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ABSTRACT

This thesis considers two problems: a) the design of an optimal

dyr_amic compensator for a multivariable discrete tune system and h) the

design of compensators to achieve minimum variance control strategies

for single input single output systems. Both problems are stochastic in

nature.

In the first problem the initial conditions of the plant are random

variables with }mown first and second order moments, and the cost is the

exioected value of the standard cost, quadratic in the states, and controls.

The compensator is based on the minimum order Luenberger observer and it

is found optimally by minimizing a performance index. Necessary and

sufficient conditions for optimality of the compensator are derived. The

compensator is given in Auto Regressive Moving Average form_

The second problem is solved in three different ways; two of them

working directly in the frequency domain and one working in the time

domain (state space techniques.). it turns out that -the first and second
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order moments of the initial conditions are irrelevant to the solution.

Necessary and sufficient conditions are derived for the compensator to

minimize the Variance of the output_

Thesis supervisor:	 Timothy L. Tohnson .

Title:	 Associate Pxofessor of Electrical Engineering
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CHAPTER I

1. PRIES HISTORICAL REVIEW

The problem of finding compensators for systems in state space form 	
i

has been widely studied. It is a known. fact that if the pole configura-

tion of a controllable plant is not desirable, it can be arbitrarily

changed using state feedback. A rigorous formulation of the linear state

regulator problem is also known.

At first, the linear quadratic problem was formulated as a cam-

pletely deterministic one, penalizing both deviations from the desired

plant state and excessive use of control. The solution, as it is well

known, is in the form of a complete state feedback control lair. This

formulation constitutes an idealization, since most of the time the

initial state is not exactly known and complete state measurements are

not available. For these reasons, the problem was reformulated as a

stochastic one where the first and second order statistics of the initial

state and the noise were known. The cost was taken as the ensemble

average value of the deterministic performance index. Surprisingly

enough, the new result was a Kalman filter followed by the same gains

obtained in the deterministic framework. in this thesis-we will work-

out this problem assuming that no plant or measurement . noise is disturb-

ing the system. The solution obtained is a minimum order observer as

Pro-nosed by Menberger(M) preceded by the gains found in the previous

tun formulations. Since the parameters of the Luenberger observer are



-8-

rather arbitrary, several authors, among them Blanvillain (Bl), Miller

(M1) and Llorens (L2), have determined the compensator parameters by

minimizing a performance index, which gives a s pecific form for the

observer. A surprising characteristic in the solution of this problem

is that a separation develo ps in the equations for the parameters of the

observer and the optimal gains, the latter being the same as if complete

state measurements were available. st turns out that the minimum-order

observer--based compensator is optimal.

All the preceding methods have been worked out for state space re-

presentation of a.system,. Astrom (Al), following another line of work,

finds minimal output variance control strategies directly using an Auto-

Regressive Moving average model for single-input single-output plants.

in this approach, although he doesn't have the freedom of the state space

techniques (he is just minimizing the variance of the output and no

penalties are assigned to the states nor to the input). Astrom has the

great advantage that the gains are very.easy to compute by simple poly.

nomial division.

2. OUTLINE OF CONTENTS

Chapter two is designed to be a backgr . und chapter r this means

that the techniques needed to go from an Auto-Regressive Moving-Average

model to a minimal state space representation of A system,

and vice versa, are developed. The importance of the fact that the first

I



transformation is to a minimal state space form lies in the conditions

required for positive definiteness of certain

covariance matrices, as pointed out by Llorens (L2). This technique

requires the A.R_X.A. model to have a specific structure which can be

achieved by matrix multiplications. The transformation form state space

to an A.R.M.A. model.involves the computatiaa of the.classical adjoint

of a matrix, which is shown in section 4.

In chapter three the structure of the discrete time minimum order

observer as w
e
ll as-the linear regulator problem are presented as back-

ground for the main problem, the solution of the discrete time minimum

order observer based compensator. It is assumed that the initial state

plant is a random vector with known first and second order statistics.

The performance index is the expectation of the standard cost over the

time interval [0,-), quadratic in the state and control vectors. The

approach mimics Blanvillain's work until the actual minimization point,

where the technique used by Llorens (L2) is employed.

Chapter four deal with the problem of finding the m i nimal variance

control strategy for a single-input single-output discrete time system.

Directue thud 1 gives the necessary conditions to solve the problem, but

even for a simple example they are very difficult to solve, The matrix

approach solves this problem completely using state space techniques,

while direct method 2 gives the solution to the problem in a very simple .

way (a polynomial division) but has the disadvantage that it assumes the

observations to be noise.-free. For all the above methods, a certain
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structure for the compensator was assumed, and this is that the input at

time t cannot depend on the output at the same time t, which makes a lot

of sense in a discrete time system because it is not usually possible to

feed the output instantaneously back to the input in such a system_

In chapter rive a second order example is solved, first using

direct method 2, and then the answer is checked by inserting it into the

equations given by the matrix approach.

3. NOTATION AND TERMINOLOGY

Small boldface Roman letters will denote vectors and capital letters

will denote matrices unless otherwise stated. A` denotes the transpose

of A, adjA the classical adjoint of A; I the identity matrix and 0 the

zero matrix. A(mW denotes the matrix A which is of dimension mxm. It

is stressed that same matrices in different chapters have differeat mean-

ings. P(z) denotes a matrix which is a function of z except in chapter

four where it is used as a (scalar) polynomial function of z.

The expected value (ensemble average) is denoted by E&J . The co-

variance matrix of a vector valued random variable:

. E (x (t) x' M)	 E (x (t)) R (x' M))

is denoted by:

cov (x (t) )

.also, the numeration_ of the equations are inde pendent from section to
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CHI, TBR Ti

1. INTRODUCTION

The problem of finding optimal compensators for systems described

in state space fox-m has been widely studied, but this approach assumes

that we already have the matrices that describe the system in such a form.

This assumption is somewhat ideal, since in order to describe a plant in.

a mathematical model we have to derive the equations that govern it from

basic principles. In this event the model of the system will be given

to us in the form of differential equations, for continuous time systems,

or difference equations for discrete time systems. In order to design a

compensator for such a system, we have to choose one of two possible

approaches: either convert the system into a state space representation

or use the input output description. In chapter four we are going to use

both techniques to find the minimal variance control for a plant, while

in chapter three we use only the :,Latter one.

The intention of this chapter is to serve as a. background for the

work in chapter three. so , we will show the techniques available to con-

vent a system from an. A..R-M.A.. model to a state space representation,

and Trice versa.

The structure of this chapter is as follows_ in he second section

the structure of multivariable systems is presented as a background to

the work in section three, where the steps to 'Lind a minimal state space

:-_ Ab-
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representation for a multavariable system are developed. Both these

sections rely on the work of wolovich (111) and Wolovich and Falb (W2).

Section four deals with the transformation back from the state space form

to an A.R.M.A. model, where the main problem is the calculation of the

adjoin of a Matrix. This section is based on Gantmacher's book [Gil.

2. STRUCTURE OF MULT T_VARI-ABLE SYSTEMS

Let's consider systems of the form

x	 x (`:) + B u (t)	 (1)

y (t}	 C x (t)

where

x (t) is an n vector

u (t) is p vector

y(t) an m vector

and A,B,C are constant matrices of appropriate dimensions

Furthermore, let's assume that B and C are matrices of full r_:nk.

Then, it is a well known fact that if the pair (A,C) is completely

observable, there exists a similarity transformation_ Q such that. the

system

z (t+1)	 A z (t)	 u (t)	 (2) ..

y (t}	 z (t)

where El	 -o-'-AO 3 -- O^ B t - CQ .

is in standard observable form.
R.
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We are going to show now, how to obtain the matrix O.

Let K = [C', -A'C' r A I2C', ... (-AT)n-IC']r then, since we assumed

that system (1) was completely observable, the n x zj-, matnix k is of

•

	

	 rank n, and it is possible to define a basis for n consisting of the,

first n linearly independent columns. of K. Let L be a matrix whose

columns are the basis for R 1 inthe following order

L = [C' , -A' C . .... , (-A') ` ^ylC , ::^ r • - • r (-A') 
6

^-1C2, .. - r (-A') 
?n

-1Cm]

where
..Ch

C =	 -C2-

!	
^Gm_

k.
Setting d 	 Cr	 k 1,2,. - -,m

where dc, - 0
-

and letting Jk be the dk row of L , we define the matrix 4 as

Q = [J {`A) J' - - ( -A)
 Q1

Ul f - - - r (--A) 
-1 j!

After doing the transformation pointed out in (2) we_ get A as a

block matr? _x of the form

All _ .. AI-IR.

n
... AA -

	

.21	 ._2m
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n
with A.

3
 a Cr. x CF. companion matrix given by

0 0	 0	 Ad i.-1. _ 1, di
..	 1 o ._ o	 Ad	 Y 2, d
A.

0 1	 0	 Ad.	 + 3, d.

0 0 .. 1	 Ad.	 , d.i-?	 i

0 0	 0 Adi , di

and A. a	 x	 matrixx
J-3	 1	 7

0 0 .. Ad 	 i, d

A.	
=	 0 0	 Ad 	 2, . d.

o o .. Ad. d.

fox ? j. And C is an m x n matrix of the form

0	 1	 0...	 0 ... 0
n

C -	 0 _... C2,dl 0... 1	 0
a

0 .... C3 , d1 0... C3 d2"'  0

0 .... C n ,dl 0... C ,d2 . - 1

Now, that we have obtained the structure of the system after the

transformations were. ?jade:, we are going to conepute the transfer matrix of

the plant, T(z)

T (z)	 C (zI-•-A) ^i B
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But by taking advantage of the strut: wire of the system, we can find

T (z) as

T (z) = C0 	^(z)s(z)B0

where

i z	 z Z	 0	 0	 0

G -1

S(Z) =	 0 0 _.	 0	 1 .... z 2	 --- 0

Cr -1
0 0	 .:	 0	 0	 ....	 0	 ... z

?	 0	 0

CO -	
C2rdZ	

3	 0

C3°dl	
C3,d2 ...	 0

A	 A

Cam, d	 C n, d2 ...	 ?

A
BO = .B.

and A(z) is . the in x m matrix with entries given by A. i (z) = det(zi^,
or

j	 and d {z) _ -Ad.-i+1,dj - zAd	 - 2,dj	 _ _ . -z z^l Ad. ,d. Tor i

Note that A (z) can be re^,rr? tten as

G	
-

z 	 0	 0	 0
U	 n2

A(Z)
.
 = 0	 z	 0	 ... 0 .. '	 S (z)_kO

0	 0	
c'3 
	O

_L 0 ` 0 0 ..., z
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n

cohere A  is an n x m matrix of the coefficients of Aij ir3 = lr2,...m

given by

'A"
A1 r dl

n
A1 rd,2

^.

