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I. INTRODUCTION AND SUMMARY
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1.1 SUMMARY

The objective of this graduate research program was four
fold:

f

i

1
1

1. Modification of a single cylinder test engine to
incorporate a cylinder from an existing spark-
ignition engine converted to diesel operation and
preparation of a test cell to provide induction
air heating and simulated turbocharging.

2. Testing of the modified single cylinder engine
to provide data on the characteristics of a low-
compression turbocharged diesel engine.

3. Design of a cylinder employing the "Hot Port"
concept.

4. Analyze the potential performance of the low
compression ratio diesel with respect to general
aviation aircraft applications.

To minimize cost and conversion time, an ATAC-IH-LABECO
engine used in previous diesel research. was retained and
modified utilizing standard GTSIO-520 engine parts donated by
Teledyne Continental Motors. A new crankshaft was installed
along with a standard GTSIO-520 camshaft modified to fit the
single cylinder diesel test engine. Spark plug holes were
closed by installing a cylinder pressure transducer in one hole
and the clamping mechanism for the injection nozzle in the other.
Flat top pistons were machined to provide compression ratios of
10:1, 11:1, and 12:1 and clearance volume cavities to suit the
injection spray. The ATAC--IH--LABECO engine test cell was instru-
mented and modified to simulate turbocharging with an induction
air system which included intake air heater, air bypass, surge
tank and back pressure regulator. Instrumentation included a
Hartridge and a Bosch Smoke Meter, dynamometer speed regulator,
exhaust pressure manometer, fuel injector needle lift transducer,
fuel flowmeter, and a magnetic pick--up for RPM determination.
Cylinder cooling air and oil temperature control.were supplied.

Experimental engine testing was performed using compres-
sion ratios of 10:1 and 11:1. An injection nozzle spray survey
was undertaken.followed by after injection, air swirl and fuel
impingement tests. Intake air temperature and pressure as well
as manifold pressure were examined for effect on the ignition
point and ignition lag. Until late-in the diesel test program,
test equipment and procedures hampered the recording of reliable
data. Further testing is therefore recommended and needed to
confirm or reject previous test observations.

1
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The Hot Port cooling concept was applied early in the

program to the design of the GTSIO-520 spark ignition cylinders.
Bench testing a model of the cylinder dome showed that the center
attachment point of the valve guide/support must be within 1.27
em (.50 in.) of the center of the dome in order to maintain valve
seat/valve guide alignment. A second model of the cylinder head
indicated that it has several structural advantages including
a valve rocker position such that the fulcrum force reaction is
taken in an independent structure to the cylinder dome making an
exceptional valve mechanism by stiffening and low thermal expan-
sion effecia. A preliminary Hot Port cylinder layout was submitted
to Automotive Pattern of Detroit who determined that existing
pattern equipment for the GTSIO-520 could not be successfully
modified to incorporate the Hot Port cooling design. Work on
the Hot Port cooling concept was then discontinued at The Univer-
sity of Michigan with further design studies being proposed.

The analytical engine characterization could not be performed
due to the incomplete results of the experimental diesel engine
testing. However, a digital graphics computer simulation was
performed on a "typical" aircraft showing possible gains in per-
formance by utilizing the aircraft diesel and the Hot Port cylinder.

1.2 INTRODUCTION

The University of Michigan is extensively involved in research
and education programs related to general aviation aircraft and
general aviation power plants. The greatest emphasis is placed
on technical problems associated with the third level aircarrier
fleet due to the increasing significance of these aircraft to the
U.S, business transportation system. Solution of these technical
problems would mean increased safety, fuel economy and performance
while decreasing maintenance costs and emissions.

To resolve these technical problems a University/Industrial
program was defined by NASA that would provide design information
necessary for improved aircraft piston engines. The basis of the
single cylinder diesel engine research program was to demonstrate
the feasibility of converting an off-the-shelf spark ignition air-
craft engine to the diesel cycle. This was to be accomplished
without major engine component redesign in order to minimize cost
and weight penalties. In addition, the research effort was defined
to investigate the Hot Port cylinder cooling concept and subse-
quent increase in aircraft performance.

2



NASA contract NAS 3-20051 to research the feasibility of a
lightweight, low compression aircraft diesel engine was awarded
to The University of Michigan by Lewis Research Center in April.
1976. All work under this contract was directed by the University
Project Director under the technical direction of a NASA Project
Manager. This project is being continued as a Grant (NSG 3161),
and will concentrate on combustion analysis and general engine
performance of the present low compression ratio diesel engine..-	 This subsequent work is conducted under the guidance of Professor
Bolt of The University of Michigan.

Q'T

All principal measurements and calculations were made using
the English system. Conversion to the S.I. system was made for
reporting purposes.

The purpose of this final contractor's report is to present
the findings of the lightweight, low compression aircraft diesel
engine research program performed under the contract.
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11.	 TASK I - TEST INSTALLATION

2.1	 OBJECTIVE

The objective of this task was to modify a single cylinder
test engine, to incorporate a cylinder from an existing spark
Ignition-engine converted to diesel operation and prepare a- 	 y
test cell to provide induction air heating and simulated turbo-
charging.	 !

2.2	 TECHNICAL DISCUSSION 	 1

2. ..2.1. Standard Test Cell Equipment

In accordance with the proposal submitted by The University
of . Michigan in December, 1975, concerning "A Graduate Research
Program Entitled, 'An Aircraft Piston Engine with Improved Fuel
Consumption, Cooling Drag, and Exhaust Emission"', the ATAC-IH-

:, LABECO engine and associated equipment, which was used for basic
diesel research in the .past, was retained and used on this project.
The main advantage in doing so was the ability to keep initial
hardware cost to a minimum. 	 All test equipment was modified and
ready for testing by December 15, 1976. 	 Further substantial.

,- improvements took place following an initial testing phase and
were completed by May 24, 1977. 	 These improvements are given on
page 7.	 A complete list of equipment identification is given in
Appendix A.	 The following is a list of equipment used for the
ATA:C-IH-LASECO engine which was retained and used on this project:

1.	 An electric dynamometer capable of delivering 100 hp
in the motoring mode and absorbing 15 0 hp in the
absorbing mode, shown in Fig. 8.

2.	 Beam scale capable of reading to 67.4 N (300 lbs),
shown in Fig. 1.

3.	 Digital counter to determine crankshaft RPM .to the
nearest 1 RPM with second by second update capability,
shown in Fig. 1.

4.	 Induction airflow metering system with a continuous
capacity of .327..4 kg/hr ;722 lbs/hr).	 Airflow is

jj determined.by`a bank of rounded approach critical flow
orifices with diameters of 8.2 mm (1/8 in.) , 5.5 mmL .
L7/32 in.) , . 2.3 mm. (3/3.2 .in..) ,	 and 4.7 mm . (3/16. in.)
as illustrated in Fig'. 2 and shown in Fig. 3.

1

5.	 A CFR (Cooperative Fuel Research) fuel weighing station_
to determine fuel flow rate by measuring the time in
which a given mass of fuel is consumed, ih?strated in
Fig. 4 and shown in Fig. 5.

6.	 A 20 kw electric air heater capable of heating induction	 r
air to 371 .°C (700_°F) to simulate the intake temperature
characteristics of turbocharging, shown in Fig. 6.

4
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Fisting of two ranges;
to 315 1"4 (0°F :0 600 °F
high temp eratui e
to 1800°F) with 2.7°C

7.	 Brown
a low
with
range

k,f	 (5OF)

indicating potentiometer con
temperature range from -17.7
55°C (1°F) increments, and a
from -17.7°C to 982.2°C (0°F
increments, shown in Fig. 7.

8.	 Exhaust surge tank of 148 2 (5.23 ft 3 ) capacity (exhaust
tank volume to displacement volume of 105.4:1) plenum
to reduce the effect of pressure pulsations from the
engine, shown in Fig. 8. Exhaust gas entering this tank
is cooled by a water spray illustrated in Fig. 2. The

f	 water spray is capable of cooling the exhaust gas to
65.5°C (150°F) at high engine power settings. The
exhaust surge tank outlet is restricted by a valve to
give exhaust gas back pressures to simulate turbo-
charged conditions.

2.2.2 Initial Test Cell Modifications
(September 9, 1976 to December 15, 1976, see Fig. 9)

Replacing the liquid cooled ATAC cylinder with an air cooled
}	 aircraft cylinder and adding a cooling air fan and ducting was

the only major change required in the test equipment. Appropriate
instrumentation was added so that the measurements required by the
work statement could be taken.

A more detailed description of the initial test cell modifica-
tion including instrumentation is given in the following:

1. A 10 hp cooling air fan and associated ducting capable
of producing 38.1 cm (15 in.) H2O pressure drop across
the cylinder was installed in the equipment room above
the test cell. A 20.3 cm (8 in.) fan outlet valve was
installed which is controlled from the main instrument
panel to provide a range in pressure from 1.27 cm (0.5
in.) to 38.1 cm (15 in.) of H2O. The cylinder cooking

j	 air was confined to the cylinder fins by standard
cylinder baffles as in the flight aircraft (see Fig. 8).

2. An intakesurge tank was installed with a volume of
3?^^ R. (1.2 ft 3 ) (see Fig. 5), which served as a plenum
for the pressurized induction air to reduce the pres-
sure pulsations from the intake valve. After initial
engine testing, this surge tank was determined to be
too small. It was removed and replaced with a 192.4
(6.8 ft 3 ) intake tank (volume to displacement volume
of 136.5:1). The installation of the larger tank is
discussed on page 8 and schematically shown in Fig. 2.

3. A heater bypass was provided for the induction air to
blend the hot and the cold air streams to give fast
time response to the temperature control (schematically
shown in Fig. 2 and photograph, Fig. 6). Pressure of

N	 combustion air ahead of the cylinder is cc.itrolled by a
gate valve. This bypass system (shown in Fig. 6),
used in conjunction with the thermostat installed on
the heater, was capable of providing constant induction
air temperature within + .55°C (+ 10F).

E	 5
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4. Thermocouples were installed at the following locations
and displayed on the Brown potentiometer at the main
instrument panel:
a) Induction air system

Before intake air heater
In intake surge tank
At intake port

b) Exhaust system
At exhaust port
In exhaust surge tank

c) Oil system
in oil. sump
In oil gallery

d) Fuel system
After fuel filter

e) Cooling air system
Before cylinder head
Before cylinder barrel
After cylinder head
After cylinder barrel

A thermocouple was installed to determine cylinder head
metal temperature using the location which is a standard
location on all GTSIO-520 cylinders for such measure-
ments (see Fig. 10). The cooling air thermocouples used
an exposed wire type. All other thermocouples, listed
above, were the immersion type. The exhaust system used
Chromel-Alumel thermocouples while all the other systems
used Copper-Constantan.

5.	 Induction and exhaust pressures were indicated on a
254 cm (100 in.) Hg U-tube manometer. Differential
pressure measurements of both crankcase blowby, and
cooling air across the cylinder were measured by 91.4 cm
(36 in.) H2O U-tubes (see Fig. 11). Combustion chamber
pressure was measured by a water cooled nistler quartz
pressure transducer installed in one of the two spark
plug holes of the GTSIO-520 cylinder head (see Figs. 10
and 12a). The output was displayed on a dual beam oscil-
loscope. Calibration of this complete pressure trans-
ducer system was made using a balanced diaphragm pres-
sure indicator.

