fyar + wWaCOSfia). (33)
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Since there are no external forces which are applied to the control

surface in the y-direction, the incoming and outgoing momenta must be
equal: IE G il IA. This gives the following equation for the correc-
ted outflow angle (see Appendix B):

)

:31 ctg fi. = pacig fiu yonis

L ocrg flakor =

This result states that the tangential components of the flow are not
changed due to the contraction, but only the normal components are
changed according to the increased amount of flow.

In order to apply the correction formulas derived above, we require
the flows 1n planes "i", "G", 'and "2". 1In the plane "1", the flux 1is
known from a measurement. Also, the flux in the plane "2" is known
because the homogeneous flow in the plane "2" was determined from the
measurement results in the "measurement plane 2y". On the other hand,
the flux in the plane "G" is not directly known, and is difficult to
measure. If we relate the increase in the fiuxes from the "1" down-
stream, that is, the quantity Q(x) - Ql’ to the total increzse
in the flux between the planes "1" and "2", that is, Q, - Q;, *then
we can expect that this function willl be universal for a fixed position
of the planes "1" and "2", independent of the total contraction. We
will call this quantity

Q(\) =
Q. - Q ( 35 )

k(x)=

the contraction function. Let us assume 1t has been determined once
and for all for a certain test stand, for example, by measuring the
velocity along the channel center between planes "1" and "2y" with-
out the installed blade cascade. We willl achieve an arbitrary jet
contraction by slightly reducing the outlet cross-section of the flow
channel. Figure 12 shows this contraction function for the cascade
test stand of the Fluid Mechanics Institute at the Braunschweig In-
stitute of Technology, which was described above. Since we only have
small values of the total contraction, it 1s not necessary to know 732
k(x) with any great accuracy, so that we can consider that the selec-
tion of the plane "G" in which the blade cascade is considered to be
concentrated is not very important. The estimation of the center of
1ift of the blades is therefore sufficient for selecting a value of
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Figure 12: Universal contraction function for plane cascade test stand
of the Braunschwelg Institute of Technology, Fluid Dynamics

Institute.
k for a special cascade measurement. From the measurement., we obtain
the total contraction coefficient “ges from

T ¥ AT (36)

), ey sin [,

<

After selecting a value for the contraction function k(x), according to
the position of the 1ift center of gravity, we then find the inlet con-
traction coefficient

Qu
"= = K (Mg — 1) + 1 (37)

and therefore the outlet contraction coefficient

My = Q. = '”:"N. (38)

Qe 1"y

In this connection, we have to consider another phenomena in the flow
through a blade cascade with side wall boundary layers. Inside the
curve blade channel, the particles with flow in the side wall boundary
layers are subjected to a pressure gradient in the blade channel which
is normal <o the blade. Because of their reduced velocity, they cannot
establish a dynamic equilibrium, which prevails outside of the boundary
layer. Therefore, the migrating particles are pushed away in the




B vl

direction of the pressure gradient. A secondary flow results, as shown
in Figure 13, for a plane parallel to the cascade behind the blade cas-
cade. Discontinuity surfaces start at the blade trailing edges, just
like a single air foil in a three-dimensional flow¥, and inside the
blade channels, secondary vortices are formed. Various authors 61 _
12] believe that, due to the departing secondary vortices, that there .
is an induced downwind in the central cross-section of the flow chan-
nel, which changes the outflow direction of the plane blade cascade.
However, it can easily be seen that the total circulation inside the
dashed curves K must be 0. W. Traupel [13] gave an extensive explana-
tion for this. It must be deduced that in the central section of the
flow cross-section, the induction effect of this vertex system is can-
celled, at least on an average, so that there is no influence on the
outflow direction in the central cross-section. Of course, we assume
that there 1s a sufficiently wide piece of undisturbed flow in the
central part of the blade. ’

TS 2 iR s fadats il e

3.3 Evaluation of the Pressure Distribution Measurements

When measuring the pressure distribution along the blade contour, ﬁ
it is appropriate to select the quantities in the measurement plane 3
"1", as reference variables. We must consider that because of the ‘
inlet contraction, they must be corrected according to equations [27)

and (29). The dimensionless pressure distribution coefficlent is then j
given by

Chebie b pob st :
e I a. Wt (39)

This correction can only be performed if the jet contraction 1is known A
from a wake measurement.

If we ignore the usually-small friction forces along the blade é
contour, then by integration of the pressure distribution along the
blade contour, we can approximately determine the resulting blade
force. Using a coordinate system normal (n) and tangential (t) to the
blade chord, the dimensionless normal force 1s given by

¥The physical reasons for these discontinuity surfaces are different,
however; see [13].
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and the dimensionless tangential force is given by
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Figure 13: Influence of the vortex system for plane blade cascades on
the outflow direction in the central section of the blades.