A1 r M

A2 rdl

n
A2rd2

n
A2r 
m

n Aal,dl Adl,d2	 ... Ad1,a-
-	 AO

.
n
Ad1T1,dl

n
Ad1+1,a2

n
Adl+l d 

..^
Ad2 ,dl

n
Ad2rd2

n

Ad 21M

n

AdrdI
n

A m 1 11rd2
n

^A -1 +1, ^

Aa li ra^ Ad d2 A d	 d

3.	 MT-N. MI AL STATE SPACE REPRESENTATION FOR LINEAR MULT? VARI&BI E SYSTF14S
e

In: this section, we present . an algorithm, based an Wolovich ' s paper

Ml), that gives a meal state space representation for a system ex-

pressed i_a a more general matrix difference. ooe_rtcr xom7a.	 This -'rzns-

formation is very important in practicer Since as the result of applying

well known physical laws, such. as Kircho==' .s

^, _

r

lags for electrical netsrrorks.
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or Lagrange equations for mechanical systems, we obtain mathematical

models for plants in the form of differential or difference equations

and not in state space form. The advantage of having a state space

representation, lies in the fact that there exist, at the present, very

powerful techniques for designing and analyzing plants that are described

in such a form. These are not available when working directly with the

i	 equations that govern the system.

After the algorithm is developed, a simple example will be presented

to show how it works.

We wall work with systems that are not as general as the ones

considered.by.Wolovich (WI), namely, systems that are described by the

matrix difference equations

PWIT(t) = O(z)w(t)	 (1)

Y(t) = Rw(t)	 (2)

where	 P (z) is a m x m matrix

p (z) is m. x p matrix

R an m x m constant nonsingular matrix

and	 z	 a difference or delay operator.

Furthermore, we assume that p (z) is nonsingular, in order for the above

equations to represent the transfer matrix of a system, that the system

is strictly proper and that it is irreducible, that is, that the composite

matrixx (P (z) D(z)j has rank m for every z E C, as defined by Rosenbrock

(Ri) and Popov (PI). This irredpcihil. ? ty assumption wild.. guarantee that
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the system in state space form will be minimal. The definition of row

proper form will also ve required.

DEFEDUTiON (Row proper)

Let

Fp1 zdI-s-...	 P12zd^ f ..	 ...	 Pam zd^"+.. .

P (z ) - P21zd2-+-...	 E22zd2 ? . , . 	 ...	 P 2 z +.. .

Ipm
d	 d	 d

1z m-:	 Pn2z m+...	 ...	 nmz -1"1+...

where the	 denotes lower degree terms in each row of P(z), and di is

the degree of the highest-order term of the ith.row. Then P(z) is said	 -

to be row proper if and only if det(r) is not equal to zero where

P11	 P12 - - -	 ?7.m

P 21	 P22 ... P 2

Y	 .

P P
'ml	 m2 -	 mm

i

ALGORITHM

Step 1:

I P(z) is row proper,, this step can be omitted. If F(z) is not row

proper, we .premultiply . (1) by any unimodular matri.%.U(z) which reduces

P(z) to row proper form. 21.n algorithm for finding such a U(z) is

given by Wolovich (W1) in the appendix of his paper. So (1) and (2)
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reduce to

U(z)P(z)w(t) = U(z)Q(z)u(t)	 .(3)

y{L) = R w(t)	 (v_.)
i

which is equivalent to the system described by (?) and (2).	 {

Step 2:

Let

w0(t)' w(t)

where r is the m x m nonsingular constant real matrix cons- i sting of

the highest degree z terms in each row of U(z)P(z), if r = I this

step can be omitted, if not, we substitute 1-i wo(t) for if 	 in (3)

and (a.) to obtain

p  (z) wo { t) _ . go (z ) u (t)	 (^}

Y (t) Ro wa (t)	 (6)
r

where P0 (z) = U(z)p(z)r-3

90 (z )	 II(z)9(z)

Ro	 R'-1

we can show now, that the matrix. P S (z) is in a particularly useful

worm, i.e.,

zdl ^_ ..	 ... ,	 ...

P^ (z)	 ....	 zd2;-. _ .	 ....

a
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where the ... denotes polynomials of lower degree than d k in each

(k`h} row.

Since we assumed that the system was strictly proper, we can omit

wolovich's third step. Note that the intention of the previous two steps

is to be able to identify the matrices F 0 (z) and 00 (z) with the A(z) and
A

S(z)B0 found in section two. Once we have determined p0(z) and 00(z),

we can obtain a minimal realization (A 0r B0 , C0} directly by observing

their structure.

step 3:

Let us rewrite BO (4) as
t

c^

z l	 0	 0

2.0	 z	 ..	 0
C3

P O (z)	 z 	 - S {z) A0
OF

0.	 2 m i

..	 where.we have replaced d i by a., so that the similarity between the

structures of A(z) and p0(z) be more striking_

Let S (z) be the m ,x m. niatrix . defined in section two and AO an m x m

constant real matrix.

Since the system is strlctly proper,: we can write 00(z) as

O0 (z)	 S (z) 13 	 (7)
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where BC is an n x p constant real matrix.

.We observe that the only term left unspecified in order for

T (z ) = P-l (z)^0

to be equal to

n _^	 n

T(z) = CS	 ^(z)S(z)BC

is CO . But since PO (z)Q
0
 is already equal to A(z)s(z)B 0 we let

Co = Im.

So, we can now obtain directly a minimal realization for the system

Pp (z) wo (t) = QC (z) U (t)	 (s)

as follows.

Define k

rk =	 6. for k = 1 , 2 r-- . ,m 	 (8)
i=Z

replace the mir th cozumrs of the (n x a) matrix

o	 c

M-1

0

by the in ordered columns of 0 
to obtain A0 . BQ as given by (7) is

an appropriate B0 corresponding to the choice of A-C . Finally, let

CC be the matrix obtained by substitutimg the m-r `r columns of the

m x n zero matrix by the m ordered columns of CS i.e., Im..
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Thus far, we have obtained the following state space representation

x0 (t+i) = A0 x0 (t) + B0 u (t)

I-to (t)	 = C4 xa (t)

Step g•

Since we want to observe the output y (t) and not w o (t) , we can use

equation (6) to obtain:

0 (t ^^ } = TO x0 (t) + ^-O u (t)

y (t)	 = ROCO x0 (t)

So, .finally we have the desired minimal .realisation

xEta-z} = A x(t)	 $ u(t)

y (t)	 = C x (t)

where

A	 AD

C	 ROC 0 = R	 C0

EXAM-PIZ

Let

P(z) x
	 z.2 . +. 5z+6	 3z=a

z2 -2	 zs-l.
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z- 1	 z u 4
Q(z) -	 z	 z - 2

L

and

R	 1 0

0 1

Sten 1.

1 0
r 0	 so, the system is not row proper.

Let

U(z) --	 4

1 -1.

then

U(z) a (Z.) =	 z2 + 5z + 6	 3z + 4
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so

PQ (z) =	 z2 -- 5/2z — q	 3/2 z + 2

1/2	 z + 3/2^

90 
W. —	 Z. 1	 z Q

—1	 --2

R4 =	 p

—5/2 1/2

a
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AO =	 a	 a	 --2

1 5/2 -3/2

a -1/2 -3/2

-1 -4BO	 -

-1 -2

and

ca
	 [

0 1. a
a	 a	 .	 .

Step 4

C	 ^a caro
	

a
 
^5/2 1/^

So finally

a 4	 -2	 -1 -4

x (t ^l} =	 1 5/2 -3/2	 1	 1	 u (t)

a	 -1/2 --3/2	 -1	 --2

0 Im	 a
•	 y (t} W	 x (t}

0 -5/2 1/2

4 CIASSZCAL ADJOINT' OF A MATRIX

This last: sea Lion of this chapter deals wits the problem of finding

the (classical) adjoins of a matrix. As will be seemsin the next chapter,

this is the last step needed to convert the system given in a . state space

-_ _.
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form into a matrix difference operator form. The method to be used is

the one suggested by Faddeev (Fl) for the simultaneous determination of

the scalar coefficients of the characteristic polynomial of a matrix A,

and the matrix coefficients of the classical adjoint matrix M(z). 	 -

Let A be an n x n constant matrix, so, it is well known that

(zz-A)--1 = adj (zI-A) - M(z)
det (zI--A) 	 p (z)

where

M(z)	 =	 adj	 (z,-A)

and	 p(z)	 =	 det (zl-A)	 =	 z 	 - plzm-1 - P2z -2 	 pm

As shown in Gantmacher's book (GI), the difference p(z) - p(u) is divisible

by z-, without remainder.	 Therefore

p (z) -p (u)	 _	 m-1	 m-2	 2	 m-3
g (z , u )	 -	 z	 + (u-p ) z	 + (u plu-p2 ) z y	 .. .z-u

is a polynomial in z and u.

The identity

p(z) ~ p(u)	 =	 g(z,u) (z-u)

will still hold if we replace z and u by the matrices zi and A respective-

ly , giving

p (z l) -- p (A)	 =	 g (zi,A) (zl-A) (2)

but, since by the Cayley-Hamilton. theorem p(A) _ 0, we get

p (zi)	 =	 g (zl,A) (zl-A) (3)
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therefore

(21-A) 
--1 

= (p (z T-) ^l g (21,A) _ g (Z {z}
) 	 (a)

so

g (z1 , A) _ M ( z )	 (5)

Hence, by virtue of (1) and (5)

M(Z) 	
12m-1 Mlzm-2 M2z

m_3 
;	 s m_rt	 (6)

where

Ml = A - p11	 M2 = A2 - olA -- p21 ...

and in general

Mk = Ak - lAk-1 	
Z -2 -	 - k"	 k - 1 2	 m-1 .P P2 P	 , ►- •, 

j

So, it can be easily seen that the matrticesM1, M2,...,Mx-1 can be com-	 i

puted using the recursive equation

Mk = AMk-1 -- pkI	 k = 1, 2 , ... ,M--?	 (7)

where

Mo . - L

The coefficients of the characteristic polynomial p(z) can be easily

found successively as

S -=	 ^- ... - Pk-! S	 k = 1,2,...,n	 (8)

	

Pk	 k pIsk-1 	 1 .

where

S  = tr (A .)

0	 12
-	 _.. - - _	 ^--•.^T -	 9	 .,lam.	 nM .n. 	 - Nr	

._....^.^ _.,
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Faddeev (Fl) combining (7) and (8) obtained the coefficients p

Pn and the matrices Ml , M2 r ... ,Mx-1 successively as follows:

Al =	 Pl = tr (Al)	 Ml = A3 - P I i	 !

A2 -	 p2	 2 tr(A2 )	 M2 - '2 - p21

P_3 = A"2 	p3 = -3 	 (A3 )	 1113 = A3 -- p3 F

fin-'?	 M -2	 Pn 1 = n -1 tr (fin-I) Mn.--1	 n-1 Pn--1

A - AM	 p -	 tr (A )n	 n-7	 n	 nr	 n

(9)

Tn order to check the computations, we can go one step further and find

whether Mn = A n -- n	 np % equals zero or not. Ts M = 0 the computations

are right, and if 'Kn 1 0 there is a mistake somezrhere.