6. A magnetic pick-up was installed in close proximity to
a steel plate mounted on the crankshaft. Holes at three
degree increments were placed along the plate perimeter
allowing crankshaft timing determination (see Fig. 12c).
The output was displayed on the dual beam oscilloscope
along with the cylinder pressure trace, see Fig. 28.

6
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7. in order to determine the fuel injection character-
istics, a needle lift transducer was installed on the
fuel injection nozzle. Three nozzles were modified
to accept this device which are shown in Table 1.
The output of the needle lift detector was displayed
on the dual beam oscilloscope.

8. Exhaust smoke was measured with a Bosch smoke meter.
The smoke meter sampling probe was inserted 15.2 cm (6 in.)
into the exhaust pipe.

9. To provide engine operation with various diesel fuel
cetane ratings, a separate tank with an1.8.9 Liter
(5 gal) capacity was installed immediately upstream of
the CFR weighing system. The plumbing permitted switch-
ing from type C--B diesel fuel oil (47.5 cetane value)
in the main storage tank to either the 54 cetane fuel
or 71 cetane fuel in the 18.9 liter (5 gal) tank with
the engine running. This system is schematically shown
in Fig. 4.

2.2.3 Subsequent Test Cell Modifications
(April 20, 1977 to May 24, 1977, see Fig. 9)

All initial data was taken using the above instrumentation
and equipment. After approximately 70 hrs.of engine firing time,
combustion data indicated that further improvements in the test
cell setup were necessary to provide reliable data. Also in
order to improve testing operations, changes were made to more
closely hold operating values on the desired point. Equipment
was therefore added to increase bo+:h the running stability of the
engine, and the accuracy of some key measurements. A list of
these test cell changes are as follows:

1. An oil cooler and a 1 kw heater were installed to provide
a constant oil temperature. The oil heater greatly re-
duced the time required to reach stabilized oil tempera-
ture (approximately 20 min. after the start of faring at
modezate loads compared to approximately 50 min.without
the heater). The oil cooler and controller held oil
temperature constant once the desired oil temperature
was reached.

2. 1, larger pressure regulator in the induction airflow
measuring system was installed. This provided pressure
regulation of the total induction air supply to the
engine. The original system employed a smaller regu-
lator with a bypass. This change improved the pressure
regulation of the critical flow orifices. Along with
the larger pressure regulator a pressure gauge was
changed to improve the accuracy of the induction mass
airflow measurement. The pressure gauge which measured
induction air pressure before the sonic orifices
[previously had an accuracy of .6894 N /cm2 (1 lb/in?) I
was replaced by a gauge with an accuracy of .0689 N/cm2
(.1 lb/in 2 ) .

..,



	

^-`	 3. The smaller induction air surge tank was replaced by a
large surge tank [192. 4 1 liters (6.8 ft 3 )] along with a
smaller insulated 180 0 turning chamber [4.69 liters
(.166 ft3)] which was needed to adapt the surge tank to
the intake port. The large intake tank has the ratio

	

-^	 of intake tank volume to displacement volume of 136.5:1
(see Fig. 8) .

4. A hydraulic actuator was installed on the injection
pump manual timing mechanism which enabled full timing

	

+	 adjustment of 24 crankshaft degrees while viewing the
oscilloscope displaying cylinder pressure.

5. The Bosch batch type smoke meter was replaced with a
continuous reading Hartridge smoke density meter.

6. A fuel flow meter was installed providing instantaneous
readings replacing the CFR weighing station.

E	
7. A proportional speed control system capable of holding

the RPM constant to within + 5 RPM at 2600 RPM was
added to the dynamometer control. The ability to hold
the engine at a particular RPM during a test run reduced
the amount of time required for a given test and reduced
the time needed to obtain a test point.

8. The dynamometer beam oil damping was increased in order
to reduce pointer wander, thereby reducing a possible
reading error from + 5% to zero.

2.2.4 Test Engine Modifications
(July 19, 1976 to October 29, 1976, see Fig. 9)

The ATAC-TH--LABECO test engine was last used on a combustion
research program for ATAC. The engine construction is such that

	

j	 the liquid cooled cylinder could be replaced by the GTSIO-520
aircooled cylinder. The following briefly describes the changes
that were made to convert the engine.

Teledyne Continental Motors, Aircraft Products Division, Mobile,
Alabama, made available a supply of standard GTSIO-520 engine parts
at no cost to the program which are listed in Appendix B. Therefore,
the conversion of the LABECO engine was designed and built around
the Continental engine components.

Maintaining the stroke of the GTSIO-520 engine required a

	

^•	 crankshaft of shorter stroke, 10.1 cm (4.0 in.). A new crankshaft
having a 10.1 cm (4.0 in.) stroke and counterweights designed
around the proposed piston rod components was supplied by Teledyne.
Other than the stroke and counterweights, the original LABECO
crankshaft design was unchanged. The new crankshaft was•installed
using standard LABECO bearings and assembly procedures.

I
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The GTSIO-520 diesel conversion planned to use the standard
spark ignition camshaft and valve train, e.g. tappets, pushrods,
etc. The conversion was done by cutting a one cylinder cam sec-

,t	 Lion from the drive end of a six cylinder camshaft (Part No. 635033),
adapting to this part of the shaft the rear bearing from the LABECO

E (	 camshaft,machining the front bearing, and adding an injection pump
drive.

The LABECO cylinder block was replaced with a steel deck plate
designed to accept the GTSIO-52.0 engine cylinder assembly. 	 LABECO
crankcase tappet bores were fitted with sleeves to place the
hydraulic valve actuating tappets in position for the GTSIO-520
engine camshaft.	 The deck plate required shortened pushrods and
housings in conjunction with the modified tappet bores. 	 Pushrods
and pushrod housings are standard GTSIO-520 engine parts which
have been shortened from 34.67 to 30.38 cm (13.65 to 11.96 in.)
and 28.63 to 25.6 cm (11.27 to 10.08 in.) respectively. 	 Pushrod
housing seals, springs and other hardware remain standard GTSIO-
520 engine parts.

Two standard GTSIO-52.0 engine cylinder assemblies were
modified to accept a Stanodyne-Hartford Division (Roosa-Master)

j. fuel injection nozzle. 	 One of the spark plug holes was used to
adapt a pressure transducer to monitor cylinder pressure. 	 The
ether was used to adapt the clamping mechanism for holding the
injection nozzle, as shown in Figs. 10 and 14.

Normally the engine is run as a horizontal opposed piston
engine; since the engine was run with the cylinder in a vertical
position, proper oil drainage from the rocker housings through the

• pushrod housings to the crankcase was impaired. 	 To provide better
oil drainage of the valve rocket chamber, external tube connec-
tions were made as shown in Figs. 10 and 14.

The injection pump, an American Bosch single cylinder model
APE-IB-100P-6336A, was installed, shown in Fig. 5.	 The plunger
used was 10 mm (.3937 in.) in diameter which was of sufficient
size to service the engine.

The existing LABECO connecting rod was used.	 However, in
order to use a standard GTSIO-52.0 piston, the standard GTSIO-520
piston pin and pin	 bearing were also used.	 The piston pin is
1.52 cm (0.6 in.) smaller in diameter than the pin-hole of the
LABECO connecting rod.	 A steel bushing was used to reduce the
connecting rod piston pin hole from a 4.378 cm (1.724 in.) diam-
eter to the 2.854 cm (1.124 in.) diameter required by the standard
GTSIO-520 piston pin.	 Appropriate oil holes were also provided
for Pin and bearing surface lubrication.

9
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Pistons were received in semi-finished condition except for
the combustion cavity and are standard GTSIO-520 enginepistons.
(Part No. 632491) including piston skirt profile, drop and piston
running clearances. However the distance from the top rang to the
top of casting of the piston is 1.90 cm (.75 in.) greater, see
Fig. 15a. With this extra material on top, various compression
ratios and combustion chamber shapeswere machined without pro-
hibitive decreasing of the thickness of the piston crown. Figure
16 shows the four piston configurations which were fabricated.
All but the 12:1 compression ratio piston were tested. The chamber
volume and squish ratio for the various pistons are given in
Table II. A dimensional check using the 10:1 CR "Mexican Hat"
piston was made to determine piston to cylinder head clearances.
This was accomplished by barring the engine over with modeling
clay affixed to the top of the piston. Measured clearances
were found to be 1.17 mm to 2.28 mm (.07 to .09 in.) compared to
the desired clearance of 1.27 mm to 1.52 mm (.05 to .07 in.).
A further discussion of piston combustion chamber design is given
in the discussion of Task 11.

Nine different injection nozzles were procured from Roosa-
Master. Each nozzle varied in either included spray angle or total
orifice area. Three of these nozzles have been adapted to accept
the injection needle sift transducer which was described under
"test-cell modification.". Table I lists these nozzles and their
drilling constants. It was assumed that all these nozzles had a
valve opening pressure of 1930 to 2068 N/cm 2 (2800 to 3000 lbs /in ?J.
Figure 12b shows a typical fuel injection nozzle which was tested.
Figure l8a shows the Bosch nozzle as compared to the Stanodyne
nozzle which was used Injection nozzle placement restriction
is indicated on a model shown in Fig. 18b. The projected path
of the unperturbed fuel spray with respect to spray angle and
combustion chamber shapes are given in Figs. 17 and 18c.
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TASK 11 - TESTING OF THE EXPERIMENTAL ENGINE

i	 .

UF

i,

3.1 OBJECTIVE

l (	 The objective of this task Was to test the modified single
F	 cylinder engine to provide data on the characteristics of a low

compression ratio, turbocharged diesel engine. The goal for the
development of the.diesel en ine is to maintain the same weight

#	 as the gasoline engine. This precludes any increase in structure
which may result with dieselzation. Therefore, to achieve this

i'	 goal the cylinder pressure limit of 758.4 N/cm2 (1100 psi) for
the gasoline engine was maintained. Table III is a list of engine
performance goals that will be attempted to be met by the low
compression ratio diesel. The.following is a summary of the

W
testing performed.

3.2 INITIAL TEST ENGINE FIRING AS A DIESEL

Prior to receiving the special pistons which were used for
the diesel engine testing, the engine was assembled using a
standard GTSIO-520 spark ignition engine piston. The compres-
sion ratio of this "flat top" piston was 7.5:1. The major rea-
sons for assembling the engine with the standard gasoline engine
piston was to check out the engine and test cell systems with
the engine in a motoring mode.