¥We will give these coefficients the subscript 1, because in contrast
to Cys Cgs Cps Cy they are referred to W and not Wy . For convenient

numerical integration 1t is appropriate to replace the integrals by
sums. The integration weights , are determined from the distances

from the individual measurement points parallel and perpendicular to
the chord direction. These distances are not equidistant. If we
assume a parabolic interpolation between three points each, accor-
ding to the Simpson rule, for equidistant intervals, then we find
according to E. Eltermann (ZAMM 33 (1953), p. 254), the following

weights:
are even: g, - b *uh
are odd: 9,57k PN e

are the numbers of the measurement points on the profile contour
which are numbered sequentially around the closed contour. = is
the distance between the measurement points - 1 and .h is

i

the distance between the measurement points » and ete. Using
the positive t and n directions (+t from the leading edge to the
tralling edge, +n from the pressure side to the suction side of the
blade profiles, one must consider the sign of » . We do not have to
consider the position of the measurement point on the suction side
and the pressure side. The beginning of the measurement point num-
bering has no influence (practically) on the sum results if there are
sufficient measurement points, but an even number of measurement
points 1s appropriate.
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We can immediately recalculate these force components as circumferen-

tial forces and shear force or 1lift force and drag force. On the other
hand we can determine the flow variables of the departing flow from
thes2 force components, by using the momentum theorem in the x and y

directions. We again obtain equations (18) and (19), but now the forces
U and S are known, and the equations are to be solved for the flow va- /325
riables. After a calculation, we obtain (see appendix E): :

dp e o i ik ! (g cosfi, ~ oy sin i), (42)
T a4 t ; 4
8. ot (exysinfi, = cpy cos f1) ctg fi, - :
T t : i (43)
: I (eny sin fi, = e ¢ cos i)
i 4sin” )
I L .' ‘.,_ . ‘(8 ~" i
ol ey 3 CNy Sinfi (;,ms/r‘ U-“-l)

Zsin:/i'l

BS is the angle between the blade chord (t-direction) and the cascade
front (see Figure 7). The calculation of the pressure loss Ag from the
pressure distribution can only make sense if we have a highly separated

flow with an overbearing pressure resistance. It is then calculated
from Ag/ql =1 - A4p/q; - 9,/q;-

3
§

S Ve R B

3.4 Representation of Measurement Results Using Dimensionless Coeffi- g
cients. :
There are many ways of representing the experimental results of

systematic cascade investigations because of the large number of para-

meters. A unified and clear form is especially desirable. We can for-
mulate two requirements, that is,:

1. The representation should have a universal character, and
should consider the deeper physical relationships.

2. The representation should allow one to derive the parameters
required for the design of a blade cascade without complicated recal-
culacions. It also should be possible to find the optimum cascade con-
figuration for a certain task in a simple manner.
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We should stress here that research in this area is not yet suffi-
cient to uniquely select parameters which will characterize the cascade.
In this sense, the following discussion is an attempt to clarify this
problem using numerous contributions taken from the literature (see [2],
[435 1915 [151).

From a physical point of view, cascade flow must be considered as
a superposition of a purely circulatory flow with a vortex intensity T
which is arranged periodically along a straight line, and a translation
flow w_ . According to the Kutta-Joukowski theorem, a 1lift forces is
produced perpendicular to the translation flbw. If we consider the vis-
cosity effect, there is also a drag force parallel to the translation
flow. Tne important independent wvariable required to specify the direc-
tion of w_ is the angle between the translation flow and the blade
chord, and it will be called the angle of attack a_ = B_ - BS in con-
formance with the notation usually used for a single airfoil. We can
now represent the 1ift coefficient as a function of the angle of attack

A

c4=

and the drag coefficient as a function of the 1lift coefficient

i ‘_,’7!, , =f (46)

ey
O

to characterize the cascade flow. We find the well-known diagrams for
the 1ift increase and the profile polars. In the range of healthy flow,
the functional relationships of equations (45) can be represented by the

linear function

dea
oo . ) (47).

Py
where the constant 1ift increase ch/daoo and the constant zero 1lift
direction 0y appear. This representation allows one o make the tran-
sition to a single airfoil, so that we can make comparisons with flows
over single profiles. However, the relationship with the parameters
which are important for designing the cascade such as pressure gradient,
deflection and pressure loss, are relatively complicated. There is also

the disadvantage that the 1ift coefficient contains part of the drag,
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as can be seen from equations (24) and (25), so that sometimes rather
unclear relationships are derived.