The formulas in (9) are the ones that will be used in the next
r

chapter to --Find the adjoint of the matrix (zI F).

n^	 _
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CHAP'T'ER 'III

1. INTRODUCTION

This chapter will deal with the problem of finding a minimum order

based compensator for a discrete time system.

The problem of designing optimal compensators can be tackled in two

completely different ways: (1) it can be worked out directly in the'

frequency domain or (2) the system can be transformed from the frequency

domain equations into state space form, and then the compensator structure

can be found easily using the powerful techniques available_ Graphically,

this means:

I
P (z ) r. Q (2}	 R(.z) , S (z)

2(a) +	 +	 2 (c)	 -

(A,B,C)	 4-	 (F;G,D,P)

2 (b)

There are advantages and disadvantages for working with either method

many of them arise from practical conside_•-itions---for example, solving

the problem directly in the fre quency domain has the great advantage

that most specifications are given in terms of rise time, overshoot,-

bandwidth, etc., which can be handled easier using techniques such as	 j

Nygyi st plots, Inverse Ny quist plots, Root. Lacus, and Bode plots. Another

advantage of the frequency domain method is a very practical one; engi-

neers, in the great majority, identify very easily with such terminology.

I
J

{

_	 y
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'the big disadvantage that this method races, is the lack of powerful,

easy to implement, techniques, especially On the case or multipleAnput,

multiple-output problems. In the last years, several computer--aided

techniques have been developed to try to overcome this deficiency + among

them the diagonal dominance method presented by Rosenbrock (PI) is widely

used for multivariable systems. But still,.there isn't yet, a frequency

domain technique that could be compared in scope and versatility, to the

linear quadratic design in state space for,-..

For this reason, the approach of this chapter will follow path 2

shown in the above graph.

The 
i
mportance of step 2(c) lies in the fact that for systems that

do not require the use of a comput,_.er, the compensator can be built very

easily using only delays and gains that are readily available. When cow-

paters are used to implement the control, this structure is also very con-

venient since a stack can be created and ver y few memory locations will

be reTared.

This chapter, as mentioned above, will consider the problem of

designing as optimal compensator whose dynamics are constrained to.be

those of a discrete time minimum order observer. The initial, as well

as the final corn will be a matrix difference operator. The initial con-

dition of the plant will be a random vector with known Qrst and second

order statisticsi and the cost to be minimized will be the expectation,

with respect to the initial condition, of the standard . quadratic cost for
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the discrete time Linear regualtor problem.

The structure of this chapter is as follows. In section two the

discrete time linear regulator problem is presented. Section three deals

with the structure of the discrete minimum order observer as suggested by

Luenberger (LI). in the fourth section of this chapter the optimal con-

trol problem is formulated and the equations that must be satisfied by

the unknown parameters of the compensator are developed. Also the neces-

sary conditions for optimality are presented but not worked out (based

on Lloren's thesis (L2). In the last section, the transformation from

state space form into an Auto-Regressive Moving-Average model along with

the structure of the matrix F of the compensator and some pertinent re-

marks are presented.

2. VRE DISCRETE TIME LINEAR REGULATOR PROBLEM

This section considers the problem of finding an optimal compensator,

given the fact that 	 state measurements.are available. The initial

condition of the plant is assumed to be a random vector with known first

and second order statistics_ The performance index to be minimized is

the expectation of the usual cost, quadratic in both states and control.

Since this problem is well ki own, only the problem formulation and the

results are presented.

©PTILMIZRTTCM PROO LW

.	 13T Iran •	 ^	 ^ ^	 ..
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(a): The following minimal realization discrete time linear invariant

plant

x (tfl)	 A x (t) + S u (t)	 (l}

on the time interval t [0,-) where

x(0) is an Rn random vector with known first and second order .

statistics

x (t) an Rn . -- valued random process

u(t) an RP -- valued random process to be determined

A	 a constant real n x  matrix and

B	 a constant real n x p matrix

(b): The .symmetric matrices 0 and R where

Q is an n x n constant real symmetric positive sertidefinite matrix

and

R a p x p constant real symmetric positive definite matrix

Find: the optimal control u(t) which minimizes the performance index

Ju) given b(	 g	 y	 J

il (u)	 E	 x' (t) Q X(t) + u' MR U(t)	 (2)
s_La

As it was pointed out before, the solution of this problem is a

well known, result given by
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G W (R + B IM) -1 B"Yo.	 (3)

and K is a symmetric matrix that satisfies the discrete time algebraic

Riccati equation

K	 ATKA + O - A T KB(R + B I KB) -1 B I*KA	 (4)

The minimal cost to go is then obtained as

s{	 tr(K EO }	 (5)

where

^0 = E (x (0) x' (a)) .

It can be sho ,^m that K satisfies also the following equation.

K	 (A + BG) "K (A + sG) + o + G'RG	 ( E)

The sufficient conditions that roust be satisfied for K to be the

unique positive definite solution of (4) are

(a1 (A,B) is a completely controllable pair and

(b) (A,O1/2} is a completely observable pair.

2. STRUCTURE Off' THE DISCRETE TIME I4T73IDRIM ORDER OBSERVER BASED COMPENSATOR

In the previous section, it was assumed that complete state.measure

meets were available, but in most applications only a ceita.in number of

states .. (usually very few of t-em) or some linear combination of themcan

be directly observed. This lack of measurements poses a very serious

	

problem in the implementation o= the optimal linear regulator, since the 	
i

control law, instead of being just a linear combination of the states

i

i

1

1y
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becomes dependent on time as well as the observed states. Thus, .either

a new approach that directly accounts for the nonavailability of the

entire state vector must be devised., or a suitable approximation to the

non available states must be determined. she latter was the direction

taken by Luesaberger (Ll) when he proposed the construction of an observer

that would approximate assymptotieally the non available states. it turn

cut as it will be shocm in the next section,. that the in5e,ion of the

observer doesn't change at all the value of the feedback gain matrix G.

The only thing that changes is that instead of feeding back the entire

state vector, the observed states plus the estimates o f the unavailable

states are the ones that are fed back. So the first phase in the imple-

mentation of an optimal control law should be to assume that the entire

state vector is available for feedback, whale the second: step should be

to design a system that will approximate assymptotically the states of

the original plant, i.e., to design an observer. When the notion of an

observer was first introduced, it was used primarily for the approximation

or the states of deterministic, continuous tame, linear time invariant

plants, but, the observer theory has subse quently been extended to include

time varying systems, discrete time systems and stochastic systems. Of

course, the construction of a mini-Mum order observer is not the only

solution to the problem of finding an optimal com pensator. Levine (L3)

proposed the use of an optimal output feedback controller, however-, not

all systems are output stabilizable which could cause an unstable system
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to remain unstable. Some other strategies that could be used are.

a) to build a full state observer: this approach has all the i

mathematical simplicity of the minimum order observer's, but

implicitly, it possesses a certain degree of redundancy. Re-

dundancy that arises from the :act that the observer hJill be

estimating the entire state, while we already have certain states

through the outputs of the system, and

b) to implement an observer that will reconstruct asymptotically

the optimal control law u(t) = G x(t) as proposed by Fortmann

and Williamson (F2): this technique has the advantage that the

degree of the observer can be less than that ok the minimum

order observer, i.e., less than (n-m) but also possess the great

disadvantage of mathematical comps city, and it has not been

worried out yet for multiple in put multiple output systems.

For these reasons, we have selected to find the optimal compensator based

on the structure of a minimum order observer.

Let a minimal discrete time, linear time invariant system, be governed i
I

by the following equations

y (t) -. C x (t)	 (2)

where	 -

mY 	 -s an R random process described by (l) and (2)

C	 is an m x a constant, full rank matrix

4
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Furthermore, let us assume that C has the following structure;

C = (IM 01	 (3)

where

I  is the m x m identity matrix and

0 is a mx(n-m) zero matrix.

This is in no way a restriction on the range of systems that we. can

deal with, since from the assumptions that the system is Minimal and

that C is a full rank matrix, a similar ty transformation, can be found

that will give us the desired structure. In fact, Blanvillain (BI) shows

a way to get this transformation.

Having the system in this specific fou r we can partition (?) and

(2) in such .a way to get

x1(t+I)	 A11 Al2	
xl (t) ; B	 CQ

X2 
(t l}	

A21 A22	
x2 (11-)	

B2

Y(t) -	 (I 	 01	 x  (t)	 T x1 (17	 ^^}

x2 (t) .

where

Xl.(t) is an Rm random process

xz (t} is an RP: m random process

and



--37-

All (M x M), Alt (im x n-m) , A21(n -- m X m) , A22 (n - m x n-m)

,B (M x P), B2 (n-m.x p) are real valued matrices

I
It can be readily seen that the output y(t) will give us directly 	 1

x1 (t), so an observer should be built to estimate only x 2 (t)

Expanding (a) we obtain

r.2 (t+l) = A21 X  (t) + A22 x2 (t) + B2 u (t)	 (6)

X1 (t+1)	
A11 Xl (t) r Al2 X2 (t) T B1 ()	 (7)

Substituting (5) in (7) an rearranging some terms we get

y (t+l) -- A1i y (t)	 $1 u (t) = A-12 x2 (t)	 (8a)

NOV7, let

Y (t+1) - Al yy (t) -- B1 u (t) W w (t)	 (8b).

Therefore, systems (6) and (7) can be expressed as

x2 it+l) = A22 x2 (t) + x'21 y (t) + B2 u (t) 	 (9)

w(t) = Al2 X2 (t)(10)

if we can measure w(t), equation (10) provides the measurement

Al2 x9 (t) for the system (9) which has state vector x2 
(t)and input

A21 y(t) + 332 u . Provided that w(t) can be computed,.the only problem

lies in the fact that (A22,Al2) has to be completely observable. This

problem is readily solved since by assumption (A,C) is completely observ-

able . (see Padulo and Arbib (P2)).

The idea behind the construction of the observer is then as follows.

i
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Since u(t) and y(t) ;,,:a measurable, let us build a system with the exact

form of (9) and (1o) - Then we have

Y
2. 

(t+l)	 A22 x2 (t) + All Y (t) `f' B
2 

u (t)

W (t)
	 Al2 X'2( L)	 (12 )

i
But, since any errors in the initi al state or disturbances of the system 	 i

would Make our approximation to x 2 (t) very bad, let us keep track of the

error between w(t) and w(t) and feed it back to the system through the

matrix H, as shown in Figure 1.

So, we get the structure of the observer as follows

x2 (t+1)	 A22 x2 (t) ^- A2l y (t) :- $2 u (t) + H (w (t) A^ 
2 

x2 (t))	 (13)

Therefore

:,(^--^} -	
2
2 - HAl2 )x2(t) + 1_21 y(t)	

u(t)
	 u w(t)	 (1^)

substituting (8b) i n (la) we obtain,

x2 (t^?)	 (A2^ -- Ft^12 } 2 {t) + (A^, - HA y (t)	 (BZ - Hsu(t)

+ H Y (t-FI )	 (15 } .