In the process of checking out the induction air heater,
the engine was initially fired (October 26, 1976) using a nozzle
with a 150 0 included angle, at an induction air temperature of
11.2,7°C (235 °F). Subsequent firings using the 7.5:1 gasoline
rtston were limited to 2,000 RPM, no load condition. These con-
straints were followed because instrumentation was incomplete at
that time. Specifically, the cylinder pressure transducer was
not yet installed. After 3.5 hours of total running time (1.5
hours of firing time) the engine was disassembled for visual
inspection. All components were in excellent condition, see
Fig. 15b. The engine was reassembled using the newly machined
10:1 compression ratio Mexican Hat configuration piston (P/N
AD-118) for a piston to cylinder dome clearance dimensional
check and subsequent firings.
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3.3 OBSERVED TEST RESULTS

3.3.1 Effect of Various Fuel injection Nozzles on
Engine Performance

.A series of tests were run to determine the nozzle spray
pattern which would best fit the combustion space. For these
tests, six different injection nozzles were used, all having the
same orifice distribution and total orifice area (see Table 1).
The included spray angles varied from 110 0 to 160 6 in 10 0 incre-
ments. A nozzle line of 2.13 mm ID x 6.3 mm OD x 838 man long
(.084 x .250 x 33.0 in.) and the 10:1 compression ratio Mexican
Hat piston (AD-118) (see Fig. 15c), were used for this series
of tests. Test conditions were set to 45.5 + 1.3 THP and induc-
tion air pressure to 139.7 cm + 4.06 cm (55.b+ 1.6 in.) Hg
absolute. Table TV gives pertinent operating conditions for
this test and all the other tests conducted in Task II. The
variation from the intended induction air pressure was caused
by the use of an under--sized pressure regulator. This was later
corrected by installing a larger capacity airflow pressure regu-
lator. Engine speed was held at 2600 RPM for this and all other
tests discussed in this report unless otherwise specified. This
value was used since it is a suitable cruising RPM for the GTSIO--
320 engine. Due to the unavailability of nozzle needle lift
instrumentation and accurate smoke readings at this time, indi-
cated specific fuel consumption (ISFC) was used as criterion of
nozzle performance. ' Figure 19a roughly shows that a 135 0 included
spray angle would give best ISFC with a projected minimum of
.183 kg/IHP-hr (.405 lbs/IHP-hr). With this as a basis, three
nozzles with 135 1 included spray angles, but varying orifice
sizes and distributions (Table I), were obtained.

3.3.2	 Evaluation of After-Injection

After the initial series of injection nozzle spray pattern
tests, it was suspected that after-injection was affecting the
results.	 This would explain the higher than expected values for
ISFC which were observed during the spray pattern tests. 	 To
rough test the theory that secondaries were causing the poor fuel
consumption (in the absence of a needle lift instrument), a larger
diameter fuel line (2.36 mm ID x 6.35 mm OD x838 mm long)
(.093 x .250 x 33.0 in.) was installed and tested.	 This	 change
from 2.13 mm ID to 2.36 mm ID produced no significant change in
the engine overall, performance. 	 It was later found when the
nozzle needle transducer was installedFebrua	 10	 1977	 thatinstalled(February	 )	 ta
there were no after-injections.
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t 3.3.3	 Effect of Induction Air Temperature and
Pressure on the Point of Ignition

i The effect of varying induction air temperature and pressure
on relative ignition is shown in Fig. 20.	 The needle sift instru-€
mentation was not available at the time of these tests. 	 The

j	 I injection timing was kept constant, and the variation in the point
^ of ignition was observed on the oscilloscope. 	 The variation of

the point of ignition relative to the unknown point of injection
is what is meant by relative ignition delay. 	 These tests were
run at no load with a 140° included spray angle nozzle (P/N AD-122).
Three different combinations of induction air pressure and tempera-

A	 f

turewere tested.
^

W At an induction pressure of 886.4 mm (34.9 in.) Hg absol ute,
when the induction temperature was increased from 135° C (275 °F)
to 193.3°C (380 0F) , the observed ignition point was reduced from
18 0 ATC (after top center) to 4° ATC. 	 At an atmospheric induc-
tion air pressure, when the temperature was increased from 165.5 0C

F (330 °F) to 212.7 °C (415°F), the observed point of ignition was
3 reduced from 26 0 ATC to 18 0 ATC, as shown in Fig. 20. 	 Examination

of Fig. 20 shows a reasonable comparison when comparing ignition
points for similar tests.	 The point of ignition corresponding to
the constant value of 886.4 mm (34.9 in.) Hg absolute pressure
line at 204.4°C (400°F) is 3.5 0 ATC.	 When comparing this to theP	 g'
point of ignition corresponding to 886.4 mm (34.9 in.) Hg absolute
along the 204.4°C (400 °F) constant temperature line, a value of
5.5 0 ATC is found; a difference of only	 g2.0°.	 Considering that
the point of ignition is determined in this test by measurements	 a
from the oscilloscope trace, it is felt this difference is reason-
able.	 However, if the point of ignition corresponding to atmo-
spheric pressure is examined, a larger discrepancy is observed.
In this case the point of ignition corresponding to the constant
atmospheric pressure line at 204.4°C (400 °F) is 19 0 ATC.	 When
comparing this value to the point of ignition corresponding to
atmospheric pressure along the 204.4 °C (400°F) constant tempera- 	 'A
ture line, a value of 7° ATC is found, a difference of 12 0 .	 This
difference cannot presently be explained. 	 It is believed that

s the tests corresponding to the constant atmospheric pressure line
are in error, and the values of ignition lag are too large. 	 A
further discussion of the effect of intake air temperature on	

f

engine performance is given on pages 17 and 18.

3

3.3.4	 Effect of Induced Swirl on Engine Performance

A.	 Engine Testing with Instrument Imperfection

Tests were made to determine the effect of swirl on engine
performance.	 A swirl plate as shown in Fig. 21a was used between
the intake elbow and cylinder flange of the intake port. 	 The

_ plate, which has a normal radial distance of .635 cm (0.25 in.)
from the chord to the arc, was tested over 360 0 of rotation
in 45 1 increments.	 No definite relation was observed between
swirl plate position and engine ISFC.

1.3
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B. Engine Testing

This phase of engine testing took place with modifications
to the test cell as outlined in Task I under "subsequent test
cell modifications." The following engine operating conditions
were held.constant throughout this phase of testing unless other-
wise specified:

l)	 Intake manifold pressure	 177.8 cm (70 in.)
Hg absolute

2) Exhaust manifold pressure 	 127 cm (50 in.)
Hg absolute

3) RPM	 2504
4) Cooling air pressure drop 	 35.5 cm (14 in.) H2O

5) Intake air temperature	 121.1°C (25001)

It.was concluded that the airflow restriction of the swirl
plate used during the initial engine testing was too small. A
new swirl plate was therefore installed (see Fig. 22) which could
be :positioned.during engine operation. To-obtain swirl effect
from the intake baffle it was considered that the induction airflow
should be reduced about '2 to 3%. Accordingly, the normal radial
distance from the chord to the arc of the baffle was increased
from 1.58 cm (.625 in.) to 2.85 cm (1.125 in.) in steps. The
precision of the air measuring system was also greatly improved
at this time by the installation of a precision Heise gauge to
measure the metering orifices differential pressure. With this
modification a 6.6% decrease in volumetric efficiency was mea-
sured., and the effect was constant regardless of the position of
the restriction.

Using this larger baffle, a preliminary test of the effect
of swirl on torque, cylinder firing pressure, and smoke was made..
Nozzle AD-129 was used for this test In all of these observa-
tions, the effect of varying swirl plate position was still
undetectable. it is concluded that either the swirl baffle was
ineffective or some other fq^cfor was preventing the swirl from
having an effect. A ben4kr"test of the GTSIO-520 cylinder with
steady flow air supply to the intake port was planned and pre-
liminary measurements were made after the termination of this
contract. In this test, air swirl in the cylinder is explored
using an air vane swirl device supplied by C. Bachle, see Fig. 23.
The results of this are given in Fig. 24.

14
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3.3.5	 Friction Horsepower Determination

A.	 Fngine Testing with Instrument Imperfection

Motoring friction horsepower was measured at various engine
speeds and at two absolute induction air pressures. The two

I^ values of induction pressure were 759 mm ( 28.9 in.) Hg and 104.1
cm (41. 0 in.) Hg absolute. 	 The engine speed was varied from

t 1460 to 3030 RPM.	 No temperature controller was installed in the
oil system at this time; therefore the oil, temperature varied from
46.1 0 C (115°F) to 75 . 0 1 C (167°F).	 The results are given in
Fig. 19b as well as -the GTSIO- -520 engine friction horsepower
divided by six.	 From the atmospheric curve, friction horsepower
for this engine at 2600 RPM is [27.83 N/cm2 (40.44 psis) FMEP].
This value was used in the calculation of IHP during the initial
proof testing.

B.	 Engine Testing

t With the electric oil heater and cooling heat exchanger
installed, it was possible to maintain oil temperature to

r + 1.8°C (+ 1 0F).	 Additional tests at constant induction air
pressure of 1778 mm ( 70 in.) Hg absolute and 2600 RPM gaves 11.0 Hp	 [26.63 N/cm2 	(38.66 psia)	 FMEPI	 at 76,.6 0C	 (1.70 °F) ..oil

^. temperature, and 12.4 Hp [30.0 N/cm 2 	(38.66 psi.a) FMEPI• at 62.7 °C
€ (1450F).	 Since testing described as "Engine Testing" took place

` with the oil temperature close to 76 . 6°C (170 °F), the friction Hp
value for IHP calculations 	 under "Engine Testing" was 11.0 Hp,
it should be noted that subsequent to this friction determination,
an approximately .674 N (3 lbs) error in the beam scale was found.

^. The error associated with this faulty reading would be about 15%;
=-` therefore this value for friction Hp should not be regarded as

final.

3.3.6	 Effect of intake Manifold Pressure on Ignition Lag

After installing the needle lift instrumentation using nozzle
AD-126, a test was made to determine the effect of intake mani-
fold pressure on ignition lag. 	 These tests were run without the
swirl plate, at light loads (27.7 to 29 . 1 indicated corrected Hp),
2600 RPM, and an intake manifold temperature held to 118-124°C
(245-256 ° F). 	Results show a 9 0 reduction in ignition lag for a
558 mm (22.0 in.) Hg increase of manifold pressure.

15
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3.3.7 Effect of Fuel Impingement

Ignition lag variations with respect to engine load were
observed. At approximately 68' N/cm2 (87.6 psia) TMEP, ignition
lag was, 30°, with in'ection being completed Il l before ignition
occurs. At 124 N/cm (7.88 psia) TMEP, the ignition lag was 150
and ignition occurred 15° before the end of injection. This
unexpected effect plus the fuel impingement marks on the combus-
tion chamber walls shown in Fig. 15c indicated that fuel impinge--
ment might be affecting engine performance. That is, due to
poor spray evaporation, a high percentage of fuel was impacting.
the chamber walls and therefore not meeting oxygen until late in
the expansion cycle. This would explain high indica-Eed fuel
consumption and poor air utilization. 	 {

To test this theory a new piston (AD-130) with a compression
and squish ratio of 11:1 and 0.8 respectively, was machined
and installed. This piston.had a.larger bowl diameter than the
previous 10:1 piston (AD-118). but the bowl depth was shallower
and did not have the Mexican Hat shape (see Fig. 16).

Figure 25 gives the test results showing some key.perfor-
mance parameters, including ignition lag, using AD-130, the 11:1
compression ratio piston. A summary of the testing with the 11:1
compression ratio piston shows that using constant fuel injection
timing of 22 0 BTC, 758.4 N/cm 2 (1100 psi) cylinder pressure
limitation was reached at 86.1 N/cm2 (125 IMEP) at about 54% of
full power. Testing did not proceed beyond this 758.4 N/cm2
(1100 psi) value nor was the timing varied. Although Fig. 25
shows ignition lag to be almost constant, the effect of a larger
bowl diameter piston on.ignition lag is inconclusive due to
unresolved errors in the data.

