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ABSTRACT
This thesis considers two problems: a) the design of an optimal
dynamic compensator for a multivariable discrete time system and b) the
design of compensators to achieve minimum variance control strategies

for siagle 1BPUu 51ngle output systems. Both problems are stochastic' in

nature.

In the first problem the initial conditions of the plant are random
variables with known first-and second order moments, and the cost is the
expected value of the standzrd cost, quadratic in thé states and controls.
The éompénsétér'ié based on the minimum order Luénberger obsexver ahd.it |
is found optimally by minimizing a performance index. WNecessary and
sufficient conditioﬁs fét'épfimaliﬁy of the coméensatdt afe derived; ‘The
éompensato; is given in Auto Régressive Moving Average form.

7 fhe second pkoblém.ié sol#ed in three diffeﬁeﬁivwéys; Ewo of'ﬁheﬁ
working airectly in the frequency dbm;in and one wo:king:in the time

domain (state space technigues). It turns out that the first and second
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order moments of the initial conditions are irxelevant to the solution.
Necessary and sufficient conditions are derived for the compensator to

minimize the variance of the output.

Thesis supervisor: o . : Pimothy L. Johnson

Title: Azsociate Professor of Electrical Engineering
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CHAPTER I

-1, BRIEF HISTORTCAL REVIEW

The problem of finding compensators for systems in state space form

" has been widely studied. t is & known fact that if the pole configura-
‘tion of a controllazble plant is not desirable, it can be arbitrarily
changed using state feedback. A rigorous formulation of the linear state

requlatoxr probiem is also known.

At first, the linear quedratic problem was formulated as a com-
pletely deterministic one, penalizing both deviations from the desired
plant state and excessive use of control. The solution, as it is well
kﬁéwn, is'inuthe'form of a compleﬁe state feedback control law. This

formulation constitukes an idealization, since most of the time the

nitial state ié noi exéctly knoﬁn an& complete state measurements are
not available. Foxr thesefreasons, the problem was reformulated as a
tochastic one where the First and second order statisﬁics of the initisl
state and the noise were known. The cost was taken as_the ensemble
aveiage ﬁalﬁe of fhe determinisﬁicvperfoxmance iﬁdex.' Surpriéingly
enough, the new result was a Kalman filter followed by the same gains
obtainéd in thé deteﬁmiﬁistic fraﬁework. In éhis thééis-we Qill work
‘out fhis:prqblem assumiqg that no plant or measuxement_noise_is disturb~
ing ﬁhe:syétem; ihe solutioh»obtaiﬁedvis‘a miﬁimum.order bbservef as
proposed hy Luenbe;ge:(Ll) preceded by the gains found in the p:gviﬁus

two formulations. Since the parameters of the Luenberger observer are

cla g
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rather arbitrary, sevefal authors, among them Blanvillain (Bl), Millex
(ML) énd Llorens (L2), have determined the compensator parameters by
minimizing a performance index, which gives a specific forﬁ for the
cobserver., A sﬁﬁprising charactefisti& in the soiuﬁidﬁ of.this pﬁéblem
is that a separation develops in the eguaticns for the parameters of the
‘observer and the optimal gains, the laﬁfer being the same as if completé
state measurements were available. It turns out that fhe minimum-ordexr
observer-based compensator is optimal.
éll the precediné methﬁds haﬁe been worked oﬁt for sfate.space re;

presentation of a system. Astrom (Al), folloving another line of work,
£inds minimal output variance control strategies directly using an Auto-
- Regressive Moviggfkverage mode}_fo: single—input single-output plants.
In this approach, although he‘doesn't havg the IZreedom of the state space
~techniqueé (he is just minimizing the variance of the output and no
penalties are assignad:ﬁo the sitates nor to the input). 2strom has the
great advantage that the gains are very easy to compute hy simple poly~

nomial division.

2. OUTLINE OF CONTENTS

~ Chapter two is designed to be a background qﬁapter:f this means
tﬁat.the technigques néeded fo Qo from an AﬁtoéaggreéSive ﬁo&ing—Ave:age..
_ﬁaqR,M.A.} model to a minimal state space representation of a system,

aﬁd vice versa, are developed. The importance of the fact that the first
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transformation is to a minimal state space form lies in the conditions
required for positive definiteness of certain

covariance matrices, as pointed out by Llorens (L2). This technigue
requires the A.R.M.A. model to have a specific structure which can be
achieved by matrix multiplications. The transformation form state space
to an A.R.M.A. model involves the computation of the classical adjoint

" a matrix, which is shown in section 4.

O

In cheapter three the structure of the discrete time minimum order
observer as well as the linear requlatox problem are presented as back-
ground for the main problem, the solution of the discrete time minimum
order obsexver baSed-cdmpensator. Tt is assumed that the initial state
plant is a random vector with known first and second order statistics.
The performance index is the expectation of the standard cost';ver ﬁhe
time interval [0,%), quadratic in the state and control vectors. The
.agproach mimics Blanviilain's work until the aétual‘minimizaticﬁ point,.
where the technique used by Llorens (L2} is employed.:'

Chapter four déal with the problém of finding the minimal variancé

control strategy for a single-input single-output discrete time system.
Direct method L gives tﬁe'nece55ary conditions to solve the rroblem, but

even for a simple example they are very difficult to solwve. The matrix

" approach solves this problem completely using state space techniques,

while direct wmethod 2 gives the,solution torthe problem in a very simple _

Way (a'pclyhomial division) but has the disadvantage that it assumes the

observations to be noise-free. For all the above methods, a certain

RiA
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structure for the compensator was assumed, and this is thaﬁ the input at
time ¢ cannot depend on thé output at the same time t, which makes é lot
of sense in a discrete time system_because it is not usually possible to
feedithe output‘iﬁstanfanebusly hack to the input in,éuch 2 system.

In chapter five a second orxder example is solved, first using
direct method 2, and then the answer is checked by inserting it into the

eguations given by the matrix approach.

3. NOTATI@N AND TERMINOLOGY

Small boldface Roman lettets will denote vectoﬁs and capital ietters
will dencte matrices unless otherwise stated. A denétes the transpose
of A, adjad the claésical adjoiﬁt of &; I the identity matrix énd 0 the

zero matrix. A(mwm) denotes the matrix 2 which is of dimension mym. It

' is stressed that same matrices in different chapters have different mean-—

ings. P(z)} denotes a matrix which is a function of z except in chapter
four whére it is used as a (scalar} polynomial function of Z.
The expected value (ensemble average) is denoted by E{*}. The co-

variance matrix of a vector valued random wvariable:
E{x(t)x' (£)) =~ BEG(E)EE (1)
is denoted by:

cov{x(t))
Also, the numeration of the equations are independent from section to

section.

e

bl




-11~

CHAPTER II

1. INTRODUCTION

| .The problem of.finding optimal coﬁpensafors for syétems described
in state space form has been widely studigd, but this approach agsumes
that we already have the matrices that describe fhe system in such a form.
This assﬁmption is somewhat idea;, since‘in order to describe a plant in
a mathématical model we have to dérive the eguations that govern it from
basic prihciples. In this event the model of the system will be given

to us in the form of differential equations, for continuous time systems,
oxr diffeﬁence equations for discrete time systems. In order to design a
compensator for such a system, we have o choose one of two possible
approaches: either convert the system into a state space representation
or use the input output description. In chapter four we are going to use
both techniques to find the minimal variance control for a plant, while
in chapter three we use only the latter one.

The intention of this chapter is to serve as a background For the
work in chapter three. So, we will show the technicues available to con—
vert a system from an A.R.M.A., model to a state spacé repreéentatioﬁ,'
and vice versa. -

 The structure of this_¢hapter'is as Follows. ~In the second section
the stfucture of miltivariable systems is presented as a hackground to

the work in section three, where the steps to find a minimal state space




12—

representation for a multivariable system are developed. Both these

sections rely on the work of Wolovich (Wl) and Wolovich and Falb (W2).

Section four deals with the transformaiion back from the state space form '

to an A.R.M.A. model, where the main problem is the czleulation of the

adjoint of a matrix., This section is based on Cantmacher's book [G1].

2., BSTRUCTURE OF MULTIVARIABLE SYSTEMS .

Let's consider svstems of the form

x(k+l) = Ax(-‘:)%—Bu(t) | | ‘ | (1)
y(t) = C x(t)
where
x(t) is an n vector
u(t) is p vactor
y(t) an m vector
and A,B,C are constant matrices of appropriate dimensions.
Furthermore, let's assume that B and C are matrices of full rank.
Then, it ié a well known fact that ié the pair fA,C) iz completely

observable, there exists a simllarity transformation Q such that the

system
z(t+l) = Rz(t) +B8uw) ' (2)
vit) = & =z(t) |
where & = -9 Tag 8 = o ls & = co

iz in standard observable form.
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We are going to show now, how to cobtain the matrix Q.
. = 1 T 20 vyl : ,
et K= [C', -A'C', 2"°C',...(-A") C']; then, since we assumed

that system (1) was completely obsexrvable, the n x nm matxix k is of
. rank n, and it is possible to define a basis for R.n consisting of the
~ first n linearly independent columns of K. Let L be a matrix whose

| columns are the basis for R_ in the following order

o_-1 0'2—1 an—-l
L = [Ci;-A‘Ci;.-.,(—A') : Cir Cé,...,(—ﬁ'} Cér“-r("‘Ar)' } CI:I]
where
ucl_ 7
c = j-C,-
! . c -
! m
v .
Setting 4= ) O, kK=1,2,...,m
k i=1 l

where ¢. = 0

¢
{ and letting Jk be the~d;h row of L T, we define the matrix Q as
o, -1 a_-
1. m-1
— el - -t — -1 — L)
o = .f_dl.( A')Ul' -- A) B LA {-a) Jm]

After doing the transformatibn‘pointea out in (2) we get'ﬁ as a

block matrix of the foxm

- A ﬂ
All -9 e :L'[[l,
A o= A ... 1
& Bo1 2om
A A
eas B
y Bhl m

RS T

T .- T T
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with A*i a Gi b5 Ui companion matrix given by

00 .. 0 4 . +1,4
A 10 .. 0 A, +2 4
Ai_;' = . ~
- 0 1 ..-0 Ad, . +3,4d
i-1 i
o~
00 .. 1 A4 .,d
0o 0 .. 0 Aa., a,
| _ i 94 A
and A,. a 4 matrix
i3 i
— ”~ —
i ..+ 1
0 0 i1 . dj
~ N
a,. =0 0o .. Ad. . + 2, 4,
ij . TN i
0 0 .. Ad.4,
. 1 j

for i # j. And C is an m x n matrix of the form

0eeee 1 0. O ... O J |
c = 0 .... Cz,dl OT.’_ _l .es O !
. . .A oo~ o y
0. L C3rdl 0-.. CB'dz.'. 0 ‘
LO cm,dl 0... cn,c'iz... 1 .