If we consider the blade cascade more from the point of view of
technical applications, then one characteristic feature of cascade flow
is the deflection of the incoming translational flow, and either a pres-
sure increase or a pressure drop result. The circumferential component
Win is looked upon as an independent variable for specifying the incoming
flow, similar to the angle of attack o, . First, we will use the deflec-
tion Awu = Wy, - Wy, as the "useful component" to characterize the flow
state and later on, we will use the total pressure loss Ag = g - 8, as
the "damaging component". We believe that the velocity normal to the
cascade front W, is especially well-suited when introducing dimension-
less variables, because it determines the throughput through the cascade.
Even if there are several cascades (stages), it remains almost constant.
The cascade properties are represented by the deflection coefficients

as a function of the circumferential component of the incident flow

A Az, o (;;vll,) = fleig ) (u 8)

W,

and by the loss coefficient as a function of the cascade deflection,

‘:l - _I“{ 9 /“31) (”9)

The first relationship is analogous to the 1lift increase given by equa-
tion (45). The second relationship is called the cascade polar¥, simi-
lar to the profile polar given by equation (46). This last represen-
tation is especially important as we will show. The coefficients defined
above have the advantage that they are in direct relationship with the
velocity triangle of the cascade and give the energy loss of the flow¥¥,

¥The term "polar" oniy applies in the transferred sense.

¥¥Here, we should realize that it is advantageous to use the cotangent
of angles instead of the flow angles in degrees, when applied to cas-
cades, because then these will always represent the circumnferential
component of the flow for the throughput "1". However, clarity is
not lost if we become accustomed to this method of operation.




Instead of the deflection Awn, we could also use the pressure difference
in the cascade Ap = P, - Py as the "useful component", but this quantity ‘
has the disadvantage that it contains the pressure loss in the cascade. /326
In the range of healthy and non-separated flow, we can describe the rela-
tionship between the deflection coefficient and the incident flow direc-
tion according to equation (45) using the following equation for a
straight line:

Jd, A clyg i, ¢ . (50)

This relationship naturally follows from the basic equations of blade
cascade flow (see Appendix F). The constants A and B depend on the 1lift
increase and the zero-1ift direction, similar to equation (47). Equation
(50) has a practical meaning if it is possible to find a relationship
between the constants A and B, and geometric profile parameters which have
general validity, which seems to be a good possibility. At the present 1
time, it does not seem likely that it will be possible to find a similar R
theoretical trial solution for the dependence of the loss ccoefficient on |
the deflection, according to equation (49), because the flow losses de-
pend on the deflection in a very complicated way, because of the compli-
cated processes in the friction layer of the blade profile. The coeffi-
cients defined by equations (48) and (49) are related to the flow angles
by the relationship

d, =ty fly — ctgry (51) ¢
and with the static pressure difference in the cascade by

I

020,712

V“A?/";’ > ‘-"!-'.:/"1 t-Sva (52)

from the Euler turbine equation, we then find the 1ifting height of a
blade cascade which is rotating at a velocity u

H= l’ Wa (u'\. : :.",.;p,). (53)

g \ 2 /

One of the most important problems is the question of the optimum cas-
cade configuration. By this, we mean the cascade configuration (t/1
and Ss)fbr a given profile shape which results in a specified velocity




triangle with the lowest flow losses. For a specified velocity triangle,
we can select the various division ratios t/1, which corresponds to a
certain value of the blade angle BS to achieve the specified outflow
direction and a certain total pressure loss. If in a plane 63 and Bl’
we plot the optimum values of t/1 and Bs’ corresponding to each pair of
values, then we obtain an optimum characteristic field for the corres-
ponding blade profile from which we can read off the optimum cascade
configuration (t/1 and Bs) for a specified velocity triangle (B1 and 63).
In this field the lines with equal minimum loss coefficients ;Va min ©an
be plotted, so that all variables required for designing the cascade are
contained in this characteristic field. Such a characteristic field,
therefore, summarizes all of the cascade measurements for a certain
blade profile and always contains the most favorable experimental points.
One then plots the deflection and the loss as a function of the incident
flow direction with fixed cascade geometry only to evaluate the blade
cascade for incident flow conditions which are different from the design
point. Of course this characteristic field says nothing about whether
the profile shape used is the optimum one for the velocity triargle. By
comparing the optimum characteristic fields of several profile shapes,
it is possible to immediately decide the guestion of the most favorable
profile shape, if one selects the profile shape for the specified velo-
city triangle for which the flow loss is the smallest.¥

The representation of the cascade polar byg ™ f(da) given above is
especially well-suited to determine the optimum cascade configuration.
A fixed pair of wvalues t/1 and Bs corresponds to a cascade polar. If,
for the same Bg We plot all of the cascade polars with various t/1 above
one another (Figure 14), then if there is a small deflection the curves
with the largest division ratio will show the smallest loss. As the
deflection is increased, however, the flow separates a large division
ratio earlier than for a small division ratio, so that the curves with
small division ratio have smaller losses. The envelope with all polars
with various t/1 then results in the minimum loss which corresponds to
a single deflection and the tangential cascade polar gives the