3.3.8 Effect of Lowering Compression Ratio

A test was made to determine the effect of reducing the
compression ratio of the 11:1 piston (AD--130) to a 10:1 piston
(designated AD-131) while maintaining nearly the same combustion
chamber shape (see Fig. 15d)d This was done by increasing the
bowl depth of the 11:1 piston (AD-130) by 1._9 mm (.075 in. )
Figure 26 shows the performance of this 10:1 compression ratio
piston (AD-131) in which, unlike the test of the 11:1 piston
(AD-130) where induction air pressure was held constant at

16
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'I 149.5 cm (58.86 in.) Hg absolute, air-fuel ratio was held
constant.. In testing the 10:1 compression ratio large boral diam-
eter piston (AD-131), no significant change in overall engine

L? performance was observed in comparison with the 10:1 Compression
ratio Mexican Hat piston (AU-118), i.e, the indicated fuel

! consumption continued . high.
1

' 3	 ffect of Cetan	 Value on E.3 -9	 E	 e	 l	 Engine Performance

'	 # With the ll.:1.CR piston (AD-130),, a test was made to deter-
mine' the effect of a fuel with improved ignition qualities. 	 A
direct comparison was Made using type C-B diesel fuel oil having
a cetane rating of 47.5 and a refernece fuel with a cetane rating
of 71.	 As expected, Fig. 27 shows a reduction in fuel consump-
tion, cylinder pressure and ignition lag with the engine operating
at the.same basic power level and.air--fuel ratio using the 71

! cetane rating fuel.	 A significant reduction in the rate of pres-
sure rise, and a significant reduction in combustion noise was
oberved, as also indicated by the indicator cards given in Fig. 28.
From this it might be inferred that unsuitable nozzle discharge
resulting in poor air utilization is causing the high fuel
consumption.

i 3.3.10	 Effect of Intake Air Temperature
1 (An ap?raisal of Fig. 29 by C.F. Bachle)

By June 9, 1977, all instrumentation and cell equipment had
been improved to the point where.believable data could be obtained.
Conversely most data obtained prior to this date should be
regarded as unreliable or incomplete.

Figure 29 gives the effect of intake air temperature on
performance obtained on June 9 and 11, 1977, and the following
are observations from this data.

1.	 The indicated specific fuel consumption is about
what experience-considerations indicate should be
expected when the A/F is about 55 [.16 kg/1HP-Hr
(.35 lbs/IHP-Hr)] but at 25 A/F, the fuel consumption
is about 40% greater [,236 kg/IHP-Hr (.52 lbs/IHP-Hr)].

2.	 Raising the intake temperature from 93 to 204 °C
(200 to 400 0F), lowered the peak combustion pressure

1 from 672 to 585 N/cm2 (975 to 850 lbs/in? ) - this
_ is surprising and may indicate instrumentation error.
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3.	 Smoke, exhaust temperature. and fuel consumption
r) indicates that the deterioration in performance

begins at A/F of 55 and degrades at.a faster
rate, at 35 and again at a faster rate at about

! 27..

4...	 The increase in intake.temperature did. not alter the
' I ISFC..

Conclusions from Fig. 29

U1
1.	 The fuel is not reaching `a major portion of the

air.

2.	 Higher intake air temperature. did not alter the
performance which means that ignition lag is not
the culprit.

.3.	 The following steps in the trouble shooting process.
should include:

{	 ' a..	 Increased fuel nozzle pressure.
tt(

b..	 Different nozzle hole drilling
I
j c.,_ Different shape of cavity in combustion

chamber formed by the piston contour

d.	 Higher air swirl

e.	 Increase rate of fuel delivery from pump

^. Discussion of Fig. 29

3 It can be visualized that the fuel does not reach the air
in a variety of different ways., one of which is illustrated in
the following sketch.:
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Lack of fuel, penetration would explain the zero effect of
air swirl observed. That is, if the fuel is not reaching the
outer spaces of the combustion cavity, swirl does not have a
chance to improve mixing.

To summarize then, the evidence so far leads to the idea
-

	

	 that the high fuel consumption is explanable on poor air utili-
zation and that normal cut and try development should quickly
give results that will explain the high fuel consumption.
(A further disquieting development is that after the tests of
June 11, possible errors in the fuel flow system were uncovered
making repeat of the test of Fig. 29 all the more important.)

3.4 ENGINE INSPECTION

After 43.6 hours of accumulated firing time, the engine
was disassembled for inspection. The 10:1 compression ratio,
Mexican Hat configuration piston (AD--118) accumulated 40.7
hours at speeds up to 3,000 RPM, peak cylinder pressures up to
895.7 N/cm2 (1300 psi) and loads up to 43 indicated horsepower.µ

	

	
Visual inspection of the piston indicated small scuffing (almost
nominal) of the top land on -the thrust side. Figure 30 shows
this scuffing as well as the thrust and anti-thrust side of the

19
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piston. The piston pin showed no abnormalities (Fig. 21b),
The piston rings, which are standard GTSIO-520 parts, showed
no unusual visual signs of wear. Therefore, the engine was
reassembled, unchanged, with the exception of the piston top
.and diameter which was reduced by .127 cm (.005 in.) diameter.
Figure 15a shows the top of the piston (combustion chamber).
The fuel impingem{.;nt marks on the chamber wall can be noted.
These marks are discussed in Section 3,3.7 on page 16.

3.5 CONCLUDING REMARKS

Analysis of the data plots generated from the testing of
the experimental single cylinder engine is inconclusive due to
conflicting and nonrepeatable experimental data. The suspects
are instrumentation, test cell equipment and experimental pro-
cedure. Corrective action on the first two suspects did improve
the data. However, the number of data points taken after the
correction measures were implemented are too few to postulate
that the data are either: (a) reliable; or (b) representative of
the performance characteristics of a low compression ratio
turbocharged diesel engine. The test cell should be scrutinized
a.nd modified where it is necessary to improve the accuracy of
the data and more data should be taken before characterizing
the engine.

k	 ` .



4. TASK III - DESIGN OF HOT PORT SINGLE-CYLINDER

4.1 OBJECTIVE

Design an experimental cylinder and cylinder head assembly
incorporating the "Hot Port" concept suitable for testing the
modified ATAC-IH-LABECO engine.

4.2 DEFINITION, DESCRIPTION, AND BACKGROUND OF THE "HOT PORT"

The "Hot Port" concept is a means for reducing the cooling
airflow requirement by thermally isolating the exhaust port and
therefore the exhaust gases from the cylinder head, and dispos-
ing of a greater portion of the waste heat directly through the
exhaust system. Shown in Fig. 34 is a model of the "Hot Port".
In this model thermal isolation is achieved by incorporating the
exhaust port as an integral part of the aluminum finned ferrous
metal dome, allowing higher metal temperatures than the conven-
tional aluminum head. The exhaust valve stem is insulated by an
air gap at the point of penetration into the exhaust port passage-
way. Heat that passes through the air gap and the heat that is
conducted up the valve stem is taken out of the stem by a cooled
copper shunt.

The problem was how best to transfer the results of work done
for AVDS 1360 (military tank engine) Hot Port cylinder to the
special conditions of the 520 aircraft cylinder, see Fig. 31.
The AVDS 1360 was made of welded heavy section steel components
since low weight was not a principal problem. In addition, the
AVDS 1360 was an experiment and not intended as a final design.
The GTSIO--520 cylinder, in contrast, is intended for flight and
to be executed in such a way as to preserve as much of the standard
GTSIO-520 structure as practical. With these considerations in
mind, the study herein reported uses a cast dome screwed on in the
standard way to a standard nitrided steel cylinder barrel. In
addition, the valve rocker and pushrod are from the standard engine.

4.3 MODEL STUDY

4.3.1 Rubber Cylinder Dome Model Study

A simulation of the iron dome of the GTSIO-520 cylinder was
made in order to determine deflection magnitudes in an exaggerated
way (see Fig. 32). In the Hot Port cylinder principle, great
emphasis is placed on the structure supporting the exhaust valve
guide by the cylinder dome in such a way as to preserve the align-
ment of the exhaust valve with the exhaust valve seat in the head
as the dome distorts. As the dome bulges from combustion pressure
or from temperature distortion, the resulting change in dome
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contour would be predictable except for the hole cut-outs for the
intake and exhaust ports. These together cause a great increase in
strain and therefore distortion where the two holes come closest
together at the center of the dome. Figure 33 is a line drawing

W

	

	 describing dome distortion as was estimated and as was confirmed
by test.

The rubber model of the cylinder head dome was made to deter-
mine where the valve guide support attachment points to the donne
could best be made to maintain valve seat/valve guide alignment
under distorted conditions. The rubber model when distorted, indi-
cates the trends due to thermal and/or pressure forces. A variety
of attachment points were tested by using two 35.56 cm (14 in.)
pointers; one representing the valve seat in the head and the other
representing the valve guide attached to the cylinder dome in
several ways. Air pressure was used to give a distortion to the
dome with a standardized pressure of 1.4 N/cm 2 (2 psi) base and
3.4 N/cm2 (5 psi) under strained conditions. Thus a differential
pressure of 2.0 N/cm2 (3 psi) was used to evaluate the various
valve guide structure attachment points.

It was found that the poorest attachment points would show a
distortion misaligirment on the end of the two 35.56 cm (14 in.)
pointers of about 1.27 cm (.50 in.), whereas, the best was about
0.7 mm (.03 in.). The main idea evolving from the tests was that
one attachment point must be at the center of the dome or within
1.27 cm (.50 in.) of the center. The other two attachment points
may be in the region of the outer diameter of the dome with con-
siderable freedom but the third point must be near the dome center.

4.3.2 Model of Hot Port Cylinder Head

Since there are diverse three-dimensional space-use consider-
ations in designing a Hot Port cylinder on the GTSIO-520 basic
design, a wood and plastic model was made to assist in formulating
ideas for a final design. Figure 34 is a sketch representation
of one type of design and Figs. 35 and 36 are photographs of the
model. This is not a final or accurate portrait of a design but
can be used effectively in making-a final design. of note, in
this model, is how the valve guide structure rests on the "between
valve" stiffening rib. of further note is how the valve rocker
fulcum force reaction is taken in an independent structure to the
cylinder dome making for exceptional stiffening and low thermal
expansion.

4.4 PRELIMINARY DESIGN STUDIES

Prior to the NASA/U of M contract, Mr. Bachle worked with
Mr. R. Walker of Automotive Pattern Company (makers of the produc-
tion GTSIO-520 cylinder head pattern equipment) and Mr. C. Peterson
of Eck Foundries, Incorporated (foundry presently producing the
GTSIO--520 cylinder head). Consultations with Messrs. Walker and
Peterson indicated the possibility of producing (for test purposes)
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an interim Hot Port design using modified sand cores made from
production pattern equipment. This concept has been termed
"screw--on ferrous metal dome."