Now, that We‘have obtained the struciure of the system after the

. transformations were made, we are going to'éompute-éhe transfer matrix of
the plant, T(z)
~m{z) = C{zT-B) B
R S e T e e




But by taking advantage of the struccure of the system, we can find

T(z) as

_— . ,—lp
TF_(.Z). = C, A (a)S(z)BO

where 4
- . -1 . -
1 =z .. = 1= 0 .... 0O veea O
. 0‘2—-1
S(z) = 0 0 .. o 1 ... =z R
o -1
0 0 .. O 0 ‘... O ver z W
1 0 eee 0 7]
~ -~
= 1 ,
CQ c2'dl 1 e 0 '
3“"_11 C3rdy --- _c_’
FaY .: ~ .
5 1
B Cm, ul Cm,.d2 R L
BO =B
' : A
and A(z) is the m x m matrix with encries given by A‘?i(Z) L= det (ZIO'" -3, i_)._

S e ae 4 , . i-1 % e s
am.i Aij (=) = —-Adi_l-rl,dj - zAdi_l +2,d) - ... -2 Adi,dj for i # j.
‘Note that A(z) can be rewritten as

rz ' o 0 ... O 7

Alzy =| 0 = 0 ves DY : - s('z)aof'
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~

vhere A is an n x m matrix of the coefficients of .Aij i, =1,2,...m

0
iven by
I—/\ ~ .A —— |
Aqrdy Ay rd, Ay ey ’
~ ~ ~
A2’d}. Az’dz Azf 4
~ Adl,dl Aal,d2 - Aal,d~
A -
0 ”~ Fal Fal)
+1 1 +1,
Ale_,al Adl+_,d2 Aal 3_.,dm
~ N J'\
1 N __!_. [
| Aam_l__,.al Ad L, Ad i
A -~ ”~
Edm,dl Adm,dz Ac’lm,.dm

3. MINIMP;.L STE‘Z'['E SPACE REPRESENTATION FOR LIMEAR MULT.fVP.RIABLE SYSTEMS
. In. this ée;:‘.:ion_,_-wa present an e.lgor:i_.thm, base_d_ on ‘.‘_Voi_l._ovich's paper
{Wl), that giveé a mir.s.imal s;cate space representation fo;: 2 system ex-
pressed in a more ;general- matr:Lx d_iffa:e_nca operator _'fom._  This trEns-
formation is very important J.n practice, since as the result of applying

well known physical laws, such. as Kirchoff's laws for electrical networks
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or lagrange equations for mechanical systems, we obtain mathematical

models for plants in the form of differential orxr difference equations

&nd not inrstate space form. The advantage of having a state space
fepresentation, lies in the fact ihat there exist, a£ the present, verv
powerful_teghniqpes for designing and_analyzing plants that axe described ..
in such a form. These are not avaiiéble when working directly with the
equations that govern the system.

After the algorithﬁ is developed, a simple example will be presented
to show how it works.

We will work with systems_that are not as genetal as the ones
considered by Wolovich (Wl), pamely, systems that are described by the

matrix difference equations

B(z)wlt) = 0o(z)w(t) ' o - (1)
y(t) = Rw(t) | (2)
where P(z) is a m % m matrix |

0(z) is m ¥ p matrix
R  an m x m constant nbnsingular matrix
and -4 a8 difference or delay operator.

Furthermore, we assume that P(z) is nonsingular, in ordex Ffor the zbove

-

equations to represent the transfer matrix of a system, that the system

is sfrictly proper and that it is irreducible, that is, that the composite
matrix [P(z), Q(z)] has rank m for every z € C, as defined by Rosenbrock

(R1) znd Popov (Pl}. This irreducibility assumption will guaranites that

-1

T
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the system in state space form will be minimal. The definition of row

proper Torm will also ve recuired.

DEFINITION (Row proper) :

Let

Piz) =

— d d. 4a
i 1 1
. a . P .= . S “es
Pllz + | 125 + ghhz +
d 4 a
2 2 : 2,
PZIZ . 9222 e R Pan Feoa
a d - dn
2.z MLl Pz M., eee Pz Ty L
mi m2 N

where the +... denotes lower degree terms in each row of P(z), and di is

the degree of the highest-oxder term of the ith_row. Then P(z) is saild

to be row proper if and only if det{l') is not egqual to zero where

ATGORITHM
Sté}'_:l'. 1:

I

h

P(z)

=]
Pl P19 =0 Fap
Par Pog =o Fop
7 D P
L "ml “m2 %mtn

is row proper, this step can be omitted. If P(z) is not row

proper, we premultiply (1) by any'unimodﬁlaf matrix U(z) which reduces

P(z) to row proper form. An algorithm for finding such a U(z) is

given by Wolovich (WL) in the appendix of his paper. So (1) and (2)

e




Step

(&) = Ry wylE) ‘ ‘ : : (6)

-19~
reduce to
u(z}p(z)w(t) = U(z)Q(z)ult) _ A & D)
v{t) = R w(t) , {4)

which is eguivalent to the system described by (1} and (2).

2
Let
tfo(t) = I‘ wit)

where I is the m » m nonsingular constant real matrix consisting of

the highest degree z terms in each row of U(z)®(z). ZIf T = I this

step can be omitted, if not, we substitute Tnl Wb(t) for wi{t) in (3)

~and (4) to obtain

B, (2) W) =.Q)(z) ult) - )

where Po(z) = U(z)P(z)P-l
gp(=) = T(=)0(2)
R, = gI'

We can show now, that the matrix.Po(z) is in a-particularly unseful

form; i.e., - _ -
zl-i-... cens PP s
d,
i 2
Bpl&) = Leee BT s e
a
cees . . esea . T z_m+...

- - ..

A
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where the ... denotes polynomials of lower rlegi:ee than d;. in each

(k"h) row.

Since we éssumed tilat th.e system was strictly proper, we can omit
Wolovich's third _SteP' Note that the intention of the previous two steps
ié to i::e able to identify the matrices Py (z) and 9, {z) with the A(z) and
S(z)];o found in section two. Once we have Jetermined PO (=) and QO{z) p

we can obtain a minimal realization (KD" EO’ Eo) directly by observing

their gstructure.

-4 + 0 0
(v .
-0 z 2,v -0
. 0'3
= : z - S(Z)A
?O(z) . o 0
0. z "
L -

where we have replaced d, by 0., so that the similarity betwesen the

structures of A{z) and PO (z) be more striking.

Let S(z) be the m x m matwrix defined in section two and AO an m x m

constant real matyrix.

Since the system is strictly proper, we can write Qd (z) as

g = s@s o o
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~

where BO is an n x p constant real matrix.

 We cbserve that the only term left unspecified in order for

(z) = B '(2)Q,

to he equal to

~ -1 . ~
B(z) = CD A (z)S(z)BO
~ —l A
is CO" But since Po (z)Q0 is already egual to_A(z)S(z)B0 we let
CO = Im.

So, we can now cobiain directly a minimal realization for the system

Po(z) wc(t) - Qotz) u (k) : : {3)

as follows.

Define
r, = ] 0 fork=1L2,...m ' (8)
i=1  ~
Replace the mery columns of the (n x n) matrix
o ... ©
L
0 -

o

by the m ordered columns of -AO to obtain -ZIO. B. as given by (7) is

7

‘an approprizte "50 corresponding o the choice of & . F;".nétlly, let

C_ be the matrix obtained by substituting the m=~

g

0 v, columns of the

m x n zero matrix by the m ordered colimms of CO i.e., Im,.'

.
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1
Thus far, we have obtained the following state space representation
i) = 3 B
%q (t+1) Ao xq (t)» + BO u(t) |
Yy {t) = CO x, () 1
Step 4:
Since we want tQ observe the output y(t) and not WD {t), we can use
equation (6) to obtain:
", - Y + =y
Zq (t+1) AO X, {t) BO u{t)
v (&) = ROCEO X, (£)
So, finally we have the desired minimal realization
x(b+1) = 2 x(t) + B ult)
v {t) = C xz{t) |
where
— -4
A = AO :
B = BO 1
- -1 — !
C = RS = R PR 0 4
EXBAMPLE
— A
Let .
2
o z + 5z + 6 3z + 4
Pz} = : o S
._22 -2 a + L
4
b
“t ) b .1 S l"—m‘:—l'f—ir e _—w A ) ) L3 . ﬁ a - - ML ‘ , 4_‘7 Y 1} -
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l'z -1 % - 4
Q=) = | 2 % - 32
L
._and
R = 1 0
0 1
tep 1
10 _
I = i 0 so, the system is not zow proper.
Let =
- Uiz) =11 .0
I -1
then . P
U(z)P(z) = [z° + 5z + & 35 - 4
5z + 8 2z + 3 . y
S 4
U(z)o(z) = z -1 z ~ 4
-1 -2
| Step 2 |
B o -1 . C
_ _ I' = |'1 oJ <> T = 1 0 ] 1
3 . | o Ls 2 - ~5/2 1/2
:;‘:'_"- T -' T . = 4_# . ‘4
S TP T - X% Y - - - D - PIRE —— > —




S0
p,(2) = [z° - 5/2z - 4 3/2z+21
1/2 z + 3/2_1
= - -4
Qo(z)_ z _1. Z 4
-1 -2
= 7
Ry, 1 0
~5/2  1/2
Step 3
2 r
PO (z}) = Z 0 1L =z 0 4 -2
o =z1{ | oo 1|l 52 <3
-1/2 -3/2 )
and
Q. (2} = 1 =z 0 -1 -4
0 , . J
0 0 1 1 1 1
-1 -2 .
Ty .2 -and z, = 3. then
:
e e e — - - - —— o -
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= a —_ B = - —~d
e 0 il 2 BO 1 4
1 5/2 -3/2 1 1
¢ -1/2 -3/2 | -1 -2
and
Cy = 0 1L 0
10 0 1
Step 2
c = RO Cy = o 1 Q
0 -5/2 1/2
So finally .
0 4 -2 -1 -2
A:{(t'%‘l) = i 5/2 -=3/2 x(t) + 1 1 u{t)
0 -i/2 -~3/2 -1 -2
B fo 1 Q
v{t) = x (&)
0o -5/2  1/2

a

A CIASSICAT, ADJOINT OF A MATRIX

. This last section of this chapter dezls wiih the problem of Ffinding
the (classical) adjoint of a matrix. BAs will be seen in the next chapter,

this is the last step needed to convert the system given in a state space

-3 P - : N n_. - P
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form into a matrix difference operator form. The methed to berusea is

the one suggested by Faddesv (Fl) for the_simultaneous determination of
the scalar coefficients of the characteristic polynomial of a matrix A,
and the matrix coefficients of the classical adjoint matrix M(z).

Let A be an n % n congtant matrix, se, it is well known that

-1 _ adi (zI-3) _ M(z)
(21-3) T det (zI-a) p(z)
where
M(z) = adj (=i-a)
and p{{z) = det (zI-a) = 2" - zmrl - ém_z - -
- - Pl P2 * e Pm

As shown in Cantmacher's book (G1), the difference pl{z) - p(u) is divisible
by z- . without remainder, Therefore

- P(Z)-p(ﬁ) _oom=1l, m-2 2 m-3
glz,u) = pr— z ¢ {u pl)z + (u P, pz)z . ..

(1).
is a polynomiazl in z and u.
The identity
p{z) = plu) = glz,u)(z-u)
will still heold if we replace z and u by the matrices aL and A respective-
ly, giving

p(z5) - p(a) = g(zI,3) (zI-a) o @

but, since by the Cayley-Hamilton theorem p(a) = 0, we get

pl(zi}) = g(zI,a)(zI-3) : . o _(3)‘

P

T T
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therefore
-1 _ ~1 _ g(zI,n) 4

(zI-B) = (p(zI}) ~ g(=zx,a) = oz (4}
=le)

g(zI,a) = M(z) - (5)
Hence, by virxtue of (1} and (5)

M{z) = 1200 & Mlzm_z + Mzzm—B_ LIRETIL R W . (6)
whexre

M, = A-pT M, = a2 - p.A-p.I

1 Py 2 B T PR T Pyt .-
and in general

' k- k-1 k-2 ' ' -
Mk = B - P42 —-92A - . ™ ka k=1,2,...,m1

So, it can be easily seen that the matrices M, M ,...,Mm

1 o 1 can be com-

puted using the recursive eguation

Mk = AM};-—-'l - PkI' o k=1,2,...,m-L o L (7)

whers
M0'= T

The coefficients of the characteristic polynomial p(z) can be easily

found successively as

-

BB T S TS Tt T BBy K=trdreeem ®

where

S

:
i
|
[
|
|
J
1

T S
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Faddeev (F1) combining (7) and (8) obtained the coefficients Pyr Poreees

P, and the matrices M., M

4 2""'Mﬁ—l successively as follows:

= S . i = o = - x
Al a Py tr (Al) .Ml Al ~p,T ,
1 o - ‘
B, = BM p, = E-tr(Az) M2 = Az p,x '
o . _ 1. . - R
&y, = A, py = 3 Er(ay) My = B3 - Pgt
PA'n.--l = AMhrE Pn—l = 1 1:Z:(An—l) Mﬁrl = A'n—l - Pn"lI
1
A = BAM o = =+tr(a)
n n~1 n b3 n

(9)

Tn order to check the computations, we can go one step further and Ffind

v

whether Mn = An - qu equals zZero or not. 'If'Mﬁ = 0 the computations
&

‘are right, and if Mh # 0 there is a mistake somewhere.