Now, in order to eliminate the y(t+l) term from equation: (15), let us

define

(t} _ 22 (t) -- i y (t) _
	

(16)

Finally, inserting (16) into (15) we obtain the desired structure for the

observer as shown in Figure 2. .

,^
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z(t+) = 
(A22 - HA12)z(t) 

+ 
(A22 - HAl2 )H 

y (t) _ (A21 - 'll)y(t)

+ (s2 -- xs^) u (t)	 (17)

x2 (t) = z (t) + H y (t)	 (18)

We are now ready to compute the optimal input to the system given by

u (t) = G x1 (t)	 (19)

x2 (t)

Partitioning G correspondingly, we obtain

U (t) = G1 x
1
 (t) + G2 x2 (t )	 (20)

where

G1 is a p x m constant matrix and

G2 is a p x n-m constant matrix

Substitutlong (18) into ( 20) , we get

u (t) = (GI + G2H) Y (t) '+' G2 z (t)	 (21)

Note from equation (17), that the observer dynamics are determined

by the eigenvalues of A22 - HAl2 . Since the pair (A22 , Al2 ) is complete-

ly observable, it can be shown using duality, that the poles of the system

can be arbitrarily chosen by manipulation of the matrix H. This suggests

th4t the closer the eigenvalues of the system . are to the origin the better

the observer, since it would yield an extremely rapid convergence. This

tends, however, to make the observer act like a forward shift which
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introduces several difficulties. So, it is common practice to let the

dynamics of the observer be just a little faster than those of the plant.

This uncertainty of not knowing how to choose the dynamics of the

observer, led during the last decade to some research in this area, in

order to obtain the parameters of the H matrix by minimizing a cost. .

Blanvillain (Bl), working thw continuous time problem, assumed the optimal

control to have the same structure as the optimal. control for the linear

regulator problem, and then minimized the increment in cost due to the

use of the observer. Miller (Nil) minimized the standard quadratic cost,

constraining the control lase to be an affine function of X"(W . Also

Newman, (Nl) , Rom and Sarachi ck (R?) , Yuksel and Bongiorno (Yl) among

others contributed in the solution of this problem. The approach to be

developed in the next section will follow Blanvillain.'s method.

g. THE MINIMUM ORDER OBSERVER BASED COMPENSATOR PROB LEM

in this section the actual control problem is solved. As was

pointed out earlier, we start with a matrix difference operator equation

and based on the results obtained in chapter two, transform the system

to a state space representation. As was showa in the previous section,

all the parameters of the compensator can be obtained; once we find the

matrices H and G. These matrices are found by minimizing the expected

value with respect to the initial conditions of the standard quadratic

cost. The solution of the optimization problem reduces to finding the

solution of two independent discrete time algebraic Ricatti equations.

i

°� -
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This separation is achieved by working with x(t), the states. of the plantr

and a (t) , the error in the estimation of x2 (t) , instead of working with

the more natural variahles x(t) and z(t), which lead to less tractable

equations. The sufficiency conditions are presented at the and of this

section_
y

Assume that an irreducible system is given to us in the Following

z"ann:

P (z}. y (t) _	 (z) u (t} . 	(1)

where

P(z) is an m x m matrix difference operator

Q (z) i s an m. x p matrix difference operator

and we have incorioorated the matrix ?{ as defined in chapter two

into P (z)

It was showm in section three of chapter two, that the plant (1) can be-

transformed into a minimal state space representation of the corm:

x0 
[ +l) = A^xQ (t) + B0 u. (t)	 Cza).	

1

y (t) = CO xo (t)	 (?b)

where

Aa (n x n) is in observable form.

BQ (n x p) is a constant real matrix

C (m. x n) is a matrix given b

CO 	 0

-	
yy
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with

r (m x m) and C0 (m x n) as defined in chapter two_

As pointed out in the previous section, we want the C matrix to be of

the fOrM

C = [i	 '0]
M .

in the next section, when we discuss the structure of F, a transformation

that achieves this goal, is fully presented. For now, ?et us assume that

we have the desired structure and proceed with the statement of the

optimization problem.

C-iven

a) -{x(0)} = m0 and F{x(0)x°(Q)} = EO for the process

x(01) = Px('t) + BU (t) r	 tE[Or06)	 (3)

y (`)	 [gym	 O] x (t)	 (d)

b) The matrices A ar_d S for the above process

c) The weighting matrices O(n x n), R(p x p) such that

O is a constant real symmetric positive semidefinite matrix

R :is a constant real symmetric positive definite matrix

Find: the matrices GO x n) and H(n-m x m) and the :vector ON
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x(t+l) = Ax (t) + B u(t)

z (t+l) = F'z (t) + S v (t) + D u (t)

Y (t) _ . C x (t)

u (t) = Kl Y (t) + KZ z (t)	 i
ii

where

F = A22 '12
S	 FT15 +.(A2l "iI1

D = B2 HE 

Kl = G1 _ GZH

K2 = G2

As noted before, this formulation leads to a series of intractable matrix

equations that can, however, be avoided by using e(t) = the error in the
i

estimation of x2 (t) , instead of z (t) . So, let us define e(t) as

Therefore	 'a

i

And	 r
Z. (t) = x2 (t) - H y (t) _ e (t)	 (7)

lie can now state the problem as follows: leave everything in the

previous formulation unchanged but modify the constraints to read	 a

a



x(t+1)	 = Ax (t) + BU (8)

e(t+l)	 _	 (A22 - F-Al2 )e(t) (9)

e (0)	 =	 x2 (0)	 -	 H y (0) -- z (0) (11)

Y (t)	 :x1(tl (12)

where

0 M (n-m)

L	 --
(n-m) x (n--m)

Define now the new augmented state

x(`) - I
(t )	 -

^e t(	 }

Then we can make use of (8) , ( 9 ) , and (10) to zqrite the overall closed

loop system ix± the following fo-, m

(L+:L)	 (t) (13)

where r is given by

1	 - A. + BG	 --BGL (14)

0	 X22 -12

and of (11) to obtain, the overall initial conditions as .
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(0) x (0)

^(0)

(0)	 -	 x(0)

x2 ( 0 )	 - Hy (0)	 - z (0) (zs)

We are now ready to solve the above optimization problem_ 	 The cost J

can now be rewritten as
00

J = E J	 S T (t )	 EMI (16)
t=0

where 9 is given by

Q + G' RG	 -G' R -L (17)

-L C-"RG	 L''G'RCL

Using emuation (13) we can see that E(t), the augmented st4Le
a

at time t,

can be sound as a =unction o 	 the initial augmented state E(0) as follows

{t)	 _	 rte (0 ) (18)

Substituting (18) into (16)j the cost J can he expressed as a :tunction

of E(0)

m

U	 =	 E {	 ' (0)	 r at or 	 (0) }	
- (19)

t=0

which can. he commuted as

LT	 .fir { ( Y
	

r,t o r
t)	 E (0) } (20)

t0
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In order to compute	 7712 and E., we need to partition the matrix

$0 and the vector mO as follows

Ell 	 EllE0.
	 E	

a

12	 22
i

m0	ml

r M2

according to the dinkensions of x
1 
(0)and x2 (0): so

W12	 E{x (0) e' (0) }	 Ell - Ei lH' - ml ' (0)	 (26)

E22 - Z1' 2 H, - m2z , (0)

y
and

EO = E{e (0) s (0) }	 NEII h'	 E22 - 12 H , - -iE12 -- (o) (m2-HMI)

(m2 -- F-Mz' (0)	 z ( )	 (0)	 (27)

EVALuA^roN.oF

Recall from (23) that A is given by

1 ' A 1 -t- 2

vihere J: is given by (14) and n by (17)

Partitioning A as

-	- 
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h	 h
11	 12

h

h	 h
12	 22 J j

where

h11 
is an n x n symmetric matrix

h1 2 is an n x (n--m) matrix

A22 is an (n--m) x (n-m) symmetric matrix we

we obtain

Ai 1 h12	 (A + BG) '	 0	 hi 
1 A-1 2

 r
A+BG -BGL

kv	 T

12 h22	 -(BC-L) '	 (A22-4Al2) 
r h

12 h22 
0	 A

11
22-HAl2

O + G' RG	 - G' ?2GL	
(28)

-L'G'RG	 L'G'RGL
r

Expanding (28) we obt:-L: zn the following three matrix ern3aLions

!^^	 = .(A+BG) A11 (A+BG) + d + G'.RG	 (29)

A	 - (A+33G) 'A
1
 BGL + (A+BG)' A 2 (A22-H11^2 ) - G'RGL	 (30)

A22 - (BGL) 
h11 

BGL - (A22 -EA 12)' A 
12  BGL (sGL) 'A 12 (A22 -HA 12}

+ (A22-'12 ) h22 (A22--H_^^2) -3- k,' G' RC-L	 (31)
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Comparing equation (29) with equation (6) in section one we get

All
	 A' 

&11
A k Q -- A T A11B (R+S A1I 

B)	 3 ' A11A (32)

and

G	 =	 -(R + B'A
l1B)-1BTA11A (33)

From (30) we obtain

A	 =	 -A T A	 BGL	 G' T B I A 	 BGL - G T RGL + (A+BG) A	 (A	 -Ba	 )
l2	 ^1	 11	 12	 22	 12

(34)

A1.2	
A A11BGL - G ^ (R+3 

TA11B) 
GL + (A+BG) 

TAl2 (
A22 -HA 12 ) (35)

and substituting (33) into (35)

Al2	
-	 (A.BG) 'A12 ( -22r	 12) (36) .	 .

If the analysis of this problem is done for the finite time interval [0,T]

and then the limit is taken, we will find that

Al2	
=	 0 (37)

Substituting (37) and (33) in (31) we get

A22	
(A22-HAl2) A22 (A22 -MA 12 ) -L G" 1B 'Al 1AL (36)

Recall now, from (24) that

=	 tr (A	 (0)) .

then
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j = tr A 1 0	
E0 . M 12

0 A22	 " 12	 0 j.
	 (39)

so

J = tr (All Z0 )	 tr (A22E0 )	 (40)

_ _...	 Comparing equation (5) o^ section one with (^0) , cre see that the inclusion

or an observer in the system to estimate the nonavai.lable states has the

effect of increasing the cost by

Aj = tr(A22 o )	 (41)

The -idea now is to find the optimum parameter H and z(0) such that

the increment in the cost, Aj, is minimized, so we want to solve the

following minimization problem.

Given:

a) A22 - (A22-HA )'A22(AZZ-HAl^)- L'G'B'AllAL

where G and All are described by equations (32) and (33), and

obviously independent.a^ H and z(0)

b) E!Q = HE-llx'	 E22	 EizHHE 12 z (o)( -x l
)'
 -

(M2 
M-^il) z ; (0) + a (0) Z' (0)

Find the optimum parameters of H and z (0) such that the increment

in the cost.

11
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Aj = tr(A22Ed)

s minimized.