¥Just like the optimum cascade characteristic field problem for the
minimum losses (efficiencies discussed here), optimum characteristic
fields can also be designed for other minimum requirements, for exam-
ple the maximum overvelocity over the profile (cavitation, critical
Mach number or minimum shock sensitivity (steepness)).
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Figure 14: Determination of optimum cascade configuration using cas-

t/1 and Bs are obtained for a 63 value. The Bl values corresponding

[,3 = const

(f/l)' > ”/Ui > (!/I/'.7

envelope

zero point tangent
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cade polars.
corresponding optimum t/1 value. In this way, the optimum value pairs

to 63 are taken from a plot of 63 versus Bl. In order fo draw the en-
velope, it is useful to know its tangent at the origin; that is, at
t/1 = ». The following formula can be given for this (see appendix G):

B

l 5 i sin“(fi, |« )l(”) - g (ot )|, (5}")

-

\C W o

In order to determine it, one requires the optimum quality coefficient

of the single profile cA/cw) and the corresponding angle of attack

opt
a . Using plots at various BS values, we can finally find sufficient

numbers of optimum values to obtain an optimum characteristic field¥*. /327

¥Strictly speaking, in order to determine the optimum values, one

should use cascade polars for fixed Bl and t/1 instead of for fixed

BS and t/1. For specified Bs’ two cascade configurations will not
have exactly the same velocity -triangle for the same 53, but the values

of B, and B, will be somewhat diffferent, because the incident flow

angl% depenas on the division ratio. However, this has a very small
influence on the optimum value determination. On the other hand, the
suggestion method has the advantage of great simplicity, because the
cascade geometry will remain constant for any one cascade polar.




4. SOME SYSTEMATIC MEASUREMENT RESULTS OF BLADE CASCADES WITH PROFILES

NACA 0010¥% .

Out of the numerous systematic tests of blade cascade measurements
which were performed at the Braunschwelg Institute of Technology at the
Fluid Mechanics Institute using the previously-described cascade test
stand (see also [21], [23], [24]), we will, in the following, give a
small selection of measurement results in order to demonstrate the eval-
uation methods.

These are blade cascades which are built up from symmetric profiles
with the NACA system, having a 10% relative thickness (profile NACA 0010)
The blade chord was 1 = 200 mm, and the exit velocity was about Wy = 4o
m/s, according to a Reynolds number of Re = 5 x 105.

In addition to the values of the division ratio t/1, the blade
angle Bs and the incident flow angle B1 given by the experiment confi-
guration, the measurement gives the average total pressure loss G cb-
tained from an averaging process, the average pressure difference in
the cascade P and the average departing flow angle B2y' The numerical
values given in columns 4 to 6 were measured at relatively large dis-
tances of 100 mm at Bs = 90° and 130 mm at BS = 45° behind the blade
cascade. Consequently, the wake valley is already relatively flat.
Nevertheless, we find considerable deviations in the homogeneous out-
let flow (columns 10 to 12) compared to the average values in the mea-
surement plane (columns 4 to 6), especially in the valleys of the total

pressure loss and in the static pressure difference. There are sub-
stantial deviations in the angles only for very small outlet flow angles.
The quantities in parentheses in columns 10-12 which were all obtained
from the complete evaluation formulas with variable B2y (see appendix A)
show almost complete agreement with the values of the approximate cal-
culation. The parameter o of the valley shape (column 7) can also /328
be directly found from measurement results. The two constants K and

k (columns 8 and 9) were taken from universal diagrams (Figures 9 and

12). The contraction function k was selected as k = 0.9 in all examples,
which means that the 1ift center of gravity of a blade was about 1/3 cof
the blade chord. In the contraction coefficients (columns 13 to 15),

we find that the total contraction uges is found directly from the re-

*¥*The complete results will be published in later papers because they
are very extensive.
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Table 3: Evaluation scheme for wake measurement on blade cascades
(numerical values for blade cascades with NACA 0010 profiles).
The equation numbers refer to the equations in the text. The
numbers in brackets in columns 10-12 are obtained from com-
plete evaluation formulas with the variables Bzy'