The formulas in (2) are the ones that will be used in the next
. &

chapter ts £ind the adjoint of the matrix (zI-F).
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CHAPTER XIIX

1

1. INTRODUCTION
This chapter will deal with the problem of finéing a minimum order
based cbmpénsator for a discrete time'system. |
The problem of designing optimal compensators can be tackled in two
completely different ways: (1) it can be worked oﬁt directly in the’
frequency domain or (2) the system can be transformed from ﬁhe frequency
domain equaﬁions'iﬁto state spacé form, an& then the.éompénséﬁor.strﬁcture

can be found easily using the powerful techniques available. Graphically,

this means:

1

P(z), Q(z) ~+ R{z), S(=)

2(a) + + 2(c)

(2,B,C) >  (#;6,D,P)
2 (b)

There are advantages and disadvantages fdr working with eithe# method;
many Qf_thgm arise from practical considernitions——for example, solving
the problem directly in the frequency domain has the great advanitage
.that most speqificatipns-are given in terms of rise time, overshoot,..
bandwidth, eté., which.can be handled easier using techniques such as

Nyquist plots, Inverse Nyguist plots, Root Locus, and Bode plots. Another -
advantage of the frequency domzin method is a very practical one; engi-

‘neers, in the great majority, identify very easily with such terminology.
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The bié disadvantage that this ﬁethod faces, is the lack of powerful,
easy to implement, techniques, especially in the case of multiple-inpui,
multiple-outpui problems. In the last years, several computer-aided
technigues have been developed to try to overcome this deficiency, among
‘them the diagonai dominance metﬁod presented by Rosenbrock (R1) is widely
used for multivariable systems. But still, there isn't yet, a freguency
domain technigue that cowld be compared in scope and versatility, to the
lineax quadgatic design in state space form.

For this reason, the approach of this chapter will follow path 2

_shown in the above graph.

 The importance of step 2(d lies in the fact thet for systems that
do not reguire the use of a’coméuter, the compensator can be built vexry
easily using only delays and gains that ére.readily available. When com—
puters are used to implement the ébntrol, tﬁisuséructure is #lsd véry éoﬁf
venient since a stack can be created and very few mémory locations will
be regquired.

This chaptexr, és'mentioned abo#e, will considét the problem of
deéigﬁing"an 6ptimal cdmpensafér wvhose dynamics are gonStraihed té.be
those of a discreté time minimum éider Qbserverf Thevihitial, aé'well
as %ﬁe'final forﬁ:ﬁiil be é matrikx difference operator. The initial éﬁn;
dition of the plant will be a ;andgm wvector with known tirst ana second
oﬁ&efustatisticé;.aﬁd the cbsﬁ.fo 59 minimized will.bé ﬁﬁé eggectatioﬁ,.

with respect to the initial condition, of the standard quadratic cost for

s
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the discrete time linear regualtor probleri.

The strucfuié of this chapter is as fblloﬁs-. In section two the
discrete time linear regulaior problem is presented. Section three deals
.wiﬁh tﬁe structure of the disciate minimum order observer as suggested by
Iuenberger (Il). In the fourih section of this chapter the optimal con-
trol problém iz formulated and the eguations thaf must be satisfied by

the unknqwn rarameters of the coﬁpensator éra developed. Aiséithe neces—~
sary conditions for optimaiiﬁy are presented but not wérked éut (baséd |
on Lloran's thesis {L2). In the last section, the transformation from
state space form.into én Aﬁto—Regreésive Moving—Avetage model along with
_ the structure of the matrix F of the compensator a;d some.pertinent re—

marks are presented.

2. THE DISCRETE TIME LINEAR REGULATOR PROBLEM
This section ﬁonsi&ers the problem of £inding an optimzl compensator,
iven the fact théflcomplete state measureménts.are aﬁailable.  The'initial
condition of the plant is assumed to be axiaﬁdom vector with knowa first
‘and second oider’sfatisticé- 'The'perforﬁancé index to be minimized is
the expeqtatiog of the usual cost, guadratic in both states and control.
Sinéé thié‘préﬁiéﬁ is well knowm, only'thE'problém formalation énd the

results are presented.

OPTIMIZATION PROBLEM

Given:

R e TR T = ——

o e —
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(a): 7The following minimal_ realization__discrete time l:i.néar invariant
plant |
x(t+1) = A x(&) + B u(t) _ i (1)
on thé time interval. + [0,9) whére
x{0) is an R random '_vecto;:r with known first and second order
.statistics
x(_t) an Rn.—- valued random proc:.éss_

P .
u({t) an R ~ valued random process to be determined

‘A a constant real n x.n matrix and
B a constant resl n x p matrix

(b): The symmetric matrices IQ and R vhere

e

0 iz an n x n constankt real symmetric positive semidefinite matrix

and

R a p x p constant real symmetric positive definite matrix ,
Find: the optimal control u{t) which minimizes the performance index
J{u) given by _ _ . _ . - J

Jw = B §  x'(£)0 x(£) + u' (&R ult) | (2)

F R
=

As it was polnted out befor=s, the solution of this :problem is a
well known result given by .
ult) = G x(¥)

where

T S R B T TR

i s e s et et S 7 1y 2 o U JLE e ST M




¢ = (R+ B'KB)":L BIKA (3)

and ¥ is a symmeiric matrix that satisfies the discrete time algebraic
Ricecati equation

K = A'KA + Q - A'KB(R + B-:_tca)"l BYKA . (4)

The minimsT cost to go is then obtained as

g%

where
Ly

"It can be shown thst K satisfies also the following equation

E(x(0) x'(0)).

it

K = (a+ BG)'K(2 + BG) + Q + G RE o (6)

The sufficient conditions tﬁat must be satisfied for K to ba the
unigue positive definite solution of (4) are
(é} (2,B) is a completely controllahle pair and

(b) (A,Ql/zl is a completely observable pair

2. STRUCTUR®E Oﬁ' THE DISCRETE TIME MINIMUIM ORDER OBSERVER BASED COMPENSATOR
.  In the previous section, it was assumed that complets state_méésure-:
ments were available, but in most applicztions only‘é certain number of
3states“(usually very  few of them) or some linear combination of them can
be direckly observed. This lack of measureme;ts poses a very serious
problem in the implementation of the optimal linear regulaﬁor; since the

control law, instead of being just a2 linear combination of the states

-y
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becomes dependent on time as well as the observed states. Thus, either
é new approach that directly accouvnts for the nonavailaﬁility of the
entire state vector must be devised, or a suitable approximation to the
non available states must be detexmined. The latier was the direction
taken by Imenberger (Ll} when he proposed the construction of an observer
that would approximate assymptotically the non available states. It tuzn
ouﬁ as it will be shown in the next section,. that the insexrtion of the
observer doesn't change at all the value of the feedback gain meatrix G.
the only thing that changes is that instead of'feeding back the entire
state vector, the obhserved states plus the estimates of the unavailable
states are the ones that are fed back. So the First phase in the implé-
mentation of an opéimal control law should be to assume that the entire
state vector is available for feedback} while the second étep shouid ba
to design a system that will approximate assymptotically the states of
the original plani, i.e., to design an observex. When the notion of an
observer was first introduced, it wés used primerily for the approximation
of the states of detexrministic, coﬁtinuoué'time; linearttime.invarianﬁv
planits, but,; the observer theory has subsequently been extended to include
time v#rfihg éystéﬁs,bdiscreﬁe.ﬁimé 5ystéms"anibstééhaS£ic.sfsteﬁs; Of.
course, the construction 6f a minimum order observer is not_the qnly
SOlutiSﬁ'tb theﬂéfoblem of.finﬁing an dpéiﬁél coﬁpensaﬁof- Levine (LB)
proposed the use of an optimal output feedback_controller, however,'not

all systems ére.ouﬁput stabilizable which could cause an unstable system

-
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to remain unstable. Some other strategies that could be used are
a) to build a full state observer: this approach has all the
mathematical simplicity of the minimum order ohserver’s, but
implicitly, it possesses a certain degree of redundancy. Re-

- dundancy that arises from the fact that the observer will be
estimating the entire state, while we already have certain states
through the outputs of the system;.and

b) to implement an chserver that will reconstruct asymptotically
the optimal control law u(t) = G-xtt) as proposed by Fortmann
and Williamson (F2): this technique has the advantage that the

" degree of the observer can be les$ than that cf the minimum
order observer, i.e., less than (n-m) but also possess the great
disadvantage of matheﬁatical comp3'xity, and.it ﬁas not been
worked out yet for mmltiple input multiple output systems.

‘For these reasons, we have selected to fin& thé optimal éompensator based
or. the structure of a minimﬁm oﬁder cbserver.
TLet a minimél discrete timé, 1inear fime invaiiant syéﬁem Ee governed

by the following eguations

x(t+l) = A x(t) + B u(d) . (1)
v sexw @
whére

 y(£) is an R random process described by (L) and (2)

C is an m x n constant, full rank matrix

e S
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Furthermore, let us assume that C has the following structure;
c = '[Im: 01

whexe
Im is the m x m identity matrix and

0 is a mx(nm) zero matrix.

This is in no way a restriction on the range of systems that we can

deal with, since from the assumptions that the system is minimal and

that C is a full rank matrix, 2 similarity transformation can be foimd

that will give us the desired structure. In fact, Blanvillain (Bl) shows
a way to get this transformation.
Having the system in this specific form, we can partition (1) and

(2) in such a way to get’

RN A, B (% (E 4+ B (4)
x(t+l) = = u (k)
%, (41} By By, %, () | B,
y{e}y = [Imf 0] xl(t) = ,xl(t)f (5)
x,(E)
where

' Xl-(t‘.) is an R random process

' . - :
X, (t} is an ® m random process

and

(3) .

i
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A l(m xm), &, Mmxom, 8. 0n-mxm, &, (0 -nmx n-m,

12 22

Gl(m.x B, Bz(n—m X p) are real valued matrices

21

It can be readily seen that the output y(t} will give us directly
xl(t), go an cbserver should be built to estimate only xz(t).

Expanding (4) we obtain

xz(t+l) x. (&) + A

21 l

g Xy (E) + By ult) o (8)

xl(t+l)

N

A xl(t) + A

11 x,(t) + By u(t) (7}

12

Substituting (5) in (7) an xearranging some terms we get

v(eHl) - A, v(t) - B, u(t) = A, %8 S (8a)
Now, let .
vt +1) 11y(_t) - Bl u‘t). = w(t) _ | : o {8b)

Therefore, systems (6) and (7} can be expressed as

: Xz(t+l} = 322 x, (£) TRy y(t) + B, u(t) S ' : (9)

w(t) = A12 xz(t) | (10)

IT we can measure w{t), eguation (10) provides the measurement

A12 xg(t) for the system (9) which has state vector xz(tj and input

A21 vit) + B2 u{t). _Provided that w(t) can be computed,.the only problem

11es in the fact that (&

22, 2) has to he_completely obsexvable. This

problem is readlly so vad since by assumption (A.C} is comnlenely observ-
able (see Padulo and Axblb (ﬂz))

The idea behind the construction of the observer is then as follows.

Y

Y
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Since u(t) and y(t) ars measurable, let us build a system with the exact

form of (9) and (10). Then we have

1l

_ xz_(t-!-l) A22 xz(t) -r Azl v(t) .+ 132 u(t) _ .(ll).