Llorens proved (1,2) that the above dynamic optimization problem can

be transformed to a static optimization problem, using a techni que similar

to the Lagrange multiplier method used to solve minimization problems in

calculus. This static optimization problem becomes of the form

Au- = tr{A22EQ +[(A  22--HA^2)' A
22 

(A -H ^ 2?- 
^IG'ti'A^

11	 22
- ^.22 ^ K

.(Q2)
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DA J -	 0 (47)
BA *
22

where 1* means "evaluated at the stati = y point"

From (4a)

A*	 z*(()) (0) - A22 (m2-H*M	 =	 022

So

z* (0) =	 in 	 -- H* 
M,

(48)

From (a5)

A22 (.x.22-H*Al2)	 1122 (f122 -H*A17}"' L ' G-'g 'A m (49)

From (Q6)

0 1122 H^ II - h22 Z'	 -f 1122x* 
(0)ml 	h22 A22K"vA 2

+ A22 H*A K*A (50)

From (47

K	 _' H*El1H^ r 2212H*' - H* 12 -	 (0) (m2_H*mi)

-	 (m2-H*m1) z ' * ( 0 ) + 4* (0) z*' (0) + (A22--H*Al2 ) K* (A22-H*Al2)

51}

Substituting (48) in (50) and solving sor H* we get

H*-
(112	 m2ml+ s A27K A32 } (E7	

- 
m3m^ 	 Al2K*A17)-1 (52)
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and substituting (48) an (51)

(A22-HY2) KY {A22
--H*alt ) , + Hy { ill - m1m1 ) H*'

	

+ E22 -m2m2 - (E 2 - m2MI )H*' - H* 
(Z12 - m2m2)	 (53)

which becomes f after some manipulations

K* - P_ K* A` + E- m m' -- ('' - m
2 

m' 1 -!- A KYA` )
22 22	 22	 2 2	 12	 22 12

(E11 - m1 m1+ Al2K*Al2)^l(12 - m m2 + Al2K*."22)	 (54)

Summarizing, the optimal compensator parameters H.G. arncl 7(0) r_an be

found as follows

Feeclhac!, '. gain

G	 - (R + B Al1B) rlB` A11A

where

All r A' A11a + Q - A` 11.E 
lB 

(R- B' A, B) - I A13

Parameters of the observer

H 
J	 l2 - m2m2 + A22KA ^'2 ) (Ell - ml.ml' Al

where

K - A22Ka22 : X22 -- m2m2	 (Z-
112 - m2m,l +

( 1l - mlml` + Al2KAl 2 ) -1 (E12 m2m2

n
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and

z (0)	 7-0.2 - Hmi

i

Notice from the above equations, that the separation that was re-

ferred at. the beginning of this section holds. The feedback gain depends

only on the plant parameters and the weighting matrices, while the parameters

of the observer depend on the plant structure and the sCaLastics of the

process. This observation is very im portant since it allows us to con-

struct the observer and -the feedback gain of the compensator independently

of one another.

Apart froze the assumptions that were made through the development

of the optimal compensator, is we assume that (Ell -- MIm1 ) is positive

definite, the transfer function of the observer will be unique. Further-

more, Blanvillain and Johnson (B2) found that the plant transfer function

uniquely determines the transfer function of the compensator.

Llorens (L2) presented the conditions that must be satisfied in

order to guarantee the existence of positive definite 
A11 and K matrices.

These are

a) (A,B) be a controllable pair

b) (A,Q1/2 ) . he an observable pair

and

c) (A212 - A ' (E --m m') 
-Z 

(.E - m 72P , A ` ) be a controllable pa—r
22	 ^2 11 1 1	 l?	 l 2	 l2



d) (Azz r . 12 11 r 
mlml} ( lz - mlmz}, "" 22- - m2m2 - ( l2 r m?ml)

[^ 1 -- za^m) -^' { z - m D MZ)) l/z ) be an observable pair

e) (Zll _ mlm is a nonsingular matri_-.

Condition c) is satisfied. if the.pair (A,C) is observable. These

conditions, especially a) and the implication of condition a) chat the

pair (A,C) be observable, are the mai.r reasons that led us to construct.

a minimal realization from the origir_al matri'i differenCe Operators.

5. THE A_ R_ M_ A_ COPMTSATOR

in the previous section we -pound the structure of the optima? observer

based compensator by minimizing a performance index. Since we want a

minimummsum order observer, it, turns out that the innul t to the system depends

not only an the estimates o the- nonavailabl e states, but on the output

itself_ This is an 1 deal.-^zed situation. for purely synchronous discrete

time systems, since it is imnossi.ble in practice to feed back the measure-

ment. at time t with 	 any delay. Three dJf-e=ent vja?7s get around this

problem are

a) build, instead am a minimum order obser--ver a iuli state observer:

this approach woul d have all the mathematical simplicity, as well

as properties, such as the separation between gain and observer

parameters equations, found in tl e development of the optimal

ma- mnm order observer based aom'oensator. In.practice, this

method won't increase the order of the observer by too much since
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generally, the number of outputs even for complex systems, is

small compared to the number of states

b) try to Lind another structure for a compensator, hopefully of

degree less than n that will feed back an estimate of the states

plus a combination of the outputs at time, say, t-1

c} construct a "nearly synchronous" controller that wil be able to

compute u(t) at USA), A<< l such that the output at time t

could have enough time to be .fed back. In this case the saute

compensator found in the previous section would be used.

In this section, we will assume that the optimal compensator already

found is realizable, and then we Vill transform the state space represents-

tion of the compensator into a matrix difference: operator form, using the

technique presented in section four of chapter two. We will also rind the

structure of the matrices A and F used in the previous section, and shout

that r is-in observable fora.

We are interested here to find then the optimal compensator transfer

;unction. Recall, from the previous section that the eauath ns satisfied

by the optimal compensator are

z (t+l) ..	 Fz (t)	 S y (t) + D u (t)	 (l)

u(t)	 Kly(t) 4- K2 z(t)	 (2)

where

F =	 BA is an (n-m) x (nom) matrix

S - FH All - RA- is an (nxm)xm matrix

n	 — --



D = B2 -° IBl i 8 an (n--m) xp matrix

Kl = Gl + G2H is an p x m matri

:.	 K2 = G2 is a g x (n--m) matrix

From . (1) and (2)
i

z (t) - (zI--F ) -^ S y (t) + (z1'-F) 
_1I) 

u (t)	 (3)

U (t) = Kly (t) + K2z (t)	 (4)

Substituting z (t) from (3) in (4) we obtain

U (t)	 Key (t) + K2 (zI_F)^
i
 Sy(t) + K2 (ZI--F) -IB U( t) 	 (5)

Finally rearranging terms we get

( Ip -- K2 (zl--F) -^D) u (t) 	 (Kl + K2 (zl--F) r1S) y (t)	 (6)

which is a transfer eauation from output to input_

Note that the system described by (6) is not irreducible, but at

any rate, we are not concerned in this section to obtain a system in

irreducible ^Lmatrix difference operator form. It is important to note
i

also, that since 
it 

is needed to compute (z-F) -- on both sides of (6),

7..
we can multi ply both 

P 
and K, by det (zl-F) and then cancel the det (zi--F)

that will he present on both sides. in other words

(det(zi-F ) :- IC2 (adj (zi--F))D)u(t) . _ (det(zI-F)K,

+ K2 (adj (zs--W)) S) y (t)	 (7)

and here is.where Faddev's method to compute the adjoiht of a matrix be-

comes handy.
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C014PUTA`i'ION OF det (zI-F) AND adj (z T--F)

Note from section four of chapter two that if the det(zi F) is given

by

det(zl-F)	 =	 zn--m -
 Pi

	m 1 _
 P2

	m-2 _ ... - p
l	 2	 n-m

(8}

and the adj (z?'-F) by

n. m--2
adj (zi-F)	 =	 Ts 

n--m^-7. + j z	 + j 2 z n-m3 + ... n-m--1 (9)

we can compute simultaneously pl r P2r-•_'.Pn_m and j 1 r,T21 ... rI7'n-m-7 using

Faddeev's algorithm

Fl =	 F p1	 =	 tr (Fi}	 di	 = F'1 - p T

F2	 _. Fj p2 	 2 tr(F^}	 LT 	 = F2 p2z

F3	 Fj2 P3	 -	 3 tr{F3 }	 J3	 = F3
- p3Z

Fn-m7-1	 -	 FLTn-m-2 -pn---m-1	 n-m-I tr (Fn--m-1)	 n- Fn-pnm-l---m--1

Fn-m	
""	 F,Tn--m-1

m-1

p	 [-n-m = n-m `:r	 n-m}
(10)

inserting (8) and (9) into (7) we obtain

n-m	 n--m-1( (z	 -. p z n-m 1	 n-m-2
- 1'n-m) Tp -	 .2 (Iz	 + J1z .

... + ITn-m-1 )D) u (t)	 _
( (tin m - Pizri-rn-1 _	 - Pn^m) K1

n-m-1	 n-m-2K2 (zu	 j I z + . - - + `Yn-m--l)Sly(t) [lZ)

which reduces to the Auto--Regress±ve Moving-Average fo-rm
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pu (t+n--m) -- (p11p-+-K2D) u (t+n-m-1) - ...	 (pn-m1p .+. K2`'nu (t)-m-,D)

= K1y (t+n-m.) -- (P1K1-K2S) Y (t+n.-m-1) -- 	 (Pn_mK1 K2Jn--3.S) y (t) (12)m

Notice that the number of multiplications required to obtain each

new input is
( -a

+P2 ) (n-m)	 + Pm	

..

(13)

This number can be reduced if instead of using (6) we compute the

transfer function of the system as follows: 	 Substitute (2) into (1) to

get

z (t+l)	 -	 (F+DKZ ) s (t) + (S DI:I ) y (t} (la)

'faking the Z-transform in both sides we obtain

Z (t)	 _	 [zF- (F+DK,))I-3 (S-+-DKI)y(t) (15)

to finally substitute (15) i nto (2) to get

U (t)	 =	 (K2 [zl- (F+DK2) I -1(S=+-DK1) + Ki }y (t) (16)

Employing again Faddeev's method to obtain both det[zl-(F+DK 2 )] and

adj [zi- (F+DK2 ) I we get

Ip-a (t+n-m) -r 11pu (t+n-m-1) - ... - 
rte.-Mpu (t)	 =	 Kly (t-+n-m)

(rTK1-K 2(S+DK1))y(t+n-m-1)- ... - (rn-)}y(t)K2'h.-mK1-m--1(S-+-DKl (17)

where

det [z=- (F+DK2 } I	 zn-m _ r zn-m-1 _ r 2n-m--2	 r+	 2	 n: m

Ana



adj [zx-- (F+uK2 )1 2 = Izn 
M-1 + M  zn--m-2

	, .. + Mn-in-1

Notice that the number of multiplications required by using (17) has been

reduced to

Qmfp) (n m) pm	 Cie)

STRUCTURE OF THE A AID F MATRICES

After using Wolovich's method in the previous section to achieve the

transfowmation from a matrix difference operator fbrn into a state space

representation, we pointed out that a similarity transformation was

required in order to put the system into state output canonical form.