5

Work under Task III, initiated in November 1976, resulted
in a preliminary concept layout from which studies could be made
to determine the course of action to be followed. This initial
drawing was a basis from which recommendations could be made to
enhance the design. Prints of the layout were submitted to
Automotive Pattern Company of Detroit with a request for quote.
This initial design was discarded because the mounting of the
valve guide would have resulted in large movement of the center-
line due to pressure and temperature distortion. This design was
also difficult to apply since it meant that none of the GTSIO--520
production pattern equipment could be used. At this time it was
concluded that an entirely new cylinder head pattern would be
required to produce a Hot Port cylinder. With this as a basis,
work at The University of Michigan on Task III ended.

4.5 SELECTED MATERIAL AND FABRICATION

An evaluation of recent metallurgical improvements was made
by discussion with Thomas Weidig (Metallurgist). and A.H. Engstrom
(aluminum casting expert). The result of this discussion was
that the dome could be made of ductile iron (sometimes called
nodular iron) and that the valve guide support structure could

_	 be made easily of 1010 investment casting and possibly of ductile
iron. No metallurgical problems were foreseen for the remaining
parts.

I
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5. TASK IV - ANALYTICAL ENGINE CHARACTERIZATION

I
5.1 OBJECTIVE

The objective of the task was to conduct analyses character-
izing the potential performance of the low-compression ratio
diesel with respect to general aircraft applications.

5.2 TECHNICAL DISCUSSION

Due to the inconclusive results obtained in Task II, it was
not feasible to proceed with these analyses per se. Instead, a
parametr-.c study was conducted to define the performance trade-
offs for a representative aircraft utilizing the low-compression
ratio diesel powerplant and the Hot-Port cylinder concept. This
effort was part of the specified Task IV requirements with the
exception that derived engine data would have been used instead
of the parameterized input.

The parametric study was performed using the General Aviation
Synthesis Program (GASP) described in Reference 1. This is anY	 g
advanced, interactive digital computer program for aircraft pre-
liminary design and performance prediction. Aircraft geometry and

(!	 powerplant input parameters were provided to GASP to develop a
baseline case similar to a Cessna 421B turn-engine aircraft
equipped with TCM GTSIO-52OF spark-ignition engines. The power-
plant was sized to the proper horsepower for the GASP survey by
fixing the gear ratio and maximum crankshaft speed and iterating
on the required take-off distance and take-off simulation
parameters.

The baseline aircraft geometry and dimensions are illustrated
in Fig. 37.	 A general weight breakdown for the baseline aircraft
is tabulated in Table V.	 The GASP computer results for the aerody-
namic performance and cruise performance of the baseline aircraft
are shown in Figs. 38 and 39, respectively.

For this performance survey the airframe geometry, powerplant
horsepower and fuel payload were fixed.	 Since a Hot-Port, low-

j;	 compression ratio diesel directly affects the baseline fuel con-
sumption, gross weight and engine cooling drag, these variables
were selected as GASP parametric inputs.

To assess the performance of a production spark-ignition engine
operating as a low-compression ratio diesel, the fuel consumption
of the baseline case was decreased by 10% and 20%. 	 These two

(	 values of fuel consumption represent typical low-compression ratio
diesel engine characteristics. 	 The aircraft gross weight was also	 i

changed from the baseline case by -2%, + 2% and + 4%.These
changes represent powerplant modifications necessary for operating
a production engine as a diesel. 	 The equipment which might be
added or removed in a typical diesel conversion is listed in Table VI.
The actual weight change will depend upon the aircraft operating

I^	 environment, equipment certification requirements and safety

i
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}•	 1. provisions.	 The + 4% increase also indicates trade-offs available
between range performance and payload.

The use of Hot Port cylinders in an aircraft diesel. engine
will affect the cooling characteristics.	 The cooling airflpw
requirements of a representative spark-ignition engine and the
estimated characteristics of the Hot Port diesel are shown in
Fig. 40.	 The reduced mass flow required by the Hot Port diesel
will decrease the powerplant cooling drag penalty. 	 In this survey
the engine cooling drag coefficient was changed from the baseline

d value by - 33% and - 67%. 	 These changes were derived from a
Hot Port diesel cooling drag analysis similar to the method in
Ref.	 2.

The results of the parametric study for 16 cases are presented
in Table VILA graph illustrating the performance of the baseline

•	
u

case and the trade-offs available from the low-compression diesel
:a is shown in Fig.41.	 The computer results for a typical case are

contained in Appendix C.

From this data the range sensitivities may be determined with
respect to each of the parameters. 	 The sensitivity to gross weight
is -- 40.7 km (-22 NM) per percent increase in gross weight, the

;. sensitivity to fuel consumption is 5.15 km (+27.8 NM) per percent
decrease in fuel consumption and the range sensitivity to cooling
drag coefficient is 5.7 km (+3.1 NM) per ten thousandth decrease in
cooling drag coefficient. 	 Although these numbers vary somewhat

; from case to case, they give a good first approximation to the
sensitivity of the aircraft performance to the parameters selected.



6.	 CONCLUDING REMARKS

Work on the aircraft diesel engine involved modifying a
test cell previously used in the testing of an ATAC-IH-LABECO
diesel engine so that an air-cooled GTSIO-520 single cylinder

. test engine could be installed.	 Modification of the ATAC-IH-
LABECO engine took place such that a GTSIO--520 single cylinder
could be adapted to it. 	 Testing of this experimental engine as
well as a preliminary design study of the Hot Port cylinder and
an analytical study of the experimental test engine was performed.
The following is a breakdown of the status at the end of the
contract.

Task I	 All necessary equipment and instrumentation required
for engine testing concentrating on combustion analysis has been
installed.	 All but the CFR weighing system, and the fuel line
pressure transducer appear to be in good working order. 	 At
this time, the integrity of the CFR system is in question until
an extensive calibration check has taken place.	 It is believed
that the difficulty experienced with the fuel line pressure trans-
ducer is due to a circuitry problem.	 Further work in this area
is also warranted.

Task II	 Combustion difficulties were encountered early in the
T1'eseT engine test program and engine testing was then concen-
trated on solving these combustion problems.	 Unreliable results
were obtained during this period due to inadequate test equip-
ment.	 It is now felt that this condition has been improved and
that further engine testing, concentrating on combustion analysis,
using appropriate test procedures can be attempted.

Task III	 The initial studies of the Hot Port cylinder conducted at
The University of Michigan were of the kind which resulted in

Al extensive cylinder pattern changes without compensating advantages.
An entirely new cylinder head pattern would have been required

r and further work was stopped.

Task IV The computer graphics simulation indicated that with
the diesel engine, the potential increase in aircraft performance
was attractive. Employing the Hot Port and low-compression diesel
concepts the projected aircraft powerplant is characterized by an
increase in gross weight with a decrease in cooling drag and fuel
consumption. The range performance sensitivities of these param-
eters were found to be -- 40.7 km (--27.8 NM) per percent increase in
gross weight, + 51.5 km (±27.8 NM) per percent decrease in fuel
consumption and + 5.7 km (+3.1 NM) per ten thousandth decrease in
cooling drag coefficient.

J
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INDUCTION AIRFLOW METERING SYSTEM
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Figure 3. Critical Flow Orifices Shown in the Back of the

Induction Airflow Metering System

29

	

	
REPRODUCIBILI'T'Y OF THE
ORIGINAL PAGE IS PfNIR.



VI	 Clock	 V2

V3

i

BEAKERI F_

19-t(5Go1.)
FUEL

DV SUPPLE'

VFM	 P

FUEL INJECTION
NOZZLE

LJ
UD,

Figure 4. Schematic of Fuel System

^Q

b^

C

I	 I

STO RAG E
FUEL

SUPPLY

I W4

r ,

G

FILTER

F. I.P

• ,.^ '!`""	 err. ^" ^..► C^ ^^'^"" !^'^'	 f,.,...,, ^"^	 ,"".	 i i"!^	 ^- -' ^ ° ^ #.....^

OThermocouple

Drain

(g Valve
pp Pressure Transducer

(Subsequent Modification
Pressure Gouge

6.V. Bypass Valve

^►'^	 Return Valve

V2 Supply valve

V3 Fixed-191 SupplyValve

P	 Fuel Pump

Fuel Injection Pump

D

FM Variable Area Flowmeter
(Subsequent Modification)



I	 .

A
	

AL

f	 000

C. F. WEIGHING STATION

FUEL INJECTION PUMP
1-4 J,

INITIAL INTAKE SURGE TANK
(33.W2I,2ft3

Figure 5. View of Test Installation from Fuel Weig"ling Station



INDUCTION AIR HEATER BY-PASS _^

INDUCTION AIR HEATER

FLYWHEEL	 "I

. j
T,5

Uj
N

Figure 6. View of Test Engine from -.he Dynamometer



A'

f,.

t

-4

j ♦ 	
:lip

1

BROWN INDICATING POTENTIOMETER

C	
<'	 DYNAMOMETER SPEED CONTROL SYSTEM

r	 RPM INDICATOR
CYLINDER COOLING AIR CONTROL

FUEL INJECTOR RACK CONTROL
c	

OIL PRESSURE
x r̂-.

Figure 7. View of Control Console



EXHAUST SURGE TANK
COOLING AIR STACK --^^

AND DUCTING

GTS I 0 - 520 CYLINDER ---_	 1

DYNAMOMETER
180° TURNING CHAMBER
INTAKE SURGE TANK

(19241, 6.893;

r^

R ' .	 [r^	 wr;^{ii!'MlT.iil^

Figure 8. View overlooking Engine 'lest Installation

k,t:
f
1'3^t)I)UCff3ILITY

7
 OT THE

PA(,

III

I^

X.

34



100

90

W
	

80

70

H RS. 60

I Modify ATAC-IH-LobecoEngine
To Accept GTSIO-520 Cylinder

II,.Y AUG 
"SEPTOCT 

1 NOV

NW NO WORK
PERIOD	

Engine Testing with
Instrumentation Imperfection

Equipment Checkout

Found Dynamometer	 Cintroct
Scale +31bs. at O lbs. 	 Terminated
= 25%error on friction,	 Engine Testing
7% at 100 BEMP. This Scale	 Terminoted-error was corrected.

:ombustion Press. Before 	 Subsequentthis Date wos Found to be
70%Too High	 Cel 1 Modifications

Engine Testing	 136.5:1 
Intake Engine Testing

Halted	 . Surge tank	 esumed

added	 (,W

DEC Installed
Needle Lift

v .

50	 !	
Hol iday

40

f
I	 I	 Holiday

^	 !	 ^	 w

30-

Contract Started	
I

20	 I	 I	 Engine Checkout an	 FEB	 APR	 JUNE
Instrumentation	 JAN	 MAR	 MAY

10	 Work S#arced
^	 ,f

28 19 2 16 30 13 27 11 25 8 22 6 20 3 17 31 14 28 14 28 It 25 9 23 6 20
5 26 9 23 6 20 4 18 1 15 29 13 27 10 24 7 21 7 21 4 18 2 16 30 13 27

DATE

Fig. 9. Engine Firing Time vs HATE: July 1, 1976 to June 30, 1977; Total Firing
Time = 100.25 HRS.