@{t) = (£) (12)

22 %
‘But, since any errors in the initial state or disturbances of the sygte’m
would make our approximation to X, (t) very bad, let us keep track of the
error between w(t) and ¥(t) and feed it back to the system i:l’mough the

matrix H, as shown in Figure 1.

So, we get the structure of the cbserver as follows

2, (e+1) = Bys 2, (8) + B, ¥i£) + 332 w(e) + Hiwle)-a,, &, (€))  (13)
Therefore
;’%2 (e+1) = (312-'2'— Hgl:',_)ﬁz'(t) + A, y(t) + B, u(t) +HwlE) (14)

Substituting (8b) in (14) we obtain

f,(64) = (Ay, - ml_,_)ﬁzt}c) ¥ (B = HADV(E) + (B, ~ HB Ju(t)

2 22
o+ Hoyl{e+l) - : ~ {(15).
Ncﬁw, in order to eliminaté the y(t+l) term from e@atioﬁ (15), let us
define | | |
2(8) = Ze) -my@ | . (1)
Finally, inseri:ing (16) into | {(15) we obtain the cie:éia;ed structure “f.or the

. observer as shown in Figure 2.

S TR e

-




z{t+l) = (A22 - Halz)z(t) + (Azz - HAlz)H v(i) + (Azl - HAli)y(t)
+ (B2 - HBl) u(t) i {(17)
Ey(e) = z(t) + Hy(k) (18)

We are now ready to compute the optimal input to the system given by

uf{t) = ¢ xl(t) . (19)

%, (t
¥, (t)
Partitioning G correspdndingly, we obtain

u{t) = Gl xl(t) + G2 xz(t) : (20)

where

Gl is 'a p x m constant matrix and

G2 is a p x n-m constant matrix

Substitutiong (18) into (20), we get

u(e) = (G + GHY(k) + G, a(t) | - (21)

Note from equation (17), that the observer dynémics are determined

by the eigenvalues of A,, - HA__. Since the pair (&

22 12 597 A12) is complete-

ly observable, it can be shown using duality, that the poles of the system

can be arbitrarily chosen by manipulation of the matrix H. This Suggests
that the closer the eigenvalues of the system are to the origin the better
the observer, since it would yield an extremely rapid convergence. This

tends, however, to make the observer act like a forward shift which

.

I o
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introduces several difficulties. Sﬁ, it is common practice to let the
dvnamics of the observer be just é little fastar.than those of the plant.
This uncertainty of not knowing how to choose the dynamics of the
observer, led during the last decade to some research in this avea, in
order to obtain the parameters of the 3 matrix by minimizing a2 cost.
Blanvillain (Bl), working tha continuous time problem, assumed the optimal
control to have the same struncture as the optimal contxol for the iinear
regulator problem, and then minimized the increment in cost due to the
use of the observer. Miller (Ml) minimized the standard quadratic cosi,
constraining the control law to be an affine fﬁnction of ®(t). Also
Newman (N1), Rom and Sarachick (R1), Yuksel and Bongiorno (Y1) among
others contributed in the solution of this problem. The approach to be

developed in the next section will follow Blanvillain's method.

4. WHE MINIMUM ORDER OBSERVER BASED COMPENSATOR PROBLEM

In this section the actual control prdblémvis solved. As'was
?ointed out eérlier, we start ﬁith & mgtrix difference operator équation
and based on thé‘results qbtaineé in cﬁapter two, ttansfﬁrm the sfstem
to & state space reéresentation. Aé was showp in the prévious éégtién,
all the éarameﬁers 6f the‘éompensaﬁdr cah be obtazined, once_we_find fﬁe

matrices H and G. These matrices are found by minimizing the expected

value with respect to the initial conditions of the standard quadratic
~cost. The solution of the optimization problem reduces to finding the

solution of two independent discrete time algebraic Ricatti equations.

‘l
|
!
K
,‘
B

i
h
{
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This éeparation i= acﬂievec‘i by. ﬁorking with x (&), thé states of .the plant,
and e{t), the error in the estimgi:ion of X, {t), instead of w_or]_{i_ng with
the more naturél variables x(t) and z(t), which lead to less tractable
equatiéns. The sufficlency conditions a:f:_é presented at the end of this
section. |

Assume that an irreducible system is give.n 0 us in the foll::xwing
form: |

P (=) Y(t) = Q(z) a(t) _ (1)
vhers

P(z) is an m x m matrix difference operatoxr

0(z) is an m x p matrix difference operator

and we have incorporated the matrix R as defined in chapter two

into P(z).
It was shown in sec':tion' three of chapter two, that the pla,n*‘é.* (1) can be
tran.sformed into a minimal state space representation of the formi

xO(t+1) = onoft) + By ult) S _ {(2a)

yi{t) = Cq X, (t) | | | | | ) (2w
where |

AO nx ﬁ} is_' in observable Zozm

BD (ﬁ xp) is & ‘constant rearl matrix

CD (m x n) 1s & matrix given by

= T
CO. 1\ CD

!




with
' (mxm) and Eb(m X 1) as defined in chapter two.

As pointed out in the previous section, we want the C métrix +o be of.
the form

c = [1_:0]
In the next_section,_when we discuss the structure of F, a transformation.
that achieves this goal is fully presented. Fof now, let us assume that
we have the desired strugture end proceed with the statement of “the
cptimization problem.

Given:

a) Eix(®}

Il

m. and E{x(0)x'(0)} = ZO for the process

0
' 2(t4l) = Bu(E) + Bult), ©el6,%) - (3)
ve) = [r_ % 0] m(t) | (2)

‘b)) The matrices A and B for the abové process
¢) The weighting matrices gln = ﬁ), R{p x p) such that
Qis a coﬁstaht'reél symmektric pdsitivevéemidgfiniﬁe matfiﬁ
" R is a constant real symmetric positive definite matrix
Find:. the ﬁatrices G(é # ﬁj.and ﬁ(n—m # ﬁ) and fhe wvector . =(0)
such.that the qost ‘

g = 8{] x'()o

0 x(t) +u'(L)R (L)}
=0 '

" ig minimized subject to

e e e i P o . ¢ i e T

-
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% (t+1)
z (t+1)}
¥ ({t)

u(t)

whers

o
il

= Ax(t) + B u(t)
= Fz(t) + 8 v(t) + D ult)
= € x(&)
= K viE) + X, z(t)
Bog T HRy
FH + ,(Azl - }mll)
B, = HBy
G, + G H
)

-

As noted before, this formulation leads to a series of intractable matrix

equations that can, however, be avoided by using e(t) =

. estimation of xz(t), instead of z(t}). BSo, let us define e{t) as

the error in the

elt) = x,(&) - & (t)_ _ (5)
Therafore
el(ttl) = F e(t) (6)
And
a(t) = x,(8) - Hy(t) - e(t) )
We can now state the problem as follows: leave everything in the
previous formulation unchanged but modify the consfraints to read ‘
:
::w e - ———T T (,L s - ‘._ = '_f"'""'_" = J' .y ‘ ‘- ._w___;:‘




x(t+l) = Bx(¥) + Bu(t)
e(t+l) = (A22 - ﬁAlz)e(t)
Culk) = Gx{t) - GL ef{t)
e(0) = x2(0) - Hy(0) - =z(0)
v (&) = xl(t)
Whére
Omx(n-m)
L = _
*(a-m) x (n-m) _

Define now the new zugmented state

=)
E(e) = [ }
e{t)

8y

{9)
{10)
(11)

(12)

‘Then we can make use of (8), (9),; and (10) to write the overall closed

loop system in the following form
E(e+l) = TE(w)
.Wﬁefé T.is.givén.ﬁy
_ T = A + BG . “BG_L

1] A - Ha

and 6f (11) to obtain the overall initial conditions as .

(13}

g e - : e
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£(0)

3(0)

[?xco)_
xz(O) - Hy(0) - Z(O)] (13

“E(0)

We are now ready to solve the above optimization problem. The cost J

.can now be rewritten as

T o= E{] E@® Q] - R (16)
£=0 | |

where ) is given by

@ = o+ G'Re =G'RGE _ ' L o

-L G'RG L'G'REGL
 Using équation (13) we can ses that E(t}, the augmenfed state at time T,
can be found as a funchion of the initial augmented state £(0) as follows
' £

gE(t) = T7&(O) (18)
‘Substituting (18) into (16}, the cost J can be expresséd as a function
of §{0)

s = B{] &I oy . )
=0

which can be computed as

g = w{) mFarhy =z} (20)

=0

-t
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where

0) = ®lE(E!(0)} | | (21)

1]

in oxder to find the value of J, we then need to compute only

) mtart - 4 : (22}
t=0 :

which can be found as a solution of the discrete time Lyapunov equation

A= TP AT +Q - : : : S (23)
Therefore
T = +tr{A E(0)} (24)

EVATUATION OF E (0)

Recalirfﬁmm (21) that

E (.0), = e{gO& o}
and from (ll) that

e(0) = x2(0)‘— Hx, (0) - z{0)
S0

E () = B [?{(Q i\[x'(ﬂ) el (0)] L o
E(O)TJ -

£, E, ' S s

.

20)

B

I
[1%]
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In order to compuie and EO’ we need to partition the matrix

%12

ZO and the vector m, as follows

0
’ E11 le
5, =
- )3 T
J 12 22
mo = ml
mn,

according to the dimensions of xl(O) and x2(0); So

B, = Elx@e(0)} = I, - % ,E - m ' (0) L (28)
% —‘Zizﬁ':* mzzf(Q?
and
5, = Ble@e 0} = HL B+ I, - ii_,_n* -"Hzlz'—' %(0) (m,~Fm, )"
- (m,, - gml)z'<0) + g(o)z*(n) o o ' (27)

EVALUATION OF A
Recall from (23} that A is given by

A = TVAT +Q

wvhere I is gi#en by (14} and @ by (17).

Partitioning A as

IH

e

i I N S




1l 12
A =
A A
12 a2
where
All is an n x n symmetric matrix
Aﬁz is an n x{n-m) matrix
A22 is an (n—m)x(nrm) symmets ric mntr_& we
we obtain
A A v ' =
1 12 (& + BG) o All Alz [A+BG 1 BGL
= +
A A - (BGL) ' : a3 tA A -
P12 oz (BL) ' (Bpy=ERy,) | [ B, Ay 1O 2y-ER,
- - _'; o _
0 + G'RG G RGL] (28)
~L'G'RG L'G'RGL

Expanding (28) we obtzin the following three matrix eguations

By, o= (asse) A (atBE) + Q + G'RG ' ' - (29)
A:Lz_ = -(atze) ‘A BGL.+. (A—!-BG)'A_IZ( 22 Hglz) - G'RGL ) (30)
4,, = (seL)'A . BEL - (Az'z-imlzj‘ﬂl BGL - (BGL) Alz(‘zz ~HA, ) +

| + (A.g. )7 Agz( éz II!x;';_z.) + L@ff{@ﬁ - o (31)

RN
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Comparing edquation (29) with equation (6) in section one we get

_ 1 ot 1 =1 _ :
All = A ﬂllA + 0 ~2 I\.llB(R—!-B ﬂllB) B Alla (32)

and

P .'-1 T o i | . .
G = -(R+B AllB) B Allza | (33)

‘From (30) we obtain

A, = -a'ABen - @'B'A BGL - g'gex. + (2:36) 'Alz_(za.zz—m}lz) (34)
A, = -3 ’AllBGL ~ &' (rs 'AllB)GL + (a+BG) ’Alz (Azzfﬂalz) (35)
and substitutiné (33).into (35) | ]
A, = @sEe) A,y - (36) ‘

If the analysis of this problem is done for the finite time interval [0,T]

and then the limit is taken, we will find that
A =0 : - . - o (37)
Substituting (37) and (33) in (31) we get

. ) “ _ Tt
hyp = By i) Ay By iRy )L 678 A, AL =8

Boa”
Recall now, from (24) that .