1 2 3 4 ' 5 6 el 8 9
= ' : :
e/l /. Vit i G r fay 7 K ”®
specified. from wake measurement. universal
o Eq (77  Egq (8) - Ba@is) Eq (17) . Ea (35)
a 1,00 o 90" 0,0150 —00728 | 900 0,627 00011 . 0%
b 0,75 90 9 0,0215 —00637 900 0,601 | 00017 0,450
¢ 0,50 9 90 0,0397 —0,0784 90,0° 0,556 00034 0,90
d 1,00 45" 45" 00175 | —01332 | 30 0771 | 00007 0,90
¢ 0,75 45" 45" 0,0280 —0,1948 2,3 0,759 0,0011 0,90
f 0,50 45 45" 0,0507 —-02214 ' 4100 0718 00021 09
10 1 12 13 14 15 16 17 18
. ; : k b ;
% ' s e, i F 3 Fex fakor
T T 2 ; 3 71 kor fikor
~-;16_1;1(-:ig;a-—n“e-;:;l.ts Fiow| - contractlon coeffi clents ~corrected homogeneous
S i v U AR L e o T __outflow _
Eq (10) Eq ) Eq<l‘) Eq (36) Eq i3 Eq (ss) Eq(ﬁ")to(xo) Eq (34)
) — (0,07 0,01 3 2 =
o Gorer | (Coore (9009 1,029 1,026 1,003 00151 —00131 90,0
B oo (oo 1,00 018 LOO2 001 00190 00 ]
. 0.0363 —~0,0716 90,0 . < 28 : :
100365  (-00718)  (90,0) Lo1S 1016 1,002 0,0351 00351 90,0 :
00168 — 10,1325 430 * : : ]
d (t):tjigs) (= 0:1-)2;) (43,00) 1,019 1,017 1,002 00162 — 0,0902 42,9 4
. 0,0269 —~0,1938 2.8 - RS T v L Y g
e | oo (Co1940) (4239 1,019 1. 1,017 1,002 0,026( : 01489 422 é
! 0,0485 ~ 02195 410" ra : o _o1380 | 408 3
f ©00483) | (02198 | (4107 | 1,044 1,040 1,004 0,0446 0,1289 ; : ;

sults of the homogeneous outlet flow. The inlet contraction Hp is de-
termined using the value p of the contraction function. The remaining
part of the jet contraction is the exit contraction uA*. In these

¥If, due to jet contractions, there is a substantial'change in the
outlet flow angle 62, then it may be necessary to calculate it with

the corrected outflow angle BZkor and then find an improved contrac-
tion coefficient uges in order to make the values of the corrected
homogeneous outlet flow compatible with the plane continuify equation.
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cases, we find jet contractions between 2 and U4%. However, it is easy
for higher jet contractions to occur, especially when there are pres-
sure increases. Accordingly, the corrections caused by jet contraction
are relatively small (columns 16 to 18), but they are not negligible.
As an example for the pressure distribution measurements, Figure 15
shows pressure distributions for the not-lined-up cascade with profiles
NACA 0010 with three division ratios. The plot shows the uncorrected
that is, the directly-measured measurement points and the measurement
points which have been corrected using equation (39), as well as a
pressure distribution of the potential theory of H. Schlichting [21].
The corresponding contraction coefficients can be found in Table 3
(columns 1 to 3). The corrected values agree quite well with theory,
even though deviations are found for very small division ratios which
could partially be caused by friction.

The results of the wake measurement will be represented as pro-
file values (equation (45 and (46)), as well as cascade values [equa-

tion (48), (49)). Figure 16 shows the 1lift increase c, plotted against

A

=075 _| |_ tN=10 —

Figure 15: Pressure distribution for NACA 0010 profiles in a cascade
not lined up with incident flow parallel t. the chord ( Sq =
= g, = 90°). ~

1

® - uncorrected measurement

0 - corrected measurement.
a,» Which depends greatly on the division as well as whether the blades
are lined up. Figure 17 shows the corresponding plot of the cascade
values Sa as a function of ctg Bl' The plot agrees very well with the
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form of equation (50). It is also remarkable that the inclination of

the line {constant A) depends hardly at all on the division, and only

slightly on how much the blades are lined up. The origin displacement
(constant B) depends on the zero-i1ift direction, and therefore also on
the division aund how the blades are lined up.

The profile polars calculated from the wake measurements‘are given
in Figure 18. As the division is refined, the drag in general in-
creases because of the less favorable pressure distribution (higher
overvelocities) and the maximum 1ift decreases. The difference between
the pumping cascades and the turbine cascades 1is clearly seen for the
lined-up cascade by the assymetry with respect to Gy . = 0. On the tur-
bine side (cA > 0), substantially higher cp value; are reached. Figure
19 contains a plot of the cascade polars %a(aa) which is similar. The
characteristic feature of this plot was already discussed in the pre-
vious section (see Figure 14). Inorder to determine the optimum cas-
cade configuration, we use the envelopes of cascade polars for various
division ratios t/1. The tangents of the envelopes at the origin (t/1
+ ®) can be calculated from equation (54), and in the previous example
we will use an optimum quality coefficient of a single profile of
(cA/cw)Opt = 60 at o 10°. These results and further results for
other blade angles BS allow one to design an optimum cascade charac-

teristic field using the optimum values obtained, and this is shown

in Figure 20 for blade cascades mede up of NACA 0010 profiles. The
characteristic field contains in a plane of deflection coefficient,