WA will present now one transformation that will give us the matrix F in

an observable form.

Recall from equations (2a) and (2b) of sections your that we have a

completely observable system of the foinm

0 M+l) - A 0 x 0 {t) B0 u (t)	 (19)

Y (t)	 C0 x0 {t)	 (20)

where

A0 (ruin.) is in observable form

BD (nop) is a constant matrix

CO (mrn) is a matrix given by

Co^R C^

that we want to convert into state output canonical form_ That is, we



x(t) =	 J x0 (t) (21)

such that

x(t) =	 JAOJ l x 	 _F JB0 u(t)	 = Ax (t) + Bu (t) (22)

y (t) =	 C0..	 1	 (t) (23)

is in state output canonical form.

Let txs look at the structure of C 0 in order to find the desired J-I

C	 _ 0	 0	 ..	 0	 I	 0	 0 .:	 0

0	 0	 ..	 0Pcl 	 0	 0 ._	 0	 Pct ...	
Pcm

(24)

0	 0	 _.	 0	 0	 0 0

zl r 2
m

_l
where Pc1 r P	 denote the first ,Pct, cm second ,	 .•., and mph columns of

-1
i	 and rl , r2 ,.._, m are the 3:1 1. r2 ,....,rm columns of C0 as defined by.

(8) in section three of ehantev_r Iwo_	 WP GPQ i-hai- if wa A;:rinP .-r-1 ac
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0  ..	 0 l 0.. 000 . 00... 0
00 ..	 0 0 L.. 000._ 00... 0

00 ..	 0 0 0 ? 00._ 00... o
Y	 -- rrl	 °- 0 0 0 0 0	 .. 0 0 ... 0	 l
rl 	0 0	 0 0 0 0 1 0	 .. 0 0 ... 0

0.0 0 0 0 0 0 1	 .. 0 0 .._ 0

00 ..,	 0 0 0 000.. z0 .__ 0	 (25)
r2 	- rx2 0 0 000.. 00 .._ 0

0 0	 ...	 0 0 0 0 0 0	 .. 0? ... 0

0 0	 ...	 0 0 0 0 0 0	 ...0 0 ... 1

m- 1r_%
	 -	 - 0 0 000 .. 0 .._ 0

m n-m

where r ,r2r...,
m 

denote e .rl ,r2 , ... ,rm rows Of J	 and Sri r rr2 r ... r

are the ri rst, second,..., and m h rows of I`.2:m

Then C will be in state output canonical form, i.e.,

C	 11m 0	
(n-m)^

(26)

From (2S)
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^0 0 ...	 a! 0 0	 ... 0 0 ...	 0

a1 c2 c:
0 0 0 0 0	 ... 0 I 0 _..	 0

1 0 0 0 0 0 0 0 0.....-	 ..00-

il
0 1 0 0 0 0 0 0 0. 0 0

0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

00 0 0 00 00 0 1 0
0 0 0 0 0 0 0 0 0 0 0

+

1 r2 m

m

n--m
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0 0	 .,. 0 0	 0	 ... 0 j 0 ...	 0

!
cZ c2

cm

0 0
^`

0
0 0...

0 0 0
i	 6 6 'o o 6 0 o o' '0^ .., a o'
^io o o o o o o

0 1 0 0 0	 0. 0 0 0 0 0

00 10 00 0 0 0 00
00 0.0 00 0 0 0 00

j00 00 30 0 0 0 00
0 0 00 01 0 0 0 00

0 0 0 0 0 0 z 0 0 0 0
0 0 0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 0 0 0 0

= i

s r

m

^ n-m
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F

0 0 ... 0 0 0 ... 0
1 0 ... 0 0 0 ... 0
0 l ... 0 0 0 ,.. 0

f

0 0 ... 1 0 0 ... 0
0 0 ... 0 0 0 ... 0
0 0 ... 0 1 0 0
0 0 ... 0 0 1 ... 0

•

0 0 .., 0 0 0 ... 1
0 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ._. 0

00 '_ 0 00 0

0 ... 0
0 ... 0
0 0

0 _. 0
0 ... 0
0 ... 0
0 ... 0

0
•

... 0

0 0
1 0

0 1

which is the multivariable observable form.

RFNIPIRKS

a) Taking advantage of the structure of F and using (1) and (2),

we find that the number of multiplications nee-ded to obtain each new in-

put working in state space form is (2p+2m)(n-m) + pm. Comparing this

number with (pm+p) (n--m) + pm, the number sound for .the Autos-Regressive

Moving-Average model, we note that for systems that have a small number

of inputs, the difference is not that big. We need . cc have in mind also

that the A.R.M.A. structure found is not irreducible, so for specific

problems, some extra savings in the above number of computations can be

achieved.

b) As was painted out .ear.i er,. one . of the big advantages of. having

the system in anan A.R.M.A_ form is that -or simple systems the implementation

of the compensator can he done with readily available elements, and for .

more complex systems a stack can be created, which allows us to avoid
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core memory accesses, a characteristic that speeds up the computation

time.
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CHAPTER IV

TNTRODUCTiON

In this chapter we will present three different methods to obtain

minimum variance control strategies for single input single output

discrete time systems. The ;Hain reason to build these types of com-

pensators is to reduce the effects that Noise has on the plant. As will

be seen in the example solved in chapter five, these procedures do not

guarantee the stability of the compensator. Even though the compensator

will not be necessarily stable, the overall, system will be. in order to

avoid the problems pointed out in the previous chapter, it is assumed

that the compensator computes each new input as a function, solely, of the

past information available, i.e., u(t) depends only on the previous inputs

u(t-1), u(t-2),... and the previous noisy measurements z(t-l), z(t-2),....

The structure of this chapter is as follows. in section two the

necessary conditions to achieve a minimum variance control for a noisy

system with noisy measurements are obtained. This is a direct method

since it will not be necessary to transform the system into a state space

representation. This technique has the great disadvantage that .even for

very low ordered systems the equations become untractable. Section

three deals with the same problem, but .the system is converted to state

space form. Although the structure assumed for the compensator does not

allow us to get a separation to obtain its parameters, as was the case

with the minumum-»order based compensator solved in the previous chapter,

r
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the matrix equations that we get can be solved with the use of a computer.

Section four presents the strategy developed by Astrom to get the minimum

output variance control for a discrete time linear time invariant plant

with noise--free measurements. it turns out that the compensator, using

this method, is very easy to get_ A simple polynomial division gives

directly the parameters of the compensator as well as the numbers required

to find the variance of the output.

2. MINIMUll VARIANCE CONTROL-DIRECT METHOD 1

As was pointed out in the introduction, the great disadvantage o

this method lies in the fact that the e quations that need to be solved

are not difficult to get, but if obtained, difficult to solve. The idea

behind this technique is as follows. once the structure of the com-

pensator is assumed, substitute it into the transfer function of the

original system., in order to obtain the transfer function of the overall

system depending only on the transf-er function from internal noise and

measurement noise to output. At this point, we go back to the time domain

and find the necessary conditions re quired to get a min_mum variance of

the output.

Let us assume that an nth discrete time linear time invariant single

input system is described by the following Auto Regressive Moving Average

ecuation: .

y (t+n) Tan-1y (t+-n--1)	 + a0y (t)	 bn-Zu (t+n-')+ ... + bau (t) +
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where

u (t) is the input to the system

v(t) is the internal white gaussian noisy such that

E (v (t)) = 0 and cov (v (t)) = v6 (t.)

Since the measurements are also noisy, let

a (t)	 y (t) + w(t)	 (2)

where

w(t) is a white gaussian noise such that

E (w (t)) = 0, cov (w (t)) = W6 (t) and E (v (t) w (t)) = 0

Plow, 1 e us assume that the n ``h order compensator has the following

structure

u (t+n) + dn_1 u (t+n-l) + ... - d0 u (t) -- fn-Iz (t+n-l) + ... - f0z (t)
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- •	 r

where

A(Z) - zn + a zn 	 + an?	 Q

B (z) v 
bn-lzn--1	 , .. + b 

T

C 
(Z)	 cn-lZnrl +
	 y c0

D(z) - zn W. .d ^lzn-1 +	 + d0

n-1 fo

substituting (6) into (5) we get

_ B(z)E.W	 E (z).	 C(z}
A(z)	

(D(z) Y(t) + D($) VT(t ) ] + A(z) (t) 	 (7)

which becomes

y(t}	 B(z)F`(z)	 w(t) + C(z)D(z)	 v(t)	 (8)
A(z)D(z)-B(z)F(z)	 A(z)D{z)--B(z)F(z)

B'auation (8) describes the overall closed loop transfer function.

Note that since B(z)F(z)  is of degree 2n-2 and A (z).D (z) -B (2) E (z) of degree

2n, the measurement noise at time t will be delayed twice before it is.

reelected on the output o? the system; this is logical since this disturbance

has to go through the compensator as . we11 as the plant before it goes .out.

observe also that since the order of C(z)B(z) is 2n-1 the internal noise

is delayed only once, this is because v(t) has only to go through the

plant before it is reflected at -the output.	 -

Having obtained the transfer E-und,-ion of L e closed loop system we

go back to the time domain to e%press

L	 c
y(t) _	 ..h(t-n)w(n)	 !	 g(t-n)v(n)	 (9)
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where
i

h(t) is the inverse Z--transform of B(z)F(z)A(z)D(z)-B(z)E(z)

g (t} . is the inverse Ztransform or C(z)D(z)-- A(z)D (Z) -B (z) F (z)

We are now ready to compute the Variance of y(t)

E (Y2 (t)) =	 E C (. L	 h (t-n) w (n) +	 g (t-n) v (n)) (	 h (t-i) w (i)
n--a 	n=0	 i=0

tC

1=^

Recalling that v(t) and if 	 are independent,	 (10) becomes

E (Y2 (t))	 =	 E(
y

I	 h (t-n) w (n)	 h (t-i )w (i.) W	 g (t-n) v (n)
n 0	 i=0	 n-0

t
g (t-z) V (i.}) (ll)	 .

i,=0

Since E (' (n) w (i.)) = S (n-?) and E ("a (n) v (i)) = V$ (n--i) , we obtain

E (y2 (t)
t	 t

_	 Yi2 (i_,) W t-	 E	 g	 (n) V (12)
n=0	 n 0

and taking the limit as t	 we fi.n:.,.11y get

E (Y2 (CO)) =	 h2 (n) W +	 g2 (n).V (13
n-0	 n^0

there-^ore ., the necessary. conditions. that must be satisfied to obtain a

Minimum outxaalt Vari ante are
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n=0	
as
	 n=,0	 as

for each s s being d
o-L' do-2' " r ' r d0' =n-1 1 fn_2 r " , f0

TFe can see in (14) the difficulty to implement the cgmpensatw usi nCT 	 a

this technique, because, not only to obtain g(n) and h(n) for n=;0.{1^-,,^

is a tremendous task, but to solve the necessary conditions 7s a.11aost

impossible, since in almost every h(i) and g(i) there are present at least

several of the parameters we are trying to find_

in order to avoid these difficulties, we can use parsevaVa. relation

to nut (13) as foll,,ws

CO
E(Y2 (CO)) =	 C^T f^ H(e3u) g*(eau)du + v	 f	 G(e")G*(e^U").du	 (151

27'	 27r

and then the necessary conditions become

_
"i H.(eau	

^$
} aH*(e3u) du + W 7r aH(eau) H {eau) du^	 -^ as

r^ G {eau} 3G* (e^u) du J ^^ aG (eju G* (e7 } du = 0	 (l6)
J—^	

as	 —	 as

for each s as defined above.