T = tr(d E(0))

then




T = kx All 0 ZO' 512
0 Ay 510 B | ) - {39)
£0 _ !
T o= tr(AliED) + £ Ay, B ) | | . ) (40)

- Comparing equation (5) of section one with (40}, we see that the inclusion
of an obsexrver in the system to estimate the nonaveailable states has the

effect of increasing the cost by

AT = ®x(A,, E) . D _ (41)

The idea now is to £ind the optimum parameter H and z{0) =such that
the increment in the cost , AT, is minirﬁized, so we want to éolve ﬁhe
following minimization problem.

Given:

a) A = (&

22 Ry ) Ay

_ e lmlnt
22 22 HRyp)= TIGTBIA AL

a2
where G and A'll are described by equations (32} and (33), and
obviou_.sly _indepé_ndent. of H and z_(O) .

H = 1 - :' - —_ 1~ B IR
b) =, HEllH + Ly, ~ IE - Bl z(0) (m, Hml)

e T Y ¥ . 1 :
- (m,—Hm, )27 (0) + z(0)z {0)
Find the optimum parasmeters of H and z(0) such that the increment

in the cost

N U7 N PP
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A = tr(AE)

is minimized.

Llorens proved kLZ) that the above dynamic optimization problem can
be transformed to a static optimization pﬁoblem, using a technique similax
to the Lagrange multiplier method used to solve minimization problems in

caloculus. This static optimization problem becomes of the form

b5 = wxlh B+l —BA ) ‘A, (3, ~HA )~ v'e'eh AL - 4, 1K
(42)
Ar = tr{ A, HI, H + ﬂ22222 - A, B " A HE .
= A,,z(0) (m,~Hm ) ' ~ A, (mzéﬁml }z"-(o)' + Azzé(O)z" (0)
[(“ 12’ 22 (BopmHR; ) - L}GLBJAiIAL ~h, 1% (a3)

" The necessary condition for (43) to have a stationary point at z#(0), K%,

H*, Azz* are the following:

9J _
dzor |, = © : @
) _ o )
w® =0 (45)
37 | - ' I '
Eli . (46)
. ,

=

A
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oA o |

8A2 5 r':

= 0 . N {47)

where L. ‘means "evaluated at the stationary point"

From (44)

Az #(0) - (m —H'm) = 0
So
z#(0) = Wy - H*.ml : (48)
f‘ro@ (45}
g, = (R ) AR (322~ﬁ*312)~ z'e’'s'A, AL (49)
From (46)
0 = A, B, - A5, B, + MaEo)my - ) B
. 85, H*éng*?-iz | : a (50)
- From (47)
X o H*.EllH%’ + I, - .Zizﬂ*"”.— BE - 2 ?9_’,(7“_2_1{_*’“1 3!
- (mz-—H*ml)z'*(O) + z%(0)z%' (0) + (,,-H%A, ) K¥ (2, —HF2, )
. (1)
. Suhs..lhutlng (48) in (SO) and solving .a.or H¥* we get
S H* = (E:JL'2 - mzm;i + 2\.2 K*P.!z) (le' - m1ml - Al K*Alz) =1 _ . (B52)

s Lot R REUE ' HE L e e
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and substituting (48) in (51)

* = —H 5 I ! & - Uy gt
K (B, 7H¥R) )RS (B ~HFR, )+ BF (R - mym) )8

+ L, -mm ~ (I

- Tyt o oppw - 1
20 ~ Moy 1p T Wy )E BE (L), — mymy)

12

which becomes, after some manipulations

re = % 1 - L ] - LA sent .
X BygfByy ¥ Ly = Moy = (&5 = mymy + A K2, ,)

a - t Tk ! '—1‘ - 1 v *nT
(Bjg —mymy B KER, ) I, - mpmy o+ By KAL)

(53)

{(54)

Summarizing, the optimal compensator parameters H,G, and z{0) can bhe

found as follows

Peedback gain
G =+ -(R+B8 A B")"lB"Ala
11 1

where

1

All = A AllA +Q -3 AllB(R—:-B !L_U_B)

]
B AR
Parameters of the obhservexr

- T .1 1 _ r ' ,  -1
H (Zy = myly + B KR ) By = mymy & By KR, )

where
_ 1 . _ -1 T _ 1 - T . '
X A22KA22 + }:22 m2m2 (Zl 5 = Wmmy E Azzml 2)
- tos Cxalt 15 - 1. ¥
(Byq = mymy + 2 KR ) T(Ey, - mmy A KR),)
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and

#z{0) = m, - Iﬁnl

Notice f£rom the above equations, that the separation that was re-
ferred at the beginning of this section holds. The feedback gain depends
only on the plant parameters énd the weighting matrices, while the parameters
of the ohserver depend on the glant structure and the statistics of the
process. This observation is very important sinece it zllows us to con-

' Struct the observer'and the feedback gain of thé compensatof independéntly
of one another.

aApart from the assumptioﬁé that wers maﬁe'thrdugh the development
of the optimal compensator, if we assume that (le - nﬁyi) is positive
definiﬁe,'the transfer functién of the obsérver will be tnique. Furﬁﬁefn
more, Blanvillazin and Johnson (B2) f&ﬁn& that the plant transfer Function
uniquelf determines fhe transfer function of fhe compénsator.

Llorens (LZ} presented the conditions ﬁhgt must be satisfied ip
Aorder to guarantee the existencé of positive definite.All and K maﬁriées..
These are

a) (a,B) be a controllable pair

h) (A,Qlfz)_be“an observable pair
and
-1
T o at e om 1y - " @t feoem ] :
c} (A22 A (%, ,-m.mm T(Z _.mlmz), Alg)_be a.controflable p;lrﬁ

127711 1L 12

el

e

L




pair (A,C) be cbservable, zxs the
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1 — 1 - H -1 - 1 -« - [ -
@) (Byy m B,y mmymy) TG, mmmy), (S5, - mpgmy - (Er, -~ omomy)

PN

(Ey - lmi)ﬂl(ﬁlz - mlmé)]l/z) be an observable pair

e) (le - mlmi) is & nonsingular matrix

Condition ¢} is satisfied if the pair (R,C) is obssxrvable. These

conditions, especizllv za) and the implication of condition ¢} that the
main reasons that led us to construct

a2 minimal realization from the original matrix difference operators.

5. THE A.R.M.A. COMPENSAibR

In the previous section we fTound the struciure of the optima; obsefver
based compensator by minimizing a performance index. Since we want =
minimim order ohserver, if turns out that the input to the system degen&s

not only on the estimates of the nonavailable states, but on the output

itself. This is an ideslized situation for purely synchronous disc;gte
time systems, since it 1s impossible in prac?ice to feed back the.measuze~
ment zt time t without any delay. Three different ways get around this
problem are:

2) build, instead of z minimum order observer a full state observer:
this approach would have all the mathematical simplicity, as well
.as éropérties; such'és the separation between gain and obsexver

- parameters eguations, found in the developmenﬁ of the optimal
mindmom brdéf.bbserver based compsisator.  In practice, this

method won't increase the order of the observer by too much since

i b i

i




._.57._.
generally, the number of outputs even for complex systems, is
small compared to the number of states

b) txv to find another struciture for a compensator, hopefully of

dégreé less than n that will feed back an estimate of the states
plus a combination of the outputs at time, say,’t;l

) c&nstxuct a "nearly éyﬁchrondus" controller that wil be able to

compute u(t) at (t+A), A<< 1 such that the output at time t
‘_ébul& have enough time to be fed béck.. Tn this case the same
compéﬁéatdr found in the previous section ﬁbuid be used.

In ﬁhis sectioﬁ, wé will assume that:?he opﬁimal compensator already
found is :eali;able, and then we will transfiorm the state space representa-
tion of the compensator into é matrix difference operator form} using the
technique_presented in section four of chapter two. We wiil also f£ind the
struéture of the matrices A andAF use&-in thé pfevious séction, and show
that F is.in observable form.

We are.intérested here to £ind then ﬁhe opiimal céﬁpensaﬁor.trénsfeﬁ
functionf_ Becail ﬁrqm ﬁhe_pre?idus section that thg equaﬁions satisfied

by the  optimal compensator are

12

z(t+l) = Fz(t) + 8 y(£) + D ulk) T @
(k) = Kiy(t) + X, = (&)} | ' (2)
-wheie
is an (n-m)x(n-m) matrix

F o= Ry

FH + AZl - Hall ls_an (nxm)xm matrix

Il

5
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D = Bz - I-!Bl is an {n-m)xp matrix
Kl = G1 + GZH is an p x m matrix
K2 = G2 is a p x(n-m) matrix

From (1) and (2)

(zI—-F)_l 8 y{t) +.(zI—F)—1D u(t) | | (3)

z ()

ult) = ﬁyﬁ)+ﬁf&). - , (4)
Substituting =z (t) from (3} in {4) we obtain
ule) = Ky + KZ'(QI-F)"I sy {£) +-1<é (z1-F) D ult) :' (5)
Finélly rearranging terms we get
(T - K (zI—E)“lD)u(t) = (. + K (zI—F)HlS)v(t—) (6)
P 2 _ Kl 2 -

which is a transfer eguation from output to input.
Note that the system described by (6) is not irreducible, but at

any rate, we are noi concerned in this section to obtain a system in

irreducible matrix difference operator forxm. It is important to note

: o : : . : -1 . . Lo
also, that since it is needed to compute (2I-F) ~ on both sides of (6),

we caﬁ.multiply boﬁh IP an@ Kl by @e@(gI%F} and then cancel the EE%TEEZET
thaﬁ‘will be p;ésent on both si&eé. In other words | | |
{det (2I-F)T, - X, (ad](z1-F) )Dju(t) = (de‘t(zI%F)‘Klj :
+ Ky (adj (zT-F))S)y(8) (D)

and here is vhere paddev's method to compute the adjoint of a matrix be-

comes handy.

4

Lle o o
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COMPUTATION OF det (zI-F) AND ad]j{zI-F)

Note £xom section four of chaptér "\.'.‘.-J’O. that if the det(zI-F) is given
by

det (zI-F) = =z - P,z - p.2 - vee — D . {8)

and the adj (zT-F) by

. _ n-m~-1L n-m-2 n-m3 |
adj (_zEE—F) = Iz T J,2 -r._Jzz S Jn-—-m~l (9)
we can compute simultaneously Pl' p:2 PR ,pn_m and Jl ) preee ’Jn—m-'l using
Faddeev's algoxithm
= = 1 ¥ . : T = T —_
Fl | F Pl tr (::l) ‘ Jq Fy plI
1 L
= 1Y) = — = ~— T
o S Py 5 T (F,) Ty T Ey 7Rt
1 .
= TFJ =  — t = -
Fa By Py 3 Ty Ty = Fy 7Ryl
Fr-m-1 Bem2 Paeme-l T im—l CACHNNED J =F ~ T
B o mA R o L o n-m-1 n-m—-1 I91‘1---:{1«].
Fom ~ E!Jn--m_-- Pam  om F (’n—m) '
(10)
Inserting (8) and (9) into (7) we obtain
n-m n-m—-1 - n-m-1 n-m—2
[z = ByZ = ees - pn_m).LP KQ(Iz + le -
, _ n-—m Ii-m—l s
* e + qnfmrl)plu(t} = ‘[(g P17 cee T Pondy
; Kzilzn_m-l O R SN I P2 @y

i n-m-~

_which reduces to the Autcénegres‘sive Moving-Average form

e it .
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ale) = (K, [2I- (0K 1T (SR )+ KDY () e _
Fmploying again Faddeev's methodrto obtain both det[zI—(F+DK2)] and
adj[zI—(FiDKéJ] we gei ) .:J
'n-m) -r. I -m=1)= ... - = +n— _
Ipu(tfn m) r,) Pp.(t+n m-1) - ._xnrm;pu§t)» _ .KlY(t p_m) ]
- - -1} — — (r = DR
(=, K K2(5+QK1))y(tf-n L) e = (KK g (SR )Y () (a7)
ﬁhere
det[zI-(F4DK,)] = 2" ® - 2z 27 ™1 _ L g2 L Ly
. =2t o L 2 CnTm
and
1
$
e - - — . - — ._"r'_‘,q
:? ‘-'._ alk o 13, Q A -.-'7' ‘_ - * n — -~ I — W — L

e ———— . . - . .. L N ——— e S P . s m——

JP—

—60—
—m) — £ e B P —_ T - =
zpu(t+n m) (pllp.KzD)u(t+n m-l)~ ... (Ph~mLp + K2un-mrlD)u(t)