Ga versus incident flow direction ctg Bl, the lines of the optimum
values of the division ratio t/1 and of the blade angle BS. This means
that for a specified velocity triangle, one can read off the most fa-
vorable cascade corfiguration. As to be expected, the characteristic
field shows that in the pumping cascade region, the optimum division
ratios are substantially.lower than in the turbine cascade region. The
corresponding loss coefficients are greater in the pumping cascade re-
gion. Of course, we can only use points of the characte: 1stic fields
for this comparison which are on the pump side or the turbine side,

and whose correspcnding velocity triangles are derived from each other
by reversing the flow direction (exchange of Wy and w2). For such
points, we have the relationship

(t[gl"]‘)lﬂil'l“" A (L‘}—‘. {"')l'“[u'n- s 15,,.




The corresponding points are therefore not symmetric with respect to ;
ctg Bl = 0, but are displaced toward the pump side, similar to the curve 1

BS = const.

5. OUTLOOK ]

For a very long time, the Euler stream thread theory was the only
method of analyzing the very complex blade cascade flows. In recent
times, several new directions of research have emerged, which can be
characterized as follows:

Starting with the Euler stream thread theory, which describes the
limiting case of very thin and infinitely dense blades with friction-
less flow, an attempt was made to develop a reduced performance theory
which describes the deviations with respect to the blade-congruent flow
by means of universal and empirical relationships (A. Betz, Goettingen).
As a second method, the extensively-researched flow around a single
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Figure 16: C, @s a function of o for NACA 0010 profiles in a cascade
nct lined up (BS = 90°) and 1lined up (BS = 459),

profile was used as a point of departure, and an attempt was made to
approximate the deviations due to the cascade configuration of the

blades (A. Betz, Goettingen). Both methods depart relatively far /330
from the point of departure, in the division ratio region of about
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Figure 17: Sa as a function of ctg Bl for blade cascades with NACA

0010 profiles, not lined up (Bs = 90°) and lined up (BS =
450,

Figure 18: Profile polars for NACA 0010 profiles in a cascade, not
lined up (BS = 90°), and lined up (Bs = l5o),

t/1 = 1 and therefore the uncertainties become quite substantial.
Because of the continuous <“evelopment of the aircraft gas turbines,
especially in England during the last war, blade cascade flows were
calculated extensively using empirical methods. An attempt was made
to develop gererally valid empirical relaticnships for the design of
gas turbines (A. R. Howell, Farnborough). Because of the successes of
boundary layer methods in the layer of aircraft dynamics, recently an
attempt was made to give a boundary layer treatment of the plane blade
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Figure 19: Cascade polars for blade cascades with NACA 0010 profiles, %
not lined up (BS = 90°) and lined up (BS = §59),

cascade flow in its complete generality ((H. Schlichting, Braunschweig). |
For the first time, it was possible to calculate theoretically a blade
cascade flow with friction, and good agreement with the experiment was
obtained.

This last method which is the topic of our investigation will sup-
port experimental research for the purpose of validating the reliability
of the theoretical results with respect to several important points of
the entire field. This will lead to a substantial reduction in the ex-
perimental effort. Measurement results are very important for compari-
sons between theory and experiment. As the previous discussion shows,
achieving a sufficiently two-dimensional flow, recalculating the mea-
surement results for a homogeneous flow, and the correction of the mea-
surement results with respect to the remaining jet contraction, are all-
important factors which have not been considered enough before.

All of the research discussed above 1s concerned with two-dimensional
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Figure 20: Optimum cascade characteristic field for blade cascades
with NACA 0010 profiles.

plane flow through an infinitely-long blade cascade. Certainly, this
flow is the foundation of any cascade flow. However, it has been re-
cognized that there are very different three-dimensional influences
which occur in a designed flow machine, and this can result in sub-
startial differences with respect to the plane cascade flow. Never-
theless, the influences, must be considered as secondary phenomena in
the sense of analyzing the cascade flows, and they must be dealt with
separately. ©Lven though important contributions have been made to these
solutions 1n several special cases, a rational analysis of these prob-
lems remains to be done.

6. APPENDIX
A. Equations for the homogeneous flow behind a blade cascade

with consideration of the variability of B2y'

If we consider the variability of the outflow angle B2y’ with the
cascade parallel coordinate y, we find the following from equations
(1) to (3):
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B. Determination of the homogensous outflow from the average values

of the inhomogeneous flow.