}Tote that even though the parameters of the compensator can be found

more easily using (16) instead of (14), they are not readily available

and the computations are still difficult especially because of the

integration that must be done_
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3. MINIMUM VARIANCE CONTROL-MATRIX APPROACH

The difficulty of solving this minimum variance control problem

using the direct method l approach, Leads us to obtain the solution by

using state space techniques. The idea behind this matrix approach is

to convert the system and the assumed compensator structure into state

space fore and then minimise the limit as t -r co of the variance of the

,output with respect to the unknown parameters.

Recall from the previous section that the plar_t mathemat?cai representa-

tion is

y(t.n)	 an-ly(t+n--1)+ .. _ - a0y (t) - bn-Iu(t+n-l)+	 -: b0 u(t)

+ cn-1 (v (t+n-1)+	 + c0v (t)	 (1)

and the compensator's is

u (t+n)+dn-1u (t+n-1.)+ 	 + d 0 u (t) -- :°n`1y (t+n--l)+ 	 + f 0 y (t)

	

-` f r-lw (t+n-1) _
	 - f0Pq (t)	 (2)

We can represent these systems 	 state space form as

0 0	 0 --aQ	 7aO	 c0 '7

1 0	 0 -a1	b	 c1 . i
0 1 ... 0 -a2	 b2	 a2

-0 0	 1 n--Z J	 _ bn-i 	 Cn-1	
(3)
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y 	 = 10 0 ... 0 1]x(t)	 (4)

0 0	 0	 -d0 	f0 f0

1 0	 ..	 0 . --a^ X11
a 1	 0	 -d2 z2 f2

z {t -1) - : :	 :	 z (t)	 + y (t)	 -t- u (t)
0 0	 1	 --d n-1 f

"D-1 Lfn-1 (5)

U(t)	 = [0	 0.	 ...	 0 11	 z (6)

and for convenience as

x(t+1) =	 -x(t) + Bu	 Cv(t} (7)

y (t)	 = Fix (t) (8)

z (t+l) =	 DQBS z (t) + Fy (t) 'w (t) (9)

u(t)	 = Hz (t) (10)

Furthermore, we assume that (,P_,B) and (4,c) are controllable Pairs_

For reasons that will be seen latex, we let

DOGS	 _ L _ DH .. (11}

where

0	 0	 0	 0
1	 0	 0	 0
.0	 1	 0	 0

LO
	 0	 'L	 a

and
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-d0

—di

-d2
D =

-d n-1
a

Then we car_ rewrite (g ) as

z (t:l)	 =	 (L+DH)z (t) + Fy(t) + Fw(t) (12)

and the augmented system 3.s

x (t+1)	 --	 A	 BH x (t}	 +	 c	 d
[v(t)]. (13 )

z  	 FH	 L+DH z (t)	 a	 r	 w (L)

y (t)	 Cg	 o] x (t}
z (^) (14)

Letting

IZX
 (t}

and

BH

r	 k+DH

^C	
01

Lo	 F (16)

we can. w`^t:. (.13)	 and. (14) e

-^-	 --	 --  	 n to	 _	 _  ...	 h	 ..
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(t^1)	 _	 (t)	 C4 	 (t)
(17)

w (t)

Y(t)	 _	 [H	 01	 S (t) (18)

Note from (17) that

L

(t)	 —	
I t	

( 0 ) +	 L}	 rtW rl	 a	 ( }
1w.	 1i=0	 U) (19)

We are now ready to rind the variance of the out put as follows

E (Y ' (t) Y (t))	 =	 E (E t (t) H11
110

[H	 01	 g(t)) (20)

so

TI	 H	 0

va-r(Y(t))	 =	 E(..V(t)	 10	 0	 ^(t ) (21)

since we are interested in finding the limit as t	 of var(y(t)) as a

function of tba initial conditions of the plant and compensator, and the

disturbance variance, we can rewrite (21) as

list E[E' (0) ry	 HEN	 Pt	 (©)	
^ l	

[v(i)w(i)7 a'
0	 o	 i=0

ro

'H	 0	 1	 ^-; _l 	 v(7).
r 	 a (22)

 a	 j=a	 w(7)

which, recalling from the previous section that w (t)- and v (t) are

independent tiahite gaussian noises, becomes,

-M IZF
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ro

--
lin x[V ( 0 ) r'	

'x a	 t 1
rt (0) +	 [VMW.(i)IaI r

t^ 	0	 i=0

ro	 001	 ru(,))]

that can be computed as

v 0

tr ( Al ---(0))  + 4r M2 a	 Ct`)	 (24)
0 w

where

HE (0)	 = H[	 (a)' (o)

[H , a	 C) t

J	 t-- 0	 0

t- 
-I [H, R	 01

2	
t

ya Q	 0

Since we want a stable overall system, note that lim r should be zero so
t-^

0 (27.).

then (24) becomes

CVC` Q

var (Y (0)) =	 tr G(!2 [ ) (28)

(23)
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where A2 solves the discrete time Lyapunnov equation

ro

'H	 0
112	 i' 112 A -E-	 (29)

 0

At this point we can see why the compensator is not guaranteed to

be stable while the overall system is. From equation (23) we note that

although we are "sort of penalizing" x(t) we are not. doing the same with

z(t), and from (26) we observe that if the overall. system was not stable

A2 would diverge _ We are now ready to solve for the necessary conditions

in order for the compensator to privide a minimum variance control. To

do this we have to minimize

rVCIatr (AZ
	 FWF

wi th respect to F and D

subject to

A2 = r' A2 r	
TI 	 a	 r

a	 0

As was pointed out in chapter three, we can convert this dyna-mic

minimization problem into a static minimization as follows. 	 j

Define	 !I

-	 CVC" a	 HtH a
J = t::- . (A 	 ^- j -112 + 1 ' A^ P -h 	] ^}	 (30)

o	 FWF	 a	 a

in order for J to be a. minimum the following necessary conditions must .

be satisz?.ed
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DJ	 I	 r	
0

(3^ )

aA2 	n (32)
1

I 0 (33)

DT
aD	 I	 0 (34)

x

Where 	 means "evaluated at the optimum solutions".

From (31) we obtain

H H	 0
A2	 =	 r'	 A2r 1] (35)

0	 0

From (32)

cvc'	 0
(36)

0	 FWF

Partitioning	 A	 and	 ^3 as
2

A	 A.-
A2	 — h

r

Al2	 A22

^l1	 X12

-w

t

012	 022
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we can see that ( 30) can be rewriztern as

J - tr . [ A, lcvc + 22P w	 [-A 
11

A + A r 22FH + H F' 
12A 

+

+ H' 1. A22FH + H' HI 
R11 T t 22 

+ A T 
Ill BE

+ A' "12D + A' Al2DH +

+ H' F' A 2Bx H ' r ' A22T^ f- H' F' A22DHI R12 + ^^ 72 + H s  B' 
A11 

P_ +

+ H' D' A' A + H' B' p PH + I,' A EFL + H I D" 	 FHI .
R	 + {-- ^y 	+ H r B' ^y  BR 

+12	 +'! 2	 22	 22	 12	 "22	 "11

+ HIBIAl2L + H I Br_12DH + RID I1g2BH L' 
g2

BH + L'A22L +

+ L' A22DH + H I D' A22L + H'D° A22DH) 822 7	 (37)

SO, from (33) and (37)

0 	 A22 ^ '- Al2AR11H' 
+ A22''011"^ + "i2BHS12Hr + A221'R12H'

+ A22DHOi2H1	 (38)

and from (34)

0 = Al2A$12H' + A22FHk2H' + g2BHR22H, T_A22DR22HI + A22DHR22H'

(39a)

Note that

0	 -7.2'612 + A22^H512 T Al2BHR22 + 
A2 2 

{sr+Dh) 622	 (39b)

is sufficient for (39a) to be satisfied

Solving for F in (38) we get
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F = -A22 (-12As_.1" + ^2$H ^1.2H' + A22 (T-+DH) R^ 2H` ) (W^H^^ 1H,) -1	 (40)

and substituting (40) in (3-3b)

(L+DH) _ A 22 12 A[-^12 + S11H' (w+HO11x')-1Ha12]

[ 022 -R1ZH' (W	 0121
-1H0121 	 A22 "12BH	 (41)

finally i

F = -- A22 Ail A [S H' _ ("X12 + allH' (wiHOIPt) r1H512)

( ^22W g2HI (w_HS
11H' -1HO12

)-1 X
12 Ht] fw+HR11H'1.-7
	

(42)

Expanding (36) we obtain

X11	 A511A' + A012F3 ` B ` + BHa12 A ' - BH(372H ' B' + CVC'	 (43)

^12 = F11011A' + (L+DH) ^' A' _ FH^1.2H' B' + (L+DH) S 22 H` B'	 (44)
12

022 = FH511.W F ` + FHB17 (L+DH) s } (L+DH) 512H' F ' + (L:DH) 
S,̂ 2 

(L=DH) ' +

+ FWF	 (45)

Let

S = (- 12 + ^11H' [w+Ha11Ht ) -
1Ha12) (022	 a!2H` [w+H$11Hl ] 

-
1 H^12) -1

i	 Then, substituting F and (L:-DH) into (qa) and (45)
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$12	 X22 A` 
A(511H' [W+H5 H'a 	 HQ1^A' + S(' H' [w+HI11H'l— HO11A,

0i2AI + ^12H'B')	 X22 Al2 Bx(^'12AI + ^22H'B`)	 (46)

i	 i	 S	 I	 f 

2 
I	

1
I —1	 I

X	 X A 
f ^ H [w -H H ]

^1 
H 1ZA + S 

^1H 
[Ia ^H3 x J -1

22	 A22 12	
11	 11

j

S 12A:	 H I
 B' 

	
A 1 + 11 1 A' BH (^3 H' B' 1- ^' A' )

2	 1.2	 22	 24	 12	 22	 12

Al2 x'22	 f^7)

So

S22	 — 512 Al2 X22	 ($)

and since:X22 is symmetric

X22	
- 

A22 Al2 X12	 (-g)

Expanding (3 5) we get

_	 i	 1  	 1	 1	 1	 ,..