= Kly(?+nrm)~(PlKIHKzs)y(t+n-m—l)— cee = (Pn~mKi_K2Jn~m—1s)y(t) (12)

Notice that the number of mu1tiplications required to obtain each

" new input is

{ 14p2) (n-m) + pm o - (13)

This number can be reduced if instead of using (6) we compute the
transfer function of the system as follows: Substitute (2) into (1) to
get

s{t+l) = (F+DKé)z(t) + (S+DKi)y(t) . (14)

Taking the Z-transform in both sides we obtain -

Z(E) = [2I- (K1 (S4DK, )y (t) | (15)

to finally substitute (L5) into (2) to get




-51—

. 2 n-m~1 n-m—-2 |
adj(zI-(F4DK)1" = Iz + M,z oM

Notice that the number of multiplicétions reguired by using (i7) has been

reduced to

{omip) (n-m) + pm , , : (18)

STRUC‘I‘URE. OF THE A AND P MATRICES

After using Wolovich's method in the previous section to achieve the
'transformaﬁion From é maﬁrix difference oéeratbr foﬁm into a state space
representation, we pointed out that a similarity transformziion was
requi;.*e& in order 'tt': put the' system into .state output cancnical fofm.
'_ vWe will present nbw one transf»ormationA that will gj.ve us the matrix F in
an observable form.

Recall from equations (2a) and (2b) of sections fdur»that we have a

completely observable system of the form

CEg (L) = Agx(E) + By u(t) __-._.-_-;: . o S {19)
Syl = gy e S (20)

where
A, (nxm) is in ohservable form
B, (nxp) is 2 constant matrix

CO (mxn) is a matrix given by

that we want to convert into state output canonical form. That is, we

want to £ind a similarity transformation given by -

WS P - . LI 7 R T - b a T - h

B
S TP
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x(t)‘ = 7 x,(t) ' | (21)
such that -
x(k) = B T x(e) + B ult) = Ax(e) + Bule) (22)
-1 . |
y(E) = CJ° x(t) , (23)

is in state output canonical foxm. -

Let us look at the structure of c0 in order to find the desired J-l

c, = oo ..o ‘| oo .. 0o |} |
-1 -1 -1
o0 .. 0T o0 .. 0 T ... T (24)
. . cl : - ) cm :
00 .. O 0 0 0
¥ x
1 ) n

—1 - - .
where I' 7, T 1, .o I 1 denote the first, second; ..., and mth columns of
cl e2 cm
-1 - _ _ - .
I and s r2,.,.,rm_are the_rl,;rz,t..,:m columns of Cb as defined by.

. . - . . R . —1
(8) in section thres of chapter two. We see that if we define J as

S ST

-

i" Q.:.___._______A_L_n__’._-.—._‘_.;;-g,_,, o ,,. . - .t PR —
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r-E)O .. 0 . 1L 0..000..00...0
o0 .. 0 .0 1 ..000.. ... 0
gt = 00 .. 0 .00 100..00-...0
x, - ri - .0 0 000..00...0
. 00 0o .0 0 010..00...0
o0 .. 0 .0 O. 0O01..00...0
00 ...0 .0 0 000..10...0 (25
r, | "2 - .0 0 000..00...0
00 ... . 0 c00..01L...0
00 ...0 "D O ooo0..00 ...
I - .
rm - P 0 0 000 .. 0 .-
m . n-m
where =X, ,;-..,r denote the r_ ,r. ,...,r rows of J_l e
: TE Lok, SN EqrTye t T tpat r
Fm are the first, second,..., and mth rows of T.
Then C will be in state output canonical Ffo¥m, i.e.,
¢ [Im Omx(n—-m)] (26)
From ({25)

- -

T
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S0 A will ke given by

(28)
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|
c
0

0
0
0
0

10
01

00

10
0
0
0

00

00
00

00

0

0
00

00

o
0

00

0

4]
00

=~}

Dot

00
00

co

where the | columns denote columns of numbers.

Recall now that F is obtained by

—
o
[y
St

So, £from {(29) and (30) we can finallﬁr find the structure of F to be

given by
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i 00 ... 0}too ... o0lo ... o
10 ... 000 ... 0o ... o
01 ... 0}00 ... 0]0 ... o©
: : : r
F o= 00 ... 1L{00 ... 0 {0 ... 0O
00 ... 0100 ... 0 jo ... o©
G0 ... 0110 ... 0}JoO0 ... ©
00 ... 0jo1 ... ojo ... o
00 ... 0{00 ... L {0 ... 0O
00 ... 0§00 ... 0}o 0
00 ... ojoo ... 0fz 0
60 ... ojoo ' o] 1
- ' =

which is the multivariable observable form.

REMARKS

EL) Taking advantagfe of the stﬁctue of F and using (1) and (2),
we f£ind that thevnumber of multipli¢ationsvneuded to obtain éach new in-v
put working in state space form is (2p+2m) (n-m) + pm. Comparing this
number with (pmtp) (n-fm) A‘)" om, the number Ffound fo; ihe Auto~-Regressive
Moving-Average modél, we ﬁote that for syétems thag Fr‘;ave a small number
, pf inputs, the differencé is not that big. We need ce _have- in _mind also
that the B.R.M.A. struciure found is not irreducible, so for specific
. prqblems " some extra sa_\fiﬁgs in the _above npmb_er _oi computations can be
achisved. | E

b) 2s was pointed out earlier, one of the big advantages of having

the system in an A.R.M.A. form is that for simple systems the implementation

of the compensator can be done with readily available slements, and for . =

more complex systems a Stack can be created, which allows us to avoid

AP
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core memory accesses, a characteristic that speeds up the computation

time.

— -
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CHAPTER IV

INTRODUCTION

In this chapter we will present three different methods to obtain
minimum variance control strategies for single input single output
discrete time systems. The main reason to build these types of com-
pensators is to reduce the effects that noise has on the plant. Aas will
be seen in the example solved in chapter five, these prdcédures do not
guarantee the stébility of the compensétor. E#en though the compensator
will not be necessarily stable, thé overall system will be.A In oxder to
avoid the problems pointed out in the previous chapter, it is assumed
that the compensator computes each new input as a function, solely, of the
past information available, i.e., u(t) depends only on the previous inputs
a(t~1), ult-2),... and the previocus noisy meaSureﬁents z({t-1), é(t-z),....

The structure of this chapter is as follows. In section two the
necessary conditions to achieﬁe a minimum variance cbnﬁrol for a noisy
system with noisy measurements are obtaineq. This is a direct method
gince it will not.be necéssary to transfoﬁm,the system into a state space
representation. Ihis technique has the great digadvantagg that.even for
very loﬁ ordered systems the egquations become untractable. Section
three deals with the same problem, but the system is converted to state
spacé form. Although the structure assumed for the compensator does not
allow us to get a separation to obtain its parameters, as was the case

with the minumum-order based compensator solved in the previous chapter,
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the matrix equations that we get can be solved with the use of a computer.

Section four presents the strategy developed by Astrom to get the minimum

- output variance control for a discrete time linear time invariant plant

with noise-free measurements. It turns out that the compensator, using
this method, is very easy +o get. 2 simple polynomial division gives
directly the parameters of the compensator as well as the numbers reguired

to £ind the wvariance of the ocutput.

2. MINIMUM VARIANCE CONTROL-DIRECT METHOD 1

As was pointed out in the introduction, the great disadvaniage of

. this method lies in the fact that the equations that need to be solved

are not diffienlt to get, but if obtained, difficult to solve. The idea
hehind this teghnique.is as follows: once the structure of the com-
peasator is assumed, substitunte it into the transfer function of the
original system, in order to obtain the transfer function of the overall
system depending only on the transfer function from internal noise and
measurement nolse to output. 2t this point, we go back to the time domain
and find the necessary conditions recuired to get a minimum variance of
the output.

‘Let us assume that an nth discrete time linear time invariant Single

-

input system is described by the following Auto Regressive Moving aAverage

R

a4

el

'equétion:3
Y(t+n)+an_1Y(tinrl)+ cee aoy(t) = bn_lu(t+n—l)+-... + bou(t)+
T o T - L
cn_lv(t.n 1)+ .. 4 cov(t) (%)
B o R oL — S




where
u(t)

- v (&)

Since the
z{i)

wherea

w(k)

Now,

structure

wl{tdn) +4
n—-

which can
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is the input to the systen

is the internal white gaussian noise such that

B(v(t)) = 0 and cov(v(t)) = vo(t)
measurements are also noisy, let

= y(t) + wit)

is @ white gauissian noise such that

Ew(E)) = 0, coviw(t)) = Wo(t) and E(v(t)w(t)) = O

2

(2}

let us assume that the th order compensator has the following
=tn—-1) 4+ - + = “n-1)4 + £
" u{tm-1)+ ... = do (L) fn_lz(t.n 1)+ ... 3 Dz(i.:)
' (3)
be rewritten aé
| u(t{n)—:— dn—»l u(tin—-1)+ o+ do_u_(_t)_=_fn_ly(t+n51)+_... _—:- foy(-'.:) +.

Taking the

vit)

u(t)

£ wlttn-1)+ ... + fo-u('-::)
Z—if&nsforﬁ 6f both (1) and (4)'we_get
- BlEL g 4 SEEL g

- E v <28

(4)

5y

(6)

=
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where
(=) = z" - anrlzn-l toaen o2y
= Il'_"l £ s,
B(Z) _- bn_lz " eaas T ho
o n-1 N
c(z) = cn—lz + oo 4 co
.- SR < S n-1 ., . -
ni{=z) = =z 4 dn_lz ... do
F(z) = fn_lzn'l Fooee FE
Substituting (6) into (5} we get
v _ B(z) F(=) oy . E(z) -, =) : ' .
yh)—-Aw) %ETYR)TDm)WﬁH'TEGTVﬁ) (73
which becomes
7 (t) B(z)F (=) wiE) + C(z)D(=z) v (E) )

A(z)D(z)~B(z)F(x) A(z)D(z)-B(z)F(=z)

Eguation (8) desexibés the overail.élosed loop tﬁansfer function.
Note tbat since B(z)}F(z) is of degreé 2n—-2 and A(z}D(z)—B(z)F(z) of degree
2n, the measurement noisa_at time t will be delayed twiﬁe befpre it is .
reflegted on thé'output.of thé system; this is logical since this ﬁistnrbance
has to go thrcugh_the compensaﬁpr-as_we;l as the plant before. it goes out.