Equation (4) for the square of the velocity of the outflow velocity

w, can be written as follows by using equation (9):
‘u"_'... L 1) (‘) -
el = sin” fiay ‘ dy~ K ) !
v+
* agi? * B-1
[(l“_ 9)&ﬂ (B-1)
¢ :.‘I
+cos® fluy |
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x ‘ ws ()

The second term can be simplified as follows, because K is small com-
pared with the integral in the denominator:
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If we consider the identity
Twl0) o § wd -l 0N 0)-pl (B-3)




then from equation (B-2) we obtain equation (12) as follows by intro-
ducing the integral values G and P using equations (7) and (8):

4
Wi o oy G- P Kein® By + Keos' Puy: (B-4)
wy 41

Equation (5) for the static pressure p, can be transformed to the form
of equation (11) which can easily be seen by introducing the quantity /331
K according to equation (9):

Pr=pr _ Ip P 2K sin” Py, (B=5)
i ‘h

The total pressure loss can be expressed using the identity similar to
equation (B-3):

SRR S B /'.:- " o (B—6)

| — P — 2 K sin*ji,,, —

(B-7)

/l |
l ~ G Pt Ksintplh, — KN cos® i,

From this, we obtain the desired relationship, equation (10):

e ok (B=8)
M =

Equation (%) for the outflow angle 82 can be written as follows, using
equation (9):

% ctg fr = crg fis, ,;,. . (B-9)
|
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Since the correction term K is small compared to the integral in the
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denominator, equation (B-9) can be further simplified as:

) ' l K
ctg fla = crg oy |1 Yt %
: ‘ bt (,‘.y) dy

[ g
| R

W

The 1ntegral in the denominator can be expressed by the integral value
G and P using equations (7) and (8), so that we obtain equation (13):

K
Ctgﬁ: :‘;"z:/)’z’." (1 i Ty G) (B-lO)

C. Universal Calculation of the Correction term K using correction

term using equation (9).
If we introduce the trial solution for the velocity value equation
(14) where Wonax 1S dimensionless, then using equation (15),

wh ("/)

=1 (t-<Faye ", (C-1)

Wa niax

the integration of equation (C-1) between -« and « gives

}

\..;.{"‘_- (’I‘ tl’l g l."(l l’ll) l ) (0_2)

W2 mas

Since we have assumed that the wake valley has already practically de-
cayed to zero, in the range of one blade division (-1/2 < n<1/2), then
the value of the integral field remains unchanged, if we only integrate
over the range from -1/2 to 1/2. Correspondingly we obtain the fol-
lowing for the value of the velocity square (stagnation pressure valley):

LR

‘ ':c'._-‘-.('}) dy=1-2)x(1 -Va) : t
c

(C-3)

o We max
TN

’.T farars ]
' 1<|—|ur 2
From equation (C-3), we can then determine the undetermined parameter
C by the area of the stagnation pressure va.ley. By using the identiy
(B-3),
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( .
‘ (u ‘[(“JJU:
l

’f max
12
| (c-1)
@i g 00 = (pa () - py)

”"‘}, T

d 1.

From this, by introducing the integral values (7) and (8):

+ 112

O, 0 g s

W man . max

Since the flow outside of the wake valley has no losses with qz(”)
Aomax? and also because T and therefore also the static pressure
p, can be assumed to be constant over the division, we obtain:

drmax _ 41 (s !’l) -
1 N

1P (C—-6)

By introducing equation (C-5) and (C-6) for the right side of equation
(C-3), we then find equation (16) for the parameter c:

zln(rr—lu)—|. ! (r—lu)] (—,P (Cc-7)

The correction term of equation (9) can be written as:

+ 12 + 1

P ] I ‘ (f;) . ( l,i

J W nan
— |2 —12

) |- (c-8)

} 11IA%

From this, we can first find the following by introducing equation
(C-2) and (C-3) for the integrals and equation (15) for the factor
in front of the bracket:

( r i E IS
K o= M 7 i)’ : (1)) I . ORIGINAL FAG
A 15 o) OF POOR QUALITYl  (c_g)

If for the parameter c¢ we will introduce the equation (C-7), then after
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conversion we find the desired relationship (7):

(1 'll) _’ll_T (\ Iu) 1 =P (C—]_O)
G V2 ) :

D. Derivation of the formula for the outflow angle correction.

If in the equation for the incoming and outgoing momenta IE +.I =

I, we substitute (31), (32), and (33), we obtain:

A

l 0 Qi W, o COS Pavor

i 0(Qs— Qu) ,‘3 (222 e €08 fla or F ( D=1 )
l A 1y cos ) = 0 Qg wa cOS s kore
After conversion, we find /332
(211' (7‘:';: Lor COS I"_' lor = W COS l')'_.) - ( D_ 2 )
== Qu {ww, oS fis — Wy por COS fIy).