GTSIO-520 CYLINDER
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Figure 12. a) Cylinder Pressure Transducer
b) Injection Nozzle with attatched Needle Lift Device
C. Magnetic Pick-up used to determine Crankshaft Rotation
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CAMSHAFT ASSEMBLY BEFORE RUNNING

ALI

1 CYLINDER SECTION CUT FROM
STANDARD GTS IO-520 CAMSHAFT
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INJECTION PUMP
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I

CAM DR IVE GEAR--

FRONT CAM DEAR I NG	 }

GTS IO - 520 CAMSHAFT

REAR CAM BEARING

Figure 13. Camshaft Assembly showing GTSIO-520 Camshaft Modified
for use in the Atac - Labeco single cylinder engine
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STANDARD GTSIO -520 PISTON
(75:1 C.R.) AFTER 1.5HRS. OF
FIRING TIME

(b)

AD-118 PISTON (10:1 C. R.)
	

AD-131 PISTON (10:1 C.R.)

( d)
	

(c)

Figure 15. Pistons Used in Engine Testing
a) Diesel Piton Without Combustion Cavity
b) Standard GTSIO-520 Piston (P/N 632491)
c) AD-118 Piston (10:1 CR) Showing Fuel Impingement
d) AD-131 Piston (10:1 CR)
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Figure 16. Four Fabricated Piston Configurations
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EFFECT OF FUEL INJECTION NOZZLE SPRAY
E ANGLES ON ENGINE PERFORMANCE
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Figure 19. (a) Observed Effect of Nozzle Spra y Angle on ISFC
(b) Observed Effect of Intake Air Pressure Temperature,

and RPM on Friction
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EFFECT OF INDUCTION AIR TEMP AND
E IJf E ON THE POINT OF IGN I TION

Vest at NO dynamometer beam scale reading (0 dyna load)
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Figure 20. Observed Effect of Intake Air Temperature and Pressure
on Point of Ignition
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SWIRL PLATE WITH 450 ROTATABLE LIMITATION
(a)

PISTON PIN AFTER 40.7 HRS. FIRING TIME

(b)

Figure 21. a) Swirl Plate Used for Early Swirl Testing
b) Standard GTSIO-520 Piston Pin Showing

Normal Wear (P/N 530658)
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Figure 23. (a) Bench Arrangement to Determine Air Swirl
AP = 50.8 mm (2 in. Fig)

(b) Vane used to Determine Swirl
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SWIRL RPM VS BAFFLE ANGLE SETTING
220  

AP = 5.0 cm (2 in.) Hg
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Figure 24. Swirl RPM Versus Baffle Angle Setting
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EFFECT" OF 10:1 CR (AD -131 ) PISTON
ON ENG I NE PERFORMANCE

Fuel Cetane, 47.5	 Induction Air Temp:
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EFFECT OF CETANE VAGUE ON ENG INE
PERFOR MANCE
o- C-A Fuel - 47.5 CETANE
Q- Reference Fuel - 71 CETANE
Piston, 11:1 CR (AD-130)
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Figure 27. Comparison of Engine Performance with Variation
in Fuel Cetane Rating
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RPM
IHP
IMEP
ISFC
Cyl Pres
Ignition
Air/Fuel

2611
35.8

286.4 N/cm
.220 kg/IHP-Hr
775 N/cm2
4° BTC
25.2

TYPE C-B DIESEL FUEL OIL
47 CETANE

14d# tfull'.	 ^r	 :!! !^r'
-- - -	 .	 IVA	 ,11 ^ ^IU ^w 	 ii i^l

REFERENCE FUEL - 71 CETANE

Vertical Scale is 172 N/cm2
(250 psi/cm)

Horizontal Scale is 3° Crankshaft
Rotation/Increment

Figure 28. 47 Cetane Fuel Versus 71 Cetane Fuel
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EFFECT OF INTAKE AIR TEMP
r•------ 20440C (400°F)
-°-'-'---107.2°C (225°F)

..
0 ^^. ®ewi. r^r^	 w^ a^^ ^^

0

1100 593 – PEAK PRESS.

1000 538 Cetane,	 47.5;	 Piston,	 10:1 CR	 (AD-131)
Fuel Injection Nozzle, AD-129

900 482 RPII 2500
Induction Air Pressure:

W 1778 mm	 (70 in.)	 Hg Abs

r ~ 800 426 Exhaust Pressure:
= 1270 mm (50 in.) Hg Abs

w EXH. TEMP
700 371 J
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E
c^

a Z
1000 689

900 620 -1 (Mn
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800 551
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600	 316 - 200 1378
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a 40	 -.481

n
—	 --- — -- — -- -- --
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Figure 29. Effect of Intake Air Temperature on Engine Performance
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THRUST SIDE

2 AD-118 PISTON (10 -. I C. R.) AFTER 40.7 HRS,

Figure 30. AD-118 Piston Showing Minor Skuffinq of the Top
Land on the Thrust Side
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4 ASSORTMENT OF VARIOUS ENGINE PARTS AND
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AVDS 1360
HOT PORT
CYLINDER	 ---
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Figure 31. Various Hot Port Engine Parts and Models
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A rubber dome 6.23 mm (.25 in) thick was clamped between
two surfaces and air pressure up to 4.13 Nt/cm 2 (6 psi) was
applied. One 35.5 cm (14 in.) pointer was responsive to valve
seat in the head movement, and the 2nd pointer moved with the
dome distortion. Valve guide structure attachement at point
"B" give 16 times more relative movement than did "A".

RETRODUCIBILM OF THE
Figure 32. Rubber Dome Model Study
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With Valve Cut Outs

High Distortion at Center
Between Valves

No Valve Cut Outs

Low Distortion at Center
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Figure 33. Dome Distortion from Combustion Pressure
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Figure 35. Wood and Plastic Model of the Hot Port Cylinder
Used for Preliminary Design Studies
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STANDARD GTSIO - 520
CYLINDER

GTSIO-52U CYLINDER
WITH MODEL OF HOT PORT
ASSEMBLY

Figure 36. Hot Port Model Compared to standard GRSIO-520 Cylinder
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5.18 m

(17.00 ft)	 1

rnw

r .	 i

GROSS WEIGHT = 3.380 kg	 (7450 lb) PASSENGERS = 6

FUSELAGE LENGTH 10.23 m 33.57 ft
WIDTH 1.52 m 5.00 ft
WETTED AREA 39.2 m2 422.0 ft2

WING ASPECT RATIO 7.37 7.37
AREA 19.7 m2 211.6 ft2
QUARTER CHORD SWEEP 0.0 deg 0.0 deg
TAPER RATIO 0.653 0.653
WING LOADING 171.8 kg/m2 35.2 lb/ft2
MEAN GEOM. CHORD 1.66 m 5.44 ft
WING FUEL VOLUME 1.4 m3 48.1 ft3

HORIZ. TAIL ASPECT RATIO 4.76 4.76
AREA 5.6 m2 60.7 ft2
MEAN GEOM. CHORD 1.11 m 3.63 ft
VOLUME COEFF. 1.053 1.058

VERT. TAIL ASPECT RATIO 1.17 1.17
AREA 4.5 m2 48.0 ft2
MEAN GEOM. CHORD 2.04 m 6.6B ft
VOLUME COEFF. 0.122 0.122

i	 -nof,,,EY1^l°ur: _'K?P^+'-vm,^y:`1«lx..!: 	,...,..,-	 .. , .... ,.,.,,:e;.. _	 -VM1 '1tA.wfx :eq!w .,dtl^Y r,.,, 	 .

3.05 m

(10.00 ft)

	

12.04 m	 11.00 m

	

(39.49 ft)	 (36.10 ft)

Figure 37. Baseline Aircraft Geometry from Gasp Survey
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-- ----°LANDING (GEAR DOWN)

OUT OF GROUND EFFECT

CLIMAX LAND= 1.649
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Fig. 38. Baseline Aircraft Aerodynamic Performance
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BASELINE CRUISE PERFORMANCE

CRUISE AT 25000 FT., MACH NO. 0.359
TAS = 234.0 EAS =156.0

0,Ln

TIME hrs.

RANGE KM (NM)

FUEL USED kg (Ib)

WEIGHT kg (Ib)

CL

L/D

FUEL FLOW, kg/hr ( Ib/hr)

0.472

55-59(30)

61.23 (135)

3317.6 (7314)

0.4149

1 1.227

84.62 (187)

7.232

2992 0615)

611.0(1347)

27674 (6101)

0.3461
10,117

78.0 0 7 2)

RESERVE FUEL= 63.5 kg (1401b)

RANGE WITH MAXIMUM PAYLOAD=- O.

RANGE WITH MAXIMUMFUEL (MINIMUM PAYLOAD) = 5364km (2895 NM)

Figure 39. Baseline Cruise Performance from Gasp Survey
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Figure 40. iCoolinc, Airflow Requirements of a Representative Spark-Ignition
Engine with Respect to the Hot Port Diesel.
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Table I. Inventory of Fuel Injection Nozzles

INJECTION NOZZLES

m
00

P •

P/N NO. OF HOLES INCLUDED ANGLE HOLE DISTRIBUTION, DIA INCHES ORIFICE AREA
1N 2

ORIFICE AREA
mm2

ADAPT TO

NEEDLE LIFT

AD-120
-L

8 1600 2P.0085 2(t	 ,01 29.011 2.012 0.000686 0.443 NO

AD-i2l 6 1500 14 NO

AD-122 8 1400 NO

AD-123 8 1300 it	 If	 11	 If 41 NO

AD-124 8 1200 it	 11	 11	 If NO

AD-125 8 1100 It	 11	 Is	 11	 It	 19	 It NO

AD-126 8 1350 2(9.009	 2(0.01 4(9.012 0.000736 0475 YES

AD-128 8 1350 4(al .01	 4 (@.012 0.000766 0.494 YES

I
AD-129 1 7 1350 2(a- .01	 2 (5.012	 3P.015 0.000913 0.589 YES
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Table II.

PISTON COMBUSTION CHAMBER CHARACTERISTICS

Part No. CR CR Clearance Vol. Clearance Vol. Squish
(Nominal) (Measured) (Nominal) (Measured)*

in. 	 cm in. 	 cm 

631475 7.5:1 ---- 13.32	 218.5 ----	 ----- 0.7

-- 8.5:1 --- 11.55	 189.5 ----	 ----- 0.7

-- 9.0:1 --- 10.82	 177.5 ----	 ----- 0.7

AD-118 10.0:1 9.92:1 9.63	 157.9 9.71	 159.1 0.7

AD-131 10.0:1 10.07:1 9.63	 157.9 9.55	 156.6 0.8
rn

AD-130 11.0:1 11.14:1 8.66	 142.0 8.54	 140.0 0.8

AD-127 12.0:1 --- 7.87	 129.0 ----	 ----- 0.7

Swept Volume
CR (measured) _

	

	 - + 1
Clearance Volume

Swept Volume = 1420 cm 3 (86.66 in.3)

*Clearance volume determined by filling combustion chamber at TDC with known
quantity of type C-B Diesel fuel oil.