Observe alsc that since the order of C(z)b{z) iz 2n-1 the internal noise

is delayed only once, this is because v(t) has only to go through the

plant before it is reflected at the uutput.
Having obtained the transfer fumction of the closed loop system we

go back to the time domain tm express
: T L S x :
y{€) = '} h(t-nly@) + } glE-n)v@ = (9)
n=0 ' n=0
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where

B (2)F (2)
A(z)D(z)-B{z)F(z)

h(t) is the inverse ZutranSform of

C{z)D(=z) }
A(Z)D(z)f—B {(2)F (=)

g({t) is the inverse Z—transform of

We are now ready to compute the variance of y(t}

' i t
By (t)) = BI() h{tnlw(m + § g@E-nmv@m)( ] hle-i)y(i)
n=0 - w0 - =0
-
+ ) gle-iyv(i)) v (10)
| i=0

Revalling that v(t} and w(t) are independent, (10) becomes

o, £ £ ot
E(y(t)) = E( ) hit-n)w(n) [ h(t-Dwli) + § gle-n)vin)
. - n=0 i=Q n=0
. |
) gle-i)v(i) - (L1)
i=0 ‘ ‘ :

Since E('. (n)w(i}) = Wé(n—1i) and Etv (n)v(i)) = v8(n-i), we cbitain

By () = | htmw + I 2w o , o (2)
=0 =0

and taking the limit as t + © we Ffinally get

By7 (@) = JRimw+ § @y oas
n=0 n=0 . -

_therefore, the necessary conditions that must be satisfied to obtain a

- minimum output variance are

T
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T dh(n) _ . © daln) o _
] B 5 wﬂ-nzqolgcn) LotV = (14).

d

greeeidgr B g0 E

for each s, s being dn- _n-l’ ETERTY fo

lf
We can see in (14) the difficulty to implement the compensator using
this technique, because, not only to obtain g{n) and h{n) for n~—«0_,1¢._,._._r
is a2 tremendous task, but to solve the necessary conditions ig almost
impossible, since in almost every h(i) and g(i) there are present at least
several of the parameters we are trying to find.
In order to avoid these difficulties, we can use Parseval's xelation

to put (13) as folluws

’ m . . o . . ’
By’ @) = 5o [ HEeIHEr(Ee Ddn + 5 c(e’™ et (e M) an (15)
T T
and then the necessary conditions become
m - %ot ™ ju .
w [oEelty BEHET) gy gy 0 BT ) (e o+
9s 9s
- =T
T . e radWy T ju . . o :
T+ v f G(eju) §E§é§4—l-du,+ v f gg%g——l-G*(ejn)du = 0 ' (18)

for each s as defined above.

Note.that even though the.parameters of the éompenéatdi can be found
more easily nsing (16) instegd_of {14){ they axe:n°t readily available_
and the compuﬁations aré stili,diffiéﬁlf especially bécause of tﬁg |

integration that must he done.




B
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3. MINIMUM VARIANCE CONTROL-—-—D’]ATRIX APPROACH

The difficulty of solving this minimum variance control problem
using.the &irect method 1 approach, leads us to obtain the solution by
using.sﬁate space techniques. The ideé behind this matrix agéroach is
to convert the system and the assumed compensator structure into state
space form>énd then ﬁinimize the limit as £ » o of the variance of the

output with respect to the unknown parameters.

Recall from the previous section that the plant mathematical representa-

tion is
v (k) + anﬁly(t+n-l)r eee + aoy(t) = bn_lu(t+n—l)+.... + b0 u{t)

to g wtn-1)+ ...+ egvi(E) o | v | | , .(‘1)

and the compensator's is

~1}4 : : < IR | £
u(t+n)+dn_lp(t+p l)f eee T dou(t)_ “nhly(tTn 1)+ cee _Oy(t)

& _qw el + Lo+ far(E) (2)

We can represent these systems in state space form as

00 0 "2y 7] rbo . ﬁco .
io 0 =2 R B €1 .
0l ... 0 —& b2 c2
x{el) = | L. . x(e) oo julk) . | wiE)
.09 ~a’n~l_ - nfli —cn—TJ

(3)

2

L TN
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yv(t) = [ 0 ... 0L1lix(E) (4)
o0 0 -d, fD fo
10 ... 0 ~d1 £ fl
1 c 1L 0 —dz £ fz
z{t+l) = .- .. z(t) +|. v(t) + |. u{t)
00 i - : £ f :
B _ n-l | 3 n—l_ | n—i (5)
(e} = [0 0 .... 01] ={&). . _ : _ (6)
and for convenience as
xz(t+l) = ax(t) + Bu(t) + Cvi(t) A7)
y(&) = me(e) | | | o (@)
2(eH) = Doymg Z(E) * Ty (e) + Fa(t) | | .(9}'
u(t) = Hz(t) . ‘ , ' - (10)

Furthermore, we assume that (2,B) and @#,C) are controllable pairs.

For reasons that will be seen later, we let

Dopg = L+ Dg | _ | (11)
where _ .
"0 0 0 0] . *
10 0 0o
0 1 ... 00
I = - . .
L0 0 L 0|
and

T T R T T ey
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%

Then we can rewrite (9) as
zZ(k+l) = (I4DH)z(£) + Fy(t) + Fw(t)

and the augmented system is

x(e+1) |
_ z(t+i)

.

Il

viE)

E ol [=)
z (&)

x(t)

= (t)

I'=ABH] a=[co
\ |F weDE ] o ®

we ocan. vwrite (13) and (14) as =

L]
—
ﬂi
L
I
| r—

‘and:

a BE | [=x(®] + [ec o7 [v)
lFr mepm) ae)| o ¥ | |ww]

(12)

(13)

(14)

©(as)

(18)

P P i s A Fr . Lo ' . n
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Ee+l) = T E@) + o VB - | - an
wit)
v&) = @8 01 E(x) - (18)
Note from {17} that
t et £mi-1 v ()
E() = T&(0) + ) T ) ]
o ' ' i=0 ' w (i) (19)
We are now rea&y to find the variance of the output as follows
E(Y'(ﬁ)Y(tJ) = EB(g(t) I:H‘] (B 01 g{t)) (20)
0
=le]
H' H o:l
var(y(t)) = E(E (%) o . 04 gt (21)

gince we are interested in finding the limit as t s= of var(y(t)) as a
function of the initial conditions of the plant and compensator, and the

disturbance variance, we can rewrite (21) as

: T =0 el - - i
1im BIE* (O)T' - [T E -D} Y + § Ww@wlle o
T ) 0 i=0
H'H 0_. -1 - : v(-ji' | ' ' =
y Ity . (22)

o o] 3= wii)|

which; recalling from the previous secition that wi{t} and v(t) are

independent white gaussisn noises, beccmes,

!
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H'H O -1 .
Lin B[E' (0) T'° [ ] Iz + § Iw@wdle T
e i=0

FH 1 NIFIER €S | |
[§ o
0 0 u(i) (23)

that can be computed as

tr{ A

v 0 ‘ ' :
1 5(0)) -I-tr(Aza oaet) o - (2¢)

where

Z(0) = E[E(QE'(0)]

! ‘
ho= um pt [FEOOp R T -3
T 0 0
[ W HH O :
R i |
A, = 1m J ¥ pEmit (26)
tea  1=0 c 0

Since we want a Stable overall system, note that lim T'" should be zero so

5
'Al‘ =0 : ’ o R . - : '(27.]-
then (24} Eéﬁoﬁes
: cvct 0 :
var(z(®)) = tx(d, S R : . . ~(28)
_ ' ' 0 - FWE? ' : ' I

A
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where Az solves the discrete time Lyapunnov equation

: ; H'E 0 : : '

- 1

A, oA, A . . (29)

At this pbint we can éee why the compensator is not guavanteed to
be stable vhile the overall system is. From equation (23i_we_note that
élfhouéh we are "sorit of penalizing” xz(t) we are not doing the same with
z(t}), and from (26) we obse;ve that_if_the overall system was not stable
Az would diverge. We are now ready to solve for the necessary conditions
in qrdEr for the compensator to privide a minimum variance contxol. To
do this we have to minimize

cve! 0

tx (Az o )

. 0o FWF
with respect to F and D
subject to 7
H'H O_

1_\.2' = I"A21’ +

0 0
' As was pointed out in chapter three, we can convert this dyﬁamic
minimization problem into a static minimization as follows.
‘Define
cve" 0 ' H'H 0
o= e, | L+ [SA, + T, T+ 18> - (30
0 FuE' - 0 0
Tn order for T to be a minimum the following necessary conditions must .

be satisfied

—

I T
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kg | = o (31)
B =
o I
Bﬂz-_' = B (32)
3|
oF = 0 (33)
*
| |
& | =0 (32)
where [; means "evaluated at the optimum soluﬁions"Q
From (31) we obtain
: H'H
= Tt e
A2 T vA2I‘ + (35)
0
From (32)
: . |ever o
B = TRP' + (36)
0] FWE'
Partitioninq A2 and B as
A= Aj..l '(112
2
A, A
B ;2 , 22 |
8, By |
‘ T
_BI.2 IE"22,__

e

R

Na
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we can see that (30) can be rewritten as

— . ™ 1 —
J = tr_[Allcvc' +A TWF' + [-A A-I-A'Al FH + H'F' 1A+

+ E'F'AzzFH + H'HIB,, + [- [L.Lz + A'A  BH + A A12L +A'A DH +

. WIFI AL . 1T ) ot 1 A 4+ ptal ._
+HFA125HTH.E A22L+HFA22DHIE312+[A12 HsnllpT

+ .H'D'AizA -*- H'_B'_ILLzFH + L'A22FH + H'D"AzzFH]'812 + (—A22
+_ ;I'B'ﬁ.lzn + H‘B'I\12DH + H’D'[\izBH + L'AZ;.ZBH_ + L'Azz_l’ +
+ '11 DH-‘-H'D A L HD'A DH)B
sof fxrom (33)Aand (37)
0 =. ,-Azzm + ﬁizasllz—'ﬁ +.A22FH81151' .ﬂlzBI-IB' H' + A22LBi2H‘
A22DHB_112H
and from (34)
0 o= Ai As I-I' + A FHB H' AlZBHB ! A LB H’ + A DH‘BZEH
Note thét | ' .
0. = A:'L2A812 B,oTHB o F AgBEB,, + ﬁ22{“+Dh’ Bz

is sufficient for (3%a) to be satisfied

Solving for ¥ in (38) we get

(37)

(38)

+ H?B'AllBH +

(39a)_.-

{39b)

AT

-

e
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- _."‘l ] ¥ T 1 1 2 ' T o 1y —L ;
F = Azz“&zABuH + A123H812H + A22 (L+DH) Ble )(w.HBllH ) (40)
and substituting (40} in {33b)
(I4+DH) = A Lo A[-B,. + R..H' (wiHR H')_lHB 1
22 A12 12 11 P11 12
P U 1, -1 -1 -l N
[Byp=BypH" (0B BT THB, ] Bya MoBH (21)
finally
o= - AT A AR H & (<R + B q' (w28, B') THB, )
22 12 11 12 11 11 12
(8- B! B (w3 _H';"'mg )"l @' m'][w:EB H.'?i'”l (42)
22 12 11 12 12 1L ' -
Expanding (36) we cobtain
) 11 1 v PVt l 1
Bll = ABllA + ABlZH B + BHBlz A + BHB,HB + CVC (43)
1 - _‘l N H 1 " . g ] T 1 1
: 812 = FHBllh o+ {L-:-DH)Blza ; FHE’;IZH B + {L-+DH) 3225 B {44)
_ 4 1_b — . ' H L \ T ay T ,.
8,y = T:HBllH Fo+ rHBlz (r+DH) ' + (I+DH) B H'F' + (L4DH) 322 (I4DH) ' +
. _
+ FWF _ ' _ {(45)
Let
S = (-8, + B H [wHE H'1 TES )(B, - Bl E [wwe '] L ug )t
12 11 11 127 *Ma2 12 11 12

Then, substituting F and (I-4+DH) into (44) and (45)
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t _ =1 pu 1 1L T, i 1 1,1 1
512 = -A22 Al.? A(BllH. [w-i-HBllH 1 HﬁllA + 561211 [w—i-HBllH 1 I-IBllA
H 1 T ] _l 1 ! 1 ] 1
- sBlzza + 812H B) - Azz A:LZ BH(BlZA + 622}1 B') (46)

—_ "'1 ¥ "] 4 '_1 1 1 1 . | —l |
522 = A22 A:Lz A(BllH [W-’.-HBllH] HBllA 4 5512H [w—!—Hﬁllhl HBllA