A11	
A A11A + A Al2 xH 

H' -
F' Al2A + H F A22F'H + A 14

	 (50)

A2 = A' A BH A' 
Al2 

(L+DH) + H' F'' I112i3H + HI F'"A (L+DH)	 (51.)

A22	 H B' A11BH + H' B' 
Al2 (

L+DH) - (L+DH) + (L+DH)' Al2BH +

+ (L+DH)' n22 (L+DH)	 (52)

Ate.
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Substituting (41) and (42) in the above equations

A	 = A' A A -- A ' A A- -'T A. ' A [ ^ H ^ + S R . H , I [w+HO F- 7 ^1 H r
11	 11	 12 22 12 11	 12	 11

- H' [w+H^ 1H' -1 [H 11 + HR 2S' ] A' hl? A- Al2 	 A +

+ H' [w+H(3Z1H,
 -2, [1_101.1 + 

HO12S ^.) A' Al2 A22 Alt A

11H ' + S 1 r^'7 [rr+H6 i H'1^Z H + H'H	 (53)

A,	 A'
 = A' [A^ 

Al2 
A-1 K ] 

BH + A' 
AZ2 A

2
2 Al2 

AS r

12

H" [`•7+110Z1H') -1 Wll + H^12s' ]A Al2 A7'-  A 12 AS	 (54)
22

h22	 H}Bf [A?1 r Alz A22 A1? IBH + SA' 11.^2 1522 
A  

AS	 (55)

So, in order to find the compensator that will provide the- minimum

variance control we need to solve equations (46), (47) , (48) , (53) , (54) ,

and (55). Note that we . can reduce the number of equations thzt must be

satisfied by one, i f we substitute (48) in the others. Observe also

that A22
 as well as (w+HO11H) have to be nonsingular. although. these

equations seem to be very complicated, :recall that H and•(L+DH) are very

simple matrices. Thus a lot o- simplification cati on vrill appear di r? ng the

computations.

ren though tha above equations are more tractable than the ones

encountered in the previous section, they do not give us in a simple way
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the parameters of the compensator. For this reason, in the next section

are will develop a direct method to obtain the compensator for a system

with perfect measurements, i.e., W = 0, that involves only a sample	
1

polynomial division.

4. MINIMUM VARIANCE CO29TROL OF AN OUTPUT NOISE-FREE SYS'iMI--DIRECT
METHOD 2

The idea behind this method is to put the output of the plant at

time -t'-+l as a function of the inputs up to time t, the outputs up to

time t-1, and the internal noise of tines t and t-l. Once this is 	 f

achieved are equate the ecruations of the input and output to obtain the

structure of the compensator. The reason we set the output at time t+1

as a function of the outputs up to time t--1 and not up to time t, is

because we want the compensator to compute each new input as a function

of the past measurements available and not to include present information,

in order to avoid the problems mentioned in the introduction to this

chapter.

We again are given a plant of the form

y M+rx)	
an-ly 

(t+n--1) T .. _ +a0y(t) _ b
n-1 u (t+n-1) T ...	 b0 u(t) T

cn-lv(t+n
-l)	 T c0v(t)	 (l)

We can compute the transfer junction of the system as

Y (t) + B* (Z) u (t-l) = ^ v (t-i)	 (2)
A{ (•)	 P_ (Z)
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where

Z-1 + ... + a0Z--n
A* (z}	 -	 ? - an-I

+	 + 
b0z- n 3 l

B* (Z)	 bn- bn
JJ-1	 -22:

C* ( Z )	 -	 cn--1 + Cn
-2z-1 + ... + c0z-n^ 1

so

y (t+i)	 _	 $* (z) ti(t) + C* (Z) v(t) (3)
A* (Z)	 A* (Z)

it follows from (2) that we can compute v(t--2), v(t-3},... from the

information available at 4ime t. 	 To do this explicitly we rewrite (3)

using the identity

C* (z)	 =	 A* (Z) F* (z) + z -2G* (Z) (d}

where F* ana G* are polynomials of degrees ? and n--1 respectively as

y (t+l)	 =	 (Z) u(t) + P*(Z)v(t) + G (Z) v(t-2) (5)AZ* (Z)	 A (z)

Fron,	 (2) we can see that

A* (Z)	 Tar (Z)v(t-2)	 =	 y(t-1) +	 u(t-2) (6)C*(z)	 C*(Z)
J

Substitutiong (6) in (5) we obtain

.	
Y(thl)	 =	 B*(Z)	 G*(Z)S*(z)z-2	 u(t) + G __	 Y (t-l) + x*(Z)v(t} (7)

A (z)	 A• (Z)C	 (Z)	 C	 (Z)

which reduces to

B* (Z) F* (Z)	 G* (z)
y(`F?)	 u(t) +	 Y(t--1) + F*{Z)v(t) (8)C*(z)	 C*(z)

Wee now ready to campsite the variance of the output, .:s was pointed
a

y
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out earlier

2	 2	 G* (z)	 B* (z)F* (z)	 2E(Y (t+l))	 E[(F*(z)v(t))	 + E[(	 Y(L-l) -

(9)

Observe: that the mixed terms TAII vanish because v (t) and v (t-l) are

independent of Y(t--1) , y (t-2) r - - - _ Therefore the second term in (9) will

. only increase the 'variance of y (t+I) , hence

E (Y2 (t+1)) > (f0 + f2) V	 (10)

where equality holds for

U (L) _. - G*(z).	 v(t-l)	 (11)E* (z) F* (z)

So, the transfer function of the minimua variance compensator is

given by
.L

1	 --n+l
t. fit) - - gn-1 gn-2z	 ^-	 + g0z	 (t_7 )

(b	 + b	 z-1 + . _ .	 b z-n+l ) (f + f z-^)	 ,.
n--1	 n-2 	0	 Ia	 (12)

Note that if either b 	 or f , or for the same purpose b	 or cn-1	 1	 n-?	 n-1

is equal to zero, the structure of the compensator found this way will

not be desirable since u(t) would depend on y(t). Tf this was the case,

it is obvious that following the same procedure outlined.above we can

obtain a compensator that will satisfy the desired structure...

As was mentioned before, note that the parameters of the compensator

are obtained basically from the polynomial divisor. =_n (4). So this

technique presents a very simple way of finding the minimu,« variance



compensator. The only drawback of this method is that the measurements

are assumed to be perfect, i.e., no noise arfects the sensors. This

assumption is highly idealized, since every sensor has at least ttome

internal noise generated, that will ?nfluence the accuracy of the

measurements. But if this perturbation is small., the solution obtained

in (1 2) is very accurate.

i
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CI3APTER `7

EXA..NLDI,E

in this chapter we solve a simple problem using the direct method 2

and then we corrolate the answer by showing that it satisfies the

necessary conditions found for the natrix approach. 	 j

I. DIRECT METHOD 2

.yet us :assume that we have a second order plant governed by

y (t+2) -- y (t F = u (t+1) + 2u (t) + 2v (t+l) 	 (Z}

then the. transfer function of the system is

-1

y(t) = 
1 z 2z2	

.) 	
2 -2 v(t-1)	 (2)

? -z Z.

S i nceSince

2 ..= 2(1-z-2) + 2z -2	 (3)

We find that the . compensator is given by

u (t) _	
-2

Y (t-^.)	 (^?)
(1+2z-1) (2)

So

u .(t+2) + .2 u. (t+l)	 - y (t+l)	 (5.)

and the output variance is given by

E (y2 (4))	 47

2. DO-T .IY APPROACH

From (1) and (5) we find- that
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o	 1. B [2] [11]

L1	 0 l 2

r(L+DH)	 =

0 0
F,+

[01I
L l -2

and we want to show that D and F as given above satisfy the necessary

conditions obtained in section three of the previous chapter. To do this

we show that there is a
All r A12 r A22' Oil , 	512 ,

and 522 that will give

us the above values for F and D.

Note that the pairs (A,B) and (A,c) are controllable. 	 Let

Aill A112 Al21 Al22 A.221 A222

Zl
-

12- Al2-A
112

A
.113 "723 Al24 X222 A223

and

^lll 5112 5121 5122 5221 5222

511 53.2 - 522
5112 0113 5123 5124 5222 5223

i



=91-

From

	

Ale 
= A' A

1
A , 	A' Ai 2 (L-i DH) + H "r ` A" Bfi + H' F' A22 (L+DH)

we obtain

121	 0	 Al22	 4--3A illA112 - 2-211111

Al23.	 -5+3A ill	 A223 r 7-6A 111

and from

A22	 H'B' A11 BH + BF H'B' Al2 (L+DH) + (L+DH) ' A,- 2BH

+ (L+DH) 'A ( +DH)

we get

A	 -- 7-GA	 A	 G+GA	 and A	 -221 r	 111	 222	 111	 111

	

1 0	 1 0	 1 0

1 - 0 1	 Al2 J -2 0	 A22	 0 1

From

= AO A' + A0 H' B' + BHA' A'' - BkIAr1 A' A H B'	 CVC''11	 ll	 12	 i2	 22 12 12

we obtain

a
	X124 

W 

0	 X122 _ a113 - Sii1 
4V	 X1223 V

N



-92-

From

^lz	 ^ ill H'F' + A^ (L+DH) + BHa" H' F' — BH A '72 ^ 2 (L+DH)

we get
i

5121	
0	

.123.	 °	 0124 _ 0
	

0112	
0

lg	 aV l:L i	 3

and from

022	 -x'22 Al2 ^Z2

we get

^221 - 0
	

X222	 0	 0223	 3

Shen
- 
3 0
	 0	

1 0 0
X11 =	 X12 =	 X22.

0	 4V	 0 0	 0

substituting these results in

AL AI3= 	 11 FH$ H'	 A' BH ^' H	 A (L+DH) ^' 11'
12 11	 22 ZZ	 Z2	 ,l2	 22	 12

and

Ale A512 A22 H^I2 + A2-12 Bia z + A (L-DH) X22

we see that both become equal to zero, which was the result we expected_

We then conclude that the compensator described by the above F and D
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gives a minimum variance control :strategy.

Note that E (y2 (t)) is given in this case by

E 
(y2 

(t) ) = tr (A11 CVC I ) = aV

which is the same result obtained with the direct method 1.

n	 REMARKS:

In chapter four we.di.scussed three different methods to obtain a

compensator that would minimize the variance of the output of a discrete i

time linear time invariant single .input single output system_ As was

seen in the second section_ further study in this problem is required to

be able to find the desired compensator using the direct method 1. also,

from section three, more insight into this kind of problems will prove

to be of great help in order to f:.rid the compensator st ructure. Maybe,_

some easier equations would develop if the compensator is -found in two

steps a) a form of observer plus b) a matrix of gains. Some analysis.

to establish if the necessary conditions found with this matrix approach

gave .a unique solution_ or if a stable compensator can always be found

would be a very interesting topic to work on. Some other lines of

study around this problem could be to generalize the three methods to

the multiple input multiple output case. it would be AM very interest-

ing to find if the insertion of noise in the measurements, working with

the direct method 2, gives any results_
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