Bezause of continuity,

I Qi =t Wakor SINFavorns (D-3)
[ Qs =ty sinfla

If we introduce Q2 and QG instead of the velocities Worep and W, in
equation (D-2), then we find:

[ Qi etg farar Qe Qo ety flav
‘ Qi ag iy b Qi Qu ety fla

(D-4)

This gives us the desired result:

(\).' b il ,o
Qc S8l (D-5)

)
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E. Determination of the Homogeneous Outflow from the Pressure
Distribution at the Blade Contour.

From the forced composition, we first find the following relation-
ships from the coefficients cy and Crp and Cy and Cg On the other hand,
@11 referred to w_ )

(E-1)

(o ey singd, — cp cos fly,

Uy — N COS I, — Oy sin Ps.

(E-2)

Angles are given in Figure 4, and signs of the forces are given in foot-
notes in the previous sections.

From the momentum theorem, in the circumferential direction (see
equation (21), we find the outlet flow angle

3 , / cu
ctg fis = ey t 2sin® i’ (E-3)
and after introducing equation (E-1) and the coefficients cy and Crp
referred to Wy - -
g fle = crg fiy I exysinfi = cpycos fi,
SERTEEA T 2sin® fi, ! (E=4)

so that we obtain an equation (44). From the momentum theorem in the
axial direction, we find the following for the pressure difference in
the cascade (see equation (22)):

P2 Iosin /i - (E_S)

q ¢ sint

After introducing equation (E-2), equation (42) gives
i <) !
! £ , (en, cos /J'. C7y s ), (E—6)

According to the plane continuity equation, the stagnation pressure
ratio can be expressed by the angles:

- g




900 b sin® 1, (1 1 crg® fi). (E=T7)

s ol
iy s [y

If we substitute equation (E-4) for ctg Bl, then after further simpli-
fication we obtain equation (43):

U]

l . i ) |
=py (eny sinfls = crycos i) etg 1, |
un t

(E-8)

I (cny sinfi = ey cos [
iz 4 sin” fi, =

F. Derivation of a functional relationship between the deflection

coefficient 63 and the incident flow anglec 81.

For a single profile, we find the relationship between the circu-
lation and the angle of attack from

Up == o Usin (0 — «y) (F-1)

(aO = angle of attack for zero 1lift). If we use the same relationship
for the blade profile in a cascade, and if we introduce the cascade
influence factor k = PG/FE, then the circulation of the cascade blade
is given by:

| 1o = kawsin iy — ag) =

l sk Usin (B — fy), (F=2)

where w_  now is the vector average of wq and LPY The angles B are not
measured with respect to blade chord in contras® to the angles o , but
are measured with respect to the cascade front used as a reference di-

rection. Accordingly, BO is the incident flow angle of the cascade, j
for which the 1ift is zero. 1

We have the following relationship f{or the circumferential compo- :
nents of a cascade flow in front of and behind the cascade

ety (F-3)

wit
ORIGINAL PAGE IS
OF POOR QUALITY

Wy




By substituting equation (F-2) and using w__ = w_ sinB_, we find the

ax
following if the entire equation is divided by LA

cgflo=ctgp, i b ! sin ((“ B ﬁ”), (F—Ll)
t sin f1
For the angle B> We have:
ctgfia o A (agy b oag ). (F-5)

From equation (F-4) and by using the addition theorem and introducing
equation (F-5), we immediately find:

' !
l ctgflo=cgf, tka . cos f3, —

; (F-6)
T . )
l —k , s by (ctg iy + crg )
An additional conversion gives:
[ cgfl, ~crgfly=0,=
! b .‘Tr sin f7,, ko f cos fi, (F=T7)
: ’ \‘[:_'\/J.! t ‘
! [ ¢ ; : sin f7,, 1 'K‘j sin ),
which is an equation of the form
N, .'lklg/;l i B
with the constants
ko sin /7,
A = 4
’ n !l . ’
11k 2 S!t‘lfl'” (F-B)
ko J cos fh,
t
B= o A
1tk i sin fi,
£ 4 /333

These constants only depend on the zero-lift direction of the cascade
Bo and the cascade influence factor k or the 1lift increase of the
blade profile in the cascade.

G. Derivation of the formula for the limiting value of Ga/CVa for
t/1 » » (see [23]).




Using the expressions for Cy obtained using equations (24) and
(25), we find: ]

cw 23y, 9 :
5 , sin fiy i ctg fia. (G=1) 3
, 2 ; 3

For a single profile, (t/1 + «), the optimum value cf Sa/gVa is obtained ;
.
when cw/cA is the minimum. Also, for a single profile we have ]

B BizEiss (G—Z)

so that the optimum value of Sa/gva at t/1 = » results in the following
equation (54):

O

SVa =

(G=3)
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