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AN EFFICIENT ALGORITHM FOR CHOOSING THE DEGREE OF A POLYNOMIAL

TO APPROXIMATE DISCRETE NONOSCILLATORY DATA

David R. Hedgley
Dryden Flight Research Center

INTRODUCTION

The least-squares method for curve fitting, or defining a curve that best ap-
proximates a data set, is well known and is used in almost every technical discipline.
•However, there has always been the recurrent problem of how to efficiently choose
the degree of the polynomial to obtain a fit that is at least moderately good without
any prior information concerning the nature of the data. Although different types
of data are approached by various methods, oscillatory (high-frequency) data are
usually smoothed, while nonoscillatory (low-frequency) data are usually approximated.

The algorithm discussed in this paper deals primarily with the efficiency of
choosing the degree'of the polynomial as it relates to nonoscillatory data but does
not neglect the smoothing of high-frequency data.

SYMBOLS

a. coefficient of polynomial

F (a , . . . . a ) function of m variables
O m .

I, K arbitrary constants

L degree of approximating polynomial

NP total number of peaks

P (x) polynomial of any degree

P' (x) first derivative of P (x)

P"(x) second derivative of P (x)



TP total number of data points
w weighting function

xj » Yj discrete data points

eO' ei arbitrary tolerance values

0 residual

DISCUSSION

The least-squares approach to curve fitting using a polynomial as a model is
based on the minimization of the sum of the squares of the differences between the
data and a polynomial of degree m evaluated at corresponding given observations.
(Note that the use of least squares assumes the errors in the data to be normally
distributed with a mean of zero . ) The function to be minimized is

where m is the degree of the model , x. and y. are discrete data points , a. is the

coefficient to be determined, w(x.) is the Weighting factor, and TP is the number
of data points (ref . 1) . If the data can be accurately represented by a polynomial,
then a = F(an, a. ..... a ) tends to zero as m approaches L, where L is the degreem 0 1 m
of the approximating polynomial (ref. 1) . However, in practice, low order polyno-
mials are preferred for curve fitting, and thus, it is sufficient to notice the magni-
tude of change in a as m increases . In other words , if0 m

a polynomial of degree m + 1 is considered sufficient (ref. 1) . (An additional
restraint,

R =

m

(yrw(xi)2ajxi]) /yi
j=o

< 6
1

where R represents the maximum percentage of error incurred over the entire col
lection of points, would be desirable as it would provide an alternate criterion
for evaluating the quality of the fit.) One of the least desirable features of this
conventional approach is the need to examine o for 1 < m < L when the data arem



nonoscillatory . This procedure results in a needless waste of computer time in
converging to L if L > 2 . This problem is addressed in the following discussion .

Let K be a constant such that 0 < K < 1. The data are considered to be oscil-
latory if one of the following conditions is true: (1) NP/TP > K where TP represents
the total number of data points and NP is the total number of peaks, or (2) NP > I
where I is a constant integer (for example , I = 10) . A peak is considered \
to have occurred if

where Xj < xi+;L < xi+2 . If a polynomial , P (x) , is sought to smooth data that is
considered oscillatory based on condition (1) or (2) above, then by observing
a m as m increases and by applying the above criterion for quality of fit, it can be
observed that \(° 1° +,) - 1 approaches zero for small values of m almost with-
out exception . Of course by choosing a large enough value of m , one could match
the data closely , but the smoothing properties of the curve would be sacrificed .
Moreover , the degree of the polynomial would be sufficiently large to make the
computational time prohibitive . Therefore , this technique selects polynomials of
small degree for oscillatory data and, hence, tends to smooth the data.

If, on the other hand, the data are determined to be nonoscillatory and are
assumed to have no wild points , the following analysis applies .

Let NP be the total number of peaks and P (x) be the desired polynomial that
approximates the data. From the definition of a peak and because a polynomial and
its derivatives are continuous, there exists a point (x_, y ), where x. < xfl <

 x-+1»
such that P' (XQ) = 0. That is , P (x~) is a local extremum or peak for P (x) . Hence,
if there are NP local extrema, there are at least NP real zeros for P' (x) . However,
this implies that the degree of P' (x) must be at least NP , which implies that the
degree of P (x) must be at least NP + 1 .

This argument can be extended to second derivatives . That is ,

+i - v^n - v - ̂  - yi

implies that there exists a point x , where x. < x < x.+1> such that P"(xfl) = 0,
where P (x) is the approximating polynomial . Let NX be the sum of all such
occurrences. It is then sufficient to examine the value Jl - (o fa m+1)j for
1 < NC < m < L where L is the degree of the approximating polynomial and
NC = maximum [(NP + 1) , (Nx + 2)] . This approach is an improvement over the
conventional methods, and the improvement should increase as the degree of the
polynomial required increases . Finally , an additional advantage of this technique
is the increased probability of obtaining a good fit . When using the conventional
method, the ratio a /a may approach 1 with m small and am large, which
would cause the iteration to terminate too soon . This obviously would produce



a rather .poor approximating polynomial when the data are nonoscillatory but have
several extrema. • . -

These observations indicate that both accuracy and efficiency can be improved
with the proposed method. Illustrative examples are given in the appendix.

CONCLUDING REMARKS

While the approach presented in this paper offers nothing new for oscillatory
data, it defines a criterion that discriminates between oscillatory and nonoscilla-
tory data and attempts to handle both without loss of generality. The approach
eliminates the need to examine the residuals of polynomials with degrees from 1
to the degree of the approximating polynomial for nonoscillatory data without sac-
rificing the performance of the least-squares method as it relates to oscillatory
data. It also increases the probability of selecting a good approximating poly-
nomial for nonoscillatory data.

NASA Dryden Flight Research Center
Edwards, Calif., November 9, 1977 '

APPENDIX-ILLUSTRATIVE EXAMPLES

Figures 1 and 2 are examples of oscillatory and nonoscillatory data that are
smoothed and approximated using the method presented in the body of this report.
These examples show the generality of the proposed method. Figure 3 shows the
weakness of the conventional method. From these examples, it is clear that the
proposed method is an improvement over the conventional technique for automa-
tically choosing the degree of a polynomial for curve fitting.

Figure 1. Oscillatory data smoothed with proposed method



APPENDIX-Concluded

Figure 2. Nonoscillatory data smoothed with proposed method,

Figure 3. Nonoscillatory data approximated with conventional method.
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