_ a.u^.• ,.^F- nte^a^^i+,^tiv,.as,.
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TABLE III

GTSIO-520 DIESEL GOALS

CRUISE

DIESEL

325

.037 (.62)

2900

118.5 (172)

588.2 (1930)

.185 (.41)
20:1

1143 (45)
57.7 (136)

914.4 (36)

860 (1580)

TAKE-OFF

SPARK DIESEL

435 435

.050 (.83) .050 (.83)

3400 3400

134.3 (195) 134.3 (195)
688.8 (2260) 688.8 (2260)

.304 (.672) .204 (.45)
12:1 25:1

1155.7 (45.5) 1422.4 (56)
87.7 (190) 87.7 (190)

1143 (45) 1270 (50)
860 (1580)	 860 (1580)

SPARK

H. P. 325

H.P. /cm 3	 (H.P. /ill 3 ) .037 (.62)

RPM 2900

BMEP N/cm 2	(lb/in2 ) 118.5 (172)

Piston Speed meters/min (ft/min) 588.2 (1930)

Fuel Cons. kg/BHP-HR (lb/BHP-HR) .250 (.55)

Air Fuel Ratio 15:1

Intake Press mm (in) Hg 914.4 (36)

Intake Temp °C	 (°F) 57.7 (136)

Exh. Press mm (in) Hg 914.4 (36)

Exh.	 into Turbo °C	 (°F) 860	 (1580)

-Equal weight, bulk, cost and power with minimum change in tooling

-30% increase in range

-Emission; meet EPA goals

....	 ;.nwY.	 'Ffi:Y^EdY^.i-'.. 	 :NfYL's+LK'• -	 .'^^YW^/Ra^YIMk.
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9.	 Nozzle+ Designation

The following conditions should be noted:

1. All engine testing was conducted with a 2.13 mm ID x
6.3 mm OD x 838 mm.(.084 x .250 x 33.0 in.) fuel
line except for test No. 2. Here, the line size was
increased to 2.36 mm ID x 6.3 mm OD x 838 mm (.093 x
.250 x 33.0 in.).

i
2. All testing used type C-B diesel fuel oil as a fuel

with a cetane value of 47.5 except for test No. 12 which
used a reference fuel with a cetane value of 71.

3. All cylinder pressure measurements up to test No, 9 were
172 -- 206 N/cm2. (250-300 psi) too high due to poor_
calibration of the pressure transducer.

NOTE - Items marked with asterisks in Table IV have not been
mentioned in the text, see page 12,



Table IV	 (cont.).

Experiment 1;	 Test effect of varzous s raY angles on 	 'P	 g.
performance (.Page 1:2)

Reading No'.	 3I-35.
IHP	 45. 5.
RPM	 2600
Intake Pressure.	 1354-1438 mm	 1

Hg .Abs	 ..(53..33--56.63 an:)
Intake Temperature	 .121-11.00C,.	 a

:(250-2 30°F)
Piston (AD-118)	 10:1
Paint of Ignition,..deg.- 	 TDC:
Peak .Cylinder Pressure	 82'1-861.7 N/cm2

(120.0--1250 psi).
Nozzle	 --

Experiment 2:	 Determine presence of after injection
(Page 13)

1

Reading No.	 38-40
IRP	 46.0
RPM	 2600

_ Intake Press.	 1302-1429 min
Hg Abs	 (5.1.26-56.26 in.)

Intake Temperature	 117.2°C
(243 °F)

Piston (AD-118)	 10:1
Point of Ignition, deg. 	 TDC	 2Peak Cylinder Pressure	 896.2 N/cm

(1300- psi)	 a
Nozzle	 AD-123	 13013

AD-122	 140 0
AD-121	 1500

Experiment 3:	 Effect of induction air temperature and pressure
on point of ignition (Page 13)

Reading No.	 no number
1HP	 no loadi.
RPM	 2600
-Intake Pressure	 mm	 88.6.4	 835.6	 73:4.

Hg Abs	 in.	 (34.9)	 (32.9)	 (28.9)
^-

Intake Temperate 	 °C	 123.8-	 204.4	 165.5-Temperature	
rc= 193.3	 212.7

°F.(2.:55-380)(400.) ..	(330-415)
Piston	 (AD-118)	 10:1	 10:1	 10:1
Point of Ignition, deg	 20-4 ATC 6--1 ATC 27-19 ATC

- Peak Cylinder Pressure	 -	 -	 -

^^ 5

No zzle	 (AD-122)	 1400	 1400	 1400

7
2



Experiment 5: Comparison of 130 1 nozzle to 140 0 and 1500
nozzle with swirl at position 8*

Reading No. 72-76 &
87-90

IHP 26.4- 27.3- 25.8-
36.8 37.0 33.9

RPM 2600 2600 2600
Intake Pressure	 mm 760.7- 746- 734-

Hg Abs 1007.1 1005 899.1
in. (29.95- (29.4- (28.9-

39.65) 39.6) "35.4)
Intake Temperature	 °C 113 + 107 + 111.6

lo.8 16.3
OF (236 + 6) (226 + 9) (233)

Piston	 (AD-118) 10:1 10;1 10:1
Point of Ignition, deg 14 ATC @ 10 ATC @ 11 ATC @

26.4 IHP 27.3 IHP 25.8 IHP
to TDC @ to TDC @ to 4 ATC
36.8 IHP 37.0 IHP @ 33.9 IHP

Peak Cylinder Pressure 448-827 517-827.2 517-758 N/cm2
(650-1200) (750-1200) (750-1100)	 psi

Nozzle 1400 1300 1500
(AD-122) (AD-123) (AD-121)
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Table IV (cont.)

Experiment 4: Effect of induced swirl on engine performance
(Page 14)
(a) Testing with instrument imperfection
(b) Engine testing

(a)	 (b)
Reading No.	 46-80'	 no number
IHP	 24-39	 no load
RPM	 2600	 2600
Intake Pressure mm	 739-1041	 1778

Hg Abs	 in.	 (29.13-41.0)	 (70)
Intake Temperature °C 121 + 27	 121

OF (250 + 15)	 (250)
Piston	 10:1 (AD-118)	 10:1 (AD-131)
Point of Ignition, deg 20 ATC-1 BTC	 --
Peak Cylinder Pressure 344-896 N/cm2 	--

(500-1300) psi
Nozzle	 140° (AD-122)	 1350 (7-hole)

(AD-129)

^'e:.lr_ _^_w " ^ ^_ , n	 ^ - • ^_	 a w^a "-	 a	 r..	 -" ...



Reading No. 104-105
IHP --
RPM 2600
Intake Pressure	 mm 754.3

F ' Hg Abs	 in. (29.7)
Intake Temperature	 °C 114.4

OF (238)
Piston	 (AD-118) 10:1
Point of Ignition, deg --
Peak Cylinder Pressure 396

(575)
Nozzle --

Experiment 7:	 Effect of varying engine speed

Reading No. 96-100
IHP 27.2-42.3
RPM 2600
Intake Pressure	 mm 7i21.3-1107

Hg Abs	 in. (28.4-43.6)
Intake Temperature	 °C 112.7

" °F(235)
Piston	 (AD-118) 10:1
Point of Ignition, deg 12 ATC @ 27.2 I

to 1 BTC @ 27.7 I
Peak Cylinder Pressure 517-861

(750-1250)
Nozzle	 (AD-122)	 1400

Experiment 6: Friction check oil temp = 93.3°C (200°F)
two values of RPM tested; 2600 and 2900*

104-105

2900
812.8
(32.0)
117.2
(243)
10:1

413 N/cm2
(6a0) psi

on ISFC*

101-103
27.7-36.5
2900
746.7-1028.7
(29.4-40.5)
120.5
(249)
10:1

HP 15 ATC @ 27.7 to
HP 3 ATC @ 36.5

517-758.3 N/cm2
(750-1100) psi
140°

Experiment 8: Motoring friction determination (Page 15)

(a) Testing with instrument imperfection effect
of RPM and intake pressure on friction Hp

(b) Engine testing effect of oil temperature on
friction - two oil temperatures were used;
76.6°C and 62.7°C (170°F and 145 1 F)

1	

(a)	 (b)
Reading No.	 108-118	 234--245

{	 IHP	 --	 ---
#	 RPM	 1467 -3027	 2600

Intake Pressure mm	 731.2 or 1036	 1778
Hg Abs	 in.	 (28.79 or 40.79) (70)

Intake Temperature	 °C 121-126	 104.4

	

°F (250-260)	 (270)
Piston	 (AD-118)	 10:1	 10:1	 (AD-131)
Point of Ignition, deg -- 	 --

'-	 Peak Cylinder Pressure 331-482	 --	 N/cwt

	

(480-700)	 psi
Nozzle	 (AD-122)	 1400	 1350 (7 hole) (AD-129)
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Table IV (cont.)

Experiment 9: Effect of manifold pressure on ignition lag
(Page 16)

Reading No.	 127-132
IHP	 27.7-29.1
'FPM	 2600
Intake Pressure mm	 820-1384.3

Hg Abs	 in.	 (32.3-54.5)
Intake Temperature	 °C 118-124

OF (245-256)
Piston	 (AD-118)	 10:1
Point of Ignition, deg 1 ATC for 32.3 to 3 BTC for 54.5
Peak Cylinder Pressure 448-534 N/cm2

(650-775) psi
Nozzle	 (AD-126)	 1351 (8 hole)

Experiment 10: Obtain pr-_•rformance Hook of 11:1 piston (AD-130)
(Page 15)

Reading No.	 141-148
IHP	 28.6-35.8
RPM	 2600
Intake Pressure mm	 896 -1498

H9 Abs	 in.	 (35.3-59.0)
Intake Temperature	 °C 95-108

O F (203-227)
Piston	 (AD-118)	 11:1
Point of Ignition, deg	 6 ATC for 32.3 to 4 BTC for 54.5
Peak Cylinder Pressure	 551-775.3 N/cm2

(800-1125) psi.
Nozzle	 (AD-129)	 1351 (7 hole)

Experiment 11: Obtain performance Hook of 10:1 piston (AD-131)
(Page 17)

Reading No. 136-137,	 157,	 162
IHP 30.2-50.7
RPM 2600
Intake Pressure	 mm 904.2-1844

Hg Abs	 in. (35.6-72.6)
Intake Temperature	 °C 112.2	 @	 30.2	 IHP	 (234)	 to

(°F) 121 @ 50.7 IHP	 (250)
Piston	 (AD-131) 10:1
Point of Ignition, deg 3 ATC-5 BTC
Peak Cylinder Pressure 620-844 N/cm2

(900-1125)	 psi
Nozzle	 (AD-129) 1351	 (7 hole)
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Table IV (cincl. )

Experiment 12: Effect of Cetane value on engine performance
(Page 17)

Reading No.	 143,145-147,149-152
IHP	 23.4-40.7
RPM	 2600
Intake Pressure mm	 1559-1508

Hg Abs	 in.	 (61.4-59.4)
Intake Temperature	 °C 115.5 + 12.6

O F 2 40 + 7

Piston	 (AD-130)	 I1:1
Point of Ignition, deg 4 BTC
Peak Cylinder Pressure 654-723 N/cm2

950-1050 psi
Nozzle	 (AD-- 129) 	 1350 (7 hole)

Experiment 13: Effect of 1.27 tam (.05 in.) less nozzle protrusion
on engine performance*

Reading No.	 158-162,163-165
IHP	 33.6-53.6
RPM	 2600
Intake Pressure 	 mm	 1059--1968

Hg Abs	 in.	 (41.7-77.5)
Intake Temperature	 °C 62.7 + 12.6

OF (145 +-7)
Piston	 (AD-131)	 10:1T
Point of Ignition, deg TDC @ 33.6 IHP to 6 BTC @ 53.6 IHP
Peak Cylinder Pressure 620--827.2 N/cm2

(900-1200) psi
Nozzle	 (AD-129)	 1350 (7 hole)

Experiment 14: Effect of increasing induction air temperature
from 107 1 C-204 0 C (225-400°F) (Page 18)

Reading No.	 257-265
IHP	 23.0-50
RPM	 2600
Intake Pressure mm	 1778

Hg Abs	 in.	 (70)
Intake Temperature 	 °C 107.2-204.4

OF (225-400)
Piston	 (AD-131)	 10:1

-^	 Point of Ignition, deg 4 BTC-TDC
Peak Cylinder Pressure 568-675 N/cm2

(825-980) psi
Nozzle	 (AD-129)	 1350 (7 hole)

A,E
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TABLE V

BASELINE AIRCRAFT WEIGHT BREAKDOWN

kg lbPropulsion Group

Primary Engines 586 1292
Primary Engines Instl. 79 174
Fuel System 13 29
Propulsor Weight 141 311
Total Prop. Group Wt. 820 1808

•	 4.