Yot .t -1 -1 . . —_
- sBlZA + 81_2H B )812 A22 + 1122 AlzBH(BzzE{ B O+ 812A )

A12 A;JZ- .(47)

Seo

Bz = Bp _Alz A:—z; - - - e
and since: 82'2 is symmei:ri..c

By = - A;'z_ A;Lz B1o (49)
Expanding (35} we get
_— a' AA+ A'. A, FH & 5 A'lZA + g7 AzzFﬁ s a'E (50)
Alz = A“AllBH + A Alz (r-tDH) + H'F'AizBH + H'F"A22 fL+DH) (51)
Ay, = '8 AllBH + H'B' A12CL+DI-I) + (IHDH) + (L+DH)'A12BH +

+ {I+DH) A22 (1+4+DH) {52)

P
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Substituting (41) and (42) in the above eguations

1 T -1 . .1 ] 1 H 1 =1
All = A A_llp, - a A12 A AlZA[BllH + 8B, 8 TIwiEB E1 ~ H -
- ® [wemB. E'] T[HB.. + HB._S'1a' A 2N A
_ 11 11 5 712 712 T2z T2
© & ' [weHB H'1 T[HB,, + HB .S'a' A AL A a
TR 11 12 12 ‘a2 i
[5113' + Ssiz E'} [w+1-:8.,_lH'1"1 E+H'E ' (53)

- :I ___ . "'l 1 1 =1 1 -
ILLZ = A [All A:Lz AT A I1BH + A Alz A22 A12 AS
22 12
- H'[weEB, H') V(R . + uB. s'Ia' A .A’l A; as (54)
11 11 12 12 7, 12 - -
| — T : . -1 Poop L el :.. - :..r '
Azz = H'B [All - A A AlleH + Sa Alz 1122 1112 a8 {55)

12 "22

So, in ordeﬁ to find the compensator that will provide the minimum
variaﬁce cont#ol werneed to =zolve equations {(46), (47), (48), (53), (54},
and:(SS). Note that we can reduce the number of eguations that must be
satisfied by one,; if we substitute (48) in the others. COCbssrve also
..that A22 as well as (W}HBllH') have to be nonsingular. 21though these
equations seem to be very complicated, recall thaﬁ H and- (I+DH) are very
- simple matrices. Thus a lot of simplification will appear during the
computations.

' Even though ths above equations are more tractable than the ones

encountered in the previous section, they do not give us in a simple way

-t

T
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the parameters of the compensator. For this reason, in the next section
we will develop a direct method to obtain the compensator for a system
with perfect measurements, i.e., W = 0, that involves only a simple

polynomial division.

4., MINIMUM VARTANCE CONTROL OF AN OUTPUT NOISE-FREE SYSTEM--DIRECT
METHOD 2

'The idea behind this method is to put the output of the plant at

time t+l as a function of the inputs up to time &, the cutputs up to

time t~1, and the internal noise of times t and t~l1. Once this is

achieved we eguate the equations of the input and output to obtain the
stiﬁcturé of the éoﬁpensator. Thé reason we set the ocutput at time-£+l
as a function of the outputs up to time‘tul and pot up to time t, is
because we wént the coméeﬁsaﬁof té'compﬁtebeach neW‘inpﬁt as.a function
of the past measgrements available and not to include present info;mation,
in,brder to avoid the proﬁlems méﬁtionéd in the intreduction +to this
chapter.

We again arxe given a plant of the form

v (Ekn) + an_ly(t+n~l)+ .ve +a0y(t) = b

L)+ ...+ 1 i
ey BlEFR-1)+ + by ult) +

e _viEm-1)+ ...+ GOV(_#)_ ()

We can compute the transfer Function of the system as

. BE(@) o4y . CF(2) _ |
L ¥E) ey oED gy viED L (2)

NN

-

v
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where
A%z} = 1+ g z—:L 4 e tam
: T n-l -0 :
-1 o =l
¥ = 2 .
-1 —n+1
% =
c (?) S .1 + CppZ  F oee- + o2
t=la)
B* (=) C*{=)
1 = . by
v (1) T B 1 A

It follows from (2) that we can compute v(t-2), v(t-3),...

information available at time t. To do this explicitly we

using the identit y

C*(z) = AS(z)F*(z) + 2z 2 (2)

(3}

£rom the

rewrite (3)

where F* and G* aréAPolynomials”bf'dégrées 1 and n-1 respectively as

B* (=)
A% (=)

v{t+l) =

w(e) V) + o) v(e-2)

From (2) wa can see that

B* (=) y(e-1) + B¥ (=)

v (£=2) or(z) YV TR )

u(t-2)

Substitutiong (6) in (5) we obtain

pE(z)  GH(2)BF(a)z >

- - G*® (z)
~ A¥(z) | A¥(z)C*(z)

c*(z)

y(E+L) (t) +
which reduces to. .

B¥* (z)F* (z)
C¥(z)

G* (z)

(t) = c*( !} ¥

y{t+1) (t-l) + F¥ {z)v ()

(5) .

{6)

y(t~1) + ﬁ*(z)v(t} (7

(8)

We are nov ready to compute the variance of the output, .s was pointed

=

. I T
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out earliex

E(y?(£41)) = ELEFE)vEN 2] + B yre1) + §f$§§§§§5l

Ly 2
c=(z) u(t})]

(9)
‘Obgerve that the mixed terms will vanish because v(t) and v(t-1) are
independent of y(t-1), y(t-2),.... Therefore the second temm in (9) will

‘only increase the variance of y(t+l), hence
By (e4)) > (£) + £V 10

vwhere equality holds for

G* (z)

u(®) B (z)Fe(m) Yo -

So, the transfer function of the minimum variance compensator is

given by
~1 ~n-+1
oL B
wig) = - -1 ™ 95" i --- T 9p% e (e-1)
(b h Z—l . - - + b Z—n—!—l) (f 1 = Z—l) ¥ L
n~1 =~ "n-2 Tt T Yo LT o (12)

Note that if either bn or fl, or for the same purpose bn— or ¢

1 n—i

is equal to zero, the structure of the compensator found this way will

1

not be desiréble sincg u(t) would depend on y{t). If this was the éasg,
it is obéiogs that.foliowing fhé same proéaéure oﬁtlined,abcve‘we can
_obtaiﬁ a coméehsator-thaﬁ wiil satisfy the desiredAstxuctura.

.Aé ﬁas méntioﬁed béfore,-ﬁéte that theAparametérs ﬁf ﬁhe compensatox
_are qbtained basigally from the polgnomial divison ign(é),i So this

technigue presents & very simple way of finding the minimum variance

et e S ot + o b 8 b s £ . P TR e - - .t

2
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compensator. The only drawback of this method is that the measurements

are assumed to be perfect; i.e., no noise affects the sensors. This

assumption is highly idealized, since every sensor has at least vome
internal noise generated, that will influence the accuxacy of the
measurements. But if this perturbation is small, the solution obtained

in (12) is very accurate.

7
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CHAPTER V |
|

EXAMPIE

In this chapter we solve a simple problem using the direct methed 2
and then we corxelate the answer hy showing that it satisfies the
necessary conditions found for the matrix approach.

1. DIRECT METHOD 2

Let us assume that wé have a second order plant governed by
v(EF2) ~ v{t: = u(t+l) + 2u(t) + 2v(t+l) (1)

chen the transfer function of the system is

-1
1+ 2z . 2
yit) = == u(e-l) & —=——, vie-1) ‘ (2)
. , , 1-3z -2z 4
Since
2 = 2022 + 2272 ‘ - (2)
We find that the compensator is given by _ : o _ P o
=2 . ,
u(t) = o y(&-1) (&)
(1+2z 7) (2)
N So -

- ou{et2) + 2 u(ttl) = - y{e+l) B _ : (5)
and the output variance is given hy
2. .. .
E(y (£)) = «&v

2. MATRIX APPROACH

From (1) &nd (5) we £ind that

Y NP
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0o 1 _ 2 I
a = B = C = H = [0 1]
1 o 1 | 2
. _ o o Cea
(14DH) = f F o= |0
Ll -2 .

and we want to show that D and ¥ as given above satisfy the necessary
conditiong obtained in section three of the previous chapter. To do this

B

1’ B

‘we show that there is a A A A 19

117 Ppar Boor , and 822 that will give

us the above values for F and D.

Note that the pairs (A,B) and (A,c) are controllahle. Let

by hygp | bon  hipy a2 Ao

T R R A= 2
11 o 12 12

Ay Alls - Aoy A Mogl | hyoy  Ayag
and

Biar  Buaa] By o By Baa1  PBaos
By = 3 2 Bip = " 8 Bog = 8 8

112 113 P123 124 222 223
From

— qt . 1 = . ‘r~ | - '-I, |3 . : 1
= a FH & H :
All A Alla + A12 H + H EA12A.+ F AzzFH 3 H

we get that

e

£ L
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From

VA " ' R l“!"l - 151 .
a AllBH_ LR Al 5 (T-+DH) + H'F AlgBh + "'y A22 {1+DH)

A
L2

we obtain

® A = = A- = Du *
1y T 0 Ay = oaEhy, Ay, o= o224,
hag = -3k, Ay = 7oAy,
and from

= il ! . - .o (T - . 1 ;
A22 H'B JlllBH + BHE 4+ H'B IL_LZ( +DH) (I+DH) Al 2BH :

t -
+ (D) A, (£+DH)

we get
boay = 7-8hyy; By, = -6i6A and 4,,, = 1
Thean ' _ I . AU v . Cor i
i 0 i 0 i 0
: e _ o S, o ]
All =l o 1 ﬂ:!.z =]=2 0. : A22 =. Lc: 1
- . i
From
s - P _ L P ..!.f - |. T -1 B ; . o i 4
811 = ABllzl. 4 Aslzﬁ B + BHBle BHI\ZZ 1‘112 Al 2H B + CvC
we obktain
= = — - A = —
Proa = 0 Bipp = By m By -4 By 73V




-2
From
| = to! VT Y bt o .
612 p.Bll BH'F' + 2;612 (1-+DH) + BH812 H'F BH A22 A12 A12 (T+DH)
we get

Bog = 0 By =0 B, =0 By, =0

B.n = &V B. = -y

s 7 Pl T T3
and £rom

_ -1

E‘22 T A22 ,Alz 312
we gel

8. =0 B__ =0 B = -3

221 222 223 3
Then

a N

P11 : eV 1 722 4

: 0 ay 0 o0 0 -3¥

Sﬁbsﬁituting'thése'xesults in
L ] 1, H 3 t 1 1
Alza _811 H + ﬂzzFHBllH k AlzBH BlZH : A22 (1-+DH) 3121{
and
1 . ) K .' . r - . , .
A B, + A22F5312 + A, BHB,, + 1122 (T+DH) B22

12

we see that both become egual to zero, which was the result we expected.

We then conclude that the compensator described by the sbove F and D

ST
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gives a minimum variance control strategg.
Note that E{yz(t)) is given in chis case.by
By’ () = = (A, OWC') = 4v
which is the same result obtained with the direct method 1.

REMARKS: 5
In chapter four we discussed three different methods to obtain a

compensaior that would minimize the variance of the output of a discrete

time linear time invariant single input single output system. 2As was

seen in the second section further study in this problem is regquired +to
be able to find the desired compensator using the ﬂirect method 1. Also,
from section three, more insight into this kind of problems will prove
to be of great help in order to £ind the compensator sitructure. Maybe,.
some easier equations would develop if the compensator is found.in éwo
steps a2) a form of ohserver plus b) a matrix of gaigs; Some analysis.

to establish if the necessary conditions found with this matrixz approach
give & unique solution or if a stable compensator can always be Ffound
would be a very interesting topic to work on. Some other lines of

study around this problem could be to genéralize the three methods to
the multiple input-multiple output case. It would be ziso very interest—
ing to find if the insertion of noise in the measﬁrémenis, ﬁorking with

the direct method 2, gives any resulis.

!
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