Structures Group

Wing 259 572
Ho r. Tail 65 144
Vert. Tail 25 56
Fuselage 301 663
Landing Gear 98 216

. Primary Engine Section 6 14
n Total St.ruct. Group Wt. 756 1666

'l
°- Flight Controls Group

4 Cockpit Controls 11 25
,r Fixed Wing Controls 44 96

Total Control Wt„ 55 121

' Wt. of Fixed Equipment 376 829
Weight Empty 2007 4425
Fixed Useful Load 152 336
Operating Weight Empty 2160 4761
Payload 54.1, 1200

} Fuel. 675 1488
Gross Weight 3379 7450	 M

f

t

j

Wing Fuel Capacity 675 1488

'i
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TABLE VI

_ WEIGHT BREAKDOWN FOR STANDARD TCM-520
ENGINE AND DIESEL MODIFICATIONS

i Weight Subtract
Item kg lb kg lb

Spark Plugs 1.22 2.70 1.22 2.70
Magnetos 5.10 11.25 5.10 11.25

Ignition Harness (Shielded) 1.25 2.75 1.25 2.75
Starter 7.43 16.:38
Fuel Injection System 3.86 8.50 3.86 8.50

Exhaust System 8.05 17.75
External Oil and Fuel Lines 4.31 9.50
Alternator 10.26 22.62

Oil Cooler 4.20 9.25

Tachometer Drive 0.63 1.38
Turbosupercharger 22.00 48.50
intercooler 3.06 6.75

Variable Controller 0.91 2.00 0.91 2.00
f Fuel Pressure Regulator 1.36 3.00 1.36 3.00

Overboost Valve and Adapter 0.45 1.00 0.45 1.00
Sonic Venturi 0.11 0.25 0.11 0.25

Hot Prime System 0.34 0.75 0.34 0.75
Nozzles

Injector tines

Injector Pump

Intake Air Heater

14.60 32.20

Weight Engine, No Accessories 278.83 614.70

Weight Engine, With Accessories 293.43 646.90

Add

kg	 lb

	

1.13	 2.5

	

1.81	 4.0

5.44 12.0

	

1.81	 4.0

10.19 22.50

278.83 614.70

289.02 637.20



TABLE VII

SUMMARY OF CRUISE PERFORMANCE

The data presented below is for a 435 HP, 3400 maximum RPM
turbocharged engine with a 2:3 gear ratio.- The cruise configura-
tion is at 75% power, 85% RPM and all missions begin with 675 kg
(1488 lb) of fuel.

J

Case Gross Drag BSFC RangeNo. Weight Coef.

kg (lb) kq lb km nmBHP-HR BHP-HR

Base- 3380 .0015 0.25 0.55 2290 1615line (7450)
1 3310 .0005 0.18 0.40 4095 2210

(7300)

2 .0005 0.20 0.45 3555 1920

3 .0010 0.18 0.40 4020 2170

4 .0010 0.20 0.45 3500 1.890

5 3380 .0005 0.18 0.40 4020 2170
(7450)

6 .0005 0.20 0.45 3-1,00 1890

7 .0010 0.18 0.40 3955 2135

8 .0010 0.20 0.45 3445 1860

9 3450 n005 0.18 0.40 3955 2135
(7600)

10 .0005 0.20 0.45 3445 1860

11 .0010 0.18 0.40 3890 2100

12 .0010 0.20 0.45 3390 1830

13 3515 .0005 0.18 0.40 3845 2075
(7750)

14 .0005 0.20 0.45 3355 1810

15 .0010 0.18 0.40 3835 2070

16 .0010 0.20 0.45 3335 1800

79
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t	 AppendixcA

I	 EQUIPMENT IDENTIFICATION

Dynamometer

Beam Scale

Revolutions (RPM)

Temperature

Cooling Air Fan

Manometers

Airflow

A	 Fuel Flow

Induction Air Heater

Oscilloscope
i

Charge Amplifier

Pressure Transducer

Transducer Holder

Oil Heater-Intercooler
Systemi

Pressure Regulator

j	 Smokemeter

i

General Electric, Type TLC50,
SIN 1503625, Horsepower -150,
Class 6-150-4000

Kron, Capacity 300 lbs., SIN 22296,
Calibrated Sept. 1976,
HP = (B.eam x RPM) /3000

Electronic Counter, Hewlett Packard
Models 521A and 5301A

Brown Electronik by Honeywell,
Model Y156X63-PSZY-II-III-IV-A4(L),
SIN 951059, Calibration Check Sept.
1976.

American Fan Co., Model AF-15, with
10 Hp Motor and 8 in. (20.3 cm)
fan outlet valve

100 in.-U-Tube by Trimount,
Type 40-100-U, SIN 42721

Bank of Sharp Edge Orifices, Sizes 1/8
in., 7/32 in., 3/32 in., and 3/16 in.
diameter, capacity 722 lbs/hr,
manufacturer, unknown.

Time-weight F stem by Wakasha.
Variable area flowmeter by Cox
Instrument Div., Lynch Corp.

20 KW Cromalox with Bartlow, Model M-2
Controller (1000°F capacity)

Tectronix Dual Beam, Type 502,
SIN 005336

(1) Kistler Model 566, SIN 1338
(2)Kistler Model. 503M4, SIN 917

Kistler Models 6005, SIN 78793 and
607 FX, SIN 25

Kistler Model 628C108

Assembled by Automotive Laboratory
of The University of Michigan

Rockwell International Boston Gear
Division, Model E42460A

Bosch smokemeter Model EFAW 68A
Hartridge Smokemeter Leslie Hartridge
LTD Model HR 142



Appendix S

EQUIPMENT SUPPLIED AT

T	 CONTINENTAL	 TTELEDYNE CON NEN	 L MO ORS EXPENSE

1
ITEM	 TCM PART	 QUANTITY

75:1 CR Piston 631475 I
Cooling Air Baffle 641339 4
Complete Cylinder AssemblyP	 Y	 Y 639053 2

(except piston)

Piston Ring 640625 12
x 640626 12

' 640627 12

M
6406,_$ 12
629401 12

Expander 636146 12
Intake Elbow Assembly 633726 3	 4

Gasket	 - 630824 18
Flange 633730 2
Connecting Rod Pir, and Bushing 530658 2
Camshaft 635033 2
Cylinder Head ThermocoupleY	 P Ba oneiY 3
Hydraulic Valve Lifter Assembly 628488 4
Crankshaft, 10.1cm(4.0 in.) Stroke --- I

Adopt to Lobeco Crankcase
GTSIO-520 Portial Engine I

( page 82)

$1
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Figure 42, Partial GTSIO-520 Engine Supplied by TCM for Determination of Valve to
Piston Clearance



APPENDIX C

F	 ^	 -
TYPICAL GASP OUTPUT

CASE 3

^ 	 Gross Weight 3312kg (7301 lb)	 98% of base case
Wing Loading 1651 N/cm 2 (34.5 lb/ft 2

Delta CD	001

Required T/O Distribution 654.1 m (2146 ft)
-HRBSFC = .18 kg/BHP	 (.40 lb/BHP-HR)

ti
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DRAG BREAKDDWN
FLATPLATE

AREA(SQFT) CDO
WING 1.721 0.00813
FUSELAGE 1.83'7 0.00868
VERT,	 TAIL 0.349 0.00165
HOR.	 TAIL 0 506 0.00239
ENGINE NACELLES	 1.161 0.00548
TIP TANKS 0.000 0.00000
INCREMENTAL 0.212 0.00100
TOTAL FE 4.624 0.021$5

WETTED
AREA(SQFTj

391.07
422.68
96.00

121.40
6.74
0.00
0.00

1031.15

..

40
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OLTMF TO 25000. FEET
TIME	 12.	 MIN
FUEL USED o	10S. L$
RANGE S	29. NPR
MACH N0. a 25000. FT- 0.298

INDICATE WHICH GRAPH YOU WISH TO SEE
ALTITUDE VS.

TIME
EAS
MACH HC.ci	 R/C
DONE



0.48F

0.46

0.44

0.48

1 0.40
m
E 0.38

H 0.36

S 0.34

0.32

0.3®

CLiMb

6008.	 10000.	 14888.	 18000.
ALTITUDE(FT.)

ALTITUDE VS. TIME

HIT RETURN TO CONTINUE-



6000.	 10000.	 14000.

ALTITUDE(FT.)

18000.	 220ee.	 26080.

L L i rl n
-1 .,2i.s;)

2220.

2160.

2100.

R 2040.

C 1980.

1920.

1860.

1800.

1740.

1680. 
a - 2000.

ALTITUDE US. R/C
HIT RETURN TO CONTINUE-



10-389CRUISE Al' ESOOO FT MACH NQ
TAS-	 234 EAS-	 156.

START	 END
TIME(HRS.)	 0.465	 9-595

RANGE(NM)	 29.	 2169.

FUEL USED(LBS)	 105,	 1378.

WEIGHT(LBS)	 7194.	 5921.

CL	 0.4082	 0.3360

L/D	 11-318	 10.104

FUEL FLOW(LB/HR)	 145.	 133.

RESERVE FUEL m	109.
RANGE WITH MAXIMUM PAYLOAD* 	 —0.
RANGE WITH MAXIMUM FUEL(MINIMUM PAYLOAD) a 3818.

bow"

RANGE REQUIREMENTS MET?(Y/N)? v



LANDING SEGMENT

APPROACH SPEED(KTS)*	 91.22
APPROACH ANGLE(DEG) = 5.5
TOUCHDOWN SPEED(KTS) n 	70.63

56. F+
!

!
L----APPROAC&I RAKING 	ml	 I

633.7	 I	 938.9	 I	 I
!

LANDING D I ST	 ,	 I
1572.6	 I

!	 I

F,AA. F IELD LENGTH
2621.0

HIT RETURN TO CONTINUE-
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